WorldWideScience

Sample records for high capacity power

  1. CSTI High Capacity Power

    Science.gov (United States)

    Winter, Jerry M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  2. The NASA CSTI High Capacity Power Program

    Science.gov (United States)

    Winter, Jerry M.

    1991-01-01

    NASA's Civil Space Technology Initiative (CSTI) has as its primary goal the improvement of space nuclear power-related technologies and their interactions with the given mission environment. The CSTI High Capacity Power Program supports and advances all nonnuclear aspects of the national SP-100 Space Nuclear Reactor Program, including the demonstration of a 1050 K Stirling Space Power System capable of employing the full output capability of the SP-100 reactor. Thermoelectric technology capable of reaching Z values of 0.001/K with SiGe/GaP will be demonstrated in the course of the program.

  3. The NASA CSTI high capacity power project

    Science.gov (United States)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  4. Photovoltaics for high capacity space power systems

    Science.gov (United States)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  5. CSTI high capacity power. [Civil Space Technology Initiative

    Science.gov (United States)

    Winter, Jerry M.

    1989-01-01

    In FY-88, the Advanced Technology Program was incorporated into NASA's Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Converrsion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems.

  6. Overview of space power electronic's technology under the CSTI High Capacity Power Program

    Science.gov (United States)

    Schwarze, Gene E.

    1994-01-01

    The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.

  7. Programmatic status of NASA`s CSTI high capacity power Stirling Space Power Converter Program

    Energy Technology Data Exchange (ETDEWEB)

    Dudenhoefer, J.E.

    1994-09-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA`s Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss the status of test activities with the Space Power Research Engine (SPRE). Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs have been completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. This paper also provides an update of progress in these technologies.

  8. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    Science.gov (United States)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  9. Curtailment in a Highly Renewable Power System and Its Effect on Capacity Factors

    Directory of Open Access Journals (Sweden)

    Alexander Kies

    2016-06-01

    Full Text Available The capacity factor of a power plant is the ratio of generation over its potential generation. It is an important measure to describe wind and solar resources. However, the fluctuating nature of renewable power generation makes it difficult to integrate all generation at times. Whenever generation exceeds the load, curtailment or storage of energy is required. With increasing renewable shares in the power system, the level of curtailment will further increase. In this work, the influence of the curtailment on the capacity factors for a highly renewable German power system is studied. An effective capacity factor is introduced, and the implications for the distribution of renewable power plants are discussed. Three years of highly-resolved weather data were used to model wind and solar power generation. Together with historical load data and a transmission model, a possible future German power system was simulated. It is shown that effective capacity factors for unlimited transmission are strongly reduced by up to 60% (wind and 70% (photovoltaics and therefore of limited value in a highly renewable power system. Furthermore, the results demonstrate that wind power benefits more strongly from a reinforced transmission grid than photovoltaics (PV does.

  10. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System.

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Hager, Martin D; Schubert, Ulrich S

    2016-11-07

    Redox-flow batteries (RFB) can easily store large amounts of electric energy and thereby mitigate the fluctuating output of renewable power plants. They are widely discussed as energy-storage solutions for wind and solar farms to improve the stability of the electrical grid. Most common RFB concepts are based on strongly acidic metal-salt solutions or poorly performing organics. Herein we present a battery which employs the highly soluble N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) and the viologen derivative N,N'-dimethyl-4,4-bipyridinium dichloride (MV) in a simple and safe aqueous solution as redox-active materials. The resulting battery using these electrolyte solutions has capacities of 54 Ah L-1 , giving a total energy density of 38 Wh L-1 at a cell voltage of 1.4 V. With peak current densities of up to 200 mA cm-2 the TEMPTMA/MV system is a suitable candidate for compact high-capacity and high-power applications. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. EFFICIENCY OF APPLICATION OF PHASE CONTROL OF ELECTROTRANSMISSION OF HIGH NATURAL POWER CAPACITY

    Directory of Open Access Journals (Sweden)

    Postolaty V.M.

    2010-12-01

    Full Text Available Modeling of power systems, containing a transmission line of high natural power. There are calculated modes of transmission lines and flowing through them power flows at the phase control. There are studied at specific examples of energy systems dependencies of values of fluxes of power along lines of 220,400,500 kV from the angular shift of vectors of voltages which are imposed by phase rotation devices.

  12. Muscle performance and functional capacity retention in older women after high-speed power training cessation.

    Science.gov (United States)

    Pereira, Ana; Izquierdo, Mikel; Silva, António J; Costa, Aldo M; González-Badillo, Juan José; Marques, Mário C

    2012-08-01

    Power declines more steeply than strength with advancing age and training cessation among older women and is associated with the loss of functional ability. We tested the hypothesis that the impact of 6 weeks of detraining (DT) subsequent to 12 weeks of high-speed power training on maximal strength (1RM) of the arm and leg muscles, power performance (counter movement jump and ball throwing) and functional task (sit-to-stand test) would decrease physical performance, and specifically power performance. Thirty-seven older women were divided into an experimental group and a control group [EG, n=20, 65.8 (2.5) years; CG: n=17, 64.8 (2.8) years]. Muscular strength, power and functional testings were conducted before the initiation of training (T1), after 12 weeks (T2) and after 6 weeks of DT (T3). During the 12 weeks of training, EG significantly increased their dynamic strength performance (range from 41.9 to 64.1%), muscle power output (range from 18.2 to 33.6%) (pmuscles than in muscle power (2-4.5%) and function (2.8%) (pmuscle strength than in power output and preserved physical independence, mediated in part, by the effectiveness of high-speed power training particularly developed for older women. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. High-Capacity Communications from Martian Distances Part 2: Spacecraft Antennas and Power Systems

    Science.gov (United States)

    Hodges, Richard E.; Kodis, Mary Anne; Epp, Larry W.; Orr, Richard; Schuchman, Leonard; Collins, Michael; Sands, O. Scott; Vyas, Hemali; Williams, W. Dan

    2006-01-01

    This paper summarizes recent advances in antenna and power systems technology to enable a high data rate Ka-band Mars-to-Earth telecommunications system. Promising antenna technologies are lightweight, deployable space qualified structures at least 12-m in diameter (potentially up to 25-m). These technologies include deployable mesh reflectors, inflatable reflectarray and folded thermosetting composite. Advances in 1kW-class RF power amplifiers include both TWTA and SSPA technologies.

  14. On-chip high power porous silicon lithium ion batteries with stable capacity over 10,000 cycles.

    Science.gov (United States)

    Westover, Andrew S; Freudiger, Daniel; Gani, Zarif S; Share, Keith; Oakes, Landon; Carter, Rachel E; Pint, Cary L

    2015-01-07

    We demonstrate the operation of a graphene-passivated on-chip porous silicon material as a high rate lithium battery anode with over 50 X power density, and 100 X energy density improvement compared to identically prepared on-chip supercapacitors. We demonstrate this Faradaic storage behavior to occur at fast charging rates (1-10 mA cm(-2)) where lithium locally intercalates into the nanoporous silicon, preventing the degradation and poor cycling performance attributed to deep storage in the bulk silicon. This device exhibits cycling performance that exceeds 10,000 cycles with capacity above 0.1 mA h cm(-2) without notable capacity fade. This demonstrates a practical route toward high power, high energy, and long lifetime all-silicon on-chip storage systems relevant toward integration into electronics, photovoltaics, and other silicon-based platforms.

  15. Assessing Capacity Value of Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany A.

    2017-04-18

    This presentation provides a high-level overview of assessing capacity value of wind power, including Impacts of multiple-year data sets, impacts of transmission assumptions, and future research needs.

  16. Exploring the meteorological potential for planning a high performance European electricity super-grid: optimal power capacity distribution among countries

    Science.gov (United States)

    Santos-Alamillos, Francisco J.; Brayshaw, David J.; Methven, John; Thomaidis, Nikolaos S.; Ruiz-Arias, José A.; Pozo-Vázquez, David

    2017-11-01

    The concept of a European super-grid for electricity presents clear advantages for a reliable and affordable renewable power production (photovoltaics and wind). Based on the mean-variance portfolio optimization analysis, we explore optimal scenarios for the allocation of new renewable capacity at national level in order to provide to energy decision-makers guidance about which regions should be mostly targeted to either maximize total production or reduce its day-to-day variability. The results show that the existing distribution of renewable generation capacity across Europe is far from optimal: i.e. a ‘better’ spatial distribution of resources could have been achieved with either a ~31% increase in mean power supply (for the same level of day-to-day variability) or a ~37.5% reduction in day-to-day variability (for the same level of mean productivity). Careful planning of additional increments in renewable capacity at the European level could, however, act to significantly ameliorate this deficiency. The choice of where to deploy resources depends, however, on the objective being pursued—if the goal is to maximize average output, then new capacity is best allocated in the countries with highest resources, whereas investment in additional capacity in a north/south dipole pattern across Europe would act to most reduce daily variations and thus decrease the day-to-day volatility of renewable power supply.

  17. Monofloral honeys by Sicilian black honeybee (Apis mellifera ssp. sicula have high reducing power and antioxidant capacity

    Directory of Open Access Journals (Sweden)

    Alessandro Attanzio

    2016-11-01

    Full Text Available Thirty samples from thirteen Sicilian monofloral honeys by the local black honeybee, and two honeydew honeys, were studied to assess phenol content, reducing power and antioxidant capacity as well as correlations among these parameters. Honeys from Apiaceae showed the highest phenol amount and capacity to reduce ferric ion and stable chemical radicals, whereas honeys from Leguminosae the lowest. All honeys were active against myoglobin-derived radicals usually formed in red meat after storage and/or heating and significant correlation (p = 0.023 was found between flavonoid content and deactivation rate of this radical. Dill > almond > tangerine > thistle > sulla honeys inhibited formation of lipoperoxides in either iron/ascorbate or azoinitiator -induced membrane lipid oxidation, whereas eucalyptus honey was mostly effective in the metal-dependent model. Honeys by black honeybee possess remarkable reducing power and antioxidant potential against radicals of interest in dietary foodstuffs.

  18. Low Cost, High Capacity Regenerable Sorbent for Carbon Dioxide Capture from Existing Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States); Jayaraman, Ambalavanan [TDA Research, Inc., Wheat Ridge, CO (United States); Dietz, Steven [TDA Research, Inc., Wheat Ridge, CO (United States)

    2016-03-03

    In this project TDA Research, Inc (TDA) has developed a new post combustion carbon capture technology based on a vacuum swing adsorption system that uses a steam purge and demonstrated its technical feasibility and economic viability in laboratory-scale tests and tests in actual coal derived flue gas. TDA uses an advanced physical adsorbent to selectively remove CO2 from the flue gas. The sorbent exhibits a much higher affinity for CO2 than N2, H2O or O2, enabling effective CO2 separation from the flue gas. We also carried out a detailed process design and analysis of the new system as part of both sub-critical and super-critical pulverized coal fired power plants. The new technology uses a low cost, high capacity adsorbent that selectively removes CO2 in the presence of moisture at the flue gas temperature without a need for significant cooling of the flue gas or moisture removal. The sorbent is based on a TDA proprietary mesoporous carbon that consists of surface functionalized groups that remove CO2 via physical adsorption. The high surface area and favorable porosity of the sorbent also provides a unique platform to introduce additional functionality, such as active groups to remove trace metals (e.g., Hg, As). In collaboration with the Advanced Power and Energy Program of the University of California, Irvine (UCI), TDA developed system simulation models using Aspen PlusTM simulation software to assess the economic viability of TDA’s VSA-based post-combustion carbon capture technology. The levelized cost of electricity including the TS&M costs for CO2 is calculated as $116.71/MWh and $113.76/MWh for TDA system integrated with sub-critical and super-critical pulverized coal fired power plants; much lower than the $153.03/MWhand $147.44/MWh calculated for the corresponding amine based systems. The cost of CO2 captured for TDA’s VSA based system is $38

  19. Beyond Rule; Trust and Power as Capacities

    DEFF Research Database (Denmark)

    Raffnsøe, Sverre

    2013-01-01

    , such as knowledge and experience, gift-giving, hope, freedom and agency. To permit us to understand power and trust as interdependent dimensions, the article confronts the notions of power as command, coercion, control and calculation and develops a conception of power as a capacity. This permits us to consider...

  20. Capacity credit of wind power in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, M.; Pamfensie, A.; Hartkopf, T. [TU-Darmstadt, Inst. for Renewable Energies (Germany)

    2007-11-15

    Covering the peak loads with a reliable safety margin is a task that becomes more difficult in the moment that base load power plants are exchanged by renewable energy resources. This is an issue that might affect Germany in the next years. This paper analyses the power plant mix in Germany and calculates the wind power capacity credit for different scenarios. The contribution of the wind power on covering the peak loads is discussed. (au)

  1. Serial Charging Test on High Capacity Li-Ion Cells for the Orbiter Advanced Hydraulic Power System

    Science.gov (United States)

    Jeevarajan, Judith A.; Irlbeck, Brad

    2006-01-01

    Although it looks like module level voltage drives the cutoff for charge, the actual cutoff is due to unbalanced cell voltages that drive the module voltage up. Individual cell voltage drives the cutoff for discharge Low resistance cells are the first to reach the low-voltage cutoff Cell-to-Cell voltage differences are generally small and show similar trends for each cycle Increase for a distinct window during charge and at the end of discharge Increase in max to min cell voltage difference with time/cycles Decrease in max to min cell voltage difference during high current pulses with time/cycles Individual cell voltage trends (with respect to other cells) are very repeatable from cycle to cycle, although voltage slowly degrades with time/cycles (resistance growth) Much more difference observed near end of discharge Little change in order of cell voltage (cell with highest voltage to cell with lowest voltage) Temp sensor on the side of cell (between 2 cells) shows much greater rise during discharge than for single cell tests (18 C vs 5 C) Conclusion: Serial Charging of this string of cells is feasible as it has only a minor impact on useful capacity

  2. DEVELOPMENT OF NEW CHARTS OF CAPACITANCE-RESISTANCE DEFENSE OF HIGH-VOLTAGE CAPACITORS OF POWERFUL CAPACITY STORES OF ENERGY FROM EMERGENCY CURRENTS

    Directory of Open Access Journals (Sweden)

    M.I. Baranov

    2015-12-01

    Full Text Available Purpose. Development of new charts of capacitance-resistance defense of high-voltage capacitors of powerful capacity stores of energy (CSE from emergency large impulsive currents (LIC at the electric hasp of one of condensers of such CSE on the stage of their charge or discharge. Methodology. Electrophysics bases of the technique of high-voltage and large pulsed currents, and also scientific and technical bases of planning of devices of high-voltage impulse technique. Results. Two new charts of capacitance-resistance defense of high-voltage impulsive capacitors are offered for powerful CSE of one- and multimodule execution from emergency LIC, being based on the use of high-voltage permanent graphite-ceramic resistors of type of TVO-60 a face value from 24 to 100 Ohm, set on the high-voltage conclusions of all of condensers of CSE. One of the developed capacitance-resistance charts of defense of condensers for powerful one-module CSE passed practical approbation. Originality. It is shown that application of the developed charts of capacitance-resistance defense of high-voltage condensers of powerful CSE is provided by frequent limitation of amplitude of emergency LIC, flowing through broken through an electric discharge condenser of CSE on the stage of his charge or discharge. Such limitation emergency LIC is prevented by explosion destruction of the damaged condenser of high-voltage CSE. Practical value. The use of the developed charts of capacitance-resistance defense of high-voltage capacitors from emergency LIC allows substantially to promote functional safety of powerful CSE of one- and multi-module execution and provide the safe terms of labour for a scientific and technical personnel, attendant similar CSE.

