WorldWideScience

Sample records for high carbonate concentrations

  1. Carbon dioxide concentrations are very high in developing oilseeds.

    Science.gov (United States)

    Goffman, Fernando D; Ruckle, Mike; Ohlrogge, John; Shachar-Hill, Yair

    2004-09-01

    A new method has been developed to rapidly determine the total inorganic carbon concentration (gaseous [CO2] + aqueous [CO(2)] + [HCO3-] + [CO3(2)-]) in developing seeds. Seeds are rapidly dissected and homogenized in 1 N HCl in gas-tight vials. The headspace gas is then analyzed by infrared gas analysis. Developing rapeseed (Brassica napus L.) and soybean [Glycine max (L.) Merr.] seeds were analyzed and found to have up to 40 and 12 mM total inorganic carbon, respectively. These concentrations are ca. 600-2000-fold higher than in ambient air or values reported for leaves. Carbon dioxide concentrations in rapeseed peaked during the stage of maximum oil synthesis and declined as seeds matured. The consequences for seed metabolism, physiology and carbon economy are discussed.

  2. Carbon assimilation in Eucalyptus urophylla grown under high atmospheric CO2 concentrations: A proteomics perspective.

    Science.gov (United States)

    Santos, Bruna Marques Dos; Balbuena, Tiago Santana

    2017-01-06

    Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO 2 concentrations. Growth under a high concentration of CO 2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO 2 . Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO 2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO 2 . Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO 2 -enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates. The sample enrichment strategy and data analysis used here enabled the identification of all enzymes and most protein isoforms involved in the Calvin-Benson-Bessham cycle in Eucalyptus urophylla. Upon growth in CO 2 -enriched chambers, Eucalyptus urophylla plantlets responded by reducing the vascular bundle area and stomatal aperture size and by increasing the abundance of six of the eleven core enzymes involved in carbon fixation. Our proteome approach provides an estimate on how a commercially important C3-type plant would respond to an increase in CO 2 concentrations. Additionally, confirmation at the protein level of the predicted genes involved in

  3. High-resolution carbon dioxide concentration record 650,000-800,000 years before present

    Energy Technology Data Exchange (ETDEWEB)

    Luthi, D; Bereiter, B; Blunier, T; Siegenthaler, U; Kawamura, K; Stocker, T F [Climate and Environm. Physics, Physics Inst., Univ. Bern, CH-3012 Bern, (Switzerland); Luthi, D; Bereiter, B; Blunier, T; Siegenthaler, U; Kawamura, K; Stocker, T F [Oeschger Centre for Climate Change Research, Univ. Bern, CH-3012 Bern, (Switzerland); Le Floch, M; Barnola, J M; Raynaud, D [LGGE, CNRS-Univ. Grenoble 1, F-38402 Saint Martin d' Heres, (France); Jouzel, J [Inst. Pierre Simon Laplace, LSCE, CEA-CNRS-Universite Versailles-Saint Quentin, CEA Saclay, F-91191 Gif sur Yvette (France); Fischer, H [Alfred Wegener Inst. for Polar and Maine Research, D-27568 Bremerhaven, (Germany)

    2008-07-01

    Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16, possibly reflecting more pronounced oceanic carbon storage. We report the lowest carbon dioxide concentration measured in an ice core, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v. to 172-300 p.p.m.v. (authors)

  4. High-resolution transmission electron microscopy studies of graphite materials prepared by high-temperature treatment of unburned carbon concentrates from combustion fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Miguel Cabielles; Jean-Nol Rouzaud; Ana B. Garcia [Instituto Nacional del Carbn (INCAR), Oviedo (Spain)

    2009-01-15

    High-resolution transmission electron microscopy (HRTEM) has been used in this work to study the microstructural (structure and microtexture) changes occurring during the high-temperature treatment of the unburned carbon concentrates from coal combustion fly ashes. Emphasis was placed on two aspects: (i) the development of graphitic carbon structures and (ii) the disordered carbon forms remaining in the graphitized samples. In addition, by coupling HRTEM with energy-dispersive spectroscopy, the transformations with the temperature of the inorganic matter (mainly iron- and silicon-based phases) of the unburned carbon concentrates were evidenced. The HRTEM results were compared to the averaged structural order of the materials as evaluated by X-ray diffraction (XRD) and Raman spectroscopy. As indicated by XRD and Raman parameters, more-ordered materials were obtained from the unburned carbon concentrates with higher mineral/inorganic matter, thus inferring the catalytic effect of some of their components. However, the average character of the information provided by these instrumental techniques seems to be inconclusive in discriminating between carbon structures with different degrees of order (stricto sensu graphite, graphitic, turbostratic, etc.) in a given graphitized unburned carbon. Unlike XRD and Raman, HRTEM is a useful tool for imaging directly the profile of the polyaromatic layers (graphene planes), thus allowing the sample heterogeneity to be looked at, specifically the presence of disordered carbon phases. 49 refs., 9 figs., 3 tabs.

  5. Assessment of the Carbon Footprint, Social Benefit of Carbon Reduction, and Energy Payback Time of a High-Concentration Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Allen H. Hu

    2016-12-01

    Full Text Available Depleting fossil fuel sources and worsening global warming are two of the most serious world problems. Many renewable energy technologies are continuously being developed to overcome these challenges. Among these technologies, high-concentration photovoltaics (HCPV is a promising technology that reduces the use of expensive photovoltaic materials to achieve highly efficient energy conversion. This reduction process is achieved by adopting concentrating and tracking technologies. This study intends to understand and assess the carbon footprint and energy payback time (EPBT of HCPV modules during their entire life cycles. The social benefit of carbon reduction is also evaluated as another indicator to assess the energy alternatives. An HCPV module and a tracker from the Institute of Nuclear Energy Research (INER were applied, and SimaPro 8.0.2 was used for the assessment. The functional unit used in this study was 1 kWh, which is produced by HCPV, and inventory data was sourced from Ecoinvent 3.0 and the Taiwan carbon footprint calculation database. The carbon footprint, EPBT, and social benefit of carbon reduction were evaluated as 107.69 g CO2eq/kWh, 2.61 years, and 0.022 USD/kWh, respectively. Direct normal irradiation (DNI, life expectancy, and the degradation rate of HCPV system were subjected to sensitivity analysis. Results show that the influence of lifetime assumption under a low DNI value is greater than those under high DNI values. Degradation rate is also another important factor when assessing the carbon footprint of HCPV under a low DNI value and a long lifetime assumption. The findings of this study can provide several insights for the development of the Taiwanese solar industry.

  6. High-resolution carbon dioxide concentration record 650,000-800,000 years before present

    DEFF Research Database (Denmark)

    Lüthi, Dieter; Le Floch, Martine; Bereiter, Bernhard

    2008-01-01

    Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650......,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide...... is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16...

  7. Carbon Concentration and Carbon-to-Nitrogen Ratio Influence Submerged-Culture Conidiation by the Potential Bioherbicide Colletotrichum truncatum NRRL 13737

    Science.gov (United States)

    Jackson, Mark A.; Bothast, Rodney J.

    1990-01-01

    We assessed the influence of various carbon concentrations and carbon-to-nitrogen (C:N) ratios on Colletotrichum truncatum NRRL 13737 conidium formation in submerged cultures grown in a basal salts medium containing various amounts of glucose and Casamino Acids. Under the nutritional conditions tested, the highest conidium concentrations were produced in media with carbon concentrations of 4.0 to 15.3 g/liter. High carbon concentrations (20.4 to 40.8 g/liter) inhibited sporulation and enhanced the formation of microsclerotiumlike hyphal masses. At all the carbon concentrations tested, a culture grown in a medium with a C:N ratio of 15:1 produced more conidia than cultures grown in media with C:N ratios of 40:1 or 5:1. While glucose exhaustion was often coincident with conidium formation, cultures containing residual glucose sporulated and those with high carbon concentrations (>25 g/liter) exhausted glucose without sporulation. Nitrogen source studies showed that the levels of C. truncatum NRRL 13737 conidiation were similar for all protein hydrolysates tested. Reduced conidiation occurred when amino acid and inorganic nitrogen sources were used. Of the nine carbon sources evaluated, acetate as the sole carbon source resulted in the lowest level of sporulation. Images PMID:16348348

  8. Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems

    Directory of Open Access Journals (Sweden)

    Van Duong

    2014-03-01

    Full Text Available This paper explores the benefits and drawbacks of using carbon dioxide in solar thermal systems at medium and high operating temperatures. For medium temperatures, application of CO2 in non-imaging-optics based compound parabolic concentrators (CPC combined with evacuated-tube collectors is studied. These collectors have been shown to obtain efficiencies higher than 40% operating at around 200℃ without the need of tracking. Validated numerical models of external compound parabolic concentrators (XCPCs are used to simulate their performance using CO2 as working fluid. For higher temperatures, a mathematical model is implemented to analyze the operating performance of a parabolic trough solar collector (PTC using CO2 at temperatures between 100℃ and 600℃.

  9. Source contributions to atmospheric fine carbon particle concentrations

    Science.gov (United States)

    Andrew Gray, H.; Cass, Glen R.

    A Lagrangian particle-in-cell air quality model has been developed that facilitates the study of source contributions to atmospheric fine elemental carbon and fine primary total carbon particle concentrations. Model performance was tested using spatially and temporally resolved emissions and air quality data gathered for this purpose in the Los Angeles area for the year 1982. It was shown that black elemental carbon (EC) particle concentrations in that city were dominated by emissions from diesel engines including both on-highway and off-highway applications. Fine primary total carbon particle concentrations (TC=EC+organic carbon) resulted from the accumulation of small increments from a great variety of emission source types including both gasoline and diesel powered highway vehicles, stationary source fuel oil and gas combustion, industrial processes, paved road dust, fireplaces, cigarettes and food cooking (e.g. charbroilers). Strategies for black elemental carbon particle concentration control will of necessity need to focus on diesel engines, while controls directed at total carbon particle concentrations will have to be diversified over a great many source types.

  10. Effect of ion concentrations on uranium absorption from sodium carbonate solutions

    International Nuclear Information System (INIS)

    Traut, D.E.; El Hazek, N.M.T.; Palmer, G.R.; Nichols, I.L.

    1979-01-01

    The effect of various ion concentrations on uranium absorption from a sodium carbonate solution by a strong-base, anion resin was investigated in order to help assure an adequate uranium supply for future needs. The studies were conducted to improve the recovery of uranium from in situ leach solutions by ion exchange. The effects of carbonate, bicarbonate, chloride, and sulfate ions were examined. Relatively low (less than 5 g/l) concentrations of chloride, sulfate, and bicarbonate were found to be detrimental to the absorption of uranium. High (greater than 10 g/l) carbonate concentrations also adversely affected the uranium absorption. In addition, the effect of initial resin form was investigated in tests of the chloride, carbonate, and bicarbonate forms; resin form was shown to have no effect on the absorption of uranium

  11. Control of residual carbon concentration in GaN high electron mobility transistor and realization of high-resistance GaN grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    He, X.G. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhao, D.G., E-mail: dgzhao@red.semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Jiang, D.S.; Liu, Z.S.; Chen, P.; Le, L.C.; Yang, J.; Li, X.J. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhang, S.M.; Zhu, J.J.; Wang, H.; Yang, H. [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2014-08-01

    GaN films were grown by metal-organic chemical vapor deposition (MOCVD) under various growth conditions. The influences of MOCVD growth parameters, i.e., growth pressure, ammonia (NH{sub 3}) flux, growth temperature, trimethyl-gallium flux and H{sub 2} flux, on residual carbon concentration ([C]) were systematically investigated. Secondary ion mass spectroscopy measurements show that [C] can be effectively modulated by growth conditions. Especially, it can increase by reducing growth pressure up to two orders of magnitude. High-resistance (HR) GaN epilayer with a resistivity over 1.0 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. The mechanism of the formation of HR GaN epilayer is discussed. An Al{sub x}Ga{sub 1−x}N/GaN high electron mobility transistor structure with a HR GaN buffer layer and an additional low-carbon GaN channel layer is presented, exhibiting a high two dimensional electron gas mobility of 1815 cm{sup 2}/Vs. - Highlights: • Influence of MOCVD parameters on residual carbon concentration in GaN is studied. • GaN layer with a resistivity over 1 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. • High electron mobility transistor (HEMT) structures were prepared. • Control of residual carbon content results in HEMT with high 2-D electron gas mobility.

  12. Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.I.

    1979-01-01

    Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individual morphologies of the plants and the environments in which they occurred.

  13. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells.

    Science.gov (United States)

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-08-15

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  14. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jiyoung Kim

    2016-08-01

    Full Text Available Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC. The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR activities and the electrochemical double layer compared with common carbon black (CB. To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  15. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    N. S. Lovenduski; M. C. Long; K. Lindsay

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical...

  16. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and ...

  17. Riverine dissolved carbon concentration and yield in subtropical catchments, Taiwan

    Science.gov (United States)

    Chen, Pei-Hao; Shih, Yu-ting; Huang, -Chuan, Jr.

    2017-04-01

    Dissolved carbon is not highly correlated to carbon cycle, but also a critical water quality indicator and affected by interaction of terrestrial and aquatic environment at catchment scale. However, the rates and extent of the dissolved carbon export are still poorly understood and scarcely quantified especially for typhoon events. In this study, regular and events' data of riverine dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) were monitored to estimate the export. Meanwhile, the hydrological model and mixing model were used for determination of DOC and DIC flow pathways at 3 sites of Tsengwen reservoir in southern Taiwan in 2014-2015. Results showed that the mean DOC concentration was 1.5 - 2.2 mg l-1 (flow weighted) without seasonal variation. The average DOC yield was 3.1 ton-C km-2 yr-1. On the other hand, DIC concentration ranged from 15 to 25.8 mg l-1, but DIC concentration in dry season was higher than wet season. Mean annual DIC yield was 51 ton-C km-2 yr-1. The export-ratio of DOC:DIC was 1:16.5, which was extremely lower than that of worldwide large rivers (DOC:DIC=1:4.5 in average) and other mountainous rivers (DOC:DIC=1:4.6 in average). Both DOC and DIC concentration showed the dramatically discrepant change in typhoon events. The DOC concentration increased to 4-8 folds rapidly before the flood peak. However, DIC concentration was diluted to one third with discharge simultaneously and returned slowly to base concentration in more than a week. According to the hydrological model, events contributed 14.6% of the annual discharge and 21.9% and 11.1% of DOC and DIC annual flux, respectively. Furthermore, 68.9% of events' discharge derived from surface runoff which carried out 91.3% of DOC flux and 51.1% of DIC flux. It implied that increases of surface runoff transported DOC form near soil surface, but diluted DIC concentration likely implied the contribution of groundwater. Our study characterized the specialty of dissolved carbon

  18. Methane and Carbon Dioxide Concentrations and Fluxes in Amazon Floodplains

    Science.gov (United States)

    Melack, J. M.; MacIntyre, S.; Forsberg, B.; Barbosa, P.; Amaral, J. H.

    2016-12-01

    Field studies on the central Amazon floodplain in representative aquatic habitats (open water, flooded forests, floating macrophytes) combine measurements of methane and carbon dioxide concentrations and fluxes to the atmosphere over diel and seasonal times with deployment of meteorological sensors and high-resolution thermistors and dissolved oxygen sondes. A cavity ringdown spectrometer is used to determine gas concentrations, and floating chambers and bubble collectors are used to measure fluxes. To further understand fluxes, we measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. These results allow calculations of vertical mixing within the water column and of air-water exchanges using surface renewal models. Methane and carbon dioxide fluxes varied as a function of season, habitat and water depth. High CO2 fluxes at high water are related to high pCO2; low pCO2 levels at low water result from increased phytoplankton uptake. CO2 fluxes are highest at turbulent open water sites, and pCO2 is highest in macrophyte beds. Fluxes and pCH4 are high in macrophyte beds.

  19. Characterization of Black and Brown Carbon Concentrations and Sources during winter in Beijing

    Science.gov (United States)

    Yan, Caiqing; Liu, Yue; Hansen, Anthony D. A.; Močnik, Griša; Zheng, Mei

    2017-04-01

    Carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), play important roles in air quality, human health, and climate change. A better understanding of sources of light-absorbing carbonaceous aerosol (including black carbon and brown carbon) is particular critical for formulating emission-based control strategies and reducing uncertainties in current aerosol radiative forcing estimates. Beijing, the capital of China, has experienced serious air pollution problems and high concentrations of carbonaceous aerosols in recent years, especially during heating seasons. During November and December of 2016, several severe haze episodes occurred in Beijing, with hourly average PM2.5 mass concentration up to 400 μg/m3. In this study, concentration levels and sources of black carbon and brown carbon were investigated based on 7-wavelength Aethalometer (AE-33) with combination of other PM2.5 chemical composition information. Contributions of traffic and non-traffic emissions (e.g., coal combustion, biomass burning) were apportioned, and brown carbon was separated from black carbon. Our preliminary results showed that (1) Concentrations of BC were around 5.3±4.2 μg/m3 during the study period, with distinct diurnal variations during haze and non-haze days. (2) Traffic emissions contributed to about 37±17% of total BC, and exhibited higher contributions during non-haze days compared to haze days. (3) Coal combustion was a major source of black carbon and brown carbon in Beijing, which was more significant compared to biomass burning. Sources and the relative contributions to black carbon and brown carbon during haze and non-haze days will be further discussed.

  20. Correlation of the concentration of the carbon-associated radiation damage levels with the total carbon concentration in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ferenczi, G.; Londos, C.A.; Pavelka, T.; Somogyi, M.; Mertens, A.

    1988-01-01

    The dominant carbon-related radiation damage center in silicon was studied in detail by deep level transient spectroscopy. Samples with different carbon and oxygen content were implanted with gradually increasing proton fluence. Two energetically closely spaced levels were revealed and tentative identities were assigned. One at E/sub T/+E/sub V/ = 0.344 eV (sigma/sub p/ = 1.1 x 10/sup -16/ cm/sup 2/) is assigned as the C+O/sub i/ complex, and that at E/sub T/+E/sub V/ = 0.370 eV (sigma/sub p/ = 8 x 10/sup -18/ cm/sup 2/) is assigned as the C/sub s/-Si/sub i/-C/sub s/ complex. It was shown that the concentration of these defects is correlated to the total concentration of carbon in the crystal.

  1. Carbon monoxide and COHb concentration in blood in various circumstances

    Energy Technology Data Exchange (ETDEWEB)

    Modic, J. [Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana (Slovenia)

    2003-07-01

    On the basis of known medical experiments we find out the correlation between the concentration of carbon monoxide (CO) in inhaling air and the concentration of carboxihemoglobyne (COHb) in human blood. All internal combustion engines produce exhaust gases containing noxious compounds: carbon monoxide, nitrogen oxides (NO{sub x}), carbon oxides (CxHy) and smoke. In a living room is important the smoke of cigarettes, smoke of furnaces, improper ventilation. In tunnel is most dangerous the carbon monoxide if it exceeds an allowable level. In human blood the carbon monoxide causes increasing the concentration of carboxihemoglobyne and in this case the hypoxia of web. With help of mathematical model the concentrations of some dangerous substances at the end of tunnel were calculated. For this case a differential equation also was developed and it shows the correlation between concentration of carbon monoxide in the air and concentration of carboxihemoglobyne in the blood. The constructed mathematical model shows circumstances in the tunnel (velocity of air moving as effect of induction, concentration of noxious substances and criterial number). Also a corresponding computer program was developed, which makes possible a quick and simple calculation. All the results are proved by experiments. Finally the differential equation was done, which shows a temporal connection between both parameters as a function of tunnel characteristics. (author)

  2. Use of high concentrations of carbon dioxide for stunning rabbits reared for meat production

    Directory of Open Access Journals (Sweden)

    A. Dalmau

    2016-03-01

    Full Text Available Abstract: An investigation was performed to determine whether high concentrations of carbon dioxide (CO2 at 70-98% in atmospheric air are a suitable alternative for stunning rabbits compared to conventional approaches such as electronarcosis. Aversion to the gas and efficacy in causing prolonged unconsciousness and death were studied in a total of 480 rabbits by means of behavioural parameters, physiological indicators (presence of rhythmic breathing and corneal reflex and electroencephalography (EEG, brain function. The use of any of the 4 studied concentrations of the gas caused more nasal discomfort and vocalisations than the use of atmospheric air (P<0.001. EEG activity confirmed that loss of posture is a good indicator of the onset of unconsciousness in rabbits exposed to CO2, occurring earlier (P<0.05 at 90 and 98% than at 70 and 80%. Rabbits showed signs of aversion for 15 s before the onset of unconsciousness, which occurred around 30 s after the beginning of the exposure to the gas, similar to species such as swine in which high concentrations of CO2 are also used for stunning. CO2 at 80 to 98% is suggested as a reasonable concentration range to induce a long state of unconsciousness and death in rabbits, while 70% CO2 is not recommended because it requires too long duration of exposure (more than 360 s to ensure effectiveness. Despite the advantages in terms of pre-stun handling and irreversibility, CO2 is not free of animal welfare concerns. In consequence, a debate is necessary to ascertain if CO2 can be considered a suitable alternative to stun rabbits, considering the advantages and drawbacks cited, quantified in the present study as 15 s of aversion (nasal discomfort and vocalisations before losing posture.

  3. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically insignificant....... Thus hyperkalaemia is unlikely to develop in patients with normal renal function undergoing carbon dioxide pneumoperitoneum for laparoscopic surgery....

  4. Effect of Elevated Carbon Dioxide Concentration on Carbon Assimilation under Fluctuating Light

    Czech Academy of Sciences Publication Activity Database

    Holišová, Petra; Zitová, Martina; Klem, Karel; Urban, Otmar

    2012-01-01

    Roč. 41, č. 6 (2012), s. 1931-1938 ISSN 0047-2425 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR(CZ) GAP501/10/0340; GA MŠk(CZ) LM2010007; GA AV ČR IAA600870701 Institutional support: RVO:67179843 Keywords : carbon * light * beech * spruce * carbon assimilation * elevat e carbon * dioxide concentration * mol * photosynthetic * assimilation * carbon dioxide * dioxide * concentracion * leave * photosynthetic efficiency Subject RIV: EH - Ecology, Behaviour Impact factor: 2.353, year: 2012

  5. Carbon-concentrating mechanisms in seagrasses.

    Science.gov (United States)

    Larkum, Anthony William D; Davey, Peter A; Kuo, John; Ralph, Peter J; Raven, John A

    2017-06-01

    Seagrasses are unique angiosperms that carry out growth and reproduction submerged in seawater. They occur in at least three families of the Alismatales. All have chloroplasts mainly in the cells of the epidermis. Living in seawater, the supply of inorganic carbon (Ci) to the chloroplasts is diffusion limited, especially under unstirred conditions. Therefore, the supply of CO2 and bicarbonate across the diffusive boundary layer on the outer side of the epidermis is often a limiting factor. Here we discuss the evidence for mechanisms that enhance the uptake of Ci into the epidermal cells. Since bicarbonate is plentiful in seawater, a bicarbonate pump might be expected; however, the evidence for such a pump is not strongly supported. There is evidence for a carbonic anhydrase outside the outer plasmalemma. This, together with evidence for an outward proton pump, suggests the possibility that local acidification leads to enhanced concentrations of CO2 adjacent to the outer tangential epidermal walls, which enhances the uptake of CO2, and this could be followed by a carbon-concentrating mechanism (CCM) in the cytoplasm and/or chloroplasts. The lines of evidence for such an epidermal CCM are discussed, including evidence for special 'transfer cells' in some but not all seagrass leaves in the tangential inner walls of the epidermal cells. It is concluded that seagrasses have a CCM but that the case for concentration of CO2 at the site of Rubisco carboxylation is not proven. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Novel star-like surfactant as dispersant for multi-walled carbon nanotubes in aqueous suspensions at high concentration

    Science.gov (United States)

    Qiao, Min; Ran, Qianping; Wu, Shishan

    2018-03-01

    A kind of novel surfactant with star-like molecular structure and terminated sulfonate was synthesized, and it was used as the dispersant for multi-walled carbon nanotubes (CNTs) in aqueous suspensions compared with a traditional single-chained surfactant. The star-like surfactant showed good dispersing ability for multi-walled CNTs in aqueous suspensions. Surface tension analysis, total organic carbon analysis, X-ray photoelectron spectroscopy, zeta potential, dynamic light scattering and transmission electron microscopy were performed to research the effect of star-like surfactant on the dispersion of multi-walled CNTs in aqueous suspensions. With the assistance of star-like surfactant, the CNTs could disperse well in aqueous suspension at high concentration of 50 g/L for more than 30 days, while the CNTs precipitated completely in aqueous suspension after 1 day without any dispersant or after 10 days with sodium 4-dodecylbenzenesulfonic acid as dispersant.

  7. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  8. Analysis of dissolved organic carbon concentration and 13C isotopic signature by TOC-IRMS - assessment of analytical performance

    Science.gov (United States)

    Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten

    2013-04-01

    Stable carbon isotopes provide a powerful tool to assess carbon pools and their dynamics. Dissolved organic carbon (DOC) has been recognized to play an important role in ecosystem functioning and carbon cycling and has therefore gained increased research interest. However, direct measurement of 13C isotopic signature of carbon in the dissolved phase is technically challenging particularly using high temperature combustion. Until recently, mainly custom-made systems existed which were modified for coupling of TOC instruments with IRMS for simultaneous assessment of C content and isotopic signature. The variety of coupled systems showed differences in their analytical performances. For analysis of DOC high temperature combustion is recognized as best performing method, owing to its high efficiency of conversion to CO2 also for highly refractory components (e.g. humic, fulvic acids) present in DOC and soil extracts. Therefore, we tested high temperature combustion TOC coupled to IRMS (developed by Elementar Group) for bulk measurements of DOC concentration and 13C signature. The instruments are coupled via an Interface to exchange the carrier gas from O2 to He and to concentrate the derived CO2 for the isotope measurement. Analytical performance of the system was assessed for a variety of organic compounds characterized by different stability and complexity, including humic acid and DOM. We tested injection volumes between 0.2-3 ml, thereby enabling measurement of broad concentration ranges. With an injection volume of 0.5 ml (n=3, preceded by 1 discarded injection), DOC and 13C signatures for concentrations between 5-150 mg C/L were analyzed with high precision (standard deviation (SD) predominantly TOC-IRMS in comparison with other systems capable of determining C concentration and isotopic signatures. We recognize the advantages of this system providing: - High sample throughput, short measurement time (15 minutes), flexible sample volume - Easy maintenance

  9. Yttrium and lanthanum recovery from low cerium carbonate, yttrium carbonate and yttrium concentrate

    International Nuclear Information System (INIS)

    Vasconcelos, Mari Estela de

    2006-01-01

    In this work, separation, enrichment and purification of lanthanum and yttrium were performed using as raw material a commercial low cerium rare earth concentrate named LCC (low cerium carbonate), an yttrium concentrate named 'yttrium carbonate', and a third concentrated known as 'yttrium earths oxide. The first two were industrially produced by the late NUCLEMON - NUCLEBRAS de Monazita e Associados Ltda, using Brazilian monazite. The 'yttrium earths oxide' come from a process for preparation of lanthanum during the course of the experimental work for the present thesis. The following techniques were used: fractional precipitation with urea; fractional leaching of the LCC using ammonium carbonate; precipitation of rare earth peroxycarbonates starting from the rare earth complex carbonates. Once prepared the enriched rare earth fractions the same were refined using the ion exchange chromatography with strong cationic resin without the use of retention ion and elution using the ammonium salt of ethylenediaminetetraacetic acid. With the association of the above mentioned techniques were obtained pure oxides of yttrium (>97,7%), lanthanum (99,9%), gadolinium (96,6%) and samarium (99,9%). The process here developed has technical and economic viability for the installation of a large scale unity. (author)

  10. Recovery of gold from arsenopyrite concentrates by cyanidation-carbon adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Heinen, H.J.; McClelland, G.E., Lindstrom, R.E.

    1980-01-01

    The Bureau of Mines, investigated a cyanidation-carbon adsorption technique for extracting gold from arsenopyrite concentrates. Agitation leach experiments were conducted on 85%-minus-35-mesh gravity concentrates containing 21.8 oz gold and 6.4 oz silver per ton. Results obtained in leaching the concentrates showed that 96.9% gold and 90.7% silver extraction could be achieved in 96 hours of agitation. Gold and silver were recovered from the resulting pregnant solution by exposure to granular activated carbon in a countercurrent system. Carbon loadings of 2556 oz of gold and 502 oz of silver per ton were achieved. These loadings are significantly higher than heretofore thought practical.

  11. Carbon isotopes and concentrations in mid-oceanic ridge basalts

    International Nuclear Information System (INIS)

    Pineau, F.; Javoy, M.

    1983-01-01

    In order to estimate carbon fluxes at mid-ocean ridges and carbon isotopic compositions in the convective mantle, we have studied carbon concentrations and isotopic compositions in tholeiitic glasses from the FAMOUS zone (Mid-Atlantic Ridge at 36 0 N) and East Pacific Rise from 21 0 N (RITA zone) to 20 0 S. These samples correspond essentially to the whole spectrum of spreading rates (2-16 cm/yr). The contain: -CO 2 vesicles in various quantities (3-220 ppm C) with delta 13 C between -4 and -9per mille relative to PDB, in the range of carbonatites and diamonds. - Carbonate carbon (3-100 ppm C) with delta 13 C between -2.6 and -20.0per mille relative to PDB. - Dissolved carbon at a concentration of 170+-10 ppm under 250 bar pressure with delta 13 C from -9 to -21per mille relative to PDB. This dissolved carbon, not contained in large CO 2 vesicles, corresponds to a variety of chemical forms among which part of the above carbonates, microscopic CO 2 bubbles and graphite. The lightest portions of this dissolved carbon are extracted at low temperatures (400-600 0 C) whereas the CO 2 from the vesicles is extracted near fusion temperature. These features can be explained by outgassing processes in two steps from the source region of the magma: (1) equilibrium outgassing before the second percolation threshold, where micron size bubbles are continuously reequilibrated with the magma; (2) distillation after the second percolation threshold when larger bubbles travel faster than magma concentrations to the surface. The second step may begin at different depths apparently related to the spreading rate, shallower for fast-spreading ridges than for slow-spreading ridges. (orig./WL)

  12. Synthesis of high luminescent carbon nanoparticles

    Science.gov (United States)

    Gvozdyuk, Alina A.; Petrova, Polina S.; Goryacheva, Irina Y.; Sukhorukov, Gleb B.

    2017-03-01

    In this article we report an effective and simple method for synthesis of high luminescent carbon nanodots (CDs). In our work as a carbon source sodium dextran sulfate (DS) was used because it is harmless, its analogs are used in medicine as antithrombotic compounds and blood substitutes after hemorrhage. was used as a substrate We investigated the influence of temperature parameters of hydrothermal synthesis on the photoluminescence (PL) intensity and position of emission maxima. We discovered that the PL intensity can be tuned by changing of synthesis temperature and CD concentration.

  13. The carbon-nitrogen balance of the nodule and its regulation under elevated carbon dioxide concentration.

    Science.gov (United States)

    Libault, Marc

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  14. Analytical strategy for the determination of various arsenic species in landfill leachate containing high concentrations of chlorine and organic carbon by HPLC-ICPMS

    Science.gov (United States)

    Bae, J.; An, J.; Kim, J.; Jung, H.; Kim, K.; Yoon, C.; Yoon, H.

    2012-12-01

    As a variety of wastes containing arsenic are disposed of in landfills, such facilities can play a prominent role in disseminating arsenic sources to the environment. Since it is widely recognized that arsenic toxicity is highly dependent on its species, accurate determination of various arsenic species should be considered as one of the essential goals to properly account for the potential health risk of arsenic in human and the environment. The inductively coupled plasma mass spectrometry linked to high performance liquid chromatography (HPLC-ICPMS) is acknowledged as one of the most important tools for the trace analysis of metallic speciation because of its superior separation capability and detectability. However, the complexity of matrices can cause severe interferences in the analysis results, which is the problem often encountered with HPLC-ICPMS system. High concentration of organic carbon in a sample solution causes carbon build-up on the skimmer and sampling cone, which reduces analytical sensitivity and requires a high maintenance level for its cleaning. In addition, argon from the plasma and chlorine from the sample matrix may combine to form 40Ar35Cl, which has the same nominal mass to charge (m/z) ratio as arsenic. In this respect, analytical strategy for the determination of various arsenic species (e.g., inorganic arsenite and arsenate, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and arsenobetaine) in landfill leachate containing high concentrations of chlorine and organic carbon was developed in the present study. Solid phase extraction disk (i.e., C18 disk), which does not significantly adsorb any target arsenic species, was used to remove organic carbon in sample solutions. In addition, helium (He) gas was injected into the collision reaction cell equipped in ICPMS to collapse 40Ar35Cl into individual 40Ar and 35Cl. Although He gas also decreased arsenic intensity by blocking 75As, its signal to noise ratio

  15. [Carboxyhemoglobin concentration in carbon monoxide poisoning. Critical appraisal of the predictive value].

    Science.gov (United States)

    Köthe, L; Radke, J

    2010-06-01

    In cases of unclear depression of conciousness, arrhythmia and symptoms of cardiac insufficiency inadvertent carbon monoxide intoxication should always be taken into consideration. Rapid diagnosis of acute carbon monoxide intoxication with mostly unspecific symptoms requires an immediate supply of high dose oxygen which enables a distinct reduction of mortality and long-term morbidity. Levels of carboxyhemoglobin, however, should not be used as a parameter to decide whether to supply normobaric or the more efficient hyperbaric oxygen. There is no sufficient coherence between carboxyhemoglobin blood levels and clinical symptoms. Increased carboxyhemoglobin concentrations help to diagnose acute carbon monoxide intoxication but do not allow conclusions to be drawn about possible long-term neuropsychiatric or cardiac consequences.

  16. Classroom Carbon Dioxide Concentration, School Attendance, and Educational Attainment

    Science.gov (United States)

    Gaihre, Santosh; Semple, Sean; Miller, Janice; Fielding, Shona; Turner, Steve

    2014-01-01

    Background: We tested the hypothesis that classroom carbon dioxide (CO[subscript 2]) concentration is inversely related to child school attendance and educational attainment. Methods: Concentrations of CO[subscript 2] were measured over a 3-5?day period in 60 naturally ventilated classrooms of primary school children in Scotland. Concentrations of…

  17. Dependence of carbon dioxide concentration on microalgal carbon dioxide fixation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yeoung Sang; Park, Song Moon [Department of Chemical Engineering, School of Environmental Engineering, Pohang University of Science and Technology, Pohang (Korea); Bolesky, Bohumil [Department of Chemical Engineering, McGill University (Canada)

    1999-10-01

    Batch cultivation of chlorella vulgaris was carried out under various CO{sub 2} concentrations in order to understand and describe mathematically the CO{sub 2} inhibition of microalgal CO{sub 2} fixation. The volumetric CO{sub 2} transfer coefficient from mixture gas to culture medium was estimated from the volumetric O{sub 2} transfer coefficient obtained experimentally. Using this transfer coefficient and aquatic equilibrium relationship between dissolved inorganic carbons, the behavior of dissolved CO{sub 2} was calculated during microalgal culture. When air containing 0.035%(v/v) CO{sub 2} was supplied into microalgal culture, the fixation rate was limited by CO{sub 2} transfer rate. However, the limitation was disappeared by supplying mixture gas containing above 2%(v/v) CO{sub 2} and the dissolved CO{sub 2} concentration was maintained at the saturated value. In the range of CO{sub 2} partial pressure in the flue gases from thermal power sations and steel-making plants, the microalgal CO{sub 2} fixation rate was inhibited. The CO{sub 2} fixation rate was successfully formulated by a new empirical equation as a function of dissolved CO{sub 2} concentration, which could be useful for modeling and simulating the performance of photobioreaction with enriched CO{sub 2}. Also, it was found that the CO{sub 2} inhibition of microalgal CO{sub 2} fixation was reversible and that microalgal CO{sub 2} fixation process could be stable against a shock of unusually high CO{sub 2} concentration. 29 refs., 8 figs.

  18. Effect of Sodium Carbonate Concentrations on the Formation and Mechanism of Regenerated Silk Fibroin Nanofibers by Electrospinning

    Directory of Open Access Journals (Sweden)

    Hao Dou

    2014-01-01

    Full Text Available Degumming is the first process for the preparation of all silk-based products. In this paper, effect of sodium carbonate concentrations for silk degumming on the formation of electrospun silk fibroin nanofibers was investigated and the reason for the silk electrospinning process was explained for the first time by differences from the microstructure of regenerated silk fibroin. With increasing the sodium carbonate concentration, microstructure both in the aqueous solutions and in the electrospinning solutions transformed from nanofibrils to nanoparticles, leading to obvious changes on rheological property; electrospinning solutions with nanofibrils behaved like the native silk dope and owned remarkably higher viscosity than the solutions with nanoparticles showing very low viscosity. More interestingly, nanofibrils favored the formation of silk nanofibers with ease, and even nanofibers could be electrospun at concentration 2%. However, nanoparticles were completely unable to generate nanofibers at high spinning concentration 8%. Importance of sodium carbonate concentrations is heavily emphasized for impacting the microstructure types and further influencing the electrospinning performance of regenerated silk. Hence, sodium carbonate concentrations provide a controllable choice for the preparation of silk-based electrospun biomaterials with desired properties.

  19. Concentration of enteric virus indicator from seawater using granular activated carbon.

    Science.gov (United States)

    Cormier, Jiemin; Gutierrez, Miguel; Goodridge, Lawrence; Janes, Marlene

    2014-02-01

    Fecal contamination of shellfish growing seawater with enteric viruses is often associated with human outbreaks of gastroenteritis. Male specific bacteriophage MS2 is correlated with those of enteric viruses in a wide range of water environments and has been used widely as a surrogate for pathogenic waterborne viruses. Since viruses in contaminated water are usually at low levels, the development of methods to concentrate viruses from water is crucial for detection purposes. In the present study, granular activated carbon was evaluated for concentration of MS2 from artificial seawater, and different parameters of the seawater were also compared. Recovery of MS2 from warm seawater (37°C) was found to be significantly greater than from cold seawater (4 and 20°C), and even greater than from fresh water (4, 20 and 37°C); the difference between seawater and fresh water became less profound when the temperatures of both were below 37°C. Although not of statistical significance, recovery of MS2 from low salinity seawater (10 and 20 parts per thousand, ppt) was greater than from high salinity seawater (30 and 40ppt). One gram of granular activated carbon was able to extract 6-log plaque forming units (PFU) of MS2 from 500ml seawater at 37°C. This study demonstrated that granular activated carbon can concentrate an enteric virus indicator from shellfish growing seawater effectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO₂ concentrations compared to primordial values.

    Science.gov (United States)

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-13

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO₂ concentration. The results show that the expression of CA genes is negatively correlated with both CO₂ concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO₂ concentration show that the magnitudes of the effects of CA and CO₂ concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO₂ concentration compared to 3 billion years ago.

  1. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms

    Science.gov (United States)

    McQuaid, Jeffrey B.; Kustka, Adam B.; Oborník, Miroslav; Horák, Aleš; McCrow, John P.; Karas, Bogumil J.; Zheng, Hong; Kindeberg, Theodor; Andersson, Andreas J.; Barbeau, Katherine A.; Allen, Andrew E.

    2018-03-01

    In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton. Although most dissolved iron in the marine environment is complexed with organic molecules, picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms. Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts, including the ferric iron-concentrating protein ISIP2A, but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum, and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second-order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum, the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution and are abundant in marine environmental genomic datasets, suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.

  2. Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG

    Science.gov (United States)

    Thorpe, Andrew K.; Frankenberg, Christian; Thompson, David R.; Duren, Riley M.; Aubrey, Andrew D.; Bue, Brian D.; Green, Robert O.; Gerilowski, Konstantin; Krings, Thomas; Borchardt, Jakob; Kort, Eric A.; Sweeney, Colm; Conley, Stephen; Roberts, Dar A.; Dennison, Philip E.

    2017-10-01

    At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS) method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.

  3. Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG

    Directory of Open Access Journals (Sweden)

    A. K. Thorpe

    2017-10-01

    Full Text Available At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.

  4. Estimating Terrestrial Wood Biomass from Observed Concentrations of Atmospheric Carbon Dioxide

    NARCIS (Netherlands)

    Schaefer, K. M.; Peters, W.; Carvalhais, N.; van der Werf, G.; Miller, J.

    2008-01-01

    We estimate terrestrial disequilibrium state and wood biomass from observed concentrations of atmospheric CO2 using the CarbonTracker system coupled to the SiBCASA biophysical model. Starting with a priori estimates of carbon flux from the land, ocean, and fossil fuels, CarbonTracker estimates net

  5. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms.

    Science.gov (United States)

    Tomar, Vandana; Sidhu, Gurpreet Kaur; Nogia, Panchsheela; Mehrotra, Rajesh; Mehrotra, Sandhya

    2017-11-01

    This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO 2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O 2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C 4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO 2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO 2 and HCO 3 - transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO 2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.

  6. Highly stretchable carbon aerogels.

    Science.gov (United States)

    Guo, Fan; Jiang, Yanqiu; Xu, Zhen; Xiao, Youhua; Fang, Bo; Liu, Yingjun; Gao, Weiwei; Zhao, Pei; Wang, Hongtao; Gao, Chao

    2018-02-28

    Carbon aerogels demonstrate wide applications for their ultralow density, rich porosity, and multifunctionalities. Their compressive elasticity has been achieved by different carbons. However, reversibly high stretchability of neat carbon aerogels is still a great challenge owing to their extremely dilute brittle interconnections and poorly ductile cells. Here we report highly stretchable neat carbon aerogels with a retractable 200% elongation through hierarchical synergistic assembly. The hierarchical buckled structures and synergistic reinforcement between graphene and carbon nanotubes enable a temperature-invariable, recoverable stretching elasticity with small energy dissipation (~0.1, 100% strain) and high fatigue resistance more than 10 6 cycles. The ultralight carbon aerogels with both stretchability and compressibility were designed as strain sensors for logic identification of sophisticated shape conversions. Our methodology paves the way to highly stretchable carbon and neat inorganic materials with extensive applications in aerospace, smart robots, and wearable devices.

  7. Adsorption of SO{sub 2} on activated carbon for low gas concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P.; Wanko, H.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaften, Verfahrenstechnik/TVT, Halle (Saale) (Germany)

    2007-05-15

    Adsorption experiments of SO{sub 2} on activated carbon has been carried out for low concentrations (about 100 ppm) at room temperature (15 to 33 C) with varying humidity in the air. The breakthrough curves show that at high relative humidity or relative higher SO{sub 2} concentration, the load capacity increases with respect to temperature. The humidity of the air is also of benefit to the load capacity of SO{sub 2}. When an adsorption process is interrupted and the activated carbon is kept closed for a while, the SO{sub 2} concentration at the exit of a fixed-bed adsorber is similar to that of the fresh activated carbon and begins at a very low value. It appears that the sorption potential has been refreshed after the storage period. Analysis of desorption experiments by simultaneous thermal analysis combined with mass spectrometry (MS) after loading, shows that the physisorbed SO{sub 2} and H{sub 2}O are desorbed at low temperatures. At higher temperatures, the MS peak of SO{sub 2} and H{sub 2}O occur at the same time. Compared with desorption immediately after loading, after one day, the desorption peak due to the physisorbed SO{sub 2} disappears. From this, it can be concluded that the refreshment of the loading capacity of the activated carbon after storage is mainly due to a change in the nature of the SO{sub 2} from a physisorbed state to a chemisorbed form. The same mechanism leads to a continuous refreshment of the sorption potential by means of a chemical reaction during the adsorption process. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  8. Carbon in high-purity germanium

    International Nuclear Information System (INIS)

    Haller, E.E.; Hansen, W.L.; Luke, P.; McMurray, R.; Jarrett, B.

    1981-10-01

    Using 14 C-spiked pyrolytic graphite-coated quartz crucibles for the growth of nine ultra-pure germanium single crystals, we have determined the carbon content and distribution in these crystals. Using autoradiography, we observe a rapidly decreasing carbon cluster concentration in successively grown crystals. Nuclear radiation detectors made from the crystals measure the betas from the internally decaying 14 C nuclei with close to 100% efficiency. An average value for the total carbon concentration [ 14 C + 12 C] is approx. 2 x 10 14 cm -3 , a value substantially larger than expected from earlier metallurgical studies. Contrary to the most recent measurement, we find the shape of the beta spectrum to agree very well with the statistical shape predicted for allowed transitions

  9. Effect of Carbon Concentration on the Sputtering of Carbon-Rich SiC Bombarded by Helium Ions

    Directory of Open Access Journals (Sweden)

    Xinghao Liang

    2018-02-01

    Full Text Available Silicon carbide (SiC is considered as an important material for nuclear engineering due to its excellent properties. Changing the carbon content in SiC can regulate and control its elastic and thermodynamic properties, but a simulation study of the effect of carbon content on the sputtering (caused by the helium ions of SiC is still lacking. In this work, we used the Monte-Carlo and molecular dynamics simulation methods to study the effects of carbon concentration, incidence energy, incident angle, and target temperature on the sputtering yield of SiC. The results show that the incident ions’ energy and angle have a significant effect on sputtering yield of SiC when the carbon concentration in SiC is around 62 at %, while the target temperature has a little effect on the sputtering yield of SiC. Our work might provide theoretical support for the experimental research and engineering application of carbon fiber-reinforced SiC that be used as the plasma-facing material in tokamak fusion reactors.

  10. Fluidized bed combustion of single coal char particles at high CO{sub 2} concentration

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F.; Chirone, R. [CNR, Naples (Italy)

    2010-12-15

    Combustion of single coal char particles was studied at 850{sup o}C in a lab-scale fluidized bed at high CO{sub 2} concentration, typical of oxyfiring conditions. The burning rate of the particles was followed as a function of time by continuously measuring the outlet CO and O{sub 2} concentrations. Some preliminary evaluations on the significance of homogeneous CO oxidation in the reactor and of carbon gasification by CO{sub 2} in the char were also carried out. Results showed that the carbon burning rate increases with oxygen concentration and char particle size. The particle temperature is approximately equal to that of the bed up to an oxygen concentration of 2%, but it is considerably higher for larger oxygen concentrations. Both CO{sub 2} gasification of char and homogeneous CO oxidation are not negligible. The gasification reaction rate is slow and it is likely to be controlled by intrinsic kinetics. During purely gasification conditions the extent of carbon loss due to particle attrition by abrasion (estimated from the carbon mass balance) appears to be much more important than under combustion conditions.

  11. Effect of oxide ion concentration on the electrochemical oxidation of carbon in molten LiCl

    International Nuclear Information System (INIS)

    Yun, J. W.; Choi, I. K.; Park, Y. S.; Kim, W. H.

    2001-01-01

    The continuous measurement of lithium oxide concentration was required in DOR (Direct Oxide Reduction) process, which converts spent nuclear fuel to metal form, for the reactivity monitor and effective control of the process. The concentration of lithium oxide was measured by the electrochemical method, which was based on the phenomenon that carbon atoms of glassy carbon electrode electrochemically react with oxygen ions of lithium oxide in molten LiCl medium. From the results of electrode polarization experiments, the trend of oxidation rate of carbon atoms was classified into two different regions, which were proportional and non-proportional ones, dependent on the amount of lithium oxide. Below about 2.5 wt % Li 2 O, as the carbon atom ionization rate was fast enough for reacting with diffusing lithium oxide to the surface of carbon electrode. In this concentration range, the oxidation rate of carbon atoms was controlled by the diffusion of lithium oxide, and the concentration of lithium oxide could be measured by electrochemical method. But, above 2.5 wt % Li 2 O, the oxidation rate of carbon atoms was controlled by the applied electrochemical potential, because the carbon atom ionization rate was suppressed by the huge amounts of diffusing Li 2 O. Above this concentration, the electrochemical method was not applicable to determine the concentration of lithium oxide

  12. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values

    Science.gov (United States)

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-01

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago. PMID:25583135

  13. Natural variability in the surface ocean carbonate ion concentration

    Science.gov (United States)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-11-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30-year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends

  14. Allowable carbon emissions for medium-to-high mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Tachiiri, Kaoru; Hargreaves, Julia C.; Annan, James D.; Kawamiya, Michio [Research Inst. for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, (Japan)], e-mail: tachiiri@jamstec.go.jp; Huntingford, Chris [Centre for Ecology and Hydrology, Wallingford (United Kingdom)

    2013-11-15

    Using an ensemble of simulations with an intermediate complexity climate model and in a probabilistic framework, we estimate future ranges of carbon dioxide (CO{sub 2}) emissions in order to follow three medium-high mitigation concentration pathways: RCP2.6, RCP4.5 and SCP4.5 to 2.6. Uncertainty is first estimated by allowing modelled equilibrium climate sensitivity, aerosol forcing and intrinsic physical and biogeochemical processes to vary within widely accepted ranges. Results are then constrained by comparison against contemporary measurements. For both constrained and unconstrained projections, our calculated allowable emissions are close to the standard (harmonised) emission scenarios associated with these pathways. For RCP4.5, which is the most moderate scenario considered in terms of required emission abatement, then after year 2100 very low net emissions are needed to maintain prescribed year 2100 CO{sub 2} concentrations. As expected, RCP2.6 and SCP4.5 to 2.6 require more strict emission reductions. The implication of this is that direct sequestration of carbon dioxide is likely to be required for RCP4.5 or higher mitigation scenarios, to offset any minimum emissions for society to function (the 'emissions floor'). Despite large uncertainties in the physical and biogeochemical processes, constraints from model-observational comparisons support a high degree of confidence in predicting the allowable emissions consistent with a particular concentration pathway. In contrast the uncertainty in the resulting temperature range remains large. For many parameter sets, and especially for RCP2.6, the land will turn into a carbon source within the twenty first century, but the ocean will remain as a carbon sink. For land carbon storage and our modelling framework, major reductions are seen in northern high latitudes and the Amazon basin even after atmospheric CO{sub 2} is stabilised, while for ocean carbon uptake, the tropical ocean regions will be a

  15. In-vehicle carbon dioxide concentration in commuting cars in Bangkok, Thailand.

    Science.gov (United States)

    Luangprasert, Maytat; Vasithamrong, Chainarin; Pongratananukul, Suphasit; Chantranuwathana, Sunhapos; Pumrin, Suree; De Silva, I P D

    2017-05-01

    It is known that in-vehicle carbon dioxide (CO 2 ) concentration tends to increase due to occupant exhalation when the HVAC (heating, ventilation, and air conditioning) air is in recirculation mode. Field experiments were conducted to measure CO 2 concentration during typical commute in Bangkok, Thailand. The measured concentrations agreed with the concentration predicted using first-order mass balance equation, in both recirculating and outside air modes. The long-term transient decay of the concentration when the vehicle was parked and the HVAC system was turned off was also studied. This decay was found to follow Fickian diffusion process. The paper also provides useful operational details of the automotive HVAC system and fresh air ventilation exchange between cabin interior and exterior. Drivers in tropical Asian countries typically use HVAC recirculation mode in their automobiles. This behavior leads to excessive buildup of cabin CO 2 concentration levels. The paper describes the CO 2 buildup in a typical commute in Bangkok, Thailand. Auto manufacturers can potentially take measures to alleviate such high concentration levels. The paper also discusses the diffusion of CO 2 through the vehicle envelope, an area that has never been investigated before.

  16. Assessment of Global Carbon Dioxide Concentration Using MODIS and GOSAT Data

    Directory of Open Access Journals (Sweden)

    Hiroshi Tani

    2012-11-01

    Full Text Available Carbon dioxide (CO2 is the most important greenhouse gas (GHG in the atmosphere and is the greatest contributor to global warming. CO2 concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO2 concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR or Moderate Resolution Imaging Spectroradiometer (MODIS data can overcome these problems, particularly in areas with low densities of CO2 concentration watch stations. A model based on temperature (MOD11C3, vegetation cover (MOD13C2 and MOD15A2 and productivity (MOD17A2 of MODIS (which we have named the TVP model was developed in the current study to assess CO2 concentrations on a global scale. We assumed that CO2 concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO aboard the Greenhouse gases Observing SATellite (GOSAT are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson’s correlation coefficient (R2 was 0.75 in Eurasia (RMSE = 1.16 and South America (RMSE = 1.17; the lowest R2 was 0.57 in Australia (RMSE = 0.73. Compared with the TANSO-observed CO2 concentration (XCO2, we found that the accuracy throughout the World is between −2.56~3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified.

  17. Assessment of global carbon dioxide concentration using MODIS and GOSAT data.

    Science.gov (United States)

    Guo, Meng; Wang, Xiufeng; Li, Jing; Yi, Kunpeng; Zhong, Guosheng; Tani, Hiroshi

    2012-11-26

    Carbon dioxide (CO(2)) is the most important greenhouse gas (GHG) in the atmosphere and is the greatest contributor to global warming. CO(2) concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO(2) concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) data can overcome these problems, particularly in areas with low densities of CO(2) concentration watch stations. A model based on temperature (MOD11C3), vegetation cover (MOD13C2 and MOD15A2) and productivity (MOD17A2) of MODIS (which we have named the TVP model) was developed in the current study to assess CO(2) concentrations on a global scale. We assumed that CO(2) concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO) aboard the Greenhouse gases Observing SATellite (GOSAT) are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson's correlation coefficient (R2) was 0.75 in Eurasia (RMSE = 1.16) and South America (RMSE = 1.17); the lowest R2 was 0.57 in Australia (RMSE = 0.73). Compared with the TANSO-observed CO(2) concentration (XCO(2)), we found that the accuracy throughout the World is between -2.56~3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified.

  18. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments

    NARCIS (Netherlands)

    Koelmans, A.A.; Nowack, B.; Wiesner, M.

    2009-01-01

    In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to

  19. How low can you go? Assessing minimum concentrations of NSC in carbon limited tree saplings

    Science.gov (United States)

    Hoch, Guenter; Hartmann, Henrik; Schwendener, Andrea

    2016-04-01

    Tissue concentrations of non-structural carbohydrates (NSC) are frequently used to determine the carbon balance of plants. Over the last years, an increasing number of studies have inferred carbon starvation in trees under environmental stress like drought from low tissue NSC concentrations. However, such inferences are limited by the fact that minimum concentrations of NSC required for survival are not known. So far, it was hypothesized that even under lethal carbon starvation, starch and low molecular sugar concentrations cannot be completely depleted and that minimum NSC concentrations at death vary across tissues and species. Here we present results of an experiment that aimed to determine minimum NSC concentrations in different tissues of saplings of two broad-leaved tree species (Acer pseudoplatanus and Quercus petratea) exposed to lethal carbon starvation via continuous darkening. In addition, we investigated recovery rates of NSC concentrations in saplings that had been darkened for different periods of time and were then re-exposed to light. Both species survived continuous darkening for about 12 weeks (confirmed by testing the ability to re-sprout after darkness). In all investigated tissues, starch concentrations declined close to zero within three to six weeks of darkness. Low molecular sugars also decreased strongly within the first weeks of darkness, but seemed to stabilize at low concentrations of 0.5 to 2 % dry matter (depending on tissue and species) almost until death. NSC concentrations recovered surprisingly fast in saplings that were re-exposed to light. After 3 weeks of continuous darkness, tissue NSC concentrations recovered within 6 weeks to levels of unshaded control saplings in all tissues and in both species. To our knowledge, this study represents the first experimental attempt to quantify minimum tissue NSC concentrations at lethal carbon starvation. Most importantly, our results suggest that carbon-starved tree saplings are able to

  20. Carbon Balance at Landscape Level inferred fromTower CO2 Concentration Measurements

    Science.gov (United States)

    Chen, J. M.; Chen, B.; Higuchi, K.; Chan, D.; Shashkov, A.; Lin, H.; Liu, J.

    2003-04-01

    Terrestrial carbon sinks are considerable in the global carbon budget, but the accumulation of carbon in terrestrial ecosystems is very small (~0.2% per year) relative to the total carbon stocks in forests. Currently, eddy-covariance instruments mounted on towers are the only reliable means to measure carbon balance of a land surface, albeit limited to small areas and not free of caveats. In our quest of understanding the collective performance of ecosystems under the changing climate, it is highly desirable to have the ability to acquire carbon cycle information for large areas (landscape) consisting of patches of different ecosystems. For this purpose we explored methodologies of inferring carbon cycle information from tower CO2 concentration measurements affected by large areas (100-10000 km2). An ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS) is coupled with a carbon-specific Vertical Diffusion Scheme (VDS) in order to decipher temporal variations in CO2 for landscape-level photosynthesis and respiration information. The coupled BEPS-VDS is applied to a unique 9-year (1990-2000 with 1997-8 missing data) 5-minute CO2 record measured on a 40-m tower over boreal forests near Fraserdale, Ontario, Canada. Over the period, the mean diurnal amplitude of the measured CO2 at 40 m increased by 5.58 ppmv, or 28% in the growing season. The increase in nighttime ecosystem respiration, causing the increase in the daily maximum CO2 concentration, was responsible for 65% of the increase in the diurnal amplitude, i.e., 3.61 ppmv, corresponding to an increase in the mean daily air temperature by about 2.77 degC and precipitation by 5% over the same period. The rest (35%) is explained by the increase in ecosystem daytime photosynthesis, causing the decrease in the daily minimum CO2 concentration. As the nighttime stable boundary layer (SBL) (270-560 m) was much shallower than the daytime convective boundary layer (CBL) (1000-1600 m), the increase in

  1. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone

    International Nuclear Information System (INIS)

    Riikonen, J.; Holopainen, T.; Oksanen, E.; Lindsberg, M-M.; Lappi, J.; Peltonen, P.; Vapaavuori, E.

    2004-01-01

    The effects of elevated concentrations of carbon dioxide and ozone were studied on growth, biomass allocation and leaf area of field-grown ozone-tolerant (Clone 4) and ozone-sensitive (Clone 80) European silver birch trees. Seven-year old trees of both types were exposed for three years to outside and chamber control, (1) twice ambient ozone, (2) twice ambient carbon dioxide, and (3) twice ambient carbon dioxide and twice ambient ozone. No effect on biomass allocation was observed when results of the two clones were analyzed together. Total leaf area showed an increase, and leaf abscission appeared delayed in response to elevated carbon dioxide. Elevated ozone caused the dry mass of roots, branches and mean leaf size to decrease, and autumnal leaf abscission occurred earlier than usual in both clones. In general. the effects of elevated ozone were small, however, the interaction between elevated carbon dioxide and elevated oxygen were significant. When results from the two clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 increased when exposed to elevated concentrations of carbon dioxide; elevated concentrations of ozone appeared to have no effect. In Clone 4 elevated ozone caused significant decrease in root and branch biomass, but the effects of elevated carbon dioxide were minimal. Responses to elevated ozone exposure were observed only under ambient carbon dioxide conditions. This response is believed to reflect the greater quantity of carbohydrates available for detoxification and repair under elevated carbon dioxide conditions. Alternatively, the response may be due to decreased stomatal conductance, thus decreased ozone uptake under elevated carbon dioxide conditions. 45 refs., 6 tabs., 4 figs

  2. Study of some modern carbonated marine organisms, using U234/U238 activities and its uranium concentration

    International Nuclear Information System (INIS)

    Pregnolatto, Y.

    1975-01-01

    Several types of alive carbonated organisms of marine fluvial or mixed environment origin were analized in its concentrations of Uranium and about its activity ratio U 234 /U 238 . In the same way measurements were made from the water of these three types of environments. The results indicate that the mollusks shells show a very low concentration compared with corals. Its concentration varies from 0.04 to 0.33 ppm. Inside the limit of errors we can say that the several types of carbonated organisms show the same disequilibrium U 234 /U 238 which was found in associated waters. An analysis of a piece of wood from long time immersed in the sea water was made. The result indicates that there was a marked high in concentration of Uranium due to chelatation with organic matter. (C.D.G.) [pt

  3. Optimization of the sintering atmosphere for high-density hydroxyapatite–carbon nanotube composites

    Science.gov (United States)

    White, Ashley A.; Kinloch, Ian A.; Windle, Alan H.; Best, Serena M.

    2010-01-01

    Hydroxyapatite–carbon nanotube (HA–CNT) composites have the potential for improved mechanical properties over HA for use in bone graft applications. Finding an appropriate sintering atmosphere for this composite presents a dilemma, as HA requires water in the sintering atmosphere to remain phase pure and well hydroxylated, yet CNTs oxidize at the high temperatures required for sintering. The purpose of this study was to optimize the atmosphere for sintering these composites. While the reaction between carbon and water to form carbon monoxide and hydrogen at high temperatures (known as the ‘water–gas reaction’) would seem to present a problem for sintering these composites, Le Chatelier's principle suggests this reaction can be suppressed by increasing the concentration of carbon monoxide and hydrogen relative to the concentration of carbon and water, so as to retain the CNTs and keep the HA's structure intact. Eight sintering atmospheres were investigated, including standard atmospheres (such as air and wet Ar), as well as atmospheres based on the water–gas reaction. It was found that sintering in an atmosphere of carbon monoxide and hydrogen, with a small amount of water added, resulted in an optimal combination of phase purity, hydroxylation, CNT retention and density. PMID:20573629

  4. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Science.gov (United States)

    Morales-Williams, Ana M.; Wanamaker, Alan D., Jr.; Downing, John A.

    2017-06-01

    Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3-) across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs). To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC) and phytoplankton particulate organic carbon (δ13Cphyto) in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass-balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3- during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3- uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  5. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Directory of Open Access Journals (Sweden)

    A. M. Morales-Williams

    2017-06-01

    Full Text Available Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3− across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs. To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC and phytoplankton particulate organic carbon (δ13Cphyto in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass–balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3− during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3− uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  6. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry.

    Science.gov (United States)

    Albalasmeh, Ammar A; Berhe, Asmeret Asefaw; Ghezzehei, Teamrat A

    2013-09-12

    A new UV spectrophotometry based method for determining the concentration and carbon content of carbohydrate solution was developed. This method depends on the inherent UV absorption potential of hydrolysis byproducts of carbohydrates formed by reaction with concentrated sulfuric acid (furfural derivatives). The proposed method is a major improvement over the widely used Phenol-Sulfuric Acid method developed by DuBois, Gilles, Hamilton, Rebers, and Smith (1956). In the old method, furfural is allowed to develop color by reaction with phenol and its concentration is detected by visible light absorption. Here we present a method that eliminates the coloration step and avoids the health and environmental hazards associated with phenol use. In addition, avoidance of this step was shown to improve measurement accuracy while significantly reducing waiting time prior to light absorption reading. The carbohydrates for which concentrations and carbon content can be reliably estimated with this new rapid Sulfuric Acid-UV technique include: monosaccharides, disaccharides and polysaccharides with very high molecular weight. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Equilibrium concentration of radionuclides in cement/groundwater/carbon steel system

    International Nuclear Information System (INIS)

    Keum, D. K.; Cho, W. J.; Hahn, P. S.

    1997-01-01

    Equilibrium concentration of major elements in an underground repository with a capacity of 100,000 drums have been simulated using the geochemical computer code (EQMOD). The simulation has been carried out at the conditions of pH 12 to 13.5, and Eh 520 and -520 mV. Solubilities of magnesium and calcium decrease with the increase of pH. The solubility of iron increases with pH at Eh -520 mV of reducing environment, while it almost entirely exists as the precipitate of Fe(OH) 3 (s) at Eh 520 mV of oxidizing environment. All of cobalt and nickel are predicted to be dissolved in the liquid phase regardless of pH since the solubility limit is greater than the total concentration. In the case of cesium and strontium, all forms of both ions are present in the liquid phase because they have negligible sorption capacity on cement and large solubility under disposal atmosphere. And thus the total concentration determines the equilibrium concentration. Adsorbed amounts of iodide and carbonate are dependent on adsorption capacity and adsorption equilibrium constant. Especially, the calcite turns out to be a solubility-limiting phase on the carbonate system. In order to validate the model, the equilibrium concentrations measured for a number of systems which consist of iron, cement, synthetic groundwater and radionuclides are compared with those predicted by the model. The concentrations between the model and the experiment of nonadsorptive elements - cesium, strontium, cobalt, nickel and iron, are well agreed. It indicates that the assumptions and the thermodynamic data in this work are valid. Using the adsorption equilibrium constant as a free parameter, the experimental data of iodide and carbonate have been fitted to the model. The model is in a good agreement with the experimental data of the iodide system. (author)

  8. Estimates of Carbon Reservoirs in High-Altitude Wetlands in the Colombian Andes

    Directory of Open Access Journals (Sweden)

    Enrique Javier Peña

    2009-10-01

    Full Text Available The observed increase in emission of greenhouse gases, with attendant effects on global warming, have raised interests in identifying sources and sinks of carbon in the environment. Terrestrial carbon (C sequestration involves capture of atmospheric C through photosynthesis and storage in biota, soil and wetlands. Particularly, wetland systems function primarily as long-term reservoirs for atmospheric carbon dioxide (CO2 and as sources of atmospheric methane (CH4. The objective of this study was to evaluate the patterns of carbon reservoirs in two high-altitude wetlands in the central Andean mountain of Colombia. Carbon cycle in both systems is related mainly with the plant biomass dynamics from the littoral zone. Thus, total organic carbon concentrate an average up to 329 kg of N ha-1 and 125 kg of P ha-1 every year vs only 17 kg N ha-1 and 6 kg P ha-1 in the water column of the limnetic zone in the wetland, evidencing spatial differences in carbon concentrations for these types of ecosystems. Results revealed that these systems participate in the balance and sequestration of carbon in the Colombian Andes.

  9. Carbon Bioavailability in a High Arctic Fjord Influenced by Glacial Meltwater, NE Greenland

    Directory of Open Access Journals (Sweden)

    Maria L. Paulsen

    2017-06-01

    Full Text Available The land-to-ocean flux of organic carbon is increasing in glacierized regions in response to increasing temperatures in the Arctic (Hood et al., 2015. In order to understand the response of the coastal ecosystem metabolism to the organic carbon input it is essential to determine the bioavailability of the different carbon sources in the system. We quantified the bacterial turnover of organic carbon in a high Arctic fjord system (Young Sound, NE Greenland during the ice-free period (July-October 2014 and assessed the quality and quantity of the 3 major organic carbon sources; (1 local phytoplankton production (2 runoff from land-terminating glaciers and a lowland river and (3 inflow from the ocean shelf. We found that despite relatively low concentrations of DOC in the rivers, the bioavailability of the river–DOC was significantly higher than in the fjord, and characterized by high cell-specific bacterial production and low C:N ratios. In contrast, the DOC source entering via inflow of coastal shelf waters had high DOC concentrations with high C:N and low specific bacterial production. The phytoplankton production in the fjord could not sustain the bacterial carbon demand, but was still the major source of organic carbon for bacterial growth. We assessed the bacterial community composition and found that communities were specific for the different water types i.e., the bacterial community of the coastal inflow water could be traced mainly in the subsurface water, while the glacial river community strongly dominated the surface water in the fjord.

  10. High-Melt Carbon-Carbon Coating for Nozzle Extensions

    Science.gov (United States)

    Thompson, James

    2015-01-01

    Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.

  11. From carbon nanostructures to high-performance sorbents for chromatographic separation and preconcentration

    International Nuclear Information System (INIS)

    Postnov, V N; Rodinkov, O V; Moskvin, L N; Novikov, A G; Bugaichenko, A S; Krokhina, O A

    2016-01-01

    Information on carbon nanostructures (fullerenes, nanotubes, graphene, nanodiamond and nanodispersed active carbon) used to develop high-performance sorbents of organics and heavy metal ions from aqueous solutions is collected and analyzed. The advantages in the synthesis of hybrid carbon nanostructures and the possibilities of surface modification of these systems in order to carry out fast sorption pre-concentration are considered. Prospects for application of these materials in sorption technologies and analytical chemistry are discussed. The bibliography includes 364 references

  12. Highly porous carbon from a natural cellulose fiber as high efficiency sorbent for lead in waste water.

    Science.gov (United States)

    Ilangovan, Manikandan; Guna, Vijaykumar; Olivera, Sharon; Ravi, Ashwini; Muralidhara, H B; Santosh, M S; Reddy, Narendra

    2017-12-01

    The persistence of hollow centre in the carbon obtained from milkweed floss provides exceptional sorption characteristics, not seen in common biomasses or their derivatives. A considerably high sorption of 320mg of lead per gram of milkweed carbon was achieved without any chemical modification to the biomass. In this research, we have carbonized milkweed floss and used the carbon as a sorbent for lead in waste water. A high surface area of 170m 2 g -1 and pore volume of 1.07cm 3 g -1 was seen in the carbon. Almost complete removal (>99% efficiency) of lead could be achieved within 5min when the concentration of lead in the solution was 100ppm, close to that prevailing in industrial waste water. SEM images showed that the carbon was hollow and confocal images confirmed that the sorbate could penetrate inside the hollow tube. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Black Carbon Concentrations from ~1850-1980 from a High-Resolution Ice Core from Geladandong, Central Tibetan Plateau

    Science.gov (United States)

    Jenkins, M.; Kaspari, S.; Kang, S.; Grigholm, B. O.; Mayewski, P. A.

    2011-12-01

    Black carbon (BC), produced by the incomplete combustion of fossil and bio-fuels, is estimated to be the second largest contributor to global warming behind CO2; when deposited on snow and ice BC reduces albedos, potentially enhancing surface melt and glacial retreat. The study of BC's past and present variability is imperative in order to better understand and estimate its potential impact on climate and water resources. This is especially important in the Himalaya/Tibetan Plateau, a region that provides fresh water to over a billion people and where BC's climatic effects are estimated to be the largest (Flanner et al., 2007; Ramanathan and Carmichael, 2008). To more accurately constrain BC's past variability in this sensitive region, an ice core recovered in 2005 from Mt. Geladandong (5800 m a.s.l.) on the central Tibetan Plateau was analyzed for BC at high resolution using a Single Particle Soot Photometer (SP2). Results indicate that 1) average BC concentrations at this location are higher than at other locations closer to BC sources and analyzed by the same method (Mt. Everest by Kaspari et al., 2011 and Muztagh Ata by Wang et al., in prep), and 2) BC exists in peak concentrations high enough (>10 μg/L) to cause a >1% reduction in surface albedo at the sampling location (Ming et al., 2009; Hadley et al., 2010). Potential causes of the higher BC concentrations at the Geladandong site include lower annual precipitation and the mechanical trapping and concentration of BC caused by surface melt and/or sublimation (Conway et al., 1996; Huang et al., 2011). Preliminary dating (Grigholm et al., in prep) has dated the top of the core to ~1980, suggesting that annual mass loss at the site has removed the upper portion of the record. This supports the findings of Kehrwald et al. (2008) who reported that glaciers below ~6050 m a.s.l. in the Himalaya/Tibetan Plateau are losing mass annually. Presented here is the record of BC on the central Tibetan Plateau over the time

  14. Black carbon concentration and deposition estimations in Finland by the regional aerosol–climate model REMO-HAM

    Directory of Open Access Journals (Sweden)

    A. I. Hienola

    2013-04-01

    Full Text Available The prediction skill of the regional aerosol–climate model REMO-HAM was assessed against the black carbon (BC concentration measurements from five locations in Finland, with focus on Hyytiälä station for the year 2005. We examined to what extent the model is able to reproduce the measurements using several statistical tools: median comparison, overlap coefficient (OVL; the common area under two probability distributions curves and Z score (a measure of standard deviation, shape and spread of the distributions. The results of the statistics showed that the model is biased low. The local and regional emissions of BC have a significant contribution, and the model tendency to flatten the observed BC is most likely dominated by the lack of domestic burning of biofuel in the emission inventories. A further examination of the precipitation data from both measurements and model showed that there is no correlation between REMO's excessive precipitation and BC underestimation. This suggests that the excessive wet removal is not the main cause of the low black carbon concentration output. In addition, a comparison of wind directions in relation with high black carbon concentrations shows that REMO-HAM is able to predict the BC source directions relatively well. Cumulative black carbon deposition fluxes over Finland were estimated, including the deposition on snow.

  15. The Formation of Carbide-Free Bainite in High-Carbon High-Silicon Steel under Isothermal Conditions

    Science.gov (United States)

    Tereshchenko, N. A.; Yakovleva, I. L.; Mirzaev, D. A.; Buldashev, I. V.

    2017-12-01

    It is shown that a carbide-free bainite structure can be formed in high-carbon steel of the Fe-Si-Mn-Cr-V system using a traditional furnace facility. The structural aspects of bainitic transformation developing under isothermal conditions at 300°C have been studied by the methods of X-ray diffraction and transmission electron microscopy. Orientation relationships between crystalline lattices of γ and α phases have been established. A superequilibrium carbon concentration in the bainite α phase has been determined.

  16. Natural variability in the surface ocean carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. S. Lovenduski

    2015-11-01

    Full Text Available We investigate variability in the surface ocean carbonate ion concentration ([CO32−] on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32−] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32−] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC in association with El Niño–Southern Oscillation. In the North Pacific, surface [CO32−] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20–30-year periods. North Atlantic [CO32−] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results

  17. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments

    International Nuclear Information System (INIS)

    Koelmans, A.A.; Nowack, B.; Wiesner, M.R.

    2009-01-01

    In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to aggregation or degradation, and MCNP burial in deeper sediment layers. The resultant steady state MCNP levels are compared with BCNP levels calculated from soot levels in sediments and weight fractions of nanosized fractions of these soot particles. MCNP/BCNP ratios range from 10 -7 to 10 -4 (w:w). This suggests that the often acclaimed effect of MCNPs on organic pollutant binding and bioavailability will likely be below the level of detection if natural BCNPs are present, even if binding to MCNP is one to two orders of magnitude stronger than to BCNPs. Furthermore, exposure and toxic effects of MCNPs in sediments and soils will be negligible compared to that of BCNPs. - Concentrations of manufactured carbon-based nanoparticles in sediments and soils will be negligible compared to levels of black carbon (soot) nanoparticles

  18. Influence of the concentration of carbon nanotubes on electrical ...

    Indian Academy of Sciences (India)

    Influence of the concentration of carbon nanotubes on electrical conductivity of magnetically aligned MWCNT–polypyrrole composites. KAVEH KAZEMIKIA1,∗, FAHIMEH BONABI2, ALI ASADPOORCHALLO3 and. MAJID SHOKRZADEH4. 1Department of Electrical and Computer Engineering, Islamic Azad University, Bonab ...

  19. The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation

    Science.gov (United States)

    Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

    2004-01-01

    The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

  20. Dissolved black carbon in the global cryosphere: Concentrations and chemical signatures

    Science.gov (United States)

    Khan, Alia L.; Wagner, Sasha; Jaffe, Rudolf; Xian, Peng; Williams, Mark; Armstrong, Richard; McKnight, Diane

    2017-06-01

    Black carbon (BC) is derived from the incomplete combustion of biomass and fossil fuels and can enhance glacial recession when deposited on snow and ice surfaces. Here we explore the influence of environmental conditions and the proximity to anthropogenic sources on the concentration and composition of dissolved black carbon (DBC), as measured by benzenepolycaroxylic acid (BPCA) markers, across snow, lakes, and streams from the global cryosphere. Data are presented from Antarctica, the Arctic, and high alpine regions of the Himalayas, Rockies, Andes, and Alps. DBC concentrations spanned from 0.62 μg/L to 170 μg/L. The median and (2.5, 97.5) quantiles in the pristine samples were 1.8 μg/L (0.62, 12), and nonpristine samples were 21 μg/L (1.6, 170). DBC is susceptible to photodegradation when exposed to solar radiation. This process leads to a less condensed BPCA signature. In general, DBC across the data set was composed of less polycondensed DBC. However, DBC from the Greenland Ice Sheet (GRIS) had a highly condensed BPCA molecular signature. This could be due to recent deposition of BC from Canadian wildfires. Variation in DBC appears to be driven by a combination of photochemical processing and the source combustion conditions under which the DBC was formed. Overall, DBC was found to persist across the global cryosphere in both pristine and nonpristine snow and surface waters. The high concentration of DBC measured in supraglacial melt on the GRIS suggests that DBC can be mobilized across ice surfaces. This is significant because these processes may jointly exacerbate surface albedo reduction in the cryosphere.Plain Language SummaryHere we present dissolved black carbon (DBC) results for snow and glacial melt systems in Antarctica, the Arctic, and high alpine regions of the Himalayas, Rockies, Andes, and Alps. Across the global cryosphere, DBC composition appears to be a result of photochemical processes occurring en route in the atmosphere or in situ on the

  1. Effect of tooth-bleaching on the carbonate concentration in dental enamel by Raman spectroscopy.

    Science.gov (United States)

    Vargas-Koudriavtsev, Tatiana; Herrera-Sancho, Óscar-Andrey

    2017-01-01

    There are not many studies evaluating the effects of surface treatments at the molecular level. The aim of this in vitro study was to analyze the concentration of carbonate molecules in dental enamel by Raman spectroscopy after the application of in-office and home whitening agents. Sixty human teeth were randomly divided into six groups and exposed to three different home bleaching gels (Day White) and three in-office whitening agents (Zoom! Whitespeed and PolaOffice) according to the manufacturer´s instructions. The concentration of carbonate molecules in enamel was measured prior to and during the treatment by means of Raman spectroscopy. Statistical analysis included repeated measures analysis of variance ( p ≤0.05) and Bonferroni pairwise comparisons. At home bleaching agents depicted a decrease in the carbonate molecule. This decrease was statistically significant for the bleaching gel with the highest hydrogen peroxide concentration ( p ≤0,05). In-office whitening agents caused an increase in carbonate, which was significant for all three groups ( p ≤0,05). In-office bleaching gels seem to cause a gain in carbonate of the enamel structure, whilst at-home whitening gels caused a loss in carbonate. Key words: Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, carbonate.

  2. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: Concentrations, congener profiles, and partitioning onto particulates and organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramani, Aparna, E-mail: aparna.27889@gmail.com; Howell, Nathan L., E-mail: nlhowell@central.uh.edu; Rifai, Hanadi S., E-mail: rifai@uh.edu

    2014-03-01

    Wastewater effluent samples were collected in the summer of 2009 from 16 different locations which included municipal and industrial wastewater treatment plants and petrochemical industrial outfalls in the Houston area. The effluent samples were analyzed for all 209 polychlorinated biphenyls (PCBs) congeners using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using the USEPA method 1668A. The total PCBs (∑ 209) concentration in the dissolved medium ranged from 1.01 to 8.12 ng/L and ranged from 2.03 to 31.2 ng/L in the suspended medium. Lighter PCB congeners exhibited highest concentrations in the dissolved phase whereas, in the suspended phase, heavier PCBs exhibited the highest concentrations. The PCB homolog concentrations were dominated by monochlorobiphenyls through hexachlorobiphenyls, with dichlorobiphenyls exhibiting the highest concentration amongst them at most of the effluent outfalls, in the suspended phase. Both total suspended solids (TSS) and various organic carbon fractions played an important role in the distribution of the suspended fractions of PCBs in the effluents. The log K{sub oc} values determined in the effluents suggest that effluent PCB loads might have more risk and impact than what standard partitioning models predict. - Highlights: • 209 PCB congeners were measured in 16 different municipal and industrial effluents. • PCB congener differences were elucidated for the various effluent types. • In addition to log K{sub ow}, organic carbon and TSS affect partitioning of PCBs. • High concentrations of homolog 2 maybe due to biotransformation of PCBs.

  3. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: Concentrations, congener profiles, and partitioning onto particulates and organic carbon

    International Nuclear Information System (INIS)

    Balasubramani, Aparna; Howell, Nathan L.; Rifai, Hanadi S.

    2014-01-01

    Wastewater effluent samples were collected in the summer of 2009 from 16 different locations which included municipal and industrial wastewater treatment plants and petrochemical industrial outfalls in the Houston area. The effluent samples were analyzed for all 209 polychlorinated biphenyls (PCBs) congeners using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using the USEPA method 1668A. The total PCBs (∑ 209) concentration in the dissolved medium ranged from 1.01 to 8.12 ng/L and ranged from 2.03 to 31.2 ng/L in the suspended medium. Lighter PCB congeners exhibited highest concentrations in the dissolved phase whereas, in the suspended phase, heavier PCBs exhibited the highest concentrations. The PCB homolog concentrations were dominated by monochlorobiphenyls through hexachlorobiphenyls, with dichlorobiphenyls exhibiting the highest concentration amongst them at most of the effluent outfalls, in the suspended phase. Both total suspended solids (TSS) and various organic carbon fractions played an important role in the distribution of the suspended fractions of PCBs in the effluents. The log K oc values determined in the effluents suggest that effluent PCB loads might have more risk and impact than what standard partitioning models predict. - Highlights: • 209 PCB congeners were measured in 16 different municipal and industrial effluents. • PCB congener differences were elucidated for the various effluent types. • In addition to log K ow , organic carbon and TSS affect partitioning of PCBs. • High concentrations of homolog 2 maybe due to biotransformation of PCBs

  4. X-ray photoelectron spectroscopy characterization of high dose carbon-implanted steel and titanium alloys

    Science.gov (United States)

    Viviente, J. L.; García, A.; Alonso, F.; Braceras, I.; Oñate, J. I.

    1999-04-01

    A study has been made of the depth dependence of the atomic fraction and chemical bonding states of AISI 440C martensitic stainless steel and Ti-6Al-4V alloy implanted with 75 keV C + at very high doses (above 10 18 ions cm -2), by means of X-ray photoelectron spectroscopy combined with an Ar + sputtering. A Gaussian-like carbon distribution was observed on both materials at the lowest implanted dose. More trapezoidal carbon depth-profiles were found with increasing implanted doses, and a pure carbon layer was observed only on the titanium alloy implanted at the highest dose. The implanted carbon was combined with both base metal and carbon itself to form metallic carbides and graphitic carbon. Furthermore, carbon-enriched carbides were also found by curve fitting the C 1s spectra. The titanium alloy showed a higher carbidic contribution than the steel implanted at the same C + doses. A critical carbon concentrations of about 33 at.% and 23 at.% were measured for the formation of C-C bonds in Ti-6Al-4V and steel samples, respectively. The carbon atoms were bound with metal to form carbidic compounds until these critical concentrations were reached; when this C concentration was exceeded the proportion of C-C bonds increased and resulted in the growth of carbonaceous layers.

  5. Corrosion by concentrated sulfuric acid in carbon steel pipes and tanks: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Panossian, Zehbour; Almeida, Neusvaldo Lira de; Sousa, Raquel Maria Ferreira de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil); Pimenta, Gutemberg de Souza [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento (CENPES); Marques, Leandro Bordalo Schmidt [PETROBRAS Engenharia, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    PETROBRAS, allied to the policy of reduction of emission of pollutants, has been adjusting the processes of the new refineries to obtain products with lower sulfur content. Thus, the sulfur dioxide, extracted from the process gases of a new refinery to be built in the Northeast, will be used to produce sulfuric acid with concentration between (94-96) %. This acid will be stored in carbon steel tanks and transported through a buried 8-km carbon steel pipe from the refinery to a pier, where it will be loaded onto ships and sent to the consumer markets. Therefore, the corrosion resistance of carbon steel by concentrated acid will become a great concern for the mentioned storage and transportation. When the carbon steel comes into contact with concentrated sulfuric acid, there is an immediate acid attack with the formation of hydrogen gas and ferrous ions which, in turn, forms a protective layer of FeSO{sub 4} on the metallic surface. The durability of the tanks and pipes made of carbon steel will depend on the preservation of this protective layer. This work presents a review of the carbon steel corrosion in concentrated sulfuric acid and discusses the preventive methods against this corrosion, including anodic protection. (author)

  6. Spatial and Seasonal Variation of dissolved organic carbon (DOC) concentrations in Irish streams: importance of soil and topography characteristics.

    Science.gov (United States)

    Liu, Wen; Xu, Xianli; McGoff, Nicola M; Eaton, James M; Leahy, Paul; Foley, Nelius; Kiely, Gerard

    2014-05-01

    Dissolved organic carbon (DOC) concentrations have increased in many sites in Europe and North America in recent decades. High DOC concentrations can damage the structure and functions of aquatic ecosystems by influencing water chemistry. This study investigated the spatial and seasonal variation of DOC concentrations in Irish streams across 55 sites at seven time occasions over 1 year (2006/2007). The DOC concentrations ranged from 0.9 to 25.9 mg/L with a mean value of 6.8 and a median value of 5.7 mg/L and varied significantly over the course of the year. The DOC concentrations from late winter (February: 5.2 ± 3.0 mg/L across 55 sites) and early spring (April: 4.5 ± 3.5 mg/L) had significantly lower DOC concentrations than autumn (October: mean 8.3 ± 5.6 mg/L) and early winter (December: 8.3 ± 5.1 mg/L). The DOC production sources (e.g., litterfall) or the accumulation of DOC over dry periods might be the driving factor of seasonal change in Irish stream DOC concentrations. Analysis of data using stepwise multiple linear regression techniques identified the topographic index (TI, an indication of saturation-excess runoff potential) and soil conditions (organic carbon content and soil drainage characteristics) as key factors in controlling DOC spatial variation in different seasons. The TI and soil carbon content (e.g., soil organic carbon; peat occurrence) are positively related to DOC concentrations, while well-drained soils are negatively related to DOC concentrations. The knowledge of spatial and seasonal variation of DOC concentrations in streams and their drivers are essential for optimum riverine water resources management.

  7. Development of a Rapid, Nondestructive Method to Measure Aqueous Carbonate in High Salinity Brines Using Raman Spectroscopy

    Science.gov (United States)

    McGraw, L.; Phillips-Lander, C. M.; Elwood Madden, A. S.; Parnell, S.; Elwood Madden, M.

    2015-12-01

    Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical contact with the fluid and is not affected by many ionic brines. Developing methods to study aqueous carbonates is vital to future study of brines on Mars and other planetary bodies, as they can reveal important information about modern and ancient near-surface aqueous processes. Both sodium carbonate standards and unknown samples from carbonate mineral dissolution experiments in high salinity brines were analyzed using a 532 nm laser coupled to an inVia Renishaw spectrometer to collect carbonate spectra from near-saturated sodium chloride and sodium sulfate brines. A calibration curve was determined by collecting spectra from solutions of known carbonate concentrations mixed with a pH 13 buffer and a near-saturated NaCl or Na2SO4 brine matrix. The spectra were processed and curve fitted to determine the height ratio of the carbonate peak at 1066 cm-1 to the 1640 cm-1 water peak. The calibration curve determined using the standards was then applied to the experimental data after accounting for dilutions. Concentrations determined based on Raman spectra were compared against traditional acid titration measurements. We found that the two techniques vary by less than one order of magnitude. Further work is ongoing to verify the method and apply similar techniques to measure aqueous carbonate concentrations in other high salinity brines.Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical

  8. Enrichment of yttrium from rare earth concentrate by ammonium carbonate leaching and peroxide precipitation

    International Nuclear Information System (INIS)

    Vasconcellos, Mari E. de; Rocha, S.M.R. da; Pedreira, W.R.; Queiroz S, Carlos A. da; Abrao, Alcidio

    2006-01-01

    The rare earth elements (REE) solubility with ammonium carbonate vary progressively from element to element, the heavy rare earth elements (HRE) being more soluble than the light rare earth elements (LRE). Their solubility is function of the carbonate concentration and the kind of carbonate as sodium, potassium and ammonium. In this work, it is explored this ability of the carbonate for the dissolution of the REE and an easy separation of yttrium was achieved using the precipitation of the peroxide from complex yttrium carbonate. For this work is used a REE concentrate containing (%) Y 2 O 3 2.4, Dy 2 O 3 0.6, Gd 2 O 3 2.7, CeO 2 2.5, Nd 2 O 3 33.2, La 2 O 3 40.3, Sm 2 O 3 4.1 and Pr 6 O 11 7.5. The mentioned concentrate was produced industrially from the chemical treatment of monazite sand by NUCLEMON in Sao Paulo. The yttrium concentrate was treated with 200 g L -1 ammonium carbonate during 10 and 30 min at room temperature. The experiments indicated that a single leaching operation was sufficient to get a rich yttrium solution with about 60.3% Y 2 O 3 . In a second step, this yttrium solution was treated with an excess of hydrogen peroxide (130 volumes), cerium, praseodymium and neodymium peroxides being completely precipitated and separated from yttrium. Yttrium was recovered from the carbonate solution as the oxalate and finally as oxide. The final product is an 81% Y 2 O 3 . This separation envisages an industrial application. The work discussed the solubility of the REE using ammonium carbonate and the subsequent precipitation of the correspondent peroxides

  9. Adsorption of Crystal Violet on Activated Carbon Prepared from Coal Flotation Concentrate

    Science.gov (United States)

    Aydogmus, Ramazan; Depci, Tolga; Sarikaya, Musa; Riza Kul, Ali; Onal, Yunus

    2016-10-01

    The objective of this study is firstly to investigate the floatability properties of Zilan- Van coal after microwave irradiation and secondly to produce activated carbon from flotation concentrate in order to remove Crystal Violet (CV) from waste water. The flotation experiments showed that microwave heating at 0.9 kW power level for 60 sec exposure time enhanced the hydrophobicity and increased the flotation yield. The activated carbon with remarkable surface area (696 m2/g) was produced from the flotation concentrate and used to adsorb CV from aqueous solution in a batch reactor at different temperature. The adsorption properties of CV onto the activated carbon are discussed in terms of the adsorption isotherms (Langmuir and Freundlich) and found that the experimental results best fitted by the Langmuir model.

  10. Additional calcium carbonate into concentrate diet for sheep fed ensiled king grass as a based-diet

    Directory of Open Access Journals (Sweden)

    I-W Mathius

    1997-10-01

    Full Text Available In order to ascertain the effect of additional calcium carbonate into concentrate diet, on the performance of sheep fed ensiled king grass as a basal diet, a trial was conducted using 28 growing sheep ( average body weight 17 _+ 1 .4 kg. Based on body weight, the animals were grouped and randomized into four dietary treatments in block randomized design . Dietary treatments were (i chopped king grass + 400 g of concentrate, (ii ensiled king grass + 400 g concentrate + 0 % of calcium carbonate, (iii ensiled king grass + 400 g concentrate + 5 % calcium carbonate and (iv ensiled king grass + 400 g concentrate + 10 % calcium carbonate . Results showed that offering 5 % of calcium carbonate into concentrate diet increased (P 0 .05 for all groups . No differences in the apparent digestibility of the nutrient components were observed, but crude protein decreased significantly (P < 0 .05 . A significant relationship ( P < 0 .01 was found between nitrogen intake (NI and nitrogen retention (NR, and the equation was NR = - 0.1848 + 0.3788 NI ( r = 0.9 . Based on data found that feeding only ensiled king grass as a single diet could not meet the maintenance requirement of energy and protein, therefore, additional energy and crude protein sources is needed .

  11. Desorption of Reactive Red 198 from activated carbon prepared from walnut shells: effects of temperature, sodium carbonate concentration and organic solvent dose

    Directory of Open Access Journals (Sweden)

    Zohreh Alimohamadi

    2017-04-01

    Full Text Available This study investigated the effect of temperature, different concentrations of sodium carbonate,and the dose of organic solvent on the desorption of Reactive Red 198 dye from dye-saturated activated carbon using batch and continuous systems. The results of the batch desorption test showed 60% acetone in water as the optimum amount. However, when the concentration of sodium carbonate was raised, the dye desorption percentage increased from 26% to 42% due to economic considerations; 15 mg/L of sodium carbonate was selected to continue the processof desorption. Increasing the desorption temperature can improve the dye desorption efficiency.According to the column test results, dye desorption concentration decreased gradually with the passing of time. The column test results showed that desorption efficiency and the percentage of dye adsorbed decreased; however, it seemed to stabilize after three repeated adsorption/desorption cycles. The repeated adsorption–desorption column tests (3 cycles showed that the activated carbon which was prepared from walnut shell was a suitable and economical adsorbent for dye removal.

  12. Black carbon concentrations in the highly polluted Kathmandu Valley, Nepal: a three year monitoring with a dual-spot Aethalometer

    Science.gov (United States)

    Rupakheti, Maheswar; Drinovec, Luka; Puppala, SivaPraveen; Mahata, Khadak; Rupakheti, Dipesh; Kathayat, Bhogendra; Singdan, Pratik; Panday, Arnico; Lawrence, Mark

    2016-04-01

    Our knowledge about ambient black carbon (BC) in the vast Himalayan region, a region vulnerable to impacts of global warming, is very limited due to unavailability of a long-term ambient monitoring. Here we present results from a continuous monitoring of ambient BC concentrations, with a new generation Aethalometer (AE33), over a three year period (January 2013- January 2016) at a semi-urban site in the highly polluted Kathmandu Valley in the foothills of the central Himalaya, one of the most polluted cities in the world. This is the longest time series of BC concentrations that have been monitored with AE33 (which uses the dual-spot technique for a real-time filter loading compensation) in highly polluted ambient environment. The measurements were carried out under the framework of project SusKat (Sustainable Atmosphere for the Kathmandu Valley). BC concentrations were found to be extremely high, especially in winter and the pre-monsoon period, with the hourly-averaged values often exceeding 50 μg/m3. BC concentrations showed a clear diurnal cycle with a prominent peak around 8-9 am and a second peak around 8-9 pm local time in all four seasons. Night-time BC was also fairly high. The diurnal cycle was driven by a combination of increased emissions from traffic, cooking activities, garbage burning, and lower mixing heights (˜200 m) and reduced horizontal ventilation in the mornings and evenings. BC concentrations showed significant seasonal variations - a maximum in winter season and minimum during the monsoon (rainy) season, with monthly average values in the range 5-30 μg/m3. An increase in emissions from the operation of over 100 brick kilns in winter and spring, and an increase in the use of small but numerous diesel power generators during hours with power cuts contributed significantly to ambient BC concentrations in the valley. Fractional contributions of biomass burning and fossil fuel combustion to BC was estimated based on a real-time method for

  13. Electrochemical characterization of doped diamond-coated carbon fibers at different boron concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, E.C. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil)]. E-mail: erica@las.inpe.br; Diniz, A.V. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Trava-Airoldi, V.J. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Ferreira, N.G. [CTA-Divisao de Materiais, Sao Jose dos Campos, SP 12228-904 (Brazil)

    2005-08-01

    Doped diamond films have been deposited on carbon fibers (felt) obtained from polyacrylonitrile at different levels of boron doping. For a successful coating of the fibers, an ultrasonic pretreatment in a bath of diamond powder dissolved in hexane was required. Films were grown on both sample sides, simultaneously, by hot filament-assisted chemical vapour deposition technique at 750 deg. C from a 0.5% H{sub 2}/CH{sub 4} mixture at a total pressure of 6.5 x 10{sup 3} Pa. Boron was obtained from H{sub 2} forced to pass through a bubbler containing B{sub 2}O{sub 3} dissolved in methanol. The doping level studied corresponds to films with acceptor concentrations in the range of 6.5 x 10{sup 18} to 1.5 x 10{sup 21} cm{sup -} {sup 3}, obtained from Mott-Schottky plots. Scanning electron microscopy analyses evidenced fibers totally covered with high quality polycrystalline boron-doped diamond film, also confirmed by Raman spectroscopy spectra. Diamond electrodes grown on carbon fibers demonstrated similar electrochemical behavior obtained from films on Si substrate, for ferri/ferrocyanide redox couple as a function of boron content. The boron content influences electrochemical surface area. A lower boron concentration provides a higher growth rate that results in a higher surface area.

  14. Highly effective catalytic peroxymonosulfate activation on N-doped mesoporous carbon for o-phenylphenol degradation.

    Science.gov (United States)

    Hou, Jifei; Yang, Shasha; Wan, Haiqin; Fu, Heyun; Qu, Xiaolei; Xu, Zhaoyi; Zheng, Shourong

    2018-04-01

    As a broad-spectrum preservative, toxic o-phenylphenol (OPP) was frequently detected in aquatic environments. In this study, N-doped mesoporous carbon was prepared by a hard template method using different nitrogen precursors and carbonization temperatures (i.e., 700, 850 and 1000 °C), and was used to activate peroxymonosulfate (PMS) for OPP degradation. For comparison, mesoporous carbon (CMK-3) was also prepared. Characterization results showed that the N-doped mesoporous carbon samples prepared under different conditions were perfect replica of their template. In comparison with ethylenediamine (EDA) and dicyandiamide (DCDA) as the precursors, N-doped mesoporous carbon prepared using EDA and carbon tetrachloride as the precursors displayed a higher catalytic activity for OPP degradation. Increasing carbonization temperature of N-doped mesoporous carbon led to decreased N content and increased graphitic N content at the expense of pyridinic and pyrrolic N. Electron paramagnetic resonance (EPR) analysis showed that PMS activation on N-doped mesoporous carbon resulted in highly active species and singlet oxygen, and catalytic PMS activation for OPP degradation followed a combined radical and nonradical reaction mechanism. Increasing PMS concentration enhanced OPP degradation, while OPP degradation rate was independent on initial OPP concentration. Furthermore, the dependency of OPP degradation on PMS concentration followed the Langmuir-Hinshelwood model, reflecting that the activation of adsorbed PMS was the rate controlling step. Based on the analysis by time-of-flight mass spectrometry, the degradation pathway of OPP was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Limestone-Concentrate-Pellet Roasting in wet Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    1990-01-01

    A roast process for treating chalcopyrite concentrate was developed. The investigation of the reaction of limestone-concentrate-pellet in a wet carbon dioxide flow was carried out by means of a thermogravimetric analysis (TGA) to determine at which temperatures the roasting reaction would take place. The thermodynamic calculations on the roast reaction were made by the use of SOLGASMIX-PV program. The TGA curves and thermodynamic calculations indicated that the conversion of chalcopyrite into bornite took place at about 975K, and the conversion of bornite into chalcocite at 1065-1123K. The thermodynamic calculations also showed that the sulfur released was fixed as calcium sulfide within roasted pellets. X-ray diffraction examination identified these phases in products.

  16. Evolution of CAM and C4 carbon-concentrating mechanisms

    Science.gov (United States)

    Keeley, Jon E.; Rundel, Philip W.

    2003-01-01

    Mechanisms for concentrating carbon around the Rubisco enzyme, which drives the carbon-reducing steps in photosynthesis, are widespread in plants; in vascular plants they are known as crassulacean acid metabolism (CAM) and C4 photosynthesis. CAM is common in desert succulents, tropical epiphytes, and aquatic plants and is characterized by nighttime fixation of CO2. The proximal selective factor driving the evolution of this CO2-concentrating pathway is low daytime CO2, which results from the unusual reverse stomatal behavior of terrestrial CAM species or from patterns of ambient CO2 availability for aquatic CAM species. In terrestrials the ultimate selective factor is water stress that has selected for increased water use efficiency. In aquatics the ultimate selective factor is diel fluctuations in CO2 availability for palustrine species and extreme oligotrophic conditions for lacustrine species. C4 photosynthesis is based on similar biochemistry but carboxylation steps are spatially separated in the leaf rather than temporally as in CAM. This biochemical pathway is most commonly associated with a specialized leaf anatomy known as Kranz anatomy; however, there are exceptions. The ultimate selective factor driving the evolution of this pathway is excessively high photorespiration that inhibits normal C3 photosynthesis under high light and high temperature in both terrestrial and aquatic habitats. CAM is an ancient pathway that likely has been present since the Paleozoic era in aquatic species from shallow-water palustrine habitats. While atmospheric CO2 levels have undoubtedly affected the evolution of terrestrial plant carbon-concentrating mechanisms, there is reason to believe that past atmospheric changes have not played as important a selective role in the aquatic milieu since palustrine habitats today are not generally carbon sinks, and the selective factors driving aquatic CAM are autogenic. Terrestrial CAM, in contrast, is of increasing selective value under

  17. Measurements of Carbon Dioxide, Carbon Monoxide, and Other Related Tracers at High Spatial and Temporal Resolution in an Urban Environment

    Science.gov (United States)

    Rella, C.; Jacobson, G.

    2012-04-01

    The ability to quantify the sources and sinks of carbon dioxide on the urban scale is essential for understanding the atmospheric drivers to global climate change. In the 'top-down' approach, overall carbon fluxes are determined by combining remote measurements of carbon dioxide concentrations with complex atmospheric transport models, and these emissions measurements are compared to "bottoms-up" predictions based on detailed inventories of the sources and sinks of carbon, both anthropogenic and biogenic in nature. This approach, which has been proven to be effective at continental scales, becomes challenging to implement at the urban scale, due to poorly understood micrometeorological atmospheric transport models and high variability of the emissions sources in space (e.g., factories, highways, residences) and time (rush hours, factory shifts and shutdowns, residential energy usage variability during the day and over the year). New measurement and analysis techniques are required to make sense of the carbon dioxide signal in cities. Here we present detailed, high spatial- and temporal-resolution greenhouse gas measurements in Silicon Valley in California. The synthesis of two experimental campaigns is presented: real-time measurements from two ten-meter urban 'towers,' and ground-based mobile mapping measurements. Real-time carbon dioxide data from a nine-month period are combined with real-time carbon monoxide, methane, acetylene, and carbon 13 measurements to partition the observed CO2 concentrations between different anthropogenic sectors (e.g., transport, residential) and biogenic sources. The carbon monoxide to carbon dioxide ratio is shown to vary over more than a factor of two from season to season or even from day to night, indicating rapid and frequent shifts in the balance between different carbon dioxide sources. Clear differences are seen between the two urban sites, which are separated by 7 km. Further information is given by the carbon 13 signature

  18. Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

    Science.gov (United States)

    Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emis...

  19. Carbon Dioxide Concentrations and Temperatures within Tour Buses under Real-Time Traffic Conditions

    Science.gov (United States)

    Chiu, Chun-Fu; Chen, Ming-Hung; Chang, Feng-Hsiang

    2015-01-01

    This study monitored the carbon dioxide (CO2) concentrations and temperatures of three 43-seat tour buses with high-passenger capacities in a course of a three-day, two-night school excursion. Results showed that both driver zones and passenger zones of the tour buses achieved maximum CO2 concentrations of more than 3000 ppm, and maximum daily average concentrations of 2510.6 and 2646.9 ppm, respectively. The findings confirmed that the CO2 concentrations detected in the tour buses exceeded the indoor air quality standard of Taiwan Environmental Protection Administration (8 hr-CO2: 1000 ppm) and the air quality guideline of Hong Kong Environmental Protection Department (1 hr-CO2: 2500 ppm for Level 1 for buses). Observations also showed that high-capacity tour bus cabins with air conditioning system operating in recirculation mode are severely lacking in air exchange rate, which may negatively impact transportation safety. Moreover, the passenger zones were able to maintain a temperature of between 20 and 25°C during travel, which effectively suppresses the dispersion of volatile organic compounds. Finally, the authors suggest that in the journey, increasing the ventilation frequency of tour bus cabin, which is very beneficial to maintain the travel safety and enhance the quality of travel. PMID:25923722

  20. Carbon Dioxide Concentrations and Temperatures within Tour Buses under Real-Time Traffic Conditions.

    Science.gov (United States)

    Chiu, Chun-Fu; Chen, Ming-Hung; Chang, Feng-Hsiang

    2015-01-01

    This study monitored the carbon dioxide (CO2) concentrations and temperatures of three 43-seat tour buses with high-passenger capacities in a course of a three-day, two-night school excursion. Results showed that both driver zones and passenger zones of the tour buses achieved maximum CO2 concentrations of more than 3000 ppm, and maximum daily average concentrations of 2510.6 and 2646.9 ppm, respectively. The findings confirmed that the CO2 concentrations detected in the tour buses exceeded the indoor air quality standard of Taiwan Environmental Protection Administration (8 hr-CO2: 1000 ppm) and the air quality guideline of Hong Kong Environmental Protection Department (1 hr-CO2: 2500 ppm for Level 1 for buses). Observations also showed that high-capacity tour bus cabins with air conditioning system operating in recirculation mode are severely lacking in air exchange rate, which may negatively impact transportation safety. Moreover, the passenger zones were able to maintain a temperature of between 20 and 25°C during travel, which effectively suppresses the dispersion of volatile organic compounds. Finally, the authors suggest that in the journey, increasing the ventilation frequency of tour bus cabin, which is very beneficial to maintain the travel safety and enhance the quality of travel.

  1. High-surface-area active carbon

    International Nuclear Information System (INIS)

    O'Grady, T.M.; Wennerberg, A.N.

    1986-01-01

    This paper describes the preparation and properties of a unique active carbon having exceptionally high surface areas, over 2500 m 2 /gm, and extraordinary adsorptive capacities. The carbon is made by a direct chemical activation route in which petroleum coke or other carbonaceous sources are reacted with excess potassium hydroxide at 400 0 to 500 0 C to an intermediate product that is subsequently pyrolyzed at 800 0 to 900 0 C to active carbon containing potassium salts. These are removed by water washing and the carbon is dried to produce a powdered product. A granular carbon can also be made by further processing the powdered carbon by using specialized granulation techniques. Typical properties of the carbon include Iodine Numbers of 3000 to 3600, methylene blue adsorption of 650 to 750 mg/gm, pore volumes of 2.0 to 2.6 cc/gm and less than 3.0% ash. This carbon's high adsorption capacities make it uniquely suited for numerous demanding applications in the medical area, purifications, removal of toxic substances, as catalyst carriers, etc

  2. Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in eucalyptus globulus

    International Nuclear Information System (INIS)

    Cernusak, L.A.; Farquhar, G.D.; Arthur, D.J; Pate, J.S.

    2002-01-01

    Full text: The carbon isotope ratio of phloem sap sugars has been previously observed to correlate strongly with the phloem sap sugar concentration in Eucalyptus globulus. We hypothesized that the correspondence between these two parameters results from co-linearity in their responses to variation in plant water potential. Carbon isotope discrimination is expected to decrease with decreasing plant water potential due to the influence of stomatal conductance on the ratio of intercellular to ambient CO 2 , concentrations (c 1 /c a ). Conversely, we expected the phloem sap sugar concentration to increase with decreasing plant water potential, thereby maintaining positive turgor pressure within the sieve tubes. The study comprised 40 individual Eucalyptus globulus trees growing in three plantations situated on opposing ends of a rainfall gradient in southwestern Australia. A strong correlation was observed between the carbon isotope ratio in phloem sap sugars and phloem sap sugar concentration. Carbon isotope discrimination correlated positively with shoot water potential, whereas phloem sap sugar concentration correlated negatively with shoot water potential. The relationship between carbon isotope discrimination measured in phloem sap sugars collected from the stem and c 1 /c a measured instantaneously on subtending leaves was close to that theoretically predicted. Accordingly, a strong, negative relationship was observed between instantaneous c 1 /c a and the phloem sap sugar concentration. Oxygen isotope discrimination in phloem sap sugars also correlated strongly with phloem sap sugar concentration. A theoretical model suggested that the observed variation in stomatal conductance was sufficient to account for the variation observed in oxygen isotope discrimination across the study. Results strongly support the contention that water relations form a mechanistic link between phloem sap sugar concentration and both instantaneous and integrated measures of the

  3. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    Science.gov (United States)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  4. Effect of Biodiesel Concentration on Corrosion of Carbon Steel by Serratia marcescens

    Directory of Open Access Journals (Sweden)

    Pusparizkita Yustina M

    2018-01-01

    Full Text Available Biodiesel come into being used as an alternative source of energy as the diminishing of petroleum reserves. This fuel is typically stored in tanks that are commonly made from carbon steel, which is easily corroded by microorganisms. Recent studies have shown that bacteria aside from SRB may also be involved in corrosion. Therefore, this research was aimed to evaluate the effect of biodiesel concentration (15%, 20% and 30% v/v mixed in diesel oil on the corrosion of carbon steel by S. marcescens that dominate biocorrosion on hydrocarbon products. In this study, the corrosion process was investigated by evaluation of biofilm morphology and composition, the rate of corrosion and the corrosion product of carbon steel which was exposed in the mixture of hydrocarbons and the presence of S. marcescens. It can be concluded that higher concentration of biodiesel in diesel oil leads to higher growth of bacteria in the biofilm and higher corrosion rate.

  5. Radiation-use of a forest exposed to elevated concentrations of atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    DeLucia, E. H.; George, K.; Hamilton, J. G.

    2002-01-01

    Radiation-use efficiency of growth (defined as biomass accumulation per unit of absorbed photosynthetically active radiation) of loblobby pine forest plots exposed to ambient or elevated atmospheric carbon dioxide concentration was compared. Biomass accumulation of the dominant loblobby pines was calculated from monthly measurements of tree growth and site-specific allometric measurements. Leaf area index was estimated by optical, allometric and interfall methods, depending on species. Results showed that depending on tree height, elevated carbon dioxide did not alter the above-ground biomass allocation in loblobby pine. Leaf area index estimates by the different methods were found to vary significantly, but elevated carbon dioxide had only a slight effect on leaf area index in the first three years of this study. The 27 per cent increase in radiation-use efficiency of growth in response to carbon dioxide enrichment is believed to have been caused primarily by the stimulation of biomass increment. It was concluded that long-term increases in atmospheric carbon dioxide concentration can increase the radiation-use efficiency of growth in closed canopy forests, but the magnitude and duration of this increase in uncertain. 57 refs., 2 tabs., 3 figs

  6. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    Science.gov (United States)

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.

  7. Determination of Concentration Dependent Diffusion Coefficients of Carbon in Expanded Austenite

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo; Christiansen, Thomas; Somers, Marcel A. J.

    2008-01-01

    Abstract. In the present paper various experimental procedures to experimentally determine the concentration dependent diffusion coefficient of carbon in expanded austenite are evaluated. To this end thermogravimetric carburization was simulated for various experimental conditions and the evaluated...... composition dependent diffusivity of carbon derived from the simulated experiments was compared with the input data. The most promising procedure for an accurate determination is shown to be stepwise gaseous carburizing of thin foils in a gaseous atmosphere; the finer the stepsize, the more accurate...

  8. High concentration agglomerate dynamics at high temperatures.

    Science.gov (United States)

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  9. A Model for Interpreting High-Tower CO2 Concentration Records for the Surface Carbon Balance Information

    Science.gov (United States)

    Chen, B.; Chen, J. M.; Higuchi, K.; Chan, D.; Shashkov, A.

    2002-05-01

    Atmospheric CO2 concentration measurements have been made by scientists of Meteorological Service of Canada on a 40 m tower for the last 10 years at 15 minute intervals over a mostly intact boreal forest near Fraserdale (50N, 81W), Ontario, Canada. The long time records of CO2 as well as basic meteorological variables provide a unique opportunity to investigate any potential changes in the ecosystem in terms of carbon balance. A model is needed to decipher the carbon cycle signals from the diurnal and seasonal variation patterns in the CO2 record. For this purpose, the Boreal Ecosystem Productivity Simulator (BEPS) is expanded to include a one-dimensional CO2 vertical transfer model involving the interaction between plant canopies and the atmosphere in the surface layer and the diurnal dynamics of the mixed layer. An analytical solution of the scalar transfer equation within the surface layer is found using an assumption that the diurnal oscillation of CO2 concentration at a given height is sinusoidal, which is suitable for the investigation of the changes in diurnal variation pattern over the 10 year period. The complex interactions between the daily cycle of the atmosphere and vegetation CO2 exchange and the daily evolution of mixed layer entrainment of CO2 determines the CO2 variation pattern at a given height. The expanded BEPS can simulate within ñ2 ppm the hourly CO2 records at the 40 m measurement height. The annual totals of gross primary productivity (GPP), net primary productivity (NPP) and net ecosystem productivity (NEP), summed up from the hourly results, agree within 5% of previous estimates of BEPS at daily steps, indicating the internal consistency of the hourly model. The model is therefore ready for exploring changes in the CO2 record as affected by changes in the forest ecosystems upwind of the tower. Preliminary results indicate that the diurnal variation amplitude of CO2 has increased by 10-20% over the 10 years period, and this change can

  10. Spectroscopic and redox properties of curium and californium ions in concentrated aqueous carbonate-bicarbonate media

    International Nuclear Information System (INIS)

    Hobart, D.E.; Varlashkin, P.G.; Samhoun, K.; Haire, R.G.; Peterson, J.R.

    1983-01-01

    Multimilligram quantities of trivalent curium-248 and californium-249 were investigated by absorption spectroscopy, cyclic voltammetry, and bulk solution electrolysis in concentrated aqueous carbonate-bicarbonate solution. Actinide concentrations between 10 -4 and 10 -2 M were studied in 2 M sodium carbonate and 5.5 M potassium carbonate solutions at pH values from 8 to 14. The solution absorption spectra of Cm(III) and Cf(III) in carbonate media are presented for the first time and compared to literature spectra of these species in noncomplexing aqueous solution. It was anticipated that carbonate complexation of the actinide ions could provide a sufficient negative shift in the formal potentials of the M(IV)/M(III) couples of Cm and Cf to permit the generation and stabilization of their tetravalent states in aqueous carbonate-bicarbonate medium. No conclusive evidence was found in the present work to indicate the existence of any higher oxidation states of curium or californium in carbonate solution. Some possible reasons for our inability to generate and detect oxidized species of curium and californium in this medium are discussed

  11. The study on density change of carbon dioxide seawater solution at high pressure and low temperature

    International Nuclear Information System (INIS)

    Song, Y.; Chen, B.; Nishio, M.; Akai, M.

    2005-01-01

    It has been widely considered that the global warming, induced by the increasing concentration of carbon dioxide and other greenhouse gases in the atmosphere, is an environmental task affecting the world economic development. In order to mitigate the concentration of CO 2 in the atmosphere, the sequestration of carbon dioxide into the ocean had been investigated theoretically and experimentally over the last 10 years. In addition to ocean dynamics, ocean geological, and biological information on large space and long time scales, the physical-chemistry properties of seawater-carbon dioxide system at high pressure (P>5.0 MPa) and lower temperature (274.15 K 3 , which is approximately same with that of carbon dioxide freshwater solution, the slope of which is 0.275 g/cm 3

  12. Determinants of black carbon, particle mass and number concentrations in London transport microenvironments

    Science.gov (United States)

    Rivas, Ioar; Kumar, Prashant; Hagen-Zanker, Alex; Andrade, Maria de Fatima; Slovic, Anne Dorothee; Pritchard, John P.; Geurs, Karst T.

    2017-07-01

    We investigated the determinants of personal exposure concentrations of commuters' to black carbon (BC), ultrafine particle number concentrations (PNC), and particulate matter (PM1, PM2.5 and PM10) in different travel modes. We quantified the contribution of key factors that explain the variation of the previous pollutants in four commuting routes in London, each covered by four transport modes (car, bus, walk and underground). Models were performed for each pollutant, separately to assess the effect of meteorology (wind speed) or ambient concentrations (with either high spatial or temporal resolution). Concentration variations were mainly explained by wind speed or ambient concentrations and to a lesser extent by route and period of the day. In multivariate models with wind speed, the wind speed was the common significant predictor for all the pollutants in the above-ground modes (i.e., car, bus, walk); and the only predictor variable for the PM fractions. Wind speed had the strongest effect on PM during the bus trips, with an increase in 1 m s-1 leading to a decrease in 2.25, 2.90 and 4.98 μg m-3 of PM1, PM2.5 and PM10, respectively. PM2.5 and PM10 concentrations in car trips were better explained by ambient concentrations with high temporal resolution although from a single monitoring station. On the other hand, ambient concentrations with high spatial coverage but lower temporal resolution predicted better the concentrations in bus trips, due to bus routes passing through streets with a high variability of traffic intensity. In the underground models, wind speed was not significant and line and type of windows on the train explained 42% of the variation of PNC and 90% of all PM fractions. Trains in the district line with openable windows had an increase in concentrations of 1 684 cm-3 for PNC and 40.69 μg m-3 for PM2.5 compared with trains that had non-openable windows. The results from this work can be used to target efforts to reduce personal exposures of

  13. Effect of increased carbon dioxide concentrations on stratospheric ozone

    International Nuclear Information System (INIS)

    Boughner, R.E.

    1978-01-01

    During the past several years, much attention has been focused on the destruction of ozone by anthropogenic pollutants such as the nitrogen oxides and chlorofluoromethane. Little or no attention has been given to the influence on ozone of an increased carbon dioxide concentration for which a measurable growth has been observed. Increased carbon dioxide can directly affect ozone by perturbing atmospheric temperatures, which will alter ozone production, whose rate displays a fairly strong temperature dependence. This paper presents one-dimensional model results for the steady state ozone behavior when the CO 2 concentration is twice its ambient level which account for coupling between chemistry and temperature. When the CO 2 level doubled, the total ozone burden increased in relation to the ambient burden by 1.2--2.5%, depending on the vertical diffusion coefficient used. Above 30 km. In this region the relation variations were insensitive to the choice of diffusion coefficient. Below 30 km, ozone concentrations were smaller than the unperturbed values and were sensitive to the vertical diffusion profile in this region (10--30 km). Ozone decreases in the lower stratosphere because of a reduction in ozone-producing solar radiation, which results in smaller downward ozone fluxes from the region at 25--30 km relative to the flux values for the ambient atmosphere. These offsetting changes occurring in the upper and lower stratosphere act to minimize the variation in total ozone

  14. Carbon Dioxide Mitigation Benefit of High-Speed Railway in Terms of Carbon Tax

    Directory of Open Access Journals (Sweden)

    Fu Yanbing

    2013-01-01

    Full Text Available This paper calculates the carbon dioxide mitigation benefit of high-speed railway based on the carbon dioxide tax policy. We define the carbon dioxide emission system boundary for high-speed railway in its whole life cycle and estimate the life cycle carbon dioxide inventories during its construction, application, and recovery stages. And then we establish a theoretical model to calculate the life cycle carbon dioxide mitigation quantity for high-speed railway when compared with road transport and then calculate its carbon dioxide mitigation benefit. The numerical example shows that the carbon dioxide mitigation benefit of high-speed railway is better than that of road transport from the whole life cycle perspective.

  15. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    Science.gov (United States)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  16. Concentration of carbon-14 in plants

    International Nuclear Information System (INIS)

    1978-01-01

    The carbon-14 survey program initiated 1960 to gather data on current levels of carbon-14 in environments. Plants essential oil and fermented alcohol were selected as sample materials. The carbon contained in these materials is fixed from atmospheric carbon dioxide by anabolism, so they well reflect the variation of carbon-14 in biosphere. Thymol; Thymol was obtained from the essential oil of Orthodon Japonicium Benth which was cultivated and harvested every year in the experimental field of NIRS and Chiba University. The methylation was carried out to eliminate the strong quenching action of the phenolic group of thymol. Eighteen grams of thymol methyl ether was used as liquid scintillator by adding 0.4% PPO and 0.01% POPOP. Menthol; Menthol was obtained from Mentha arvensis L which was cultivated in the east part of Hokkaido and prepared by Kitami Factory of Federation of Agricultural Cooperative Society of Hokkaido. The chemical conversion of menthol to p-cymene was carried out and used as liquid scintillator as same as above sample. Lemongrass oil; Lemongrass oil was obtained from Cymbopogon citratus Stapf which was cultivated in Izu Experimental Station of Medicinal Plants, National Institute of Hygienic Science located Minami-Izu, Shizuoka Pref. The p-cymene derived from Lemongrass oil was used as liquid scintillator. Alcohol; All sample of fermented alcohol were obtained from the Alcohol Factories of Ministry of Trade and Industry. Raw materials of alcohol were sweet potatos cultivated in several prefectures in Japan ''high test'' molasses and blackstrap molasses imported from several countries of Asia, South America and South Africa, crude alcohol imported from U.S.A., Argentina and Brazil. Mixed solvent of 10 ml sample alcohol and 10 ml toluene or p-xylene containing 0.8% PPO and 0.1% dimethyl POPOP was used as liquid scintillator. (author)

  17. Ultrahigh Ductility, High-Carbon Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  18. Direct analysis of δ13C and concentration of dissolved organic carbon (DOC) in environmental samples by TOC-IRMS

    Science.gov (United States)

    Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten

    2014-05-01

    Dissolved organic carbon (DOC) plays an important role in carbon cycling in terrestrial and aquatic systems. Stable isotope analysis (delta 13C) of DOC could provide valuable insights in its origin, fluxes and environmental fate. Precise and routine analysis of delta 13C and DOC concentration are therefore highly desirable. A promising, new system has been developed for this purpose, linking a high-temperature combustion TOC analyzer trough an interface with a continuous flow isotope ratio mass spectrometer (Elementar group, Hanau, Germany). This TOC-IRMS system enables simultaneous stable isotope (bulk delta 13C) and concentration analysis of DOC, with high oxidation efficiency by high-temperature combustion for complex mixtures as natural DOC. To give delta 13C analysis by TOC-IRMS the necessary impulse for broad-scale application, we present a detailed evaluation of its analytical performance for realistic and challenging conditions inclusive low DOC concentrations and environmental samples. High precision (standard deviation, SD predominantly TOC-IRMS and conventional EA-IRMS) were achieved by TOC-IRMS for a broad diversity of DOC solutions. This precision is comparable or even slightly better than that typically reported for EA-IRMS systems, and improves previous techniques for δ13C analysis of DOC. Simultaneously, very good precision was obtained for DOC concentration measurements. Assessment of natural abundance and slightly 13C enriched DOC, a wide range of concentrations (0.2-150 mgC/L) and injection volumes (0.05-3 ml), demonstrated good analytical performance with negligible memory effects, no concentration/volume effects and a wide linearity. Low DOC concentrations (TOC-IRMS was successfully applied to analyze DOC from diverse terrestrial, freshwater and marine environments (SD TOC-IRMS performs fast and reliable analysis of DOC concentration and δ13C in aqueous samples, without any pre-concentration/freeze-drying. Flexible usage is highlighted by

  19. Factors effecting carbonate equilibria in natural waters

    International Nuclear Information System (INIS)

    Snellman, M.

    1987-12-01

    This study is related to preliminary stie evaluations to be carried out in 1987-1992 for spent nuclear fuel disposal in Finland. Near surface and shallow groundwaters are characterized by high concentration of calcium and bicarbonate due to dissolution of calcite. The input of carbon dioxide in the upper zone of the bedrock has a strong influence on the pH giving a pH around neutral. In deep groundwaters when the system is no longer open to the input of carbon dioxide the pH rises as the carbonate system is displaced towards the bicarbonate-carbonate site. In still deeper parts of the rock weathering of other minerals such as feldspars affects the chemistry raising the pH and resulting in saturation and precipitation of calcite. The more advanced these reactions become the higher is the pH and the lower is the carbonate content. The equilibrium concentrations of carbonate species are affected both by temperature and ionic strength of the waters, at high ionic strength especially the distribution between bicarbonate and carbonate ions is affected. The total concentration of carbonates in groundwaters is determined through complex interaction between calcite and carbonates in the water. In deep groundwaters which are closed for input of CO 2 the concentration is stated to be regulated by dissolution of calcium carbonate. In deep granitic groundwaters pH is stated to be buffered to 6.5 to 10, where a high pH would correspond to a low total carbonate concentration and often also a low calcium concentration and a low pH would correspond to high carbonae and calcium concentrations

  20. Concentrations, loads and yields of organic carbon from two tropical peat swamp forest streams in Riau Province, Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    H.M. Yupi

    2016-06-01

    Full Text Available Tropical peat swamp forest (PSF stores large quantities of carbon. To estimate how much organic C is released from this type of landscape we determined organic carbon (C concentrations, loads and yields in two contrasting watercourses draining from PSF in Riau Province, Sumatra (Indonesia. Meranti Ditch (MD is an artificial watercourse whose small catchment (estimated area 4.8 km2 is in semi-intact condition, whereas Turip River (TR has a large natural catchment (estimated area 458 km2 covered with fairly intact PSF where > 75 % of the original canopy trees remain. The organic C load (Gg C yr-1 of each watercourse was calculated by combining TOC concentration with water discharge rate to give organic C yield (g C m-2 yr-1. Dissolved organic carbon (DOC was the dominant (95.0–99.8 % component of total organic carbon (TOC in the water. TOC concentration was 85–94 mg C L-1 in MD and 50–58 mg C L-1 in TR. The high concentration in MD was not surprising because this catchment had been disturbed by repeated phases of logging and a dense network of ditches was excavated ten years ago. The TOC loads were 0.23 Gg C yr-1 in MD and 14.0 Gg C yr-1 in TR. TOC yields (i.e. TOC fluxes through the fluvial system were 41.6–55.5 g C m-2 yr-1 in MD and 26.2–34.9 g C m-2 yr-1 in TR.

  1. Carbon monoxide concentration in donated blood: relation to cigarette smoking and other sources.

    Science.gov (United States)

    Aberg, Anna-Maja; Sojka, Birgitta Nilsson; Winsö, Ola; Abrahamsson, Pernilla; Johansson, Göran; Larsson, Jan Erik

    2009-02-01

    Carbon monoxide (CO) is normally present in the human body due to endogenous production of CO. CO can also be inhaled by exposure to external sources such as cigarette smoke, car exhaust, and fire. The purpose of this study was to investigate CO concentrations in blood from 410 blood donors at the blood center in Umeå, Sweden. To further evaluate the effects of cigarette smoking on CO concentrations, the elimination time for CO was examined in six volunteer smokers after a smoked cigarette. Blood samples from whole blood donors were obtained during the blood center's routine operation. In connection with blood donations, demographic and behavioral data were collected from the donors. The CO concentration was determined using gas chromatography. The majority of blood donors had approximately the same CO concentration (mean, 84.5 micromol/L). In 6 percent of the samples, the concentrations were higher than 130 micromol per L. The highest CO concentration was 561 micromol per L. The main source for these high CO concentrations appeared to be cigarette smoking. In the volunteer smokers, the elimination time after a smoked cigarette varied significantly, with elimination half-lives from 4.7 to 8.4 hours. These results show that blood bank red blood cell bags may have CO concentrations above the physiologic level. The time interval between cigarette smoking and blood donation seems to be a particularly important factor for elevated CO concentrations.

  2. The geographic concentration of blue carbon in the continental US

    Science.gov (United States)

    Feagin, R. A.; Hinson, A.

    2014-12-01

    Salt water wetlands have the potential to be bought and sold as relatively rich reservoirs of carbon in the context of sequestration projects. However, little is known about the geographic distribution of this potential, and no coarse scale investigation has addressed this ecosystem service at the continental scale. Our objective was to determine blue carbon stocks and flux in coastal wetland soils in the United States and categorize the potential for projects by estuarine basin, state, and wetland type. We linked National Wetlands Inventory (NWI) data with the Soil Survey Geographic Database (SSURGO) through spatial analysis within a Geographic Information System (GIS). We then calculated and mapped soil organic carbon across the continental US. Results were filtered by state, estuarine basin, wetland type, and accumulation rate, and ranking lists for each categorization were produced. The results showed that belowground carbon accumulation is concentrated in specific regions, with the richest and largest reservoirs in the Gulf and Atlantic southeastern estuaries, for example mangrove zones in Florida. Salt marshes on the southern Pacific Coast were relatively low in carbon due to small areas of coverage and the presence of sandy and inorganic soil. The geomorphic position of a wetland within a given estuary, for example on an exposed barrier island versus recessed towards inflowing headwaters, accounted for a greater degree of soil carbon variation than the wetland type, for example woody mangroves versus herbaceous marshes. The potential of a blue carbon sequestration project in relation to its location could be influential in determining wetland policy, conservation, and restoration in the coming decades.

  3. A direct evidence for high carbon dioxide and radon-222 discharge in Central Nepal

    International Nuclear Information System (INIS)

    Perrier, F.; Byrdina, S.; Richon, P.; Bollinger, L.; Bureau, S.; Richon, P.; France-Lanord, Ch.; Rajaure, S.; Koirala, Bharat Prasad; Shrestha, Prithvi Lal; Gautam, Umesh Prasad; Tiwari, Dilli Ram; Sapkota, Soma Nath; Revil, A.; Revil, A.; Contraires, S.

    2009-01-01

    Gas discharges have been identified at the Syabru-Bensi hot springs, located at the front of the High Himalaya in Central Nepal, in the Main Central Thrust zone. The hot spring waters are characterized by a temperature reaching 61 C, high salinity, high alkalinity and δ 13 C varying from +0. 7 parts per thousand to +4. 8 parts per thousand. The gas is mainly dry carbon dioxide, with a δ 13 C of -0. 8 parts per thousand. The diffuse carbon dioxide flux, mapped by the accumulation chamber method, reached a value of 19000 g m -2 day -1 , which is comparable with values measured on active volcanoes. Similar values have been observed over a two-year time interval and the integral around the main gas discharge amounts to 0. 25 ± 0. 07 mol s -1 , or 350 ± 100 ton a -1 . The mean radon-222 concentration in spring water did not exceed 2. 5 Bq L -1 , exponentially decreasing with water temperature. In contrast, in gas bubbles collected in the water or in the dry gas discharges, the radon concentration varied from 16 000 to 41000 Bq m -3 . In the soil, radon concentration varied from 25000 to more than 50000 Bq m -3 . Radon flux, measured at more than fifty points, reached extreme values, larger than 2 Bq m -2 s -1 , correlated to the larger values of the carbon dioxide flux. Our direct observation confirms previous studies which indicated large degassing in the Himalaya. The proposed understanding is that carbon dioxide is released at mid-crustal depth by metamorphic reactions within the Indian basement, transported along pre-existing faults by meteoric hot water circulation, and degassed before reaching surface. This work, first, confirms that further studies should be undertaken to better constrain the carbon budget of the Himalaya, and, more generally, the contribution of mountain building to the global carbon balance. Furthermore, the evidenced gas discharges provide a unique natural laboratory for methodological studies, and appear particularly important to study as

  4. Temporal and seasonal variations of black carbon in a highly polluted European city: Apportionment of potential sources and the effect of meteorological conditions.

    Science.gov (United States)

    Kucbel, Marek; Corsaro, Agnieszka; Švédová, Barbora; Raclavská, Helena; Raclavský, Konstantin; Juchelková, Dagmar

    2017-12-01

    Black carbon - a primary component of particulate matter emitted from an incomplete combustion of fossil fuels, biomass, and biofuels - has been found to have a detrimental effect on human health and the environment. Since black carbon emissions data are not readily available, no measures are implemented to reduce black carbon emissions. The temporal and seasonal variations of black carbon concentrations were evaluated during 2012-2014. The data were collected in the highly polluted European city - Ostrava, Czech Republic, surrounded by major highways and large industries. Significantly higher black carbon concentrations were obtained in Ostrava, relative to other European cities and the magnitude was equivalent to the magnitude of black carbon concentrations measured in Poland and China. The data were categorized to heating and non-heating seasons based on the periodic pattern of daily and monthly average concentrations of black carbon. A higher black carbon concentration was obtained during heating season than non-heating season and was primarily associated with an increase in residential coal burning and meteorological parameters. The concentration of black carbon was found to be negatively correlated with temperature and wind speed, and positively correlated with the relative humidity. Other black carbon sources potentially included emissions from vehicle exhaust and the local steel-producing industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC availability.

    Directory of Open Access Journals (Sweden)

    Friedrich Wilhelm Meyer

    Full Text Available Increasing dissolved inorganic carbon (DIC concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7 and DOC (added as glucose in 0 and 294 μmol L-1 on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean

  6. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC) availability.

    Science.gov (United States)

    Meyer, Friedrich Wilhelm; Vogel, Nikolas; Teichberg, Mirta; Uthicke, Sven; Wild, Christian

    2015-01-01

    Increasing dissolved inorganic carbon (DIC) concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC) concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7) and DOC (added as glucose in 0 and 294 μmol L-1) on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean acidification.

  7. The determination of hydroxide and carbonate in concentrated sodium chloride solutions

    NARCIS (Netherlands)

    Roolvink, W.B.; Bos, M.

    1980-01-01

    A computer method for the determination of carbonate and hydroxide in concentrated (2.89 M) sodium chloride solutions is described. The method is based on multiparametric curve-fitting and can also be applied to salts of dibasic acids with unknown equilibrium constants. The systematic error is not

  8. Carbon allocation and element composition in four Chlamydomonas mutants defective in genes related to the CO2 concentrating mechanism.

    Science.gov (United States)

    Memmola, Francesco; Mukherjee, Bratati; Moroney, James V; Giordano, Mario

    2014-09-01

    Four mutants of Chlamydomonas reinhardtii with defects in different components of the CO2 concentrating mechanism (CCM) or in Rubisco activase were grown autotrophically at high pCO2 and then transferred to low pCO2, in order to study the role of different components of the CCM on carbon allocation and elemental composition. To study carbon allocation, we measured the relative size of the main organic pools by Fourier Transform Infrared spectroscopy. Total reflection X-ray fluorescence was used to analyze the elemental composition of algal cells. Our data show that although the organic pools increased their size at high CO2 in all strains, their stoichiometry was highly homeostatic, i.e., the ratios between carbohydrates and proteins, lipid and proteins, and carbohydrates and lipids, did not change significantly. The only exception was the wild-type 137c, in which proteins decreased relative to carbohydrates and lipids, when the cells were transferred to low CO2. It is noticeable that the two wild types used in this study responded differently to the transition from high to low CO2. Malfunctions of the CCM influenced the concentration of several elements, somewhat altering cell elemental stoichiometry: especially the C/P and N/P ratios changed appreciably in almost all strains as a function of the growth CO2 concentration, except in 137c and the Rubisco activase mutant rca1. In strain cia3, defective in the lumenal carbonic anhydrase (CA), the cell quotas of P, S, Ca, Mn, Fe, and Zn were about 5-fold higher at low CO2 than at high CO2. A Principle Components Analysis showed that, mostly because of its elemental composition, cia3 behaved in a substantially different way from all other strains, at low CO2. The lumenal CA thus plays a crucial role, not only for the correct functioning of the CCM, but also for element utilization. Not surprisingly, growth at high CO2 attenuated differences among strains.

  9. Structure Manipulation of Carbon Aerogels by Managing Solution Concentration of Precursor and Its Application for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Pingping He

    2018-04-01

    Full Text Available A series of carbon aerogels were synthesized by polycondensation of resorcinol and formaldehyde, and their structure was adjusted by managing solution concentration of precursors. Carbon aerogels were characterized by X-ray diffraction (XRD, Raman, Fourier transform infrared spectroscopy (FTIR, N2 adsorption/desorption and scanning electron microscope (SEM technologies. It was found that the pore structure and morphology of carbon aerogels can be efficiently manipulated by managing solution concentration. The relative micropore volume of carbon aerogels, defined by Vmicro/Vtol, first increased and then decreased with the increase of solution concentration, leading to the same trend of CO2 adsorption capacity. Specifically, the CA-45 (the solution concentration of precursors is 45 wt% sample had the highest CO2 adsorption capacity (83.71 cm3/g and the highest selectivity of CO2/N2 (53 at 1 bar and 0 °C.