  3. The capacity credit of micro-combined heat and power

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, A.D. [Centre for Energy Policy and Technology, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Leach, M.A. [Centre for Environmental Strategy, Faculty of Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2008-04-15

    This article is concerned with development of a methodology to determine the capacity credit of micro-combined heat and power (micro-CHP), and application of the method for the UK. Capacity credit is an important parameter in electricity system planning because it measures the amount of conventional generation that would be displaced by an alternative technology. Firstly, a mathematical formulation is presented. Capacity credit is then calculated for three types of micro-CHP units - Stirling engine, internal combustion engine, and fuel cell systems - operating under various control strategies. It is found that low heat-to-power ratio fuel cell technologies achieve the highest capacity credit of approximately 85% for a 1.1 GW penetration when a heat-led control strategy is applied. Higher heat-to-power ratio Stirling engine technology achieves approximately 33% capacity credit for heat-led operation. Low heat-to-power ratio technologies achieve higher capacity credit because they are able to continue operating even when heat demand is relatively low. Capacity credit diminishes as penetration of the technology increases. Overall, the high capacity credit of micro-CHP contributes to the viewpoint that the technology can help meet a number of economic and environmental energy policy aims. (author)

  4. Female Sexuality as Capacity and Power?

    DEFF Research Database (Denmark)

    Arnfred, Signe

    2015-01-01

    The article argues for an approach to studies of sexuality in Africa that considers the subject of female sexuality from the perspective of capacity and power. Based on data from Mozambique, and informed by conceptual frameworks as well as by research findings from other African countries......, the article investigates preparations of the erotic female body such as body tattoos, hip belts of glass beads, and elongated labia. It also discusses how “traditional” sexual capacity-building has been transferred from rural contexts into urban settings, empowering young women in love relationships...

  5. High-Capacity Communications from Martian Distances

    Science.gov (United States)

    Williams, W. Dan; Collins, Michael; Hodges, Richard; Orr, Richard S.; Sands, O. Scott; Schuchman, Leonard; Vyas, Hemali

    2007-01-01

    High capacity communications from Martian distances, required for the envisioned human exploration and desirable for data-intensive science missions, is challenging. NASA s Deep Space Network currently requires large antennas to close RF telemetry links operating at kilobit-per-second data rates. To accommodate higher rate communications, NASA is considering means to achieve greater effective aperture at its ground stations. This report, focusing on the return link from Mars to Earth, demonstrates that without excessive research and development expenditure, operational Mars-to-Earth RF communications systems can achieve data rates up to 1 Gbps by 2020 using technology that today is at technology readiness level (TRL) 4-5. Advanced technology to achieve the needed increase in spacecraft power and transmit aperture is feasible at an only moderate increase in spacecraft mass and technology risk. In addition, both power-efficient, near-capacity coding and modulation and greater aperture from the DSN array will be required. In accord with these results and conclusions, investment in the following technologies is recommended:(1) lightweight (1 kg/sq m density) spacecraft antenna systems; (2) a Ka-band receive ground array consisting of relatively small (10-15 m) antennas; (3) coding and modulation technology that reduces spacecraft power by at least 3 dB; and (4) efficient generation of kilowatt-level spacecraft RF power.

  6. High capacity carbon dioxide sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  7. High capacity immobilized amine sorbents

    Science.gov (United States)

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Filburn, Thomas

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  8. Valka to increase biofuel power capacity

    Index Scriptorium Estoniae

    2011-01-01

    Eesti Energia omandas enamusosaluse Valka soojusettevõttes Host Energo. Eesti Energiale kuulub nüüd 90% ettevõttest ja linnale 10%. Ettevõte uus nimi on Enefit Heat&Power Valka ja viimane rajab aastaks 2012 Valka uue biokütusel koostootmisjaama

  9. High Capacity Battery Cell Flight Qualified

    Science.gov (United States)

    McKissock, Barbara I.

    1997-01-01

    The High Capacity Battery Cell project is an effort equally funded by the NASA Lewis Research Center and Hughes Space and Communications Company (a unit of Hughes Aircraft Company) to develop and flight qualify a higher capacity nickel hydrogen battery for continuing use on commercial spacecraft. The larger diameter, individual pressure vessel cell will provide approximately twice the power, while occupying the same volume, as the current state-of-the-art nickel hydrogen cell. These cells are also anticipated to reduce battery cost by 20 percent. The battery is currently booked for use on 26 spacecraft, with the first flight scheduled in 1997. A strong requirement for batteries with higher power levels (6 to 12 kW), long life, and reduced cost was identified in studies of the needs of commercial communications spacecraft. With the design developed in this effort, the higher power level was accommodated without having to modify the rest of the existing spacecraft bus. This design scaled-up the existing state-of-the-art nickel hydrogen battery cell from a 3.5-in., 50-Ahr cell to a 5.5-in., 350-Ahr cell. An improvement in cycle life was also achieved by the use of the 26-percent KOH electrolyte design developed by NASA Lewis. The cell design was completed, and flight batteries were built and flight qualified by Hughes Space and Communications Company with input from NASA Lewis. Two batteries were shipped in September 1996 to undergo life cycle testing under the purview of NASA Lewis.

  10. High Power Vanadate lasers

    CSIR Research Space (South Africa)

    Strauss, HJ

    2006-07-01

    Full Text Available This presentation aims at the following: to develop new techniques to mount laser crystals; compare the laser properties of two equally doped, high power Nd:YVO4 and Nd: GdVO4 lasers; build a 1um vanadate laser with average output power exceeding...

  11. Potential for solar-powered base-load capacity

    Science.gov (United States)

    Stoll, Brady; Deinert, Mark

    2013-04-01

    In 2010 nuclear power accounted for 27% of electricity production in Japan. The March 2011 disaster at the Fukushima Daiichi power station resulted in the closure of all of Japans nuclear power plants and it remains an open question as to how many will reopen. Even before the loss of nuclear capacity there were efforts in Japan to foster the use of renewable energy, including large-scale solar power. Nuclear power plants in Japan operated beyond base load with excess energy being stored in large scale pumped hydroelectric storage systems. Here we show how coupling these storage systems to rooftop solar systems in Tokyo could compensate for the loss of nuclear power. Data from a study of rooftop space, and a 34-year data set of average daily irradiance in the Tokyo metropolitan area were used. If current generation PV systems were placed on the available rooftop space in greater Tokyo, this coupled system could provide for 20% of Toyo's nuclear capacity with a capacity factor of 0.99. Using pumped hydroelectric storage with six times this rooftop area could completely provide for TEPCO's nuclear capacity with a capacity factor of 0.98.

  12. Power capacity from earcanal dynamic motion

    Science.gov (United States)

    Carioli, Johan; Delnavaz, Aidin; Zednik, Ricardo J.; Voix, Jérémie

    2016-12-01

    In-ear devices, such as a hearing aids, electronic earplugs, and wearables, need electrical power to operate. Batteries are the current solution, but unfortunately they also create other problems. For example, several hundred million users, mostly elderly, must change their hearing aid batteries on a weekly basis, which represents not only significant financial costs but a negative environmental impact. A promising alternative involves harvesting energy by converting the dynamic jaw movements into electrical energy via the earcanal. The extent that jaw movements distort the earcanal is still unknown, making it difficult to design the appropriate energy harvesting system for the earplug. Moreover, the finite element methods are barely capable to model the behavior of the earcanal distortion because of the complexity of mechanisms that deform the earcanal. However, this paper presents an alternative method, based on analytical considerations, to understand in-ear mechanical quasi-static deformations using earcanal point clouds. This model quantifies the bending and compressive movements of the earcanal. It can therefore be used to select an appropriate deformation mode for harvesting energy from the earcanal's dynamic motion. The value of this approach was illustrated by calculating the obtainable mechanical energy from 12 human subjects. On average, the bending energy in a human earcanal was found to be three times greater than the radial compression energy. This key finding will need to be considered in the design of future in-ear energy harvesting devices. Such an energy harvesting device has the potential to revolutionize the market for in-ear wearable devices and hearing aids by complementing or replacing battery technology.

  13. Power capacity from earcanal dynamic motion

    Directory of Open Access Journals (Sweden)

    Johan Carioli

    2016-12-01

    Full Text Available In-ear devices, such as a hearing aids, electronic earplugs, and wearables, need electrical power to operate. Batteries are the current solution, but unfortunately they also create other problems. For example, several hundred million users, mostly elderly, must change their hearing aid batteries on a weekly basis, which represents not only significant financial costs but a negative environmental impact. A promising alternative involves harvesting energy by converting the dynamic jaw movements into electrical energy via the earcanal. The extent that jaw movements distort the earcanal is still unknown, making it difficult to design the appropriate energy harvesting system for the earplug. Moreover, the finite element methods are barely capable to model the behavior of the earcanal distortion because of the complexity of mechanisms that deform the earcanal. However, this paper presents an alternative method, based on analytical considerations, to understand in-ear mechanical quasi-static deformations using earcanal point clouds. This model quantifies the bending and compressive movements of the earcanal. It can therefore be used to select an appropriate deformation mode for harvesting energy from the earcanal’s dynamic motion. The value of this approach was illustrated by calculating the obtainable mechanical energy from 12 human subjects. On average, the bending energy in a human earcanal was found to be three times greater than the radial compression energy. This key finding will need to be considered in the design of future in-ear energy harvesting devices. Such an energy harvesting device has the potential to revolutionize the market for in-ear wearable devices and hearing aids by complementing or replacing battery technology.

  14. High Power Electronics

    Science.gov (United States)

    Pendharker, Sameer

    High Power Electronics Future Trends: New process, circuit and packaging technologies over the last 5 years have led to significant innovation and technological developments in high power electronics. In this topic, the trends and performance improvements achieved in the industry will be discussed with focus on gallium-nitride (GaN) and silicon carbide (SiC). Both GaN and SiC technologies have been around for many years but have seen limited adoption and proliferation in high power systems. With the improved transistor performance, power conversion efficiencies and densities previously unrealizable are now available leading to new applications and new system. Trends in these technologies will also be reviewed and remaining challenges to overcome before true mass market adoption can be expected.

  15. Capacity of Fading Channels in the Low Power Regime

    KAUST Repository

    Benkhelifa, Fatma

    2013-01-01

    The low power regime has attracted various researchers in the information theory and communication communities to understand the performance limits of wireless systems. Indeed, the energy consumption is becoming one of the major limiting factors in wireless systems. As such, energy-efficient wireless systems are of major importance to the next generation wireless systems designers. The capacity is a metric that measures the performance limit of a wireless system. The study of the ergodic capacity of some fading channels in the low power regime is the main subject of this thesis. In our study, we consider that the receiver has always a full knowledge of the channel state information. However, we assume that the transmitter has possibly imperfect knowledge of the channel state information, i.e. he knows either perfectly the channel or only an estimated version of the channel. Both radio frequency and free space optical communication channel models are considered. The main contribution of this work is the explicit characterization of how the capacity scales as function of the signal-to-noise ratio in the low power regime. This allows us to characterize the gain due to the perfect knowledge compared to no knowledge of the channel state information at the transmitter. In particular, we show that the gain increases logarithmically for radio frequency communication. However, the gain increases as log2(Pavg) or log4(Pavg) for free-space optical communication, where Pavg is the average power constraint imposed to the input. Furthermore, we characterize the capacity of cascaded fading channels and we applied the result to Rayleigh-product fading channel and to a free-space optical link over gamma-gamma atmospheric turbulence in the presence of pointing errors. Finally, we study the capacity of Nakagami-m fading channel under quality of service constraints, namely the effective capacity. We have shown that the effective capacity converges to Shannon capacity in the very low

  16. Efficient Capacity Computation and Power Optimization for Relay Networks

    CERN Document Server

    Parvaresh, Farzad

    2011-01-01

    The capacity or approximations to capacity of various single-source single-destination relay network models has been characterized in terms of the cut-set upper bound. In principle, a direct computation of this bound requires evaluating the cut capacity over exponentially many cuts. We show that the minimum cut capacity of a relay network under some special assumptions can be cast as a minimization of a submodular function, and as a result, can be computed efficiently. We use this result to show that the capacity, or an approximation to the capacity within a constant gap for the Gaussian, wireless erasure, and Avestimehr-Diggavi-Tse deterministic relay network models can be computed in polynomial time. We present some empirical results showing that computing constant-gap approximations to the capacity of Gaussian relay networks with around 300 nodes can be done in order of minutes. For Gaussian networks, cut-set capacities are also functions of the powers assigned to the nodes. We consider a family of power o...

  17. Resonant High Power Combiners

    CERN Document Server

    Langlois, Michel; Peillex-Delphe, Guy

    2005-01-01

    Particle accelerators need radio frequency sources. Above 300 MHz, the amplifiers mostly used high power klystrons developed for this sole purpose. As for military equipment, users are drawn to buy "off the shelf" components rather than dedicated devices. IOTs have replaced most klystrons in TV transmitters and find their way in particle accelerators. They are less bulky, easier to replace, more efficient at reduced power. They are also far less powerful. What is the benefit of very compact sources if huge 3 dB couplers are needed to combine the power? To alleviate this drawback, we investigated a resonant combiner, operating in TM010 mode, able to combine 3 to 5 IOTs. Our IOTs being able to deliver 80 kW C.W. apiece, combined power would reach 400 kW minus the minor insertion loss. Values for matching and insertion loss are given. The behavior of the system in case of IOT failure is analyzed.