  10. Bio-Inspired Supramolecular Chemistry Provides Highly Concentrated Dispersions of Carbon Nanotubes in Polythiophene

    Directory of Open Access Journals (Sweden)

    Yen-Ting Lin

    2016-06-01

    Full Text Available In this paper we report the first observation, through X-ray diffraction, of noncovalent uracil–uracil (U–U dimeric π-stacking interactions in carbon nanotube (CNT–based supramolecular assemblies. The directionally oriented morphology determined using atomic force microscopy revealed highly organized behavior through π-stacking of U moieties in a U-functionalized CNT derivative (CNT–U. We developed a dispersion system to investigate the bio-inspired interactions between an adenine (A-terminated poly(3-adeninehexyl thiophene (PAT and CNT–U. These hybrid CNT–U/PAT materials interacted through π-stacking and multiple hydrogen bonding between the U moieties of CNT–U and the A moieties of PAT. Most importantly, the U···A multiple hydrogen bonding interactions between CNT–U and PAT enhanced the dispersion of CNT–U in a high-polarity solvent (DMSO. The morphology of these hybrids, determined using transmission electron microscopy, featured grape-like PAT bundles wrapped around the CNT–U surface; this tight connection was responsible for the enhanced dispersion of CNT–U in DMSO.

  11. Characteristic and Prediction of Carbon Monoxide Concentration using Time Series Analysis in Selected Urban Area in Malaysia

    Directory of Open Access Journals (Sweden)

    Abdul Hamid Hazrul

    2017-01-01

    Full Text Available Carbon monoxide (CO is a poisonous, colorless, odourless and tasteless gas. The main source of carbon monoxide is from motor vehicles and carbon monoxide levels in residential areas closely reflect the traffic density. Prediction of carbon monoxide is important to give an early warning to sufferer of respiratory problems and also can help the related authorities to be more prepared to prevent and take suitable action to overcome the problem. This research was carried out using secondary data from Department of Environment Malaysia from 2013 to 2014. The main objectives of this research is to understand the characteristic of CO concentration and also to find the most suitable time series model to predict the CO concentration in Bachang, Melaka and Kuala Terengganu. Based on the lowest AIC value and several error measure, the results show that ARMA (1,1 is the most appropriate model to predict CO concentration level in Bachang, Melaka while ARMA (1,2 is the most suitable model with smallest error to predict the CO concentration level for residential area in Kuala Terengganu.

  12. Measurements of Carbon Dioxide and Carbon Monoxide at High Spatial and Temporal Resolution in an Urban Environment

    Science.gov (United States)

    Rella, C.; Jacobson, G. A.; Crosson, E.

    2011-12-01

    The ability to take inventory of critical greenhouse gases such as carbon dioxide and methane and quantify their sources and sinks is essential for understanding the atmospheric drivers to global climate change. "Top down" inversion measurements and models are used to quantify net carbon fluxes into the atmosphere. The overall carbon fluxes are determined by combining remote measurements of carbon dioxide concentrations with complex atmospheric transport models, and these emissions measurements are compared to "bottoms-up" predictions based on detailed inventories of the sources and sinks of carbon, both anthropogenic and biogenic in nature. At smaller distance scales, such as that of a city or even smaller, the basic framework underpinning the inversion modeling technique begins to break down: atmospheric transport models, which are well understood at a length scale of 100 km, work poorly or not at all at a 100m distance scale. Furthermore, the variability of the emissions sources in space (e.g., factories, highways, residences) and time (rush hours, factory shifts and shutdowns, residential energy usage variability during the day and over the year) complicate the interpretation of the measured signals. In this paper we present detailed, high spatial- and temporal-resolution greenhouse gas measurements in Silicon Valley, CA. The results of two experimental campaigns are presented: a 10m urban 'tower' and ground-based mobile mapping measurements. In both campaigns, real-time carbon dioxide data are combined with real-time carbon monoxide measurements to partition the observed CO2 concentrations between anthropogenic and biogenic sources . The urban tower measurements are made continuously over a period of many weeks. The mobile maps of the vicinity of the urban tower are taken repeatedly over a period of several days, and at different times of the day and under different atmospheric conditions, to assess the robustness and repeatability of the maps. Initial

  13. Low carbon content and carbon-free refractory materials with high thermal shock resistance; Thermoschockbestaendige feuerfeste Erzeugnisse mit geringerem Kohlenstoffgehalt bzw. kohlenstofffreie Erzeugnisse

    Energy Technology Data Exchange (ETDEWEB)

    Brachhold, Nora; Aneziris, C.G.; Stein, Volker; Roungos, Vasileios; Moritz, Kirsten [TU Bergakademie Freiberg (TUBAF) (DE). Inst. fuer Keramik, Glas- und Baustofftechnik (IKGB)

    2012-07-01

    Carbon bonded refractories are essential for steelmaking due to their excellent thermal shock resistance. The research on carbon reduced and carbon-free materials is necessary to manufacture high quality stainless steels tending carbon pick-up in contact to conventional refractory materials. Further advantages are reduced emissions of CO{sub 2} and energy saving potentials due to better heat insulation properties. The challenge is to develop alternative materials with lower carbon contents but with the necessary thermal shock resistance. The Priority Programme 1418 funded by the German Research Foundation (DFG) concentrates on this problem. In this article two materials are presented. First, the carbon content could be reduced by nanoscaled additives resulting in better bonding between matrix and oxidic components. Second, an AL{sub 2}O{sub 3}-rich carbon-free material is presented showing a very good thermal shock resistance due to its designed microstructure. Finally, a steel casting simulator is introduced to test the new materials under nearly real conditions. (orig.)

  14. Concentrations and characteristics of organic carbon in surface water in Arizona: Influence of urbanization

    Science.gov (United States)

    Westerhoff, P.; Anning, D.

    2000-01-01

    Dissolved (DOC) and total (TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p<0.05). Reservoir outflows and wastewater-treatment plant effluent were higher in DOC concentration (p<0.05) and exhibited less variability in concentration than inflows to the reservoirs. Specific ultraviolet absorbance values at 254 nm were typically less than 2 m-1(milligram DOC per liter)-1 and lower than values found in most temperate-region rivers, but specific ultraviolet absorbance values increased during runoff events. Fluorescence measurements indicated that DOC in desert streams typically exhibit characteristics of autochthonous sources; however, DOC in unregulated upland rivers and desert streams experienced sudden shifts from autochthonous to allochthonous sources during runoff events. The urban water system (reservoir systems and wastewater-treatment plants) was found to affect temporal variability in DOC concentration and composition.The influence of urbanization, becoming increasingly common in arid regions, on dissolved organic carbon (DOC) concentrations in surface water

  15. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblobby pine forest ecosystem grown in elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Springer, C. J.; Thomas, R. B.; Delucia, E. H.

    2005-01-01

    The effects of elevated carbon dioxide concentration on the relationship between light-saturated net photosynthesis and area-based foliar nitrogen concentration in the canopy of a loblobby pine forest at the Duke Forest FACE experiment was examined. Two overstory and four understory tree species were examined at their growth carbon dioxide concentrations during the early summer and late summer of 1999, 2001 and 2002. Light-saturated net photosynthesis and foliar nitrogen relationship were compared to determine if the stimulatory effects of elevated carbon dioxide on net photosynthesis had declined. Results at all three sample times showed no difference in either the slopes, or in the y-intercepts of the net photosynthesis-foliar nitrogen relationship when measured at common carbon dioxide concentrations. Net photosynthesis was also unaffected by growth in elevated carbon dioxide, indicating that these overstory and understory trees continued to show strong stimulation of photosynthesis by elevated carbon dioxide. 46 refs., 6 tabs., 3 figs

  16. Effects of climate, CO2 concentration, nitrogen deposition, and stand age changes on the carbon budget of China's forests

    Science.gov (United States)

    Zhang, C.; Ju, W.; Zhang, F.; Mao, D.; Wang, X.

    2017-12-01

    Forests play an irreplaceable role in the Earth's terrestrial carbon budget which retard the atmospheric CO2 buildup. Understanding the factors controlling forest carbon budget is critical for reducing uncertainties in projections of future climate. The relative importance of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age changes on carbon budget, however, remains unclear for China's forests. In this study, we quantify individual contribution of these drivers to the trends of forest carbon budget in China from 1901 to 2012 by integrating national datasets, the updated Integrated Terrestrial Ecosystem Carbon Cycle (InTEC) model and factorial simulations. Results showed that the average carbon sink in China's forests from 1982 to 2012 was 186.9 Tg C yr-1 with 68% (127.6 Tg C yr-1) of the sink in living biomass because of the integrated effects of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age factors. Compared with the simulation of all factors combined, the estimated carbon sink during 1901-2012 would be reduced by 41.8 Tg C yr-1 if climate change, atmospheric CO2 concentration and nitrogen deposition factors were omitted, and reduced by 25.0 Tg C yr-1 if stand age factor was omitted. In most decades, these factors increased forest carbon sinks with the largest of 101.3, 62.9, and 44.0 Tg C yr-1 from 2000 to 2012 contributed by stand age, CO2 concentration and nitrogen deposition, respectively. During 1901-2012, climate change, CO2 concentration, nitrogen deposition and stand age contributed -13.3, 21.4, 15.4 and 25.0 Tg C yr-1 to the averaged carbon sink of China's forests, respectively. Our study also showed diverse regional patterns of forest carbon budget related to the importance of driving factors. Stand age effect was the largest in most regions, but the effects of CO2 concentration and nitrogen deposition were dominant in southern China.

  17. Carbon nanomaterials for high-performance supercapacitors

    OpenAIRE

    Tao Chen; Liming Dai

    2013-01-01

    Owing to their high energy density and power density, supercapacitors exhibit great potential as high-performance energy sources for advanced technologies. Recently, carbon nanomaterials (especially, carbon nanotubes and graphene) have been widely investigated as effective electrodes in supercapacitors due to their high specific surface area, excellent electrical and mechanical properties. This article summarizes the recent progresses on the development of high-performance supercapacitors bas...

  18. Long-term Trends of Organic Carbon Concentrations in Freshwaters: Strengths and Weaknesses of Existing Evidence

    Directory of Open Access Journals (Sweden)

    Montserrat Filella

    2014-05-01

    Full Text Available Many articles published in the last few years start with the assumption that the past decades have seen an increase in dissolved organic carbon (DOC concentrations in the rivers and lakes of the Northern Hemisphere. This study analyses whether the existing evidence supports this claim. With this aim, we have collected published studies where long series of organic carbon concentrations (i.e., longer than 10 years were analyzed for existing trends and have carefully evaluated the 63 articles found. Information has been collated in a comprehensive and comparable way, allowing readers to easily access it. The two main aspects considered in our analysis have been the analytical methods used and the data treatment methods applied. Both are sensitive issues because, on the one hand, the difficulties associated with correctly determining organic carbon concentrations in surface waters are well known, while, on the other, dealing with real environmental data (i.e., lack of normality, censoring, missing values, etc. is an extremely intricate matter. Other issues such as data reporting and the geographical location of the systems studied are also discussed. In conclusion, it is clear that organic carbon concentrations have increased in some surface waters in the Northern Hemisphere since the 1990s. However, due to a lack of data in many parts of the world, it is not known whether this phenomenon is general and, more importantly, in the areas for which such data do exist, the reporting and methodological problems in the published studies prevent any conclusion on the existence of a general temporal behavior of organic carbon from being drawn.

  19. Developing high strength and ductility in biomedical Co-Cr cast alloys by simultaneous doping with nitrogen and carbon.

    Science.gov (United States)

    Yamanaka, Kenta; Mori, Manami; Chiba, Akihiko

    2016-02-01

    There is a strong demand for biomedical Co-Cr-based cast alloys with enhanced mechanical properties for use in dental applications. We present a design strategy for development of Co-Cr-based cast alloys with very high strength, comparable to that of wrought Co-Cr alloys, without loss of ductility. The strategy consists of simultaneous doping of nitrogen and carbon, accompanied by increasing of the Cr content to increase the nitrogen solubility. The strategy was verified by preparing Co-33Cr-9W-0.35N-(0.01-0.31)C (mass%) alloys. We determined the carbon concentration dependence of the microstructures and their mechanical properties. Metal ion release of the alloys in an aqueous solution of 0.6% sodium chloride (NaCl) and 1% lactic acid was also evaluated to ensure their corrosion resistance. As a result of the nitrogen doping, the formation of a brittle σ-phase, a chromium-rich intermetallic compound, was significantly suppressed. Adding carbon to the alloys resulted in finer-grained microstructures and carbide precipitation; accordingly, the strength increased with increasing carbon concentration. The tensile ductility, on the other hand, increased with increasing carbon concentration only up to a point, reaching a maximum at a carbon concentration of ∼0.1mass% and decreasing with further carbon doping. However, the alloy with 0.31mass% of carbon exhibited 14% elongation and also possessed very high strength (725MPa in 0.2% proof stress). The addition of carbon did not significantly degrade the corrosion resistance. The results show that our strategy realizes a novel high-strength Co-Cr-based cast alloy that can be produced for advanced dental applications using a conventional casting procedure. The present study suggested a novel alloy design concept for realizing high-strength Co-Cr-based cast alloys. The proposed strategy is beneficial from the practical point of view because it uses conventional casting approach-a simpler, more cost-effective, industrially

  20. Nitrogen in highly crystalline carbon nanotubes

    International Nuclear Information System (INIS)

    Ducati, C; Koziol, K; Stavrinadis, A; Friedrichs, S; Windle, A H; Midgley, P A

    2006-01-01

    Multiwall carbon nanotubes (MWCNTs) with an unprecedented degree of internal order were synthesised by chemical vapour deposition (CVD) adding a nitrogen-containing compound to the hydrocarbon feedstock. Ferrocene was used as the metal catalyst precursor. The remarkable crystallinity of these nanotubes lies both in the isochirality and in the crystallographic register of their walls, as demonstrated by electron diffraction and high resolution electron microscopy experiments. High resolution transmission electron microscopy analysis shows that the walls of the nanotubes consist of truncated stacked cones, instead of perfect cylinders, with a range of apex angles that appears to be related to the nitrogen concentration in the synthesis process. The structure of armchair, zigzag and chiral nanotubes is modelled and discussed in terms of density of topological defects, providing an interesting comparison with our microscopy experiments. A growth mechanism based on the interplay of base- and tip-growth is proposed to account for our experimental observations

  1. High performance ceramic carbon electrode-based anodes for use in the Cu-Cl thermochemical cycle for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Santhanam; Easton, E. Bradley [Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada)

    2010-02-15

    A high performance ceramic carbon electrode (CCE) was fabricated by the sol-gel method to study the CuCl electrolysis in Cu-Cl thermochemical cycle. The electrochemical behavior and stability of the CCE was investigated by polarization experiments at different concentrations of CuCl/HCl system. The CCE displayed excellent anodic performance and vastly outperformed the bare carbon fiber paper (CFP) even at high concentrations of CuCl (0.5 M) and HCl (6 M), which is explained in terms of increased active area and enhanced anion transport properties. Further enhancement of activity was achieved by coating the CCE layer onto both sides of the CFP substrate. (author)

  2. Particulate Matter and Black Carbon Concentration Levels in Ashaiman, a Semi-Urban Area of Ghana, 2008

    OpenAIRE

    Sam-Quarcoo Dotse; Joshua Kwame Asane; F.G. Ofosu

    2012-01-01

    Particulate matter and black carbon concentration levels in Ashaiman, a semi-urban area of Ghana was assessed. Using IVL PM2.5 and PM10 particle samplers, airborne particulate matter was sampled on Teflon filters for a period of three months. In addition to determination of particulate mass in the two fractions by gravimetrical method, aerosol filters were analyzed to determine Black Carbon (BC) concentration levels using the black smoke method. BC fractions in fine and coarse, together with ...

  3. Effect of IX column maintenance on carbon-14 concentration in moderator systems

    International Nuclear Information System (INIS)

    Gallagher, C.L.; Tripple, A.W.

    2006-01-01

    The radionuclide 14 C is produced in CANDU reactors primarily by the (n,α) reaction with 17 O. Because of high neutron fluxes in the core, the majority of the 14 C (94.5%) is produced in the moderator. In the moderator system, 14 C is present mainly as CO 2 in the cover gas in dynamic equilibrium with dissolved carbonates, bicarbonates and CO 2 in the moderator water. Emissions of 14 C from reactors occur through venting or leakage of the cover gas. By controlling the dissolved carbonates in the moderator water with an ion exchange (IX) purification system, the amount of 14 C in the cover gas is minimized and thus the emissions of 14 C can be reduced. A study was conducted to measure the 14 C concentrations in the moderator system at Gentilly 2 in order to determine the effectiveness of the purification system in removing 14 C. Moderator water samples were obtained from the inlet and outlet of the purification system from 2004 January 14 to July 12, covering the operation of two IX columns (IX-1 and IX-3). The moderator water samples contained high levels of tritium (∼2 TBq·L -1 ). As both tritium and 14 C are β-radiation emitters, direct counting of moderator water for 14 C is impossible as the signal due to tritium dominates over that of other β-emitters. Therefore, a procedure developed by Caron et al. was used in this study, which involved acidifying the sample to release the dissolved 14 CO 2 as gas and collecting the 14 CO 2 in a base (NaOH), which could then be measured by liquid scintillation counting to determine the 14 C concentration. Both of the IX columns started with 14 C removal efficiencies of about 95%. The efficiency began to decrease almost immediately with the IX-1 column dropping to 80% efficiency after ∼1115 hours. This drop in efficiency also led to an increase in the inlet concentration over time. IX-1 column was removed from service after ∼1745 hours with a 14 C removal efficiency of ∼31%. IX-3 column was then placed in service

  4. Determining How Atmospheric Carbon Dioxide Concentrations Have Changed during the History of the Earth

    Science.gov (United States)

    Badger, Marcus P. S.; Pancost, Richard D.; Harrison, Timothy G.

    2011-01-01

    The reconstruction of ancient atmospheric carbon dioxide concentrations is essential to understanding the history of the Earth and life. It is also an important guide to identifying the sensitivity of the Earth system to this greenhouse gas and, therefore, constraining its future impact on climate. However, determining the concentration of…

  5. Statistical analysis of inhibitor concentrations for radioactive waste in carbon steel tanks

    International Nuclear Information System (INIS)

    Zapp, P.E.; Edwards, T.B.

    1993-01-01

    Based on a logistic regression approach, a model was developed using the explanatory variables log([NO 3 - ]), log([NO 2 - ]), and temperature to estimate the probability of pitting in a carbon steel exposed to high-level radioactive waste. Pitting susceptibility data obtained by the two techniques of cyclic potentiodynamic polarization and coupon immersion were separately and jointly analyzed with the model. Similar predictive ability is seen for equations based on both electrochemical and coupon immersion data. Using the theory associated with the determination of confidence intervals for the estimated probability, a methodology was developed to provide a lower bound for the nitrite concentration which inhibits pitting, i.e., which holds the estimated probability of pitting to a reasonably low level of 0.05

  6. Relationship between Structural Characteristics of Activated Carbons and Their Concentrating Efficiency with Respect to Nitroorganics.

    Science.gov (United States)

    Leboda, R.; Gun'ko, V. M.; Tomaszewski, W.; Trznadel, B. J.

    2001-07-15

    The relationships between structural properties of activated microporous, micro-mesoporous, mesoporous, and graphitized carbons determined on the basis of nitrogen adsorption at 77.4 K and the efficiency of concentrating (solid-phase extraction (SPE) technique) several nitroorganic compounds from polar solvents were investigated. Microporosity, mesoporosity, fractality, and other characteristics of adsorbents were analyzed to evaluate the dependence of the effectiveness of the SPE technique with respect to nitrate esters, cyclic nitroamines, and nitroaromatics on the origin and texture of carbons. The values of the free energy of solvation and dipole moment of nitroorganic compounds in polar liquids computed with the SM5.42/PM3 method with consideration of geometry relaxation in solution were utilized to elucidate features of their concentration of carbon adsorbents. Copyright 2001 Academic Press.

  7. Concentration of carbonate admixture from opalized tuff into one separate fraction

    International Nuclear Information System (INIS)

    Bogoevski, Slobodan; Boshkovski, Boshko

    2016-01-01

    White opalized tuff (from the Strmosh locality, Probishtip), as a raw silicate amorphous material, contains some quantity of admixtures. The total quantity of admixtures amounts is about 8% mass. Mine powdery ingredients are homogeneously distributed into the basic silicate mass.Carbonate material is a significant part of present admixtures, and it is possible to be separated with controlled milling. Milling parameters (type and time of milling) enables to concentrate the present CaCO 3 in granulometric fraction<0.032 μm, after 30 min. milling. Reliable evidence about afore mentioned separation is shown with simultaneous view of the results of silicate chemical analysis, DT/TG analysis (750 - 850 °C), and sieve-analysis.From the X-ray analysis it is evident that the present carbonate material exists in crypto crystal to amorphous state. The space where CaCO 3 is hidden, presents the place between basic silicate particles inside the groups, generally with dimensions about 40 to 60 μm. The concentration of CaCO 3 appears when this particle group goes to the process of disintegration. (author)

  8. Highly reversible lead-carbon battery anode with lead grafting on the carbon surface

    KAUST Repository

    Yin, Jian; Lin, Nan; Zhang, Wenli; Lin, Zheqi; Zhang, Ziqing; Wang, Yue; Shi, Jun; Bao, Jinpeng; Lin, Haibo

    2018-01-01

    A novel C/Pb composite has been successfully prepared by electroless plating to reduce the hydrogen evolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The deposited lead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Because lead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogen evolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead. Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge–discharge reversibility, which is attributed to the good connection between carbon additives and lead that has been stuck on the surface of C/Pb composite during the preparation process. The addition of C/Pb composite maintains a solid anode structure with high specific surface area and power volume, and thereby, it plays a significant role in the highly reversible lead-carbon anode.

  9. Highly reversible lead-carbon battery anode with lead grafting on the carbon surface

    KAUST Repository

    Yin, Jian

    2018-03-27

    A novel C/Pb composite has been successfully prepared by electroless plating to reduce the hydrogen evolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The deposited lead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Because lead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogen evolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead. Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge–discharge reversibility, which is attributed to the good connection between carbon additives and lead that has been stuck on the surface of C/Pb composite during the preparation process. The addition of C/Pb composite maintains a solid anode structure with high specific surface area and power volume, and thereby, it plays a significant role in the highly reversible lead-carbon anode.

  10. Adsorption of ultra-low concentration malodorous substances using coal-derived granular activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Urano, K.; Maeda, T.; Yamashita, H.; Hagio, S.; Arioka, A.

    1986-01-01

    The experimental adsorption is reported of diosmin and 2-methylisoborneol using two types of coal-derived granular activated carbon and one derived from coconut husk. It was discovered that carbons with more pores below 15 angstroms in size gave a higher equilibrium adsorption of malodorous substances at mg/l concentrations. It was also found that the coal-derived materials, which contained more pores larger than 15 angstroms, gave faster adsorption. Given that the coal-derived carbons have a longer service life, it is concluded that they are suitable for use in full-scale adsorption plant where contact times are short. 3 references, 5 figures, 5 tables.

  11. High soil solution carbon and nitrogen concentrations in a drained Atlantic bog are reduced to natural levels by 10 years of rewetting

    Science.gov (United States)

    Frank, S.; Tiemeyer, B.; Gelbrecht, J.; Freibauer, A.

    2014-04-01

    Anthropogenic drainage of peatlands releases additional greenhouse gases to the atmosphere, and dissolved carbon (C) and nutrients to downstream ecosystems. Rewetting drained peatlands offers a possibility to reduce nitrogen (N) and C losses. In this study, we investigate the impact of drainage and rewetting on the cycling of dissolved C and N as well as on dissolved gases, over a period of 1 year and a period of 4 months. We chose four sites within one Atlantic bog complex: a near-natural site, two drained grasslands with different mean groundwater levels and a former peat cutting area rewetted 10 years ago. Our results clearly indicate that long-term drainage has increased the concentrations of dissolved organic carbon (DOC), ammonium, nitrate and dissolved organic nitrogen (DON) compared to the near-natural site. DON and ammonium contributed the most to the total dissolved nitrogen. Nitrate concentrations below the mean groundwater table were negligible. The concentrations of DOC and N species increased with drainage depth. In the deeply-drained grassland, with a mean annual water table of 45 cm below surface, DOC concentrations were twice as high as in the partially rewetted grassland with a mean annual water table of 28 cm below surface. The deeply drained grassland had some of the highest-ever observed DOC concentrations of 195.8 ± 77.3 mg L-1 with maximum values of >400 mg L-1. In general, dissolved organic matter (DOM) at the drained sites was enriched in aromatic moieties and showed a higher degradation status (lower DOC to DON ratio) compared to the near-natural site. At the drained sites, the C to N ratios of the uppermost peat layer were the same as of DOM in the peat profile. This suggests that the uppermost degraded peat layer is the main source of DOM. Nearly constant DOM quality through the profile furthermore indicated that DOM moving downwards through the drained sites remained largely biogeochemically unchanged. Unlike DOM concentration, DOM

  12. Influence of temperature and solvent concentration on the kinetics of the enzyme carbonic anhydrase in carbon capture technology

    DEFF Research Database (Denmark)

    Gladis, Arne; Deslauriers, Maria Gundersen; Fosbøl, Philip Loldrup

    2017-01-01

    In this study the effect of carbonic anhydrase addition on the absorption of CO2 was investigated in a wetted wall column apparatus. Four different solvents: the primary amine monoethanolamine (MEA), the sterically hindered primary amine 2-amino-2-methyl-1-propanol (AMP), the tertiary amine N......-methyl-diethanolamine (MDEA) and the carbonate salt solution K2CO3 were compared in concentrations from 5 to 50 wt% in a temperature range of 298–328 K with and without enzyme. Necessary mass transfer parameters such as liquid side mass transfer coefficient and solvent and enzyme reaction rates were determined...

  13. Highly sensitive voltamperometric determination of pyritinol using carbon nanofiber/gold nanoparticle composite screen-printed carbon electrode

    Directory of Open Access Journals (Sweden)

    Apetrei IM

    2017-07-01

    Full Text Available Irina Mirela Apetrei,1 Constantin Apetrei2 1Department of Pharmaceutical Sciences, Medical and Pharmaceutical Research Center, Faculty of Medicine and Pharmacy, 2Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunarea de Jos” University of Galati, Galati, Romania Abstract: A novel and highly sensitive electrochemical method for the detection of pyritinol in pharmaceutical products and serum samples has been accomplished based on voltamperometric response of pyritinol in carbon nanofiber-gold nanoparticle (CNF-GNP-modified screen-printed carbon electrode (SPCE. The electrochemical response of pyritinol to CNF-GNP-modified SPCE was studied by cyclic voltammetry and square-wave voltammetry (SWV. Under optimized working conditions, the novel sensor shows excellent voltamperometric response toward pyritinol. The SWV study shows significantly enhanced electrochemical response for pyritinol in CNF-GNP-modified SPCE providing high sensitivity to the novel sensor for pyritinol detection. The peak current for pyritinol is found to be linear with the concentration in the range 1.0×10-8–5.0×10-5 M with a detection limit of 6.23×10-9 M using SWV as the detection method. The viability of the new developed sensor for the analytical purposes was studied by performing experiments on various commercial pharmaceutical products and blood serum samples, which yielded adequate recoveries of pyritinol. The novel electrochemical sensor provides high sensitivity, enhanced selectivity, good reproducibility and practical applicability. Keywords: pyritinol, carbon nanofiber, gold nanoparticle, sensor, square-wave voltammetry

  14. Synthesis of partially graphitic ordered mesoporous carbons with high surface areas

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenjun; Wan, Ying [Department of Chemistry, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234 (China); Dou, Yuqian; Zhao, Dongyuan [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2011-01-01

    Graphitic carbons with ordered mesostructure and high surface areas (of great interest in applications such as energy storage) have been synthesized by a direct triblock-copolymer-templating method. Pluronic F127 is used as a structure-directing agent, with a low-molecular-weight phenolic resol as a carbon source, ferric oxide as a catalyst, and silica as an additive. Inorganic oxides can be completely eliminated from the carbon. Small-angle XRD and N{sub 2} sorption analysis show that the resultant carbon materials possess an ordered 2D hexagonal mesostructure, uniform bimodal mesopores (about 1.5 and 6 nm), high surface area ({proportional_to}1300 m{sup 2}/g), and large pore volumes ({proportional_to}1.50 cm{sup 3}/g) after low-temperature pyrolysis (900 C). All surface areas come from mesopores. Wide-angle XRD patterns demonstrate that the presence of the ferric oxide catalyst and the silica additive lead to a marked enhancement of graphitic ordering in the framework. Raman spectra provide evidence of the increased content of graphitic sp{sup 2} carbon structures. Transmission electron microscopy images confirm that numerous domains in the ordered mesostructures are composed of characteristic graphitic carbon nanostructures. The evolution of the graphitic structure is dependent on the temperature and the concentrations of the silica additive, and ferric oxide catalyst. Electrochemical measurements performed on this graphitic mesoporous carbon when used as an electrode material for an electrochemical double layer capacitor shows rectangular-shaped cyclic voltammetry curves over a wide range of scan rates, even up to 200 mV/s, with a large capacitance of 155 F/g in KOH electrolyte. This method can be widely applied to the synthesis of graphitized carbon nanostructures. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  16. Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

    Directory of Open Access Journals (Sweden)

    Julia Patzsch

    2017-05-01

    Full Text Available Mesoscopic, nanoporous carbon tubes were synthesized by a combination of the Stoeber process and the use of electrospun macrosized polystyrene fibres as structure directing templates. The obtained carbon tubes have a macroporous nature characterized by a thick wall structure and a high specific surface area of approximately 500 m²/g resulting from their micro- and mesopores. The micropore regime of the carbon tubes is composed of turbostratic graphitic areas observed in the microstructure. The employed templating process was also used for the synthesis of silicon carbide tubes. The characterization of all porous materials was performed by nitrogen adsorption at 77 K, Raman spectroscopy, infrared spectroscopy, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM as well as transmission electron microscopy (TEM. The adsorption of carbon dioxide on the carbon tubes at 25 °C at pressures of up to 30 bar was studied using a volumetric method. At 26 bar, an adsorption capacity of 4.9 mmol/g was observed. This is comparable to the adsorption capacity of molecular sieves and vertically aligned carbon nanotubes. The high pressure adsorption process of CO2 was found to irreversibly change the microporous structure of the carbon tubes.

  17. Uncovering the Driving Factors of Carbon Emissions in an Investment Allocation Model of China’s High-Carbon and Low-Carbon Energy

    Directory of Open Access Journals (Sweden)

    Shumin Jiang

    2017-06-01

    Full Text Available In the view of long-term comprehensive development, the concept of low-carbon economy has long been a concern. In this paper, we build a pure energy-economic system and explore the exact influencing factors in the investment allocation of high-carbon and low-carbon energy with the purpose of mitigating carbon dioxide in the atmosphere. The dynamic analysis shows that the model that we built is applicable for the current market situation and the way we adjust the investments of high-carbon and low-carbon energy are conductive to carbon abatement in the atmosphere. On the basis of the stability analysis and numerical simulation, some strategies are given to decrease the carbon dioxide in the atmosphere. The results show that the social consumption and public consumption behavior are the most important factors responsible for the variation in the atmospheric carbon dioxide. The cleanliness of high carbon presents an obvious mitigating effect on carbon in the atmosphere and the effect of marginal profit of high-carbon energy is the weakest. In addition, enhancing marginal profit, return on investment and investment share of low-carbon energy are beneficial to reduce carbon dioxide in the atmosphere, while a return on investment of high-carbon energy increasing is the detriment of the carbon dioxide in the atmosphere. Finally, we provide carbon mitigation effort by considering both economic development and carbon abatement for policymakers to achieve a desirable emission-reduction effect.

  18. Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors.

    Science.gov (United States)

    Liu, Ying; Zhou, Jinyuan; Chen, Lulu; Zhang, Peng; Fu, Wenbin; Zhao, Hao; Ma, Yufang; Pan, Xiaojun; Zhang, Zhenxing; Han, Weihua; Xie, Erqing

    2015-10-28

    Highly flexible porous carbon nanofibers (P-CNFs) were fabricated by electrospining technique combining with metal ion-assistant acid corrosion process. The resultant fibers display high conductivity and outstanding mechanical flexibility, whereas little change in their resistance can be observed under repeatedly bending, even to 180°. Further results indicate that the improved flexibility of P-CNFs can be due to the high graphitization degree caused by Co ions. In view of electrode materials for high-performance supercapacitors, this type of porous nanostructure and high graphitization degree could synergistically facilitate the electrolyte ion diffusion and electron transportation. In the three electrodes testing system, the resultant P-CNFs electrodes can exhibit a specific capacitance of 104.5 F g(-1) (0.2 A g(-1)), high rate capability (remain 56.5% at 10 A g(-1)), and capacitance retention of ∼94% after 2000 cycles. Furthermore, the assembled symmetric supercapacitors showed a high flexibility and can deliver an energy density of 3.22 Wh kg(-1) at power density of 600 W kg(-1). This work might open a way to improve the mechanical properties of carbon fibers and suggests that this type of freestanding P-CNFs be used as effective electrode materials for flexible all-carbon supercapacitors.

  19. High-flux solar concentration with imaging designs

    Energy Technology Data Exchange (ETDEWEB)

    Feuermann, D. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Gordon, J.M. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Ben-Gurion University of the Negev (Israel). Dept. of Mechanical Engineering; Ries, H. [Ries and Partners, Munich (Germany)

    1999-02-01

    Most large solar concentrators designed for high flux concentration at high collection efficiency are based on imaging primary mirrors and nonimaging secondary concentrators. In this paper, we offer an alternative purely imaging two-stage solar concentrator that can attain high flux concentration at high collection efficiency. Possible practical virtues include: (1) an inherent large gap between absorber and secondary mirror; (2) a restricted angular range on the absorber; and (3) an upward-facing receiver where collected energy can be extracted via the (shaded) apex of the parabola. We use efficiency-concentration plots to characterize the solar concentrators considered, and to evaluate the potential improvements with secondary concentrators. (author)

  20. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High Concentration Electrolyte Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Mei, Donghai; Engelhard, Mark H.; Cartmell, Samuel S.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-08

    Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. Here, we demonstrate that long-term cycling of Li metal batteries can be realized by the formation of a transient high concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately solvate with the available solvent molecules and facilitate the formation of a stable and flexible SEI layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode by free organic solvents and enables the long-term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development and operation of Li metal batteries that could be operated at high current densities for a wide range of applications.

  1. High throughput deposition of hydrogenated amorphous carbon coatings on rubber with expanding thermal plasma

    NARCIS (Netherlands)

    Pei, Y.T.; Eivani, A.R.; Zaharia, T.; Kazantis, A.V.; Sanden, van de M.C.M.; De Hosson, J.T.M.

    2014-01-01

    Flexible hydrogenated amorphous carbon (a-C:H) thin film coated on rubbers has shown outstanding protection of rubber seals from friction and wear. This work concentrates on the potential advances of expanding thermal plasma (ETP) process for a high throughput deposition of a-C:H thin films in

  2. Electric anisotropy in high density polyethylene + carbon black composites induced by mechanical deformation

    Energy Technology Data Exchange (ETDEWEB)

    Vigueras-Santiago, E; Hernandez-Lopez, S; Camacho-Lopez, M A; Lara-Sanjuan, O, E-mail: eviguerass@uaemex.m [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, UAEM. Paseo Colon esq. con Paseo Tollocan, s/n. C.P. 50000, Toluca (Mexico)

    2009-05-01

    High density polyethylene + carbon black composites with electrical anisotropy was studied. Electrical anisotropy was induced by uniaxial mechanical deformation and injection moulding. We show that anisotropy depends on the carbon black concentration and percentage deformation. Resistivity had the highest anisotropy resistivity around the percolation threshold. Perpendicular resistivity showed two magnitude orders higher than parallel resistivity for injected samples, whereas resistivity showed an inverse behaviour for 100% tensile samples. Both directions were set respect to the deformation axe. Anisotropy could be explained in terms of the molecular deformation (alignment) of the polymer chains as a response of the deformation process originating a redistribution of the carbon black particles in both directions. Alignment of the polymer chains was evidenced by polarized Raman spectroscopy.

  3. Dissolved organic carbon (DOC) concentrations in UK soils and the influence of soil, vegetation type and seasonality.

    Science.gov (United States)

    van den Berg, Leon J L; Shotbolt, Laura; Ashmore, Mike R

    2012-06-15

    Given the lack of studies which measured dissolved organic carbon (DOC) over long periods, especially in non-forest habitat, the aim of this study was to expand the existing datasets with data of mainly non-forest sites that were representative of the major soil and habitat types in the UK. A further aim was to predict DOC concentrations from a number of biotic and abiotic explanatory variables such as rainfall, temperature, vegetation type and soil type in a multivariate way. Pore water was sampled using Rhizon or Prenart samplers at two to three week intervals for 1 year. DOC, pH, organic carbon, carbon/nitrogen (C:N) ratios of soils and slope were measured and data on vegetation, soil type, temperature and precipitation were obtained. The majority of the variation in DOC concentrations between the UK sites could be explained by simple empirical models that included annual precipitation, and soil C:N ratio with precipitation being negatively related to DOC concentrations and C:N ratio being positively related to DOC concentrations. Our study adds significantly to the data reporting DOC concentrations in soils, especially in grasslands, heathlands and moorlands. Broad climatic and site factors have been identified as key factors influencing DOC concentrations. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Synthesis of highly fluorescent hydrophobic carbon dots by hot injection method using Paraplast as precursor

    International Nuclear Information System (INIS)

    Talib, Abou; Pandey, Sunil; Thakur, Mukeshchand; Wu, Hui-Fen

    2015-01-01

    We have reported synthesis of bright blue colored hydrophobic carbon dots (hC-dots) using highly pure blend of polymers called Paraplast. We developed a hot injection method for making nearly monodispersed hC-dots with a diameter in a range: 5–30 nm as confirmed by high resolution transmission electron microscopy (HRTEM). The involvement of various functional groups was confirmed by Fourier transform infra-red (FTIR) spectroscopy. These hC-dots were incubated with breast cancer stem cells in order to check the entry as well as biological imaging. The cells were analyzed using epifluorescent microscopy. hC-dots showed concentration dependent cytotoxicity (LD 50 : 50 mg/ml) and could be used for bioimaging even at lower concentration (0.5 mg/ml). hC-dots were found to be versatile agents for peeping inside the cells which could also be used for delivery of water insoluble chemotherapeutic agents to variety of solid tumors. - Highlights: • Synthesis of hydrophobic carbon dots from polymer based Paraplast • Deep blue color under the influence of UV light • Typical optical properties used for biological imaging • Biological imaging of breast cancer stem cells revealing potential of carbon dots

  5. Synthesis of highly fluorescent hydrophobic carbon dots by hot injection method using Paraplast as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Talib, Abou [Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Pandey, Sunil [Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Thakur, Mukeshchand [Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Wu, Hui-Fen, E-mail: hui@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan (China); Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 800, Taiwan (China); Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan (China)

    2015-03-01

    We have reported synthesis of bright blue colored hydrophobic carbon dots (hC-dots) using highly pure blend of polymers called Paraplast. We developed a hot injection method for making nearly monodispersed hC-dots with a diameter in a range: 5–30 nm as confirmed by high resolution transmission electron microscopy (HRTEM). The involvement of various functional groups was confirmed by Fourier transform infra-red (FTIR) spectroscopy. These hC-dots were incubated with breast cancer stem cells in order to check the entry as well as biological imaging. The cells were analyzed using epifluorescent microscopy. hC-dots showed concentration dependent cytotoxicity (LD{sub 50}: 50 mg/ml) and could be used for bioimaging even at lower concentration (0.5 mg/ml). hC-dots were found to be versatile agents for peeping inside the cells which could also be used for delivery of water insoluble chemotherapeutic agents to variety of solid tumors. - Highlights: • Synthesis of hydrophobic carbon dots from polymer based Paraplast • Deep blue color under the influence of UV light • Typical optical properties used for biological imaging • Biological imaging of breast cancer stem cells revealing potential of carbon dots.

  6. Analysis of the Interphase on Carbon Black Formed in High Voltage Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Scipioni, Roberto

    2015-01-01

    Carbon black (CB) additives commonly used to increase the electrical conductivity of electrodes in Li-ion batteries are generally believed to be electrochemically inert additives in cathodes. Decomposition of electrolyte in the surface region of CB in Li-ion cells at high voltages up to 4.9 V...... is here studied using electrochemical measurements as well as structural and surface characterizations. LiPF6 and LiClO4 dissolved in ethylene carbonate:diethylene carbonate (1:1) were used as the electrolyte to study irreversible charge capacity of CB cathodes when cycled between 4.9 V and 2.5 V....... Synchrotron-based soft X-ray photoelectron spectroscopy (SOXPES) results revealed spontaneous partial decomposition of the electrolytes on the CB electrode, without applying external current or voltage. Depth profile analysis of the electrolyte/cathode interphase indicated that the concentration of decomposed...

  7. Elevated atmospheric carbon dioxide concentration: effects of increased carbon input in a Lolium perenne soil on microorganisms and decomposition

    NARCIS (Netherlands)

    Ginkel, van J.H.; Gorissen, A.; Polci, D.

    2000-01-01

    Effects of ambient and elevated atmospheric CO2 concentrations (350 and 700 μl l-1) on net carbon input into soil, the production of root-derived material and the subsequent microbial transformation were investigated. Perennial ryegrass plants (L. perenne L.) were labelled in a continuously labelled

  8. Kirishites, a new type of natural high-carbon compounds

    Science.gov (United States)

    Marin, Yu. B.; Skublov, G. T.; Yushkin, N. P.

    2010-01-01

    On the right-hand bank of the Volkhov River, in the natural area of tektite-like glasses (Volkhovites), fragments of shungites and slags with bunches of hairlike dark brownish enclosures were found. The filament thickness ranged from 20 to 100 μm, and separate “hairlines” were 3 cm in length. The composition of shungites and “hairlines” was found to be identical, which allowed us to consider the latter as aposhungite carbon formations. The high-carbon hairline structures associated with volkhovites are called kirishites. Kirishites are a new type of high-carbon structures that formed simultaneously with volkhovites in the case of explosion-type delivery of carbon slag and shungite fragments to the daylight surface during Holocene explosive activity. Under sharply reductive conditions, the slags partially melted, the melts were segregated, and carbonaceous-silicate and carbonaceous-ferriferous glasses formed with subsequent decompression-explosive liberation of carbon-supersaturated structures, which were extruded from shungite and slag fragments in the form of a resinoid mass. The “hairlines” were found to be zonal in structure: the central axial zones are composed of high-nitrogen hydrocarbon compounds, and peripheral regions are essentially carbonaceous with a high content of organic-mineral compounds and numerous microanomalies of petrogenic, volatile, rare, and ore elements. Infrared spectroscopy identified in kirishites proteinlike compounds, diagnosed in absorption bands (in cm-1) 600-720 (Amid V), 1200-1300 (Amid III), 1480-1590 (Amid II), 1600-1700 (Amid I), 3000-3800 (vibrations in NH2 and II groups). Gas chromatography, with the possibility of differentiation of left- and right-handed forms, revealed a broad spectrum of amino acids in kirishites, with their total content found to be the absolutely highest record for natural bitumens, an order of magnitude higher than the largest amino acid concentrations ever revealed in fibrous high

  9. Impact of needle age on the response of respiration in Scots pine to long-term elevation of carbon dioxide concentration and temperature

    International Nuclear Information System (INIS)

    Zha, T.; Ryyppo, A.; Kellomaki, S.; Wang, K-Y.

    2002-01-01

    The effects of needle age, elevated carbon dioxide and temperature on needle respiration in Scots pine was studied during a four-year period. Results showed that respiration rates and specific leaf area decreased in elevated atmospheric carbon dioxide concentration relative to ambient conditions, but increased in elevated temperature and when elevated atmospheric carbon dioxide and elevated temperature were combined. Starch and soluble sugar concentrations for a given needle age increased in elevated carbon dioxide, but decreased slightly under combined elevated temperature and elevated carbon dioxide conditions. Respiration rate and specific leaf area were highest in current year needles in all treatment modes. All treatment modes enhanced the difference in respiration between current year and older needles relative to ambient conditions. Carbohydrate concentration or specific leaf area remained unchanged in response to any treatment. Under ambient conditions the temperature coefficient of respiration increased slightly in elevated carbon dioxide regardless of age, however, there was significant decline at elevated temperature as well as when both carbon dioxide concentration and temperature were elevated, indicating acclimation of respiration to temperature. 48 refs., 2 tabs., 7 figs

  10. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    Science.gov (United States)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  11. Extremely high hole concentrations in c-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Trybus, Elaissa; Moseley, Michael; Henderson, Walter; Billingsley, Daniel [Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Namkoong, Gon [Old Dominion University, Applied Research Center, Newport News, VA (United States); Look, David C. [Wright State University, Semiconductor Research Center, Dayton, OH (United States); Doolittle, W.A.

    2009-06-15

    Metal Modulated Epitaxy (S. D. Burnham et al., J. Appl. Phys. 104, 024902 (2008)[1]) is extended to include modulation of both the shutters of Ga and Mg, the Mg being delivered from a Veeco corrosive series valved cracker (S. D. Burnham et al., Mater. Res. Soc. Proc. 798, Y8.11 (2003)[2]). The Ga fluxes used are sufficiently large that droplets rapidly form when the Ga shutter opens and are subsequently depleted when the Ga shutter closes. The result is the ability to limit surface faceting while predominantly growing under average N-rich growth conditions and thus, possibly reduce N-vacancy defects. N-vacancy defects are known to result in compensation. This ability to grow higher quality materials under N-rich conditions results in very high hole concentrations and low resistivity p-type materials. Hole concentrations as high as 2 x 10{sup 19} cm{sup -3} have been achieved on c-plane GaN resulting in resistivities as low as 0.38 ohm-cm. The dependence on Ga flux, shutter timing, the corresponding RHEED images for each condition is detailed and clearly show minimization of faceting and crystal quality variations as determined by X-ray diffraction. Quantification of the Mg incorporation and residual impurities such as hydrogen, oxygen, and carbon by SIMS, eliminates co-doping, while temperature dependent hall measurements show reduced activation energies. X-ray diffraction data compares crystalline quality with hole concentration. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Origin, concentration, availability and fate of dissolved organic carbon in coastal lagoons of the Rio de Janeiro State

    Directory of Open Access Journals (Sweden)

    Albert Luiz Suhett

    Full Text Available The coastal lagoons in the northern Rio de Janeiro State (Brazil present a wide gradient of dissolved organic carbon (DOC and water color, with the highest DOC concentrations reported in the literature for aquatic ecosystems. Thus, they represent a peculiar set of ecosystems for the study of the origin, processing and fate of DOC in inland waters. We reviewed data from 2 decades of studies on the carbon cycle in these coastal lagoons and discussed the fluctuations in the concentration and quality of DOC, factors affecting DOC microbial and photochemical degradation, CO2 emission, as well as the role of humic and non-humic carbon to the energy flow through the trophic chains. We show that DOC quality, not its quantity, determines the rates of photochemical and microbial degradation both seasonally (within system and spatially (among systems, with the exception of DOC photo-oxidation among lagoons, which is partially explained by DOC concentration at regional scale. In humic lagoons, there is a fairly predictable pattern of seasonal variation in DOC concentration associated to rainfall-induced inputs of allochthonous C. However, little is known about the exact timing of these allochthonous inputs and how they relate to the seasonal variation of DOC chemical properties (i.e. its quality. Depth-integrated photo-oxidation rates were less representative in highly humic lagoons, due to strong light attenuation in the water column. Nevertheless, the potential contribution of photo-oxidation and bacterial respiration to total CO2 efflux (~11% did not differ significantly when all lagoons were pooled together. Contrary to prevailing paradigms for humic waters, microalgae seem to be the main C source in humic lagoons, sustaining pelagic food webs through zooplankton, in spite of some contribution of allochthonous C. Thus, the predominant role of the microbial loop in the DOC recovery to food webs in such systems is to be questioned.

  13. A Novel Method for Analysis of Dissolved Inorganic Carbon Concentration and δ13C by Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Smith, E.; Gonneea, M. E.; Boze, L. G.; Casso, M.; Pohlman, J.

    2017-12-01

    Dissolved inorganic carbon (DIC) is the largest pool of carbon in the oceans and is where about half of anthropogenic carbon dioxide (CO2) emissions are being sequestered. Determining the concentration and stable carbon isotopic content (δ13C) of DIC allows us to delineate carbon sources that contribute to marine DIC. A simple and reliable method for measuring DIC concentration and δ13C can be used to apportion contributions from external sources and identify effects from biogeochemical reactions that contribute or remove DIC. The U.S. Geological Survey has developed a discrete sample analysis module (DSAM) that interfaces to a Picarro G-2201i cavity ring-down spectrometer (CRDS, Picarro Inc.) to analyze CO2 and methane concentrations and δ13C from discrete gas samples. In this study, we adapted the USGS DSAM-CRDS analysis system to include an AutoMate prep device (Automate FX, Inc.) for analysis of DIC concentration and δ13C from aqueous samples. The Automate prep device was modified to deliver CO2 extracted from DIC to the DSAM, which conditions and transfers the gas to the CRDS. LabVIEW software (National Instruments) triggers the Automate Prep device, controls the DSAM and collects data from the CRDS. CO2 mass concentration data are obtained by numerical integration of the CO2 volumetric concentrations output by the CRDS and subsequent comparison to standard materials. CO2 carbon isotope values from the CRDS (iCO2) are converted to δ13C values using a slope and offset correction calibration procedure. The system design and operation was optimized using sodium bicarbonate (NaHCO3) standards and a certified reference material. Surface water and pore water samples collected from Sage Lot Pond, a salt marsh in Cape Cod MA, have been analyzed for concentration by coulometry and δ13C by isotope ratio mass spectrometry and will be used to validate the DIC-DSAM-CRDS method for field applications.

  14. Sudden increase in atmospheric concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees

    International Nuclear Information System (INIS)

    Delaire, M.; Sigogne, M.; Beaujard, F.; Frak, E.; Adam, B.; Le Roux, X.

    2005-01-01

    Short-term effects of a sudden increase in carbon dioxide concentration on nutrient uptake by roots during vegetative growth was studied in young walnut trees. Rates of carbon dioxide uptake and water loss by individual trees were determined by a branch bag method from three days before and six days after carbon dioxide concentration was increased. Nutrient uptake rates were measured concurrently by a hydroponic recirculating nutrient solution system. Carbon dioxide uptake rates increased greatly with increasing atmospheric carbon dioxide; nutrient uptake rates were proportional to carbon dioxide uptake rates, except for the phosphorus ion. Daily water loss rates were only slightly affected by elevated carbon dioxide. Overall, it was concluded that in the presence of non-limiting supplies of water and nutrients, root nutrient uptake and shoot carbon assimilation are strongly coupled in the short term in young walnut trees despite the important carbon and nutrient storage capacities od woody species. 45 refs., 7 figs

  15. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change.

    Science.gov (United States)

    Raven, John A; Giordano, Mario; Beardall, John; Maberly, Stephen C

    2011-09-01

    Carbon dioxide concentrating mechanisms (also known as inorganic carbon concentrating mechanisms; both abbreviated as CCMs) presumably evolved under conditions of low CO(2) availability. However, the timing of their origin is unclear since there are no sound estimates from molecular clocks, and even if there were, there are no proxies for the functioning of CCMs. Accordingly, we cannot use previous episodes of high CO(2) (e.g. the Palaeocene-Eocene Thermal Maximum) to indicate how organisms with CCMs responded. Present and predicted environmental change in terms of increased CO(2) and temperature are leading to increased CO(2) and HCO(3)(-) and decreased CO(3)(2-) and pH in surface seawater, as well as decreasing the depth of the upper mixed layer and increasing the degree of isolation of this layer with respect to nutrient flux from deeper waters. The outcome of these forcing factors is to increase the availability of inorganic carbon, photosynthetic active radiation (PAR) and ultraviolet B radiation (UVB) to aquatic photolithotrophs and to decrease the supply of the nutrients (combined) nitrogen and phosphorus and of any non-aeolian iron. The influence of these variations on CCM expression has been examined to varying degrees as acclimation by extant organisms. Increased PAR increases CCM expression in terms of CO(2) affinity, whilst increased UVB has a range of effects in the organisms examined; little relevant information is available on increased temperature. Decreased combined nitrogen supply generally increases CO(2) affinity, decreased iron availability increases CO(2) affinity, and decreased phosphorus supply has varying effects on the organisms examined. There are few data sets showing interactions amongst the observed changes, and even less information on genetic (adaptation) changes in response to the forcing factors. In freshwaters, changes in phytoplankton species composition may alter with environmental change with consequences for frequency of

  16. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Cuicui Mu

    2016-01-01

    Full Text Available Thermokarst lakes are widely distributed on the Qinghai-Tibetan Plateau (QTP, which accounts for 8% of the global permafrost area. These lakes probably promote organic matter biodegradation and thus accelerate the emission of carbon-based greenhouse gases. However, little is known about greenhouse gas concentrations and their stable isotopes characteristics of these lakes. In this study, we measured the concentrations of dissolved organic carbon (DOC, dissolved CO2 and CH4, as well as the distribution of δ13CCO2, δ13CCH4, and δ13COM (organic matter of lake sediments in thermokarst lakes on the QTP. Results showed that the OM of the lake sediments was highly decomposed. The concentrations of DOC, CO2 and CH4 in the lake water on the QTP were 1.2–49.6 mg L–1, 3.6–45.0 μmol L–1 and 0.28–3.0 μmol L–1, respectively. The highest CO2 and CH4 concentrations were recorded in July while the lowest values in September, which suggested that temperature had an effect on greenhouse gas production, although this pattern may also relate to thermal stratification of the water column. The results implied that thermokast lakes should be paid more attention to regarding carbon cycle and greenhouse gas emissions on the QTP.

  17. Measurement of carbon capture efficiency and stored carbon leakage

    Science.gov (United States)

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  18. Geostatistical Analyses of Soil Organic Carbon Concentrations in Aligodarz Watershed, Lorestan Province

    Directory of Open Access Journals (Sweden)

    Masoud Davari

    2017-01-01

    statistically SOC content less than 1%. Lower SOC concentrations were associated with high altitude (r = −0.265**. The results of Pearson correlation analysis showed that soil organic carbon content has a significantly negative correlatiton with slope gradient (r = −0.217**. The results also indicated that the SOC content was variable for the different land use types. The irrigated lands had the highest SOC concentrations, while the pasture lands had the lowest SOC values. Conclusion: The square-root transformed data of SOC in Aligodarz watershed of Lorestan province, Iran, followed a normal distribution, with an arithmetic mean of 0.81%, and geometric mean of 0.73%. The coefficient of variation and nugget/sill ratio revealed a moderate spatial dependence of SOC in the study area. The results indicated that the major parts of the Aligodarz watershed have SOC content less than 1%. The land use type had a significant effect on the spatial variability of SOC and that lower SOC concentrations were associated with higher altitude and slope gradients. The irrigated and pasture lands had the highest and lowest SOC concentrations, respectively.

  19. Effect of low-oxygen-concentration layer on iron gettering capability of carbon-cluster ion-implanted Si wafer for CMOS image sensors

    Science.gov (United States)

    Onaka-Masada, Ayumi; Nakai, Toshiro; Okuyama, Ryosuke; Okuda, Hidehiko; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Kurita, Kazunari; Sueoka, Koji

    2018-02-01

    The effect of oxygen (O) concentration on the Fe gettering capability in a carbon-cluster (C3H5) ion-implanted region was investigated by comparing a Czochralski (CZ)-grown silicon substrate and an epitaxial growth layer. A high Fe gettering efficiency in a carbon-cluster ion-implanted epitaxial growth layer, which has a low oxygen region, was observed by deep-level transient spectroscopy (DLTS) and secondary ion mass spectroscopy (SIMS). It was demonstrated that the amount of gettered Fe in the epitaxial growth layer is approximately two times higher than that in the CZ-grown silicon substrate. Furthermore, by measuring the cathodeluminescence, the number of intrinsic point defects induced by carbon-cluster ion implantation was found to differ between the CZ-grown silicon substrate and the epitaxial growth layer. It is suggested that Fe gettering by carbon-cluster ion implantation comes through point defect clusters, and that O in the carbon-cluster ion-implanted region affects the formation of gettering sinks for Fe.

  20. To Error Problem Concerning Measuring Concentration of Carbon Oxide by Thermo-Chemical Sen

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2007-01-01

    Full Text Available The paper gives additional errors in respect of measuring concentration of carbon oxide by thermo-chemical sensors. A number of analytical expressions for calculation of error data and corrections for environmental factor deviations from admissible ones have been obtained in the paper

  1. High Altitude Emissions of Black Carbon Aerosols: Potential Climate Implications

    Science.gov (United States)

    Satheesh, S. K.

    2017-12-01

    Synthesizing a series of ground-based and airborne measurements of aerosols over the Indian region during summer and pre-monsoon seasons have revealed the persistence of elevated absorbing aerosol layers over most of the Indian region; more than 50% of which located above clouds. Subsequent, in situ measurements of black carbon (BC) using high-altitude balloons, showed surprising layers with high concentrations in the middle and upper troposphere even at an altitude of 8 to 10 kms. Simultaneous measurements of the vertical thermal structure have shown localized warming due to BC absorption leading to large reduction in lapse rate and sharp temperature inversion, which in turn increases the atmospheric stability. This aerosol-induced stable layer is conducive for maintaining the black carbon layer longer at that level, leading thereby to further solar absorption and subsequently triggering dry convection. These observations support the `solar escalator' concept through which absorption-warming-convection cycles lead to self-lifting of BC to upper troposphere or even to lower stratosphere under favorable conditions in a matter of a few days. Employing an on-line regional chemistry transport model (WRF-Chem), incorporating aircraft emissions, it is shown that emissions from high-flying aircrafts as the most likely source of these elevated black carbon layers. These in-situ injected particles, produce significant warming of the thin air in those heights and lift these layers to even upper tropospheric/lower stratospheric heights, aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere, especially during monsoon season when the tropical tropopause layer is known to be thinnest. These simulations are further supported by the CALIPSO space-borne LIDAR derived extinction coefficient profiles. Based on

  2. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    Science.gov (United States)

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  3. Collection/concentration of trace uranium for spectrophotometric detection using activated carbon and first-derivative spectrophotometry

    International Nuclear Information System (INIS)

    El-Sayed, A.A.; Hamed, M.M.; El-Reefy, S.; Hmmad, H.A.

    2007-01-01

    The need exists for preconcentration of trace and ultratrace amounts of uranium from environmental, geological and biological samples. The adsorption of uranium on various solids is important from the purification, environmental, and radioactivity waste disposal points of view. A method is described for the determination of traces of uranium using first-derivative spectrophotometry after adsorptive preconcentration of uranium on activated carbon. Various parameters that influence the adsorptive preconcentration of uranium on activated carbon, viz., pH, amounts of activated carbon and time of stirring and interference of metals have been studied. First-derivative spectrophotometry in conjunction with adsorptive preconcentration of uranium on activated carbon is used for determining uranium at concentration levels down to 20 ppb (w/v). (orig.)

  4. Evaluating vertical concentration profile of carbon source released from slow-releasing carbon source tablets and in situ biological nitrate denitrification activity

    Science.gov (United States)

    Yeum, Y.; HAN, K.; Yoon, J.; Lee, J. H.; Song, K.; Kang, J. H.; Park, C. W.; Kwon, S.; Kim, Y.

    2017-12-01

    Slow-releasing carbon source tablets were manufactured during the design of a small-scale in situ biological denitrification system to reduce high-strength nitrate (> 30 mg N/L) from a point source such as livestock complexes. Two types of slow-releasing tablets, precipitating tablet (PT, apparent density of 2.0 g/mL) and floating tablet (FT), were prepared to achieve a vertically even distribution of carbon source (CS) in a well and an aquifer. Hydroxypropyl methylcellulose (HPMC) was used to control the release rate, and microcrystalline cellulose pH 101 (MCC 101) was added as a binder. The #8 sand was used as a precipitation agent for the PTs, and the floating agents for the FTs were calcium carbonate and citric acid. FTs floated within 30 min. and remained in water because of the buoyance from carbon dioxide, which formed during the acid-base reaction between citric acid and calcium carbonate. The longevities of PTs with 300 mg of HPMC and FTs with 400 mg of HPMC were 25.4 days and 37.3 days, respectively. We assessed vertical CS profile in a continuous flowing physical aquifer model (release test, RT) and its efficiency on biological nitrate denitrification (denitrification test, DT). During the RT, PTs, FTs and a tracer (as 1 mg rhodamine B/L) were initially injected into a well of physical aquifer model (PAM). Concentrations of CS and the tracer were monitored along the streamline in the PAM to evaluate vertical profile of CS. During the DT, the same experiment was performed as RT, except continuous injection of solution containing 30 mg N/L into the PAM to evaluate biological denitrification activity. As a result of RT, temporal profiles of CS were similar at 3 different depths of monitoring wells. These results suggest that simultaneous addition of PT and FT be suitable for achieving a vertically even distribution of the CS in the injection well and an aquifer. In DT, similar profile of CS was detected in the injection well, and nitrate was biologically

  5. Cementification for radioactive waste including high-concentration sodium sulfate and high-concentration radioactive nuclide

    International Nuclear Information System (INIS)

    Miyamoto, Shinya; Sato, Tatsuaki; Sasoh, Michitaka; Sakurai, Jiro; Takada, Takao

    2005-01-01

    For the cementification of radioactive waste that has large concentrations of sodium sulfate and radioactive nuclide, a way of fixation for sulfate ion was studied comprising the pH control of water in contact with the cement solid, and the removal of the excess water from the cement matrix to prevent hydrogen gas generation with radiolysis. It was confirmed that the sulfate ion concentration in the contacted water with the cement solid is decreased with the formation of ettringite or barium sulfate before solidification, the pH value of the pore water in the cement solid can control less than 12.5 by the application of zeolite and a low-alkali cement such as alumina cement or fly ash mixed cement, and removal of the excess water from the cement matrix by heating is possible with aggregate addition. Consequently, radioactive waste including high-concentration sodium sulfate and high-concentration radioactive nuclide can be solidified with cementitious materials. (author)

  6. Effects of carbon concentration on microstructure and mechanical properties of as-cast nickel-free Co–28Cr–9W-based dental alloys

    International Nuclear Information System (INIS)

    Yamanaka, Kenta; Mori, Manami; Chiba, Akihiko

    2014-01-01

    We determined the effects of carbon concentration on the microstructures and tensile properties of the Ni-free Co–29Cr–9W–1Si–C (mass%) cast alloys used in dental applications. Alloy specimens prepared with carbon concentrations in the range 0.01–0.27 mass% were conventionally cast. Scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) revealed that precipitates had formed in all the alloy specimens. The σ phase, a chromium-rich intermetallic compound, had formed in the region between the dendrite arms of the low-carbon-content (e.g., 0.01C) alloys. Adding carbon to the alloys increased the amount of interdendritic precipitates that formed and changed the precipitation behavior; the precipitated phase changed from the σ phase to the M 23 C 6 carbide with increasing carbon concentration. Adding a small amount of carbon (i.e., 0.04 mass%) to the alloys dramatically enhanced the 0.2% proof stress, which subsequently gradually increased with increasing content of carbon in the alloys. Elongation-to-failure, on the other hand, increased with increasing carbon content and showed a maximum at carbon concentrations of ∼ 0.1 mass%. The M 23 C 6 carbide formed at the interdendritic region may govern the tensile properties of the as-cast Co–Cr–W alloys similar to how it governed those of the hot-rolled alloys prepared in our previous study. - Highlights: • Microstructure and tensile properties of C-doped Co–Cr–W cast alloys was studied. • Adding carbon stabilized the γ matrix and changed the precipitation behavior. • Formation of carbide precipitates strengthened C-doped Co–Cr–Mo alloys. • A maximum tensile elongation was obtained at carbon concentrations of ∼0.1 mass%

  7. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    Science.gov (United States)

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-06-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

  8. High-Accuracy Measurements of Total Column Water Vapor From the Orbiting Carbon Observatory-2

    Science.gov (United States)

    Nelson, Robert R.; Crisp, David; Ott, Lesley E.; O'Dell, Christopher W.

    2016-01-01

    Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution [1.3 x 2.3 km(exp. 2)] and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products.

  9. Determination of contents of carbonate and hydrogen carbonate in solutions for alkaline leading of uranium ores

    International Nuclear Information System (INIS)

    Radil, V.

    1988-01-01

    The new analytical method is based on the determination of the molar ratio carbonate - hydrogen carbonate using the measured concentration of hydrogen ions, the determination of the dissociation constant of carbonic acid for different values of ionic strength. The concentration of hydrogen ions was measured with a Metrohm 632 pH meter with the use of a combined glass electrode. The content of total carbonate carbon was determined coulometrically and the uranium content was determined by extraction with tributyl phosphate and by spectrometry of the complex of uranyl ions with Arsenazo III. Model solutions were used for the experiments which contained a high concentration of sulfate ions, thiosulfate ions, uranium and various proportions of carbonate and hydrogen carbonate. The composition of the individual samples of the extraction solutions are tabulated. The calibration was made of the glass combined electrode at different ionic strength, the values determined of dissociation constants of carbonic acid for different ionic strength. The mathematical procedure is described for the calculation of molar concentrations of carbonate and hudrogen carbonate and the results are presented of the analysis of model solutions. (E.S.). 5 tabs., 1 fig., 5 refs

  10. Thermal Oxidation of a Carbon Condensate Formed in High-Frequency Carbon and Carbon-Nickel Plasma Flow

    Science.gov (United States)

    Churilov, G. N.; Nikolaev, N. S.; Cherepakhin, A. V.; Dudnik, A. I.; Tomashevich, E. V.; Trenikhin, M. V.; Bulina, N. G.

    2018-02-01

    We have reported on the comparative characteristics of thermal oxidation of a carbon condensate prepared by high-frequency arc evaporation of graphite rods and a rod with a hollow center filled with nickel powder. In the latter case, along with different forms of nanodisperse carbon, nickel particles with nickel core-carbon shell structures are formed. It has been found that the processes of the thermal oxidation of carbon condensates with and without nickel differ significantly. Nickel particles with the carbon shell exhibit catalytic properties with respect to the oxidation of nanosized carbon structures. A noticeable difference between the temperatures of the end of the oxidation process for various carbon nanoparticles and nickel particles with the carbon shell has been established. The study is aimed at investigations of the effect of nickel nanoparticles on the dynamics of carbon condensate oxidation upon heating in the argon-oxygen flow.

  11. High-Z material erosion and its control in DIII-D carbon divertor

    Directory of Open Access Journals (Sweden)

    R. Ding

    2017-08-01

    Full Text Available As High-Z materials will likely be used as plasma-facing components (PFCs in future fusion devices, the erosion of high-Z materials is a key issue for high-power, long pulse operation. High-Z material erosion and redeposition have been studied using tungsten and molybdenum coated samples exposed in well-diagnosed DIII-D divertor plasma discharges. By coupling dedicated experiments and modelling using the 3D Monte Carlo code ERO, the roles of sheath potential and background carbon impurities in determining high-Z material erosion are identified. Different methods suggested by modelling have been investigated to control high-Z material erosion in DIII-D experiments. The erosion of Mo and W is found to be strongly suppressed by local injection of methane and deuterium gases. The 13C deposition resulting from local 13CH4 injection also provides information on radial transport due to E ×B drifts and cross field diffusion. Finally, D2 gas puffing is found to cause local plasma perturbation, suppressing W erosion because of the lower effective sputtering yield of W at lower plasma temperature and for higher carbon concentration in the mixed surface layer.

  12. Synthesis of high specific activity carbon-11 labeled tracers for neuroreceptor studies

    International Nuclear Information System (INIS)

    Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Wagner, H.N. Jr; Johns Hopkins Medical Institutions, Baltimore, MD

    1989-01-01

    The use of short-lived positron-emitting radiotracers together with positron emission tomography (PET) has allowed scientists to acquire previously inaccessible information regarding problems in physiology, biochemistry, and pharmacology in the living human body. In the past five years, successes in the application of PET to the non-invasive determination of the spatial distribution and regional concentration of a variety of neurotransmitter binding sites within the living brain often followed the successful selections and syntheses of appropriately radiolabeled ligands. This presentation concentrates on the synthesis of these high specific activity radiotracers for neuroreceptor PET studies labeled specifically with carbon-11. (author). 15 refs.; 1 fig

  13. Cubic martensite in high carbon steel

    Science.gov (United States)

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  14. High value carbon materials from PET recycling

    International Nuclear Information System (INIS)

    Parra, J.B.; Ania, C.O.; Arenillas, A.; Rubiera, F.; Pis, J.J.

    2004-01-01

    Poly(ethylene) terephthalate (PET), has become one of the major post-consumer plastic waste. In this work special attention was paid to minimising PET residues and to obtain a high value carbon material. Pyrolysis and subsequent activation of PET from post-consumer soft-drink bottles was performed. Activation was carried out at 925 deg. C under CO 2 atmosphere to different burn-off degrees. Textural characterisation of the samples was carried out by performing N 2 adsorption isotherms at -196 deg. C. The obtained carbons materials were mainly microporous, presenting low meso and macroporosity, and apparent BET surface areas of upto 2500 m 2 g -1 . The capacity of these materials for phenol adsorption and PAHs removal from aqueous solutions was measured and compared with that attained with commercial active carbons. Preliminary tests also showed high hydrogen uptake values, as good as the results obtained with high-tech carbon materials

  15. High-resolution proton and carbon-13 NMR of membranes: why sonicate?

    International Nuclear Information System (INIS)

    Oldfield, E.; Bowers, J.L.; Forbes, J.

    1987-01-01

    The authors have obtained high-field (11.7-T) proton and carbon-13 Fourier transform (FT) nuclear magnetic resonance (NMR) spectra of egg lecithin and egg lecithin-chloresterol (1:1) multibilayers, using magic-angle sample spinning (MASS) techniques, and sonicated egg lecithin and egg lecithin-cholesterol (1:1) vesicles, using conventional FT NMR methods. Resolution of the proton and carbon-13 MASS NMR spectra of the pure egg lecithin samples is essentially identical with that of sonicated samples, but spectra of the unsonicated lipid, using MASS, can be obtained very much faster than with the more dilute, sonicated systems. With the 1:1 lecithin-cholesterol system, proton MASS NMR spectra are virtually identical with conventional FT spectra of sonicated samples, while the 13 C NMR, the authors demonstrate that most 13 C nuclei in the cholesterol moiety can be monitored, even though these same nuclei are essentially invisible, i.e., are severely broadened, in the corresponding sonicated systems. In addition, 13 C MASS NMR spectra can again be recorded much faster than with sonicated samples, due to concentration effects. Taken together, these results strongly suggest there will seldom be need in the future to resort to ultransonic disruption of lipid bilayer membranes in order to obtain high-resolution proton or carbon-13 NMR spectra

  16. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling

    Science.gov (United States)

    Scambelluri, Marco; Bebout, Gray E.; Belmonte, Donato; Gilio, Mattia; Campomenosi, Nicola; Collins, Nathan; Crispini, Laura

    2016-05-01

    Much of the long-term carbon cycle in solid earth occurs in subduction zones, where processes of devolatilization, partial melting of carbonated rocks, and dissolution of carbonate minerals lead to the return of CO2 to the atmosphere via volcanic degassing. Release of COH fluids from hydrous and carbonate minerals influences C recycling and magmatism at subduction zones. Contradictory interpretations exist regarding the retention/storage of C in subducting plates and in the forearc to subarc mantle. Several lines of evidence indicate mobility of C, of uncertain magnitude, in forearcs. A poorly constrained fraction of the 40-115 Mt/yr of C initially subducted is released into fluids (by decarbonation and/or carbonate dissolution) and 18-43 Mt/yr is returned at arc volcanoes. Current estimates suggest the amount of C released into subduction fluids is greater than that degassed at arc volcanoes: the imbalance could reflect C subduction into the deeper mantle, beyond subarc regions, or storage of C in forearc/subarc reservoirs. We examine the fate of C in plate-interface ultramafic rocks, and by analogy serpentinized mantle wedge, via study of fluid-rock evolution of marble and variably carbonated serpentinite in the Ligurian Alps. Based on petrography, major and trace element concentrations, and carbonate C and O isotope compositions, we demonstrate that serpentinite dehydration at 2-2.5 GPa, 550 °C released aqueous fluids triggering breakdown of dolomite in nearby marbles, thus releasing C into fluids. Carbonate + olivine veins document flow of COH fluids and that the interaction of these COH fluids with serpentinite led to the formation of high-P carbonated ultramafic-rock domains (high-P ophicarbonates). We estimate that this could result in the retention of ∼0.5-2.0 Mt C/yr in such rocks along subduction interfaces. As another means of C storage, 1 to 3 km-thick layers of serpentinized forearc mantle wedge containing 50 modal % dolomite could sequester 1.62 to

  17. Six-man, self-contained carbon dioxide concentrator subsystem for Space Station Prototype (SSP) application

    Science.gov (United States)

    Kostell, G. D.; Schubert, F. H.; Shumar, J. W.; Hallick, T. M.; Jensen, F. C.

    1974-01-01

    A six man, self contained, electrochemical carbon dioxide concentrating subsystem for space station prototype use was successfully designed, fabricated, and tested. A test program was successfully completed which covered shakedown testing, design verification testing, and acceptance testing.

  18. Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite

    International Nuclear Information System (INIS)

    Thubsuang, Uthen; Sukanan, Darunee; Sahasithiwat, Somboon; Wongkasemjit, Sujitra; Chaisuwan, Thanyalak

    2015-01-01

    Graphical abstract: - Highlights: • Activated carbon aerogel with high surface area can be prepared from polybenzoxazine. • Activated carbon aerogel enhances the adsorption capacity of gas sensor. • Organic vapors with very low concentration can be detected by the as-prepared sensor. • The as-prepared sensor shows impressive short exposure and recovery time. • The response to different organic vapors can be tailored by changing polymer matrix. - Abstract: Gas sensing composites were fabricated using polybenzoxazine-based activated carbon aerogel as a conductive filler. The activated carbon aerogel is a nano-porous material, which has high pore volume of 0.57 cm 3 /g and surface area of 917 m 2 /g. The activated carbon aerogel/polybutadiene composite displayed good response of 11.2 and 6.7 to toluene and n-hexane, respectively, compared to those of graphite/polybutadiene composite. The activated carbon aerogel/polybutadiene composite also showed high sensitivity of 3.09 × 10 2 ppm −1 to toluene. However, the sensitivity of activated carbon aerogel/polybutadiene composite drastically decreased to 1.99 ppm −1 and zero when exposed to acetone and water, respectively. Contrarily, when polyvinyl alcohol was used as a matrix, the sensitivity was about 4.19 ppm −1 to water. While the composite was found to be not sensitive to toluene. The activated carbon aerogel/polybutadiene composite also showed good recovery as the electrical resistance came back to the original value within minutes when exposed to nitrogen gas

  19. Online stable carbon isotope ratio measurement in formic acid, acetic acid, methanol and ethanol in water by high performance liquid chromatography-isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2008-01-01

    A suitable analysis condition was determined for high performance liquid chromatography-isotope ratio mass spectrometry (HPLC-IRMS) while making sequential measurements of stable carbon isotope ratios of δ 13 C in formic acid, acetic acid, methanol and ethanol dissolved in water. For this online column separation method, organic reagents are not applicable due to carbon contamination; thus, water and KH 2 PO 4 at low concentrations were tested as mobile phase in combination with a HyPURITY AQUASTAR TM column. Formic acid, acetic acid, methanol and ethanol were separated when 2 mM KH 2 PO 4 aqueous solution was used. Under the determined analysis condition for HPLC-IRMS, carbon concentrations could be measured quantitatively as well as carbon isotope ratio when carbon concentration was higher than 0.4 mM L for each chemical

  20. Influence of nitric acid concentration on the characteristics of active carbons obtained from a mineral coal

    Energy Technology Data Exchange (ETDEWEB)

    Khelifi, A.; Temdrara, L.; Addoun, A. [Laboratoire d' Etude Physicochimique des Materiaux et Application a l' Environnement, Faculte de Chimie, USTHB, BP. 32 El Alia, Bab Ezzouar 16111, Algiers (Algeria); Almazan-Almazan, M.C.; Perez-Mendoza, M.; Domingo-Garcia, M.; Lopez-Garzon, F.J [Departamento de Quimica Inorganica, Facultad de Ciencias, 18071 Granada (Spain); Lopez-Domingo, F.J. [Departamento de CCIA, ETS de Ingenieria Informatica y Telecomunicacion, Granada, 18071 (Spain)

    2010-10-15

    This paper deals with the effect of the concentration of nitric acid solutions on the properties of activated carbons obtained by the oxidation of a parent activated carbon. For this purpose a mineral coal from Algeria has been used as raw material to prepare the parent active carbon AC. This was further treated with nitric acid solutions. The analysis of the samples includes the chemical and textural characterization. The former was carried out by selective titrations and FTIR spectroscopy. The latter, by nitrogen and carbon dioxide adsorption at 77 and 273 K, respectively, and by adsorption of organic probes (benzene, dichloromethane, cyclohexane and 2,2-dimethyl butane) at 303 K. The nitrogen adsorption isotherms have been analysed by using the BET equation, {alpha}{sub s}-method and molecular simulation. The Dubinin-Radushkevich approach has been applied to the carbon dioxide and vapours adsorption data. The results show that the treatment with 2 N nitric acid solution is very appropriate because it introduces a large amount of oxygen containing groups with a small change of the textural characteristics of the parent AC. More concentrated nitric acid solutions change in large extent the textural properties although they also introduce large amount of chemical groups. (author)

  1. Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit K.; Ozcan, Soydan; Eberle, Claude C.; Abdallah, Mohamed Gabr; Mackiewicz, Ludtka Gail; Ludtka, Gerard Michael; Paulauskas, Felix Leonard; Rivard, John Daniel Kennedy

    2017-08-08

    Method for the preparation of carbon fiber from fiber precursor, wherein the fiber precursor is subjected to a magnetic field of at least 3 Tesla during a carbonization process. The carbonization process is generally conducted at a temperature of at least 400.degree. C. and less than 2200.degree. C., wherein, in particular embodiments, the carbonization process includes a low temperature carbonization step conducted at a temperature of at least or above 400.degree. C. or 500.degree. C. and less than or up to 1000.degree. C., 1100.degree. C., or 1200.degree. C., followed by a high temperature carbonization step conducted at a temperature of at least or above 1200.degree. C. In particular embodiments, particularly in the case of a polyacrylonitrile (PAN) fiber precursor, the resulting carbon fiber may possess a minimum tensile strength of at least 600 ksi, a tensile modulus of at least 30 Msi, and an ultimate elongation of at least 1.5%.

  2. Identification of Detrital Carbonate in East Cepu High

    Science.gov (United States)

    Sari, R.; Andika, I. K.; Haris, A.; Miftah, A.

    2018-03-01

    East Cepu High is a part of horst – graben series which formed by extensional tectonic processes during Paleogene in North East Java Basin. Due to excellent paleogeography position, the carbonate build-up was growth very well and as the main reservoir in East Cepu High. Sea level change have important factor to provide variation of facies in each carbonate buildup, one of emerging facies is detrital carbonate. Detrital carbonate indicated by onlap horizon featured with carbonate build up body. Based on paleogeography, fluctuation of sea level change and sediment source, detrital carbonate formed in leeward area in lowstand or highstand phases. Distinguish between detrital carbonate facies with other facies, advanced seismic processing performed by using continuous wavelet transform (CWT) and seismic inversion. CWT is one method of spectral decomposition used to find the frequency that represent a facies. The result from seismic inversion will support the interpretation for facies distribution. As the result, seismic data which have interval frequency 10 – 45 Hz and Acoustic Impedance (AI) value above 35000 (from cross plot between acoustic impedance and gamma ray) can be interpreted as detrital carbonate. Based on seismic interpretation, detrital carbonate facies distributed along leeward area with geometrical spreading. The lateral facies change from detrital carbonate to shale was identified which causing this facies become potential as hydrocarbon reservoir with stratigraphic trap. Based on the earlier studies, North East Java Basin have a strong hydrocarbon migration to fill the reservoir, therefore the detrital carbonate have high chance to be a new hydrocarbon prospect in this area.

  3. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  4. A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol

    International Nuclear Information System (INIS)

    Deng, Huichao; Zhang, Yufeng; Zheng, Xue; Li, Yang; Zhang, Xuelin; Liu, Xiaowei

    2015-01-01

    A novel MEA (membrane electrode assembly) structure of passive μ-DMFC (micro-direct methanol fuel cell) controls water management and decreases methanol crossover. The CNT (carbon nanotube) paper replacing CP (carbon paper) as GDL (gas diffusion paper) enhances water back diffusion which passively prevents flooding in the cathode and promotes low methanol crossover. Moreover, the unique structure of CNT paper can also enhance efficiency of oxygen mass transport and catalyst utilization. The passive μ-DMFC with CNT-MEA exhibits significantly higher performance than passive μ-DMFC with CP-MEA and can operate in high methanol concentration, showing the peak power density of 23.2 mW cm −2 . The energy efficiency and fuel utilization efficiency are obviously improved from 11.54% to 22.7% and 36.61%–49.34%, respectively, and the water transport coefficient is 0.47 which is lower than previously reported passive μ-DMFC with CP. - Highlights: • This novel GDL (gas diffusion layer) solves water management and methanol crossover. • This GDL creates a hydraulic pressure in the cathode increasing water back diffusion. • This GDL improves the electrical conductivity and activity of catalyst

  5. Influences of observation method, season, soil depth, land use and management practice on soil dissolvable organic carbon concentrations: A meta-analysis.

    Science.gov (United States)

    Li, Siqi; Zheng, Xunhua; Liu, Chunyan; Yao, Zhisheng; Zhang, Wei; Han, Shenghui

    2018-08-01

    Quantifications of soil dissolvable organic carbon concentrations, together with other relevant variables, are needed to understand the carbon biogeochemistry of terrestrial ecosystems. Soil dissolvable organic carbon can generally be grouped into two incomparable categories. One is soil extractable organic carbon (EOC), which is measured by extracting with an aqueous extractant (distilled water or a salt solution). The other is soil dissolved organic carbon (DOC), which is measured by sampling soil water using tension-free lysimeters or tension samplers. The influences of observation methods, natural factors and management practices on the measured concentrations, which ranged from 2.5-3970 (mean: 69) mg kg -1 of EOC and 0.4-200 (mean: 12) mg L -1 of DOC, were investigated through a meta-analysis. The observation methods (e.g., extractant, extractant-to-soil ratio and pre-treatment) had significant effects on EOC concentrations. The most significant divergence (approximately 109%) occurred especially at the extractant of potassium sulfate (K 2 SO 4 ) solutions compared to distilled water. As EOC concentrations were significantly different (approximately 47%) between non-cultivated and cultivated soils, they were more suitable than DOC concentrations for assessing the influence of land use on soil dissolvable organic carbon levels. While season did not significantly affect EOC concentrations, DOC concentrations showed significant differences (approximately 50%) in summer and autumn compared to spring. For management practices, applications of crop residues and nitrogen fertilizers showed positive effects (approximately 23% to 91%) on soil EOC concentrations, while tillage displayed negative effects (approximately -17%), compared to no straw, no nitrogen fertilizer and no tillage. Compared to no nitrogen, applications of synthetic nitrogen also appeared to significantly enhance DOC concentrations (approximately 32%). However, further studies are needed in the future

  6. High value carbon materials from PET recycling

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.B.; Ania, C.O.; Arenillas, A.; Rubiera, F.; Pis, J.J

    2004-11-15

    Poly(ethylene) terephthalate (PET), has become one of the major post-consumer plastic waste. In this work special attention was paid to minimising PET residues and to obtain a high value carbon material. Pyrolysis and subsequent activation of PET from post-consumer soft-drink bottles was performed. Activation was carried out at 925 deg. C under CO{sub 2} atmosphere to different burn-off degrees. Textural characterisation of the samples was carried out by performing N{sub 2} adsorption isotherms at -196 deg. C. The obtained carbons materials were mainly microporous, presenting low meso and macroporosity, and apparent BET surface areas of upto 2500 m{sup 2} g{sup -1}. The capacity of these materials for phenol adsorption and PAHs removal from aqueous solutions was measured and compared with that attained with commercial active carbons. Preliminary tests also showed high hydrogen uptake values, as good as the results obtained with high-tech carbon materials.

  7. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  8. Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations

    CSIR Research Space (South Africa)

    Waterhouse, JS

    2004-04-01

    Full Text Available Reviews 23 (2004) 803?810 Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations J.S. Waterhousea,*, V.R. Switsura,b, A.C. Barkera, A.H.C. Cartera,b,{, D.L. Hemmingc, N.J. Loaderd, I..., V.R., Waterhouse, J.S., Heaton, T.H.E., Carter, A.H.C., 1998. Climatic variation andthe stable carbon isotope composition of tree ring cellulose: an intercomparison of Quercus robur, Fagus sylvatica and Pinus silvestris. Tellus 50B, 25?33. J.ggi, M...

  9. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization

    Science.gov (United States)

    Chris A. Maier; Kurt H. Johnsen; John Butnor; Lance W. Kress; Peter H. Anderson

    2002-01-01

    Summary We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 µmol mol-1 ) carbon dioxide concentration ([CO2]) for 28 months. Branch growth...

  10. Effect of Residue Nitrogen Concentration and Time Duration on Carbon Mineralization Rate of Alfalfa Residues in Regions with Different Climatic Conditions

    Directory of Open Access Journals (Sweden)

    saeid shafiei

    2017-08-01

    Full Text Available Introduction Various factors like climatic conditions, vegetation, soil properties, topography, time, plant residue quality and crop management strategies affect the decomposition rate of organic carbon (OC and its residence time in soil. Plant residue management concerns nutrients recycling, carbon recycling in ecosystems and the increasing CO2 concentration in the atmosphere. Plant residue decomposition is a fundamental process in recycling of organic matter and elements in most ecosystems. Soil management, particularly plant residue management, changes soil organic matter both qualitatively and quantitatively. Soil respiration and carbon loss are affected by soil temperature, soil moisture, air temperature, solar radiation and precipitation. In natural agro-ecosystems, residue contains different concentrations of nitrogen. It is important to understand the rate and processes involved in plant residue decomposition, as these residues continue to be added to the soil under different weather conditions, especially in arid and semi-arid climates. Material and methods Organic carbon mineralization of alfalfa residue with different nitrogen concentrations was assessed in different climatic conditions using split-plot experiments over time and the effects of climate was determined using composite analysis. The climatic conditions were classified as warm-arid (Jiroft, temperate arid (Narab and cold semi-arid (Sardouiyeh using cluster analysis and the nitrogen (N concentrations of alfalfa residue were low, medium and high. The alfalfa residue incubated for four different time periods (2, 4, 6 and 8 months. The dynamics of organic carbon in different regions measured using litter bags (20×10 cm containing 20 g alfalfa residue of 2-10 mm length which were placed on the soil surface. Results and discussion The results of this study showed that in a warm-arid (Jiroft, carbon loss and the carbon decomposition rate constant were low in a cold semi

  11. New technology for carbon dioxide at high pressure

    International Nuclear Information System (INIS)

    Hassina, Bazaze; Raouf, Zehioua; Menial, A. H.

    2006-01-01

    Carbon dioxide has long been the nemesis of environmentalists because of its role in global warming, but under just the right conditions-namely, high pressure and high temperature its one of nature's best and most environmentally benign solvents. Decaf-coffee lovers, for instance, benefit from its ability to remove caffeine from coffee beans.During the last few years, carbon dioxide has also made inroads in the dry-cleaning industry, providing a safe cleaning alternative to the chemical perchloroethylene. But it's on the high-tech front that carbon dioxide may make its biggest impact. T here are huge opportunities. Scientists have known for more than a century that at 75 times atmospheric pressure and 31 degree centigrade, carbon dioxide goes into and odd state that chemists called s upercritical . What's interesting to industry is that supercritical carbon dioxide may be an enabling technology for going to smaller dimensions.(Author)

  12. Temporal and Spatial variations in Organic and Elemental carbon concentrations in PM10/PM2.5 in the Metropolitan Area of Costa Rica, Central America

    Science.gov (United States)

    Campos-Ramos, A.; Herrera Murillo, J.; Rodriguez-Roman, S.; Cardenas, B.; Blanco-Jimenez, S.

    2011-12-01

    During 2010-2011, as part of a Binational Cooperation Project between Mexico and Costa Rica, samples collected weekly in 15 and 5 sites for PM10 and PM2,5 respectively, in the Metropolitan area of Costa Rica, a region of 2.5 million habitants. Based on the high PM2.5 mass concentrations found (17-38 μg/m3), samples were analyzed to determinate the organic and elemental carbon concentrations using DRI Model 2001 Thermal/Optical Carbon Analyzer (Atmoslytic Inc., Calabasas, CA, USA). Organic (OC) and Elemental (EC) carbon concentrations exhibited a clear seasonal pattern with higher concentrations in the rainy period than in the dry period, due to cooperative effects of changes in emission rates and seasonal meteorology. Spatial variations in carbonaceous species concentrations were observed mostly influenced by the local sources at the different sampling sites in the following magnitude of contribution: vehicle emissions > industrial > agricultural burning. Total carbonaceous aerosol accounted for 42.7% and 26.8% of PM2.5 mass in rainy and dry period, respectively. Good correlation (R = 0.87-0.93) between OC and EC indicated that they had common dominant sources of combustion such as heavy fuels used in industries and traffic emissions. The estimated secondary organic carbon (SOC) accounted for 46.9% and 35.3% of the total OC in the rainy and dry period, respectively, indicating that SOC may be an important contributor to fine organic aerosol in the Metropolitan Area of Costa Rica. These results will be used to improve the National Emissions Inventory, particularly for PM2.5.

  13. Accelerated Carbonation of Steel Slag Compacts: Development of High-Strength Construction Materials

    Energy Technology Data Exchange (ETDEWEB)

    Quaghebeur, Mieke; Nielsen, Peter, E-mail: peter.nielsen@vito.be; Horckmans, Liesbeth [Sustainable Materials Management, VITO, Mol (Belgium); Van Mechelen, Dirk [RECMIX bvba, Genk (Belgium)

    2015-12-17

    Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags [stainless steel (SS) slag and basic oxygen furnace (BOF) slags] in high-quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO{sub 2} at elevated pressure (up to 2 MPa) and temperatures (20–140°C). For SS slags, raising the temperature from 20 to 140°C had a positive effect on the CO{sub 2} uptake, strength development, and the environmental properties (i.e., leaching of Cr and Mo) of the carbonated slag compacts. For BOF slags, raising the temperature was not beneficial for the carbonation process. Elevated CO{sub 2} pressure and CO{sub 2} concentration of the feed gas had a positive effect on the CO{sub 2} uptake and strength development for both types of steel slags. In addition, the compaction force had a positive effect on the strength development. The carbonates that are produced in situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones) have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100–150 g CO{sub 2}/kg slag. The technology was developed on lab scale by the optimization of process parameters with regard to compressive strength development, CO{sub 2} uptake, and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-)industrial equipment and process conditions.

  14. Study of the effect of magnesium concentration on the deposit of allotropic forms of calcium carbonate and related carbon steel interface behavior

    International Nuclear Information System (INIS)

    Ben Amor, Y.; Bousselmi, L.; Tribollet, B.; Triki, E.

    2010-01-01

    Different allotropic forms of calcium carbonate scales were electrochemically deposited on a carbon steel surface in artificial underground Tunisian water at -0.95 V SCE and various Mg 2+ concentrations. Because of the importance of the diffusion process, the rotating disk electrode was used. The deposition kinetics were analyzed by chronoamperometry measurements and the calcareous layers were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The physical model proposed by Gabrielli was used to analyze the EIS measurements. Independent of the deposited allotropic form of calcium carbonate, the measurements showed that the oxygen reduction occurs in the pores formed between the CaCO 3 crystals and the metallic surface.

  15. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes

    Science.gov (United States)

    Crawford, John T.; Dornblaser, Mark M.; Stanley, Emily H.; Clow, David W.; Striegl, Robert G.

    2015-01-01

    Inland waters are an important component of the global carbon cycle through transport, storage, and direct emissions of CO2 and CH4 to the atmosphere. Despite predictions of high physical gas exchange rates due to turbulent flows and ubiquitous supersaturation of CO2—and perhaps also CH4—patterns of gas emissions are essentially undocumented for high mountain ecosystems. Much like other headwater networks around the globe, we found that high-elevation streams in Rocky Mountain National Park, USA, were supersaturated with CO2 during the growing season and were net sources to the atmosphere. CO2concentrations in lakes, on the other hand, tended to be less than atmospheric equilibrium during the open water season. CO2 and CH4 emissions from the aquatic conduit were relatively small compared to many parts of the globe. Irrespective of the physical template for high gas exchange (high k), we found evidence of CO2 source limitation to mountain streams during the growing season, which limits overall CO2emissions. Our results suggest a reduced importance of aquatic ecosystems for carbon cycling in high-elevation landscapes having limited soil development and high CO2 consumption via mineral weathering.

  16. Impact of exogenous organic carbon on the removal of chemicals of concern in the high rate nitrifying trickling filters.

    Science.gov (United States)

    Mai, Lei; van den Akker, Ben; Du, Jun; Kookana, Rai S; Fallowfield, Howard

    2016-06-01

    The application of fixed bed high rate nitrifying trickling filters (NTFs) for the removal of track organic chemicals of concern (CoC) is less well known than their application to nutrient removal in water treatment. Particularly, the effect of exogenous organic carbon substrate (sucrose) loading on the performance of NTFs is not well understood. A laboratory-scale NTF system was operated in recirculation mode, with the objective of removing ammonia and CoC simultaneously. The efficiency of a high rate NTF for removal both of low concentration of ammonia (5 mg NH4-N L(-1)) and different concentrations of CoC in the presence of an exogenous organic carbon substrate (30 mg total organic carbon (TOC) L(-1)) was investigated. In the presence of exogenous organic carbon, the results demonstrated that the high rate NTF was able to successfully remove most of the CoCs investigated, with the removal ranging from 20.2% to 87.54%. High removal efficiencies were observed for acetaminophen (87.54%), bisphenol A (86.60%), trimethoprim (86.24%) and 17α-ethynylestradiol (80.60%). It was followed by the medium removal efficiency for N, N-diethyl-m-toluamide (61.31%) and atrazine (56.90%). In contrast, the removal of caffeine (28.43%) and benzotriazole (20.20%) was poorer in the presence of exogenous organic carbon. The removal efficiency for CoC was also compared with the results obtained in our previous study in the absence of exogenous organic carbon. The results showed that the addition of exogenous organic carbon was able to improve the removal of some of the CoC. Significant TOC percentage removals (45.68%-84.43%) and ammonia removal rate (mean value of 0.44 mg NH4-N L(-1) h(-1)) were also achieved in this study. The findings from this study provide valuable information for optimising the efficiency of high rate NTF for the removal of ammonia, CoC and TOC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children

    Science.gov (United States)

    Evans, Kristin A.; Halterman, Jill S.; Hopke, Philip K.; Fagnano, Maria; Rich, David Q.

    2014-01-01

    Objectives Increased air pollutant concentrations have been linked to several asthma-related outcomes in children, including respiratory symptoms, medication use, and hospital visits. However, few studies have examined effects of ultrafine particles in a pediatric population. Our primary objective was to examine the effects of ambient concentrations of ultrafine particles on asthma exacerbation among urban children and determine whether consistent treatment with inhaled corticosteroids could attenuate these effects. We also explored the relationship between asthma exacerbation and ambient concentrations of accumulation mode particles, fine particles (≤ 2.5 micrograms [μm]; PM2.5), carbon monoxide, sulfur dioxide, and ozone. We hypothesized that increased 1 to 7 day concentrations of ultrafine particles and other pollutants would be associated with increases in the relative odds of an asthma exacerbation, but that this increase in risk would be attenuated among children receiving school-based corticosteroid therapy. Methods We conducted a pilot study using data from 3–10 year-old children participating in the School-Based Asthma Therapy trial. Using a time-stratified case-crossover design and conditional logistic regression, we estimated the relative odds of a pediatric asthma visit treated with prednisone (n=96 visits among 74 children) associated with increased pollutant concentrations in the previous 7 days. We re-ran these analyses separately for children receiving medications through the school-based intervention and children in a usual care control group. Results Interquartile range increases in ultrafine particles and carbon monoxide concentrations in the previous 7 days were associated with increases in the relative odds of a pediatric asthma visit, with the largest increases observed for 4-day mean ultrafine particles (interquartile range=2088 p/cm3; OR=1.27; 95% CI=0.90–1.79) and 7-day mean carbon monoxide (interquartile range=0.17 ppm; OR=1.63; 95

  18. Measurements of Carbon Dioxide, Methane, and Other Related Tracers at High Spatial and Temporal Resolution in an Urban Environment

    Science.gov (United States)

    Yasuhara, Scott; Forgeron, Jeff; Rella, Chris; Franz, Patrick; Jacobson, Gloria; Chiao, Sen; Saad, Nabil

    2013-04-01

    The ability to quantify sources and sinks of carbon dioxide and methane on the urban scale is essential for understanding the atmospheric drivers to global climate change. In the 'top-down' approach, overall carbon fluxes are determined by combining remote measurements of carbon dioxide concentrations with complex atmospheric transport models, and these emissions measurements are compared to 'bottom-up' predictions based on detailed inventories of the sources and sinks of carbon, both anthropogenic and biogenic in nature. This approach, which has proven to be effective at continental scales, becomes challenging to implement at urban scales, due to poorly understood atmospheric transport models and high variability of the emissions sources in space (e.g., factories, highways, green spaces) and time (rush hours, factory shifts and shutdowns, and diurnal and seasonal variation in residential energy use). New measurement and analysis techniques are required to make sense of the carbon dioxide signal in cities. Here we present detailed, high spatial- and temporal- resolution greenhouse gas measurements made by multiple Picarro-CRDS analyzers in Silicon Valley in California. Real-time carbon dioxide data from a 20-month period are combined with real-time carbon monoxide, methane, and acetylene to partition the observed carbon dioxide concentrations between different anthropogenic sectors (e.g., transport, residential) and biogenic sources. Real-time wind rose data are also combined with real-time methane data to help identify the direction of local emissions of methane. High resolution WRF models are also included to better understand the dynamics of the boundary layer. The ratio between carbon dioxide and carbon monoxide is shown to vary over more than a factor of two from season to season or even from day to night, indicating rapid but frequent shifts in the balance between different carbon dioxide sources. Additional information is given by acetylene, a fossil fuel

  19. Comparative study of reflectance properties of nanodiamonds, onion-like carbon and multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, V.L. [Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk (Russian Federation); Moseenkov, S.I. [Boreskov Institute of Catalysis, SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk (Russian Federation); Nikolaev Institute of Inorganic Chemistry, SB RAS, Lavrentiev Ave. 3, 630090 Novosibirsk (Russian Federation); Elumeeva, K.V. [Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk (Russian Federation); Boreskov Institute of Catalysis, SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk (Russian Federation); Larina, T.V.; Anufrienko, V.F. [Boreskov Institute of Catalysis, SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk (Russian Federation); Romanenko, A.I.; Anikeeva, O.B.; Tkachev, E.N. [Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk (Russian Federation); Nikolaev Institute of Inorganic Chemistry, SB RAS, Lavrentiev Ave. 3, 630090 Novosibirsk (Russian Federation)

    2011-11-15

    Carbon nanomaterials are the promising candidates for potential broadband limiting applications and extremely low reflectance coatings, particularly in the infrared, visible and UV spectral regions. In this paper we have performed the comparative study of diffuse reflectance of nanodiamond (ND), sp{sup 2}/sp{sup 3} composites, onion-like carbon (OLC) and multiwalled carbon nanotubes (MWNTs) in visible and UV regions. ND, sp{sup 2}/sp{sup 3} composites and OLC produced via high temperature annealing of the same set of NDs allow us to vary sp{sup 2}/sp{sup 3} carbon ratio, size of primary particle agglomerates and concentration of defects while MWNT set provides possibility to vary NT diameters and length, order/disorder degree (via high temperature MWNTS annealing). The diffuse reflectance of carbon nanomaterials depends mainly on the electronic configuration, defect concentration, size of graphene-like ordered fragments and agglomerates of nanoparticles along with their morphology. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite

    Energy Technology Data Exchange (ETDEWEB)

    Thubsuang, Uthen [Materials Science and Engineering, School of Engineering and Resources, Walailak University, Nakhon Si Thammarat 80160 (Thailand); Sukanan, Darunee [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand); Sahasithiwat, Somboon [National Metal and Materials Technology Center, Thailand Science Park (TSP), Khlong Luang, Pathum Thani 12120 (Thailand); Wongkasemjit, Sujitra [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand); Chaisuwan, Thanyalak, E-mail: thanyalak.c@chula.ac.th [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand)

    2015-10-15

    Graphical abstract: - Highlights: • Activated carbon aerogel with high surface area can be prepared from polybenzoxazine. • Activated carbon aerogel enhances the adsorption capacity of gas sensor. • Organic vapors with very low concentration can be detected by the as-prepared sensor. • The as-prepared sensor shows impressive short exposure and recovery time. • The response to different organic vapors can be tailored by changing polymer matrix. - Abstract: Gas sensing composites were fabricated using polybenzoxazine-based activated carbon aerogel as a conductive filler. The activated carbon aerogel is a nano-porous material, which has high pore volume of 0.57 cm{sup 3}/g and surface area of 917 m{sup 2}/g. The activated carbon aerogel/polybutadiene composite displayed good response of 11.2 and 6.7 to toluene and n-hexane, respectively, compared to those of graphite/polybutadiene composite. The activated carbon aerogel/polybutadiene composite also showed high sensitivity of 3.09 × 10{sup 2} ppm{sup −1} to toluene. However, the sensitivity of activated carbon aerogel/polybutadiene composite drastically decreased to 1.99 ppm{sup −1} and zero when exposed to acetone and water, respectively. Contrarily, when polyvinyl alcohol was used as a matrix, the sensitivity was about 4.19 ppm{sup −1} to water. While the composite was found to be not sensitive to toluene. The activated carbon aerogel/polybutadiene composite also showed good recovery as the electrical resistance came back to the original value within minutes when exposed to nitrogen gas.

  1. A high-performance carbon derived from polyaniline for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun [Harbin Engineering University, Harbin (China). Key Laboratory of Superlight Materials and Surface Technology; College of Automation, Harbin Engineering University, Harbin (China); Wei, Tong; Fan, Zhuangjun; Li, Tianyou [Harbin Engineering University, Harbin (China). Key Laboratory of Superlight Materials and Surface Technology; Qiao, Wenming [Harbin Engineering University, Harbin (China). Coll. of Material Science and Chemical Engineering; Zhang, Lijun; Zhao, Qiankun [College of Automation, Harbin Engineering University, Harbin (China)

    2010-10-15

    Activated carbon derived from rod-shaped polyaniline (the diameter of 170 nm) was synthesized by carbonization and subsequent activation with KOH. The obtained activated carbon exhibits a high specific capacitance (455 F g{sup -1}) and remarkable rate capability due to its high specific surface area (1976 m{sup 2}g{sup -1}), narrow pore size distribution (< 3 nm) as well as short diffusion length. It is indicated that the promising synthetic method used in this work can pave the way for designing new carbon based materials from different polymers for high-performance energy applications. (author)

  2. Direct observation of solid-phase adsorbate concentration profile in powdered activated carbon particle to elucidate mechanism of high adsorption capacity on super-powdered activated carbon.

    Science.gov (United States)

    Ando, Naoya; Matsui, Yoshihiko; Matsushita, Taku; Ohno, Koichi

    2011-01-01

    Decreasing the particle size of powdered activated carbon (PAC) by pulverization increases its adsorption capacities for natural organic matter (NOM) and polystyrene sulfonate (PSS, which is used as a model adsorbate). A shell adsorption mechanism in which NOM and PSS molecules do not completely penetrate the adsorbent particle and instead preferentially adsorb near the outer surface of the particle has been proposed as an explanation for this adsorption capacity increase. In this report, we present direct evidence to support the shell adsorption mechanism. PAC particles containing adsorbed PSS were sectioned with a focused ion beam, and the solid-phase PSS concentration profiles of the particle cross-sections were directly observed by means of field emission-scanning electron microscopy/energy-dispersive X-ray spectrometry (FE-SEM/EDXS). X-ray emission from sulfur, an index of PSS concentration, was higher in the shell region than in the inner region of the particles. The X-ray emission profile observed by EDXS did not agree completely with the solid-phase PSS concentration profile predicted by shell adsorption model analysis of the PSS isotherm data, but the observed and predicted profiles were not inconsistent when the analytical errors were considered. These EDXS results provide the first direct evidence that PSS is adsorbed mainly in the vicinity of the external surface of the PAC particles, and thus the results support the proposition that the increase in NOM and PSS adsorption capacity with decreasing particle size is due to the increase in external surface area on which the molecules can be adsorbed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Failure Modes of a Unidirectional Ultra-High-Modulus Carbon-Fiber/Carbon-Matrix Composite

    National Research Council Canada - National Science Library

    Zaldivar, R

    1998-01-01

    The objective of this study was to observe the effects of various microstructural features on the in situ, room-temperature tensile fracture behavior of an ultra-high-modulus, unidirectional carbon/carbon (C/C...

  4. The Effects of Voltage and Concentration of Sodium Bicarbonate on Electrochemical Synthesis of Ethanol from Carbon Dioxide Using Brass as Cathode

    Science.gov (United States)

    Ramadan, Septian; Fariduddin, Sholah; Rizki Aminudin, Afianti; Kurnia Hayatri, Antisa; Riyanto

    2017-11-01

    The effects of voltage and concentration of sodium bicarbonate were investigated to determine the optimum conditions of the electrochemical synthesis process to convert carbon dioxide into ethanol. The conversion process is carried out using a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor equipped with a cathode and anode. As the cathode was used brass, while as the anode carbon was utilized. Sample of the electrochemical synthesis process was analyzed by gas chromatography to determine the content of the compounds produced. The optimum electrochemical synthesis conditions to convert carbon dioxide into ethanol are voltage and concentration of sodium bicarbonate are 3 volts and 0.4 M with ethanol concentration of 1.33%.

  5. High-strength porous carbon and its multifunctional applications

    Science.gov (United States)

    Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

    2013-12-31

    High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

  6. Branch growth and gas exchange in 13-year old loblobby pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization

    International Nuclear Information System (INIS)

    Maier, C. A.; Johnsen, K. H.; Butnor, J.; Kress, L. W.; Anderson, P. H.

    2002-01-01

    The combined effects of nutrient availability and carbon dioxide on growth and physiology in mature loblobby pine trees was investigated. Whole-tree open top chambers were used to expose 13-year old loblobby pine trees, growing in soil with high or low nutrient availability to elevated carbon dioxide to examine how carbon dioxide, foliar nutrition and crown position affect branch growth, phenology and physiology. Results showed that fertilization and elevated carbon dioxide increased branch leaf area, and the combined effects were additive. However, fertilization and elevated carbon dioxide differentially altered needle lengths, number of fascicles and flush length in such a way that flush density increased with improved nutrition but decreased with exposure to elevated carbon dioxide. Based on these results, it was concluded that changes in nitrogen availability and atmospheric carbon dioxide may alter canopy structure, facilitating greater foliage retention and deeper crowns in loblobby pine forests. Net photosynthesis and photosynthetic efficiency was increased in the presence of elevated carbon dioxide concentration and lowered the light compensation point, whereas fertilization had no appreciable effect on foliage gas exchange. 71 refs., 7 tabs., 7 figs

  7. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  8. Carbon-carbon composite and copper-composite bond damages for high flux component controlled fusion

    International Nuclear Information System (INIS)

    Chevet, G.

    2010-01-01

    Plasma facing components constitute the first wall in contact with plasma in fusion machines such as Tore Supra and ITER. These components have to sustain high heat flux and consequently elevated temperatures. They are made up of an armour material, the carbon-carbon composite, a heat sink structure material, the copper chromium zirconium, and a material, the OFHC copper, which is used as a compliant layer between the carbon-carbon composite and the copper chromium zirconium. Using different materials leads to the apparition of strong residual stresses during manufacturing, because of the thermal expansion mismatch between the materials, and compromises the lasting operation of fusion machines as damage which appeared during manufacturing may propagate. The objective of this study is to understand the damage mechanisms of the carbon-carbon composite and the composite-copper bond under solicitations that plasma facing components may suffer during their life. The mechanical behaviours of carbon-carbon composite and composite-copper bond were studied in order to define the most suitable models to describe these behaviours. With these models, thermomechanical calculations were performed on plasma facing components with the finite element code Cast3M. The manufacturing of the components induces high stresses which damage the carbon-carbon composite and the composite-copper bond. The damage propagates during the cooling down to room temperature and not under heat flux. Alternative geometries for the plasma facing components were studied to reduce damage. The relation between the damage of the carbon-carbon composite and its thermal conductivity was also demonstrated. (author) [fr

  9. Substrate turnover at low carbon concentrations in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    concentrations of carbon allowed for a close monitoring of the kinetics of substrate turnover (less than 10 μg C/L 14C-benzoic acid was added). The mineralisation of benzoic acid was rapid and could be modelled by a no-growth Monod expression using a maximum degradation rate of 0.59 μg C/L/h and a half......-saturation constant of 2.6 μg C/L. Only 2–4% of the carbon being degraded was incorporated into the biofilm. The results from our study suggest that the cellspecific respiration of biofilm was much higher than for suspended bacteria, and that the growth rate of the bulk phase bacteria was approximately 10 times...

  10. Strength of briquettes made of Cu concentrate and carbon-bearing materials

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2015-01-01

    Full Text Available In the present paper, results of the research on application of residual fine-grained, carbon-bearing materials as coke substitutes in the shaft process of copper matter smelting are discussed. The addition was introduced into the charge as a component of concentrate-made briquettes, then, its effects on properties of the obtained briquettes were analysed for their compressive and drop strengths. The results of investigations confirmed the potential use of proposed alternative fuels (as briquette components in the process of copper matte smelting.

  11. Enhanced ethanol production by fermentation of Gelidium amansii hydrolysate using a detoxification process and yeasts acclimated to high-salt concentration.

    Science.gov (United States)

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Yung; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    A total monosaccharide concentration of 59.0 g/L, representing 80.1 % conversion of 73.6 g/L total fermentable sugars from 160 g dw/L G. amansii slurry was obtained by thermal acid hydrolysis and enzymatic hydrolysis. Subsequent adsorption treatment using 5 % activated carbon with an adsorption time of 2 min was used to prevent the inhibitory effect of 5-hydroxymethylfurfural (HMF) >5 g/L in the medium. Ethanol production decreased with increasing salt concentration using C. tropicalis KCTC 7212 non-acclimated or acclimated to a high concentration of salt. Salt concentration of 90 psu was the maximum concentration for cell growth and ethanol production. The levels of ethanol production by C. tropicalis non-acclimated or acclimated to 90 psu high-salt concentration were 13.8 g/L with a yield (YEtOH) of 0.23, and 26.7 g/L with YEtOH of 0.45, respectively.

  12. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.

    Science.gov (United States)

    Gryglewicz, Grażyna; Śliwak, Agata; Béguin, François

    2013-08-01

    A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content. The superior CNF/AC composite displays excellent electrochemical performance in a 0.5 mol L(-1) solution of K2 SO4 due to its unique structure. At a high scan rate (100 mV s(-1) ) and current loading (20 A g(-1) ), the capacitance values were three- and fourfold higher than those for classical AC/carbon black composites. Owing to this feature, a high energy of 10 Wh kg(-1) was obtained over a wide power range in neutral medium at a voltage of 0.8 V. The significant enhancement of charge propagation is attributed to the presence of herringbone CNFs, which facilitate the diffusion of ions in the electrode and play the role of electronic bridges between AC particles. An in situ coating of AC with short CNFs (below 200 nm) is a very attractive method for producing the next generation of carbon composite materials with a high power performance in supercapacitors working in neutral medium. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nitrogen-enriched carbon sheets derived from egg white by using expanded perlite template and its high-performance supercapacitors

    Science.gov (United States)

    Chen, Jiucun; Liu, Yinqin; Li, Wenjun; Xu, Liqun; Yang, Huan; Li, Chang Ming

    2015-08-01

    Nitrogen-enriched carbon sheets were synthesized using egg white as a unique carbon source and expanded perlite as a novel template. The as-prepared material was further used as an electrode material for supercapacitor applications, demonstrating excellent supercapacitance with a maximum gravimetric specific capacitance of 302 F g-1 at 0.5 A g-1 in a 3-electrode setup for a sample carbonized at 850 °C and activated for 6 h. Moreover, the carbon sheet-based capacitor with 2-symmetric electrodes showed an excellent cycle life (2% loss at 0.1 A g-1 after 10 000 cycles). The excellent performance may be attributed to the combination of the 3D carbon structure and the highly concentrated doped nitrogen component from the natural egg source for superior pseudocapacitance.

  14. Highly improved sensing of dopamine by using glassy carbon electrode modified with MnO2, graphene oxide, carbon nanotubes and gold nanoparticles

    International Nuclear Information System (INIS)

    Rao, Dejiang; Zhang, Xinjin; Sheng, Qinglin; Zheng, Jianbin

    2016-01-01

    A composite material obtained by ultrasonication of graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) was loaded with manganese dioxide (MnO 2 ), poly(diallyldimethylammonium chloride) and gold nanoparticles (AuNPs), and the resulting multilayer hybrid films were deposited on a glassy carbon electrode (GCE). The microstructure, composition and electrochemical behavior of the composite and the modified GCE were characterized by transmission electron microscopy, Raman spectra, energy-dispersive X-ray spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The electrode induces efficient electrocatalytic oxidation of dopamine at a rather low working voltage of 0.22 V (vs. SCE) at neutral pH values. The response is linear in the 0.5 μM to 2.5 mM concentration range, the sensitivity is 233.4 μA·mM -1 ·cm -2 , and the detection limit is 0.17 μM at an SNR of 3. The sensor is well reproducible and stable. It displays high selectivity over ascorbic acid, uric acid and glucose even if these are present in comparable concentrations. (author)

  15. Airborne black carbon concentrations over an urban region in western India-temporal variability, effects of meteorology, and source regions.

    Science.gov (United States)

    Bapna, Mukund; Sunder Raman, Ramya; Ramachandran, S; Rajesh, T A

    2013-03-01

    This study characterizes over 5 years of high time resolution (5 min), airborne black carbon (BC) concentrations (July 2003 to December 2008) measured over Ahmedabad, an urban region in western India. The data were used to obtain different time averages of BC concentrations, and these averages were then used to assess the diurnal, seasonal, and annual variability of BC over the study region. Assessment of diurnal variations revealed a strong association between BC concentrations and vehicular traffic. Peaks in BC concentration were co-incident with the morning (0730 to 0830, LST) and late evening (1930 to 2030, LST) rush hour traffic. Additionally, diurnal variability in BC concentrations during major festivals (Diwali and Dushera during the months of October/November) revealed an increase in BC concentrations due to fireworks displays. Maximum half hourly BC concentrations during the festival days were as high as 79.8 μg m(-3). However, the high concentrations rapidly decayed suggesting that local meteorology during the festive season was favorable for aerosol dispersion. A multiple linear regression (MLR) model with BC as the dependent variable and meteorological parameters as independent variables was fitted. The variability in temperature, humidity, wind speed, and wind direction accounted for about 49% of the variability in measured BC concentrations. Conditional probability function (CPF) analysis was used to identify the geographical location of local source regions contributing to the effective BC measured (at 880 nm) at the receptor site. The east north-east (ENE) direction to the receptor was identified as a major source region. National highway (NH8) and two coal-fired thermal power stations (at Gandhinagar and Sabarmati) were located in the identified direction, suggesting that local traffic and power plant emissions were likely contributors to the measured BC.

  16. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruces and European beech

    International Nuclear Information System (INIS)

    Liu, X.; Rennenberg, H.; Kozovits, A. R.; Grams, T. E.; Blaschke, H.; Matyssek, R.

    2004-01-01

    Potential interactions of carbon dioxide and ozone on carbohydrate concentrations and contents were studied in Norway spruce and European beech saplings to test the hypotheses that (1) prolonged exposure to elevated carbon dioxide does not compensate for the limiting effects of ozone on the accumulation of sugars and starches, or biomass partitioning to the root; and (2) growth of mixed-species planting will repress plant responses to elevated ozone and carbon dioxide. Norway spruce and European beech saplings were acclimated for one year to ambient and elevated carbon dioxide, followed by exposure to factorial combinations of ambient and elevated ozone and carbon dioxide during the next two years. In spruce trees, sugar and starch content was greater in saplings exposed to elevated carbon dioxide; in beech, the response was the opposite. The overall conclusion was that the results did not support Hypothesis One, because the adverse effects were counteracted by elevated carbon dioxide. Regarding Hypothesis Two, it was found to be supportive for beech but not for spruce. In beech, the reduction of sugars and starch by elevated ozone and stimulation by elevated carbon dioxide were repressed by competitive interaction with spruce, whereas in spruce saplings elevated concentrations of carbon dioxide resulted in higher concentrations of sugar and starch, but only in leaves and coarse roots and only when grown in combination with beech. Elevated ozone in spruce saplings produced no significant effect on sugar or starch content either in intra- or interspecific competition. 57 refs., 1 tab., 5 figs

  17. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruces and European beech

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Rennenberg, H. [University of Freiburg, Inst. of Forest Botany and Tree Physiology, Freiburg (Germany); Kozovits, A. R.; Grams, T. E.; Blaschke, H.; Matyssek, R. [Technische Universitat Munchen, Dept. of Ecology and Ecophysiology of Plants, Freising (Germany)

    2004-09-01

    Potential interactions of carbon dioxide and ozone on carbohydrate concentrations and contents were studied in Norway spruce and European beech saplings to test the hypotheses that (1) prolonged exposure to elevated carbon dioxide does not compensate for the limiting effects of ozone on the accumulation of sugars and starches, or biomass partitioning to the root; and (2) growth of mixed-species planting will repress plant responses to elevated ozone and carbon dioxide. Norway spruce and European beech saplings were acclimated for one year to ambient and elevated carbon dioxide, followed by exposure to factorial combinations of ambient and elevated ozone and carbon dioxide during the next two years. In spruce trees, sugar and starch content was greater in saplings exposed to elevated carbon dioxide; in beech, the response was the opposite. The overall conclusion was that the results did not support Hypothesis One, because the adverse effects were counteracted by elevated carbon dioxide. Regarding Hypothesis Two, it was found to be supportive for beech but not for spruce. In beech, the reduction of sugars and starch by elevated ozone and stimulation by elevated carbon dioxide were repressed by competitive interaction with spruce, whereas in spruce saplings elevated concentrations of carbon dioxide resulted in higher concentrations of sugar and starch, but only in leaves and coarse roots and only when grown in combination with beech. Elevated ozone in spruce saplings produced no significant effect on sugar or starch content either in intra- or interspecific competition. 57 refs., 1 tab., 5 figs.

  18. Carbon Monoxide Emission and Concentration Models for Chiang Mai Urban Area

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An emission inventory containing emissions from traffic and other sources was complied. Based on the analysis, Carbon Monoxide (CO) emissions from traffic play a very important role in CO levels in Chiang Mai area. Analysis showed that CO emissions from traffic during rush hours contributed approximately 90% of total CO emissions. Regional Atmospheric Modeling System (RAMS) was applied to simulate wind fields and temperatures in the Chiang Mai area, and eight cases were selected to study annual variations in wind fields and temperatures. Model results can reflect major features of wind fields and diurnal variations in temperatures. For evaluating the model performance, model results were compared with observed wind speed, wind direction and temperature, which were monitored at a meteorological tower. Comparison showed that model results are in good agreement with observations, and the model captured many of the observed features. HYbrid Particle And Concentration Transport model (HYPACT) was used to simulate CO concentration in the Chiang Mai area. Model results generally agree well with observed CO concentrations at the air quality monitoring stations, and can explain observed CO diurnal variations.

  19. International Collaboration: the Virtuous Cycle of Low Carbon Innovation and Diffusion. An Analysis of Solar Photovoltaic, Concentrating Solar Power and Carbon Capture and Storage

    International Nuclear Information System (INIS)

    Dominique, Katheen

    2010-01-01

    International collaboration can be leveraged to accelerate the innovation and diffusion of low carbon technologies required to realize the shift to a low carbon trajectory. A collaborative approach to innovation has the potential to capture several benefits, including: pooling risks and achieving scale; knowledge sharing that accommodates competition and cooperation; the creation of a global market; facilitation of policy learning and exchange; and the alignment of technology, finance and policy. International Collaboration: the Virtuous Cycle of Low Carbon Innovation and Diffusion An Analysis of Solar Photovoltaic, Concentrating Solar Power and Carbon Capture and Storage A range of obstacles to the diffusion of low carbon technologies provides ample opportunity for international collaboration in global market creation and capacity building, expanding beyond conventional modes of technology transfer. Current collaborative efforts for carbon capture and storage, solar photovoltaic and concentrating solar power technologies are active in all stages of innovation and diffusion and involve a wide range of actors. Yet, current efforts are not sufficient to achieve the necessary level of emission mitigation at the pace required to avoid catastrophic levels of atmospheric destabilization. This analysis sets forth recommendation to scale up current endeavors and create new ones. The analysis begins by describing the fundamental characteristics of innovation and diffusion processes that create opportunities for international collaboration. It then illustrates a broad array of on-going collaborative activities, depicting how these efforts contribute to innovation and diffusion. Finally, highlighting the gap between the current level of collaborative activities and technology targets deemed critical for emission mitigation, the report sets forth several recommendations to build on current efforts and construct new endeavors

  20. Modeling of Nonlinear Dynamics and Synchronized Oscillations of Microbial Populations, Carbon and Oxygen Concentrations, Induced by Root Exudation in the Rhizosphere

    Science.gov (United States)

    Molz, F. J.; Faybishenko, B.; Jenkins, E. W.

    2012-12-01

    Mass and energy fluxes within the soil-plant-atmosphere continuum are highly coupled and inherently nonlinear. The main focus of this presentation is to demonstrate the results of numerical modeling of a system of 4 coupled, nonlinear ordinary differential equations (ODEs), which are used to describe the long-term, rhizosphere processes of soil microbial dynamics, including the competition between nitrogen-fixing bacteria and those unable to fix nitrogen, along with substrate concentration (nutrient supply) and oxygen concentration. Modeling results demonstrate the synchronized patterns of temporal oscillations of competing microbial populations, which are affected by carbon and oxygen concentrations. The temporal dynamics and amplitude of the root exudation process serve as a driving force for microbial and geochemical phenomena, and lead to the development of the Gompetzian dynamics, synchronized oscillations, and phase-space attractors of microbial populations and carbon and oxygen concentrations. The nonlinear dynamic analysis of time series concentrations from the solution of the ODEs was used to identify several types of phase-space attractors, which appear to be dependent on the parameters of the exudation function and Monod kinetic parameters. This phase space analysis was conducted by means of assessing the global and local embedding dimensions, correlation time, capacity and correlation dimensions, and Lyapunov exponents of the calculated model variables defining the phase space. Such results can be used for planning experimental and theoretical studies of biogeochemical processes in the fields of plant nutrition, phyto- and bio-remediation, and other ecological areas.

  1. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  2. Effects of elevated carbon dioxide concentration on growth and N2 fixation of young Robinia pseudoacacia

    International Nuclear Information System (INIS)

    Feng, Z; Flessa, H.; Dyckmans, J.

    2004-01-01

    The effects of elevated carbon dioxide concentration on carbon and nitrogen uptake and nitrogen source partitioning were determined in one year-old locust trees using a dual 13 C and 15 N continuous labelling experiment. Elevated carbon dioxide increased the fraction of new carbon in total carbon, but it did not alter carbon partitioning among plant compartments. Elevated carbon dioxide also increased the fraction of new nitrogen in total nitrogen. This was coupled with a shift in nitrogen source partitioning toward nitrogen fixation. Soil nitrogen uptake was not affected, but nitrogen fixation was markedly increased by elevated carbon dioxide treatment. The increased nitrogen fixation tended to decrease the C/N ratio in the presence of elevated carbon dioxide. Total dry mass of root nodules doubled in response to elevated carbon dioxide, however, this effect was not considered significant because of the great variability in root nodule formation. Overall, it was concluded that the growth of locust trees in an elevated carbon dioxide environment will not primarily be limited by nitrogen availability, giving the R. pseudoacacia species a competitive advantage over non-nitrogen-fixing tree species. It was also suggested that the increase in nitrogen fixation observed in response to elevated carbon dioxide treatment may play a key role in the growth response of forest ecosystems to elevated carbon dioxide by improving nitrogen availability for non-nitrogen-fixing trees. 51 refs., 1 tab., 4 figs

  3. Low concentration of exogenous carbon monoxide protects mammalian cells against proliferation induced by radiation-induced bystander effect

    International Nuclear Information System (INIS)

    Tong, Liping; Yu, K.N.; Bao, Lingzhi; Wu, Wenqing; Wang, Hongzhi; Han, Wei

    2014-01-01

    Highlights: • We show the possibility of modulate proliferation induced by radiation-induced bystander effect with low concentration carbon monoxide. • Carbon monoxide inhibited proliferation via modulating the transforming growth factor β1 (TGF-β1)/nitric oxide (NO) signaling pathway. • Exogenous carbon monoxide has potential application in clinical radiotherapy. - Abstract: Radiation-induced bystander effect (RIBE) has been proposed to have tight relationship with the irradiation-caused secondary cancers beyond the irradiation-treated area after radiotherapy. Our previous studies demonstrated a protective effect of low concentration carbon monoxide (CO) on the genotoxicity of RIBE after α-particle irradiation. In the present work, a significant inhibitory effect of low-dose exogenous CO, generated by tricarbonyldichlororuthenium (II) dimer [CO-releasing molecule (CORM-2)], on both RIBE-induced proliferation and chromosome aberration was observed. Further studies on the mechanism revealed that the transforming growth factor β1/nitric oxide (NO) signaling pathway, which mediated RIBE signaling transduction, could be modulated by CO involved in the protective effects. Considering the potential of exogenous CO in clinical applications and its protective effect on RIBE, the present work aims to provide a foundation for potential application of CO in radiotherapy

  4. Low concentration of exogenous carbon monoxide protects mammalian cells against proliferation induced by radiation-induced bystander effect

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Liping [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Bao, Lingzhi; Wu, Wenqing; Wang, Hongzhi [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Han, Wei, E-mail: hanw@hfcas.cn [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-01-15

    Highlights: • We show the possibility of modulate proliferation induced by radiation-induced bystander effect with low concentration carbon monoxide. • Carbon monoxide inhibited proliferation via modulating the transforming growth factor β1 (TGF-β1)/nitric oxide (NO) signaling pathway. • Exogenous carbon monoxide has potential application in clinical radiotherapy. - Abstract: Radiation-induced bystander effect (RIBE) has been proposed to have tight relationship with the irradiation-caused secondary cancers beyond the irradiation-treated area after radiotherapy. Our previous studies demonstrated a protective effect of low concentration carbon monoxide (CO) on the genotoxicity of RIBE after α-particle irradiation. In the present work, a significant inhibitory effect of low-dose exogenous CO, generated by tricarbonyldichlororuthenium (II) dimer [CO-releasing molecule (CORM-2)], on both RIBE-induced proliferation and chromosome aberration was observed. Further studies on the mechanism revealed that the transforming growth factor β1/nitric oxide (NO) signaling pathway, which mediated RIBE signaling transduction, could be modulated by CO involved in the protective effects. Considering the potential of exogenous CO in clinical applications and its protective effect on RIBE, the present work aims to provide a foundation for potential application of CO in radiotherapy.

  5. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy

    International Nuclear Information System (INIS)

    Lee-Ho, E.; Walton, L.J.; Reid, D.M.; Yeung, E.C.; Kurepin, L.V.

    2007-01-01

    Plant root growth is known to be influenced by higher levels of atmospheric carbon dioxide (CO 2 ). Roots of some species grown in hydroponics under elevated CO 2 concentrations may be more competitive sinks for photosynthetic assimilates than roots grown under lower CO 2 conditions. Root branching patterns may also be influenced by elevated CO 2 concentrations. Studies have also shown that factors such as soil compaction, salinity and the availability of nitrate, phosphorous, oxygen and water also influence root growth, and the effects of higher CO 2 on roots can be confounded by such environmental factors. This study evaluated the effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root growth, morphology, and architecture. Both ambient and elevated CO 2 levels were used along with various sucrose concentrations. The study revealed that A. thaliana plants grown on a phytagar medium in small chambers with elevated CO 2 had longer roots, more lateral root growth than plants grown in ambient CO 2 . Roots in elevated CO 2 were found to have wider root diameters, and more secondary growth. The addition of sucrose to the media closely resembled the effects of elevated CO 2 . In addition, the increase in sucrose concentration had a bigger effect on root morphology under ambient, than elevated CO 2 . Therefore, both elevated CO 2 and increased sucrose concentrations promote root growth by increasing their number, length, and diameter. The dichotomy branching index (DBI) also dropped resulting in a more dichotomous branching pattern. 34 refs., 5 figs

  6. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  7. An Investigation of Carbon-Doping-Induced Current Collapse in GaN-on-Si High Electron Mobility Transistors

    Directory of Open Access Journals (Sweden)

    An-Jye Tzou

    2016-06-01

    Full Text Available This paper reports the successful fabrication of a GaN-on-Si high electron mobility transistor (HEMT with a 1702 V breakdown voltage (BV and low current collapse. The strain and threading dislocation density were well-controlled by 100 pairs of AlN/GaN superlattice buffer layers. Relative to the carbon-doped GaN spacer layer, we grew the AlGaN back barrier layer at a high temperature, resulting in a low carbon-doping concentration. The high-bandgap AlGaN provided an effective barrier for blocking leakage from the channel to substrate, leading to a BV comparable to the ordinary carbon-doped GaN HEMTs. In addition, the AlGaN back barrier showed a low dispersion of transiently pulsed ID under substrate bias, implying that the buffer traps were effectively suppressed. Therefore, we obtained a low-dynamic on-resistance with this AlGaN back barrier. These two approaches of high BV with low current collapse improved the device performance, yielding a device that is reliable in power device applications.

  8. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors.

    Science.gov (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Zhang, Li

    2017-11-03

    Carbon-based supercapacitors have attracted extensive attention as the complement to batteries, owing to their durable lifespan and superiority in high-power-demand fields. However, their widespread use is limited by the low energy storage density; thus, a high-surface-area porous carbon is urgently needed. Herein, a highly porous carbon with a Brunauer-Emmett-Teller specific surface area up to 3643 m 2 g -1 has been synthesized by chemical activation of papayas for the first time. This sp 2 -bonded porous carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form narrow mesopores of 2 ∼ 5 nm in width, which can be systematically tailored with varied activation levels. Two-electrode symmetric supercapacitors constructed by this porous carbon achieve energy density of 8.1 Wh kg -1 in aqueous electrolyte and 65.5 Wh kg -1 in ionic-liquid electrolyte. Furthermore, half-cells (versus Li or Na metal) using this porous carbon as ion sorption cathodes yield high specific capacity, e.g., 51.0 and 39.3 mAh g -1 in Li + and Na + based organic electrolyte. These results underline the possibility of obtaining the porous carbon for high-performance carbon-based supercapacitors and ion capacitors in a readily scalable and economical way.

  9. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors

    Science.gov (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Zhang, Li

    2017-11-01

    Carbon-based supercapacitors have attracted extensive attention as the complement to batteries, owing to their durable lifespan and superiority in high-power-demand fields. However, their widespread use is limited by the low energy storage density; thus, a high-surface-area porous carbon is urgently needed. Herein, a highly porous carbon with a Brunauer-Emmett-Teller specific surface area up to 3643 m2 g-1 has been synthesized by chemical activation of papayas for the first time. This sp2-bonded porous carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form narrow mesopores of 2 ˜ 5 nm in width, which can be systematically tailored with varied activation levels. Two-electrode symmetric supercapacitors constructed by this porous carbon achieve energy density of 8.1 Wh kg-1 in aqueous electrolyte and 65.5 Wh kg-1 in ionic-liquid electrolyte. Furthermore, half-cells (versus Li or Na metal) using this porous carbon as ion sorption cathodes yield high specific capacity, e.g., 51.0 and 39.3 mAh g-1 in Li+ and Na+ based organic electrolyte. These results underline the possibility of obtaining the porous carbon for high-performance carbon-based supercapacitors and ion capacitors in a readily scalable and economical way.

  10. Characterization of high concentration dust generator

    International Nuclear Information System (INIS)

    Shimura, Toichiro; Yokochi, Akira

    1999-01-01

    This paper describes the development of fluidized bed type high concentration dust generator that keeps for long period dust concentration range of about 10 mg/m 3 for the study of working place monitoring system and evaluation of respirator. The generator is keeping constant powder in fluidized bed for keeping the dust concentration. It is necessary to keep constant feeding rate of powder in order to keep the quantity of dust in the fluidized bed. Our generator enables to obtain constant feeding rate by a screw feeder and by using mixed powder with fluidising particles (glass beads) before feeding. The generator produces high concentration dust of 11.3 mg/m 3 ± 1.0 mg/m 3 for about 5 hours and keeps the dust size 4.2-4.6 μm in mass median aerodynamic diameter with reasonable reproducibility. (author)

  11. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-01-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  12. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-05-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  13. High performance carbon nanocomposites for ultracapacitors

    Science.gov (United States)

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  14. The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic

    Science.gov (United States)

    Lam, Phoebe J.; Doney, Scott C.; Bishop, James K. B.

    2011-09-01

    We have compiled a global data set of 62 open ocean profiles of particulate organic carbon (POC), CaCO3, and opal concentrations collected by large volume in situ filtration in the upper 1000 m over the last 30 years. We define concentration-based metrics for the strength (POC concentration at depth) and efficiency (attenuation of POC with depth in the mesopelagic) of the biological pump. We show that the strength and efficiency of the biological pump are dynamic and are characterized by a regime of constant and high transfer efficiency at low to moderate surface POC and a bloom regime where the height of the bloom is characterized by a weak deep biological pump and low transfer efficiency. The variability in POC attenuation length scale manifests in a clear decoupling between the strength of the shallow biological pump (e.g., POC at the export depth) and the strength of the deep biological pump (POC at 500 m). We suggest that the paradigm of diatom-driven export production is driven by a too restrictive perspective on upper mesopelagic dynamics. Indeed, our full mesopelagic analysis suggests that large, blooming diatoms have low transfer efficiency and thus may not export substantially to depth; rather, our analysis suggests that ecosystems characterized by smaller cells and moderately high %CaCO3 have a high mesopelagic transfer efficiency and can have higher POC concentrations in the deep mesopelagic even with relatively low surface or near-surface POC. This has negative implications for the carbon sequestration prospects of deliberate iron fertilization.