  18. Delay-Limited Capacity in the Low Power Regime

    KAUST Repository

    Rezki, Zouheir

    2016-02-11

    Outage performance of the M-block fading with additive white Gaussian noise (BF-AWGN) is investigated in the low-power regime. We consider delay-constrained constant-rate communications with perfect channel state information (CSI) at both the transmitter and the receiver (CSI-TR), under a shortterm power constraint (STPC) and a long-term power constraint (LTPC). Subject to STPC, we show that selection diversity that allocates all the power to the strongest block is asymptotically optimal. Then, we provide a simple characterization of the outage probability in the regime of interest. We quantify the reward due to CSI-TR over the constant-rate constant-power scheme and show that this reward increases with the delay constraint. For instance, for Rayleigh fading, we find that a power gain up to 4.3 dB is achievable. Subject to LTPC, we show that the above guidelines still holds and that the outage performance improves due to the flexibility of the LTPC over the STPC. More interestingly, we prove that LTPC allows zero-outage communication even at low SNR and characterize the delaylimited capacity at low SNR in a simple form. More precisely, we establish that the delay-limited capacity scales linearly with the power constraint, for a given M < 1. Our framework highlights the benefit of fading at low SNR as the delay-limited capacity may outperform the AWGN capacity. For instance, for Rayleigh fading and with M = 3, the delay-limited capacity is 16% higher than the capacity of an AWGN channel.

  19. Improved Predictive Power Control Algorithms to Increase CDMA System Capacity

    Directory of Open Access Journals (Sweden)

    A. Kurniawan

    2009-11-01

    Full Text Available In this paper capacity of CDMA system is evaluated using an improved algorithm of channel prediction-based power control in Rayleigh fading channel environments. One of the most serious problems which degrades the performance of power control algorithm is the effect of feedback delay. To overcome the effect of feedback delay, power control algorithm relies on channel prediction techniques, which utilize the correlation property of the past channel measurements. In CDMA power control, however, the correlation property of channel measurements is destroyed because the transmit power is continuously updated for each power control interval. In order to restore the correlation property of the channel, the past channel measurements are compensated for by the same factors that were given by power updating for each power control interval. The prediction algorithm in this paper is proposed using the least mean square (LMS technique. The result shows that the capacity of CDMA systems increase significantly when the improved predictive algorithm is used. Numerical evaluation shows that CDMA capacity increases by more than 40 % for fixed step algorithm and more than 50 % for variable step algorithm when the proposed algorithm is employed.

  20. Effects of kinesio taping on anaerobic power and capacity results.

    Science.gov (United States)

    Harmanci, Halit; Kalkavan, Arslan; Karavelioglu, Mihri B; Yuksel, Oğuzhan; Şentürk, Aydin; Gülaç, Meryem; Altinok, Betül

    2016-06-01

    Kinesio taping is a therapeutic method used by physiotherapists during musculoskeletal and neuromuscular disorders. Efficacy of the kinesio taping implementation on sport performance is inconsistent. The purpose of this study was to determine the effects of kinesio taping on 30 second-repeated jump power, wingate anaerobic power and wingate anaerobic capacity results. Thirty one healthy male athletes volunteered to participate in this study. The subjects were randomly assigned to one of two groups: a kinesio taping group (16 subjects; X age: 21.87±2.02 years) and a without kinesio taping group (15 subjects; X age: 21.66±1.67 years). The Kinesio taping group was taped with a Y-shaped kinesio tape at the quadriceps muscles according to the Kenzo Kase's Kinesio taping manual. A dependent t-test was used to compare the anaerobic power and capacity measurements before and after the kinesio taping application. No significant differences were found for absolute wingate anaerobic power, relative wingate anaerobic power, absolute wingate anaerobic capacity, relative wingate anaerobic capacity and 30 second-repeated jump power outputs after the kinesio taping application (P>0.05).

  1. Effect of Antenna Type on the Capacity of Body-to-Body Capacity When Using Uniform Power Allocation

    KAUST Repository

    Ghanem, Khalida

    2012-09-01

    Body-area networks are led to target multimedia applications where high-data rate is involved. In this paper, the characterization of the measured body-to-body channels and the ergodic capacity with uniform power allocation is discussed when using multiple-input multiple-output (MIMO) PIFA and IFA antenna systems. This capacity is compared to the measured belt-head and belt-chest on-body channels using PIFA antennas in the same environment. It is shown that body channels reach less ergodic capacity than the equivalent Rayleigh channel because of the presence of a LOS component. The capacity is the same for the body-to-body case regardless of the antenna and the on-body channels reach better capacity values compared to these former. © 2012 IEEE.

  2. Towards green high capacity optical networks

    Science.gov (United States)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.

    2012-02-01

    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  3. High capacity oil adsorption by graphene capsules.

    Science.gov (United States)

    Ning, Guoqing; Ma, Xinlong; Wang, Mengyao; Li, Yongfeng

    2017-08-31

    We report on a chemical vapor deposition synthesis of graphene capsules (GCs) in sizes of tens to thousands of nanometers and their oil adsorption performance. MgO particles with different particle sizes are used as templates to produce GCs with different sizes. At a larger GC size and higher pore volume, a higher oil capacity is obtained. The highest oil adsorption capacity achieved by the GCs is 156 gdiesel gGC(-1), which is much higher than that obtained by expanded graphite. The adsorption capacity proportionally increases as the viscosity of the fluid increases. Both the capsule structure and the viscosity of oil are relative to the adsorption capacity, showing that capillary adsorption with a limited entrance might have contributed to the high capacity oil adsorption by GCs.

  4. Switching power converters medium and high power

    CERN Document Server

    Neacsu, Dorin O

    2013-01-01

    An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of industrial technology and its related subassemblies and components, covering facets of implementation otherwise overlooked by theoretical textbooks. The updated Second Edition contains many new figures, as well as

  5. Antiradical capacity and reducing power of different extraction ...

    African Journals Online (AJOL)

    Areca catechu is a common traditional Chinese medicinal plant used to treat dyspepsia, constipation, beriberi and oedema. The antiradical capacities of different extraction method of A. catechu extracts were evaluated by scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide radicals. Reducing power ...

  6. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  7. Two Contrasting Approaches to Building High School Teacher Capacity to Teach About Local Climate Change Using Powerful Geospatial Data and Visualization Technology

    Science.gov (United States)

    Zalles, D. R.

    2011-12-01

    The presentation will compare and contrast two different place-based approaches to helping high school science teachers use geospatial data visualization technology to teach about climate change in their local regions. The approaches are being used in the development, piloting, and dissemination of two projects for high school science led by the author: the NASA-funded Data-enhanced Investigations for Climate Change Education (DICCE) and the NSF funded Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (STORE). DICCE is bringing an extensive portal of Earth observation data, the Goddard Interactive Online Visualization and Analysis Infrastructure, to high school classrooms. STORE is making available data for viewing results of a particular IPCC-sanctioned climate change model in relation to recent data about average temperatures, precipitation, and land cover for study areas in central California and western New York State. Across the two projects, partner teachers of academically and ethnically diverse students from five states are participating in professional development and pilot testing. Powerful geospatial data representation technologies are difficult to implement in high school science because of challenges that teachers and students encounter navigating data access and making sense of data characteristics and nomenclature. Hence, on DICCE, the researchers are testing the theory that by providing a scaffolded technology-supported process for instructional design, starting from fundamental questions about the content domain, teachers will make better instructional decisions. Conversely, the STORE approach is rooted in the perspective that co-design of curricular materials among researchers and teacher partners that work off of "starter" lessons covering focal skills and understandings will lead to the most effective utilizations of the technology in the classroom. The projects' goals and strategies for student

  8. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    Science.gov (United States)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  9. High capacity optical links for datacentre connectivity

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Usuga, Mario; Vegas Olmos, Juan José

    There is a timely and growing demand for high capacity optical data transport solutions to provide connectivity inside data centres and between data centres located at different geographical locations. The requirements for reach are in the order of 2 km for intra-datacentre and up to 100 km...

  10. High-power electronics

    CERN Document Server

    Kapitsa, Petr Leonidovich

    1966-01-01

    High-Power Electronics, Volume 2 presents the electronic processes in devices of the magnetron type and electromagnetic oscillations in different systems. This book explores the problems of electronic energetics.Organized into 11 chapters, this volume begins with an overview of the motion of electrons in a flat model of the magnetron, taking into account the in-phase wave and the reverse wave. This text then examines the processes of transmission of electromagnetic waves of various polarization and the wave reflection from grids made of periodically distributed infinite metal conductors. Other

  11. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  12. Power-Capacity and Ramp-Capability Reserves for Wind Integration in Power-Based UC

    NARCIS (Netherlands)

    Morales Espana, G.; Baldick, Ross; García-González, Javier; Ramos, Andres

    2015-01-01

    This paper proposes a power-based network-constrained unit commitment (UC) model as an alternative to the traditional deterministic UCs to deal with wind generation uncertainty. The formulation draws a clear distinction between power-capacity and ramp-capability reserves to deal with wind production

  13. High power coaxial ubitron

    Science.gov (United States)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  14. Line Capacity Expansion and Transmission Switching in Power Systems With Large-Scale Wind Power

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Bronmo, Geir; Philpott, Andy B.

    2013-01-01

    In 2020 electricity production from wind power should constitute nearly 50% of electricity demand in Denmark. In this paper we look at optimal expansion of the transmission network in order to integrate 50% wind power in the system, while minimizing total fixed investment cost and expected cost...... of power generation. We allow for active switching of transmission elements to reduce congestion effects caused by Kirchhoff's voltage law. Results show that actively switching transmission lines may yield a better utilization of transmission networks with large-scale wind power and increase wind power...... penetration. Furthermore, it is shown that transmission switching is likely to affect the optimal line capacity expansion plan....

  15. [Executive functions and high intellectual capacity].

    Science.gov (United States)

    Sastre-Riba, S; Viana-Saenz, L

    2016-01-01

    High intellectual capacity is a process in development in which the executive functions (inhibition, working memory and flexibility) play a role in the optimal manifestation of their potential. To explore the effectiveness of executive functioning among the profiles of high capacity giftedness and (convergent or divergent) talent. The study examines 78 children with high intellectual capacity aged 8-15 years with profiles of giftedness (n = 21), convergent talent (n = 39) or divergent talent (n = 18). A series of tests were administered including the Battery of Differential and General Aptitudes or the Differential Aptitude Test (depending on the age) and the Torrance Test of Creative Thinking, as well as the Wisconsin Card Sorting Test, the Corsi Test and the Go-No Go Test by means of the Psychology Experiment Building Language platform. A multivariate analysis of variance was performed to determine the relationship between executive function and intellectual profile. Significant differences are obtained between the profiles studied and the executive functions of flexibility and inhibition, but not in working memory. Working memory is similar across the profiles studied, but the complex profile of giftedness displays better executive functioning, with greater flexibility and inhibition than talent, especially of the convergent type.

  16. Considerations for transient stability, fault capacity and power flow study of offsite power system

    Energy Technology Data Exchange (ETDEWEB)

    Shin, M. C.; Kim, C. W.; Gwon, M. H.; Park, C. W.; Lee, K. W.; Kim, H. M.; Lee, G. Y.; Joe, P. H. [Sungkyunkwan Univ., Seoul (Korea, Republic of)

    1994-04-15

    By study of power flow calculation, fault capacity calculation and stability analysis according to connection of two units YGN 3 and 4 to KEPCO power system, we have conclusions as follows. As the result of power flow calculation, at peak load, the voltage change of each bus is very small when YGN 3 and 4 is connected with KEPCO power system. At base load, installation of phase modifing equipment is necessary in Seoul, Kyungki province where load is concentrated because bus voltage rises by increasing of charge capacity caused installation of underground cables. As the result of fault capacity calculation, fault capacity is increased because fault current increases when two units YGN 3 and 4 is connected with KEPCO power system. But it is enough to operate with presenting circuits breaker rated capacity. Transient stability studies have been conducted on the YK N/P generators 3 and 4 using a digital computer program. Three phase short faults have been simulated at the YK N/P 345[KV] bus with the resulting outage of transmission circuits. Several fault clearing times are applied: 6 cycles, 12 cycles, 15 cycles. The study results demonstrate that the transient stability of YK N/P is adequate to maintain stable for three phase short faults cleared within 12 cycles. The study results also demonstrate that the transient stability of YK N/P is stable for machine removals except 4-machine removal. In addition, the study shows that the transient stability analysis is implemented for the case of load.

  17. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    Energy Technology Data Exchange (ETDEWEB)

    Diakov, Victor [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sullivan, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  18. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    .uk. Abstract. The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump ...

  19. High Capacity Radio over Fiber Transmission Links

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio

    confirmed that this configuration provides high linear end-to-end transmission links and is capable of transparent transport of high spectral efficient modulation formats. Furthermore, this thesis introduces a novel approach for the generation and detection of high speed wireless signals in mm-wave......This thesis expands the state-of-the-art on the detection of high speed wireless signals using optics. Signal detection at speeds over 1 Gbps at carrier Radio Frequency (RF) ranging from 5 GHz to 100 GHz have been achieved by applying novel concepts on optical digital coherent receivers....... This achievement has satisfied the requirements on transmission robustness and high capacity of next generation hybrid optical fibre-wireless networks. One important contribution of this thesis is the novel concept of photonic downconversion with free-running pulsed laser source for phase modulated Radio...

  20. On the High Altitude Platform (HAP W-CDMA System Capacity

    Directory of Open Access Journals (Sweden)

    L. de Haro-Ariet

    2004-06-01

    Full Text Available The performance of a downlink power control model, based on a n-thpower distance law, is evaluated for high altitude platform station(HAPS W-CDMA systems. The downlink capacity using this model iscompared with the uplink capacity. It is shown that the uplink capacityis higher than the downlink capacity.

  1. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    and maximum output power. In chapter 3, a detailed analysis of dominant loss factors in high power converters for low voltage applications is presented. The analysis concludes that: • Power transformers for low voltage high power, if properly designed, will have extremely low leakage inductance......The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based....... • If optimally designed, boost converters will be much more efficient than comparable buck type converters for high power low voltage applications. • The use of voltage clamp circuits to protect primary switches in boost converters is no longer needed for device protection. On the other hand...

  2. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    . A detailed analysis of dominant loss factors in high power converters for low voltage applications is presented. The analysis concludes that: • Power transformers for low voltage high power, if properly designed, will have extremely low leakage inductance. • If optimally designed, boost converters......The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, if a converter is properly designed, primary side voltage clamp circuits will not even work in low voltage high power converters. • Very high conversion efficiency can be achieved. Peak efficiency of 98% and worst case minimum efficiency of 96.8% are demonstrated on a 1.5 kW converter. The ability...