  15. Carbonation by fluid-rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones

    Science.gov (United States)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-07-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon, regulating its fluxes between shallow and deep reservoirs. Recent estimates predict that almost all subducted carbon is transferred into the crust and lithospheric mantle during subduction metamorphism via decarbonation and dissolution reactions at high-pressure conditions. Here we report the occurrence of eclogite-facies marbles associated with metasomatic systems in Alpine Corsica (France). The occurrence of these marbles along major fluid-conduits as well as textural, geochemical and isotopic data indicating fluid-mineral reactions are compelling evidence for the precipitation of these carbonate-rich assemblages from carbonic fluids during metamorphism. The discovery of metasomatic marbles brings new insights into the fate of carbonic fluids formed in subducting slabs. We infer that rock carbonation can occur at high-pressure conditions by either vein-injection or chemical replacement mechanisms. This indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but can interact with slab and mantle-forming rocks. Rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Furthermore, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  16. Highly sensitive hydrogen peroxide sensor based on a glassy carbon electrode modified with platinum nanoparticles on carbon nanofiber heterostructures

    International Nuclear Information System (INIS)

    Yang, Yang; Fu, Renzhong; Yuan, Jianjun; Wu, Shiyuan; Zhang, Jialiang; Wang, Haiying

    2015-01-01

    We are presenting a sensor for hydrogen peroxide (H 2 O 2 ) that is based on the use of a heterostructure composed of Pt nanoparticles (NPs) and carbon nanofibers (CNFs). High-density Pt NPs were homogeneously loaded onto a three-dimensional nanostructured CNF matrix and then deposited in a glassy carbon electrode (GCE). The resulting sensor synergizes the advantages of the conducting CNFs and the nanoparticle catalyst. The porous structure of the CNFs also favor the high-density immobilization of the NPs and the diffusion of water-soluble molecules, and thus assists the rapid catalytic oxidation of H 2 O 2 . If operated at a working voltage of −0.2 V (vs. Ag/AgCl), the modified GCE exhibits a linear response to H 2 O 2 in the 5 μM to 15 mM concentration range (total analytical range: 5 μM to 100 mM), with a detection limit of 1.7 μM (at a signal-to-noise ratio of 3). The modified GCE is not interfered by species such as uric acid and glucose. Its good stability, high selectivity and good reproducibility make this electrode a valuable tool for inexpensive amperometric sensing of H 2 O 2 . (author)

  17. X-ray Absorption Spectroscopy Identifies Calcium-Uranyl-Carbonate Complexes at Environmental Concentrations

    International Nuclear Information System (INIS)

    Kelly, Shelly D.; Kemner, Kenneth M.; Brooks, Scott C.

    2007-01-01

    Current research on bioremediation of uranium-contaminated groundwater focuses on supplying indigenous metal-reducing bacteria with the appropriate metabolic requirements to induce microbiological reduction of soluble uranium(VI) to poorly soluble uranium(IV). Recent studies of uranium(VI) bioreduction in the presence of environmentally relevant levels of calcium revealed limited and slowed uranium(VI) reduction and the formation of a Ca-UO2-CO3 complex. However, the stoichiometry of the complex is poorly defined and may be complicated by the presence of a Na-UO2-CO3 complex. Such a complex might exist even at high calcium concentrations, as some UO2-CO3 complexes will still be present. The number of calcium and/or sodium atoms coordinated to a uranyl carbonate complex will determine the net charge of the complex. Such a change in aqueous speciation of uranium(VI) in calcareous groundwater may affect the fate and transport properties of uranium. In this paper, we present the results from X-ray absorption fine structure (XAFS) measurements of a series of solutions containing 50 lM uranium(VI) and 30 mM sodium bicarbonate, with various calcium concentrations of 0-5 mM. Use of the data series reduces the uncertainty in the number of calcium atoms bound to the UO2-CO3 complex to approximately 0.6 and enables spectroscopic identification of the Na-UO2-CO3 complex. At nearly neutral pH values, the numbers of sodium and calcium atoms bound to the uranyl triscarbonate species are found to depend on the calcium concentration, as predicted by speciation calculations

  18. Evolution of concentration-discharge relations revealed by high frequency diurnal sampling of stream water during spring snowmelt

    Science.gov (United States)

    Olshansky, Y.; White, A. M.; Thompson, M.; Moravec, B. G.; McIntosh, J. C.; Chorover, J.

    2017-12-01

    Concentration discharge (C-Q) relations contain potentially important information on critical zone (CZ) processes including: weathering reactions, water flow paths and nutrient export. To examine the C-Q relations in a small (3.3 km2) headwater catchment - La Jara Creek located in the Jemez River Basin Critical Zone Observatory, daily, diurnal stream water samples were collected during spring snow melt 2017, from two flumes located in outlets of the La Jara Creek and a high elevation zero order basin within this catchment. Previous studies from this site (McIntosh et al., 2017) suggested that high frequency sampling was needed to improve our interpretation of C-Q relations. The dense sampling covered two ascending and two descending limbs of the snowmelt hydrograph, from March 1 to May 15, 2017. While Na showed inverse correlation (dilution) with discharge, most other solutes (K, Mg, Fe, Al, dissolved organic carbon) exhibited positive (concentration) or chemostatic trends (Ca, Mn, Si, dissolved inorganic carbon and dissolved nitrogen). Hysteresis in the C-Q relation was most pronounced for bio-cycled cations (K, Mg) and for Fe, which exhibited concentration during the first ascending limb followed by a chemostatic trend. A pulsed increase in Si concentration immediately after the first ascending limb in both flumes suggests mixing of deep groundwater with surface water. A continual increase in Ge/Si concentrations followed by a rapid decrease after the second rising limb may suggest a fast transition between soil water to ground water dominating the stream flow. Fourier transform infrared spectroscopy of selected samples across the hydrograph demonstrated pronounced changes in dissolved organic matter molecular composition with the advancement of the spring snow melt. X-ray micro-spectroscopy of colloidal material isolated from the collected water samples indicated a significant role for organic matter in the transport of inorganic colloids. Analyses of high

  19. Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations

    International Nuclear Information System (INIS)

    Akasaka, Tsukasa; Yokoyama, Atsuro; Matsuoka, Makoto; Hashimoto, Takeshi; Watari, Fumio

    2010-01-01

    One strategy used for the regeneration of bone is the development of cell culture substrates and scaffolds that can control osteoblast proliferation and differentiation. In recent investigations, carbon nanotubes (CNTs) have been utilized as scaffolds for osteoblastic cell cultures; however, there are only a few reports describing the proliferation of osteoblastic cells on thin CNT films; in particular, the effects of serum concentration on cell proliferation have not been studied. In the present study, we prepared culture dishes with homogeneous thin or thick films of non-modified CNTs and examined the effect of serum concentrations on human osteoblastic cells (Saos-2) proliferation in these culture dishes. We demonstrated that the ratio of cell proliferation was strongly affected by the concentration of serum. Interestingly, single-walled carbon nanotube (SWNT) thin films were found to be the most effective substrate for the proliferation of Saos-2 cells in low concentrations of serum. Thus, thin SWNT films may be used as an effective biomaterial for the culture of Saos-2 cells in low serum concentrations.

  20. Potassium vapor assisted preparation of highly graphitized hierarchical porous carbon for high rate performance supercapacitors

    Science.gov (United States)

    Liu, Zheng; Zeng, Ying; Tang, Qunli; Hu, Aiping; Xiao, Kuikui; Zhang, Shiying; Deng, Weina; Fan, Binbin; Zhu, Yanfei; Chen, Xiaohua

    2017-09-01

    Ultrahigh graphitized carbon microspheres with rich hierarchical pores (AGHPCM-1) have been successfully synthesized through the one-step activation-carbonization strategy (OACS) with porous sulfonated poly-divinylbenzene as the carbon precursor, iron as the hard template and catalyst, and potassium hydroxide (KOH) as activation agent. Through the XRD, TEM, Raman and BET analysis, AGHPCM-1 shows very high graphitization degree and rich micro-, meso- and macro-pores. More importantly, the mechanism for KOH to improve the graphitization degree of carbon materials in OACS has been illustrated by the thermodynamical theory. The tremendous heat releasing from the reaction between the catalyst precursor of Fe2O3 and potassium vapor plays a key role in the formation of graphitized carbon. It may provide a general direction to prepare highly graphitized porous carbon at a moderate temperature. Integrating the advantages of high graphitization degree and rich hierarchical porous structure, the AGHPCM-1 exhibits an excellent rate performance with a response to up to the high current density of 150 A g-1 and high scan rate of 2000 mV s-1. No obvious capacitance decay can be observed after 10000 charge/discharge cycles even at the high current density of 20 A g-1.

  1. Ambient concentrations and insights on organic and elemental carbon dynamics in São Paulo, Brazil

    Science.gov (United States)

    Monteiro dos Santos, Djacinto A.; Brito, Joel F.; Godoy, José Marcus; Artaxo, Paulo

    2016-11-01

    The São Paulo Metropolitan Area (SPMA) is a megacity with about 20 million people and about 8 million vehicles, most of which are fueled with a significant fraction of ethanol - making it a unique case worldwide. This study presents organic and elemental carbon measurements using thermal-optical analysis from quartz filters collected in four sampling sites within the SPMA. Overall Organic Carbon (OC) concentration was comparable at all sites, where Street Canyon had the highest concentration (3.37 μg m-3) and Park site the lowest (2.65 μg m-3). Elemental Carbon (EC), emitted as result of incomplete combustion, has been significantly higher at the Street Canyon site (6.11 μg m-3) in contrast to all other three sites, ranging from 2.25 μg m-3 (Downtown) to 1.50 μg m-3 (Park). For all sampling sites, the average OC:EC ratio are found on the lower bound (pollution dynamics in a megacity impacted by a unique vehicular fleet. It also shows the need of implementation of EURO VI technology and to improve mass transport systems such a metro and more bus corridors to allow better transport for 19 million people in the SPMA.

  2. Source Material and Concentration of Wildfire-Produced Pyrogenic Carbon Influence Post-Fire Soil Nutrient Dynamics

    Directory of Open Access Journals (Sweden)

    Lucas A. Michelotti

    2015-04-01

    Full Text Available Pyrogenic carbon (PyC is produced by the thermal decomposition of organic matter in the absence of oxygen (O. PyC affects nutrient availability, may enhance post-fire nitrogen (N mineralization rates, and can be a significant carbon (C pool in fire-prone ecosystems. Our objectives were to characterize PyC produced by wildfires and examine the influence that contrasting types of PyC have on C and N mineralization rates. We determined C, N, O, and hydrogen (H concentrations and atomic ratios of charred bark (BK, charred pine cones (PC, and charred woody debris (WD using elemental analysis. We also incubated soil amended with BK, PC, and WD at two concentrations for 60 days to measure C and N mineralization rates. PC had greater H/C and O/C ratios than BK and WD, suggesting that PC may have a lesser aromatic component than BK and WD. C and N mineralization rates decreased with increasing PyC concentrations, and control samples produced more CO2 than soils amended with PyC. Soils with PC produced greater CO2 and had lower N mineralization rates than soils with BK or WD. These results demonstrate that PyC type and concentration have potential to impact nutrient dynamics and C flux to the atmosphere in post-fire forest soils.

  3. Low black carbon concentration in agricultural soils of central and northern Ethiopia.

    Science.gov (United States)

    Yli-Halla, Markku; Rimhanen, Karoliina; Muurinen, Johanna; Kaseva, Janne; Kahiluoto, Helena

    2018-08-01

    Soil carbon (C) represents the largest terrestrial carbon stock and is key for soil productivity. Major fractions of soil C consist of organic C, carbonates and black C. The turnover rate of black C is lower than that of organic C, and black C abundance decreases the vulnerablility of soil C stock to decomposition under climate change. The aim of this study was to determine the distribution of soil C in different pools and impact of agricultural management on the abundance of different species. Soil C fractions were quantified in the topsoils (0-15cm) of 23 sites in the tropical highlands of Ethiopia. The sites in central Ethiopia represented paired plots of agroforestry and adjacent control plots where cereal crops were traditionally grown in clayey soils. In the sandy loam and loam soils of northern Ethiopia, the pairs represented restrained grazing with adjacent control plots with free grazing, and terracing with cereal-based cropping with adjacent control plots without terracing. Soil C contained in carbonates, organic matter and black C along with total C was determined. The total C median was 1.5% (range 0.3-3.6%). The median proportion of organic C was 85% (range 53-94%), 6% (0-41%) for carbonate C and 6% (4-21%) for black C. An increase was observed in the organic C and black C fractions attributable to agroforestry and restrained grazing. The very low concentration of the relatively stable black C fraction and the dominance of organic C in these Ethiopian soils suggest vulnerability to degradation and the necessity for cultivation practices maintaining the C stock. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Results of high-temperature processing of high-carbon materials from the lower cambrian period of the Earth's history

    International Nuclear Information System (INIS)

    Maslov, O.D.

    2016-01-01

    The paper reports on the observation of spontaneous fission of nuclides, concentrated in fly ash during the combustion of high-carbon (graphite) material, chemogenic siliceous-carbonaceous rocks and carbonaceous shale in the mixture with brown coal. In the samples obtained, the spontaneous fission was measured by track method. The zones of precipitation of spontaneous fission of nuclides and their lighter homologues on thermochromatographic column were determined. A nuclide with a half-life of 62 d was detected in the alkaline trap. The chemical treatment procedure included co-precipitation with iron hydroxide, dissolution in NH 4 OH + H 2 O 2 solution and distillation by heating up to 100°C followed by AgI co-precipitation. Based on the chemical behavior it can be concluded that the detected radionuclide belongs to the halides. The content of the parent nuclide in high-carbon (graphite) material and chemogenic siliceous-carbonaceous rock corresponds to 10 -14 g/g. [ru

  5. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Energy Technology Data Exchange (ETDEWEB)

    Byamba-Ochir, Narandalai [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of); Shim, Wang Geun [Department of Polymer Science and Engineering, Sunchon National University, 255 Jungang-Ro, Suncheon, Jeollanam-Do 57922 (Korea, Republic of); Balathanigaimani, M.S., E-mail: msbala@rgipt.ac.in [Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Ratapur Chowk, Rae Bareli, 229316 Uttar Pradesh (India); Moon, Hee, E-mail: hmoon@jnu.ac.kr [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of)

    2016-08-30

    Highlights: • Highly porous carbon materials from Mongolian anthracite by chemical activation. • Cheaper and eco-friendly activation process has been employed. • Activated carbons with graphitic structure and energetically heterogeneous surface. • Surface hydrophobicity and porosity of the activated carbons can be controlled. - Abstract: Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816–2063 m{sup 2}/g and of 0.55–1.61 cm{sup 3}/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  6. [Carbon emissions and low-carbon regulation countermeasures of land use change in the city and town concentrated area of central Liaoning Province, China].

    Science.gov (United States)

    Xi, Feng-ming; Liang, Wen-juan; Niu, Ming-fen; Wang, Jiao-yue

    2016-02-01

    Carbon emissions due to land use change have an important impact on global climate change. Adjustment of regional land use patterns has a great scientific significance to adaptation to a changing climate. Based on carbon emission/absorption parameters suitable for Liaoning Province, this paper estimated the carbon emission of land use change in the city and town concentrated area of central Liaoning Province. The results showed that the carbon emission and absorption were separately 308.51 Tg C and 11.64 Tg C from 1997 to 2010. It meant 3.8% of carbon emission. was offset by carbon absorption. Among the 296.87 Tg C net carbon emission of land use change, carbon emission of remaining land use type was 182.24 Tg C, accounting for 61.4% of the net carbon emission, while the carbon emission of land use transformation was 114.63 Tg C, occupying the rest 38.6% of net carbon emission. Through quantifying the mapping relationship between land use change and carbon emission, it was shown that during 1997-2004 the contributions of remaining construction land (40.9%) and cropland transform ation to construction land (40.6%) to carbon emission were larger, but the greater contributions to carbon absorption came from cropland transformation to forest land (38.6%) and remaining forest land (37.5%). During 2004-2010, the land use types for carbon emission and absorption were the same to the period of 1997-2004, but the contribution of remaining construction land to carbon emission increased to 80.6%, and the contribution of remaining forest land to carbon absorption increased to 71.7%. Based on the carbon emission intensity in different land use types, we put forward the low-carbon regulation countermeasures of land use in two aspects. In carbon emission reduction, we should strict control land transformation to construction land, increase the energy efficiency of construction land, and avoid excessive development of forest land and water. In carbon sink increase, we should

  7. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Lee-Ho, E.; Walton, L.J.; Reid, D.M.; Yeung, E.C.; Kurepin, L.V. [Calgary Univ., AB (Canada). Dept. of Biology

    2007-03-15

    Plant root growth is known to be influenced by higher levels of atmospheric carbon dioxide (CO{sub 2}). Roots of some species grown in hydroponics under elevated CO{sub 2} concentrations may be more competitive sinks for photosynthetic assimilates than roots grown under lower CO{sub 2} conditions. Root branching patterns may also be influenced by elevated CO{sub 2} concentrations. Studies have also shown that factors such as soil compaction, salinity and the availability of nitrate, phosphorous, oxygen and water also influence root growth, and the effects of higher CO{sub 2} on roots can be confounded by such environmental factors. This study evaluated the effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root growth, morphology, and architecture. Both ambient and elevated CO{sub 2} levels were used along with various sucrose concentrations. The study revealed that A. thaliana plants grown on a phytagar medium in small chambers with elevated CO{sub 2} had longer roots, more lateral root growth than plants grown in ambient CO{sub 2}. Roots in elevated CO{sub 2} were found to have wider root diameters, and more secondary growth. The addition of sucrose to the media closely resembled the effects of elevated CO{sub 2}. In addition, the increase in sucrose concentration had a bigger effect on root morphology under ambient, than elevated CO{sub 2}. Therefore, both elevated CO{sub 2} and increased sucrose concentrations promote root growth by increasing their number, length, and diameter. The dichotomy branching index (DBI) also dropped resulting in a more dichotomous branching pattern. 34 refs., 5 figs.

  8. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    Science.gov (United States)

    Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2013-07-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening.

  9. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    International Nuclear Information System (INIS)

    Kim, Byeongju; Jin, Hye Jun; Park, Eun Jin; Hong, Seunghun; Song, Hyun Seok; Lee, Sang Hun; Park, Tai Hyun; Lee, Byung Yang

    2013-01-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening. (paper)

  10. Highly selective and stable carbon dioxide uptake in polyindole-derived microporous carbon materials.

    Science.gov (United States)

    Saleh, Muhammad; Tiwari, Jitendra N; Kemp, K Christain; Yousuf, Muhammad; Kim, Kwang S

    2013-05-21

    Adsorption with solid sorbents is considered to be one of the most promising methods for the capture of carbon dioxide (CO₂) from power plant flue gases. In this study, microporous carbon materials used for CO₂ capture were synthesized by the chemical activation of polyindole nanofibers (PIF) at temperatures from 500 to 800 °C using KOH, which resulted in nitrogen (N)-doped carbon materials. The N-doped carbon materials were found to be microporous with an optimal adsorption pore size for CO₂ of 0.6 nm and a maximum (Brunauer-Emmett-Teller) BET surface area of 1185 m(2) g(-1). The PIF activated at 600 °C (PIF6) has a surface area of 527 m(2) g(-1) and a maximum CO₂ storage capacity of 3.2 mmol g(-1) at 25 °C and 1 bar. This high CO₂ uptake is attributed to its highly microporous character and optimum N content. Additionally, PIF6 material displays a high CO₂ uptake at low pressure (1.81 mmol g(-1) at 0.2 bar and 25 °C), which is the best low pressure CO₂ uptake reported for carbon-based materials. The adsorption capacity of this material remained remarkably stable even after 10 cycles. The isosteric heat of adsorption was calculated to be in the range of 42.7-24.1 kJ mol(-1). Besides the excellent CO₂ uptake and stability, PIF6 also exhibits high selectivity values for CO₂ over N₂, CH₄, and H₂ of 58.9, 12.3, and 101.1 at 25 °C, respectively, and these values are significantly higher than reported values.

  11. Fe-Catalyzed Synthesis of Porous Carbons Spheres with High Graphitization Degree for High-Performance Supercapacitors

    Science.gov (United States)

    Zhu, Jun; Shi, Hongwei; Zhuo, Xin; Hu, Yalin

    2017-10-01

    We have developed a facile and efficient Fe-catalyzed method for fabrication of porous carbons spheres with high graphitization degree (GNPCs) using glucose as carbon precursor at relatively low carbonization temperature. GNPCs not only have relatively large accessible ion surface area to accommodate greater capacity but also high graphitization degree to accelerate ion diffusion. As a typical application, we demonstrate that GNPCs exhibit excellent electrochemical performance for use in supercapacitors, with high specific capacity of 150.6 F g-1 at current density of 1 A g-1 and good rate capability and superior cycling stability over 10,000 cycles, confirming their potential application for energy storage. Moreover, it is believed that this method offers a new strategy for synthesis of porous carbons with high graphitization degree.

  12. Functional Carbon Nanotube/Mesoporous Carbon/MnO2 Hybrid Network for High-Performance Supercapacitors

    Directory of Open Access Journals (Sweden)

    Tao Tao

    2014-01-01

    Full Text Available A functional carbon nanotube/mesoporous carbon/MnO2 hybrid network has been developed successfully through a facile route. The resulting composites exhibited a high specific capacitance of 351 F/g at 1 A g−1, with intriguing charge/discharge rate performance and cycling stability due to a synergistic combination of large surface area and excellent electron-transport capabilities of MnO2 with the good conductivity of the carbon nanotube/mesoporous carbon networks. Such composite shows great potential to be used as electrodes for supercapacitors.

  13. Device for separating and concentrating rare gases containing krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, S; Sugimoto, K

    1975-06-11

    In orer to highly concentrate krypton by means of adsorption and desorption of activated carbon, in a device for continuously separating and concentrating rare gases containing krypton gas by means of adsorbing and desorbing operation of activated carbon, the device includes adsorbers arranged in parallel and more than two stages of adsorbers arranged in series with the first mentioned adsorbers with the amount of activated carbon filled successively reduced, and a cooling mechanism for cooling the adsorbers when adsorbed and a heating mechanism for heating the adsorbers when desorbed.

  14. Bainite formation kinetics in high carbon alloyed steel

    International Nuclear Information System (INIS)

    Luzginova, N.V.; Zhao, L.; Sietsma, J.

    2008-01-01

    In recent years, many investigations have been carried out on the modeling of the bainite formation. In the present work, a physical approach proposed in the literature is implemented to model the formation of lower bainite in high carbon steels (1 wt.% C). In this model, the carbon diffusion is assumed to control the kinetics of the bainite formation. Both the nucleation and the growth rates are considered in an Avrami type analysis. The effect of alloying elements is taken into account considering only the thermodynamics of the system. The results and the physical meaning of the model parameters are discussed. It is shown that the diffusional approach gives a reasonable description of bainite formation kinetics in high carbon steel. Only two fitting parameters are used: the first accounts for carbon grain-boundary diffusion and the second is the initial nucleation-site density. The model satisfactorily accounts for the effect of transformation temperature, but does not take into account the carbide precipitation during bainite formation and the effect of alloying elements on the diffusion coefficient of carbon

  15. CO₂ enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations.

    Science.gov (United States)

    Becker, Christine; Kläring, Hans-Peter

    2016-05-15

    Carbon dioxide (CO2) enrichment is a common practice in greenhouses to increase crop yields up to 30%. Yet, reports on the effect on foliar phenolic compounds vary. We studied the effect on two red leaf lettuce cultivars, grown for 25 days in growth chambers at CO2 concentrations of 200 or 1,000 ppm, with some plants exchanged between treatments after 11 days. As expected, head mass increased with higher CO2 concentration. Regression analysis, corrected for head mass, showed increased concentrations of most flavonoid glycosides at high CO2 concentrations while only some caffeic acid derivatives were increased, and not uniformly in both cultivars. Sugar concentrations increased with CO2 concentration. Generally, conditions in the 10 days before harvest determined concentrations. We suspect that phenolic compounds were mainly accumulated because plenty of precursors were available. The results indicate that CO2 enrichment can result in high yields of red leaf lettuce rich in phenolic compounds. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Oxidation kinetics and mechanisms of carbon/carbon composites and their components in water vapour at high temperatures

    International Nuclear Information System (INIS)

    Qin, Fei; Peng, Li-na; He, Guo-qiang; Li, Jiang; Yan, Yong

    2015-01-01

    Highlights: • 4D-C/C composite was fabricated using carbon fibre and coal tar pitch. • The rate of mass loss and oxidation kinetics parameters of fibres-H 2 O and matrix-H 2 O are obtained. • The rate of mass loss and oxidation kinetics parameters of C/C–H 2 O are obtained. • Oxidation rate of the fibre bundle is greater than the oxidation rate of the matrix. - Abstract: Thermogravimetric analysis and scanning electron microscopy were used to study the oxidation kinetics of four-direction carbon/carbon composites and their components (fibres and matrices) in a H 2 O–Ar atmosphere at high temperatures. The oxidation processes were restricted to reaction-limited oxidation. The rate of mass loss was estimated for the four-direction carbon/carbon composites and their components at high temperature. The pressure exponent for the reaction of the carbon/carbon composites with H 2 O was 0.59, and the pre-exponential factor and activation energy for the reactions of H 2 O with the carbon/carbon composites, carbon fibres and matrices were determined

  17. Determination of picomolar silver concentrations by differential pulse anodic stripping voltammetry at a carbon paste electrode modified with phenylthiourea-functionalized high ordered nanoporous silica gel

    International Nuclear Information System (INIS)

    Javanbakht, Mehran; Divsar, Faten; Badiei, Alireza; Fatollahi, Fatemeh; Khaniani, Yeganeh; Ganjali, Mohammad Reza; Norouzi, Parviz; Chaloosi, Marzieh; Ziarani, Ghodsi Mohammadi

    2009-01-01

    This study introduces the design of an anodic stripping voltammetric (ASV) method for the silver ion determination at a carbon paste electrode (CPE), chemically modified with phenylthiourea-nanoporous silica gel (Tu-SBA-15-CPE). The electroanalytical pro includes two steps: preconcentration of metal ions at an electrode surface, followed by quantification of the accumulated species by differential pulse anodic stripping voltammetric methods. Factors affecting the performance of the anodic stripping were investigated, including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The most sensitive and reliable electrode contained 10% Tu-SBA-15 and 90% carbon paste. The accumulation potential and time were set at, -200 mV and 300 s, respectively, and the scan rate at 50 mV s -1 in the scan range of -200 to 700 mV. The resulting electrode demonstrated a linear response over range of silver ion concentration of 8.0-80 pmol/L with detection limit (S/N = 3) of 5 pmol/L. The prepared electrodes were used for the silver determination in sea and tap water samples and very good recovery results were obtained. The accuracy was assessed through recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry.

  18. Determination of picomolar silver concentrations by differential pulse anodic stripping voltammetry at a carbon paste electrode modified with phenylthiourea-functionalized high ordered nanoporous silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Javanbakht, Mehran [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Nano Science and Technology Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: mehranjavanbakht@gmail.com; Divsar, Faten [Department of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of); Badiei, Alireza [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Fatollahi, Fatemeh [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khaniani, Yeganeh [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza; Norouzi, Parviz [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Chaloosi, Marzieh [Department of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of); Ziarani, Ghodsi Mohammadi [Department of Chemistry, University of Alzahra, Tehran (Iran, Islamic Republic of)

    2009-09-30

    This study introduces the design of an anodic stripping voltammetric (ASV) method for the silver ion determination at a carbon paste electrode (CPE), chemically modified with phenylthiourea-nanoporous silica gel (Tu-SBA-15-CPE). The electroanalytical pro includes two steps: preconcentration of metal ions at an electrode surface, followed by quantification of the accumulated species by differential pulse anodic stripping voltammetric methods. Factors affecting the performance of the anodic stripping were investigated, including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The most sensitive and reliable electrode contained 10% Tu-SBA-15 and 90% carbon paste. The accumulation potential and time were set at, -200 mV and 300 s, respectively, and the scan rate at 50 mV s{sup -1} in the scan range of -200 to 700 mV. The resulting electrode demonstrated a linear response over range of silver ion concentration of 8.0-80 pmol/L with detection limit (S/N = 3) of 5 pmol/L. The prepared electrodes were used for the silver determination in sea and tap water samples and very good recovery results were obtained. The accuracy was assessed through recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry.

  19. Quantitative Analysis of Major Factors Affecting Black Carbon Transport and Concentrations in the Unique Atmospheric Structures of Urban Environment

    Science.gov (United States)

    Liang, Marissa Shuang

    combined contribution from both traffic and atmospheric circulation accounted for observed spatiotemporal variability in PM2.5 concentrations. Based on these experimental and quantitative analyses, a three-dimensional model is proposed for contaminant's transport in highly urbanized Cincinnati region. Furthermore this dissertation explored implications on roadside pollutant evaluation, and on the risk analysis of future fuel substitution using biodiesel. The Gaussian-type models are poor in determining the effective emission factor particularly under nocturnal thermal inversion for which the effective emission factor is a function of lapse rate in the morning. The Gaussian models are applicable in daytime after the breakdown of thermal inversion. Lastly, among three types of fuels examined, the proposed butanol-added biodiesel-diesel blend (D80B15Bu5) yielded a good compromise between black carbon and NOx emissions while maintaining proper combustion properties. It is also found that the emission contained less black carbon and had higher organic carbon (OC) and elemental (EC) ratio than tested petroleum diesel. As demonstrated in other parts of this study, the OC-enriched emission will likely affect the black carbon occurrence and PM concentrations in the urban environments. Overall, it is suggested that urban formation and biofuel usage define the environmental impacts of black carbon, and are the focus for climate change mitigation and adaptation.

  20. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    Science.gov (United States)

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp 2 hybridized carbon sheets as well as sp 3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m 3 (STP)/(m 2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Oxidation kinetics and mechanisms of four-direction carbon/carbon composites and their components in carbon dioxide at high temperature

    International Nuclear Information System (INIS)

    Qin, Fei; Peng, Li-na; He, Guo-qiang; Li, Jiang

    2013-01-01

    Highlights: •Four-direction C/C composite was fabricated using carbon fibres and coal tar pitches. •Large-sized bulk matrix was prepared using same process as matrix of C/C composites. •A and E a of C/C, bulk matrix and fibres in CO 2 were determined, respectively. •Pressure exponent n was 0.62 in C/C–CO 2 . -- Abstract: Thermogravimetric analysis and scanning electron microscopy were used to study the oxidation kinetics of four-direction carbon/carbon composites and their components (fibres and matrix) in a CO 2 atmosphere at high temperature. The ablation processes were restricted to reaction-limited oxidation. The mass loss rate was estimated for the four-direction carbon/carbon composites and their components within the temperature of range of 600–1400 °C. The pressure exponent for the reaction of carbon/carbon composites and CO 2 was 0.62, and the pre-exponential factor and activation energy for the reactions of CO 2 and the carbon/carbon composites, carbon fibres and matrix were determined, respectively

  2. Effect of exchangeable cation concentration on sorption and desorption of dissolved organic carbon in saline soils.

    Science.gov (United States)

    Setia, Raj; Rengasamy, Pichu; Marschner, Petra

    2013-11-01

    Sorption is a very important factor in stabilization of dissolved organic carbon (DOC) in soils and thus C sequestration. Saline soils have significant potential for C sequestration but little is known about the effect of type and concentration of cations on sorption and release of DOC in salt-affected soils. To close this knowledge gap, three batch sorption and desorption experiments were conducted using soils treated with solutions either low or high in salinity. In Experiment 1, salinity was developed with either NaCl or CaCl2 to obtain an electrical conductivity (EC) in a 1:5 soil: water extract (EC1:5) of 2 and 4 dS m(-1). In Experiments 2 and 3, NaCl and CaCl2 were added in various proportions (between 25 and 100%) to obtain an EC1:5 of 0.5 and 4 dS m(-1), respectively. At EC1:5 of 4 dS m(-1), the sorption of DOC (derived from wheat straw) was high even at a low proportion of added Ca(2+) and did not change with proportion of Ca added, but at EC1:5 of 0.5 dS m(-1) increasing proportion of Ca(2+) added increased DOC sorption. This can be explained by the differences in exchangeable Ca(2+) at the two salinity levels. At EC1:5 of 4 dS m(-1), the exchangeable Ca(2+) concentration did not increase beyond a proportion of 25% Ca(2+), whereas it increased with increasing Ca(2+) proportion in the treatments at EC1:5 of 0.5 dS m(-1). The DOC sorption was lowest with a proportion of 100% as Na(+). When Ca(2+) was added, DOC sorption was highest, but least was desorbed (with deionised water), thus sorption and desorption of added DOC were inversely related. The results of this study suggest that DOC sorption in salt-affected soils is mainly controlled by the levels of exchangeable Ca(2+) irrespective of the Ca(2+) concentration in the soil solution which has implications on carbon stabilization in salt-affected soils. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Influence of contemporary carbon originating from the 2003 Siberian forest fire on organic carbon in PM2.5 in Nagoya, Japan

    International Nuclear Information System (INIS)

    Ikemori, Fumikazu; Honjyo, Koji; Yamagami, Makiko; Nakamura, Toshio

    2015-01-01

    In May 2003, high concentrations of organic carbon (OC) in PM 2.5 were measured in Nagoya, a representative metropolitan area in Japan. To investigate the influence of possible forest fires on PM 2.5 in Japan via long-range aerosol transport, the radiocarbon ( 14 C) concentrations of PM 2.5 samples from April 2003 to March 2004 were measured. 14 C concentrations in total carbon (TC) from May to early June showed higher values than those in other periods. The OC/elemental carbon (EC) ratios from May to early June were also significantly higher than the ones in other periods. In addition, OC concentrations from May to early June were typically high. These results indicate that the abundant OC fraction from May to early June in Nagoya consisted predominantly of contemporary carbon. Furthermore, simulations of diffusion and transport of organic matter (OM) in East Asia showed that abundant OM originating from East Siberia spread over East Asia and Japan in May and early June. Backward air mass trajectories from this time frame indicate that the air mass in Nagoya likely first passed through East Siberia where fire events were prevalent. However, the backward trajectories showed that the air mass after early June did not originate mainly from Siberia, and correspondingly, the 14 C and OC concentrations showed lower values than those from May to early June. Therefore, the authors conclude that contemporary carbon originating from the forest fire in East Siberia was transported to Nagoya, where it significantly contributed to the high observed concentrations of both OC and 14 C. - Highlights: • We analyzed the radiocarbon ( 14 C) concentration of TC in PM 2.5 from Nagoya, Japan. • 14 C concentrations from May to early June in 2003 were elevated. • The air mass at this time in Nagoya likely first passed through East Siberia. • Fire location data from MODIS indicate that fire events were prevalent in East Siberia. • Contemporary carbon emitted from the Siberian

  4. Concentrations and geographic distribution of selected organic pollutants in Scottish surface soils

    International Nuclear Information System (INIS)

    Rhind, S.M.; Kyle, C.E.; Kerr, C.; Osprey, M.; Zhang, Z.L.; Duff, E.I.; Lilly, A.; Nolan, A.; Hudson, G.; Towers, W.; Bell, J.; Coull, M.; McKenzie, C.

    2013-01-01

    Concentrations of selected persistent organic pollutants (POPs) representing three chemical classes (polycyclic aromatic hydrocarbons (PAH), polybrominated diphenyl ethers (PBDE) and polychlorinated biphenyls (PCB) and the organic pollutant diethylhexyl phthalate (DEHP), were determined in surface soil samples (0–5 cm) collected at 20 km grid intersects throughout Scotland over a three-year period. Detectable amounts of all chemical classes and most individual congeners were present in all samples. There were no consistent effects of soil or vegetation type, soil carbon content, pH, altitude or distance from centres of population on concentrations which exhibited extreme variation, even in adjacent samples. It is concluded that soil POPs and DEHP concentrations and associated rates of animal and human exposure were highly variable, influenced by multiple, interacting factors, and not clearly related to local sources but possibly related to wet atmospheric deposition and the organic carbon content of the soil. -- Highlights: •Concentrations of selected organic pollutants in Scottish soils were determined. •Concentrations were highly variable. •There were few effects of soil or vegetation type, soil carbon, pH or altitude. •Distance from cities was not an important determinant of concentrations. •Atmospheric deposition and soil organic carbon content may affect concentrations. -- Soil concentrations of anthropogenic persistent organic pollutants are not clearly related to soil type or pH, vegetation, altitude, or distance from pollutant sources

  5. Application of INAA for chemical quality control analysis of C-C composite and high purity graphite by determining trace elemental concentrations

    International Nuclear Information System (INIS)

    Shinde, Amol D.; Reddy, A.V.R.; Acharya, R.; Venugopalan, Ramani

    2015-01-01

    Carbon based materials like graphite and C-C composites are used for various scientific and technological applications. Owing to its low neutron capture cross section and good moderating properties, graphite is used as a moderator or reflector in nuclear reactors. For high temperature reactors like CHTR, graphite and C-C composites are proposed as structural materials. Studies are in progress to use C-C composites as prospective candidate instead of graphite due to their excellent mechanical and thermal properties. The advantage of carbon-carbon composite is that the microstructure and the properties can be tailor made. Impurities like rare earth elements and neutron poisons which have high neutron absorption cross section and elements whose activation products of have longer half-lives like 60 Co (5.27 y), 65 Zn (244.3 d) and 59 Fe (44.5 d) are not desired in structural materials. For chemical quality control (CQC) it is necessary to evaluate accurately the impurity concentrations using a suitable non-destructive analytical technique. In the present work, two carbon/carbon composite samples and two high purity graphite samples were analyzed by Instrumental Neutron Activation Analysis (INAA) using high-flux reactor neutrons. Samples, sealed in Al foil, were irradiated in tray-rod position of Dhruva reactor, BARC at a neutron flux of ∼ 5 x 10 13 cm -2 s -1 . Radioactive assay was carried out using high resolution gamma ray spectrometry using 40% HPGe detector

  6. Deficiency of Carbonic Anhydrase II Results in a Urinary Concentrating Defect

    Directory of Open Access Journals (Sweden)

    Devishree Krishnan

    2018-01-01

    Full Text Available Carbonic anhydrase II (CAII is expressed along the nephron where it interacts with a number of transport proteins augmenting their activity. Aquaporin-1 (AQP1 interacts with CAII to increase water flux through the water channel. Both CAII and aquaporin-1 are expressed in the thin descending limb (TDL; however, the physiological role of a CAII-AQP1 interaction in this nephron segment is not known. To determine if CAII was required for urinary concentration, we studied water handling in CAII-deficient mice. CAII-deficient mice demonstrate polyuria and polydipsia as well as an alkaline urine and bicarbonaturia, consistent with a type III renal tubular acidosis. Natriuresis and hypercalciuria cause polyuria, however, CAII-deficient mice did not have increased urinary sodium nor calcium excretion. Further examination revealed dilute urine in the CAII-deficient mice. Urinary concentration remained reduced in CAII-deficient mice relative to wild-type animals even after water deprivation. The renal expression and localization by light microscopy of NKCC2 and aquaporin-2 was not altered. However, CAII-deficient mice had increased renal AQP1 expression. CAII associates with and increases water flux through aquaporin-1. Water flux through aquaporin-1 in the TDL of the loop of Henle is essential to the concentration of urine, as this is required to generate a concentrated medullary interstitium. We therefore measured cortical and medullary interstitial concentration in wild-type and CAII-deficient mice. Mice lacking CAII had equivalent cortical interstitial osmolarity to wild-type mice: however, they had reduced medullary interstitial osmolarity. We propose therefore that reduced water flux through aquaporin-1 in the TDL in the absence of CAII prevents the generation of a maximally concentrated medullary interstitium. This, in turn, limits urinary concentration in CAII deficient mice.

  7. Effects of potential and concentration of bicarbonate solution on stress corrosion cracking of annealed carbon steel

    International Nuclear Information System (INIS)

    Haruna, Takumi; Zhu, Liehong; Murakami, Makoto; Shibata, Toshio

    2000-01-01

    Effects of potential and concentration of bicarbonate on stress corrosion cracking (SCC) of annealed SM 400 B carbon steel has been investigated in bicarbonate solutions at 343 K. The surface of annealed specimen had decarburized layer of about 0. 5 mm thickness. A potentiostatic slow strain rate testing apparatus equipped with a charge coupled device camera system was employed to evaluate SCC susceptibility from the viewpoint of the crack behavior. In a constant bicarbonate concentration of 1 M, cracks were observed in the potential range from -800 to 600 mV Ag/ A gCl . and especially, the initiation and the propagation of the cracks were accelerated at -600 mV. At a constant potential of -600 mV, cracks were observed in the concentration range from 0.001 to 1 M, and the initiation and the propagation of the cracks were suppressed as the concentration decreased. Polarization curves for the decarburized surface were measured with two different scan rates. High SCC susceptibility may be expected in the potential range where the difference between the two current densities is large. It was found in this system that the potential with the maximum difference in the current density was -600 mV for 1 M bicarbonate solution, and the potential increased with a decrease in the concentration of bicarbonate. This means that an applied potential of -600 mV provides the highest SCC susceptibility for 1 M bicarbonate solution, and that the SCC susceptibility decreases as the concentration decreases. These findings support the dependence of the actual SCC behavior on the potential and the concentration of bicarbonate. (author)

  8. Structure and Stability of High-Pressure Dolomite with Implications for the Earth's Deep Carbon Cycle

    Science.gov (United States)

    Solomatova, N. V.; Asimow, P. D.

    2014-12-01

    Carbon is subducted into the mantle primarily in the form of metasomatically calcium-enriched basaltic rock, calcified serpentinites and carbonaceous ooze. The fate of these carbonates in subduction zones is not well understood. End-member CaMg(CO3)2 dolomite typically breaks down into two carbonates at 2-7 GPa, which may further decompose to oxides and CO2-bearing fluid. However, high-pressure X-ray diffraction experiments have recently shown that the presence of iron may be sufficient to stabilize dolomite I to high pressures, allowing the transformation to dolomite II at 17 GPa and subsequently to dolomite III at 35 GPa [1][2]. Such phases may be a principal host for deeply subducted carbon. The structure and equation of state of these high-pressure phases is debated and the effect of varying concentrations of iron is unknown, creating a need for theoretical calculations. Here we compare calculated dolomite structures to experimentally observed phases. Using the Vienna ab-initio simulation package (VASP) interfaced with a genetic algorithm that predicts crystal structures (USPEX), a monoclinic phase with space group 5 ("dolomite sg5") was found for pure end-member dolomite. Dolomite sg5 has a lower energy than reported dolomite structures and an equation of state that resembles that of dolomite III. It is possible that dolomite sg5 is not achieved experimentally due to a large energy barrier and a correspondingly large required volume drop, resulting in the transformation to metastable dolomite II. Due to the complex energy landscape for candidate high-pressure dolomite structures, it is likely that several competing polymorphs exist. Determining the behavior of high-pressure Ca-Mg-Fe(-Mn) dolomite phases in subduction environments is critical for our understanding of the Earth's deep carbon cycle and supercell calculations with Fe substitution are in progress. [1] Mao, Z., Armentrout, M., Rainey, E., Manning, C. E., Dera, P., Prakapenka, V. B., and Kavner, A

  9. Hybrid carbon nanostructure assemblage for high performance pseudo-capacitors

    Directory of Open Access Journals (Sweden)

    A. K. Mishra

    2012-06-01

    Full Text Available Investigation of novel nanocomposites for pseudo-capacitors with high capacitance and energy density is the spotlight of current energy research. In the present work, hybrid carbon nanostructure assemblage of graphene and multiwalled carbon nanotubes has been used as carbon support to nanostructured RuO2 and polyaniline for high energy supercapacitors. Maximum specific capacitances of 110, 235 and 440 F g−1 at the voltage sweep rate of 10 mV s−1 and maximum energy densities of 7, 12.5 and 20.5 Wh kg−1 were observed for carbon assemblage and its RuO2 and polyanilne decorated nanocomposites, respectively, with 1M H2SO4 as electrolyte.

  10. Quantification of oxygen and carbon in high Tc superconducting films by (α,α) elastic resonance technique

    International Nuclear Information System (INIS)

    Vizkelethy, G.; Revesz, P.

    1993-01-01

    The quantification of oxygen and carbon in high-temperature (T c ) superconducting oxide thin films was made by employing elastic resonance in He backscattering analysis. A method combining the oxygen resonance technique and channeling was presented for measuring the nature of the oxygen disorder near the surface and the interface in a YBCO superconducting film grown on an MgO substrate. The oxygen resonance technique was used to quantify the oxygen profiling in the metal/YBCO contacts, showing that Zr and Nb act as sinks to oxygen from YBCO films and are oxidized in the forms Zr/ZrO 2 /YBCO/MgO and Nb 0.2 O/YBCO/MgO after annealing in a vacuum at 350 o C. We combined the carbon and oxygen resonances to determine the carbon contamination and oxygen concentration changes on the YBCO surface after coating and baking the photoresist. Residual carbon on the surface and a thin layer of oxygen depletion near the YBCO surface have been observed. The residual carbon in Bi 2 Sr 2 CaCu 2 O 8 films made by the decomposition of metallo-organic precursors was quantified using carbon resonance. (author)

  11. Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by Iron, Copper and Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiang, E-mail: huxiang@mail.buct.edu.cn [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Research Centre for Environmental Pollution Control and Resource Reuse Engineering of Beijing City, Beijing 100029 (China); Zhang, Hua [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Research Centre for Environmental Pollution Control and Resource Reuse Engineering of Beijing City, Beijing 100029 (China); Sun, Zhirong, E-mail: zrsun@bjut.edu.cn [College of Environmental & Energy Engineering, Beijing University of Technology, Beijing 100124 (China)

    2017-01-15

    Graphical abstract: The graphic abstract describes the research that we used modified activated carbons impregnated with iron nitrate, copper nitrate and aluminium nitrate to adsorb ceftazidime from aqueous solution. The surface functional groups of the modified activated carbons were different, and thus resulted in the big difference in the adsorption performance of the modified activated carbons. The theory and the experiments both showed the preferable adsorption of ceftazidime could be achieved on modified activated carbons. - Highlights: • Three modified activated carbons were prepared by impregnating metal nitrate. • Characteristics of the modified activated carbons were analyzed. • Adsorption capacity of ceftazidime on modified activated carbons was improved. • The adsorption behavior of ceftazidime on modified activated carbons were revealed. • The nature of ceftazidime adsorption on modified activated carbons was elucidated. - Abstract: In this paper, three impregnated activated carbon IAC (AC-Cu, AC-Fe, and AC-Al) promoted by Iron, Copper and Aluminum were used for adsorption of ceftazidime. Iron(III), Copper(II) and Aluminum(III) nitrate were used as an impregnant. The IACs were characterized by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS).The influence of factors, such as ion strength, pH, temperature, initial concentration, and concentration of natural organic matter organic matter on the adsorption process were studied. The adsorption kinetics and isotherms of ceftazidime were studied for the three IACs. The results showed that the adsorption was accurately represented by pseudo-second order model. Under different temperature, the maximum adsorption quantity of ceftazidime on AC-Cu calculated by pseudo-second order kinetic model were 200.0 mg g{sup −1} (298 K), 196.1 mg g{sup −1} (303 K) and 185.2 mg g

  12. Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by Iron, Copper and Aluminum

    International Nuclear Information System (INIS)

    Hu, Xiang; Zhang, Hua; Sun, Zhirong

    2017-01-01

    Graphical abstract: The graphic abstract describes the research that we used modified activated carbons impregnated with iron nitrate, copper nitrate and aluminium nitrate to adsorb ceftazidime from aqueous solution. The surface functional groups of the modified activated carbons were different, and thus resulted in the big difference in the adsorption performance of the modified activated carbons. The theory and the experiments both showed the preferable adsorption of ceftazidime could be achieved on modified activated carbons. - Highlights: • Three modified activated carbons were prepared by impregnating metal nitrate. • Characteristics of the modified activated carbons were analyzed. • Adsorption capacity of ceftazidime on modified activated carbons was improved. • The adsorption behavior of ceftazidime on modified activated carbons were revealed. • The nature of ceftazidime adsorption on modified activated carbons was elucidated. - Abstract: In this paper, three impregnated activated carbon IAC (AC-Cu, AC-Fe, and AC-Al) promoted by Iron, Copper and Aluminum were used for adsorption of ceftazidime. Iron(III), Copper(II) and Aluminum(III) nitrate were used as an impregnant. The IACs were characterized by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS).The influence of factors, such as ion strength, pH, temperature, initial concentration, and concentration of natural organic matter organic matter on the adsorption process were studied. The adsorption kinetics and isotherms of ceftazidime were studied for the three IACs. The results showed that the adsorption was accurately represented by pseudo-second order model. Under different temperature, the maximum adsorption quantity of ceftazidime on AC-Cu calculated by pseudo-second order kinetic model were 200.0 mg g"−"1 (298 K), 196.1 mg g"−"1 (303 K) and 185.2 mg g"−"1 (308 K

  13. Combined effect of glycation and sodium carbonate-bicarbonate buffer concentration on IgG binding, IgE binding and conformation of ovalbumin.

    Science.gov (United States)

    Ma, Xiao-juan; Gao, Jin-yan; Chen, Hong-bing

    2013-10-01

    Ovalbumin (OVA) is a major allergen in hen egg. During thermal processing, reducing sugars contained in the hen egg white might easily undergo glycation with OVA, but few studies have been conducted on its corresponding immunoreactivity changes. The aim of the present study was to assess changes of the antigenicity, potential allergenicity and conformation of OVA after glycation in a wet-thermal processing system under different concentrations of sodium carbonate-bicarbonate buffer. IgE binding of the glycated OVA was increased after glycation, and the higher the sodium carbonate-bicarbonate buffer concentration, the higher the IgE binding capacity. The increase in IgE binding of OVA corresponded well with the disruption of the disulfide bond, which exposed the epitopes initially buried. Antigenicity of the glycated OVA was increased, and the amount of the increase varied among samples treated under different buffer concentrations. Glycation increased the allergenic potential for OVA, with the amount of increase varying with different sodium carbonate-bicarbonate buffer concentrations. © 2013 Society of Chemical Industry.

  14. High performance thiol-ene thermosets based on fully bio-based poly(limonene carbonate)s

    NARCIS (Netherlands)

    Li, C.; Johansson, M.; Sablong, R.J.; Koning, C.E.

    2017-01-01

    High glass transition temperature (Tg) thiol-ene networks (TENs) based on poly(limonene carbonate)s (PLCs), derived from orange oils and of potential degradability are described here. PLCs with moderate molecular weight were prepared by copolymerization of limonene oxide with CO2 and subsequent

  15. Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Symko-Davies, M.

    2006-05-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  16. Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations.

    Directory of Open Access Journals (Sweden)

    Amy M Trowbridge

    Full Text Available Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a (13CO(2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus × canescens trees grown and measured at different atmospheric CO(2 concentrations. This is the first study to explicitly consider the effects of altered atmospheric CO(2 concentration on carbon partitioning to isoprene biosynthesis. We studied changes in the proportion of labeled carbon as a function of time in two mass fragments, M41(+, which represents, in part, substrate derived from pyruvate, and M69(+, which represents the whole unlabeled isoprene molecule. We observed a trend of slower (13C incorporation into isoprene carbon derived from pyruvate, consistent with the previously hypothesized origin of chloroplastic pyruvate from cytosolic phosphenolpyruvate (PEP. Trees grown under sub-ambient CO(2 (190 ppmv had rates of isoprene emission and rates of labeling of M41(+ and M69(+ that were nearly twice those observed in trees grown under elevated CO(2 (590 ppmv. However, they also demonstrated the lowest proportion of completely labeled isoprene molecules. These results suggest that under reduced atmospheric CO(2 availability, more carbon from stored/older carbon sources is involved in isoprene biosynthesis, and this carbon most likely enters the isoprene biosynthesis pathway through the pyruvate substrate. We offer direct evidence that extra-chloroplastic rather than chloroplastic carbon sources are mobilized to increase the availability of pyruvate required to up-regulate the isoprene biosynthesis pathway when trees are grown under sub-ambient CO(2.

  17. Atmospheric Carbon Dioxide and its Relation to Carbon Cycle Perturbations During Ocean Anoxic Event 1d: A High Resolution Record From Dispersed Plant Cuticle

    Science.gov (United States)

    Richey, J. D.; Upchurch, G. R.; Joeckel, R.; Smith, J. J.; Ludvigson, G. A.; Lomax, B. H.

    2013-12-01

    Past geological greenhouse intervals are associated with Ocean Anoxic Events (OAEs), which result from an increase in marine primary productivity and/or an increase in the preservation of organic matter. The end point is widespread black shale deposition combined with a long-term atmospheric positive δ13C excursion and an increase in the burial of 12C. Some OAEs show a negative δ13C excursion preceding the positive excursion, indicating a perturbation in the global carbon cycle prior to the initiation of these events. The Rose Creek (RCP) locality, southeastern Nebraska, is the only known terrestrial section that preserves OAE1d (Cretaceous, Albian-Cenomanian Boundary) and has abundant charcoal and plant cuticle. These features allow for a combined carbon isotope and stomatal index (SI) analysis to determine both changes in the cycling between carbon pools (C isotope analysis) and changes in paleo-CO2 via changes in SI. Preliminary (and ongoing) SI data analysis using dispersed cuticle of Pandemophyllum kvacekii (an extinct Laurel) collected at 30 cm intervals indicate changes in SI consistent with changes in CO2. Fitting our samples to a published RCP δ13C profile, pre-excursion CO2 concentrations are high. CO2 decreases to lower concentrations in the basal 1.2 m of the RCP section, where δ13Cbulk shows a negative excursion and δ13Ccharcoal remains at pre-excursion values. CO2 concentrations become higher toward the top of the negative δ13C excursion, where δ13Cbulk and δ13Ccharcoal are at their most negative values, and drop as the negative carbon excursion terminates. Using published transfer functions, we estimate that pre-excursion CO2 concentrations were a maximum of 900 ppm. In the basal 1.2 m of RCP, CO2 drops to a maximum of 480 ppm, and rises to a maximum of 710 ppm near the top of the negative excursion. As δ13C values rise towards pre-excursion values, CO2 declines to a maximum of 400 ppm. The trend in SI is comparable to the trend in δ13

  18. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H S [Finnish Forest Research Inst., Helsinki (Finland); and others

    1997-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  19. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T. [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V. [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H.S. [Finnish Forest Research Inst., Helsinki (Finland)] [and others

    1996-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  20. Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures

    Science.gov (United States)

    Wright, Matthew J.; Ramachandran, Gautham; Williams, Brian E.

    2011-01-01

    Carbon/carbon (C/C) is an established engineering material used extensively in aerospace. The beneficial properties of C/C include high strength, low density, and toughness. Its shortcoming is its limited usability at temperatures higher than the oxidation temperature of carbon . approximately 400 C. Ceramic matrix composites (CMCs) are used instead, but carry a weight penalty. Combining a thin laminate of CMC to a bulk structure of C/C retains all of the benefits of C/C with the high temperature oxidizing environment usability of CMCs. Ultramet demonstrated the feasibility of combining the light weight of C/C composites with the oxidation resistance of zirconium carbide (ZrC) and zirconium- silicon carbide (Zr-Si-C) CMCs in a unique system composed of a C/C primary structure with an integral CMC liner with temperature capability up to 4,200 F (.2,315 C). The system effectively bridged the gap in weight and performance between coated C/C and bulk CMCs. Fabrication was demonstrated through an innovative variant of Ultramet fs rapid, pressureless melt infiltration processing technology. The fully developed material system has strength that is comparable with that of C/C, lower density than Cf/SiC, and ultra-high-temperature oxidation stability. Application of the reinforced ceramic casing to a predominantly C/C structure creates a highly innovative material with the potential to achieve the long-sought goal of long-term, cyclic high-temperature use of C/C in an oxidizing environment. The C/C substructure provided most of the mechanical integrity, and the CMC strengths achieved appeared to be sufficient to allow the CMC to perform its primary function of protecting the C/C. Nozzle extension components were fabricated and successfully hot-fire tested. Test results showed good thermochemical and thermomechanical stability of the CMC, as well as excellent interfacial bonding between the CMC liner and the underlying C/C structure. In particular, hafnium-containing CMCs on

  1. High-temperature carbonates in the Stillwater Complex, Montana, USA

    Science.gov (United States)

    Aird, H. M.; Boudreau, A. E.

    2012-12-01

    The processes involved in the petrogenesis of the sulphide-hosted platinum-group-element (PGE) deposits of the Stillwater Complex are controversial, with theories ranging from the purely magmatic to those involving an aqueous fluid. To further constrain these models, we have been examining the trace phase assemblages in rocks away from the ore zones. High-temperature carbonates have been observed in association with sulphide minerals below the platiniferous J-M Reef of the Stillwater Complex. The carbonate assemblage consists of dolomite with exsolved calcite and is found in contact with sulphide minerals: chalcopyrite and pyrrhotite in the Peridotite Zone; and pyrrhotite with pentlandite, pyrite and chalcopyrite in Gabbronorite I of the Lower Banded Series. The minimal silicate alteration and the lack of greenschist minerals in association with the mineral assemblage are consistent with a high-temperature origin for the carbonates. The calcite-dolomite geothermometer [1] yields a minimum formation temperature of ~900°C for the unmixed assemblages. A reaction rim surrounds the carbonate-sulphide assemblages, showing an alteration of the host orthopyroxene to a more Ca-enriched, Fe-depleted composition. This is consistent with diffusive exchange between carbonates and pyroxenes at high temperatures, mediated by an aqueous fluid. The highly variable molar MnO/FeO ratios in both the high-temperature carbonates and their associated altered pyroxene rims also imply their interaction with a fluid. The carbonate assemblages are consistent with Stillwater fluid inclusion studies [2], showing that fluids comprising coexisting Cl-rich brine and carbonic fluid were trapped in pegmatitic quartz at 700-715°C, some of which also contained "accidental" calcite inclusions. The high Cl-content of apatite [3] found below the platiniferous J-M Reef is further evidence that a Cl-rich fluid was migrating through the rocks beneath the Reef. Carbonates have been shown to be stabilized

  2. ZnO-carbon nanofibers for stable, high response, and selective H2S sensors.

    Science.gov (United States)

    Zhang, Jitao; Zhu, Zijian; Chen, Changmiao; Chen, Zhi; Cai, Mengqiu; Qu, Baihua; Wang, Taihong; Zhang, Ming

    2018-07-06

    Hydrogen sulfide (H 2 S), as a typical atmospheric pollutant, is neurotoxic and flammable even at a very low concentration. In this study, we design stable H 2 S sensors based on ZnO-carbon nanofibers. Nanofibers with 30.34 wt% carbon are prepared by a facial electrospinning route followed by an annealing treatment. The resulting H 2 S sensors show excellent selectivity and response compared to the pure ZnO nanofiber H 2 S sensors, particularly the response in the range of 102-50 ppm of H 2 S. Besides, they exhibited a nearly constant response of approximately 40-20 ppm of H 2 S over 60 days. The superior performance of these H 2 S sensors can be attributed to the protection of carbon, which ensures the high stability of ZnO, and oxygen vacancies that improve the response and selectivity of H 2 S. The good performance of ZnO-carbon H 2 S sensors suggests that composites with oxygen vacancies prepared by a facial electrospinning route may provide a new research strategy in the field of gas sensors, photocatalysts, and semiconductor devices.

  3. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors

    Science.gov (United States)

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-01-01

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g−1 present high specific capacities of the 308 and 200 F g−1 in KOH electrolyte at current densities of 0.1 and 10 A g−1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g−1 at 0.1 A g−1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry. PMID:26472144

  4. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors

    Science.gov (United States)

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-10-01

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g-1 present high specific capacities of the 308 and 200 F g-1 in KOH electrolyte at current densities of 0.1 and 10 A g-1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g-1 at 0.1 A g-1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry.

  5. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Lescord, Gretchen L., E-mail: glescord@gmail.com [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kidd, Karen A. [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kirk, Jane L. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada); O' Driscoll, Nelson J. [Acadia University, 15 University Ave, Wolfville, NS B4P 2R6 (Canada); Wang, Xiaowa; Muir, Derek C.G. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada)

    2015-03-15

    In temperate regions of Canada, mercury (Hg) concentrations in biota and the magnitude of Hg biomagnification through food webs vary between neighboring lakes and are related to water chemistry variables and physical lake features. However, few studies have examined factors affecting the variable Hg concentrations in landlocked Arctic char (Salvelinus alpinus) or the biomagnification of Hg through their food webs. We estimated the food web structure of six high Arctic lakes near Resolute Bay, Nunavut, Canada, using stable carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) isotopes and measured Hg (total Hg (THg) in char, the only fish species, and methylmercury (MeHg) in chironomids and zooplankton) concentrations in biota collected in 2010 and 2011. Across lakes, δ{sup 13}C showed that benthic carbon (chironomids) was the dominant food source for char. Regression models of log Hg versus δ{sup 15}N (of char and benthic invertebrates) showed positive and significant slopes, indicting Hg biomagnification in all lakes, and higher slopes in some lakes than others. However, no principal components (PC) generated using all water chemistry data and physical characteristics of the lakes predicted the different slopes. The PC dominated by aqueous ions was a negative predictor of MeHg concentrations in chironomids, suggesting that water chemistry affects Hg bioavailability and MeHg concentrations in these lower-trophic-level organisms. Furthermore, regression intercepts were predicted by the PCs dominated by catchment area, aqueous ions, and MeHg. Weaker relationships were also found between THg in small char or MeHg in pelagic invertebrates and the PCs dominated by catchment area, and aqueous nitrate and MeHg. Results from these high Arctic lakes suggest that Hg biomagnification differs between systems and that their physical and chemical characteristics affect Hg concentrations in lower-trophic-level biota. - Highlights: • Mercury (Hg) in Arctic char and invertebrates

  6. Influence of contemporary carbon originating from the 2003 Siberian forest fire on organic carbon in PM2.5 in Nagoya, Japan.

    Science.gov (United States)

    Ikemori, Fumikazu; Honjyo, Koji; Yamagami, Makiko; Nakamura, Toshio

    2015-10-15

    In May 2003, high concentrations of organic carbon (OC) in PM2.5 were measured in Nagoya, a representative metropolitan area in Japan. To investigate the influence of possible forest fires on PM2.5 in Japan via long-range aerosol transport, the radiocarbon ((14)C) concentrations of PM2.5 samples from April 2003 to March 2004 were measured. (14)C concentrations in total carbon (TC) from May to early June showed higher values than those in other periods. The OC/elemental carbon (EC) ratios from May to early June were also significantly higher than the ones in other periods. In addition, OC concentrations from May to early June were typically high. These results indicate that the abundant OC fraction from May to early June in Nagoya consisted predominantly of contemporary carbon. Furthermore, simulations of diffusion and transport of organic matter (OM) in East Asia showed that abundant OM originating from East Siberia spread over East Asia and Japan in May and early June. Backward air mass trajectories from this time frame indicate that the air mass in Nagoya likely first passed through East Siberia where fire events were prevalent. However, the backward trajectories showed that the air mass after early June did not originate mainly from Siberia, and correspondingly, the (14)C and OC concentrations showed lower values than those from May to early June. Therefore, the authors conclude that contemporary carbon originating from the forest fire in East Siberia was transported to Nagoya, where it significantly contributed to the high observed concentrations of both OC and (14)C. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collard, L.B.

    2000-09-26

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.

  8. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    International Nuclear Information System (INIS)

    Collard, L.B.

    2000-01-01

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds

  9. Implications for carbon processing beneath the Greenland Ice Sheet from dissolved CO2 and CH4 concentrations of subglacial discharge

    Science.gov (United States)

    Pain, A.; Martin, J.; Martin, E. E.

    2017-12-01

    Subglacial carbon processes are of increasing interest as warming induces ice melting and increases fluxes of glacial meltwater into proglacial rivers and the coastal ocean. Meltwater may serve as an atmospheric source or sink of carbon dioxide (CO2) or methane (CH4), depending on the magnitudes of subglacial organic carbon (OC) remineralization, which produces CO2 and CH4, and mineral weathering reactions, which consume CO2 but not CH4. We report wide variability in dissolved CO2 and CH4 concentrations at the beginning of the melt season (May-June 2017) between three sites draining land-terminating glaciers of the Greenland Ice Sheet. Two sites, located along the Watson River in western Greenland, drain the Isunnguata and Russell Glaciers and contained 1060 and 400 ppm CO2, respectively. In-situ CO2 flux measurements indicated that the Isunnguata was a source of atmospheric CO2, while the Russell was a sink. Both sites had elevated CH4 concentrations, at 325 and 25 ppm CH4, respectively, suggesting active anaerobic OC remineralization beneath the ice sheet. Dissolved CO2 and CH4 reached atmospheric equilibrium within 2.6 and 8.6 km downstream of Isunnguata and Russell discharge sites, respectively. These changes reflect rapid gas exchange with the atmosphere and/or CO2 consumption via instream mineral weathering. The third site, draining the Kiagtut Sermiat in southern Greenland, had about half atmospheric CO2 concentrations (250 ppm), but approximately atmospheric CH4 concentrations (2.1 ppm). Downstream CO2 flux measurements indicated ingassing of CO2 over the entire 10-km length of the proglacial river. CO2 undersaturation may be due to more readily weathered lithologies underlying the Kiagtut Sermiat compared to Watson River sites, but low CH4 concentrations also suggest limited contributions of CO2 and CH4 from OC remineralization. These results suggest that carbon processing beneath the Greenland Ice Sheet may be more variable than previously recognized

  10. Effects of wind farm construction on concentrations and fluxes of dissolved organic carbon and suspended sediment from peat catchments at Braes of Doune, central Scotland

    Directory of Open Access Journals (Sweden)

    I. Grieve

    2008-07-01

    Full Text Available This paper assesses the impacts of disturbance associated with the construction of a wind farm on fluxes of dissolved organic carbon (DOC and suspended sediment from a blanket peat catchment in central Scotland during the period immediately following completion of construction. Six streams draining the site were sampled on six dates from October 2006, when construction was completed, and an additional three control streams to the west of the site were sampled on the same dates. Turbidity and stage were recorded semi-continuously in the two largest streams (one disturbed and one control, which were also sampled during storm events. Absorbance (400 nm and DOC concentrations were determined on all samples, and suspended sediment was determined on the event samples. Absorbance and DOC were closely correlated in both the disturbed and undisturbed streams, with slightly greater absorbance per unit DOC in the disturbed streams. DOC concentrations in disturbed tributaries were always greater than those in undisturbed streams, with mean differences ranging from 2 to around 5 mg L-1. DOC and stage were positively correlated during events with maximum concentrations in excess of 30 mg L 1 at peak flow. Suspended sediment concentrations were markedly elevated in the disturbed stream with maximum concentrations at peak flow some 4–5 times greater than in the control. The colour of the sediment suggested that it was highly organic in nature at peak flow, and suspended particulate organic carbon represented a further loss of C from the site. Using flow-weighted mean DOC concentrations calculated for the storms monitored in autumn 2007, dissolved carbon losses can be estimated for the catchments of the disturbed and control streams. From these data the additional DOC loss related to disturbance associated with the wind farm is estimated at 5 g m-2.