  3. High-Efficiency Power Module

    Science.gov (United States)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2015-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  4. High Capacity Cathode Materials for Next Generation Energy Storage

    Science.gov (United States)

    Papandrea, Benjamin John

    Energy storage devices are of increasing importance for applications in mobile electronics, hybrid electric vehicles, and can also play a critical role in renewable energy harvesting, conversion and storage. Since its commercial inception in the 1990's, the lithium-ion battery represents the dominant energy storage technology for mobile power supply today. However, the total capacity of lithium-ion batteries is largely limited by the theoretical capacities of the cathode materials such as LiCoO2 (272 mAh g-1), and LiFePO4 (170 mAh g-1), and cannot satisfy the increasing consumer demand, thus new cathode materials with higher capacities must be explored. Two of the most promising cathode materials with significantly larger theoretical capacities are sulfur (1675 mAh g-1) and air, specifically the oxygen (3840 mAh g-1). However, the usage of either of these cathodic materials is plagued with numerous issues that must be overcome before their commercialization. In the first part of my dissertation, we investigated the usage of a three-dimensional graphene membrane for a high energy density lithium-air (Li-Air) battery in ambient condition. One of the issues with Li-Air batteries is the many side reaction that can occur during discharge in ambient condition, especially with water vapor. Using a hydrophobic tortuous three-dimensional graphene membrane we are able to inhibit the diffusion of water vapor and create a lithium-air battery that cycles over 2000 times with a capacity limited at 140 mAh g-1, over 100 cycles with a capacity limited at 1425 mAh g-1, and over 20 cycles at the high capacity of 5700 mAh g-1. In the second part of my dissertation, we investigate the usage of a three-dimensional graphene aerogel to maximize the loading of sulfur to create a freestanding electrode with high capacity for a lithium-sulfur (Li-S) battery. We demonstrated that our three-dimensional graphene aerogel could sustain a loading of 95% by weight, and we achieved a capacity of

  5. High Power Orbit Transfer Vehicle

    National Research Council Canada - National Science Library

    Gulczinski, Frank

    2003-01-01

    ... from Virginia Tech University and Aerophysics, Inc. to examine propulsion requirements for a high-power orbit transfer vehicle using thin-film voltaic solar array technologies under development by the Space Vehicles Directorate (dubbed PowerSail...

  6. Moisture buffering capacity of highly absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Cerolini, S.; D' Orazio, M.; Stazi, A. [Department of Architecture, Construction and Structures (DACS), Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy); Di Perna, C. [Department of Energetics, Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy)

    2009-02-15

    This research investigates the possibility to use highly absorbing materials to dampen indoor RH% variations. The practical MBV of sodium polyacrylate, cellulose-based material, perlite and gypsum is evaluated for a daily cyclic exposure that alternates high (75%) and low (33%) RH% levels for 8 h and 16 h, respectively. The adjustment velocity to RH% variations and the presence of hysteretic phenomena are also presented. The cellulose-based material proves to be the most suitable for moisture buffering applications. Starting from this material's properties, the effect of thickness, vapour resistance factor ({mu}) and mass surface exchange coefficient (Z{sub v}) on sorption capacity is evaluated by the use of a numerical model. (author)

  7. High power evaluation of X-band high power loads

    CERN Document Server

    Matsumoto, Shuji; Syratchev, Igor; Riddone, Germana; Wuensch, Walter

    2010-01-01

    Several types of X-band high power loads developed for several tens of MW range were designed, fabricated and used for high power tests at X-band facility of KEK. Some of them have been used for many years and few units showed possible deterioration of RF performance. Recently revised-design loads were made by CERN and the high power evaluation was performed at KEK. In this paper, the main requirements are recalled, together with the design features. The high power test results are analysed and presented

  8. High specific energy, high capacity nickel-hydrogen cell design

    Science.gov (United States)

    Wheeler, James R.

    1993-01-01

    A 3.5 inch rabbit-ear-terminal nickel-hydrogen cell was designed and tested to deliver high capacity at steady discharge rates up to and including a C rate. Its specific energy yield of 60.6 wh/kg is believed to be the highest yet achieved in a slurry-process nickel-hydrogen cell, and its 10 C capacity of 113.9 AH the highest capacity yet of any type in a 3.5 inch diameter size. The cell also demonstrated a pulse capability of 180 amps for 20 seconds. Specific cell parameters and performance are described. Also covered is an episode of capacity fading due to electrode swelling and its successful recovery by means of additional activation procedures.

  9. high power facto high power factor high power factor hybrid rectifier

    African Journals Online (AJOL)

    eobe

    compact and efficient new devices, it noted increase in the number of electrical loads that some kind of electronic ... in electric machines and capacitors,. HIGH POWER FACTOR. HIGH POWER FACTOR HYBRID ...... Auxiliary DC-DC Converter for Hybrid Vehicles ”,. IEEE Transactions on Power Electronics vol. 23, no. 6, pp.

  10. Capacity of river networks to buffer thermal impacts of power plants in the northeastern US

    Science.gov (United States)

    Stewart, R. J.; Wollheim, W. M.; Miara, A.; Rosenzweig, B.; Vorosmarty, C. J.

    2012-12-01

    Water temperature is a fundamental variable that influences an array of ecosystem processes including nutrient uptake, leaf breakdown, biological production, and habitat. Water temperatures can be altered by warm effluent flows from thermoelectric power plants but these impacts are often mitigated over distances downstream due to temperature re-equilibration with atmospheric conditions. We assessed the mitigation capacity of rivers in the northeastern U.S, a region with a high density of power plants, using a water temperature model developed within the Framework for Aquatic Modeling in the Earth System (FrAMES) coupled with the Thermoelectric Power Plant Model (TPPM). The spatially distributed river network model predicts average daily water temperatures at a 3-minute river grid resolution, accounting for the mixing of terrestrial runoff, power plant withdrawals, heat loading, and re-equilibration of temperatures in rivers based on solar radiation, air temperature, and hydraulic dimensions. Average predicted water temperatures match daily observations well with an average Index of Agreement (d) of 0.81 for 68 stations (2000 - 2010). Model results suggest power plants increase the total length of rivers exceeding a threshold temperature of 20 degrees Celsius by less than 1% when the re-equilibration in rivers is considered. Without the natural capacity of river temperature re-equilibration with atmospheric conditions power plants increase the total annual length of warm habitats by 15%. This highlights the buffering capacity of river networks to mitigate anthropogenic impacts to the system, representing an important ecosystem service performed by rivers in the northeast.

  11. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium.

  12. Effects of Scandinavian hydro power on storage needs in a fully renewable European power system for various transmission capacity scenarios

    Science.gov (United States)

    Kies, Alexander; Nag, Kabitri; von Bremen, Lueder; Lorenz, Elke; Heinemann, Detlev

    2015-04-01

    The penetration of renewable energies in the European power system has increased in the last decades (23.5% share of renewables in the gross electricity consumption of the EU-28 in 2012) and is expected to increase further up to very high shares close to 100%. Planning and organizing this European energy transition towards sustainable power sources will be one of the major challenges of the 21st century. It is very likely that in a fully renewable European power system wind and photovoltaics (pv) will contribute the largest shares to the generation mix followed by hydro power. However, feed-in from wind and pv is due to the weather dependant nature of their resources fluctuating and non-controllable. To match generation and consumption several solutions and their combinations were proposed like very high backup-capacities of conventional power generation (e.g. fossile or nuclear), storages or the extension of the transmission grid. Apart from those options hydro power can be used to counterbalance fluctuating wind and pv generation to some extent. In this work we investigate the effects of hydro power from Norway and Sweden on residual storage needs in Europe depending on the overlaying grid scenario. High temporally and spatially resolved weather data with a spatial resolution of 7 x 7 km and a temporal resolution of 1 hour was used to model the feed-in from wind and pv for 34 investigated European countries for the years 2003-2012. Inflow into hydro storages and generation by run-of-river power plants were computed from ERA-Interim reanalysis runoff data at a spatial resolution of 0.75° x 0.75° and a daily temporal resolution. Power flows in a simplified transmission grid connecting the 34 European countries were modelled minimizing dissipation using a DC-flow approximation. Previous work has shown that hydro power, namely in Norway and Sweden, can reduce storage needs in a renewable European power system by a large extent. A 15% share of hydro power in Europe

  13. Building the UPPA high capacity tensiometer

    Directory of Open Access Journals (Sweden)

    Mendes Joao

    2016-01-01

    Full Text Available High capacity tensiometers (HCTs are sensors capable of directly measuring tensile pore water pressure (suction in soils. HCTs are typically composed of a casing that encapsulates a high air entry value ceramic filter, a water reservoir and a pressure sensing element. Since the creation of the first HCT by Ridley and Burland in 1993 at Imperial College London, HCTs have been almost exclusively built and used in academic research. The limited use in industrial applications can be explained by a lack of unsaturated soil mechanics knowledge among engineering practitioners but also by the technical difficulties associated to the direct measurement of tensile water pressures beyond the cavitation limit of -100kPa. In this paper, we present the recent design and manufacture of a new HCT at the Université de Pau et des Pays de l’Adour (UPPA in France. Different prototypes were tried by changing the main components of the device including the type of ceramic filter, pressure transducer and geometry of the external casing. In particular, two ceramic filters of distinct porosity, three pressure transducers with distinct materials/geometries and four casing designs were tested.

  14. Wind power has a capacity credit. A catalogue of 50+ supporting studies

    DEFF Research Database (Denmark)

    Giebel, Gregor

    2005-01-01

    The capacity credit of wind power in a grid has received quite some attention in the past. In the early days of wind power, the capacity credit, or rather the perceived lack thereof, was a grave concern for the large-scale development of wind power on a nation-wide basis. Therefore, a number...... of studies was made since the 1970ies, arriving at the conclusion that a) wind power has a capacity credit, and b) the capacity credit is around the mean wind power output for small penetrations of wind power in the grid, and drops to a value near the minimum wind power generation for larger penetrations....... This paper describes some different approaches to the capacity credit of wind energy, and provides links to a large number of studies, predominantly for European countries and from the earlier years of the development. Nowadays, the capacity credit is often just a sub-topic for the larger studies on how...

  15. High-powered manoeuvres

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    This week, CERN received the latest new transformers for the SPS. Stored in pairs in 24-tonne steel containers, these transformers will replace the old models, which have been in place since 1981.     The transformers arrive at SPS's access point 4 (BA 4). During LS1, the TE-EPC Group will be replacing all of the transformers for the main converters of the SPS. This renewal campaign is being carried out as part of the accelerator consolidation programme, which began at the start of April and will come to an end in November. It involves 80 transformers: 64 with a power of 2.6 megavolt-amperes (MVA) for the dipole magnets, and 16 with 1.9 MVA for the quadrupoles. These new transformers were manufactured by an Italian company and are being installed outside the six access points of the SPS by the EN-HE Group, using CERN's 220-tonne crane. They will contribute to the upgrade of the SPS, which should thus continue to operate as the injector for the LHC until 2040....

  16. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    Science.gov (United States)

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  17. Preliminary Findings of the South Africa Power System Capacity Expansion and Operational Modelling Study

    Energy Technology Data Exchange (ETDEWEB)

    Reber, Timothy J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chartan, Erol Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brinkman, Gregory L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-01

    Wind and solar power contract prices have recently become cheaper than many conventional new-build alternatives in South Africa and trends suggest a continued increase in the share of variable renewable energy (vRE) on South Africa's power system with coal technology seeing the greatest reduction in capacity, see 'Figure 6: Percentage share by Installed Capacity (MW)' in [1]. Hence it is essential to perform a state-of-the-art grid integration study examining the effects of these high penetrations of vRE on South Africa's power system. Under the 21st Century Power Partnership (21CPP), funded by the U.S. Department of Energy, the National Renewable Energy Laboratory (NREL) has significantly augmented existing models of the South African power system to investigate future vRE scenarios. NREL, in collaboration with Eskom's Planning Department, further developed, tested and ran a combined capacity expansion and operational model of the South African power system including spatially disaggregated detail and geographical representation of system resources. New software to visualize and interpret modelling outputs has been developed, and scenario analysis of stepwise vRE build targets reveals new insight into associated planning and operational impacts and costs. The model, built using PLEXOS, is split into two components, firstly a capacity expansion model and secondly a unit commitment and economic dispatch model. The capacity expansion model optimizes new generation decisions to achieve the lowest cost, with a full understanding of capital cost and an approximated understanding of operational costs. The operational model has a greater set of detailed operational constraints and is run at daily resolutions. Both are run from 2017 through 2050. This investigation suggests that running both models in tandem may be the most effective means to plan the least cost South African power system as build plans seen to be more expensive than optimal by the

  18. High-power downhole motor

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.H.; Maurer, W.C.; Evans, C.R. [Maurer Engineering Inc., Houston, TX (United States); Westcott, P.A. [Gas Research Inst., Chicago, IL (United States)

    1995-12-31

    New high power motors are being developed by the Gas Research Institute (GRI) in an attempt to reduce drilling costs in deep gas wells. Conventional 2 3/8-in. (60-mm) and 3 3/8-in. (86-mm) motors operated in overpowered conditions (i.e., high flow rates and high differential pressures) drill 2 to 3 times faster than conventional motors. A new high-power 3 3/8-in. (86-mm) motor is being developed that utilizes additional stages and tighter interference between the rotor and stator to increase motor pressure drop, torque, and power output. This new high-power motor delivers up to 238 hp (177 kW) compared to 50 hp (37 kW) for a conventional 3 3/8-in. (86-mm) motor operating at rated operating conditions. Temperature probes showed that temperatures in different stages of motors vary considerably, showing that some sections do more work than others. A better understanding of temperatures within the stators is needed because thermal degradation and ``chunking`` of the rubber is a leading cause of failures in motors operating at high power levels. These tests were very encouraging, demonstrating the feasibility of developing reliable, high-power motors.

  19. EURISOL High Power Targets

    CERN Document Server

    Kadi, Y; Lindroos, M; Ridikas, D; Stora, T; Tecchio, L; CERN. Geneva. BE Department

    2009-01-01

    Modern Nuclear Physics requires access to higher yields of rare isotopes, that relies on further development of the In-flight and Isotope Separation On-Line (ISOL) production methods. The limits of the In-Flight method will be applied via the next generation facilities FAIR in Germany, RIKEN in Japan and RIBF in the USA. The ISOL method will be explored at facilities including ISAC-TRIUMF in Canada, SPIRAL-2 in France, SPES in Italy, ISOLDE at CERN and eventually at the very ambitious multi-MW EURISOL facility. ISOL and in-flight facilities are complementary entities. While in-flight facilities excel in the production of very short lived radioisotopes independently of their chemical nature, ISOL facilities provide high Radioisotope Beam (RIB) intensities and excellent beam quality for 70 elements. Both production schemes are opening vast and rich fields of nuclear physics research. In this article we will introduce the targets planned for the EURISOL facility and highlight some of the technical and safety cha...

  20. High Power Betavoltaic Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation will dramatically improve the performance of tritium-powered betavoltaic batteries through the development of a high-aspect ratio, expanded...

  1. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  2. Theorising power as a capacity for action and social participation

    DEFF Research Database (Denmark)

    Busch-Jensen, Peter

    2015-01-01

    Power is often associated with struggles for power, and therefore with fair competition at best, domination at worst. However, since the ways we think and talk about a subject influence the ways we act in relation to it, it is important to recognize how this conceptualization of power blurs...... vocabulary for thinking about power. The vocabulary is not meant to replace, but rather situate the adversarial conception of power within a broader framework, encompassing both ‘power over’ and ‘power with’ relations. The framework draws on different inspirations but mainly on German–Danish critical...