  11. Diffusion barrier coatings for high temperature corrosion resistance of advanced carbon/carbon composites

    International Nuclear Information System (INIS)

    Singh Raman, K.S.

    2000-01-01

    Carbon possesses an excellent combination of mechanical and thermal properties, viz., excellent creep resistance at temperatures up to 2400 deg C in non-oxidizing environment and a low thermal expansion coefficient. These properties make carbon a potential material for very high temperature applications. However, the use of carbon materials at high temperatures is considerably restricted due to their extremely poor oxidation resistance at temperatures above 400 deg C. The obvious choice for improving high temperature oxidation resistance of such materials is a suitable diffusion barrier coating. This paper presents an overview of recent developments in advanced diffusion- and thermal-barrier coatings for ceramic composites, with particular reference to C/C composites. The paper discusses the development of multiphase and multi-component ceramic coatings, and recent investigations on the oxidation resistance of the coated C/C composites. The paper also discusses the cases of innovative engineering solutions for traditional problems with the ceramic coatings, and the scope of intelligent processing in developing coatings for the C/C composites. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  12. Carbon transport and fuel retention in JT-60U with high temperature operation based on postmortem analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, M., E-mail: yoshida.masafumi@jaea.go.jp [Japan Atomic Energy Agency, Mukoyama 801-1, Naka-shi, Ibaraki-ken 311-0193 (Japan); Tanabe, T.; Adachi, A. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Hayashi, T.; Nakano, T.; Fukumoto, M.; Yagyu, J.; Miyo, Y.; Masaki, K.; Itami, K. [Japan Atomic Energy Agency, Mukoyama 801-1, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2013-07-15

    Fuel retention rates and carbon re-deposition rates in the plasma shadowed areas, or tile gaps and remote areas, in JT-60U were measured. The total fuel retention rate in the plasma shadowed areas was more than two times higher than that in the carbon re-deposited layers on the plasma facing surfaces, or the divertor tiles. This is because of lower temperature in the plasma shadowed areas than in the plasma facing surfaces, which leads to high hydrogen saturation concentration, although the amount of the carbon re-deposited on the plasma shadowed areas was only 60% of that on the plasma facing surfaces. The total fuel retention rate in JT-60U, including previously determined for all the plasma facing areas, was evaluated to be 1.3 × 10{sup 20} H + D s{sup −1}, and this retention rate was lower than that in the other devices, due probably to high baking temperature operation in JT-60U. Distributions of the fuel retention and the carbon re-deposition in the whole in-vessel of a large tokamak were determined for the first time in the world.

  13. Carbon transport and fuel retention in JT-60U with high temperature operation based on postmortem analysis

    International Nuclear Information System (INIS)

    Yoshida, M.; Tanabe, T.; Adachi, A.; Hayashi, T.; Nakano, T.; Fukumoto, M.; Yagyu, J.; Miyo, Y.; Masaki, K.; Itami, K.

    2013-01-01

    Fuel retention rates and carbon re-deposition rates in the plasma shadowed areas, or tile gaps and remote areas, in JT-60U were measured. The total fuel retention rate in the plasma shadowed areas was more than two times higher than that in the carbon re-deposited layers on the plasma facing surfaces, or the divertor tiles. This is because of lower temperature in the plasma shadowed areas than in the plasma facing surfaces, which leads to high hydrogen saturation concentration, although the amount of the carbon re-deposited on the plasma shadowed areas was only 60% of that on the plasma facing surfaces. The total fuel retention rate in JT-60U, including previously determined for all the plasma facing areas, was evaluated to be 1.3 × 10 20 H + D s −1 , and this retention rate was lower than that in the other devices, due probably to high baking temperature operation in JT-60U. Distributions of the fuel retention and the carbon re-deposition in the whole in-vessel of a large tokamak were determined for the first time in the world

  14. High Temperature Resin/Carbon Nanotube Composite Fabrication

    Science.gov (United States)

    Ghose, Sayata; Watson, Kent A.; Sun, Keun J.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.

    2006-01-01

    For the purpose of incorporating multifunctionality into advanced composites, blends of phenylethynyl terminated imides-330 (PETI-330) and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to approximately 300 g and used to fabricate moldings by injecting the mixtures at 260-280 deg C into a stainless steel tool followed by curing for 1 h at 371 deg C. The tool was designed to impart a degree of shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Obtained moldings were subsequently characterized for thermal, mechanical, and electrical properties. The degree of dispersion and alignment of MWCNTs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed.

  15. High-resolution mapping of forest carbon stocks in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    G. P. Asner

    2012-07-01

    Full Text Available High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40% of the Colombian Amazon – a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i employing a universal approach to airborne LiDAR-calibration with limited field data; (ii quantifying environmental controls over carbon densities; and (iii developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  16. Introduction of high oxygen concentrations into silicon wafers by high-temperature diffusion

    International Nuclear Information System (INIS)

    Casse, G.; Glaser, M.; Lemeilleur, F.; Ruzin, A.; Wegrzecki, M.

    1999-01-01

    The tolerance of silicon detectors to hadron irradiation can be improved by the introduction of a high concentration of oxygen into the starting material. High-resistivity Floating-Zone (FZ) silicon is required for detectors used in particle physics applications. A significantly high oxygen concentration (>10 17 atoms cm -3 ) cannot readily be achieved during the FZ silicon refinement. The diffusion of oxygen at elevated temperatures from a SiO 2 layer grown on both sides of a silicon wafer is a simple and effective technique to achieve high and uniform concentrations of oxygen throughout the bulk of a 300 μm thick silicon wafer

  17. Correlation between air flow rate and pollutant concentrations during two-stage oak log combustion in a 25 KW residential boiler

    Directory of Open Access Journals (Sweden)

    Juszczak Marek

    2016-09-01

    Full Text Available It can be expected that there is a considerable correlation between combustion air flow rate and the concentrations of carbon monoxide, hydrocarbons and nitrogen oxide in the flue gas. The influence of temperature and oxygen concentration in the combustion zone on the concentrations of carbon monoxide, hydrocarbons and nitrogen oxide in the flue gas, for high and low combustion air flow, was analysed. Oxygen concentration for which the concentration of carbon monoxide is the lowest was determined, as well as the mutual relation between carbon monoxide and nitrogen oxide concentration.

  18. Large reductions in urban black carbon concentrations in the United States between 1965 and 2000

    Science.gov (United States)

    Kirchstetter, Thomas W.; Preble, Chelsea V.; Hadley, Odelle L.; Bond, Tami C.; Apte, Joshua S.

    2017-02-01

    Long-term pollutant concentration trends can be useful for evaluating air quality effects of emission controls and historical transitions in energy sources. We employed archival records of coefficient of haze (COH), a now-retired measure of light-absorbing particulate matter, to re-construct historical black carbon (BC) concentrations at urban locations in the United States (U.S.). The following relationship between COH and BC was determined by reinstating into service COH monitors beside aethalometers for two years in Vallejo and one year in San Jose, California: BC (μg m-3) = 6.7COH + 0.1, R2 = 0.9. Estimated BC concentrations in ten states stretching from the East to West Coast decreased markedly between 1965 and 1980: 5-fold in Illinois, Ohio, and Virginia, 4-fold in Missouri, and 2.5-fold in Pennsylvania. Over the period from the mid-1960s to the early 2000s, annual average BC concentrations in New Jersey and California decreased from 13 to 2 μg m-3 and 4 to 1 μg m-3, respectively, despite concurrent increases in fossil fuel consumption from 1.6 to 2.1 EJ (EJ = 1018 J) in New Jersey and 4.2 to 6.4 EJ in California. New Jersey's greater reliance on BC-producing heavy fuel oils and coal in the 1960s and early 1970s and subsequent transition to cleaner fuels explains why the decrease was larger in New Jersey than California. Patterns in seasonal and weekly BC concentrations and energy consumption trends together indicate that reducing wintertime emissions - namely substituting natural gas and electricity for heavy fuel oil in the residential sector - and decreasing emissions from diesel vehicles contributed to lower ambient BC concentrations. Over the period of study, declining concentrations of BC, a potent and short-lived climate warming pollutant, contrast increasing fossil fuel carbon dioxide (CO2) emissions in the U.S. Declining BC emissions may have had the benefit of mitigating some atmospheric warming driven by increased CO2 emissions with

  19. High-Level Heteroatom Doped Two-Dimensional Carbon Architectures for Highly Efficient Lithium-Ion Storage

    Directory of Open Access Journals (Sweden)

    Zhijie Wang

    2018-04-01

    Full Text Available In this work, high-level heteroatom doped two-dimensional hierarchical carbon architectures (H-2D-HCA are developed for highly efficient Li-ion storage applications. The achieved H-2D-HCA possesses a hierarchical 2D morphology consisting of tiny carbon nanosheets vertically grown on carbon nanoplates and containing a hierarchical porosity with multiscale pore size. More importantly, the H-2D-HCA shows abundant heteroatom functionality, with sulfur (S doping of 0.9% and nitrogen (N doping of as high as 15.5%, in which the electrochemically active N accounts for 84% of total N heteroatoms. In addition, the H-2D-HCA also has an expanded interlayer distance of 0.368 nm. When used as lithium-ion battery anodes, it shows excellent Li-ion storage performance. Even at a high current density of 5 A g−1, it still delivers a high discharge capacity of 329 mA h g−1 after 1,000 cycles. First principle calculations verifies that such unique microstructure characteristics and high-level heteroatom doping nature can enhance Li adsorption stability, electronic conductivity and Li diffusion mobility of carbon nanomaterials. Therefore, the H-2D-HCA could be promising candidates for next-generation LIB anodes.

  20. [Effect of carbon substrate concentration on N2, N2O, NO, CO2, and CH4 emissions from a paddy soil in anaerobic condition].

    Science.gov (United States)

    Chen, Nuo; Liao, Ting-ting; Wang, Rui; Zheng, Xun-hua; Hu, Rong-gui; Butterbach-Bahl, Klaus

    2014-09-01

    Understanding the effects of carbon and nitrogen substrates concentrations on the emissions of denitrification gases including nitrogen (N2) , nitrous oxide (N2O) and nitric oxide (NO), carbon dioxide (CO2) and methane (CH4) from anaerobic paddy soils is believed to be helpful for development of greenhouse gas mitigation strategies. Moreover, understanding the quantitative dependence of denitrification products compositions on carbon substrate concentration could provide some key parameters or parameterization scheme for developing process-oriented model(s) of nitrogen transformation. Using a silt loam soil collected from a paddy field, we investigated the influence of carbon substrate concentration on the emissions of the denitrification gases, CO2 and CH4 from anaerobically incubated soils by setting two treatments: control (CK) with initial soil nitrate and dissolved organic carbon (DOC) concentrations of ~ 50 mg.kg-1 and -28 mg kg-1 , respectively; and DOC added (C + ) with initial soil nitrate and DOC concentrations of ~50 mg.kg-1 and ~300 mg.kg-1 , respectively. The emissions of denitrification gases, CO2 and CH4, as well as concentrations of carbon and nitrogen substrates for each treatment were dynamically measured, using the gas-flow-soil-core technique and a paralleling substrate monitoring system. The results showed that CH4 emission was not observed in CK treatment while observed in C treatment. Aggregate emission of greenhouse gases for C + treatment was significantly higher comparing with the CK treatment (P emissions in total nitrogen gases emissions were approximately 9% , 35% and 56% for CK treatment, respectively; and approximately 31% , 50% and 19% for C+ treatment, respectively, with significant differences between these two treatments (P carbon substrate concentrations can significantly change the composition of nitrogen gas emissions. The results also implicated that organic fertilizer should not be applied to nitrate-rich paddy soils prior to

  1. Effects of carbonate and sulphate ions in synthetic groundwater on high-level waste glass leaching

    International Nuclear Information System (INIS)

    Kamizono, H.

    1990-01-01

    This laboratory experiment aims to examine the effects of rare earth carbonate and sulphate ions, that are naturally present in underground water, have on glass used to store high-level radioactive waste for disposal underground. Borosilicate glass (or HLW glass) is stored under observation on the land surface for several decades before being buried deep below ground in geological disposal sites. Two types of precipitation occur during leaching from the glass, immediate formation of a hydrated surface layer and slow precipitation from concentration in the leachates. This slow process of some elements precipitating onto the glass surface or into the leachates is examined in this experiment using scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). Carbonates from rare-earth elements are found in the synthetic groundwater used. It is shown that carbonate and sulphate ions will affect leaching and will occur in geological disposal sites. Other particles were also observed to precipitate using SEM-EDX. (author)

  2. Personal carbon monoxide exposures of preschool children in Helsinki, Finland - comparison to ambient air concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Alm, S.; Mukala, K.; Tittanen, P.; Jantunen, M.J. [KTL National Public Health Institute, Kuopio (Finland). Dept. of Environmental Health

    2001-07-01

    The associations of personal carbon monoxide (CO) exposures with ambient air CO concentrations measured at fixed monitoring sites, were studied among 194 children aged 3-6yr in four downtown and four suburban day-care centers in Helsinki, Finland. Each child carried a personal CO exposure monitor between 1 and 4 times for a time period of between 20 and 24h. CO concentrations at two fixed monitoring sites were measured simultaneously. The CO concentrations measured at the fixed monitoring sites were usually lower (mean maximum 8-h concentration: 0.9 and 2.6mgm{sup -3}) than the personal CO exposure concentrations (mean maximum 8-h concentration: 3.3mgm{sup -3}).The fixed site CO concentrations were poor predictors of the personal CO exposure concentrations. However, the correlations between the personal CO exposure and the fixed monitoring site CO concentrations increased (-0.03 -- -0.12 to 0.13-0.16) with increasing averaging times from 1 to 8h. Also, the fixed monitoring site CO concentrations explained the mean daily or weekly personal CO exposures of a group of simultaneously measured children better than individual exposure CO concentrations. This study suggests that the short-term CO personal exposure of children cannot be meaningfully assessed using fixed monitoring sites. (author)

  3. Confinement of hydrogen at high pressure in carbon nanotubes

    Science.gov (United States)

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  4. Lignification in beech grown at elevated CO2 concentrations: interaction with nutrient availability and leaf maturation

    International Nuclear Information System (INIS)

    Blaschke, L; Forstreuter, M.; Sheppard, L. J.; Leith, K.; Murray, M. B.; Polle, A.

    2002-01-01

    Results of a study undertaken to investigate contradictory observations reported in the literature to the effect that growth in elevated carbon dioxide affects ontogeny, are discussed. Results of this study showed that seedlings grown at elevated carbon dioxide had nitrogen concentrations of about 15 per cent lower than seedlings grown in ambient carbon dioxide. Elevated carbon dioxide caused increased growth and biomass production in trees with a medium to high nutrient supply, but had no effect on growth of trees with a low nutrient supply rate. Because elevated carbon dioxide enhanced seedling growth in the high nutrient supply treatments, the total amount of lignin produced per seedling was higher in these treatments. Overall, the results suggest that carbon dioxide availability does not directly affect lignin concentrations, but affects them indirectly through the effects on or an interaction with nitrogen supply and growth. In seedlings, elevated carbon dioxide reduced lignin concentration on a dry mass basis, indicating diminished wood quality in a carbon dioxide-enriched atmosphere. 51 refs., 2 tabs., 5 figs

  5. Extremely high concentration of folates in premature newborns.

    Science.gov (United States)

    Zikavska, T; Brucknerova, I

    2014-01-01

    Extremely high concentration of folates in premature newborns: case reports. Folates are a group of water soluble compounds, which are important for metabolic processes in human body. These are important during periods of rapid cell growth. The most accurate indicator of long-term folate level status in the body is the determination of red blood cell (RBC) folate concentrations. The optimal level of RBC folate is not known in neonatal period. Authors discuss the reasons for extremely high level of RBC folate concentrations. In our work we present the cases of two premature newborns with extremely high level of RBC folate concentrations, which were analyzed immunochemically on the first day of life and after six weeks of life. In both cases we measured RBC folate concentrations on the 1st day of life. After 6 weeks we found extremely high RBC folate concentration level (5516.67 ng/ml) in the first case after RBC transfusions. In second case after two months of life the RBC folate concentration level was doubled (2335.1 ng/ml) until 24 hours after RBC transfusion compared to levels after birth. The normal range of RBC folate values vary in newborns. The upper limit of daily dose of folic acid in pregnancy and neonatal period is not known. On the other hand it is an easily excreted water-soluble vitamin but in premature newborn it can lead to the disruption of metabolic balance and slow its degradation. Some factors can have an impact on RBC folate concentration. Blood transfusion can be one of the main influences on RBC folate concentration. To clarify these mechanisms further studies are required (Ref. 29).

  6. Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors

    Science.gov (United States)

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-08-01

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp2 carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp2 carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance.

  7. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.

    1996-01-01

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  8. Evaluation of various carbon blacks and dispersing agents for use in the preparation of uranium microspheres with carbon

    Science.gov (United States)

    Hunt, R. D.; Johnson, J. A.; Collins, J. L.; McMurray, J. W.; Reif, T. J.; Brown, D. R.

    2018-01-01

    A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC2), which is UC1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UC2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90-92% of TD with full conversion of UC to UC2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC2. The selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.

  9. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors

    Science.gov (United States)

    Bao, Weizhai; Mondal, Anjon Kumar; Xu, Jing; Wang, Chengyin; Su, Dawei; Wang, Guoxiu

    2016-09-01

    We report a rational design and synthesis of 3D hybrid-porous carbon with a hierarchical pore architecture for high performance supercapacitors. It contains micropores (<2 nm diameter) and mesopores (2-4 nm), derived from carbonization of unique porous metal organic frameworks (MOFs). Owning to the synergistic effect of micropores and mesopores, the hybrid-porous carbon has exceptionally high ion-accessible surface area and low ion diffusion resistance, which is desired for supercapacitor applications. When applied as electrode materials in supercapacitors, 3D hybrid-porous carbon demonstrates a specific capacitance of 332 F g-1 at a constant charge/discharge current of 500 mA g-1. The supercapacitors can endure more than 10,000 cycles without degradation of capacitance.

  10. The regeneration of polluted active carbon by radiation techniques

    International Nuclear Information System (INIS)

    Bao Borong; Wu Minghong; Hu Longxin; Zhou Riumin; Zhu Jinliang

    1998-01-01

    In this paper, we investigated the regeneration of polluted active carbon from monosodium glutamate factory by combination of radiation and acid-alkali chemical techniques. The experimental results show that the polluted active carbon will be highly regenerated on the conditions of process concentration 3%, process time 0.5 hour and the adjustment process concentration 2%, time 0.5 hour, radiation dose 5kGy. As regeneration times increase, the regenerated active carbon behaves with good repetition and stable property

  11. Highly Enhanced Raman Scattering on Carbonized Polymer Films.

    Science.gov (United States)

    Yoon, Jong-Chul; Hwang, Jongha; Thiyagarajan, Pradheep; Ruoff, Rodney S; Jang, Ji-Hyun

    2017-06-28

    We have discovered a carbonized polymer film to be a reliable and durable carbon-based substrate for carbon enhanced Raman scattering (CERS). Commercially available SU8 was spin coated and carbonized (c-SU8) to yield a film optimized to have a favorable Fermi level position for efficient charge transfer, which results in a significant Raman scattering enhancement under mild measurement conditions. A highly sensitive CERS (detection limit of 10 -8 M) that was uniform over a large area was achieved on a patterned c-SU8 film and the Raman signal intensity has remained constant for 2 years. This approach works not only for the CMOS-compatible c-SU8 film but for any carbonized film with the correct composition and Fermi level, as demonstrated with carbonized-PVA (poly(vinyl alcohol)) and carbonized-PVP (polyvinylpyrollidone) films. Our study certainly expands the rather narrow range of Raman-active material platforms to include robust carbon-based films readily obtained from polymer precursors. As it uses broadly applicable and cheap polymers, it could offer great advantages in the development of practical devices for chemical/bio analysis and sensors.

  12. Stress concentration effects in high pressure components

    International Nuclear Information System (INIS)

    Aller, J.E.

    1990-01-01

    This paper examines the stress concentration effects of sideholes in thick walled, high pressure cylinders. It has been shown that the theoretical stress concentration factor at the intersection of a small crossbore in a closed end, thick walled cylinder varies between 3.0 and 4.0. Tests have shown that this effect can be greatly reduced in practice by carefully radiusing the bore intersection and autofrettaging the cylinder. It has also been shown that the minimum stress concentration factor occurs when the main bore and sidehole or crossbore have the same diameter, and the radius of the intersection is approximately equal to the sidehole radius. When the bore and sidehole intersection angle decreases from 90 degrees, the stress concentration factor increases significantly. Knowledge of these fundamental relationships can be used in maintaining, as well ad designing, high pressure equipment

  13. Convergent Evolution towards High Net Carbon Gain Efficiency Contributes to the Shade Tolerance of Palms (Arecaceae.

    Directory of Open Access Journals (Sweden)

    Ren-Yi Ma

    Full Text Available Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn, which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems.

  14. Black carbon and particulate matter (PM2.5) concentrations in New York City's subway stations.

    Science.gov (United States)

    Vilcassim, M J Ruzmyn; Thurston, George D; Peltier, Richard E; Gordon, Terry

    2014-12-16

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m(3), with 1 min average peaks >100 μg/m(3), while real time PM2.5 levels ranged from 35 to 200 μg/m(3). Mean EC levels ranged from 9 to 12.5 μg/m(3). At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m(3), respectively. This study shows that both BC soot and PM levels in NYC's subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted.

  15. Method and device for secure, high-density tritium bonded with carbon

    Science.gov (United States)

    Wertsching, Alan Kevin; Trantor, Troy Joseph; Ebner, Matthias Anthony; Norby, Brad Curtis

    2016-04-05

    A method and device for producing secure, high-density tritium bonded with carbon. A substrate comprising carbon is provided. A precursor is intercalated between carbon in the substrate. The precursor intercalated in the substrate is irradiated until at least a portion of the precursor, preferably a majority of the precursor, is transmutated into tritium and bonds with carbon of the substrate forming bonded tritium. The resulting bonded tritium, tritium bonded with carbon, produces electrons via beta decay. The substrate is preferably a substrate from the list of substrates consisting of highly-ordered pyrolytic graphite, carbon fibers, carbon nanotunes, buckministerfullerenes, and combinations thereof. The precursor is preferably boron-10, more preferably lithium-6. Preferably, thermal neutrons are used to irradiate the precursor. The resulting bonded tritium is preferably used to generate electricity either directly or indirectly.

  16. High performance dendrimer functionalized single-walled carbon nanotubes field effect transistor biosensor for protein detection

    Science.gov (United States)

    Rajesh, Sharma, Vikash; Puri, Nitin K.; Mulchandani, Ashok; Kotnala, Ravinder K.

    2016-12-01

    We report a single-walled carbon nanotube (SWNT) field-effect transistor (FET) functionalized with Polyamidoamine (PAMAM) dendrimer with 128 carboxyl groups as anchors for site specific biomolecular immobilization of protein antibody for C-reactive protein (CRP) detection. The FET device was characterized by scanning electron microscopy and current-gate voltage (I-Vg) characteristic studies. A concentration-dependent decrease in the source-drain current was observed in the regime of clinical significance, with a detection limit of ˜85 pM and a high sensitivity of 20% change in current (ΔI/I) per decade CRP concentration, showing SWNT being locally gated by the binding of CRP to antibody (anti-CRP) on the FET device. The low value of the dissociation constant (Kd = 0.31 ± 0.13 μg ml-1) indicated a high affinity of the device towards CRP analyte arising due to high anti-CRP loading with a better probe orientation on the 3-dimensional PAMAM structure.

  17. Case study of elevated layers of high sulfate concentration

    International Nuclear Information System (INIS)

    McNaughton, D.J.; Orgill, M.M.

    1979-01-01

    During studies in August 1976 that were part of the Multi-State Atmospheric Power Production Pollutant Study (MAP3S), Alkezweeny et al., (1977) noted that in the Milwaukee urban plume, layers of relatively high sulfate concentrations occurred at high altitudes with respect to the boundary layer. This paper represents a progress report on studies undertaken to investigate possible causes for a bimodel vertical profile of sulfate concentrations. Data presented by Alkezweeny et al., (1977) serve as a basis for this study. Data from August 23, 1976, and August 24, 1978, indicate concentrations relatively high in sulfate, at 1000 and 6000 ft, respectively, with lower concentrations at lower altitudes. Concentrations of trace metals also indicate no peaks in the vertical concentration profiles above the surface. Initial studies of the high, elevated sulfate concentrations have centered on the August 23 measurements taken over southeast Wisconsin using synoptic data from the national weather service, emissions data from the national emissions data bank system (EPA), air quality data from the national air surveillance network (EPA), and satellite photographs from the EROS Data Center

  18. Carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  19. Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Ma, Xiaoliang; Liu, Guimin; Wu, Xiaodong; Smoak, Joseph M; Ye, Linlin; Xu, Haiyan; Zhao, Lin; Ding, Yongjian

    2018-07-15

    The Qinghai-Tibetan plateau (QTP) stores a large amount of soil organic carbon and is the headwater region for several large rivers in Asia. Therefore, it is important to understand the influence of environmental factors on river water quality and the dissolved organic carbon (DOC) export in this region. We examined the water physico-chemical characteristics, DOC concentrations and export rates of 7 rivers under typical land cover types in the Three Rivers Headwater Region during August 2016. The results showed that the highest DOC concentrations were recorded in the rivers within the catchment of alpine wet meadow and meadow. These same rivers had the lowest total suspended solids (TSS) concentrations. The rivers within steppe and desert had the lowest DOC concentrations and highest TSS concentrations. The discharge rates and catchment areas were negatively correlated with DOC concentrations. The SUVA 254 values were significantly negatively correlated with DOC concentrations. The results suggest that the vegetation degradation, which may represent permafrost degradation, can lead to a decrease in DOC concentration, but increasing DOC export and soil erosion. In addition, some of the exported DOC will rapidly decompose in the river, and therefore affect the regional carbon cycle, as well as the water quality in the source water of many large Asian rivers. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Holographic interferometry as electrochemical emission spectroscopy of carbon steel in seawater with low concentration of RA-41 corrosion inhibitor

    International Nuclear Information System (INIS)

    Habib, K.; Al-Muhana, K.; Habib, A.

    2009-01-01

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the number of the fringe evolutions during the corrosion test of carbon steel in blank seawater and with seawater with different concentrations of a corrosion inhibitor. In other words, the anodic dissolution behaviors (corrosion) of the carbon steel were determined simultaneously by holographic interferometry, an electromagnetic method, and by the electrochemical impedance (EI) spectroscopy, an electronic method. So, the abrupt rate change of the number of the fringe evolutions during corrosion test (EI) spectroscopy, of the carbon steel is called electrochemical emission spectroscopy. The corrosion process of the steel samples was carried out in blank seawater and seawater with different concentrations, 5-20 ppm, of RA-41 corrosion inhibitor using the EI spectroscopy method, at room temperature. The electrochemical emission spectra of the carbon steel in different solutions represent a detailed picture of the rate change of the anodic dissolution of the steel throughout the corrosion processes. Furthermore, the optical interferometry data of the carbon steel were compared to the data, which were obtained from the EI spectroscopy. Consequently, holographic interferometric is found very useful for monitoring the anodic dissolution behaviors of metals, in which the number of the fringe evolutions of the steel samples can be determined in situ. (Author)

  1. Acetate biodegradation by anaerobic microorganisms at high pH and high calcium concentration

    International Nuclear Information System (INIS)

    Yoshida, Takahiro

    2011-01-01

    Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14 C compounds in cementitious repositories. Tamagawa river sediment or Teganuma pond sediment was anaerobically cultured with 5 mM acetate and 10 mM nitrate at pH 9.5-12 at 30 o C. After 20 and 90 days, the acetate concentration of the culture medium was analyzed and found to have decreased below 5 mM at pH ≤ 11. On the other hand, it did not decrease when either sediment was incubated in the absence of nitrate. These results suggest that nitrate-reducing bacteria can biodegrade acetate under more alkaline conditions than the reported pH range in which nitrate-reducing bacteria can exhibit activity. Acetate biodegradation was also examined at a high calcium concentration. Sediments were anaerobically cultured at pH 9.5 with 5 mM acetate and 10 mM nitrate in solution, equilibrated with ordinary Portland cement hydrate, in which the Ca concentration was 14.6 mM. No decrease in acetate concentration after incubation of the sediments was observed, nor was it lower than in the absence of cementitious composition, suggesting that kinetics of acetate biodegradation by anaerobic microorganisms is lowered by a high Ca concentration. - Research highlights: → Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14 C compounds in cementitious repositories. → Nitrate-reducing bacteria can biodegrade acetate at pH ≤ 11. → Kinetics of acetate biodegradation by anaerobic microorganisms might be lowered by a high Ca concentration.

  2. Does carbon isotope data help explain atmospheric CO2 concentrations during glacial periods?

    International Nuclear Information System (INIS)

    Alverson, K.; Le Grand, P.

    2002-01-01

    An inverse ocean box modeling approach is used to address the question of what may have caused decreased atmospheric CO 2 concentration during glacial periods. The inverse procedure seeks solutions that are consistent, within prescribed uncertainties, with both available paleodata constraints and box model conservation equations while relaxing traditional assumptions such as exact steady state and precise prescription of uncertain model parameters. Decreased ventilation of Southern Ocean deep water, decreased Southern Ocean air-sea gas exchange, and enhanced high latitude biological pumping are all shown to be individually capable of explaining available paleodata constraints provided that significant calcium carbonate compensation is allowed. None of the scenarios require more than a very minor (order 1 deg. C) glacial reduction in low to mid latitude sea surface temperature although scenarios with larger changes are equally plausible. One explanation for the fairly wide range of plausible solutions is that most paleo-data directly constrain the inventory of paleo-tracers but only indirectly constrain their fluxes. Because the various scenarios that have been proposed to explain pCO 2 levels during the last glacial maximum are distinguished primarily by different fluxes, the data, including ocean 13 C concentrations, do not allow one to confidently chose between them. Oceanic 14 C data for the last glacial maximum, which can constrain water mass fluxes, present an excellent potential solution to this problem if their reliability is demonstrated in the future. (author)

  3. Martensitic transformations, structure, and strengthness of processed high-nitrogen and high-carbon ferrous alloys

    Science.gov (United States)

    Kaputkina, L. M.; Prokoshkina, V. G.

    2003-10-01

    Structures and properties of metastable austenitic alloys Fe-18Cr-16Ni-I2Mn-(0.17 to 0. 50)N, Fe-18Cr-12Mn-(0.48 to 1.12)N, Fe-18Cr-(0.1 to 1.18)N, and Fe-(12 to 20)Ni-(0.6 to 1.3)C, Fe-(6 to 8)Mn-(0.6 to 1.0)C, Fe-(5 to 6)Cr-(4 to 5)Mn-(0.6 to 0.8)C, Fe-6Cr-(1.0 to 1.3)C resulting from martensitic transformations under cooling and cold deformation (CD), as well as following tempering processes, were studied by magnetometry, X-ray and electron microscopy analyses, hardness measurements and mechanical properties tests. Martensite with a b.c.t. lattice was formed in all alloys with M_s{>}-196^circC during cooling. Under CD transformations of γ{to}α, γ{to}\\varepsilon{to}α, or γ{to}\\varepsilon types were realized depending on the alloy composition. Carbon increased but nitrogen decreased stacking fault energy. Thus carbon assists α-martensite formation but nitrogen promotese. As CD level and/or concentration of carbon and nitrogen increase residual stresses resulting from the CD also increase. The martensitic transformation during CD can decrease the residual stresses. Kinetic of tempering of b.c.t. thermal martensite differs from those of CD-induced martensite. In the second case, deformation aging, texture, and residual stresses are more visible. The maximal strengthening under CD takes place in (Mn+N)-steels. (Cr+N) and (Cr+Mn+N)-steels are high-strength, non-magnetic and corrosion resistant and are easily hardened by a low level of plastic deformation.

  4. High-performance carbon nanotube-reinforced bioplastic

    CSIR Research Space (South Africa)

    Ramontja, J

    2009-12-01

    Full Text Available -1 High-Performance Carbon Nanotube-Reinforced Bioplastic 1. James Ramontja1,2, 2. Suprakas Sinha Ray1,*, 3. Sreejarani K. Pillai1, 4. Adriaan S. Luyt2 1. 1 DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials...

  5. Converting biomass waste into microporous carbon with simultaneously high surface area and carbon purity as advanced electrochemical energy storage materials

    Science.gov (United States)

    Sun, Fei; Wang, Lijie; Peng, Yiting; Gao, Jihui; Pi, Xinxin; Qu, Zhibin; Zhao, Guangbo; Qin, Yukun

    2018-04-01

    Developing carbon materials featuring both high accessible surface area and high structure stability are desirable to boost the performance of constructed electrochemical electrodes and devices. Herein, we report a new type of microporous carbon (MPC) derived from biomass waste based on a simple high-temperature chemical activation procedure. The optimized MPC-900 possesses microporous structure, high surface area, partially graphitic structure, and particularly low impurity content, which are critical features for enhancing carbon-based electrochemical process. The constructed MPC-900 symmetric supercapacitor exhibits high performances in commercial organic electrolyte such as widened voltage window up to 3 V and thereby high energy/power densities (50.95 Wh kg-1 at 0.44 kW kg-1; 25.3 Wh kg-1 at 21.5 kW kg-1). Furthermore, a simple melt infiltration method has been employed to enclose SnO2 nanocrystals onto the carbon matrix of MPC-900 as a high-performance lithium storage material. The obtained SnO2-MPC composite with ultrafine SnO2 nanocrystals delivers high capacities (1115 mAh g-1 at 0.2 A g-1; 402 mAh g-1 at 10 A g-1) and high-rate cycling lifespan of over 2000 cycles. This work not only develops a microporous carbon with high carbon purity and high surface area, but also provides a general platform for combining electrochemically active materials.

  6. Large-scale synthesis of onion-like carbon nanoparticles by carbonization of phenolic resin

    International Nuclear Information System (INIS)

    Zhao Mu; Song Huaihe; Chen Xiaohong; Lian Wentao

    2007-01-01

    Onion-like carbon nanoparticles have been synthesized on a large scale by carbonization of phenolic-formaldehyde resin at 1000 o C with the aid of ferric nitrate (FN). The effects of FN loading content on the yield, morphology and structure of carbonized products were investigated using transmission electron microscopy (TEM), high-resolution TEM and X-ray diffraction. It was found that the onion-like carbon nanoparticles, which had a narrow size distribution ranging from 30 to 50 nm, were composed mainly of quasi-spherically concentric shells of well-aligned graphene layers with interlayer spacing of 0.336 nm. Based on the results of the investigation, the formation mechanism of onion-like carbon nanoparticles was also discussed

  7. High performance all-carbon composite transparent electrodes containing uniform carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyung Duk; Kwak, Jinsung; Kim, Se-Yang [School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of); Seo, Han; Bang, In Cheol; Kim, Sung Youb [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of); Kang, Seoktae [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Korea, Republic of); Kwon, Soon-Yong, E-mail: sykwon@unist.ac.kr [School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of); School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of)

    2016-08-05

    Indium tin oxide-free, flexible transparent electrodes (TEs) are crucial for the future commercialization of flexible and wearable electronics. While carbon-based TEs containing carbon nanotube (CNT) networks show promise, they usually exhibit poor dispersion properties, limiting their performance and practicality. In this study, we report a highly efficient and bending durable all-carbon composite TE (ac-TE) that employs uniform CNT networks on a monolayer graphene/polyethylene terephthalate (PET) substrate via a simple air spray deposition method. The air-sprayed CNT/graphene assembly was free-standing on solution, making a polymer-free transfer of carbon composites to target substrates possible. The excellent performance of the ac-TEs was attributed to the uniformly networked CNTs on the polycrystalline graphene with a well-controlled density, effectively bridging the line defects and filling the tears/voids or folds necessarily existing in the as-processed graphene. The sheet resistance of the ac-TEs was increased only 6% from its original value at a bending radius of 2.7 mm, while that of the pristine graphene/PET assembly increased 237%. Mechanical bending of the ac-TEs worsened the electrical performance by only ∼1.7% after 2000 bending cycles at a bending radius of 2.5 mm. Degradation of the performance by the bending was the result of line defects formation in the graphene, demonstrating the potential of the uniform CNT networks to achieve more efficient and flexible carbon-based TEs. Furthermore, the chemically-doped ac-TEs showed commercially suitable electronic and optical properties with much enhanced thermal stability, closer to practical TEs in flexible devices. - Highlights: • Highly efficient and bending durable all-carbon composite transparent electrodes (TEs) are designed. • The performance was strongly dependent on morphology of CNT networks on graphene. • The mechanism relies on the defect reductions in graphene by uniform CNT coating

  8. High performance all-carbon composite transparent electrodes containing uniform carbon nanotube networks

    International Nuclear Information System (INIS)

    Yun, Hyung Duk; Kwak, Jinsung; Kim, Se-Yang; Seo, Han; Bang, In Cheol; Kim, Sung Youb; Kang, Seoktae; Kwon, Soon-Yong

    2016-01-01

    Indium tin oxide-free, flexible transparent electrodes (TEs) are crucial for the future commercialization of flexible and wearable electronics. While carbon-based TEs containing carbon nanotube (CNT) networks show promise, they usually exhibit poor dispersion properties, limiting their performance and practicality. In this study, we report a highly efficient and bending durable all-carbon composite TE (ac-TE) that employs uniform CNT networks on a monolayer graphene/polyethylene terephthalate (PET) substrate via a simple air spray deposition method. The air-sprayed CNT/graphene assembly was free-standing on solution, making a polymer-free transfer of carbon composites to target substrates possible. The excellent performance of the ac-TEs was attributed to the uniformly networked CNTs on the polycrystalline graphene with a well-controlled density, effectively bridging the line defects and filling the tears/voids or folds necessarily existing in the as-processed graphene. The sheet resistance of the ac-TEs was increased only 6% from its original value at a bending radius of 2.7 mm, while that of the pristine graphene/PET assembly increased 237%. Mechanical bending of the ac-TEs worsened the electrical performance by only ∼1.7% after 2000 bending cycles at a bending radius of 2.5 mm. Degradation of the performance by the bending was the result of line defects formation in the graphene, demonstrating the potential of the uniform CNT networks to achieve more efficient and flexible carbon-based TEs. Furthermore, the chemically-doped ac-TEs showed commercially suitable electronic and optical properties with much enhanced thermal stability, closer to practical TEs in flexible devices. - Highlights: • Highly efficient and bending durable all-carbon composite transparent electrodes (TEs) are designed. • The performance was strongly dependent on morphology of CNT networks on graphene. • The mechanism relies on the defect reductions in graphene by uniform CNT coating

  9. The effect of microbial activity and adsorption processes on groundwater dissolved organic carbon character and concentration

    Science.gov (United States)

    Meredith, K.; McDonough, L.; Oudone, P.; Rutlidge, H.; O'Carroll, D. M.; Andersen, M. S.; Baker, A.

    2017-12-01

    Balancing the terrestrial global carbon budget has proven to be a significant challenge. Whilst the movement of carbon in the atmosphere, rivers and oceans has been extensively studied, the potential for groundwater to act as a carbon source or sink through both microbial activity and sorption to and from mineral surfaces, is poorly understood. To investigate the biodegradable component of groundwater dissolved organic carbon (DOC), groundwater samples were collected from multiple coastal and inland sites. Water quality parameters such as pH, electrical conductivity, temperature, dissolved oxygen were measured in the field. Samples were analysed and characterised for their biodegradable DOC content using spectrofluorometric and Liquid Chromatography-Organic Carbon Detection (LC-OCD) techniques at set intervals within a 28 day period. Further to this, we performed laboratory sorption experiments on our groundwater samples using different minerals to examine the effect of adsorption processes on DOC character and concentration. Calcium carbonate, quartz and iron coated quartz were heated to 400ºC to remove potential carbon contamination, and then added at various known masses (0 mg to 10 g) to 50 mL of groundwater. Samples were then rotated for two hours, filtered at 0.2 μm and analysed by LC-OCD. This research forms part of an ongoing project which will assist in identifying the factors affecting the mobilisation, transport and removal of DOC in uncontaminated groundwater. By quantifying the relative importance of these processes, we can then determine whether the groundwater is a carbon source or sink. Importantly, this information will help guide policy and identify the need to include groundwater resources as part of the carbon economy.

  10. Carbon dioxide reduction in a tubular solid oxide electrolysis cell for a carbon recycling energy system

    Energy Technology Data Exchange (ETDEWEB)

    Dipu, Arnoldus Lambertus, E-mail: dipu.a.aa@m.titech.ac.jp [Department of Nuclear Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ujisawa, Yutaka [Nippon Steel and Sumitomo Metal Corporation, 16-1, Sunayama, Kamisu, Ibaraki 314-0255 (Japan); Ryu, Junichi; Kato, Yukitaka [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-05-01

    A new energy transformation system based on carbon recycling is proposed called the active carbon recycling energy system (ACRES). A high-temperature gas reactor was used as the main energy source for ACRES. An experimental study based on the ACRES concept of carbon monoxide (CO) regeneration via high-temperature reduction of carbon dioxide (CO{sub 2}) was carried out using a tubular solid oxide electrolysis cell employing Ni-LSM cermet|YSZ|YSZ-LSM as the cathode|electrolyte|anode. The current density increased with increasing CO{sub 2} concentration at the cathode, which was attributed to a decrease in cathode activation and concentration overpotential. Current density, as well as the CO and oxygen (O{sub 2}) production rates, increased with increasing operating temperature. The highest CO and O{sub 2} production rates of 1.24 and 0.64 μmol/min cm{sup 2}, respectively, were measured at 900 °C. Based on the electrolytic characteristics of the cell, the scale of a combined ACRES CO{sub 2} electrolysis/iron production facility was estimated.

  11. Bulk Concentration Dependence of Electrolyte Resistance Within Mesopores of Carbon Electrodes in Electric Double-Layer Capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaekwang; Kim, Daeun; Lee, Ilbok; Son, Hyungbin; Lee, Donghyun; Yoon, Songhun [Chung-Ang University, Seoul (Korea, Republic of); Shim, Hyewon [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of); Lee, Jinwoo [POSTECH, Pohang (Korea, Republic of)

    2016-02-15

    Hexagonally ordered mesoporous carbon materials were prepared and used as electrode materials in an electric double-layer capacitor. Using this electrode, the change of electrolyte resistance within the mesopores was investigated according to the bulk electrolyte concentration. Using three different electrochemical transient experiments-imaginary capacitance analysis, chronoamperometry, and hronopotentiometry-the time constant associated with electrolyte transport was determined, which was then used to obtain the electrolyte resistance within the mesopores. With decreasing electrolyte concentration, the increase in electrolyte resistance was smaller than the increase in the resistivity of the bulk electrolyte, which is indicative of a different environment for ionic transport within the mesopores. On using the confinement effect within the mesopores, the predicted higher concentration within mesopore probably results in lower electrolyte resistance, especially under low bulk concentrations.

  12. Ecological imperatives for aquatic CO2-concentrating mechanisms.

    Science.gov (United States)

    Maberly, Stephen C; Gontero, Brigitte

    2017-06-01

    In aquatic environments, the concentration of inorganic carbon is spatially and temporally variable and CO2 can be substantially oversaturated or depleted. Depletion of CO2 plus low rates of diffusion cause inorganic carbon to be more limiting in aquatic than terrestrial environments, and the frequency of species with a CO2-concentrating mechanism (CCM), and their contribution to productivity, is correspondingly greater. Aquatic photoautotrophs may have biochemical or biophysical CCMs and exploit CO2 from the sediment or the atmosphere. Though partly constrained by phylogeny, CCM activity is related to environmental conditions. CCMs are absent or down-regulated when their increased energy costs, lower CO2 affinity, or altered mineral requirements outweigh their benefits. Aquatic CCMs are most widespread in environments with low CO2, high HCO3-, high pH, and high light. Freshwater species are generally less effective at inorganic carbon removal than marine species, but have a greater range of ability to remove carbon, matching the environmental variability in carbon availability. The diversity of CCMs in seagrasses and marine phytoplankton, and detailed mechanistic studies on larger aquatic photoautotrophs are understudied. Strengthening the links between ecology and CCMs will increase our understanding of the mechanisms underlying ecological success and will place mechanistic studies in a clearer ecological context. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Methods of analyzing carbon nanostructures, methods of preparation of analytes from carbon nanostructures, and systems for analyzing carbon nanostructures

    KAUST Repository

    Da Costa, Pedro Miquel Ferreira Joaquim

    2016-09-09

    Provided herein is a method determining the concentration of impurities in a carbon material, comprising: mixing a flux and a carbon material to form a mixture, wherein the carbon material is selected from the group consisting of graphene, carbon nanotubes, fullerene, carbon onions, graphite, carbon fibers, and a combination thereof; heating the mixture using microwave energy to form fused materials; dissolution of the fused materials in an acid mixture; and measuring the concentration of one or more impurities.

  14. Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers

    International Nuclear Information System (INIS)

    Lilliestam, Johan; Bielicki, Jeffrey M.; Patt, Anthony G.

    2012-01-01

    Coal power coupled with Carbon [Dioxide] Capture and Storage (CCS), and Concentrating Solar Power (CSP) technologies are often included in the portfolio of climate change mitigation options intended to decarbonize electricity systems. Both of these technologies can provide baseload electricity, are in early stages of maturity, and have benefits, costs, and obstacles. We compare and contrast CCS applied to coal-fired power plants with CSP. At present, both technologies are more expensive than existing electricity-generating options, but costs should decrease with large-scale deployment, especially in the case of CSP. For CCS, technological challenges still remain, storage risks must be clarified, and regulatory and legal uncertainties remain. For CSP, current challenges include electricity transmission and business models for a rapid and extensive expansion of high-voltage transmission lines. The need for international cooperation may impede CSP expansion in Europe. Highlights: ► Both technologies could provide low-carbon base load power. ► Both technologies require new networks, for either CO 2 or power transmission. ► CSP is closer to being a viable technology ready for pervasive diffusion. ► The costs associated with market saturation would be lower for CSP. ► The regulatory changes required for CSP diffusion are somewhat greater than for CCS.

  15. Using High Spatio-Temporal Optical Remote Sensing to Monitor Dissolved Organic Carbon in the Arctic River Yenisei

    Directory of Open Access Journals (Sweden)

    Pierre-Alexis Herrault

    2016-09-01

    Full Text Available In Arctic regions, a major concern is the release of carbon from melting permafrost that could greatly exceed current human carbon emissions. Arctic rivers drain these organic-rich watersheds (Ob, Lena, Yenisei, Mackenzie, Yukon but field measurements at the outlets of these great Arctic rivers are constrained by limited accessibility of sampling sites. In particular, the highest dissolved organic carbon (DOC fluxes are observed throughout the ice breakup period that occurs over a short two to three-week period in late May or early June during the snowmelt-generated peak flow. The colored fraction of dissolved organic carbon (DOC which absorbs UV and visible light is designed as chromophoric dissolved organic matter (CDOM. It is highly correlated to DOC in large arctic rivers and streams, allowing for remote sensing to monitor DOC concentrations from satellite imagery. High temporal and spatial resolutions remote sensing tools are highly relevant for the study of DOC fluxes in a large Arctic river. The high temporal resolution allows for correctly assessing this highly dynamic process, especially the spring freshet event (a few weeks in May. The high spatial resolution allows for assessing the spatial variability within the stream and quantifying DOC transfer during the ice break period when the access to the river is almost impossible. In this study, we develop a CDOM retrieval algorithm at a high spatial and a high temporal resolution in the Yenisei River. We used extensive DOC and DOM spectral absorbance datasets from 2014 and 2015. Twelve SPOT5 (Take5 and Landsat 8 (OLI images from 2014 and 2015 were examined for this investigation. Relationships between CDOM and spectral variables were explored using linear models (LM. Results demonstrated the capacity of a CDOM algorithm retrieval to monitor DOC fluxes in the Yenisei River during a whole open water season with a special focus on the peak flow period. Overall, future Sentinel2/Landsat8

  16. Modelling and experimental studies on a direct methanol fuel cell working under low methanol crossover and high methanol concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, V.B.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M. [Instituto Nacional de Energia e Geologia, Fuel Cells and Hydrogen, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal)

    2009-08-15

    A number of issues need to be resolved before DMFC can be commercially viable such as the methanol crossover and water crossover which must be minimised in portable DMFCs. The main gain of this work is to systematically vary commercial MEA materials and check their influence on the cell performance of a direct methanol fuel cell operating at close to room temperature. A detailed experimental study on the performance of an <> developed DMFC with 25 cm{sup 2} of active membrane area, working near the ambient conditions is described. Tailored MEAs (membrane-electrode assemblies), with different structures and combinations of gas diffusion layers (GDLs), were designed and tested in order to select optimal working conditions at high methanol concentration levels without sacrificing performance. The experimental polarization and power density curves were successfully compared with the predictions of a steady state, one-dimensional model accounting for coupled heat and mass transfer, along with the electrochemical reactions occurring in the DMFC recently developed by the same authors. The influence of the anode gas diffusion layer media, the membrane thickness and the MEA properties on the cell performance are explained under the light of the predicted methanol crossover rate across the membrane. A tailored MEA build-up with the common available commercial materials was proposed to achieve relatively low methanol crossover, operating at high methanol concentrations. The use of adequate materials for the gas diffusion layers (carbon paper at the anode GDL and carbon cloth at the cathode GDL) enables the use of thinner membranes enhancing the water back diffusion which is essential to work at high methanol concentrations. (author)

  17. Carbon dioxide production in animal houses

    DEFF Research Database (Denmark)

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.

    2008-01-01

    cellars are emptied regularly in a four weeks interval. Due to a high and variable carbon dioxide production in deep straw litter houses and houses with indoor storage of manure longer than four weeks, we do not recommend to calculate the ventilation flow based on the carbon dioxide concentration......This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from...... animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20o...

  18. Highly Crumpled All-Carbon Transistors for Brain Activity Recording.

    Science.gov (United States)

    Yang, Long; Zhao, Yan; Xu, Wenjing; Shi, Enzheng; Wei, Wenjing; Li, Xinming; Cao, Anyuan; Cao, Yanping; Fang, Ying

    2017-01-11

    Neural probes based on graphene field-effect transistors have been demonstrated. Yet, the minimum detectable signal of graphene transistor-based probes is inversely proportional to the square root of the active graphene area. This fundamentally limits the scaling of graphene transistor-based neural probes for improved spatial resolution in brain activity recording. Here, we address this challenge using highly crumpled all-carbon transistors formed by compressing down to 16% of its initial area. All-carbon transistors, chemically synthesized by seamless integration of graphene channels and hybrid graphene/carbon nanotube electrodes, maintained structural integrity and stable electronic properties under large mechanical deformation, whereas stress-induced cracking and junction failure occurred in conventional graphene/metal transistors. Flexible, highly crumpled all-carbon transistors were further verified for in vivo recording of brain activity in rats. These results highlight the importance of advanced material and device design concepts to make improvements in neuroelectronics.

  19. Influence of contemporary carbon originating from the 2003 Siberian forest fire on organic carbon in PM{sub 2.5} in Nagoya, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ikemori, Fumikazu, E-mail: ikemori@nagoyakankaken.net [Nagoya City Institute for Environmental Sciences, 5-16-8, Toyoda, Minami-ku, Nagoya 457-0841 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–8601 (Japan); Honjyo, Koji [Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–8601 (Japan); Yamagami, Makiko [Nagoya City Institute for Environmental Sciences, 5-16-8, Toyoda, Minami-ku, Nagoya 457-0841 (Japan); Nakamura, Toshio [Centre for Chronological Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2015-10-15

    In May 2003, high concentrations of organic carbon (OC) in PM{sub 2.5} were measured in Nagoya, a representative metropolitan area in Japan. To investigate the influence of possible forest fires on PM{sub 2.5} in Japan via long-range aerosol transport, the radiocarbon ({sup 14}C) concentrations of PM{sub 2.5} samples from April 2003 to March 2004 were measured. {sup 14}C concentrations in total carbon (TC) from May to early June showed higher values than those in other periods. The OC/elemental carbon (EC) ratios from May to early June were also significantly higher than the ones in other periods. In addition, OC concentrations from May to early June were typically high. These results indicate that the abundant OC fraction from May to early June in Nagoya consisted predominantly of contemporary carbon. Furthermore, simulations of diffusion and transport of organic matter (OM) in East Asia showed that abundant OM originating from East Siberia spread over East Asia and Japan in May and early June. Backward air mass trajectories from this time frame indicate that the air mass in Nagoya likely first passed through East Siberia where fire events were prevalent. However, the backward trajectories showed that the air mass after early June did not originate mainly from Siberia, and correspondingly, the {sup 14}C and OC concentrations showed lower values than those from May to early June. Therefore, the authors conclude that contemporary carbon originating from the forest fire in East Siberia was transported to Nagoya, where it significantly contributed to the high observed concentrations of both OC and {sup 14}C. - Highlights: • We analyzed the radiocarbon ({sup 14}C) concentration of TC in PM{sub 2.5} from Nagoya, Japan. • {sup 14}C concentrations from May to early June in 2003 were elevated. • The air mass at this time in Nagoya likely first passed through East Siberia. • Fire location data from MODIS indicate that fire events were prevalent in East Siberia.

  20. Electrorefining of High Carbon Ferromanganese in Molten Salts to Produce Pure Ferromanganese

    Directory of Open Access Journals (Sweden)

    Xiao S. J.

    2017-09-01

    Full Text Available High carbon ferromanganese is used as a starting material to prepare pure ferromanganese by electrorefining in molten salts. High carbon ferromanganese was applied as the anode, molybdenum was the cathode and Ag/AgCl was the reference electrode. The anodic dissolution was investigated by linear polarization in molten NaCl-KCl system. Then potentiostatic electrolysis was carried out to produce pure ferromanganese from high carbon ferromanganese. The cathodic product was determined to be a mixture of manganese and iron by x-ray diffraction (XRD. The content of carbon in the product was analyzed by carbon and sulfur analyzer. The post-electrolysis anode was characterized by scanning electron microscope (SEM. The mechanism of the anode dissolution and the distribution of the main impurity of carbon and silicon after electrolysis were discussed.

  1. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    Science.gov (United States)

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-09-02

    Coagulation with metal-based salts is a practice commonly employed by drinking-water utilities to decrease particle and dissolved organic carbon concentrations in water. In addition to decreasing dissolved organic carbon concentrations, the effectiveness of iron- and aluminum-based coagulants for decreasing dissolved concentrations both of inorganic and monomethyl mercury in water was demonstrated in laboratory studies that used agricultural drainage water from the Sacramento–San Joaquin Delta of California. To test the effectiveness of this approach at the field scale, nine 15-by-40‑meter wetland cells were constructed on Twitchell Island that received untreated water from island drainage canals (control) or drainage water treated with polyaluminum chloride or ferric sulfate coagulants. Surface-water samples were collected approximately monthly during November 2012–September 2013 from the inlets and outlets of the wetland cells and then analyzed by the U.S. Geological Survey for total concentrations of mercury and monomethyl mercury in filtered (less than 0.3 micrometers) and suspended-particulate fractions and for concentrations of dissolved organic carbon.

  2. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor.

    Science.gov (United States)

    Ma, Guofu; Yang, Qian; Sun, Kanjun; Peng, Hui; Ran, Feitian; Zhao, Xiaolong; Lei, Ziqiang

    2015-12-01

    High capacitance property and low cost are the pivotal requirements for practical application of supercapacitor. In this paper, a low cost and high capacitance property nitrogen-doped porous carbon with high specific capacitance is prepared. The as-prepared nitrogen-doped porous carbon employing potato waste residue (PWR) as the carbon source, zinc chloride (ZnCl2) as the activating agent and melamine as nitrogen doping agent. The morphology and structure of the carbon materials are studied by scanning electron microscopy (SEM), N2 adsorption/desorption, X-ray diffraction (XRD) and Raman spectra. The surface area of the nitrogen-doped carbon which prepared under 700°C is found to be 1052m(2)/g, and the specific capacitance as high as 255Fg(-1) in 2M KOH electrolyte is obtained utilize the carbon as electrode materials. The electrode materials also show excellent cyclability with 93.7% coulombic efficiency at 5Ag(-1) current density of for 5000cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. More bad news about carbon dioxide emissions

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2000-01-01

    The affect that increased carbon dioxide concentrations has on plants and animals was discussed. Most research focuses on the impacts that carbon dioxide concentrations has on climatic change. Recent studies, however, have shown that elevated levels of carbon dioxide in the atmosphere caused by burning fossils fuels changes the chemical structure of plants and could lead to significant disruptions in ecological food chains. High carbon dioxide levels cause plants to speed up photosynthesis, take in the gas, and use the carbon to produce more fibre and starch while giving off oxygen as a byproduct. As plants produce more carbon, their levels of nitrogen diminish making them less nutritious for the insects and animals that feed on them. This has serious implications for farmers, as pests would have to eat more of their crops to survive. In addition, farmers would have to supplement livestock with nutrients

  4. Modeling Study of the Contribution of Wildfires to Ambient Black Carbon Concentrations

    Science.gov (United States)

    Chung, S. H.; Gonzalez-Abraham, R.; Lamb, B. K.; Larkin, N. K.; Strand, T.; O'Neill, S.

    2013-12-01

    Wildland fires are a major source of particulate emissions, including black carbon (BC). In combination with other emissions, these BC and particulate emissions can directly lead to air quality degradation, both locally and more regionally. BC and other particulate matter (PM) can also affect climate in various ways, including by scattering and absorbing radiation, modifying cloud formation and properties, and changing snow albedo. BC emissions reduction is a potential strategy for mitigating global warming because it is emitted in large quantities and has a relatively short lifetime in the atmosphere in comparison to long-live greenhouse gases. Due to the highly variable nature of wildland fires, both in terms of fire occurrences on the landscape and the high spatial and temporal variability of fuels, consumption, and emissions, the impact of wildfire emissions varies significantly over the period of the wildfire season as well as inter-annually. In the U.S., while anthropogenic emissions are projected to decrease, as the climate warms wildfire activity is predicted to increase along with the contribution of fire emissions. Thus, a robust analysis of the effects of BC from fire emissions on air quality and climate necessitates a comprehensive, multi-scale study of all fire-related pollutants and other emission sources spanning multiple years of fire data and weather conditions. In this study we apply the WRF-BlueSky-SMOKE-CMAQ regional air-quality modeling system for multi-year (1997-2005) summertime simulations to evaluate the contribution of fire emissions to atmospheric BC and total PM2.5 concentrations. Historical fire records from the Bureau of Land Management are used by the BlueSky framework to calculate fire emissions. Plume rise is calculated by the SMOKE emission processor, taking into account meteorology from the WRF model. These emissions are combined with anthropogenic emissions from the NEI 2002 and biogenic emissions from the MEGAN model. CMAQ is

  5. A Study on Effect of Local Wall Thinning in Carbon Steel Elbow Pipe on Elastic Stress Concentration

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Seo, Jae Seok

    2009-01-01

    Feeder pipes that connect the inlet and outlet headers to the reactor core in CANDU nuclear power plants are considered as safety Class 1 piping items. Therefore, fatigue of feeder pipes should be assessed at design stage in order to verify structural integrity during design lifetime. In accordance with the fatigue assessment result, cumulative usage factors of some feeder pipes have significant values. The feeder pipes made of SA-106 Grade B or C carbon steel have some elbows and bends. An active degradation mechanism for the carbon steel outlet feeder piping is local wall thinning due to flow-accelerated corrosion. Inspection results from plants and metallurgical examinations of removed feeders indicated the presence of localized thinning in the vicinity of the welds in the lower portion of outlet feeders, such as Grayloc hub-to-bend weld, Grayloc hub-to-elbow weld, elbow-to-elbow, and elbow-to-pipe weld. This local wall thinning can cause increase of peak stress due to stress concentration by notch effect. The increase of peak stress results in increase of cumulative usage factor. However, present fatigue assessment doesn't consider the stress concentration due to local wall-thinning. Therefore, it is necessary to assess the effect of local wall thinning on stress concentration. This study investigates the effect of local wall thinning geometry on stress concentration by performing finite element elastic stress analysis

  6. Hierarchical porous carbons prepared by an easy one-step carbonization and activation of phenol-formaldehyde resins with high performance for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhoujun [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Graduate School, Shanghai Institute of Ceramics, Chinese Academy of Science, 1295 Dingxi Road, Shanghai 200050 (China); Gao, Qiuming [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Graduate School, Shanghai Institute of Ceramics, Chinese Academy of Science, 1295 Dingxi Road, Shanghai 200050 (China); School of Chemistry and Environment, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191 (China)

    2011-02-01

    Hierarchical porous carbons are prepared by an easy one-step process of carbonization and activation derived from phenol-formaldehyde resins, in which potassium hydroxide acts as both the catalyst of polymerization and the activation reagent. The simple one-step preparation saves the cost of carbons and leads to high yield. The porous carbons have high surface areas with abundant pore structures. The plenty of micropores and small mesopores increase the capacitance and make the electrolyte ions diffuse fast into the pores. These hierarchical porous carbons show high performance for supercapacitors possessing of the optimized capacitance of 234 F g{sup -1} in aqueous electrolyte and 137 F g{sup -1} in organic electrolyte with high capacitive retention. (author)

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  8. Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: coupled processes of natural ventilation, barometric pumping and internal mixing

    International Nuclear Information System (INIS)

    Perrier, Frederic; Richon, Patrick

    2010-01-01

    Radon-222 and carbon dioxide concentrations have been measured during several years at several points in the atmosphere of an underground limestone quarry located at a depth of 18 m in Vincennes, near Paris, France. Both concentrations showed a seasonal cycle. Radon concentration varied from 1200 to 2000 Bq m -3 in summer to about 800-1400 Bq m -3 in winter, indicating winter ventilation rates varying from 0.6 to 2.5 x 10 -6 s -1 . Carbon dioxide concentration varied from 0.9 to 1.0% in summer, to about 0.1-0.3% in winter. Radon concentration can be corrected for natural ventilation using temperature measurements. The obtained model also accounts for the measured seasonal variation of carbon dioxide. After correction, radon concentrations still exhibit significant temporal variation, mostly associated with the variation of atmospheric pressure, with coupling coefficients varying from -7 to -26 Bq m -3 hPa -1 . This variation can be accounted for using a barometric pumping model, coupled with natural ventilation in winter, and including internal mixing as well. After correction, radon concentrations exhibit residual temporal variation, poorly correlated between different points, with standard deviations varying from 3 to 6%. This study shows that temporal variation of radon concentrations in underground cavities can be understood to a satisfactory level of detail using non-linear and time-dependent modelling. It is important to understand the temporal variation of radon concentrations and the limitations in their modelling to monitor the properties of natural or artificial underground settings, and to be able to assess the existence of new processes, for example associated with the preparatory phases of volcanic eruptions or earthquakes.

  9. Fundamental properties of high-quality carbon nanofoam: from low to high density

    Directory of Open Access Journals (Sweden)

    Natalie Frese

    2016-12-01

    Full Text Available Highly uniform samples of carbon nanofoam from hydrothermal sucrose carbonization were studied by helium ion microscopy (HIM, X-ray photoelectron spectroscopy (XPS, and Raman spectroscopy. Foams with different densities were produced by changing the process temperature in the autoclave reactor. This work illustrates how the geometrical structure, electron core levels, and the vibrational signatures change when the density of the foams is varied. We find that the low-density foams have very uniform structure consisting of micropearls with ≈2–3 μm average diameter. Higher density foams contain larger-sized micropearls (≈6–9 μm diameter which often coalesced to form nonspherical μm-sized units. Both, low- and high-density foams are comprised of predominantly sp2-type carbon. The higher density foams, however, show an advanced graphitization degree and a stronger sp3-type electronic contribution, related to the inclusion of sp3 connections in their surface network.

  10. Carbonation Coefficients from Concrete Made with High-Absorption Limestone Aggregate

    Directory of Open Access Journals (Sweden)

    Eric I. Moreno

    2013-01-01

    Full Text Available Normal aggregates employed in concrete have absorption levels in the range of 0.2% to 4% for coarse aggregate and 0.2 to 2% for fine aggregate. However, some aggregates have absorption levels above these values. As the porosity of concrete is related to the porosity of both the cement paste and the aggregate and the carbonation rate is a function, among other things, of the porosity of the material, there is concern about the effect of this high porosity material in achieving good quality concrete from the durability point of view. Thus, the objective of this investigation was to study the carbonation rates of concrete specimens made with high-absorption limestone aggregate. Four different water/cement ratios were used, and cylindrical concrete specimens were exposed to accelerated carbonation. High porosity values were obtained for concrete specimens beyond the expected limits for durable concrete. However, carbonation coefficients related to normal quality concrete were obtained for the lowest water/cement ratio employed suggesting that durable concrete may be obtained with this material despite the high porosity.

  11. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept

  12. A New, General Strategy for Fabricating Highly Concentrated and Viscoplastic Suspensions Based on a Structural Approach To Modulate Interparticle Interaction.

    Science.gov (United States)

    Sakurai, Shunsuke; Kamada, Fuminori; Kobashi, Kazufumi; Futaba, Don N; Hata, Kenji

    2018-01-24

    We report a general strategy to fabricate highly concentrated, viscoplastic and stable suspensions by designing the particle surface structure to control the interparticle attractive forces. Unlike conventional methods, where the choice of solvent is critical in balancing interparticle interactions, suspensions showing excellent stability and viscoplastic properties were made using various solvents. We demonstrated this approach using highly sparse agglomerates of carbon nanotubes (CNTs) as the particles. Our results revealed that the essential feature of the CNT agglomerate to fabricate these suspensions was high porosity with a spacing size much smaller than the overall size, which was only possible using long single-walled carbon nanotubes (SWNTs). In this way, the agglomerate surface was characterized by fine network of CNT bundles. These suspensions exhibited solid-like behavior at rest (characterized by a high yield stress of c.a. 100 Pa) and a liquid-like behavior when subjected to a stress (characterized by a significant drop of an apparent viscosity to 1 Pa·s at a shear rate of 1000 s -1 ). Furthermore, in contrast to conventionally fabricated suspensions, these "CNT pastes" exhibited exceptional stability at rest, under flow, and at extremely high concentrations during the drying process, with only a weakly observable dependence on solvent type. As a result, highly uniform micrometer-thick SWNT films were successfully fabricated by dried blade-coated films of these pastes. Finally, we developed a simple, semiempirical model and clarified the importance of the CNT agglomerate microstructure (the ratio of spacing size/particle size and porosity) on tailoring the cohesive forces between particles to fabricate stable viscoplastic suspensions.