  3. High capacity demonstration of honeycomb panel heat pipes

    Science.gov (United States)

    Tanzer, H. J.

    1989-01-01

    The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.

  4. High Power Amplifier and Power Supply

    Science.gov (United States)

    Duong, Johnny; Stride, Scot; Harvey, Wayne; Haque, Inam; Packard, Newton; Ng, Quintin; Ispirian, Julie Y.; Waian, Christopher; Janes, Drew

    2008-01-01

    A document discusses the creation of a high-voltage power supply (HVPS) that is able to contain voltages up to -20 kV, keep electrical field strengths to below 200 V/mil (approximately equal to 7.87 kV/mm), and can provide a 200-nanosecond rise/fall time focus modulator swinging between cathode potential of 16.3 kV and -19.3 kV. This HVPS can protect the 95-GHz, pulsed extended interaction klystron (EIK) from arcs/discharges from all sources, including those from within the EIK fs vacuum envelope. This innovation has a multi-winding pulse transformer design, which uses new winding techniques to provide the same delays and rise/fall times (less than 10 nanoseconds) at different potential levels ranging from -20 kV to -16 kV. Another feature involves a high-voltage printed-wiring board that was corona-free at -20 kV DC with a 3- kV AC swing. The corona-free multilayer high-voltage board is used to simulate fields of less than 200 V/mil (approximately equal to 7.87 kV/mm) at 20 kV DC. Drive techniques for the modulator FETs (field-effect transistors) (four to 10 in a series) were created to change states (3,000-V swing) without abrupt steps, while still maintaining required delays and transition times. The packing scheme includes a potting mold to house a ten-stage modulator in the space that, in the past, only housed a four-stage modulator. Problems keeping heat down were solved using aluminum oxide substrate in the high-voltage section to limit temperature rise to less than 10 while withstanding -20 kV DC voltage and remaining corona-free.

  5. Battery designs with high capacity anode materials and cathode materials

    Science.gov (United States)

    Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.

    2017-10-03

    Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.

  6. High Energy High Power Battery Exceeding PHEV40 Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC, Lexington, MA (United States)

    2016-03-31

    TIAX has developed long-life lithium-ion cells that can meet and exceed the energy and power targets (200Wh/kg and 800W/kg pulse power) set out by DOE for PHEV40 batteries. To achieve these targets, we selected and scaled-up a high capacity version of our proprietary high energy and high power CAM-7® cathode material. We paired the cathode with a blended anode containing Si-based anode material capable of delivering high capacity and long life. Furthermore, we optimized the anode blend composition, cathode and anode electrode design, and selected binder and electrolyte compositions to achieve not only the best performance, but also long life. By implementing CAM-7 with a Si-based blended anode, we built and tested prototype 18650 cells that delivered measured specific energy of 198Wh/kg total energy and 845W/kg at 10% SOC (projected to 220Wh/kg in state-of-the-art 18650 cell hardware and 250Wh/kg in 15Ah pouch cells). These program demonstration cells achieved 90% capacity retention after 500 cycles in on-going cycle life testing. Moreover, we also tested the baseline CAM-7/graphite system in 18650 cells showing that 70% capacity retention can be achieved after ~4000 cycles (20 months of on-going testing). Ultimately, by simultaneously meeting the PHEV40 power and energy targets and providing long life, we have developed a Li-ion battery system that is smaller, lighter, and less expensive than current state-of-the-art Li-ion batteries.

  7. Standing seats for high-capacity trains

    Directory of Open Access Journals (Sweden)

    Conor O’NEILL

    2014-10-01

    Full Text Available This paper details the design and potential implementation of standing seats in a commuter rail vehicle for the purposes of maximising capacity and revenue. The vehicle interior design is suited to the “Commuter Class” – a subset of travellers who travel primarily within the commuter belt and frequently utilise rail networks on a daily basis but require little additional space for luggage or peripherals. The concept delivers capacity increases in excess of 50% whilst still offering passengers a greater degree of personal space when compared with standing in aisles or gangways. The impact on vehicle stability and supporting intelligent systems are also discussed, delivering a unique design tailored specifically to meet the needs of the commuter class passenger.

  8. Photovoltaic Hosting Capacity of Feeders with Reactive Power Control and Tap Changers

    Energy Technology Data Exchange (ETDEWEB)

    Ceylan, Oğuzhan; Paudyal, Sumit; Bhattarai, Bishnu P.; Myers, Kurt S.

    2017-06-01

    This paper proposes an algorithm to determine photovoltaic (PV) hosting capacity of power distribution networks as a function of number of PV injection nodes, reactive power support from the PVs, and the sub-station load tap changers (LTCs). In the proposed method, several minute by minute simulations are run based on randomly chosen PV injection nodes, daily PV output profiles, and daily load profiles from a pool of high-resolution realistic data set. The simulation setup is built using OpenDSS and MATLAB. The performance of the proposed method is investigated in the IEEE 123-node distribution feeder for multiple scenarios. The case studies are performed particularly for one, two, five and ten PV injection nodes, and looking at the maximum voltage deviations. Case studies show that the PV hosting capacity of the 123-node feeder greatly differs with the number of PV injection nodes. We have also observed that the PV hosting capacity increases with reactive power support and higher tap position of sub-station LTC.

  9. Theorising power as a capacity for action and social participation

    DEFF Research Database (Denmark)

    Busch-Jensen, Peter

    2015-01-01

    Power is often associated with struggles for power, and therefore with fair competition at best, domination at worst. However, since the ways we think and talk about a subject influence the ways we act in relation to it, it is important to recognize how this conceptualization of power blurs an im...

  10. Oligopoly Power Producer’s Capacity Investment Model with Contracts for Differences

    Directory of Open Access Journals (Sweden)

    Xinhua Zhang

    2013-01-01

    Full Text Available This paper presents a three-level oligopoly power producer’s capacity investment game model, whose first level considers optimal regulation policy, and second-level models producer’s capacity investment strategy based on the analysis of power producer’s equilibrium biding strategy with capacity and price cap constraints at third level. We solve the model with backward induction and simulate the symmetric case. Precisely, we examine the effect of the number of oligopoly power producers, price cap, and contracts for differences (CFDs on the unit load and power sale price and explore the optimal investment policy based on the maximization of discounted social welfare. For the proportion of power in CFDs being very big and power supply being relatively nervous in Chinese power market, we discuss the effect of power capacity investment subsidies and CFDs power price on power supply and demand, whose results indicate that reducing the proportion of CFDs’ power in the power producer’s access grid power is an effective way to alleviate the tension in power supply and demand, and the current renewable energy policy can neither necessarily ease the tension condition of power supply nor can it necessarily promote the construction of renewable power generation units.

  11. Developing Leadership Capacity in Others: An Examination of High School Principals' Personal Capacities for Fostering Leadership

    Science.gov (United States)

    Huggins, Kristin Shawn; Klar, Hans W.; Hammonds, Hattie L.; Buskey, Frederick C.

    2017-01-01

    In this multisite case study, we examine the personal capacities of six high school principals who have developed the leadership capacities of other leaders in their respective schools. Participants were purposefully selected by two teams of researchers in two states of the United States, one on the east coast and one on the west coast, who…

  12. On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Caralis, George [InFlow, Wind Energy Consultants (Greece); Perivolaris, Yiannis [InFlow, Wind Energy Consultants (Greece); Rados, Konstantinos [Department of Pollution Control Technologies, Technological Educational Institute of West Macedonia (Greece); Zervos, Arthouros [School of Mechanical Engineering, National Technical University of Athens (Greece)

    2008-01-15

    Wind energy is now a mature technology and can be considered as a significant contributor in reducing CO{sub 2} emissions and protecting the environment. To meet the wind energy national targets, effective implementation of massive wind power installed capacity in the power supply system is required. Additionally, capacity credit is an important issue for an unstable power supply system as in Greece. To achieve high and reliable wind energy penetration levels into the system, the effect of spatial dispersion of wind energy installations within a very wide area (e.g. national level) on the power capacity credit should be accounted for. In the present paper, a methodology for estimating the effect of spatial dispersion of wind farm installations on the capacity credit is presented and applied for the power supply system of Greece. The method is based on probability theory and makes use of wind forecasting models to represent the wind energy potential over any candidate area for future wind farm installations in the country. Representative wind power development scenarios are studied and evaluated. Results show that the spatial dispersion of wind power plants contributes beneficially to the wind capacity credit.

  13. High power switching and other high power devices

    Science.gov (United States)

    Gundersen, Martin

    1992-09-01

    High power thyratrons and devices such as high power microwave sources have cathode-related performance limits. Research is described of a simple, robust 'super-emissive' cathode that produces greater than 10,000 A/sq cm from a macroscopic area (approx. 1 sq cm), and operates with a low pressure (approx. 0.1 torr), spatially uniform glow plasma (density greater than 1015 cu cm). The cathode also can operate as a hollow cathode, and is at the heart of the operation of the pseudospark and back-lighted thyratron. The physics of this hollow and super-emissive cathode is very rich. The hollow cathode geometry traps electrons in the hollow cathode backspace. The lifetime of these electrons enables them to ionize a spatially homogeneous high density glow, and this hollow cathode mode of operation is responsible for certain types of electron and ion beam behavior. A plasma cathode sheath that is formed during this phase leads to super-emissive behavior, which is responsible for high current emission. Super-emissive cathode thyratron-type switches (with higher peak current, voltage, di/dt) being developed for pulsed power switching of lasers, accelerators, high current and high coulomb transfer, Marx bank operation, transfer of technology to commercial applications, high current electron beams, and millimeter wave generation (1 to 100 GHz) are described.

  14. Simulation of High Power Amplifier Calculation in VSAT System

    Directory of Open Access Journals (Sweden)

    Indri Neforawati

    2009-08-01

    Full Text Available Arithmatical simulation of High Power Amplifier (HPA on VSAT system is a program which used to calculate the capacity of HPA as a working test of maximum power on each remote station of the VSAT network system, afterward can be obtained the available capacity value and power capacity used, therefore able to reallocate residual power below its available power spare. VSAT system can be used for several telecommunication application such as video broadcast, data broadcast,audio broadcast, banking operation, ATM and others. Due to the easy operational, maintanance and its instalment, VSAT system is more prifitable compare to ordinary terestrial band, its capability for multiservice application become more flexible in using its network. The software used is Visual Basic 6.0 version and database Microsoft Access. These software take a role as visualization and planning for remote station development and also power capasity needed for each remote in the calculation of HPA.

  15. Purex Plant flowsheet for high capacity study

    Energy Technology Data Exchange (ETDEWEB)

    Geier, R.G.; Duckworth, J.P.

    1960-03-28

    This report contains a flowsheet which was prepared to serve as a guide for an engineering study to be made to determine the costs and revisions required to increase the capacity of the Purex Plant to a 4.0 capacity factor. The needs for such a study are outlined in documents HW-62952 (Ref. 1) and HW-63927 (Ref. 2), which include increased 100 Area production forecasts and maximizing Palm recovery by continuous recovery equipment as primary factors. The flowsheet, shown graphically on the flowsketch and specifically in tabular form under Table 1, is a ``best estimate`` of process conditions and modifications which will be in operation by the third quarter of FY 1962. The modifications included are: Formaldehyde Treatment of Concentrated Wastes -- IWW (Ref. 5 and 6); A Continuous Palm Recovery Cycle; A Palm Ion Exchange Purification and Loadout Facility (Ref. 3); Alkaline-Permanganate Washing of the No. 2 Organic System Solvent; and Rough-cut Fission Product Recovery and Shipping (Ref. 4). Since the fission product recovery and shipping operations do not effect the equilibrium conditions of the plant, they are not included in the flowsheet.

  16. Model predictive control for power flows in networks with limited capacity

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2012-01-01

    We consider an interconnected network of consumers powered through an electrical grid of limited capacity. A subset of the consumers are intelligent consumers and have the ability to store energy in a controllable fashion; they can be filled and emptied as desired under power and capacity...... limitations. We address the problem of maintaining power balance between production and consumption using the intelligent consumers to ensure smooth power consumption from the grid. Further, certain capacity limitations to the links interconnecting the consumers must be honored. In this paper, we show how...

  17. A power management circuit with 50% efficiency and large load capacity for triboelectric nanogenerator

    Science.gov (United States)

    Bao, Dechun; Luo, Lichuan; Zhang, Zhaohua; Ren, Tianling

    2017-09-01

    Recently, triboelectric nanogenerators (TENGs), as a collection technology with characteristics of high reliability, high energy density and low cost, has attracted more and more attention. However, the energy coming from TENGs needs to be stored in a storage unit effectively due to its unstable ac output. The traditional energy storage circuit has an extremely low energy storage efficiency for TENGs because of their high internal impedance. This paper presents a new power management circuit used to optimize the energy using efficiency of TENGs, and realize large load capacity. The power management circuit mainly includes rectification storage circuit and DC-DC management circuit. A rotating TENG with maximal energy output of 106 mW at 170 rpm based on PCB is used for the experimental verification. Experimental results show that the power energy transforming to the storage capacitor reach up to 53 mW and the energy using efficiency is calculated as 50%. When different loading resistances range from 0.82 to 34.5 k {{Ω }} are connected to the storage capacitor in parallel, the power energy stored in the storage capacitor is all about 52.5 mW. Getting through the circuit, the power energy coming from the TENGs can be used to drive numerous conventional electronics, such as wearable watches.

  18. Plug and Process Loads Capacity and Power Requirements Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheppy, M.; Gentile-Polese, L.

    2014-09-01

    This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus of this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.

  19. High power neutron production targets

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S. [Los Alamos National Lab., NM (United States)

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  20. High Power Electron Accelerator Prototype

    CERN Document Server

    Tkachenko, Vadim; Cheskidov, Vladimir; Korobeynikov, G I; Kuznetsov, Gennady I; Lukin, A N; Makarov, Ivan; Ostreiko, Gennady; Panfilov, Alexander; Sidorov, Alexey; Tarnetsky, Vladimir V; Tiunov, Michael A

    2005-01-01

    In recent time the new powerful industrial electron accelerators appear on market. It caused the increased interest to radiation technologies using high energy X-rays due to their high penetration ability. However, because of low efficiency of X-ray conversion for electrons with energy below 5 MeV, the intensity of X-rays required for some industrial applications can be achieved only when the beam power exceeds 300 kW. The report describes a project of industrial electron accelerator ILU-12 for electron energy up to 5 MeV and beam power up to 300 kW specially designed for use in industrial applications. On the first stage of work we plan to use the existing generator designed for ILU-8 accelerator. It is realized on the GI-50A triode and provides the pulse power up to 1.5-2 MW and up to 20-30 kW of average power. In the report the basic concepts and a condition of the project for today are reflected.