  13. High pressure solubility data of carbon dioxide in (tri-iso-butyl(methyl)phosphonium tosylate + water) systems

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, Sonia P.M. [CICECO, Departamento de Quimica, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Pauly, Jerome; Daridon, Jean L. [Laboratoire Haute Pression Centre Universitaire de Recherche Scientifique, Universite de Pau, Avenue de l' Universite, 64000 Pau (France); Lopes da Silva, J.A.; Marrucho, Isabel M. [CICECO, Departamento de Quimica, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Dias, Ana. M.A. [IBB-Instituto de Biotecnologia e Bioengenharia, Centro de Engenharia Biologica, Universidade do Minho, Campus de Gualtar, 4710-553 Braga (Portugal); Coutinho, Joao A.P. [CICECO, Departamento de Quimica, Universidade de Aveiro, 3810-193 Aveiro (Portugal)], E-mail: jcoutinho@ua.pt

    2008-08-15

    Ionic liquids are attracting great attention nowadays due to their interesting properties which make them useful in a broad range of applications including reaction media or separation/capture of environmentally hazardous gases such as carbon dioxide. In many cases, for practical and/or economical reasons, the use of aqueous solutions of ILs would be preferable to their use as pure compounds. In this work, high pressure equilibrium data for the {l_brace}carbon dioxide (CO{sub 2}) + tri-iso-butyl(methyl)phosphonium tosylate [iBu{sub 3}MeP][TOS] + water system were measured at temperatures ranging from (276 to 370) K and pressures up to 100 MPa. Measurements were performed using a high-pressure cell with a sapphire window that allows direct observation of the liquid-vapour transition. Mixtures with different IL concentrations were studied in order to check the influence of the amount of IL on the solubility of CO{sub 2} in the aqueous mixture. The results show that the presence of IL enhances the solubility of CO{sub 2} in the (IL + water) system revealing a salting-in effect of the IL on the solubility of CO{sub 2}. The appearance of a three phase region was observed for IL concentrations higher than 4 mol% of IL in water when working at pressures between 4 and 8 MPa and temperatures between (280 and 305) K. In this range, the upper limit of the VLE region observed is shown to increase with the temperature being almost independent of the IL initial concentration in the mixture.

  14. Refractory black carbon at the Whistler Peak High Elevation Research Site - Measurements and simulations

    Science.gov (United States)

    Hanna, Sarah J.; Xu, Jun-Wei; Schroder, Jason C.; Wang, Qiaoqiao; McMeeking, Gavin R.; Hayden, Katherine; Leaitch, W. Richard; Macdonald, AnneMarie; von Salzen, Knut; Martin, Randall V.; Bertram, Allan K.

    2018-05-01

    Measurements of black carbon at remote and high altitude locations provide an important constraint for models. Here we present six months of refractory black carbon (rBC) data collected in July-August of 2009, June-July of 2010, and April-May of 2012 using a single particle soot photometer (SP2) at the remote Whistler High Elevation Research Site in the Coast Mountains of British Columbia (50.06°N, 122.96°W, 2182 m a.m.s.l). In order to reduce regional boundary layer influences, only measurements collected during the night (2000-0800 PST) were considered. Times impacted by local biomass burning were removed from the data set, as were periods of in-cloud sampling. Back trajectories and back trajectory cluster analysis were used to classify the sampled air masses as Southern Pacific, Northern Pacific, Western Pacific/Asian, or Northern Canadian in origin. The largest rBC mass median diameter (182 nm) was seen for air masses in the Southern Pacific cluster, and the smallest (156 nm) was seen for air masses in the Western Pacific/Asian cluster. Considering all the clusters, the median mass concentration of rBC was 25.0 ± 7.6 ng/m3-STP. The Northern Pacific, Southern Pacific, Western Pacific/Asian, and Northern Canada clusters had median mass concentrations of 25.0 ± 7.6, 21.3 ± 6.9, 25.0 ± 7.9, and 40.6 ± 12.9 ng/m3-STP, respectively. We compared these measurements with simulations from the global chemical transport model GEOS-Chem. The default GEOS-Chem simulations overestimated the median rBC mass concentrations for the different clusters by a factor of 1.2-2.2. The largest difference was observed for the Northern Pacific cluster (factor of 2.2) and the smallest difference was observed for the Northern Canada cluster (factor of 1.2). A sensitivity simulation that excluded Vancouver emissions still overestimated the median rBC mass concentrations for the different clusters by a factor of 1.1-2.0. After implementation of a revised wet scavenging scheme, the

  15. Corrosion of carbon steel in saturated high-level waste salt solutions

    International Nuclear Information System (INIS)

    Wiersma, B.J.; Parish, W.R.

    1997-01-01

    High level waste stored as crystallized salts is to be removed from carbon steel tanks by water dissolution. Dissolution of the saltcake must be performed in a manner which will not impact the integrity of the tank. Corrosion testing was performed to determine the amount of corrosion inhibitor that must be added to the dissolution water in order to ensure that the salt solution formed would not induce corrosion degradation of the tank materials. The corrosion testing performed included controlled potential slow strain rate, coupon immersion, and potentiodynamic polarization tests. These tests were utilized to investigate the susceptibility of the cooling coil material to stress corrosion cracking in the anticipated environments. No evidence of SCC was observed in any of the tests. Based on these results, the recommended corrosion requirements were that the temperature of the salt solution be less than 50 degrees C and that the minimum hydroxide concentration be 0.4 molar. It was also recommended that the hydroxide concentration not stay below 0.4 molar for longer than 45 days

  16. High indoor radon concentrations in some Swedish waterworks

    International Nuclear Information System (INIS)

    Aakerblom, G.; Hagberg, N.; Mjoenes, L.; Heiberg, A.

    2002-01-01

    High indoor radon concentrations in buildings used for water treatment are not uncommon. When raw water is processed in an open system radon escapes from the water to the indoor air of the premises. It is not unusual that the staff of the waterworks have their offices in the building where the water is processed. If large volumes of water are processed and the evaporated radon can reach the workplaces the indoor radon concentration can be very high even if the radon concentration of the raw water is moderate. Groundwaters from aquifers in bedrock and soil and surface water that has been infiltrated through deposits of sand or gravel have the potential to cause high indoor radon levels. In surface water emanating directly from a lake or a river the radon concentrations are normally too low to cause problems. Three waterworks in central Sweden have been studied, Ludvika, Fredriksberg and Kolbaeck. The radon concentrations in the raw water of these waterworks are from 85 Bq/l to 300 Bq/l. Average indoor radon concentrations exceeding 17,000 Bq/m 3 have been measured in Ludvika with peaks of almost 37,000 Bq/m 3 . In Kolbaeck radon concentrations up to 56,000 Bq/m 3 have been measured. It is quite possible that employees of waterworks can receive doses exceeding 20 mSv per year (calculated according to ICRP:s dose conversion convention). Measurements of radon and gamma radiation from the waterworks are reported and methods to lower the indoor radon concentrations are discussed. (author)

  17. The effects of strain rate and carbon concentration on the dynamic strain aging of cold rolled Ni-based alloy in high temperature water

    International Nuclear Information System (INIS)

    Kuang, Wenjun; Was, Gary S.

    2015-01-01

    Graphical abstract: The stress amplitude of serrations first increases with decreasing strain rate and then gradually saturates. The matrix carbon concentration affects the stress amplitude and the tendency to saturation. - Abstract: The effect of strain rate on dynamic strain aging of cold-rolled Ni-based alloy was investigated. With decreasing strain rate, the stress amplitude of serrations first increased and then saturated. Compared with the solution-annealed condition, the thermally-treated condition produced smaller stress amplitudes that saturated at a lower strain rate. Observations are consistent with a mechanism in which the locking strength of solute atmospheres first increases with increasing solute atom arrival at dislocations and gradually saturates as solute reaches a critical level

  18. Large-deformation and high-strength amorphous porous carbon nanospheres

    Science.gov (United States)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  19. Adaptive sensor-based ultra-high accuracy solar concentrator tracker

    Science.gov (United States)

    Brinkley, Jordyn; Hassanzadeh, Ali

    2017-09-01

    Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.

  20. Influence of low water-vapour concentrations in air and carbon dioxide on the inflammability of magnesium in these media

    International Nuclear Information System (INIS)

    Darras, Raymond; Baque, Pierre; Leclercq, Daniel

    1960-01-01

    The temperatures at which live combustion starts in magnesium and certain of its alloys have been determined systematically in air and in carbon dioxide. In carbon dioxide, the ignition temperature is reduced by 130 to 140 deg. C for very low water-vapor concentrations. Reprint of a paper published in 'Comptes Rendus des Seances de l'Academie des Sciences', tome 240, p. 1647-1649, sitting of 28 October 1959 [fr

  1. Calcium carbonate as a possible dosimeter for high irradiation doses

    International Nuclear Information System (INIS)

    Negron M, A.; Ramos B, S.; Camargo R, C.; Uribe, R. M.; Gomez V, V.; Kobayashi, K.

    2014-08-01

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  2. Calcium carbonate as a possible dosimeter for high irradiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Negron M, A.; Ramos B, S.; Camargo R, C. [UNAM, Instituto de Ciencias Nucleares, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Uribe, R. M. [Kent State University, College of Technology, Kent OH (United States); Gomez V, V. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Kobayashi, K., E-mail: negron@nucleares.unam.mx [Yokohama National University (Japan)

    2014-08-15

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  3. Innovative developments in uranium separation and concentration technology abroad

    International Nuclear Information System (INIS)

    Liang Jinlong; Zhou Mingsheng; Fang Wei; Sun Yuxiang

    2014-01-01

    Significance of deeply study the innovative developments in Uranium separation and concentration technology abroad was discussed. Development history and innovativeness of eight species of key equipments for separation and concentration were summarized for the first time. Principle and application of seven Uranium separation and concentration technology were analyzed systematically. It is expounded in the paper that high parameter, intelligent and low carbon were three development trends of Uranium separation and concentration technology. (authors)

  4. Carbon monoxide concentrations in outdoor wood-fired kitchens in Ouagadougou, Burkina Faso--implications for women's and children's health.

    Science.gov (United States)

    Thorsson, Sofia; Holmer, Björn; Andjelic, Andreas; Lindén, Jenny; Cimerman, Sandra; Barregard, Lars

    2014-07-01

    A majority of households in developing countries rely on biomass fuel for cooking, typically burned in open fires or simple stoves. The incomplete combustion of these fuels causes adverse health effects such as respiratory diseases, especially among women and children. However, quantitative data on pollution levels and on associated diseases are limited. We examined cooking habits and self-reported health in 31 households with outdoor open wood fires in Ouagadougou, Burkina Faso, using structured interviews. In eight households, carbon monoxide (CO) was measured using passive sampling. In addition, meteorology and ambient CO concentrations were assessed. The average CO concentration during cooking was 4.3 ppm, with a maximum of 65.3 ppm and minimum of 0.3 ppm (1-min values). A clear daily pattern was observed, with relatively low concentrations during the day and high during the evening, occasionally exceeding the World Health Organization 1- and 8-h guidelines when the air stabilised. On average, CO concentrations were 43 % higher in kitchens located in closed yards than in those located in open yards, showing that fireplace location affected the levels. Eye irritation and coughing among women and children were reported by 30 % of the households. Based on previously reported relations between CO concentrations and fine particles (health risk among women and children in households with outdoor open wood fires. The results suggest that burning should be limited between sunset and dawn and in areas with limited ventilation to reduce pollutions levels.

  5. Effect of tooth-bleaching on the carbonate concentration in dental enamel by Raman spectroscopy

    OpenAIRE

    Vargas-Koudriavtsev, Tatiana; Herrera-Sancho, ?scar-Andrey

    2017-01-01

    Background There are not many studies evaluating the effects of surface treatments at the molecular level. The aim of this in vitro study was to analyze the concentration of carbonate molecules in dental enamel by Raman spectroscopy after the application of in-office and home whitening agents. Material and Methods Sixty human teeth were randomly divided into six groups and exposed to three different home bleaching gels (Day White) and three in-office whitening agents (Zoom! Whitespeed and Pol...

  6. Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors

    Science.gov (United States)

    Kim, Dae Kyom; Kim, Nam Dong; Park, Seung-Keun; Seong, Kwang-dong; Hwang, Minsik; You, Nam-Ho; Piao, Yuanzhe

    2018-03-01

    Flexible all-solid-state supercapacitors are desirable as potential energy storage systems for wearable technologies. Herein, we synthesize aminophenyl multiwall carbon nanotube (AP-MWCNT) grafted polyimide precursor by in situ polymerization method as a nitrogen-doped carbon precursor. Flexible supercapacitor electrodes are fabricated via a coating of carbon precursor on carbon cloth surface and carbonization at high temperature directly. The as-obtained electrodes, which can be directly used without any binders or additives, can deliver a high specific capacitance of 333.4 F g-1 at 1 A g-1 (based on active material mass) and excellent cycle stability with 103% capacitance retention after 10,000 cycles in a three-electrode system. The flexible all-solid-state supercapacitor device exhibits a high volumetric capacitance of 3.88 F cm-3 at a current density of 0.02 mA cm-3. And also the device can deliver a maximum volumetric energy density of 0.50 mWh cm-3 and presents good cycling stability with 85.3% capacitance retention after 10,000 cycles. This device cell can not only show extraordinary mechanical flexibilities allowing folding, twisting, and rolling but also demonstrate remarkable stable electrochemical performances under their forms. This work provides a novel approach to obtain carbon textile-based flexible supercapacitors with high electrochemical performance and mechanical flexibility.

  7. High incorporation of carbon into proteins by the phytoplankton of the Bering Strait and Chukchi Sea

    Science.gov (United States)

    Lee, Sang H.; Kim, Hak-Jun; Whitledge, Terry E.

    2009-07-01

    High incorporation of carbon into proteins and low incorporation into lipids were a characteristic pattern of the photosynthetic allocations of phytoplankton throughout the euphotic zone in the Bering Strait and Chukchi Sea in 2004. According to earlier studies, this indicates that phytoplankton had no nitrogen limitation and a physiologically healthy condition, at least during the cruise period from mid-August to early September in 2004. This is an interesting result, especially for the phytoplankton in the Alaskan coastal water mass-dominated region in the Chukchi Sea which has been thought to be potentially nitrogen limited. The relatively high ammonium concentration is believed to have supported the nitrogen demand of the phytoplankton in the region where small cells (stress than large phytoplankton. If the high carbon incorporation into proteins by the phytoplankton in 2004 is a general pattern of the photosynthetic allocations in the Chukchi Sea, they could provide nitrogen-sufficient food for the highest benthic faunal biomass in the Arctic Ocean, sustaining large populations of benthic-feeding marine mammals and seabirds.

  8. Electrical resistivity of liquid iron with high concentration of light element impurities

    Science.gov (United States)

    Wagle, F.; Steinle-Neumann, G.

    2017-12-01

    The Earth's outer core mainly consists of liquid iron, enriched with several weight percent of lighter elements, such as silicon, oxygen, sulfur or carbon. Electrical resistivities of alloys of this type determine the stability of the geodynamo. Both computational and experimental results show that resistivites of Fe-based alloys deviate significantly from values of pure Fe. Using optical conductivity values computed with the Kubo-Greenwood formalism for DFT-based molecular dynamics results, we analyze the high-P and T behavior of resitivities for Fe-alloys containing various concentrations of sulfur, oxygen and silicon. As the electron mean free path length in amorphous and liquid material becomes comparable to interatomic distances at high P and T, electron scattering is expected to be dominated by the short-range order, rather than T-dependent vibrational contributions, and we describe such correlations in our results. In analogy to macroscopic porous media, we further show that resistivity of a liquid metal-nonmetal alloy is determined to first order by the resistivity of the metallic matrix and the volume fraction of non-metallic impurities.

  9. Effect of high pressure hydrogen on the mechanical characteristics of single carbon fiber

    Science.gov (United States)

    Jeon, Sang Koo; Kwon, Oh Heon; Jang, Hoon-Sik; Ryu, Kwon Sang; Nahm, Seung Hoon

    2018-02-01

    In this study, carbon fiber was exposed to a pressure of 7 MPa for 24 h in high pressure chamber. The tensile test for carbon fiber was conducted to estimate the effect on the high pressure hydrogen in the atmosphere. To determine the tensile strength and Weibull modulus, approximately thirty carbon fiber samples were measured in all cases, and carbon fiber exposed to high pressure argon was evaluated to verify only the effect of hydrogen. Additionally, carbon fiber samples were annealed at 1950 °C for 1 h for a comparison with normal carbon fiber and then tested under identical conditions. The results showed that the tensile strength scatter of normal carbon fiber exposed to hydrogen was relatively wider and the Weibull modulus was decreased. Moreover, the tensile strength of the annealed carbon fiber exposed to hydrogen was increased, and these samples indicated a complex Weibull modulus because the hydrogen stored in the carbon fiber influenced the mechanical characteristic.

  10. Dependence of electrical resistance in nonstoichiometric titanium carbide TiCy on carbon vacancy concentration and distribution

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Gusev, A.I.

    1999-01-01

    Electric conductivity in nonstoichiometric titanium carbide TiC y (0.5 ≤ y ≤ 0.98) is studied depending on concentration and distribution of carbon sublattice vacancies as well as on temperature. It is established that in TiC y at y y on the one hand and by the atom-vacancy interaction on the other hand [ru

  11. Effect of Hydrogen Concentration on the Growth of Carbon Nanotube Arrays for Gecko-Inspired Adhesive Applications

    Directory of Open Access Journals (Sweden)

    Yang Li

    2017-12-01

    Full Text Available Vertically-aligned carbon nanotubes (VACNTs have extraordinary structural and mechanical properties, and have been considered as potential candidates for creating dry adhesives inspired by adhesive structures in nature. Catalytic chemical vapor deposition is widely used to grow VACNTs; however, the influential mechanism of VACNT preparation parameters (such as H2 concentration on its adhesion property is not clear, making accurate control over the structure of VACNTs adhesive an ongoing challenge. In this article, we use electron beam-deposited SiO2/Al2O3 as a support layer, Fe as catalyst, and C2H4/H2 gas mixtures as a feed gas to prepare VACNTs, while varying the ratio of the reducing atmosphere (H2 from 0% to 35%. VACNTs synthesized at a 15% H2 concentration (5 mm × 5 mm in size can support a maximal weight of 856 g, which indicates a macroscopic shear adhesive strength of 34 N/cm2. We propose a hydrogen-concentration-dependent model for the shear adhesive performance of VACNTs. By adjusting the amount of hydrogen present during the reaction, the morphology and quality of the prepared VACNTs can be precisely controlled, which significantly influences its shear adhesive performance. These results are advantageous for the application of carbon nanotubes as dry adhesives.

  12. Black Carbon and Particulate Matter (PM2.5) Concentrations in New York City’s Subway Stations

    Science.gov (United States)

    2015-01-01

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m3, with 1 min average peaks >100 μg/m3, while real time PM2.5 levels ranged from 35 to 200 μg/m3. Mean EC levels ranged from 9 to 12.5 μg/m3. At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m3, respectively. This study shows that both BC soot and PM levels in NYC’s subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted. PMID:25409007

  13. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost

    DEFF Research Database (Denmark)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno

    2013-01-01

    can be degraded at all, the desorption and biodegradation of low concentrations of 14C-labelled phenanthrene (⩽5μgL−1) freshly sorbed to suspensions of the pure soil amendments activated carbon (AC), biochar (charcoal) and compost were compared. Firstly, the maximum abiotic desorption of phenanthrene...

  14. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    Science.gov (United States)

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  15. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    Randhir K Bharti

    Full Text Available A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO. The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC, however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  16. STRUCTURE AND CHARACTERISTICS OF PATENTED HIGH-CARBON WIRE

    Directory of Open Access Journals (Sweden)

    A. Ju. Borisenko

    2011-01-01

    Full Text Available The influence of bainite structure on mechanical characteristics of wire of steel 80 after patenting is studied. The quantity and structure state of bainite, providing high complex of mechanical characteristics of high-carbon wire, is determined.

  17. Effect of membrane on carbonation and carbon dioxide uptake of Chlorella sp.

    Directory of Open Access Journals (Sweden)

    Suali Emma

    2017-01-01

    Full Text Available Recent studies showed that as low as 5% CO2 increased microalgae growth. However, common bioreactor operation resulted in low carbonation due to poor CO2 mass transfer and this inhibited CO2 uptake of microalgae. Although bubbling increases mass transfer of CO2-O2 exchange, preserving high dissolved CO2 remains the most challenging of microalgae cultivation in bioreactor. In order to increase high dissolved CO2 and CO2-O2 exchange, this study employed two types of membrane; hollow-fibre membrane for carbonation and hydrophobic membrane for deoxygenation. It was found that membrane increased carbonation from 20 % to 75 % when operated at control CO2 concentration. The hollow-fibre membrane capable of creating as small as 2 mm bubble which effective for high carbonation. At the same time, itincreased CO2 uptake up to 85% in bioreactor. The hydrophobic membrane removed 43% O2 from the bioreactor. Both membranes increased mass transfer of CO2-O2 exchange in bioreactor which stimulated microalgae growth.

  18. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  19. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  20. Controllable synthesis of Zn{sub 2}TiO{sub 4}-carbon core/shell nanofibers with high photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peng [Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China); Shao, Changlu, E-mail: clshao@nenu.edu.cn [Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China); Zhang, Mingyi; Guo, Zengcai; Mu, Jingbo; Zhang, Zhenyi; Zhang, Xin; Liang, Pingping; Liu, Yichun [Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China)

    2012-08-30

    Graphical abstract: We describe a controllable route to synthesize Zn{sub 2}TiO{sub 4}-carbon core/shell nanofibers with different thickness of carbon layers (from 2 to 8 nm) as high efficiency photocatalysts. Highlights: Black-Right-Pointing-Pointer Synthesis of Zn{sub 2}TiO{sub 4}-carbon nanofibers with different thickness of carbon layers. Black-Right-Pointing-Pointer Zn{sub 2}TiO{sub 4}-carbon NFs showed photocatalytic activity for the degradation of Rhodamine B. Black-Right-Pointing-Pointer Easy photocatalyst separation and reuse. Black-Right-Pointing-Pointer A general way to fabricate other carbon-coated core/shell photocatalysts. - Abstract: Zn{sub 2}TiO{sub 4}-carbon core/shell nanofibers (Zn{sub 2}TiO{sub 4}-C NFs) with different thickness of carbon layers (from 2 to 8 nm) were fabricated by combining the electrospinning technique and hydrothermal method. The results showed that a uniform carbon layer was formed around the electrospun Zn{sub 2}TiO{sub 4} nanofiber (Zn{sub 2}TiO{sub 4} NFs). By adjusting the hydrothermal fabrication parameters, the thickness of carbon layer varied linearly with the concentration of glucose. Furthermore, the core/shell structure formed between Zn{sub 2}TiO{sub 4} and carbon enhanced the charge separation of pure Zn{sub 2}TiO{sub 4} under ultraviolet excitation, as evidenced by photoluminescence spectra. The photocatalytic studies revealed that the Zn{sub 2}TiO{sub 4}-C NFs exhibited enhanced photocatalytic efficiency of photodegradation of Rhodamine B (RB) compared with the pure Zn{sub 2}TiO{sub 4} NFs under ultraviolet excitation, which might be attributed to the high separation efficiency of photogenerated electrons and holes based on the synergistic effect between carbon and Zn{sub 2}TiO{sub 4}. Notably, the Zn{sub 2}TiO{sub 4}-C NFs could be recycled easily by sedimentation without a decrease of the photocatalytic activity.

  1. Effect of electrolyte concentration on performance of supercapacitor carbon electrode from fibers of oil palm empty fruit bunches

    Energy Technology Data Exchange (ETDEWEB)

    Farma, R.; Awitdrus,; Taer, E. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Departement of Physics, Faculty of Mathematics and Natural Sciences, University of Riau, 28293 Pekanbaru, Riau (Indonesia); Deraman, M., E-mail: madra@ukm.my; Talib, I. A.; Omar, R.; Ishak, M. M.; Basri, N. H.; Dolah, B. N. M. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-04-16

    Fibers of oil palm empty fruit bunches were used to produce self-adhesive carbon grains (SACG). The SACG green monoliths were carbonized in N{sub 2} environment at 800°C to produce carbon monoliths (CM) and the CM was CO{sub 2} activated at 800°C for 4 hour to produce activated carbon monolith electrodes (ACM). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy and nitrogen adsorption-desorption. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells which used H{sub 2}SO{sub 4} electrolyte at 0.5, 1.0 and 1.5 M were investigated using electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge standard techniques. In this paper we report the physical properties of the ACM electrodes and the effect of electrolyte concentration on the electrochemical properties the ACM electrodes.

  2. Effect of electrolyte concentration on performance of supercapacitor carbon electrode from fibers of oil palm empty fruit bunches

    International Nuclear Information System (INIS)

    Farma, R.; Awitdrus,; Taer, E.; Deraman, M.; Talib, I. A.; Omar, R.; Ishak, M. M.; Basri, N. H.; Dolah, B. N. M.

    2015-01-01

    Fibers of oil palm empty fruit bunches were used to produce self-adhesive carbon grains (SACG). The SACG green monoliths were carbonized in N 2 environment at 800°C to produce carbon monoliths (CM) and the CM was CO 2 activated at 800°C for 4 hour to produce activated carbon monolith electrodes (ACM). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy and nitrogen adsorption-desorption. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells which used H 2 SO 4 electrolyte at 0.5, 1.0 and 1.5 M were investigated using electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge standard techniques. In this paper we report the physical properties of the ACM electrodes and the effect of electrolyte concentration on the electrochemical properties the ACM electrodes

  3. Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: coupled processes of natural ventilation, barometric pumping and internal mixing.

    Science.gov (United States)

    Perrier, Frédéric; Richon, Patrick

    2010-04-01

    Radon-222 and carbon dioxide concentrations have been measured during several years at several points in the atmosphere of an underground limestone quarry located at a depth of 18 m in Vincennes, near Paris, France. Both concentrations showed a seasonal cycle. Radon concentration varied from 1200 to 2000 Bq m(-3) in summer to about 800-1400 Bq m(-3) in winter, indicating winter ventilation rates varying from 0.6 to 2.5 x 10(-6) s(-1). Carbon dioxide concentration varied from 0.9 to 1.0% in summer, to about 0.1-0.3% in winter. Radon concentration can be corrected for natural ventilation using temperature measurements. The obtained model also accounts for the measured seasonal variation of carbon dioxide. After correction, radon concentrations still exhibit significant temporal variation, mostly associated with the variation of atmospheric pressure, with coupling coefficients varying from -7 to -26 Bq m(-3) hPa(-1). This variation can be accounted for using a barometric pumping model, coupled with natural ventilation in winter, and including internal mixing as well. After correction, radon concentrations exhibit residual temporal variation, poorly correlated between different points, with standard deviations varying from 3 to 6%. This study shows that temporal variation of radon concentrations in underground cavities can be understood to a satisfactory level of detail using non-linear and time-dependent modelling. It is important to understand the temporal variation of radon concentrations and the limitations in their modelling to monitor the properties of natural or artificial underground settings, and to be able to assess the existence of new processes, for example associated with the preparatory phases of volcanic eruptions or earthquakes. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Investigation of concentration overpotential distribution in a polymer electrolyte fuel cell. Paper no. IGEC-1-081

    International Nuclear Information System (INIS)

    Tajiri, K.; Yang, X.-G.; Wang, C.-Y.; Shinohara, K.

    2005-01-01

    Simultaneous measurement of current and high frequency resistance (HFR) distributions has been performed using a segmented polymer electrolyte fuel cell operated with H 2 /air. Each flow plate consisted of twelve segments along a serpentine flow field. Two types of gas diffusion layer (GDL), a treated hydrophobic carbon cloth coated with a microporous layer (MPL) on one side, and an untreated hydrophilic carbon cloth without MPL, were studied and contrasted. The total voltage loss is divided into three overpotentials: the activation, ohmic and concentration; and the concentration overpotential and its distribution are analyzed in detail. While the fuel cell using the GDL with MPL features a nearly uniform concentration overpotential profile, the one without-MPL shows an increase in concentration overpotential along the cathode flow. When the local concentration overpotential is plotted against the local oxygen concentration, the carbon cloth GDL without MPL showed a steeply increasing concentration overpotential with decreasing oxygen concentration, indicating a high sensitivity to the oxygen content. The same trend was observed for the GDL without MPL under lower relative humidity gases. It is thus found that the increase in concentration overpotential with decreasing oxygen concentration is related to the absence of MPL. (author)

  5. High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth

    International Nuclear Information System (INIS)

    Wang, C.-H.; Shih, H.-C.; Tsai, Y.-T.; Du, H.-Y.; Chen, L.-C.; Chen, K.-H.

    2006-01-01

    The microstructure and electrochemical activity of the Pt-Ru supported by nitrogen-containing carbon nanotubes (CN x NTs) directly grown on the carbon cloth have been investigated. The CN x NTs directly grown on the carbon cloth (CN x NTs-carbon cloth composite electrode) were synthesized using microwave-plasma-enhanced chemical vapour deposition first and then use as the template to support the Pt-Ru nanoclusters subsequently sputtered on. The ferricyanide/ferrocyanide redox reaction in cyclic voltammetry (CV) measurements showed a faster electron transfer on the CN x NTs-carbon cloth composite electrode than the one with carbon cloth alone. Comparing their methanol oxidation abilities, it is found that the Pt-Ru nanoclusters supported by the CN x NTs-carbon cloth composite electrode have considerably higher electrocatalytic activity than the carbon cloth counterpart. This result suggests high performance of the CN x NTs-carbon cloth composite electrode, and demonstrates its suitability for direct methanol fuel cell applications

  6. High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.-H. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Shih, H.-C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Institue of Materials Science and Nano Technology, Chinese Culture University, Taipei, Taiwan (China); Tsai, Y.-T. [Institue of Materials Science and Nano Technology, Chinese Culture University, Taipei, Taiwan (China); Du, H.-Y. [Institue of Materials Science and Nano Technology, Chinese Culture University, Taipei, Taiwan (China); Chen, L.-C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan (China); Chen, K.-H. [Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan (China) and Institue of Atomic and Molecular Science, Academia Sinica, Taipei, Taiwan (China)]. E-mail: chenkh@pub.iams.sinica.edu.tw

    2006-12-01

    The microstructure and electrochemical activity of the Pt-Ru supported by nitrogen-containing carbon nanotubes (CN {sub x} NTs) directly grown on the carbon cloth have been investigated. The CN {sub x} NTs directly grown on the carbon cloth (CN {sub x} NTs-carbon cloth composite electrode) were synthesized using microwave-plasma-enhanced chemical vapour deposition first and then use as the template to support the Pt-Ru nanoclusters subsequently sputtered on. The ferricyanide/ferrocyanide redox reaction in cyclic voltammetry (CV) measurements showed a faster electron transfer on the CN {sub x} NTs-carbon cloth composite electrode than the one with carbon cloth alone. Comparing their methanol oxidation abilities, it is found that the Pt-Ru nanoclusters supported by the CN {sub x} NTs-carbon cloth composite electrode have considerably higher electrocatalytic activity than the carbon cloth counterpart. This result suggests high performance of the CN {sub x} NTs-carbon cloth composite electrode, and demonstrates its suitability for direct methanol fuel cell applications.

  7. Patterned growth of carbon nanotubes obtained by high density plasma chemical vapor deposition

    Science.gov (United States)

    Mousinho, A. P.; Mansano, R. D.

    2015-03-01

    Patterned growth of carbon nanotubes by chemical vapor deposition represents an assembly approach to place and orient nanotubes at a stage as early as when they are synthesized. In this work, the carbon nanotubes were obtained at room temperature by High Density Plasmas Chemical Vapor Deposition (HDPCVD) system. This CVD system uses a new concept of plasma generation, where a planar coil coupled to an RF system for plasma generation was used with an electrostatic shield for plasma densification. In this mode, high density plasmas are obtained. We also report the patterned growth of carbon nanotubes on full 4-in Si wafers, using pure methane plasmas and iron as precursor material (seed). Photolithography processes were used to pattern the regions on the silicon wafers. The carbon nanotubes were characterized by micro-Raman spectroscopy, the spectra showed very single-walled carbon nanotubes axial vibration modes around 1590 cm-1 and radial breathing modes (RBM) around 120-400 cm-1, confirming that high quality of the carbon nanotubes obtained in this work. The carbon nanotubes were analyzed by atomic force microscopy and scanning electron microscopy too. The results showed that is possible obtain high-aligned carbon nanotubes with patterned growth on a silicon wafer with high reproducibility and control.

  8. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    International Nuclear Information System (INIS)

    Hlaing, Nwe Ni; Vignesh, K.; Sreekantan, Srimala; Pung, Swee-Yong; Hinode, Hirofumi; Kurniawan, Winarto; Othman, Radzali; Thant, Aye Aye; Mohamed, Abdul Rahman; Salim, Chris

    2016-01-01

    Graphical abstract: Carbonation conversions of (a) CC, (b) CH-2, (c) CH-4, (d) CH-6, (e) CH-8 precursor adsorbents for 10 cycles. - Highlights: • Ca(OH)_2 precursor was synthesized using precipitation method. • The effect of CTAB concentration on the synthesis of Ca(OH)_2 was studied. • The sorbent synthesized using 0.8 M of CTAB showed good CO_2 adsorption capacity. • The cyclic stability of Ca(OH)_2 was increased with increase of CTAB concentration. - Abstract: Calcium hydroxide (Ca(OH)_2) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)_2 based adsorbents for carbon dioxide (CO_2) capture. The effect of CTAB concentration (0.2–0.8 M) on the structure, morphology and CO_2 adsorption performance of Ca(OH)_2 was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG–DTA) techniques. The phase purity, crystallite size, Brunauer–Emmett–Teller (BET) surface area and CO_2 adsorption performance of Ca(OH)_2 precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH)_2 phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)_2 precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  9. A doped activated carbon prepared from polyaniline for high performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Limin; Liu, Enhui; Li, Jian; Yang, Yanjing; Shen, Haijie; Huang, Zhengzheng; Xiang, Xiaoxia; Li, Wen [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China)

    2010-03-01

    A novel doped activated carbon has been prepared from H{sub 2}SO{sub 4}-doped polyaniline which is prepared by the oxypolymerization of aniline. The morphology, surface chemical composition and surface area of the carbon have been investigated by scanning electron microscope, X-ray photoelectron spectroscopy and Brunaner-Emmett-Teller measurement, respectively. Electrochemical properties of the doped activated carbon have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol l{sup -1} KOH. The specific capacitance of the carbon is as high as 235 F g{sup -1}, the specific capacitance hardly decreases at a high current density 11 A g{sup -1} after 10,000 cycles, which indicates that the carbon possesses excellent cycle durability and may be a promising candidate for supercapacitors. (author)

  10. Uncertainties in neural network model based on carbon dioxide concentration for occupancy estimation

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Azimil Gani; Rahman, Haolia; Kim, Jung-Kyung; Han, Hwataik [Kookmin University, Seoul (Korea, Republic of)

    2017-05-15

    Demand control ventilation is employed to save energy by adjusting airflow rate according to the ventilation load of a building. This paper investigates a method for occupancy estimation by using a dynamic neural network model based on carbon dioxide concentration in an occupied zone. The method can be applied to most commercial and residential buildings where human effluents to be ventilated. An indoor simulation program CONTAMW is used to generate indoor CO{sub 2} data corresponding to various occupancy schedules and airflow patterns to train neural network models. Coefficients of variation are obtained depending on the complexities of the physical parameters as well as the system parameters of neural networks, such as the numbers of hidden neurons and tapped delay lines. We intend to identify the uncertainties caused by the model parameters themselves, by excluding uncertainties in input data inherent in measurement. Our results show estimation accuracy is highly influenced by the frequency of occupancy variation but not significantly influenced by fluctuation in the airflow rate. Furthermore, we discuss the applicability and validity of the present method based on passive environmental conditions for estimating occupancy in a room from the viewpoint of demand control ventilation applications.

  11. Window and door opening behavior, carbon dioxide concentration, temperature, and energy use during the heating season in classrooms with different ventilation retrofits—ASHRAE RP1624

    DEFF Research Database (Denmark)

    Heebøll, Anna; Wargocki, Pawel; Toftum, Jørn

    2018-01-01

    of Copenhagen, Denmark, were retrofitted either with a decentralized, balanced supply and exhaust mechanical ventilation unit with heat recovery; automatically operable windows with an exhaust fan; automatically operable windows with alternating counter-flow heat recovery through slots in the outside wall......; or a visual feedback display unit showing the current classroom carbon dioxide concentration, thus advising when the windows should be opened. For comparison, one classroom retained the original approach for achieving ventilation by manual opening of windows. One year after retrofitting the classrooms carbon...... dioxide concentrations, temperatures, energy use, and window and door opening behavior were recorded during a four week period in the heating season in January. The measured carbon dioxide concentrations were significantly lower in the classrooms with the mechanical ventilation system and the system...

  12. High-Performance Supercapacitor of Functionalized Carbon Fiber Paper with High Surface Ionic and Bulk Electronic Conductivity: Effect of Organic Functional Groups

    International Nuclear Information System (INIS)

    Suktha, Phansiri; Chiochan, Poramane; Iamprasertkun, Pawin; Wutthiprom, Juthaporn; Phattharasupakun, Nutthaphon; Suksomboon, Montakan; Kaewsongpol, Tanon; Sirisinudomkit, Pichamon; Pettong, Tanut; Sawangphruk, Montree

    2015-01-01

    Highlights: • A supercapacitor of organic functionalized carbon fiber paper (f-CFP) exhibits high areal and volumetric capacitances. • The performance of the supercapacitor depends on the organic functional group on the surface of the f-CFP. • Hydroxyl and carboxylic groups modified on the surface of f-CFP have higher pseudocapacitive property than amide and amine functional groups. • The f-CFP exhibits high surface ionic and bulk electrical conductivities. - Abstract: Although carbon fiber paper (CFP) or nonwovens are widely used as a non-corrosive and conductive substrate or current collector in batteries and supercapacitors as well as a gas diffusion layer in proton exchange membrane fuel cells, the CFP cannot store charges due to its poor ionic conductivity and its hydrophobic surface. In this work, the chemically functionalized CFP (f-CFP) consisting of hydroxyl and carboxylic groups on its surface was produced by an oxidation reaction of CFP in a mixed concentrated acid solution of H 2 SO 4 :HNO 3 (3:1 v/v) at 60 °C for 1 h. Other amide and amine groups modified CFP were also synthesized for comparison using a dehydration reaction of carboxylic modified CFP with ethylenediamine and n-butylamine. Interestingly, it was found that hydroxyl and carboxylic groups modified CFP behave as a pseudocapacitor electrode, which can store charges via the surface redox reaction in addition to electrochemical double layer capacitance. The aqueous-based supercapacitor of f-CFP has high areal, volumetric, and specific energy (49.0 μW.h/cm 2 , 1960 mW.h/L, and 5.2 W.h/Kg) and power (3.0 mW/cm 2 , 120 W/L, and 326.2 W/Kg) based on the total geometrical surface area and volume as well as the total weight of positive and negative electrodes. High charge capacity of the f-CFP stems from high ionic charge and pseudocapacitive behavior due to hydroxyl and carboxylic groups on its surface and high bulk electronic conductivity (2.03 mS/cm) due to 1D carbon fiber paper. The

  13. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors.

    Science.gov (United States)

    Sevilla, Marta; Fuertes, Antonio B

    2014-05-27

    An easy, one-step procedure is proposed for the synthesis of highly porous carbon nanosheets with an excellent performance as supercapacitor electrodes. The procedure is based on the carbonization of an organic salt, i.e., potassium citrate, at a temperature in the 750-900 °C range. In this way, carbon particles made up of interconnected carbon nanosheets with a thickness of <80 nm are obtained. The porosity of the carbon nanosheets consists essentially of micropores distributed in two pore systems of 0.7-0.85 nm and 0.95-1.6 nm. Importantly, the micropore sizes of both systems can be enlarged by simply increasing the carbonization temperature. Furthermore, the carbon nanosheets possess BET surface areas in the ∼1400-2200 m(2) g(-1) range and electronic conductivities in the range of 1.7-7.4 S cm(-1) (measured at 7.1 MPa). These materials behave as high-performance supercapacitor electrodes in organic electrolyte and exhibit an excellent power handling ability and a superb robustness over long-term cycling. Excellent results were obtained with the supercapacitor fabricated from the material synthesized at 850 °C in terms of both gravimetric and volumetric energy and power densities. This device was able to deliver ∼13 Wh kg(-1) (5.2 Wh L(-1)) at an extremely high power density of 78 kW kg(-1) (31 kW L(-1)) and ∼30 Wh kg(-1) (12 Wh L(-1)) at a power density of 13 kW kg(-1) (5.2 kW L(-1)) (voltage range of 2.7 V).

  14. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.

    Science.gov (United States)

    Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M

    2016-12-28

    Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m 2 /g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.

  15. The Mechanism of High Ductility for Novel High-Carbon Quenching-Partitioning-Tempering Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Wang, Ying; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2015-09-01

    In this article, a novel quenching-partitioning-tempering (Q-P-T) process was applied to treat Fe-0.6C-1.5Mn-1.5Si-0.6Cr-0.05Nb hot-rolled high-carbon steel and the microstructures including retained austenite fraction and the average dislocation densities in both martensite and retained austenite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. The Q-P-T steel exhibits high strength (1950 MPa) and elongation (12.4 pct). Comparing with the steel treated by traditional quenching and tempering (Q&T) process, the mechanism of high ductility for high-carbon Q-P-T steel is revealed as follows. Much more retained austenite existing in Q-P-T steel than in Q&T one remarkably enhances the ductility by the following two effects: the dislocation absorption by retained austenite effect and the transformation-induced plasticity effect. Besides, lower dislocation density in martensite matrix produced by Q-P-T process plays an important role in the improvement of ductility. However, some thin plates of twin-type martensite embedded in dislocation-type martensite matrix in high-carbon Q-P-T steel affect the further improvement of ductility.

  16. Radiation-induced defects in Czochralski-grown silicon containing carbon and germanium

    International Nuclear Information System (INIS)

    Londos, C A; Andrianakis, A; Emtsev, V V; Ohyama, H

    2009-01-01

    Formation processes of vacancy-oxygen (VO) and carbon interstitial-oxygen interstitial (C i O i ) complexes in electron-irradiated Czochralski-grown Si crystals (Cz–Si), also doped with Ge, are investigated. IR spectroscopy measurements are employed to monitor the production of these defects. In Cz–Si with carbon concentrations [C s ] up to 1 × 10 17 cm −3 and Ge concentrations [Ge] up to 1 × 10 20 cm −3 the production rate of VO defects as well as the rate of oxygen loss show a slight growth of about 10% with the increasing Ge concentration. At high concentrations of carbon [C s ] around 2 × 10 17 cm −3 the production rate of VO defects is getting larger by ∼40% in Cz–Si:Ge at Ge concentrations around 1 × 10 19 cm −3 and then at [Ge] ≈ 2 × 10 20 cm −3 this enlargement drops to ∼13%, thus approaching the values characteristic of lesser concentrations of carbon. A similar behavior against Ge concentration displays the production rate of C i O i complexes. The same trend is also observed for the rate of carbon loss, whereas the trend for the rate of oxygen loss is opposite. The behavior of Ge atoms is different at low and high concentrations of this isoelectronic impurity in Cz–Si. At low concentrations most isolated Ge atoms serve as temporary traps for vacancies preventing them from indirect annihilation with self-interstitials. At high concentrations Ge atoms are prone to form clusters. The latter ones are traps for vacancies and self-interstitials due to the strain fields, increasing the importance of indirect annihilation of intrinsic point defects. Such a model allows one to give a plausible explanation for the obtained results. A new band at 994 cm −1 seen only in irradiated Ge-doped Cz–Si is also studied. Interestingly, its annealing behavior was found to be very similar to that of VO complexes

  17. Source apportionment of PM10 mass and particulate carbon in the Kathmandu Valley, Nepal

    Science.gov (United States)

    Kim, Bong Mann; Park, Jin-Soo; Kim, Sang-Woo; Kim, Hyunjae; Jeon, Haeun; Cho, Chaeyoon; Kim, Ji-Hyoung; Hong, Seungkyu; Rupakheti, Maheswar; Panday, Arnico K.; Park, Rokjin J.; Hong, Jihyung; Yoon, Soon-Chang

    2015-12-01

    The Kathmandu Valley in Nepal is a bowl-shaped urban basin in the Himalayan foothills with a serious problem of fine particulate air pollution that impacts local health and impairs visibility. Particulate carbon concentrations have reached severe levels that threaten the health of 3.5 million local residents. Moreover, snow and ice on the Himalayan mountains are melting as a result of additional warming due to particulate carbon, especially high black carbon concentrations. To date, the sources of the Valley's particulate carbon and the impacts of different sources on particulate carbon concentrations are not well understood. Thus, before an effective control strategy can be developed, these particulate carbon sources must be identified and quantified. Our study has found that the four primary sources of particulate carbon in the Kathmandu Valley during winter are brick kilns, motor vehicles, fugitive soil dust, and biomass/garbage burning. Their source contributions are quantified using a recently developed new multivariate receptor model SMP. In contrast to other highly polluted areas such as China, secondary contribution is almost negligible in Kathmandu Valley. Brick kilns (40%), motor vehicles (37%) and biomass/garbage burning (22%) have been identified as the major sources of elemental carbon (black carbon) in the Kathmandu Valley during winter, while motor vehicles (47%), biomass/garbage burning (32%), and soil dust (13%) have been identified as the most important sources of organic carbon. Our research indicates that controlling emissions from motor vehicles, brick kilns, biomass/garbage burning, and soil dust is essential for the mitigation of the particulate carbon that threatens public health, impairs visibility, and influences climate warming within and downwind from the Kathmandu Valley. In addition, this paper suggests several useful particulate carbon mitigation methods that can be applied to Kathmandu Valley and other areas in South Asia with

  18. Measurements on high temperature fuel cells with carbon monoxide-containing fuel gases; Messungen an Hochtemperatur-Brennstoffzellen mit kohlenmonoxidhaltigen Brenngasen

    Energy Technology Data Exchange (ETDEWEB)

    Apfel, Holger

    2012-10-10

    In the present work the different power density of anode-supported high-temperature solid oxide fuel cells (ASC-SOFCs) were examined for carbon monoxide-containing fuels. In addition to wet hydrogen / carbon monoxide mixtures the cells were run with synthetic gas mixtures resembling the products of an autothermal reformer, and actual reformate generated by a 2 kW autothermal reformer. It was found that the power-voltage characteristics of an ASC depends primarily on the open circuit voltages of different gas mixtures, but is nearly independent of the hydrogen concentration of the fuel, although the reaction rates of other potential fuels within the gas mixture, namely carbon monoxide and methane, are much lower that the hydrogen reaction rate. The probable reason is that the main fuel for the electrochemical oxidation within the cell is hydrogen, while the nickel in the base layer of the anode acts as a reformer which replenishes the hydrogen by water reduction via carbon monoxide and methane oxidation.

  19. Calcium Carbonate Precipitation for CO2 Storage and Utilization: A Review of the Carbonate Crystallization and Polymorphism

    Directory of Open Access Journals (Sweden)

    Ribooga Chang

    2017-07-01

    Full Text Available The transformation of CO2 into a precipitated mineral carbonate through an ex situ mineral carbonation route is considered a promising option for carbon capture and storage (CCS since (i the captured CO2 can be stored permanently and (ii industrial wastes (i.e., coal fly ash, steel and stainless-steel slags, and cement and lime kiln dusts can be recycled and converted into value-added carbonate materials by controlling polymorphs and properties of the mineral carbonates. The final products produced by the ex situ mineral carbonation route can be divided into two categories—low-end high-volume and high-end low-volume mineral carbonates—in terms of their market needs as well as their properties (i.e., purity. Therefore, it is expected that this can partially offset the total cost of the CCS processes. Polymorphs and physicochemical properties of CaCO3 strongly rely on the synthesis variables such as temperature, pH of the solution, reaction time, ion concentration and ratio, stirring, and the concentration of additives. Various efforts to control and fabricate polymorphs of CaCO3 have been made to date. In this review, we present a summary of current knowledge and recent investigations entailing mechanistic studies on the formation of the precipitated CaCO3 and the influences of the synthesis factors on the polymorphs.

  20. Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures

    Science.gov (United States)

    Fruin, Scott A.; Winer, Arthur M.; Rodes, Charles E.

    This research assessed in-vehicle exposures to black carbon (BC) as an indicator of diesel particulate matter (DPM) exposures. Approximately 50 h of real-time Aethalometer BC measurements were made inside vehicles driven on freeway and arterial loops in Los Angeles and Sacramento. Video tapes of the driver's view were transcribed to record the traffic conditions, vehicles followed, and vehicle occupant observations, and these results were tested for their associations with BC concentration. In-vehicle BC concentrations were highest when directly following diesel-powered vehicles, particularly those with low exhaust pipe locations. The lowest BC concentrations were observed while following gasoline-powered passenger cars, on average no different than not following any vehicle. Because diesel vehicles were over-sampled in the field study, results were not representative of real-world driving. To calculate representative exposures, in-vehicle BC concentrations were grouped by the type of vehicle followed, for each road type and congestion level. These groupings were then re-sampled stochastically, in proportion to the fraction of statewide vehicle miles traveled (VMT) under each of those conditions. The approximately 6% of time spent following diesel vehicles led to 23% of the in-vehicle BC exposure, while the remaining exposure was due to elevated roadway BC concentrations. In-vehicle BC exposures averaged 6 μg m -3 in Los Angeles and the Bay Area, the regions with the highest congestion and the majority of the state's VMT. The statewide average in-vehicle BC exposure was 4 μg m -3, corresponding to DPM concentrations of 7-23 μg m -3, depending on the Aethalometer response to elemental carbon (EC) and the EC fraction of the DPM. In-vehicle contributions to overall DPM exposures ranged from approximately 30% to 55% of total DPM exposure on a statewide population basis. Thus, although time spent in vehicles was only 1.5 h day -1 on average, vehicles may be the most

  1. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density

    Science.gov (United States)

    Zhao, Lei; Qiu, Yejun; Yu, Jie; Deng, Xianyu; Dai, Chenglong; Bai, Xuedong

    2013-05-01

    Improvement of energy density is an urgent task for developing advanced supercapacitors. In this paper, aqueous supercapacitors with high voltage of 1.8 V and energy density of 29.1 W h kg-1 were fabricated based on carbon nanofibers (CNFs) and Na2SO4 electrolyte. The CNFs with radially grown graphene sheets (GSs) and small average diameter down to 11 nm were prepared by electrospinning and carbonization in NH3. The radially grown GSs contain between 1 and a few atomic layers with their edges exposed on the surface. The CNFs are doped with nitrogen and oxygen with different concentrations depending on the carbonizing temperature. The supercapacitors exhibit excellent cycling performance with the capacity retention over 93.7% after 5000 charging-discharging cycles. The unique structure, possessing radially grown GSs, small diameter, and heteroatom doping of the CNFs, and application of neutral electrolyte account for the high voltage and energy density of the present supercapacitors. The present supercapacitors are of high promise for practical application due to the high energy density and the advantages of neutral electrolyte including low cost, safety, low corrosivity, and convenient assembly in air.

  2. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  3. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  4. Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density.

    Science.gov (United States)

    Jung, SungHoon; Myung, Yusik; Kim, Bit Na; Kim, In Gyoo; You, In-Kyu; Kim, TaeYoung

    2018-01-30

    Here, we present a facile and low-cost method to produce hierarchically porous graphene-based carbons from a biomass source. Three-dimensional (3D) graphene-based carbons were produced through continuous sequential steps such as the formation and transformation of glucose-based polymers into 3D foam-like structures and their subsequent carbonization to form the corresponding macroporous carbons with thin graphene-based carbon walls of macropores and intersectional carbon skeletons. Physical and chemical activation was then performed on this carbon to create micro- and meso-pores, thereby producing hierarchically porous biomass-derived graphene-based carbons with a high Brunauer-Emmett-Teller specific surface area of 3,657 m 2  g -1 . Owing to its exceptionally high surface area, interconnected hierarchical pore networks, and a high degree of graphitization, this carbon exhibited a high specific capacitance of 175 F g -1 in ionic liquid electrolyte. A supercapacitor constructed with this carbon yielded a maximum energy density of 74 Wh kg -1 and a maximum power density of 408 kW kg -1 , based on the total mass of electrodes, which is comparable to those of the state-of-the-art graphene-based carbons. This approach holds promise for the low-cost and readily scalable production of high performance electrode materials for supercapacitors.

  5. Effect of high surface area activated carbon on thermal degradation of jet fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gergova, K.; Eser, S.; Arumugam, R.; Schobert, H.H. [Pennsylvania State Univ., University Park, PA (United States)

    1995-05-01

    Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. We also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.

  6. Performance of CVD and CVR coated carbon-carbon in high temperature hydrogen

    Science.gov (United States)

    Adams, J. W.; Barletta, R. E.; Svandrlik, J.; Vanier, P. E.

    As a part of the component development process for the particle bed reactor (PBR), it is necessary to develop coatings which will be time and temperature stable at extremely high temperatures in flowing hydrogen. These coatings must protect the underlying carbon structure from attack by the hydrogen coolant. Degradation which causes small changes in the reactor component, e.g. hole diameter in the hot frit, can have a profound effect on operation. The ability of a component to withstand repeated temperature cycles is also a coating development issue. Coatings which crack or spall under these conditions would be unacceptable. While refractory carbides appear to be the coating material of choice for carbon substrates being used in PBR components, the method of applying these coatings can have a large effect on their performance. Two deposition processes for these refractory carbides, chemical vapor deposition (CVD) and chemical vapor reaction (CVR), have been evaluated. Screening tests for these coatings consisted of testing of coated 2-D and 3-D weave carbon-carbon in flowing hot hydrogen at one atmosphere. Carbon loss from these samples was measured as a function of time. Exposure temperatures up to 3,000 K were used, and samples were exposed in a cyclical fashion cooling to room temperature between exposures. The results of these measurements are presented along with an evaluation of the relative merits of CVR and CVD coatings for this application.

  7. Atmospheric aerosol brown carbon in the high Himalayas

    Science.gov (United States)

    Kirillova, Elena; Decesari, Stefano; Marinoni, Angela; Bonasoni, Paolo; Vuillermoz, Elisa; Facchini, M. Cristina; Fuzzi, Sandro

    2016-04-01

    Anthropogenic light-absorbing atmospheric aerosol can reach very high concentrations in the planetary boundary layer in South-East Asia ("brown clouds"), affecting atmospheric transparency and generating spatial gradients of temperature over land with a possible impact on atmospheric dynamics and monsoon circulation. Besides black carbon (BC), an important light-absorbing component of anthropogenic aerosols is the organic carbon component known as 'brown carbon' (BrC). In this research, we provided first measurements of atmospheric aerosol BrC in the high Himalayas during different seasons. Aerosol sampling was conducted at the GAW-WMO Global station "Nepal Climate Observatory-Pyramid" (NCO-P) located in the high Khumbu valley at 5079 m a.s.l. in the foothills of Mt. Everest. PM10 aerosol samples were collected from July 2013 to November 2014. The sampling strategy was set up in order to discriminate the daytime valley breeze bringing polluted air masses up to the observatory and free tropospheric air during nighttime. Water-soluble BrC (WS-BrC) and methanol-soluble BrC (MeS-BrC) were extracted and analyzed using a UV/VIS spectrophotometer equipped with a 50 cm liquid waveguide capillary cell. In the polluted air masses, the highest levels of the BrC light absorption coefficient at 365 nm (babs365) were observed during the pre-monsoon season (1.83±1.46 Mm-1 for WS-BrC and 2.86±2.49 Mm-1 for MeS-BrC) and the lowest during the monsoon season (0.21±0.22 Mm-1 for WS-BrC and 0.32±0.29 Mm-1 for MeS-BrC). The pre-monsoon season is the most frequently influenced by a strong atmospheric brown cloud (ABC) transport to NCO-P due to increased convection and mixing layer height over South Asia combined with the highest up-valley wind speed and the increase of the emissions from open fires due to the agricultural practice along the Himalayas foothills and the Indo-Gangetic Plain. In contrast, the monsoon season is characterized by a weakened valley wind regime and an

  8. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae.

    Science.gov (United States)

    Mesarič, Tina; Gambardella, Chiara; Milivojević, Tamara; Faimali, Marco; Drobne, Damjana; Falugi, Carla; Makovec, Darko; Jemec, Anita; Sepčić, Kristina

    2015-06-01

    We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration-dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5mg/mL carbon black and 0.1mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes.

    Science.gov (United States)

    Qu, Wen-Hui; Xu, Yuan-Yuan; Lu, An-Hui; Zhang, Xiang-Qian; Li, Wen-Cui

    2015-08-01

    In this report, corncob residue, the main by-product in the furfural industry, is used as a precursor to prepare porous carbon by a simple and direct thermal treatment: one-step activation without pre-carbonization. As a consequence, the corncob residue derived porous carbon achieves a high surface area of 1210 m(2) g(-1) after ash-removal. The carbon material has the advantages of low cost and low environmental impact, with a superior electrochemical performance compared to those polymer-based synthetic carbons as electrode material for a supercapacitor. The carbon electrode exhibits a high capacitance of 314 F g(-1) in 6M KOH electrolyte. The corresponding sample also shows a superb cycling stability. Almost no capacitance decay was observed after 100,000 cycles. The excellent electrochemical performance is due to the combination of a high specific surface area with a fraction of mesopores and highly stable structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Carbon on Mercury's Surface — Origin, Distribution, and Concentration

    Science.gov (United States)

    Klima, R. L.; Blewett, D. T.; Denevi, B. W.; Ernst, C. M.; Murchie, S. L.; Peplowski, P. N.; Perera, V.; Vander Kaaden, K.

    2018-05-01

    Low-reflectance material on Mercury, excavated from depth, may contain up to 5wt% carbon in some areas of the planet. We interpret this as endogenic carbon associated with the earliest crust of Mercury.

  11. Persistent cyclestability of carbon coated Zn–Sn metal oxide/carbon microspheres as highly reversible anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Fang, Guoqing; Kaneko, Shingo; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zhang, Ruixue; Zheng, Junwei; Li, Decheng

    2013-01-01

    Development of high-capacity anode materials equipped with strong cyclestability is a great challenge for use as practical electrode for high-performance lithium-ion rechargeable battery. In this study, we synthesized a carbon coated Zn–Sn metal nanocomposite oxide and carbon spheres (ZTO@C/CSs) via a simple glucose hydrothermal reaction and subsequent carbonization approach. The carbon coated ZTO/carbon microspheres composite maintained a reversible capacity of 680 mAh g −1 after 345 cycles at a current density of 100 mA g −1 , and furthermore the cell based on the composite exhibited an excellent rate capability of 470 mAh g −1 even when the cell was cycled at 2000 mA g –1 . The thick carbon layer formed on the ZTO nanoparticles and carbon spheres effectively buffered the volumetric change of the particles, which thus prolonged the cycling performance of the electrodes

  12. Low-Cost Bio-Based Carbon Fibers for High Temperature Processing

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ryan Michael [GrafTech International, Brooklyn Heights, OH (United States); Naskar, Amit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-03

    GrafTech International Holdings Inc. (GTI), under Award No. DE-EE0005779, worked with Oak Ridge National Laboratory (ORNL) under CRADA No. NFE-15-05807 to develop lignin-based carbon fiber (LBCF) technology and to demonstrate LBCF performance in high-temperature products and applications. This work was unique and different from other reported LBCF work in that this study was application-focused and scalability-focused. Accordingly, the executed work was based on meeting criteria based on technology development, cost, and application suitability. High-temperature carbon fiber based insulation is used in energy intensive industries, such as metal heat treating and ceramic and semiconductor material production. Insulation plays a critical role in achieving high thermal and process efficiency, which is directly related to energy usage, cost, and product competitiveness. Current high temperature insulation is made with petroleum based carbon fibers, and one goal of this protect was to develop and demonstrate an alternative lignin (biomass) based carbon fiber that would achieve lower cost, CO2 emissions, and energy consumption and result in insulation that met or exceeded the thermal efficiency of current commercial insulation. In addition, other products were targeted to be evaluated with LBCF. As the project was designed to proceed in stages, the initial focus of this work was to demonstrate lab-scale LBCF from at least 4 different lignin precursor feedstock sources that could meet the estimated production cost of $5.00/pound and have ash level of less than 500 ppm in the carbonized insulation-grade fiber. Accordingly, a preliminary cost model was developed based on publicly available information. The team demonstrated that 4 lignin samples met the cost criteria. In addition, the ash level for the 4 carbonized lignin samples was below 500 ppm. Processing as-received lignin to produce a high purity lignin fiber was a significant accomplishment in that most industrial

  13. Modelling Black Carbon concentrations in two busy street canyons in Brussels using CANSBC

    Science.gov (United States)

    Brasseur, O.; Declerck, P.; Heene, B.; Vanderstraeten, P.

    2015-01-01

    This paper focused on modelling Black Carbon (BC) concentrations in two busy street canyons, the Crown and Belliard Street in Brussels. The used original Operational Street Pollution Model was adapted to BC by eliminating the chemical module and is noted here as CANSBC. Model validations were performed using temporal BC data from the fixed measurement network in Brussels. Subsequently, BC emissions were adjusted so that simulated BC concentrations equalled the observed ones, averaged over the whole period of simulation. Direct validations were performed for the Crown Street, while BC model calculations for the Belliard Street were validated indirectly using the linear relationship between BC and NOx. Concerning the Crown Street, simulated and observed half-hourly BC concentrations correlated well (r = 0.74) for the period from July 1st, 2011 till June 30th, 2013. In particular, CANSBC performed very well to simulate the monthly and diurnal evolutions of averaged BC concentrations, as well as the difference between weekdays and weekends. This means that the model correctly handled the meteorological conditions as well as the variation in traffic emissions. Considering dispersion, it should however be noted that BC concentrations are better simulated under stable than under unstable conditions. Even if the correlation on half-hourly NOx concentrations was slightly lower (r = 0.60) than the one of BC, indirect validations of CANSBC for the Belliard Street yielded comparable results and conclusions as described above for the Crown Street. Based on our results, it can be stated that CANSBC is suitable to accurately simulate BC concentrations in the street canyons of Brussels, under the following conditions: (i) accurate vehicle counting data is available to correctly estimate traffic emissions, and (ii) vehicle speeds are measured in order to improve emission estimates and to take into account the impact of the turbulence generated by moving vehicles on the local

  14. High resolution carbon isotope of Crassostrea cuttakensis: A proxy for seasonally varying carbon dynamics in a tropical delta-estuary system

    Science.gov (United States)

    Sreemany, Arpita

    2017-04-01

    The exponential increase in the atmospheric CO2 concentration and global temperature is becoming a major threat to the existence of the mankind. It has been proposed that the ˜2 ˚ C rise in the average global temperature may lead to a point of no-return where the balance between the climate and the ecosystem collapses. Therefore, detailed understanding of the major carbon reservoirs and their mutual interactions is needed for better future climate prediction. Among all the reservoirs, ocean holds ˜90 % of the exogenic carbon and promotes long term storage in sediments. However, the majority of the sedimentary carbon is of terrestrial origin and transported through rivers, which play an important role in carbon exchange between the atmosphere, terrestrial biosphere, and oceans. The transportation of organic carbon through river does not follow a simple conveyer belt model. Various organic and inorganic reactions (i.e., organic carbon degradation, inorganic carbon precipitation, primary production, community respiration) modify the state of the carbon to form a major sub-reservoir in the river, i.e., Dissolved Inorganic Carbon (DIC). So, identifying the source/s of the DIC is crucial to understand the carbon dynamics in the river. Stable carbon isotopic composition of the DIC (δ13CDIC) has long been extensively used to reveal the dominant source/s of the DIC. The majority of the large rivers, being situated in the tropical belts, show seasonal fluctuation in the DIC sources. However, seasonal sampling in the remotest reaches of these rivers hindered our thorough understanding of the seasonally varying source/s of DIC in these rivers. Many calcifying organisms precipitate their shell carbonate in equilibrium with water and hence likely to record the δ13CDICof ambient water in their shell. In this study, a living oyster (Crassostrea cuttakensis) was collected from Matla River, which is part of the Ganges Brahmaputra river delta system, and analyzed for its stable

  15. Declines in the dissolved organic carbon (DOC) concentration and flux from the UK

    Science.gov (United States)

    Worrall, Fred; Howden, Nicholas J. K.; Burt, Tim P.; Bartlett, Rebecca

    2018-01-01

    Increased concentrations of dissolved organic carbon (DOC) have been reported for many catchments across the northern hemisphere. Hypotheses to explain the increase have varied (eg. increasing air temperature or recovery from acidification) but one test of alternative hypotheses is the trend over the recent decade, with the competing hypotheses predicting: continuing increase; the rate of increase declining with time; and even decrease in concentration. In this study, records of DOC concentration in non-tidal rivers across the UK were examined for the period 2003-2012. The study found that: Of the 62 decade-long concentration trends that could be examined, 3 showed a significant increase, 17 experienced no significant change and 42 showed a significant decrease; in 28 of the 42 significant decreases, a significant step change was apparent with step changes being a decrease in concentration in every case. Of the 118 sites where annual flux and concentration records were available from 1974, 28 showed a significant step change down in flux and 52 showed a step down in concentration. The modal year of the step changes was 2000 with no step changes observed before 1982. At the UK national scale, DOC flux peaked in 2005 at 1354 ktonnes C/yr (5.55 tonnes C/km2/yr) but has declined since. The study suggests that there is a disconnection between DOC records from large catchments at their tidal limits and complementary records from headwater catchments, which means that mechanisms believed to be driving increases in DOC concentrations in headwaters will not necessarily be those controlling trends in DOC concentration further downstream. We propose that the changes identified here have been driven by changes in in-stream processing and changes brought about by the Urban Waste Water Treatment Directive. Therefore, signals identified in headwater catchments may bear little relation to those observed in large rivers much further downstream and vice versa.

  16. Study on the Highly Sensitive AChE Electrode Based on Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Shuping Zhang

    2014-01-01

    Full Text Available Using chitosan (CS as carrier, the method named layer-by-layer (LBL self-assembly modification to modify the glassy carbon electrode (GCE with multiwalled carbon nanotubes (MWNTs and acetylcholine esterase (AChE was proposed to prepare the acetylcholine esterase electrode with high sensitivity and stability. The modified electrode was used to detect pesticide of aldicarb, and the enzyme inhibition rate of the electrode showed good linearity with pesticide concentrations in the range of 10−10 g·L−1 to 10−3 g·L−1. The detection limit was 10−11 g·L−1. The modified electrode was also used to detect the actual sample, and the recovery rate range was from 97.72% to 107.15%, which could meet the rapid testing need of the aldicarb residue. After being stored in the phosphate buffer solution (PBS in 4°C for 30 days, the modified electrode showed good stability with the response current that was 80% of the original current.

  17. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Temperton, V. M.; Jackson, G.; Barton, C. V. M.; Jarvis, P. G. [Edinburgh Univ., Inst. of Ecology and Resource Management, Edinburgh (United Kingdom); Grayston, S. J. [Macaulay Land Use Research Inst., Plant-Soil Interaction Group, Aberdeen (United Kingdom)

    2003-10-01

    Total biomass, relative growth rate, net assimilation rate, leaf area and net photosynthetic rate of nitrogen-fixing were measured in common alder trees, grown for three years in open-top chambers in the presence of either ambient or elevated atmospheric carbon dioxide, and in two soil nitrogen regimes: i.e. full nutrient solution or no fertilizer. The objective was to clarify the relationship between elevated carbon dioxide and the rate of nitrogen fixation of nodulated trees growing under field conditions. Results showed that growth in elevated carbon dioxide stimulated net photosynthesis and total biomass accumulation. However, relative growth rate was not significantly affected by elevated carbon dioxide. Leaf area and leaf phosphorus concentration were also unaffected. Nodule mass on roots of unfertilized trees exposed to elevated carbon dioxide increased, compared with fertilized trees exposed to ambient carbon dioxide levels. Since neither in the fertilized, nor the unfertilized trees was there any evidence of effects on growth, biomass and photosynthesis that could be attributed to the interaction of fertilizer and elevated carbon dioxide interaction, it was concluded that both types exhibit similar carbon dioxide-induced growth and photosynthetic enhancements. 40 refs., 5 tabs., 3 figs.

  18. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment

    International Nuclear Information System (INIS)

    Temperton, V. M.; Jackson, G.; Barton, C. V. M.; Jarvis, P. G.; Grayston, S. J.

    2003-01-01

    Total biomass, relative growth rate, net assimilation rate, leaf area and net photosynthetic rate of nitrogen-fixing were measured in common alder trees, grown for three years in open-top chambers in the presence of either ambient or elevated atmospheric carbon dioxide, and in two soil nitrogen regimes: i.e. full nutrient solution or no fertilizer. The objective was to clarify the relationship between elevated carbon dioxide and the rate of nitrogen fixation of nodulated trees growing under field conditions. Results showed that growth in elevated carbon dioxide stimulated net photosynthesis and total biomass accumulation. However, relative growth rate was not significantly affected by elevated carbon dioxide. Leaf area and leaf phosphorus concentration were also unaffected. Nodule mass on roots of unfertilized trees exposed to elevated carbon dioxide increased, compared with fertilized trees exposed to ambient carbon dioxide levels. Since neither in the fertilized, nor the unfertilized trees was there any evidence of effects on growth, biomass and photosynthesis that could be attributed to the interaction of fertilizer and elevated carbon dioxide interaction, it was concluded that both types exhibit similar carbon dioxide-induced growth and photosynthetic enhancements. 40 refs., 5 tabs., 3 figs

  19. Total and size-resolved particle number and black carbon concentrations in urban areas near Schiphol airport (the Netherlands)

    NARCIS (Netherlands)

    Keuken, M.P.; Moerman, M.; Zandveld, P.; Henzing, J.S.; Hoek, G.

    2015-01-01

    The presence of black carbon, and size-resolved and total particle number concentrations (PNC) were investigated in the vicinity of Schiphol airport in the Netherlands, the fourth busiest airport in Europe. Continuous measurements were conducted between March and May 2014at Adamse Bos, located 7km

  20. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  1. Effect of alkali metal content of carbon on retention of iodine at high temperatures

    International Nuclear Information System (INIS)

    Evans, A.G.

    1975-01-01

    Activated carbon for filters in reactor confinement systems is intentionally impregnated with iodine salts to enhance the removal of radioiodine from air streams containing organic iodides. When a variety of commercial impregnated carbons were evaluated for iodine retention at elevated temperatures (4 hours at 180 0 C), wide variations in iodine penetration were observed. The alkali metal and iodine content of carbon samples was determined by neutron activation analysis, and a strong correlation was shown between the atom ratio of iodine to alkali metals in the carbons and the high-temperature retention performance. Carbons containing excess alkali (especially potassium) have iodine penetration values 10 to 100 times lower than carbons containing excess iodine. Both low I/K ratios and high pH values were shown essential to high efficiency iodine retention; therefore, conversion of elemental iodine to ionic iodine is the basic reaction mechanism. The natural high K + content and high pH coconut carbons make coconut the preferred natural base material for nuclear air cleaning applications. Studies show, however, that treatment of low potassium carbons with a mixture of KOH and I 2 may produce a product equal to or better than I 2 -impregnated coconut carbons at a lower cost. (U.S.)

  2. Experimental study on cryogenic adsorption of methane by activated carbon for helium coolant purification of High-Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Chang, Hua; Wu, Zong-Xin; Jia, Hai-Jun

    2017-01-01

    Highlights: • The cryogenic CH 4 adsorption on activated carbon was studied for design of HTGR. • The breakthrough curves at different conditions were analyzed by the MTZ model. • The CH 4 adsorption isotherm was fitted well by the Toth model and the D-R model. • The work provides valuable reference data for helium coolant purification of HTGR. - Abstract: The cryogenic adsorption behavior of methane on activated carbon was investigated for helium coolant purification of high-temperature gas-cooled reactor by using dynamic column breakthrough method. With helium as carrier gas, experiments were performed at −196 °C and low methane partial pressure range of 0–120 Pa. The breakthrough curves at different superficial velocities and different feed concentrations were measured and analyzed by the mass-transfer zone model. The methane single-component adsorption isotherm was obtained and fitted well by the Toth model and the Dubinin-Radushkevich model. The adsorption heat of methane on activated carbon was estimated. The cryogenic adsorption process of methane on activated carbon has been verified to be effective for helium coolant purification of high-temperature gas-cooled reactor.

  3. Polyfurfuryl alcohol derived activated carbons for high power electrical double layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, V. [CSIRO Division of Energy Technology, Box 312, Clayton South, Vic. 3169 (Australia); Pandolfo, A.G., E-mail: tony.pandolfo@csiro.a [CSIRO Division of Energy Technology, Box 312, Clayton South, Vic. 3169 (Australia)

    2010-10-30

    Polyfurfuryl alcohol (PFA) derived activated carbons were prepared by the acid catalysed polymerization of furfuryl alcohol, followed by potassium hydroxide activation. Activated carbons with apparent BET surface areas ranging from 1070 to 2600 m{sup 2} g{sup -1}, and corresponding average micropore sizes between 0.6 and 1.6 nm were obtained. The porosity of these carbons can be carefully controlled during activation and their performance as electrode materials in electric double layer capacitors (EDLCs) in a non-aqueous electrolyte (1 M Et{sub 4}NBF{sub 4}/ACN) is investigated. Carbon materials with a low average pore size (<{approx}0.6 nm) exhibited electrolyte accessibility issues and an associated decrease in capacitance at high charging rates. PFA carbons with larger average pore sizes exhibited greatly improved performance, with specific electrode capacitances of 150 F g{sup -1} at an operating voltage window of 0-2.5 V; which corresponds to 32 Wh kg{sup -1} and 38 kW kg{sup -1} on an active material basis. These carbons also displayed an outstanding performance at high current densities delivering up to 100 F g{sup -1} at current densities as high as 250 A g{sup -1}. The exceptionally high capacitance and power of this electrode material is attributed to its good electronic conductivity and a highly effective combination of micro- and fine mesoporosity.

  4. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Hlaing, Nwe Ni, E-mail: nwenihlaing76@gmail.com [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Department of Physics, University of Yangon, 11041 Kamayut, Yangon (Myanmar); Vignesh, K., E-mail: vignesh134@gmail.com [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Anano Sphere Sdn Bhd, Lorong Industri 11, Kawasan Industri Bukit Panchor, 14300 Nibong Tebal, Penang (Malaysia); Sreekantan, Srimala, E-mail: srimala@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Pung, Swee-Yong [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Hinode, Hirofumi; Kurniawan, Winarto [Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Othman, Radzali [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Malacca (Malaysia); Thant, Aye Aye [Department of Physics, University of Yangon, 11041 Kamayut, Yangon (Myanmar); Mohamed, Abdul Rahman [Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Salim, Chris [Department of Environmental Engineering, Surya University, Tangerang 15810, Banten (Indonesia)

    2016-02-15

    Graphical abstract: Carbonation conversions of (a) CC, (b) CH-2, (c) CH-4, (d) CH-6, (e) CH-8 precursor adsorbents for 10 cycles. - Highlights: • Ca(OH){sub 2} precursor was synthesized using precipitation method. • The effect of CTAB concentration on the synthesis of Ca(OH){sub 2} was studied. • The sorbent synthesized using 0.8 M of CTAB showed good CO{sub 2} adsorption capacity. • The cyclic stability of Ca(OH){sub 2} was increased with increase of CTAB concentration. - Abstract: Calcium hydroxide (Ca(OH){sub 2}) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH){sub 2} based adsorbents for carbon dioxide (CO{sub 2}) capture. The effect of CTAB concentration (0.2–0.8 M) on the structure, morphology and CO{sub 2} adsorption performance of Ca(OH){sub 2} was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG–DTA) techniques. The phase purity, crystallite size, Brunauer–Emmett–Teller (BET) surface area and CO{sub 2} adsorption performance of Ca(OH){sub 2} precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH){sub 2} phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH){sub 2} precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  5. Exposure of commuters to carbon monoxide in Mexico City II. Comparison of in-vehicle and fixed-site concentrations.

    Science.gov (United States)

    Fernandez-Bremauntz, A A; Ashmore, M R

    1995-01-01

    The objective of this paper is to compare measurements of carbon monoxide taken concurrently inside vehicles and at fixed-site monitoring stations (FSMs), in order to assess if the FSM stations can be used to estimate commuters' exposure to this pollutant. During the study period ambient CO concentrations were very high. Five selected stations reported concentrations in excess of the Mexican (13 ppm) and United States (9 ppm) 8-hour standards for CO. Since, for all modes of transportation, the in-vehicle concentrations were always larger than the concurrent ambient concentrations, the differences between them were always positive and the ratios were always greater than one. Average, in-vehicle/ambient ratios for each mode of transportation were: automobile, 5.2; minivan, 5.2; minibus, 4.3; bus, 3.1; trolleybus 3.0; and metro, 2.2. A series of simple regression models with a moderate predictive power (R2 = 0.47 to 0.71) were developed for metro, bus, minibus, and automobile commuters. The models include the FSM measurements and also, depending on the mode of transportation, other variables, such as vehicular speed, the route of travel, and the wind speed. In the future, the models should be validated in two ways to determine their predictive power. First, they should be verified against additional samples taken under similar conditions; and second, their applications under different conditions should be explored through sampling during a different season of the year or on other commuting routes.

  6. Pumpkin-Derived Porous Carbon for Supercapacitors with High Performance.

    Science.gov (United States)

    Bai, Suying; Tan, Guangqun; Li, Xiaoqin; Zhao, Qian; Meng, Yan; Wang, Yujue; Zhang, Yongzhi; Xiao, Dan

    2016-06-21

    Pumpkin has been employed for the first time as a renewable, low-cost precursor for the preparation of porous carbon materials with excellent performance. Unlike most other precursors, pumpkin is rich in sugars and starch, and it has advantageous properties for large-scale production. The as-prepared materials adopted a unique morphology that consisted of numerous fused sphere-like carbon grains with a high specific surface area (2968 m(2)  g(-1) ), abundant micro and mesopores, and excellent electrochemical properties. The pumpkin-derived activated carbon (PAC) material not only exhibited a high specific capacitance of 419 F g(-1) , but also showed considerable cycling stability, with 93.6 % retention after 10 000 cycles. Moreover, a symmetrical supercapacitor that was based on PAC showed a high energy density of 22.1 W h kg(-1) in aqueous electrolyte. These superior properties demonstrate that PAC holds great promise for applications in electrochemical energy-storage devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Polyfurfuryl alcohol derived activated carbons for high power electrical double layer capacitors

    International Nuclear Information System (INIS)

    Ruiz, V.; Pandolfo, A.G.

    2010-01-01

    Polyfurfuryl alcohol (PFA) derived activated carbons were prepared by the acid catalysed polymerization of furfuryl alcohol, followed by potassium hydroxide activation. Activated carbons with apparent BET surface areas ranging from 1070 to 2600 m 2 g -1 , and corresponding average micropore sizes between 0.6 and 1.6 nm were obtained. The porosity of these carbons can be carefully controlled during activation and their performance as electrode materials in electric double layer capacitors (EDLCs) in a non-aqueous electrolyte (1 M Et 4 NBF 4 /ACN) is investigated. Carbon materials with a low average pore size ( -1 at an operating voltage window of 0-2.5 V; which corresponds to 32 Wh kg -1 and 38 kW kg -1 on an active material basis. These carbons also displayed an outstanding performance at high current densities delivering up to 100 F g -1 at current densities as high as 250 A g -1 . The exceptionally high capacitance and power of this electrode material is attributed to its good electronic conductivity and a highly effective combination of micro- and fine mesoporosity.

  8. A 40-year record of Northern Hemisphere atmospheric carbon monoxide concentration and isotope ratios from the firn at Greenland Summit.

    Science.gov (United States)

    Place, P., Jr.; Petrenko, V. V.; Vimont, I.; Buizert, C.; Lang, P. M.; Edwards, J.; Harth, C. M.; Hmiel, B.; Mak, J. E.; Novelli, P. C.; Brook, E.; Weiss, R. F.; Vaughn, B. H.; White, J. W. C.

    2014-12-01

    Carbon Monoxide (CO) is an important atmospheric trace gas that affects the oxidative capacity of the atmosphere and contributes indirectly to climate forcing by being a major sink of tropospheric OH. A good understanding of the past atmospheric CO budget is therefore important for climate models attempting to characterize recent changes in the atmosphere. Previous work at NEEM, Greenland provided the first reconstructions of Arctic atmospheric history of CO concentration and stable isotope ratios (δC18O and δ13CO) from firn air, dating to the 1950s. In this new study, firn air was sampled from eighteen depth levels through the firn column at Summit, Greenland (in May 2013), yielding a second, independent record of Arctic CO concentration and isotopic ratios. Carbon monoxide stable isotope ratios were analyzed on replicate samples and using a newly developed system with improved precision allowing for a more robust reconstruction. The new CO concentration and stable isotope results overall confirm the earlier findings from NEEM, with a CO concentration peak around the 1970s and higher δC18O and δ13CO values associated with peak CO. Modeling and interpretation of the data are in progress.

  9. Effect of cloric acid concentration on corrosion behavior of Ni/Cr coated on carbon steel

    Science.gov (United States)

    Desiati, Resetiana Dwi; Sugiarti, Eni; Thosin, K. A. Zaini

    2018-05-01

    Corrosion is one of the causes of metal degradation. Carbon steel (Fe) is easy to corrode in the extreme environment. Coating on carbon steel is required to improve corrosion resistance owing to protection or hindrance to extreme environmental conditions. In this present work, carbon steel was coated by electroplating techniques for nickel and pack cementation for chrome. The corrosion rate test was performed by Weight Loss method on FeNiCr, FeNi, FeCr and uncoated Fe as comparator which was dyed in 37% HCl and 25% HCl which had previously been measured dimension and mass. The immersion test result of FeNiCr and FeNi specimen were better than FeCr and uncoated Fe in terms of increasing corrosion resistance. The corrosion rate for 56 hours in 37% HCl for FeNiCr was 1.592 mm/y and FeNi was 3.208 mm/y, FeCr only lasted within 32 hours with corrosion rate was 6.494 mm/y. Surface of the sample after the corrosion test there was pitting, crevice corrosion and alloy cracking caused by chloride. The higher the concentration of HCl the faster the corrosion rate.

  10. Calcium Carbonate Precipitation for CO{sub 2} Storage and Utilization: A Review of the Carbonate Crystallization and Polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ribooga; Kim, Semin; Lee, Seungin; Choi, Soyoung; Kim, Minhee; Park, Youngjune, E-mail: young@gist.ac.kr [Carbon and Energy Systems, School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of)

    2017-07-10

    The transformation of CO{sub 2} into a precipitated mineral carbonate through an ex situ mineral carbonation route is considered a promising option for carbon capture and storage (CCS) since (i) the captured CO{sub 2} can be stored permanently and (ii) industrial wastes (i.e., coal fly ash, steel and stainless-steel slags, and cement and lime kiln dusts) can be recycled and converted into value-added carbonate materials by controlling polymorphs and properties of the mineral carbonates. The final products produced by the ex situ mineral carbonation route can be divided into two categories—low-end high-volume and high-end low-volume mineral carbonates—in terms of their market needs as well as their properties (i.e., purity). Therefore, it is expected that this can partially offset the total cost of the CCS processes. Polymorphs and physicochemical properties of CaCO{sub 3} strongly rely on the synthesis variables such as temperature, pH of the solution, reaction time, ion concentration and ratio, stirring, and the concentration of additives. Various efforts to control and fabricate polymorphs of CaCO{sub 3} have been made to date. In this review, we present a summary of current knowledge and recent investigations entailing mechanistic studies on the formation of the precipitated CaCO{sub 3} and the influences of the synthesis factors on the polymorphs.

  11. Sulfurized activated carbon for high energy density supercapacitors

    Science.gov (United States)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  12. Carbon Bed Mercury Emissions Control For Mixed Waste Treatment

    International Nuclear Information System (INIS)

    Soelberg, Nick; Enneking, Joe

    2010-01-01

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (both radioactive and hazardous according to the Resource Conservation and Recovery Act) wastes. Depending on regulatory requirements, the mercury in the off-gas must be controlled with sometimes very high efficiencies. Compliance to the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Several test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include: (a) The depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests, (b) MERSORB(reg s ign) carbon can sorb Hg up to 19 wt% of the carbon mass, and (c) the spent carbon retained almost all (98-99.99%) of the Hg; but when even a small fraction of the total Hg dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high Hg concentrations. Localized areas in a carbon bed that become heated through heat of adsorption, to temperatures where oxidation occurs, are referred to as 'bed hot spots.' Carbon bed hot spots must be avoided in processes that treat radioactive and mixed waste. Key to carbon bed hot spot mitigation are (a) designing for sufficient gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) monitoring and control of inlet gas flowrate, temperature, and composition, (c) monitoring and control of in-bed and bed outlet gas temperatures, and (d) most important, monitoring of bed outlet CO concentrations. An increase of CO levels in the off-gas downstream of the carbon bed to levels about 50-100 ppm higher than the inlet CO concentration indicate CO formation in the bed, caused by carbon bed

  13. Elemental and organic carbon in aerosols over urbanized coastal region (southern Baltic Sea, Gdynia).

    Science.gov (United States)

    Lewandowska, Anita; Falkowska, Lucyna; Murawiec, Dominika; Pryputniewicz, Dorota; Burska, Dorota; Bełdowska, Magdalena

    2010-09-15

    Studies on PM 10, total particulate matter (TSP), elemental carbon (EC) and organic carbon (OC) concentrations were carried out in the Polish coastal zone of the Baltic Sea, in urbanized Gdynia. The interaction between the land, the air and the sea was clearly observed. The highest concentrations of PM 10, TSP and both carbon fractions were noted in the air masses moving from southern and western Poland and Europe. The EC was generally of primary origin and its contribution to TSP and PM 10 mass was on average 2.3% and 3.7% respectively. Under low wind speed conditions local sources (traffic and industry) influenced increases in elemental carbon and PM 10 concentrations in Gdynia. Elemental carbon demonstrated a pronounced weekly cycle, yielding minimum values at the weekend and maximum values on Thursdays. The role of harbors and ship yards in creating high EC concentrations was clearly observed. Concentration of organic carbon was ten times higher than that of elemental carbon, and the average OC contribution to PM 10 mass was very high (31.6%). An inverse situation was observed when air masses were transported from over the Atlantic Ocean, the North Sea and the Baltic Sea. These clean air masses were characterized by the lowest concentrations of all analysed compounds. Obtained results for organic and elemental carbon fluxes showed that atmospheric aerosols can be treated, along with water run-off, as a carbon source for the coastal waters of the Baltic Sea. The enrichment of surface water was more effective in the case of organic carbon (0.27+/-0.19 mmol m(-2) d(-1)). Elemental carbon fluxes were one order of magnitude smaller, on average 0.03+/-0.04 mmol m(-2) d(-1). We suggest that in some situations atmospheric carbon input can explain up to 18% of total carbon fluxes into the Baltic coastal waters. Copyright 2010 Elsevier B.V. All rights reserved.

  14. The effects of carbon nano filaments (CNT and CNF) doping on high temperature superconductors Y-123

    International Nuclear Information System (INIS)

    Dadras, S.; Daadmehr, V.

    2007-01-01

    Full text: This paper is based on the effects of carbon nano filaments (carbon nano tubes and carbon nano fibers) doping on Y-123 studies. We synthesized Y-123 with different contents of CNT and CNF doping. The samples were prepared from powders of Y 2 O 3 , BaCO 3 and Cu O by the solid state reaction. After calcination in air, we mixed Y-123 powder with different percentage of carbon nano filaments weight, produced by the CVD method. For obtaining more homogenous mixing, we have suspended it in an organic solvent with an ultrasonic mixer to prevent agglomeration of CNT. The CNT-Y-123 powder was dried afterwards, and pressed as pellet samples, in about 1mm thick, 10mm diameter, and 1gr weight, and sintered in oxygen atmosphere. We tried to find the transport effects on CNT and CNF doping in 123 systems. The strong coupling between grains in CNT doped samples caused the flow of inter-granular currents. Therefore the presence of CNT in high temperature superconductor samples increases the critical current density. Among various carbon precursors, carbon nano tubes (CNT) are very interesting because of their nano meter diameter which may make them as effective pinning centers, compared to the ordinary carbon. The carbon nano tubes are functioning like columnar defects produced by heavy-ion irradiation. Nano phase particles or aggregates embodied in the superconductor matrix can pin the flux lines effectively and enhance the intra-grain transport critical current density in high applied magnetic fields. Nano phase size particles in the size range of about 5-10 nm can be used as flux pinning centers for low field applications. The effects of carbon and carbon dioxide in Y-123 were studied by several groups, but none of them argued the effects of carbon nano tubes doping on Y-123. Uno et al. found that Jc was related to the carbon concentration, but they showed that Tc value and other physical properties did not change. In carbon doped Y-123 samples, Tc decreases with

  15. Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source

    International Nuclear Information System (INIS)

    Hao, Wenbin; He, Xiaojin; Mi, Yongli

    2014-01-01

    Highlights: • Bamboo fiber and waste paper were pyrolyzed to generate bamboo carbon and waste paper carbon as anode fuels of IT-DCFC. • Superior cell performance was achieved with the waste paper carbon. • The results suggested the high performance was due to the highest thermal reactivity and the catalytic inherent impurities. • Calcite and kaolinite as inherent impurities favored the thermal decomposition and the electrooxidation of carbon. - Abstract: Three kinds of carbon sources obtained from carbon black, bamboo fiber and waste paper were investigated as anode fuels in an intermediate temperature direct carbon fuel cell. The carbon sources were characterized with X-ray photoelectron spectroscopy, thermal gravimetric analysis, etc. The results indicated that the waste paper carbon was more abundant in calcite and kaolinite, and showed higher thermal reactivity in the intermediate temperature range compared with the other two carbon sources. The cell performance was tested at 650 °C in a hybrid single cell, using Sm 0.20 Ce 0.80 O 2−x as the electrolyte. As a result, the cell fed with waste paper carbon showed the highest performance among the three carbon sources, with a peak power density of 225 mW cm −2 . The results indicated that its inherent impurities, such as calcite and kaolinite, might favor the thermal gasification of renewable carbon sources, which resulted in the enhanced performance of the intermediate temperature direct carbon fuel cell

  16. Experimental Spectroscopic Studies of Carbon Monoxide (CO) Fluorescence at High Temperatures and Pressures.

    Science.gov (United States)

    Carrivain, Olivier; Orain, Mikael; Dorval, Nelly; Morin, Celine; Legros, Guillaume

    2017-10-01

    Two-photon excitation laser-induced fluorescence of carbon monoxide (CO-LIF) is investigated experimentally in order to determine the applicability of this technique for imaging CO concentration in aeronautical combustors. Experiments are carried out in a high temperature, high-pressure test cell, and in a laminar premixed CH 4 /air flame. Influence of temperature and pressure on CO-LIF spectra intensity and shape is reported. The experimental results show that as pressure increases, the CO-LIF excitation spectrum becomes asymmetric. Additionally, the spectrum strongly shifts to the red with a quadratic dependence of the collisional shift upon pressure, which is different from the classical behavior where the collisional shift is proportional to pressure. Moreover, pressure line broadening cannot be reproduced by a Lorenztian profile in the temperature range investigated here (300-1750 K) and, therefore, an alternative line shape is suggested.

  17. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    International Nuclear Information System (INIS)

    Zhang, Yuxiao; Zhang, Jianming; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2012-01-01

    Highlights: ► Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. ► MPCS was covalently modified by cysteine (MPCS–CO–Cys). ► MPCS–CO–Cys was first time used in electrochemical detection of heavy metal ions. ► Heavy metal ions such as Pb 2+ and Cd 2+ can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  18. Whole System Carbon Exchange of Small Stands of Pinus Ponderosa Growing at Different CO(sub 2) concentrations in open top chambers; FINAL

    International Nuclear Information System (INIS)

    Ball, J. Timothy; Ross, Peter D.; Picone, John B.; Eichelmann, Hillar Y.; Ross, Gregory N.

    1996-01-01

    Functional understanding of the carbon cycle from the molecular to the global level is a high scientific priority requiring explanation of the relationship between fluxes at different spatial and temporal scales. We describe methods used to convert an open top chamber into both closed and open flow gas exchange systems utilized to measure such fluxes. The systems described consist of temporary modifications to an open top chamber, and are put in place for several days on one or several open top chambers. In the closed system approach, a chamber is quickly sealed for a short, predetermined time interval, the change in gas concentrations is measured, then the chamber is unsealed and ventilated. In the open flow system approach, airflow into the open top chamber is measured by trace gas injection, and the air stream concentration of CO(sub 2) and water vapor is measured before and after injection into the chamber. The closed chamber approach can resolve smaller fluxes, but causes transient increases in chamber air temperature, and has a high labor requirement. The open flow approach reduces the deviation of measuring conditions from ambient, may be semi-automated (requiring less labor), allows a more frequent sampling interval, but cannot resolve low fluxes well. Data demonstrating the capabilities of these systems show that, in open canopies of ponderosa pine, scaling fluxes from leaves to whole canopies is well approximated from summation of leaf P(sub s) rates. Flux measurements obtained from these systems can be a valuable contribution to our understanding whole system material fluxes, and challenge our understanding of ecosystem carbon budgets

  19. Carbon-climate feedbacks accelerate ocean acidification

    Science.gov (United States)

    Matear, Richard J.; Lenton, Andrew

    2018-03-01

    Carbon-climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al. 2010). By modifying the future atmospheric CO2 concentrations, the carbon-climate feedbacks will also influence the future ocean acidification trajectory. Here, we use the CO2 emissions scenarios from four representative concentration pathways (RCPs) with an Earth system model to project the future trajectories of ocean acidification with the inclusion of carbon-climate feedbacks. We show that simulated carbon-climate feedbacks can significantly impact the onset of undersaturated aragonite conditions in the Southern and Arctic oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under the high-emissions scenarios (RCP8.5 and RCP6), the carbon-climate feedbacks advance the onset of surface water under saturation and the decline in suitable coral reef habitat by a decade or more. The impacts of the carbon-climate feedbacks are most significant for the medium- (RCP4.5) and low-emissions (RCP2.6) scenarios. For the RCP4.5 scenario, by 2100 the carbon-climate feedbacks nearly double the area of surface water undersaturated with respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For the RCP2.6 scenario, by 2100 the carbon-climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of undersaturated surface water by 20 %. The sensitivity of ocean acidification to the carbon-climate feedbacks in the low to medium emission scenarios is important because recent CO2 emission reduction commitments are trying to transition emissions to such a scenario. Our study highlights the need to better characterise the carbon-climate feedbacks and ensure we do not underestimate the projected ocean acidification.

  20. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode.

    Science.gov (United States)

    Hao, Pin; Zhao, Zhenhuan; Tian, Jian; Li, Haidong; Sang, Yuanhua; Yu, Guangwei; Cai, Huaqiang; Liu, Hong; Wong, C P; Umar, Ahmad

    2014-10-21

    Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g(-1) at a discharge current density of 0.5 A g(-1) was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices.

  1. High-energy, short-pulse, carbon-dioxide lasers

    International Nuclear Information System (INIS)

    Fenstermacher, C.A.

    1979-01-01

    Lasers for fusion application represent a special class of short-pulse generators; not only must they generate extremely short temporal pulses of high quality, but they must do this at ultra-high powers and satisfy other stringent requirements by this application. This paper presents the status of the research and development of carbon-dioxide laser systems at the Los Alamos Scientific Laboratory, vis-a-vis the fusion requirements

  2. Applications of nonimaging optics for very high solar concentrations

    International Nuclear Information System (INIS)

    O'Gallagher, J.; Winston, R.

    1997-01-01

    Using the principles and techniques of nonimaging optics, solar concentrations that approach the theoretical maximum can be achieved. This has applications in solar energy collection wherever concentration is desired. In this paper, we survey recent progress in attaining and using high and ultrahigh solar fluxes. We review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potentially economic uses of solar energy

  3. Carbon partitioning in the food web of a high mountain lake: from bacteria to zooplankton

    Directory of Open Access Journals (Sweden)

    Alessandra PUGNETTI

    1999-08-01

    Full Text Available The organisms of the microbial loop in Lake Paione Superiore (LPS, a high mountain lake in the Italian Alpine region, were studied together with phytoplankton and zooplankton for three successive years. The biomass of bacteria, HNF (heterotrophic nanoflagellates, ciliates and phytoplankton, as mean carbon concentration in the three years, was 30 and 37 μg C l-1 near the surface (SUR and the bottom (BOT respectively. Under the ice-cover the mean biomass carbon decreased especially at the BOT, whereas at SUR the decrease was less evident due to the maintenance of higher phytoplankton biomass (mixotrophic flagellates. In LPS ~50% of the carbon was confined in bacteria, 20% in protozoa and 30% in phytoplankton. The ratio Autotrophs/Heterotrophs was lower than 1 (mean: 0,97 at SUR and 0,58 at BOT thus indicating a system with a predominance of the heterotrophs. This might be the result of light inhibition of algal growth coupled to a production of dissolved carbon, utilized by bacteria. During late summer the peak of Daphnia longispina, the main component of the zooplankton of LPS, increased the carbon content in the lake to a total of 158 and 300 μg C l-1 in 1997 and 1998 respectively. At the late summer peaks, zooplankton represented from 78 to 89% of the total carbon of the pelagic communities. Furthermore, the presence of Daphnia could be responsible for a decrease in the biomass carbon of a variety of organisms (algae, protozoa and bacteria. It may be possible that this is an instance of zooplankton grazing on algae, protozoa and also bacteria, as Daphnia has very broad niches and may eat pico-, nanoplankton and small ciliates. In the oligotrophic LPS, a diet which also includes protozoa could give Daphnia a further chance of survival, as ciliates are an important source of fatty acids and sterols.

  4. High-resolution forest carbon stocks and emissions in the Amazon.

    Science.gov (United States)

    Asner, Gregory P; Powell, George V N; Mascaro, Joseph; Knapp, David E; Clark, John K; Jacobson, James; Kennedy-Bowdoin, Ty; Balaji, Aravindh; Paez-Acosta, Guayana; Victoria, Eloy; Secada, Laura; Valqui, Michael; Hughes, R Flint

    2010-09-21

    Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change.

  5. Assessing carbon dioxide removal through global and regional ocean alkalinization under high and low emission pathways

    Science.gov (United States)

    Lenton, Andrew; Matear, Richard J.; Keller, David P.; Scott, Vivian; Vaughan, Naomi E.

    2018-04-01

    Atmospheric carbon dioxide (CO2) levels continue to rise, increasing the risk of severe impacts on the Earth system, and on the ecosystem services that it provides. Artificial ocean alkalinization (AOA) is capable of reducing atmospheric CO2 concentrations and surface warming and addressing ocean acidification. Here, we simulate global and regional responses to alkalinity (ALK) addition (0.25 PmolALK yr-1) over the period 2020-2100 using the CSIRO-Mk3L-COAL Earth System Model, under high (Representative Concentration Pathway 8.5; RCP8.5) and low (RCP2.6) emissions. While regionally there are large changes in alkalinity associated with locations of AOA, globally we see only a very weak dependence on where and when AOA is applied. On a global scale, while we see that under RCP2.6 the carbon uptake associated with AOA is only ˜ 60 % of the total, under RCP8.5 the relative changes in temperature are larger, as are the changes in pH (140 %) and aragonite saturation state (170 %). The simulations reveal AOA is more effective under lower emissions, therefore the higher the emissions the more AOA is required to achieve the same reduction in global warming and ocean acidification. Finally, our simulated AOA for 2020-2100 in the RCP2.6 scenario is capable of offsetting warming and ameliorating ocean acidification increases at the global scale, but with highly variable regional responses.

  6. Carbon-coated anatase for water purification - cyclic performance

    International Nuclear Information System (INIS)

    Inagaki, M.; Kojin, F.; Nonaka, M.; Toyoda, M.

    2005-01-01

    It was reported that carbon-coated anatase photo-catalysts were able to be prepared through a simple process and gave various advantages for water purification [1-6]. Carbon coating suppressed the phase transformation from anatase to rutile, resulting in a high crystallinity of anatase phase which was desirable for the decomposition of pollutants in water. A high adsorptivity was given to carbon-coated anatase, because of porous nature of carton layers [7]. In addition, these carbon-coated anatase powders could be fixed on the substrate by using organic binder because carbon layer interrupt the direct contact between photo-catalytic anatase particles and organic binder [1]. In the present work, cyclic performance of carbon-coated anatase was studied for the decomposition of a model pollutant, methylene blue (MB), in water by fixing the photo-catalyst particles on a tape. Carbon-coated anatase photo-catalysts were prepared by heating the powder mixtures of commercially available anatase (ST-01, Ishihara Sngyo Co., Ltd) with poly(vinyl alcohol) (PVA) in different mass ratios at 900 C in N 2 , gas flow. Carbon-coated anatase powders thus prepared were fixed on a scotch tape. Photo-catalytic activity was measured on these tapes by irradiating UV rays on one side of the tape in MB solution with 0.3x10 -5 mol/L concentration. Since carbon-coated anatase had a high adsorptivity for MB, all tapes were saturated their adsorption in a concentrated MB solution in advance. The rate constant k for MB photo-decomposition was determined from the linear relations of logarithm of relative concentration of MB in the solution, ln(c/c 0 ), with irradiation time t. In Fig. 1, changes in ln(c/c 0 ) of MB with irradiation time t were shown on two samples with different carbon contents, 8 and 2 mass%, with cycle number. Good linearity was obtained between ln(c/c 0 ) and t. The values of rate constant k calculated from these linear relations were plotted against carbon content of the

  7. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  8. [Ozone concentration distribution of urban].

    Science.gov (United States)

    Yin, Yong-quan; Li, Chang-mei; Ma, Gui-xia; Cui, Zhao-jie

    2004-11-01

    The increase of ozone concentration in urban is one of the most important research topics on environmental science. With the increase of nitrogen oxides and hydrogen-carbon compounds which are exhausted from cars, the ozone concentration in urban is obviously increased on sunlight, and threat of photochemistry smog will be possible. Therefore, it is very important to monitor and study the ozone concentration distribution in urban. The frequency-distribution, diurnal variation and monthly variation of ozone concentration were studied on the campus of Shandong University during six months monitoring. The influence of solar radiation and weather conditions on ozone concentration were discussed. The frequency of ozone concentration less than 200 microg/m3 is 96.88%. The ozone concentration has an obvious diurnal variation. The ozone concentration in the afternoon is higher than in the morning and in the evening. The maximum appears in June, when it is the strong solar radiation and high air-temperature. The weather conditions also influence the ozone concentration. The ozone concentration in clear day is higher than in rainy and cloudy day.

  9. Rheological behavior of high-concentration sodium caseinate dispersions.

    Science.gov (United States)

    Loveday, Simon M; Rao, M Anandha; Creamer, Lawrence K; Singh, Harjinder

    2010-03-01

    Apparent viscosity and frequency sweep (G', G'') data for sodium caseinate dispersions with concentrations of approximately 18% to 40% w/w were obtained at 20 degrees C; colloidal glass behavior was exhibited by dispersions with concentration >or=23% w/w. The high concentrations were obtained by mixing frozen powdered buffer with sodium caseinate in boiling liquid nitrogen, and allowing the mixtures to thaw and hydrate at 4 degrees C. The low-temperature G'-G'' crossover seen in temperature scans between 60 and 5 degrees C was thought to indicate gelation. Temperature scans from 5 to 90 degrees C revealed gradual decrease in G' followed by plateau values. In contrast, G'' decreased gradually and did not reach plateau values. Increase in hydrophobicity of the sodium caseinate or a decrease in the effective volume fraction of its aggregates may have contributed to these phenomena. The gelation and end of softening temperatures of the dispersions increased with the concentration of sodium caseinate. From an Eldridge-Ferry plot, the enthalpy of softening was estimated to be 29.6 kJ mol(-1). The results of this study should be useful for creating new products with high concentrations of sodium caseinate.

  10. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  11. Water-carbon Links in a Tropical Forest: How Interbasin Groundwater Flow Affects Carbon Fluxes and Ecosystem Carbon Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Genereux, David [North Carolina State Univ., Raleigh, NC (United States); Osburn, Christopher [North Carolina State Univ., Raleigh, NC (United States); Oberbauer, Steven [Florida Intl Univ., Miami, FL (United States); Oviedo Vargas, Diana [North Carolina State Univ., Raleigh, NC (United States); Dierick, Diego [Florida Intl Univ., Miami, FL (United States)

    2017-03-27

    This report covers the outcomes from a quantitative, interdisciplinary field investigation of how carbon fluxes and budgets in a lowland tropical rainforest are affected by the discharge of old regional groundwater into streams, springs, and wetlands in the forest. The work was carried out in a lowland rainforest of Costa Rica, at La Selva Biological Station. The research shows that discharge of regional groundwater high in dissolved carbon dioxide represents a significant input of carbon to the rainforest "from below", an input that is on average larger than the carbon input "from above" from the atmosphere. A stream receiving discharge of regional groundwater had greatly elevated emissions of carbon dioxide (but not methane) to the overlying air, and elevated downstream export of carbon from its watershed with stream flow. The emission of deep geological carbon dioxide from stream water elevates the carbon dioxide concentrations in air above the streams. Carbon-14 tracing revealed the presence of geological carbon in the leaves and stems of some riparian plants near streams that receive inputs of regional groundwater. Also, discharge of regional groundwater is responsible for input of dissolved organic matter with distinctive chemistry to rainforest streams and wetlands. The discharge of regional groundwater in lowland surface waters has a major impact on the carbon cycle in this and likely other tropical and non-tropical forests.

  12. Last Glacial to Holocene changes of deep and intermediate water carbonate ion concentrations in the Southern Ocean: constraints from foraminiferal Boron/Calcium ratios

    OpenAIRE

    Kersten, Franziska

    2013-01-01

    In this thesis, the first records of intermediate and deep water carbonate ion concentrations in the South Pacific were generated in order to study carbon cycle dynamics throughout the past 30,000 years. Benthic foraminiferal B/Ca, an indicator of past seawater carbonate ion saturation is the main paleoceanographic proxy that was used in this study. Down-core proxy studies carried out within the scope of this thesis were used to address currently unresolved questions about the origin, mechani...

  13. Characterization and Scaling of Black Carbon Aerosol Concentration with City Population Based on In-Situ Measurements and Analysis

    Science.gov (United States)

    Paredes-Miranda, G.; Arnott, W. P.; Moosmuller, H.

    2010-12-01

    The global trend toward urbanization and the resulting increase in city population has directed attention toward air pollution in megacities. A closely related question of importance for urban planning and attainment of air quality standards is how pollutant concentrations scale with city population. In this study, we use measurements of light absorption and light scattering coefficients as proxies for primary (i.e., black carbon; BC) and total (i.e., particulate matter; PM) pollutant concentration, to start addressing the following questions: What patterns and generalizations are emerging from our expanding data sets on urban air pollution? How does the per-capita air pollution vary with economic, geographic, and meteorological conditions of an urban area? Does air pollution provide an upper limit on city size? Diurnal analysis of black carbon concentration measurements in suburban Mexico City, Mexico, Las Vegas, NV, USA, and Reno, NV, USA for similar seasons suggests that commonly emitted primary air pollutant concentrations scale approximately as the square root of the urban population N, consistent with a simple 2-d box model. The measured absorption coefficient Babs is approximately proportional to the BC concentration (primary pollution) and thus scales with the square root of population (N). Since secondary pollutants form through photochemical reactions involving primary pollutants, they scale also with square root of N. Therefore the scattering coefficient Bsca, a proxy for PM concentration is also expected to scale with square root of N. Here we present light absorption and scattering measurements and data on meteorological conditions and compare the population scaling of these pollutant measurements with predictions from the simple 2-d box model. We find that these basin cities are connected by the square root of N dependence. Data from other cities will be discussed as time permits.

  14. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone

    Science.gov (United States)

    Nelson, Bruce K.; Deniro, Michael J.; Schoeninger, Margaret J.; De Paolo, Donald J.; Hare, P. E.

    1986-09-01

    Paleodietary analysis based on variations in the trace element and stable isotopic composition of inorganic and organic phases in fossil bone depends on the assumption that measured values reflect in vivo values. To test for postmortem alteration, we measured 87Sr /86Sr , 13C /12C , 18O /16O and 15N /14N ratios and Sr concentrations in modern and prehistoric (610 to 5470 yr old) bones of animals with marine or terrestrial diets from Greenland. Bones from modern terrestrial feeders have substantially lower Sr concentrations and more radiogenic 87Sr /86Sr ratios than those from modern marine feeders. This contrast was not preserved in the prehistoric samples, which showed almost complete overlap for both Sr concentration and isotopic composition in bones from the two types of animals. Leaching experiments, X-ray diffraction analysis and infrared spectroscopy indicate that alteration of the Sr concentration and isotopic composition in prehistoric bone probably results from nearly complete exchange with groundwater. Oxygen isotope ratios in fossil apatite carbonate also failed to preserve the original discrimination between modern terrestrial and marine feeders. The C isotope ratio of apatite carbonate did not discriminate between animals with marine or terrestrial diets in the modern samples. Even so, the ranges of apatite δ 13C values in prehistoric bone are more scattered than in modern samples for both groups, suggesting alteration had occurred. δ 13C and δ 15N values of collagen in modern bone are distinctly different for the two feeding types, and this distinction is preserved in most of the prehistoric samples. Our results suggest that postmortem alteration of dietary tracers in the inorganic phases of bone may be a problem at all archaeological sites and must be evaluated in each case. While collagen analyzed in this study was resistant to alteration, evaluation of the possibility of diagenetic alteration of its isotopic composition in bones from other

  15. Ion beam analysis of hydrogen retained in carbon nanotubes and carbon films

    International Nuclear Information System (INIS)

    McDaniel, F.D.; Holland, O.W.; Naab, F.U.; Mitchell, L.J.; Dhoubhadel, M.; Duggan, J.L.

    2006-01-01

    Carbon nanotubes (CNTs) are studied as a possible hydrogen storage medium for future energy needs. Typically, hydrogen is stored in the CNTs by exposure of the material to a high-pressure H 2 atmosphere at different temperatures. The maximum hydrogen concentrations stored following this method and measured using ion beam analysis do not exceed 1 wt.%. Introduction of defects by ion irradiation (i.e. implantation) prior to high-pressure H 2 treatment, offers an alternative method to activate H adsorption and enhance the chemisorption of hydrogen. This is a preliminary work where hydrogen was introduced into single-wall nanotubes and carbon films by low-energy (13.6 keV) hydrogen ion implantation. Elastic recoil detection was used to measure the quantity and depth distribution of hydrogen retained in the carbonaceous materials. Results show that there are substantial differences in the measured profiles between the CNT samples and the vitreous carbon. On another hand, only ∼43% of the implanted hydrogen in the CNTs is retained in the region where it should be located according to the SRIM simulations for a solid carbon sample

  16. Carbon concentration in structures of Arctostaphylos pungens HBK: An alternative CO2 sink in forests

    OpenAIRE

    Pompa-García, M; Jurado, E

    2015-01-01

    Arctostaphylos pungens HBK is a dominant species with increasing abundance and distribution in chaparral ecosystems as a result of range management and, possibly, changes in climate. The value of this species for carbon (C) sequestration is unknown, and the standard 50% C out of total tree biomass is used as an approximate value. In this study, we aim to determine the C concentration of the primary components of A. pungens. The total C expressed as a percentage of biomass was determined with ...

  17. Carbothermal Reduction of Iron Ore in Its Concentrate-Agricultural Waste Pellets

    Directory of Open Access Journals (Sweden)

    Zhulin Liu

    2018-01-01

    Full Text Available Carbon-containing pellets were prepared with the carbonized product of agricultural wastes and iron concentrate, and an experimental study on the direct reduction was carried out. The experimental results demonstrated that carbon-containing pellets could be rapidly reduced at 1200 to 1300°C in 15 minutes, and the proper holding time at high temperature was 15 to 20 min. The degree of reduction gradually increased with temperature rising, and the appropriate temperature of reducing pellets was 1200°C. The weight loss rate and reduction degree of pellets increased with the rise of carbon proportion, and the relatively reasonable mole ratio of carbon to oxygen was 0.9. A higher content of carbon and an appropriate content of volatile matters in biomass char were beneficial to the reduction of pellets. The carbon-containing pellets could be reduced at high speeds in the air, but there was some reoxidization phenomenon.

  18. Highly luminescent N, S- Co-doped carbon dots and their direct use as mercury(II) sensor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu [Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Department of Advanced Organic Materials Science and Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Kim, Sung-Hoon, E-mail: shokim@knu.ac.kr [Department of Advanced Organic Materials Science and Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Feng, Liang, E-mail: fengl@dicp.ac.cn [Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2015-08-26

    Heteroatom doping has been proven as an efficient way to improve the fluorescent efficiency of carbon dots. Co-doping with heteroatoms may introduce more active sites to carbon dots, which would broaden applications of CDs in sensing. In this work, highly luminescent nitrogen and sulfur co-doped carbon dots (NSCDs) were synthesized through a facile one-step microwave assisted method by using citric acid and rubeanic acid as carbon, nitrogen, and sulfur sources. The well-isolated NSCDs not only exhibit an enhanced fluorescent efficiency with a relatively high quantum yield up to 17.6%, but also show potential use as a multi-sensing platform based on their fluorescence “on-off-on” and color changing behaviors. The NSCDs can be directly used for the selective determination of mercury cations without any functionalization. The detection limit is approximately calculated as 0.18 μM and linear range is 0–20 μM. The sensing mechanism is proposed as coordination reaction induced by oligomers upon the carbon core. Furthermore, in the presence of cyanide anions, the fluorescence shows linear recovery associated with the concentration of cyanide, indicating its potential usage for the detection of cyanide ion. The optimized pH range for such fluorescence “on-off-on” sensing system is investigated as pH 6–8, suggesting potential applications in bio-sensing and imaging area. In addition, by adding hydrosulfide anion to NSCDs@Hg{sup 2+} complex, a notable color change could be clearly observed due to the formation of fuscous HgS. In application, a handy test paper for direct and rapid detection of Hg{sup 2+} is manufactured for the evaluation of usage of NSCDs in the real circumstance. - Highlights: • NSCDs were synthesized by using citric acid and rubeanic acid. • NSCDs exhibited an enhanced fluorescent efficiency with high QY up to 17.6%. • NSCDs presented good sensing performance to mercury ions. • NSCDs showed potential use as a multi-sensing platform.

  19. Highly luminescent N, S- Co-doped carbon dots and their direct use as mercury(II) sensor

    International Nuclear Information System (INIS)

    Wang, Yu; Kim, Sung-Hoon; Feng, Liang

    2015-01-01

    Heteroatom doping has been proven as an efficient way to improve the fluorescent efficiency of carbon dots. Co-doping with heteroatoms may introduce more active sites to carbon dots, which would broaden applications of CDs in sensing. In this work, highly luminescent nitrogen and sulfur co-doped carbon dots (NSCDs) were synthesized through a facile one-step microwave assisted method by using citric acid and rubeanic acid as carbon, nitrogen, and sulfur sources. The well-isolated NSCDs not only exhibit an enhanced fluorescent efficiency with a relatively high quantum yield up to 17.6%, but also show potential use as a multi-sensing platform based on their fluorescence “on-off-on” and color changing behaviors. The NSCDs can be directly used for the selective determination of mercury cations without any functionalization. The detection limit is approximately calculated as 0.18 μM and linear range is 0–20 μM. The sensing mechanism is proposed as coordination reaction induced by oligomers upon the carbon core. Furthermore, in the presence of cyanide anions, the fluorescence shows linear recovery associated with the concentration of cyanide, indicating its potential usage for the detection of cyanide ion. The optimized pH range for such fluorescence “on-off-on” sensing system is investigated as pH 6–8, suggesting potential applications in bio-sensing and imaging area. In addition, by adding hydrosulfide anion to NSCDs@Hg 2+ complex, a notable color change could be clearly observed due to the formation of fuscous HgS. In application, a handy test paper for direct and rapid detection of Hg 2+ is manufactured for the evaluation of usage of NSCDs in the real circumstance. - Highlights: • NSCDs were synthesized by using citric acid and rubeanic acid. • NSCDs exhibited an enhanced fluorescent efficiency with high QY up to 17.6%. • NSCDs presented good sensing performance to mercury ions. • NSCDs showed potential use as a multi-sensing platform

  20. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    DEFF Research Database (Denmark)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-01-01

    concentrations across the salinity gradient and ranged from 1.67 to 33.4 m−1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence......The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87...... the prediction in wavelengths above 520nm. Despite significant seasonal and spatial differences in DOC–CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44gCm−2yr−1, and 1...

  1. Metamaterial Receivers for High Efficiency Concentrated Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Yellowhair, Julius E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Kwon, Hoyeong [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Alu, Andrea [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Jarecki, Robert L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Shinde, Subhash L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.

    2016-09-01

    Operation of concentrated solar power receivers at higher temperatures (>700°C) would enable supercritical carbon dioxide (sCO2) power cycles for improved power cycle efficiencies (>50%) and cost-effective solar thermal power. Unfortunately, radiative losses at higher temperatures in conventional receivers can negatively impact the system efficiency gains. One approach to improve receiver thermal efficiency is to utilize selective coatings that enhance absorption across the visible solar spectrum while minimizing emission in the infrared to reduce radiative losses. Existing coatings, however, tend to degrade rapidly at elevated temperatures. In this report, we report on the initial designs and fabrication of spectrally selective metamaterial-based absorbers for high-temperature, high-thermal flux environments important for solarized sCO2 power cycles. Metamaterials are structured media whose optical properties are determined by sub-wavelength structural features instead of bulk material properties, providing unique solutions by decoupling the optical absorption spectrum from thermal stability requirements. The key enabling innovative concept proposed is the use of structured surfaces with spectral responses that can be tailored to optimize the absorption and retention of solar energy for a given temperature range. In this initial study through the Academic Alliance partnership with University of Texas at Austin, we use Tungsten for its stability in expected harsh environments, compatibility with microfabrication techniques, and required optical performance. Our goal is to tailor the optical properties for high (near unity) absorptivity across the majority of the solar spectrum and over a broad range of incidence angles, and at the same time achieve negligible absorptivity in the near infrared to optimize the energy absorbed and retained. To this goal, we apply the recently developed concept of plasmonic Brewster angle to suitably designed

  2. Physiology of Aspergillus niger in Oxygen-Limited Continuous Cultures: Influence of Aeration, Carbon Source Concentration and Dilution Rate

    DEFF Research Database (Denmark)

    Diano, Audrey; Peeters, J.; Dynesen, Jens Østergaard

    2009-01-01

    In industrial production of enzymes using the filamentous fungus Aspergilhis niger supply of sufficient oxygen is often a limitation, resulting in the formation of by-products such as polyols. In order to identify the mechanisms behind formation of the different by-products we studied the effect...... of low oxygen availability, at different carbon source concentrations and at different specific growth rates, on the metabolism of A. niger, using continuous cultures. The results show that there is an increase in the production of tricarboxylic acid (TCA) cycle intermediates at low oxygen concentrations...

  3. Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators

    Science.gov (United States)

    Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif

    2011-01-01

    High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown

  4. Denitrification of fertilizer wastewater at high chloride concentration

    DEFF Research Database (Denmark)

    Ucisik, Ahmed Süheyl; Henze, Mogens

    Wastewater from fertilizer industry is characterized by high contents of chloride concentration, which normally vary between 60 and 76 g/l. Experiments with bilogical denitrification were performed in lab-scale "fill and draw" reactors with synthetic wastewater with chloride concentrations up to 77.......4 g/l. The results of the experiments showed that biological denitrification was feasible at the extreme environmental conditions prevailing in fertilizer wastewater. Stable continuous biological denitrfication of the synthetic high chloride wastewater was performed up to 77.4 g Cl/l at 37 degree C...

  5. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes

    International Nuclear Information System (INIS)

    Kim, Byungwoo; Kim, Woong; Chung, Haegeun

    2012-01-01

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ∼75 F g −1 , ∼987 kW kg −1 and ∼27 W h kg −1 , respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (∼158 F g −1 ) and energy density (∼53 W h kg −1 ). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices. (paper)

  6. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.

    Science.gov (United States)

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-20

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ~75 F g(-1), ~987 kW kg(-1) and ~27 W h kg(-1), respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (~158 F g(-1)) and energy density (~53 W h kg(-1)). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices. © 2012 IOP Publishing Ltd

  7. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes

    Science.gov (United States)

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-01

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ˜75 F g-1, ˜987 kW kg-1 and ˜27 W h kg-1, respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (˜158 F g-1) and energy density (˜53 W h kg-1). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices.

  8. Thermodynamic Cconstraints on Coupled Carbonate-Pyrite Weathering Dynamics and Carbon Fluxes

    Science.gov (United States)

    Winnick, M.; Maher, K.

    2017-12-01

    Chemical weathering within the critical zone regulates global biogeochemical cycles, atmospheric composition, and the supply of key nutrients to terrestrial and aquatic ecosystems. Recent studies suggest that thermodynamic limits on solute production act as a first-order control on global chemical weathering rates; however, few studies have addressed the factors that set these thermodynamic limits in natural systems. In this presentation, we investigate the effects of soil CO2 concentrations and pyrite oxidation rates on carbonate dissolution and associated carbon fluxes in the East River watershed in Colorado, using concentration-discharge relationships and thermodynamic constraints. Within the shallow subsurface, soil respiration rates and moisture content determine the extent of carbonic acid-promoted carbonate dissolution through their modulation of soil pCO2 and the balance of open- v. closed-system weathering processes. At greater depths, pyrite oxidation generates sulfuric acid, which alters the approach to equilibrium of infiltrating waters. Through comparisons of concentration-discharge data and reactive transport model simulations, we explore the conditions that determine whether sulfuric acid reacts to dissolve additional carbonate mineral or instead reacts with alkalinity already in solution - the balance of which determines watershed carbon flux budgets. Our study highlights the importance of interactions between the chemical structure of the critical zone and the hydrologic regulation of flowpaths in determining concentration-discharge relationships and overall carbon fluxes.

  9. Formation of low friction and wear-resistant carbon coatings on tool steel by 75keV, high-dose carbon ion implantation

    International Nuclear Information System (INIS)

    Mikkelsen, N.J.; Eskildsen, S.S.; Straede, C.A.; Chechenin, N.G.

    1994-01-01

    Hardened AISI D2 steel samples were subjected to mass-separated C + ion bombardment at 75keV with ion doses in the range 0.5-15x10 18 C + cm -2 . It was observed that sputtering was still limited, and the system exhibited internal growth, because most of the ions penetrated more than 0.1μm into the growing carbon film. At the lowest ion doses applied, carbon was implanted into the steel, while higher doses resulted in the implanted carbon concentration near the surface being almost 100%. For the highest doses applied, Rutherford backscattering spectrometry and surface profilometry analyses showed that layers about 0.5-1μm thick of almost pure carbon grew outward from the steel substrate. Transmission electron microscopy showed that the carbon layers were amorphous and exhibited an intermixed layer-substrate interface. The layers were hard and exhibited pronounced elastic recovery when subjected to ultralow load indentation. Low friction and excellent wear properties were measured when tested under dry conditions with a ball-on-disc tribometer. ((orig.))

  10. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxiao; Zhang, Jianming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  11. Highly improved electrocatalytic behavior of sulfite at carbon ionic liquid electrode: Application to the analysis of some real samples

    International Nuclear Information System (INIS)

    Safavi, Afsaneh; Maleki, Norouz; Momeni, Safieh; Tajabadi, Fariba

    2008-01-01

    The electrocatalytic oxidation of sulfite was investigated at carbon ionic liquid electrode (CILE). This electrode is a very good alternative to previously described electrodes because the electrocatalytic effect is achieved without any electrode modification. Comparative experiments were carried out using carbon paste electrode (CPE) and glassy carbon electrode (GCE). At CILE, highly reproducible and well-defined cyclic voltammograms were obtained for sulfite with a peak potential of 0.55 V vs. Ag/AgCl. Sulfite oxidation at CILE does not result in deactivation of the electrode surface. The kinetic parameters for this irreversible heterogeneous electron transfer process were determined. Under optimal experimental conditions, the peak current response increased linearly with sulfite concentration over the range of 6-1000 μM. The detection limit of the method was 4 μM. The method was applied to the determination of sulfite in mineral water, grape juice and non-alcoholic beer samples

  12. Analysis of corrosion data for carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    International Nuclear Information System (INIS)

    Diercks, D.R.; Hull, A.B.; Kassner, T.F.

    1988-03-01

    Carbon steel is currently the leading candidate material for fabrication of a container for isolation of high level nuclear waste in a salt repository. Since brine entrapped in the bedded salt can migrate to the container by several transport processes, corrosion is an important consideration in the long-term performance of the waste package. A detailed literature search was performed to compile relevant corrosion data for carbon steels in anoxic acid chloride solutions, and simulated salt repository brines at temperatures between ∼ 20 and 400 0 C. The hydrolysis of Mg 2+ ions in simulated repository brines containing high magnesium concentrations causes acidification at temperatures above 25 0 C, which, in turn, influences the protective nature of the magnetite corrosion product layer on carbon steel. The corrosion data for the steels were analyzed, and an analytical model for general corrosion was developed to calculate the amount of penetration (i.e., wall thinning) as a function of time, temperature, and the pressure of corrosion product hydrogen than can build up during exposure in a closed system (e.g., a sealed capsule). Both the temperature and pressure dependence of the corrosion rate of steels in anoxic acid chloride solutions indicate that the rate-controlling partial reaction is the cathodic reduction of water to form hydrogen. Variations in the composition and microstructure of the steels or the concentration of the ionic species in the chloride solutions (provided that they do not change the pH significantly) do not appear to strongly influence the corrosion rate

  13. [Effects of short-term elevated CO2 concentration and drought stress on the rhizosphere effects of soil carbon, nitrogen and microbes of Bothriochloa ischaemum.

    Science.gov (United States)

    Xiao, Lie; Liu, Guo Bin; Li, Peng; Xue, Sha

    2017-10-01

    A water control pot experiment was conducted in climate controlled chambers to study soil carbon, nitrogen and microbial community structure and their rhizosphere effects in the rhizosphere and non rhizosphere soil of Bothriochloa ischaemum at elevated CO2 concentrations (800 μmol·mol -1 ) under three water regimes, i.e., well watered (75%-80% of field capacity, FC), moderate drought stress (55%-60% of FC), and severe drought stress (35%-40% of FC). The results showed that elevated CO2 concentration and drought stress did not have significant impacts on the content of soil organic carbon, total nitrogen or dissolved organic carbon (DOC) in the rhizosphere and bulk soils or their rhizosphere effects. Elevated CO2 concentration significantly decreased dissolved organic nitrogen (DON) content in the rhizosphere soil under moderate drought stress, increased DOC/DON, and significantly increased the negative rhizosphere effect of DON and positive rhizosphere effect of DOC/DON. Drought stress and elevated CO2 concentration did not have significant impacts on the rhizosphere effect of total and bacterial phospholipid fatty acids (PLFA). Drought stress under elevated CO2 concentration significantly increased the G + /G - PLFA in the rhizosphere soil and decreased the G + /G - PLFA in the bulk soil, so its rhizosphere effect significantly increased, indicating that the soil microbial community changed from chemoautotroph microbes to heterotrophic microbes.

  14. Concentration variations of the tropospheric carbon dioxide over the Antarctic region

    Directory of Open Access Journals (Sweden)

    Shohei Murayama

    1997-03-01

    Full Text Available Aircraft measurements of the atmospheric CO_2 concentration have been made over Syowa Station, Antarctica since 1983. The minimum concentration of the average seasonal CO_2 cycle appears in March throughout the troposphere, while the maximum concentration occurs in mid-August in the upper troposphere and in late September in the middle and lower troposphere. The peak-to-peak amplitude of the seasonal cycle decreases with height. The CO_2 concentration increases with height during most of the year; however, this height dependency is larger from summer to early winter than in the remaining seasons. The average concentration difference between the upper troposphere and the ground surface is about 0.3ppmv. From comparisons with the results of the ground-based and aircraft measurements at southern middle and high latitudes and trajectory analysis, it is hypothesized that the seasonal cycle of height-dependent atmospheric transport processes could influence the seasonal cycle and the vertical distribution of the CO_2 concentration over Syowa Station.

  15. Collapse of accreting carbon-oxygen white dwarfs induced by carbon deflagration at high density

    International Nuclear Information System (INIS)

    Nomoto, K.

    1986-01-01

    A critical condition is obtained for which carbon deflagration induces collapse of an accreting C + O white dwarf, not explosion. If the carbon deflagration is initiated at central density as high as 10 10 g cm -3 and if the propagation of the deflagration wave is slower than ∼ 0.15 υ/sub s/ (υ/sub s/ is the sound speed), electron capture behind the burning front induces collapse to form a neutron star. This is the case for both conductive and convective deflagrations. Such a high central density can be reached if the white dwarf is sufficiently massive and cold at the onset of accretion and if the accretion rate is in the appropriate range. Models for Type Ia and Ib supernovae are also discussed. 66 refs., 8 figs

  16. An assessment methodology for determining pesticides adsorption on granulated activated carbon

    Directory of Open Access Journals (Sweden)

    Barthélemy J.-P.

    2003-01-01

    Full Text Available In many countries, water suppliers add granular activated carbon reactor in the drinking water treatment notably in order to remove pesticides residues. In Europe, their concentrations must lie below the values imposed by the EU directives (98/83/EC. Acouple of years ago, some mini-column tests were developed to improve the use of the activated carbon reactor in relation with lab experiments. Modelling, which was elaborated to predict the lifetime of reactors, did not bring validated results. Nevertheless, this kind of experiment allows us to assess the adsorption performances of an activated carbon for different pesticides. Because of the lack of comparable available results, we have eveloped a standardized methodology based on the experiment in mini-column of granular activated carbon. The main experimental conditions are activated carbon: Filtrasorb 400 (Chemviron Carbon; water: mineral and organic reconstituted water (humic acid concentration: 0,5 mg/l; influent concentration 500 g . l -1 ; activated carbon weight: 200 mg; EBCT (Empty Bed Contact Time: 0.16 min.; linear speed: 0.15 m . s -1 . In these conditions, it appears that diuron is highly adsorbed in comparison with other active substances like chloridazon, atrazine or MCPA. From the ratio of effluent volume for the breakthrough point with respect to diuron, it is suggested that products of which the difference factor ratio is – (a below 0.40: may be reckoned as weakly adsorbed (MCPA; (b from 0.41 to 0.80: may be reckoned as moderately adsorbed (chloridazon and atrazine; (c above 0.80: as highly adsorbed on granular activated carbon. Active substances that are weakly adsorbed and have to be removed from drinking water, may highly reduce the lifetime of an activated carbon bed. This kind of information is particularly useful for water suppliers and for regulatory authorities.

  17. Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons.

    Science.gov (United States)

    Raymundo-Piñero, Encarnación; Cadek, Martin; Wachtler, Mario; Béguin, François

    2011-07-18

    The advantages provided by multiwalled carbon nanotubes (CNTs) as backbones for composite supercapacitor electrodes are discussed. This paper particularly highlights the electrochemical properties of carbon composites obtained by pyrolysis of seaweed/CNTs blends. Due to the nanotexturing effect of CNTs, supercapacitors fabricated with electrodes from these composites exhibit enhanced electrochemical performances compared with CNT-free carbons. The cell resistance is dramatically reduced by the excellent conductivity of CNTs and by the good propagation of ions favored by the presence of opened mesopores. As a consequence, the specific power of supercapacitors based on these nanocomposites is very high. Another advantage related to the presence of CNTs is a better life cycle of the systems. The composite electrodes are resilient during the charge/discharge of capacitors; these are able to perfectly accommodate the dimensional changes appearing in the active material without mechanical damages. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. INDOOR AIR QUALITY IN HOSPITALS - Verification of the physical parameters of comfort and the concentration of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Waldir Nagel Schirmer

    2010-10-01

    Full Text Available In hospitals, the presence of pollutants in the indoor air creates conditions that may prejudice the recovery of patients and affect the productivity of employees. Thus, these places need air conditioning well designed, to provide adequate ventilation rates to ensure the comfort of its occupants and the aseptic of environments. The present study focused on evaluating the indoor air quality (IAQ in a surgical center and an intensive care unit, by checking the physical parameters of comfort and the concentrations of carbon dioxide, following the procedure recommended by Resolution No. 09 of the National Sanitary Surveillance Agency (ANVISA and to propose an air conditioning system for each of the environments evaluated. The results showed that the IAQ in those environments may be improved, since some of the parameters showed values higher than those recommended by that resolution. High concentrations of CO2 obtained, for example, can be justified by the lack of renewal of air. It is suggested that the air conditioning systems must to be substituted for that allowed the renewal of the air at rates acceptable to the current legislation.

  19. Functional Carbon Nanocomposite, Optoelectronic, and Catalytic Coatings

    Science.gov (United States)

    Liang, Yu Teng

    Over the past couple decades, fundamental research into carbon nanomaterials has produced a steady stream of groundbreaking physical science. Their record setting mechanical strength, chemical stability, and optoelectronic performance have fueled many optimistic claims regarding the breadth and pace of carbon nanotube and graphene integration. However, present synthetic, processing, and economic constraints have precluded these materials from many practical device applications. To overcome these limitations, novel synthetic techniques, processing methodologies, device geometries, and mechanistic insight were developed in this dissertation. The resulting advancements in material production and composite device performance have brought carbon nanomaterials ever closer to commercial implementation. For improved materials processing, vacuum co-deposition was first demonstrated as viable technique for forming carbon nanocomposite films without property distorting covalent modifications. Co-deposited nanoparticle, carbon nanotube, and graphene composite films enabled rapid device prototyping and compositional optimization. Cellulosic polymer stabilizers were then shown to be highly effective carbon nanomaterial dispersants, improving graphene production yields by two orders of magnitude in common organic solvents. By exploiting polarity interactions, iterative solvent exchange was used to further increase carbon nanomaterial dispersion concentrations by an additional order of magnitude, yielding concentrated inks. On top of their low causticity, these cellulosic nanomaterial inks have highly tunable viscosities, excellent film forming capacity, and outstanding thermal stability. These processing characteristics enable the efficient scaling of carbon nanomaterial coatings and device production using existing roll-to-roll fabrication techniques. Utilizing these process improvements, high-performance gas sensing, energy storage, transparent conductor, and photocatalytic

  20. Decrease of concentration and colloidal fraction of organic carbon and trace elements in response to the anomalously hot summer 2010 in a humic boreal lake

    International Nuclear Information System (INIS)

    Shirokova, L.S.; Pokrovsky, O.S.; Moreva, O.Yu.; Chupakov, A.V.; Zabelina, S.A.; Klimov, S.I.; Shorina, N.V.; Vorobieva, T.Ya.

    2013-01-01

    high latitudes capable of significantly raising surface water temperatures will produce a decrease in the colloidal fraction of most trace elements and, as a result, an increase in the most labile low molecular weight LMW kDa fraction. - Graphical abstract: During anomalously hot summer (August 2010), significant decrease of the proportion of colloidal organic carbon occurred in a humic boreal lake. Highlights: • Anomalous hot summer 2010 changed boreal lake biogeochemistry • Carbon and trace element concentration in the epilimnion decreased by a factor of 1.3 to 6. • Colloidal fractions of carbon and metals decreased by a factor of 1.5 to 3. • Climate warming in boreal lakes may increase the metal and carbon bioavailability