  1. Capacity and coverage of power controlled CDMA cellular systems ...

    African Journals Online (AJOL)

    Coverage and capacity are among the ambitious challenges to be met by the third generation (3G) systems for successful deployment of its services to both residential and commercial subscribers. This paper reports on the performance study of CDMA systems in relation to an optimum step-regulated SNR-based ...

  2. High-SNR Capacity of AWGN Channels with Generic Alphabet Constraints

    Science.gov (United States)

    2017-01-01

    work with differential entropy in a coordinate-independent manner, as manifolds generally cannot be parameterized entirely by any single coordinate...asymptotic capacity in the high-SNR limit is computed for such AWGN channels with manifold constraints in two variants: a compact alphabet manifold ...and a non-compact scale-invariant alphabet manifold with an additional average power constraint on the input distribution. The high-SNR capacity

  3. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  4. Separation of Power and Capacity In latent Heat Energy Storage

    OpenAIRE

    Pointner, H.; Steinmann, W.D.; van Eck, M.; Bachelier, C.

    2015-01-01

    The state-of-the-art latent heat energy storage system is equipped with aluminum fins at the heat exchanger pipes in order to compensate the low thermal conductivity of the phase change material (PCM). The necessary amount of fins is directly coupled to the capacity of the storage system, what makes larger systems expensive. The PCMflux concept is developed in order to realize both a controllable and a possibly more cost effectivelatent heat storage system. These aims are addressed by separat...

  5. National-Strategic Investment in European Power Transmission Capacity

    OpenAIRE

    Daniel Huppmann; Jonas Egerer

    2014-01-01

    The transformation of the European energy system requires substantial investment in transmission capacity to facilitate cross-border trade and to efficiently integrate renewable energy sources. However, network planning in the EU is still mainly a national prerogative. In contrast to other studies aiming to identify the pan-European (continental) welfare-optimal transmission expansion, we investigate the impact of national regulators deciding on network investment strategically, with the aim ...

  6. Capacity Bounds and High-SNR Capacity of MIMO Intensity-Modulation Optical Channels

    KAUST Repository

    Chaaban, Anas

    2017-06-01

    The capacity of the intensity modulation direct detection multiple-input multiple-output channel is studied. Therein, the nonnegativity constraint of the transmit signal limits the applicability of classical schemes, including precoding. Thus, new ways are required for deriving capacity lower and upper bounds for this channel. To this end, capacity lower bounds are developed by deriving the achievable rates of two precoding-free schemes: Channel inversion and QR decomposition. The achievable rate of a DC-offset SVD-based scheme is also derived as a benchmark. Then, capacity upper bounds are derived and compared against the lower bounds. As a result, the capacity at high signal-to-noise ratio (SNR) is characterized for the case where the number of transmit apertures is not larger than the number of receive apertures, and is shown to be achievable by the QR decomposition scheme. This is shown for a channel with average intensity or peak intensity constraints. For a channel with both constraints, the high-SNR capacity is approximated within a small gap. Extensions to a channel with more transmit apertures than receive apertures are discussed, and capacity bounds for this case are derived.

  7. A Strategy of Minimising Wind Power Curtailment by Considering Operation Capacity Credit

    DEFF Research Database (Denmark)

    Liu, Zhou; Su, Chi; Fang, Jiakun

    2015-01-01

    An optimal wind power curtailment strategy considering operation capacity credit is proposed in this paper to minimize the uncertain wind power curtailment and minimize the system operation cost. The relevant definitions in capacity credit assessment are applied in the power system operation...... situation. Based on operation capacity credit prediction, the optimal operation control strategy is defined and implemented for hourly system operation and control. Multi-agent system based control structure is adopted to coordinate the diverse system components to work together and realize the system wide...

  8. Fibrous zinc anodes for high power batteries

    Science.gov (United States)

    Zhang, X. Gregory

    This paper introduces newly developed solid zinc anodes using fibrous material for high power applications in alkaline and large size zinc-air battery systems. The improved performance of the anodes in these two battery systems is demonstrated. The possibilities for control of electrode porosity and for anode/battery design using fibrous materials are discussed in light of experimental data. Because of its mechanical integrity and connectivity, the fibrous solid anode has good electrical conductivity, mechanical stability, and design flexibility for controlling mass distribution, porosity and effective surface area. Experimental data indicated that alkaline cells made of such anodes can have a larger capacity at high discharging currents than commercially available cells. It showed even greater improvement over commercial cells with a non-conventional cell design. Large capacity anodes for a zinc-air battery have also been made and have shown excellent material utilization at various discharge rates. The zinc-air battery was used to power an electric bicycle and demonstrated good results.

  9. Exploring the Characteristics of Principals in High Leadership Capacity Schools

    Science.gov (United States)

    Bergstrom, Leslie C.

    2011-01-01

    This qualitative study examines the characteristics of principals in high leadership capacity schools. Lambert (1998) defines leadership capacity as broad-based, skillful participation in the work of leadership. Data were collected from a total of nine study participants, one Assistant Superintendent, two principals, and six certified professional…

  10. High power gas laser amplifier

    Science.gov (United States)

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  11. Gender Power Imbalance on Women's Capacity to Negotiate Self ...

    African Journals Online (AJOL)

    FOMCS2

    African Health Sciences Vol 5 No 3 September 2005. 188 ... Objectives: To examine the influence of gender power imbalance and other ... of South Africa and Botswana, the study used descriptive statistics and logistic regression to reveal a number of gender related ...... states, politicians, sports figures, and other celebrities,.

  12. Computational power and generative capacity of genetic systems.

    Science.gov (United States)

    Igamberdiev, Abir U; Shklovskiy-Kordi, Nikita E

    2016-01-01

    Semiotic characteristics of genetic sequences are based on the general principles of linguistics formulated by Ferdinand de Saussure, such as the arbitrariness of sign and the linear nature of the signifier. Besides these semiotic features that are attributable to the basic structure of the genetic code, the principle of generativity of genetic language is important for understanding biological transformations. The problem of generativity in genetic systems arises to a possibility of different interpretations of genetic texts, and corresponds to what Alexander von Humboldt called "the infinite use of finite means". These interpretations appear in the individual development as the spatiotemporal sequences of realizations of different textual meanings, as well as the emergence of hyper-textual statements about the text itself, which underlies the process of biological evolution. These interpretations are accomplished at the level of the readout of genetic texts by the structures defined by Efim Liberman as "the molecular computer of cell", which includes DNA, RNA and the corresponding enzymes operating with molecular addresses. The molecular computer performs physically manifested mathematical operations and possesses both reading and writing capacities. Generativity paradoxically resides in the biological computational system as a possibility to incorporate meta-statements about the system, and thus establishes the internal capacity for its evolution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Excess Capacity in China’s Power Systems: A Regional Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Dept.. China Energy Group; Liu, Xu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Dept.. China Energy Group; Karl, Fredrich [Energy and Environmental Economics, Inc. (E3), San Francisco, CA (United States)

    2016-11-01

    This paper examines China’s regional electricity grids using a reliability perspective, which is commonly measured in terms of a reserve margin. Our analysis shows that at the end of 2014, the average reserve margin for China as a whole was roughly 28%, almost twice as high as a typical planning reserve margin in the U.S. However, this national average masks huge variations in reserve margins across major regional power grid areas: the northeastern region has the highest reserve margin of over 60%, followed by the northwestern region at 49%, and the southern grid area at 35%. In this analysis, we also examined future reserve margins for regional electricity grids in China under two scenarios: 1) a low scenario of national annual electricity consumption growth rates of 1.5% between 2015 and 2020 and 1.0% between 2020 and 2025, and 2) a high scenario of annual average growth rates of 3.0% and 2.0%, respectively. Both scenarios suggest that the northeastern, northwestern, and southern regions have significant excess generation capacity, and that this excess capacity situation will continue over the next decade without regulatory intervention. The northern and central regions could have sufficient generation capacity to 2020, but may require additional resources in a higher growth scenario. The eastern region requires new resources by 2020 in both scenarios.

  14. Analysis of Power Network for Line Reactance Variation to Improve Total Transmission Capacity

    NARCIS (Netherlands)

    Ullah, Ikram; Gawlik, Wolfgang; Palensky, P.

    2016-01-01

    The increasing growth in power demand and the penetration of renewable distributed generations in competitive electricity market demands large and flexible capacity from the transmission grid to reduce transmission bottlenecks. The bottlenecks cause transmission congestion, reliability problems,

  15. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    Directory of Open Access Journals (Sweden)

    Radziukynas V.

    2016-04-01

    Full Text Available The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011 and planned wind power capacities (the year 2023.

  16. Mismatch of wind power capacity and generation: causing factors, GHG emissions and potential policy responses

    NARCIS (Netherlands)

    Subtil Lacerda, J.; van den Bergh, J.C.J.M.

    2016-01-01

    Policies to assure combatting climate change and realising energy security have stimulated a rapid growth in global installed capacity of renewable energy generation. The expansion of power generation from renewables, though, has so far lagged behind the growth in generation capacity. This indicates

  17. Radiation Tolerant, High Capacity Non-Volatile Memory Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for reliable, high capacity, radiation tolerant nonvolatile memory exists in many Human space flight applications. Most projects rely on COTS hardware for a...

  18. High capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  19. High visual working memory capacity in trait social anxiety.

    Directory of Open Access Journals (Sweden)

    Jun Moriya

    Full Text Available Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions.

  20. High Visual Working Memory Capacity in Trait Social Anxiety

    Science.gov (United States)

    Moriya, Jun; Sugiura, Yoshinori

    2012-01-01

    Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions. PMID:22496783

  1. Delay-limited capacity of fading multiple access and broadcast channels in the low power regime

    KAUST Repository

    Rezki, Zouheir

    2015-09-11

    We study delay-limited (also called zero-outage) capacity region of the fading multi-access channel (MAC) with Gaussian noise and perfect channel state information (CSI) at the receiver and at the transmitters (CSI-TR), in the low-power regime. We show that for fading channels where the MAC capacity region is strictly positive, it has a multidimensional rectangle structure and thus is simply characterized by single user capacity points. More specifically, we show that at low power, the boundary surface of the capacity region shrinks to a single point corresponding to the sum-rate maximizer and that the coordinates of this point coincide with single user capacity bounds. Using the duality of the Gaussian MAC and broadcast channels (BC), we show that time-sharing (or time division multiple access (TDMA)) is asymptotically optimal. © 2015 IEEE.

  2. Analysis of Enhancement in Available Power Transfer Capacity by STATCOM Integrated SMES by Numerical Simulation Studies

    DEFF Research Database (Denmark)

    Saraswathi, Ananthavel; Sanjeevikumar, Padmanaban; Shanmugham, Sutha

    2016-01-01

    Power system researches are mainly focused in enhancing the available power capacities of the existing transmission lines. But still, no prominent solutions have been made due to several factors that affect the transmission lines which include the length, aging of the cables and losses...

  3. Regulatory Design of Capacity Remuneration Mechanisms in Regional and Low-Carbon Electric Power Markets

    NARCIS (Netherlands)

    Mastropietro, P.

    2016-01-01

    Capacity remuneration mechanisms (CRMs) are “climbing” regulatory agendas in all liberalised power sectors, especially in the European Union. CRMs are introduced to improve system reliability and to minimise power shortages to an economically efficient extent. These schemes will have a central role

  4. A high-capacity aeronautical mobile satellite system

    Science.gov (United States)

    Sue, M. K.

    1987-01-01

    This paper describes a conceptual system design for a satellite-based aeronautical safety communications system capable of serving both general aviation aircraft and commercial aviation aircraft in the contiguous U.S. in the mid-1990s. The space segment is described, including satellite locations and coverage, spacecraft configuration, eclipse capability and stationkeeping, transponder design, and mass and power. The spacecraft mass and power budgets are given. The air mobile terminals, ground segment, and frequency plan and channelization are discussed, and the data rate, modulation/demodulation/coding, and channel spacing are considered. The message format, frequency control, system capacity, and system sensitivity are discussed.

  5. Expectancy of ergogenicity from sodium bicarbonate ingestion increases high-intensity cycling capacity

    National Research Council Canada - National Science Library

    Higgins, Matthew F; Shabir, Akbar

    2016-01-01

    ... ) influenced subsequent high-intensity cycling capacity. Eight recreationally active males (age, 21 ± 1 years; body mass, 75 ± 8 kg; height, 178 ± 4 cm; W PEAK = 205 ± 22 W) performed a graded incremental test to assess peak power output...

  6. Analysis of Enhancement in Available Power Transfer Capacity by STATCOM Integrated SMES by Numerical Simulation Studies

    DEFF Research Database (Denmark)

    Saraswathi, Ananthavel; Sanjeevikumar, Padmanaban; Shanmugham, Sutha

    2016-01-01

    Power system researches are mainly focused in enhancing the available power capacities of the existing transmission lines. But still, no prominent solutions have been made due to several factors that affect the transmission lines which include the length, aging of the cables and losses on generat...... independently between the transmission lines and STATCOM-(SMES) units. Complete proposed power system is implemented in numerical simulation software (Matlab/Simulink) and its performance is validated based on obtained investigation results....

  7. Determining the Minimal Power Capacity of Energy Storage to Accommodate Renewable Generation

    Directory of Open Access Journals (Sweden)

    Xingning Han

    2017-04-01

    Full Text Available The increasing penetration of renewable generation increases the need for flexibility to accommodate for growing uncertainties. The level of flexibility is measured by the available power that can be provided by flexible resources, such as dispatachable generators, in a certain time period under the constraint of transmission capacity. In addition to conventional flexible resources, energy storage is also expected as a supplementary flexible resource for variability accommodation. To aid the cost-effective planning of energy storage in power grids with intensive renewable generation, this study proposed an approach to determine the minimal requirement of power capacity and the appropriate location for the energy storage. In the proposed approach, the variation of renewable generation is limited within uncertainty sets, then a linear model is proposed for dispatchable generators and candidate energy storage to accommodate the variation in renewable generation under the power balance and transmission network constraints. The target of the proposed approach is to minimize the total power capacity of candidate energy storage facilities when the availability of existing flexible resources is maximized. After that, the robust linear optimization method is employed to convert and solve the proposed model with uncertainties. Case studies are carried out in a modified Garver 6-bus system and the Liaoning provincial power system in China. Simulation results well demonstrate the proposed optimization can provide the optimal location of energy storage with small power capacities. The minimal power capacity of allocated energy storage obtained from the proposed approach only accounts for 1/30 of the capacity of the particular transmission line that is required for network expansion. Besides being adopted for energy storage planning, the proposed approach can also be a potential tool for identifying the sufficiency of flexibility when a priority is given to

  8. Holographic memory module with ultra-high capacity and throughput

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir A. Markov, Ph.D.

    2000-06-04

    High capacity, high transfer rate, random access memory systems are needed to archive and distribute the tremendous volume of digital information being generated, for example, the human genome mapping and online libraries. The development of multi-gigabit per second networks underscores the need for next-generation archival memory systems. During Phase I we conducted the theoretical analysis and accomplished experimental tests that validated the key aspects of the ultra-high density holographic data storage module with high transfer rate. We also inspected the secure nature of the encoding method and estimated the performance of full-scale system. Two basic architectures were considered, allowing for reversible compact solid-state configuration with limited capacity, and very large capacity write once read many memory system.

  9. Power Output Stability Research for Harvesting Automobile Exhaust Energy with Heat Capacity Material as Intermediate Medium

    Science.gov (United States)

    Xiao, Longjie; He, Tianming; Mei, Binyu; Wang, Yiping; Wang, Zongsong; Tan, Gangfeng

    2018-01-01

    Automobile exhaust energy thermoelectric utilization can promote energy-saving and emission-reduction. Unexpected urban traffic conditions lead to the hot-end temperature instability of the exhaust pipe-mounted thermoelectric generator (TEG), and influence the TEG power generation efficiency. The heat conduction oil circulation located at the hot-end could smooth the temperature fluctuation, at the expense of larger system size and additional energy supply. This research improves the TEG hot-end temperature stability by installing solid heat capacity material (SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, light weight and no additional energy consumption. The exhaust temperature and flow rate characteristics with various driving conditions are firstly studied for the target engine. Then the convective heat transfer models of SHCM's hot-end and thermoelectric material's cold-end are established. Meanwhile, SHCM thermal properties' effects on the amplitude and response speed of the TEG hot-end temperature are studied. The candidate SHCM with the characteristics of low thermal resistance and high heat capacity is determined. And the heat transfer model going through from TEG's hot-end to the cold-end is established. The results show that the SHCM significantly improves the TEG hot-end temperature stability but slightly reduces the average power output. When the engine working conditions change a lot, the SHCM's improvement on the TEG hot-end temperature stability is more significant, but the reduction of the average power output becomes more remarkable.

  10. High-dynamic-range and high-capacity RF and microwave fiber optic links

    Science.gov (United States)

    Weiss, Frank

    2013-05-01

    Novel fiber optic transmitter control methodologies, high optical power and low RIN source lasers, high performance photodiodes and DWDM laser capability provide high dynamic range and high capacity transport for a wide range of sensing and communications applications. Measured component and system level test data demonstrates these performance improvements. Higher spur free dynamic range in excess of 110 dB·Hz2/3 over broad range of K-band frequencies is demonstrated, increasing the practical use of fiber as a transport method for high sensitivity applications. Multichannel DWDM operation provides simplified capacity expansion without compromising system performance, allowing arrayed photonic systems to be deployed. System characterization for a wide range of optical wavelengths and RF frequencies is provided to demonstrate these levels of performance in practical applications. Photonic component cost reductions combined with compact packaging further increase the ability of high performance fiber optic transport to address a wider range of applications, as the size, weight and performance barriers are eliminated. This paper provides a summary of the current state of the art of commercially available photonic components for high performance externally modulated analog optical links from a practical perspective.

  11. Anaerobic capacity may not be determined by critical power model in elite table tennis players.

    Science.gov (United States)

    Zagatto, Alessandro M; Papoti, Marcelo; Gobatto, Claudio A

    2008-01-01

    The aim of the present study was to verify the applicability of anaerobic work capacity (AWC) determined from the critical power model in elite table tennis players. Eight male international level table tennis players participated in the study. The tests undertaken were: 1) A critical frequency test used to determinate the anaerobic work capacity; 2) Wingate tests were performed using leg and arm ergometers. AWC corresponded to 99.5 ± 29.1 table tennis balls. AWC was not related to peak (r = -0.25), mean (r = -0.02), relative peak (r = -0.49) or relative mean power (r = 0.01), nor fatigue index (r = -0.52) (Wingate leg ergometer). Similar correlations for peak (r = -0.34), mean (r = -0.04), relative peak (r = -0.49), relative mean power (r = -0.14) and peak blood lactate concentration (r = -0.08) were determined in the Wingate arm ergometer test. Based on these results the AWC determined by a modified critical power test was not a good index for measurement of anaerobic capacity in table tennis players. Key pointsAnaerobic work capacity (AWC) was not good index of anaerobic capacity in table tennis.AWC determined using the table tennis ergometer showed low correlations with the Wingate test measures for cycle and arm ergometry.A sport-specific protocol is required for measuring anaerobic capacity in table tennis.

  12. On the capacity of multiaccess fading channels with full channel state information at low power regime

    KAUST Repository

    Rezki, Zouheir

    2013-06-01

    We study the throughput capacity region of the Gaussian multiaccess (MAC) fading channel with perfect channel state information (CSI) at the receiver (CSI-R) and at the transmitters (CSI-T), at low power regime. We show that it has a multidimensional rectangle structure and thus is simply characterized by single user capacity points. More specifically, we show that at low power regime, the boundary surface of the capacity region shrinks to a single point corresponding to the sum rate maximizer and that the coordinates of this point coincide with single user capacity bounds. Inspired from this result, we propose an on-off scheme, compute its achievable rate, and provide a necessary condition on the fading channels under which this scheme achieves single user capacity bounds of the MAC channel at asymptotically low power regime. We argue that this necessary condition characterizes a class of fading that encompasses all known wireless channels, where the capacity region of the MAC channel has a simple expression in terms of users\\' average power constraints only. © 2013 IEEE.

  13. Integration of Electric Vehicles into the Power Distribution Network with a Modified Capacity Allocation Mechanism

    Directory of Open Access Journals (Sweden)

    Junjie Hu

    2017-02-01

    Full Text Available The growing penetration of electric vehicles (EVs represents an operational challenge to system operators, mainly at the distribution level by introducing congestion and voltage drop problems. To solve these potential problems, a two-level coordination approach is proposed in this study. An aggregation entity, i.e., an EV virtual power plant (EV-VPP, is used to facilitate the interaction between the distribution system operator (DSO and EV owners considering the decentralized electricity market structure. In level I, to prevent the line congestion and voltage drop problems, the EV-VPP internally respects the line and voltage constraints when making optimal charging schedules. In level II, to avoid power transformer congestion problems, this paper investigates three different coordination mechanisms, or power transformer capacity allocation mechanisms, between the DSO and the EV-VPPs, considering the case of EVs charging and discharging. The three mechanisms include: (1 a market-based approach; (2 a pro-rata approach; and (3 a newly-proposed constrained market-based approach. A case study considering a 37-bus distribution network and high penetration of electric vehicles is presented to demonstrate the effectiveness of the proposed coordination mechanism, comparing with the existing ones.

  14. Wind power and capacity of transmission in northern Norway; Vindkraft og overfoeringskapasitet i Nord Norge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Northern Norway, and especially the county of Finnmark, has the largest potential for cheap wind power, but at the same time it has the largest transmission costs. Ambitious goals for renewable energy can be reached in a cheaper way if small-scale hydro electrical power plants are developed, wind power in southern Norway, and wind power in northern Norway within the capacity of the network (about 1.000 MW). Central challenges include creating a well-functioning distribution of new wind power within northern Norway's current network, and efficient bottle-neck handling. Price regions are important in order to take advantage of the flexibility in hydroelectric power and prevent excessive investments. Concession refusal may be necessary. Increased ambitions for wind power can later strengthen the northern Norway network and make it profitable. Ideally, the power developers will pay for this strengthening. Practical difficulties may still give priority to the traditional financing provided by Statnett.

  15. Economic viability of transmission capacity expansion at high wind penetrations

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    With growing wind power penetrations in many countries, grid and system integration becomes more and more important issues. This is particularly the case in countries or regions with good wind resources as well as substantial installed wind power capacity as found in e.g. Northern Europe. At 20......% penetration in Western Denmark, the issue is pertinent here in relation to future plans of further expansion which is planned in accordance with the Danish Government’s climate change mitigation initiatives. This paper analyses the potential economic benefit of selling excess electricity production...... investments and analyses of the Nord Pool price variations. The analyses are done for varying degrees of wind power penetrations ranging from 20% of the West Danish electricity demand up to 100% of the demand. The analyses demonstrate, that while there is an economic potential for some expansion in some years...

  16. Operation Optimization Based on the Power Supply and Storage Capacity of an Active Distribution Network

    Directory of Open Access Journals (Sweden)

    Wenpeng Yu

    2013-12-01

    Full Text Available Due to the interconnection and active management of Distributed Generation (DG and Energy Storage Systems (ESSs, the traditional electrical distribution network has become an Active Distribution Network (ADN, posing challenges to the operation optimization of the network. The power supply and storage capacity indexes of a Local Autonomy Control Region (LACR, which consists of DGs, ESSs and the network, are proposed in this paper to quantify the power regulating range of a LACR. DG/ESS and the network are considered as a whole in the model of the indexes, considering both network constraints and power constraints of the DG/ESS. The index quantifies the maximum LACR power supplied to or received from ADN lines. Similarly, power supply and storage capacity indexes of the ADN line are also proposed to quantify the maximum power exchanged between ADN lines. Then a practical algorithm to calculate the indexes is presented, and an operation optimization model is proposed based on the indexes to maximum the economic benefit of DG/ESS. In the optimization model, the power supply reliability of the ADN line is also considered. Finally, the indexes of power supply and storage capacity and the optimization are demonstrated in a case study.

  17. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  18. A review on synchronous CDMA systems: optimum overloaded codes, channel capacity, and power control

    Directory of Open Access Journals (Sweden)

    Hosseini Seyed Amirhossein

    2011-01-01

    Full Text Available Abstract This paper is a tutorial review on important issues related to code-division multiple-access (CDMA systems such as channel capacity, power control, and optimum codes; specifically, we consider optimum overloaded codes that achieve errorless transmission in the absence of noise for the binary and nonbinary cases. A survey of lower and upper bounds for the sum channel capacity of such systems is given in the presence and absence of channel noise. The asymptotic results for the channel capacity are also investigated. The channel capacity, errorless transmission codes, and power estimation for near-far effects are also explored. The emphasis of this tutorial review is on the overloaded CDMA systems.

  19. Highly efficient distributed generation and high-capacity energy storage

    DEFF Research Database (Denmark)

    Hemmes, Kas; Guerrero, Josep M.; Zhelev, Toshko

    2012-01-01

    and solar that deliver electricity to the grid. Solution directions are the development of smart grids, demand side management, virtual power plants and storage of electricity. These are directions that, rightly so, are already attracting a lot of attention and R&D funding. In this paper critical issues......With the growing amount of decentralized power production the design and operation of the grid has to be reconsidered. New problems include the two-way flow of electricity and maintaining the power balance given the increased amount of uncertain and fluctuating renewable energy sources like wind...... are identified and specified. However, we will also explore new solution directions based on an integrative approach as proposed by the Dutch Royal Academy of Science foresight committee on renewable energy conversions. These alternative solutions include flexible coproduction and local production of chemicals...

  20. Heat capacity measurements on high T sub c superconductors

    CERN Document Server

    Oezcan, S

    1998-01-01

    temperature interval. The phase transition jump increases with the increasing of oxygen amount in the CuO sub 2 layers. The hight of the jump is varying from 1.5% to 3.5% of the total specific heat which is the nature of the bulk superconductivity. The small coherence length increases fluctuation effects and also causes the dependence of superconducting properties on structural defects. The fluctuation effects on the heat capacity of YBCO is investigated on the sample that shows clear superconducting properties. In this work, a heat capacity measurement system which has high sensitivity and reproducibility designed and constructed. The investigation of the effect of oxygen stoichiometry on the superconducting properties of high T sub c superconductors was aimed. For this purpose electrical resistivity, magnetic susceptibility and heat capacity experiment were performed. The constructed system is a computerized adiabatic calorimeter which has temperature resolution of about 0.1 mk and operates in the temperatu...

  1. Determination of installation capacity in reservoir hydro-power plants considering technical, economical and reliability indices

    DEFF Research Database (Denmark)

    Hosseini, S.M.H.; Forouzbakhsh, Farshid; Fotouh-Firuzabad, Mahmood

    2008-01-01

    One of the most important issues in planning the ‘‘reservoir” type of hydro-power plants (HPP) is to determine the installation capacity of the HPPs and estimate its annual energy value. In this paper, a method is presented. A computer program has been developed to analyze energy calculation...... the technical, economic and reliability indices will determine the installation capacity of an HPP. By applying the above-mentioned algorithm to an existing HPP named ‘‘Bookan” (located in the westnorth of Iran); the capacity of 30 MW is obtained....

  2. Determining optimal capacity of wind generation in a conventional power system

    Directory of Open Access Journals (Sweden)

    Shahrokh Shojaeian

    2014-12-01

    Full Text Available This paper investigates the effect of adding different capacities of wind power to the reliability of power systems using Monte Carlo method in order to obtain an optimum limit for that. At first, wind speed of the Swift Carnet Region in Canada, as a typical test area, is simulated and the amount of wind power output of the wind turbine generator is measured. Then, using the Monte Carlo Sequential Method, a model that involves energy generated by conventional and wind power generators is made. The power generated in Monte Carlo Sequence was compared with the system load in order to calculate risk indices. Then values of the ‘loss of load expectation’ and ‘loss of energy expectation’ indices are presented in the adequacy evaluation of the electric power system including the wind power generators.

  3. Concentrated solar power generation: Firm and dispatchable capacity for Brazil's solar future?

    Science.gov (United States)

    Tomaschek, Jan; Haasz, Thomas; Fahl, Ulrich

    2016-05-01

    The Brazilian electricity mix is currently dominated by renewable energy forms, foremost hydropower. Large additional capacity demands are expected in the mid-term future but additional potential for hydro power is limited. In addition it is planned to construct more than 17 GW of wind power and additional capacity of photovoltaics (PV). Due to the fluctuating nature of such renewables, however, wind and PV are hardly able to provide firm capacity. Concentrated solar power (CSP) might be a feasible option to provide firm and dispatchable capacity at low carbon emissions. This study analyses the opportunities for integrating CSP into the Brazilian energy system. Making use of the TiPS-B model, a novel application of the optimization model generator TIMES, we compare different climate protection strategies with a reference scenario and analyze the contribution of CSP to the electricity mix. The analysis covers various types of CSP power plants with molten salt energy storage where we look at possible dispatch strategies considering the fluctuations in electricity supply and use. The consideration of solar water heaters (SWH) is the first step to transfer the power system model to an energy system model that is capable of showing the benefits of energy saving measures on the demand side. It can be demonstrated that the Brazilian power system is likely to change significantly in future. This development would go hand in hand with a strong increase in carbon emissions if no mitigation actions are taken and fossil fueled power plants are used to fill the gap in capacity. CSP power plants are found as a feasible alternative for covering the demand while taking carbon mitigation actions. In a scenario, aiming at 4 and 2 degrees global warming, CSP provides for 7.6 GW and 14.6 GW capacity in 2050, respectively. Different storage configurations are used to provide energy in the evening hours to cover the demand peak providing a strong benefit over photovoltaic electricity

  4. High-capacity electrode materials for electrochemical energy ...

    Indian Academy of Sciences (India)

    2015-06-02

    Jun 2, 2015 ... This review summarizes the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application.

  5. Cycloaddition in peptides for high-capacity optical storage

    DEFF Research Database (Denmark)

    Lohse, Brian; Berg, Rolf Henrik; Hvilsted, Søren

    2006-01-01

    Photodimerization of chromophores attached to a short peptide chain is investigated for high-capacity optical digital storage with UV lasers. The length and rigidity of the peptide chain assure an optimal distance and orientation of the chromophores for effective photodimerization. Using a theory...

  6. Development of a high capacity variable conductance heat pipe.

    Science.gov (United States)

    Kosson, R.; Hembach, R.; Edelstein, F.; Loose, J.

    1973-01-01

    The high-capacity, pressure-primed, tunnel-artery wick concept was used in a gas-controlled variable conductance heat pipe. A variety of techniques were employed to control the size of gas/vapor bubbles trapped within the artery. Successful operation was attained with a nominal 6-foot long, 1-inch diameter cold reservoir VCHP using ammonia working fluid and nitrogen control gas. The pipe contained a heat exchanger to subcool the liquid in the artery. Maximum transport capacity with a 46-inch effective length was 1200 watts level (more than 50,000 watt-inches) and 800 watts at 0.5-inch adverse tilt.

  7. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  8. High Power Fiber Laser Test Bed

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, unique within DoD, power-combines numerous cutting-edge fiber-coupled laser diode modules (FCLDM) to integrate pumping of high power rare earth-doped...

  9. High power RF solid state power amplifier system

    Science.gov (United States)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  10. High Power Performance of Rod Fiber Amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Michieletto, Mattia; Kristensen, Torben

    2015-01-01

    An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W.......An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W....

  11. High Power laser power conditioning system new discharge circuit research

    CERN Document Server

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping

    2002-01-01

    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  12. Application of a High-Power Reversible Converter in a Hybrid Traction Power Supply System

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2017-03-01

    Full Text Available A high-power reversible converter can achieve a variety of functions, such as recovering regenerative braking energy, expanding traction power capacity, and improving an alternating current (AC grid power factor. A new hybrid traction power supply scheme, which consists of a high-power reversible converter and two 12-pulse diode rectifiers, is proposed. A droop control method based on load current feed-forward is adopted to realize the load distribution between the reversible converter and the existing 12-pulse diode rectifiers. The direct current (DC short-circuit characteristics of the reversible converter is studied, then the relationship between the peak fault current and the circuit parameters is obtained from theoretical calculations and validated by computer simulation. The first two sets of 2 MW reversible converters have been successfully applied in Beijing Metro Line 10, the proposed hybrid application scheme and coordinated control strategy are verified, and 11.15% of average energy-savings is reached.

  13. Harnessing the power of South-South partnerships to build capacity ...

    African Journals Online (AJOL)

    15, No. 1, June 2017. 8. Harnessing the power of South-South partnerships to build capacity for the prevention of sexual and intimate partner violence ... Sexual Violence Research Initiative, South African Medical Research Council ... programmes on IPV prevention and transforming men and masculinities show promise.

  14. COMPARISON OF MUSCLE STRENGTH, SPRINT POWER AND AEROBIC CAPACITY IN ADULTS WITH AND WITHOUT CEREBRAL PALSY

    NARCIS (Netherlands)

    de Groot, Sonja; Dallmeijer, Annet J.; Bessems, Paul J. C.; Lamberts, Marcel L.; van der Woude, Lucas H. V.; Janssen, Thomas W. J.

    2012-01-01

    Objective: To compare: (i) muscle strength, sprint power and maximal aerobic capacity; and (ii) the correlations between these variables in adults with and without cerebral palsy. Design: Cross-sectional study. Subjects: Twenty adults with and 24 without cerebral palsy. Methods: Isometric and

  15. Recycling rice husks for high-capacity lithium battery anodes.

    Science.gov (United States)

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-07-23

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes.

  16. Guaranteed capacity of hydro power plants in Germany and Austria; Gesicherte Leistung der Wasserkraft in Deutschland und Oesterreich

    Energy Technology Data Exchange (ETDEWEB)

    Pfleger, Markus [VERBUND Hydro Power GmbH, Wien (Austria); Ernst, Hans-Peter; Engels, Klaus [E.ON Kraftwerke GmbH, Sparte Wasserkraft, Landshut (Germany); Metzka, Rudolf [Technische Hochschule Deggendorf (Germany)

    2015-11-01

    Balancing fluctuations caused by renewable energy play an important role in the current transition of energy supply systems. Hydro power plants provide both: guaranteed capacity as well as renewability. In Germany and Austria definitions of how to quantify the guaranteed capacity of hydro power plants are well established to calculate the guaranteed capacity for an individual power plant. The definitions are challenged against real examples.

  17. Investigating wind power`s effective capacity: A case study in the Caribbean Island of La Martinique

    Energy Technology Data Exchange (ETDEWEB)

    Perez, R.; Germa, J.M.; Bailey, B. [AWS Scientific, Inc., Paris (France)

    1996-12-31

    In this paper, we report on the experimental determination of the effective capacity of wind and photovoltaic (PV) power generation with respect to the utility load requirements of the Island of La Martinique. La Martinique is a French Overseas Department in the Caribbean Sea. The case study spans two years, 1990 and 1991. We consider wind generation at three locations in different wind regimes, and PV generation for fixed and tracking flat plate systems. The results presented include: (1) An overview of typical solar and wind power output at each considered site, presented in contrast to the Island`s electric load requirements; and (2) Effective capacities quantified for each resource as a function of penetration in the utility generation mix. 7 refs., 6 figs.

  18. High Energy Density Capacitors for Pulsed Power Applications

    Science.gov (United States)

    2009-07-01

    resistor in terms of shock and vibration, mounting requirements, total volume, system reliability, and cost. All of these parameters were improved...protection from shock and vibration on a deployed system. III. STATE OF THE ART FOR HIGH ENERGY DENSITY CAPACITOR AND NEAR TERM PROJECTIONS The...it t tipo ymer m qua y an capac or cons ruc on. Energy Density of 10,000 Shot High Efficiency Pulse Power Capacitors The primary driver was 1 5

  19. Analysis of Power Network for Line Reactance Variation to Improve Total Transmission Capacity

    Directory of Open Access Journals (Sweden)

    Ikram Ullah

    2016-11-01

    Full Text Available The increasing growth in power demand and the penetration of renewable distributed generations in competitive electricity market demands large and flexible capacity from the transmission grid to reduce transmission bottlenecks. The bottlenecks cause transmission congestion, reliability problems, restrict competition, and limit the maximum dispatch of low cost generations in the network. The electricity system requires efficient utilization of the current transmission capability to improve the Available Transfer Capability (ATC. To improve the ATC, power flow among the lines can be managed by using Flexible AC Transmission System (FACTS devices as power flow controllers, which alter the parameters of power lines. It is important to place FACTS devices on suitable lines to vary the reactance for improving Total Transmission Capacity (TTC of the network and provide flexibility in the power flow. In this paper a transmission network is analyzed based on line parameters variation to improve TTC of the interconnected system. Lines are selected for placing FACTS devices based on real power flow Performance Index (PI sensitivity factors. TTC is computed using the Repeated Power Flow (RPF method using the constraints of lines thermal limits, bus voltage limits and generator limits. The reactance of suitable lines, selected on the basis of PI sensitivity factors are changed to divert the power flow to other lines with enough transfer capacity available. The improvement of TTC using line reactance variation is demonstrated with three IEEE test systems with multi-area networks. The results show the variation of the selected lines’ reactance in improving TTC for all the test networks with defined contingency cases.

  20. Energy Efficiency and Capacity Tradeoff in Cloud Radio Access Network of High-Speed Railways

    Directory of Open Access Journals (Sweden)

    Shichao Li

    2017-01-01

    Full Text Available To meet the increasing demand of high-data-rate services of high-speed railway (HSR passengers, cloud radio access network (C-RAN is proposed. This paper investigates the tradeoff between energy efficiency (EE performance and capacity in C-RAN of HSR. Considering that the train location can be predicted, we propose a predictable path loss based time domain power allocation method (PPTPA to improve EE performance of HSR communication system. First, we consider that the communication system of HSR only bears the passenger information services (PISs. The energy-efficient power allocation problem with delay constraint is studied. The formulated problem is nonconvex. To deal with it, an equivalent convex problem is reformulated. Based on PPTPA, we propose an iterative algorithm to improve the EE performance. Second, we consider that the PISs and the train control services (TCSs are all bore. A capacity optimization problem with joint EE and services transmission delay constraints is formulated. Based on PPTPA, we propose a hybrid power allocation scheme to improve the capacity of the system. Finally, we analyze the effect of small-scale fading on EE performance. The effectiveness of the proposed power allocation algorithm is validated by HSR channel measurement trace based emulation results and extensive simulation results.

  1. Investigation of high capacity heat energy storage for building applications

    OpenAIRE

    Ding, Yate

    2014-01-01

    The problems of excessive consumption of fossil resources, oil shortages and greenhouse gas emissions are becoming increasingly severe. Research and development work on new methods of thermal energy storage are imminently required. To effectively store seasonal renewable energy, a novel high capacity heat storage system has been designed and evaluated/validated through laboratory experiments and numerical simulations in this research. The system is driven by direct flow evacuated tube solar c...

  2. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    Science.gov (United States)

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.

  3. Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    Science.gov (United States)

    Katz, Randy H.; Anderson, Thomas E.; Ousterhout, John K.; Patterson, David A.

    1991-01-01

    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications.

  4. ANAEROBIC CAPACITY MAY NOT BE DETERMINED BY CRITICAL POWER MODEL IN ELITE TABLE TENNIS PLAYERS

    Directory of Open Access Journals (Sweden)

    Alessandro M. Zagatto

    2008-03-01

    Full Text Available The aim of the present study was to verify the applicability of anaerobic work capacity (AWC determined from the critical power model in elite table tennis players. Eight male international level table tennis players participated in the study. The tests undertaken were: 1 A critical frequency test used to determinate the anaerobic work capacity; 2 Wingate tests were performed using leg and arm ergometers. AWC corresponded to 99.5 ± 29.1 table tennis balls. AWC was not related to peak (r = -0.25, mean (r = -0.02, relative peak (r = -0.49 or relative mean power (r = 0.01, nor fatigue index (r = -0.52 (Wingate leg ergometer. Similar correlations for peak (r = -0.34, mean (r = -0.04, relative peak (r = -0.49, relative mean power (r = -0.14 and peak blood lactate concentration (r = -0.08 were determined in the Wingate arm ergometer test. Based on these results the AWC determined by a modified critical power test was not a good index for measurement of anaerobic capacity in table tennis players

  5. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Grid-connected photovoltaic power systems: power value and capacity value of PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Groppi, F.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the power value and capacity value of photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and dispersed PV power systems. This report summarises the results of a study aimed to assess the benefits that may be obtained when distributed PV production systems are present in a low-voltage grid. The basic aspects concerning the power-value and those related to the capacity-value are discussed. Data obtained from simulations are presented and discussed. A simple concept shows that great variation occurs if varying load patterns are taken into account. The power-value of PV generation in the grid varies instant by instant depending on the current level of power production and on the surrounding load conditions. Although the three case-studies considered do not cover all the possibilities of coupling between PV and loads, the results obtained show a good differentiation among users with PV production which leads to interesting conclusions.

  6. High power laser perforating tools and systems

    Science.gov (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  7. Packaging of high power semiconductor lasers

    CERN Document Server

    Liu, Xingsheng; Xiong, Lingling; Liu, Hui

    2014-01-01

    This book introduces high power semiconductor laser packaging design. The characteristics and challenges of the design and various packaging, processing, and testing techniques are detailed by the authors. New technologies, in particular thermal technologies, current applications, and trends in high power semiconductor laser packaging are described at length and assessed.

  8. Automated System Tests High-Power MOSFET's

    Science.gov (United States)

    Huston, Steven W.; Wendt, Isabel O.

    1994-01-01

    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  9. Maximum Power Point Characteristics of Generalized Heat Engines with Finite Time and Finite Heat Capacities

    Directory of Open Access Journals (Sweden)

    Abhishek Khanna

    2012-01-01

    Full Text Available We revisit the problem of optimal power extraction in four-step cycles (two adiabatic and two heat-transfer branches when the finite-rate heat transfer obeys a linear law and the heat reservoirs have finite heat capacities. The heat-transfer branch follows a polytropic process in which the heat capacity of the working fluid stays constant. For the case of ideal gas as working fluid and a given switching time, it is shown that maximum work is obtained at Curzon-Ahlborn efficiency. Our expressions clearly show the dependence on the relative magnitudes of heat capacities of the fluid and the reservoirs. Many previous formulae, including infinite reservoirs, infinite-time cycles, and Carnot-like and non-Carnot-like cycles, are recovered as special cases of our model.

  10. High-power optics lasers and applications

    CERN Document Server

    Apollonov, Victor V

    2015-01-01

    This book covers the basics, realization and materials for high power laser systems and high power radiation interaction with  matter. The physical and technical fundamentals of high intensity laser optics and adaptive optics and the related physical processes in high intensity laser systems are explained. A main question discussed is: What is power optics? In what way is it different from ordinary optics widely used in cameras, motion-picture projectors, i.e., for everyday use? An undesirable consequence of the thermal deformation of optical elements and surfaces was discovered during studies of the interaction with powerful incident laser radiation. The requirements to the fabrication, performance and quality of optical elements employed within systems for most practical applications are also covered. The high-power laser performance is generally governed by the following: (i) the absorption of incident optical radiation (governed primarily by various absorption mechanisms), (ii) followed by a temperature ...

  11. Strain-tolerant High Capacity Silicon Anodes via Directed Lithium Ion Transport for High Energy Density Lithium-ion Batteries

    Science.gov (United States)

    Goldman, Jason

    2012-02-01

    Energy storage is an essential component of modern technology, with applications including public infrastructure, transportation systems, and consumer electronics. Lithium-ion batteries are the preeminent form of energy storage when high energy / moderate power densities are required. Improvements to lithium-ion battery energy / power density through the adoption of silicon anodes—with approximately an order of magnitude greater gravimetric capacity than traditional carbon-based anodes--have been limited by ˜300% strains during electrochemical lithium insertion which result in short operational lifetimes. In two different systems we demonstrated improvements to silicon-based anode performance via directed lithium ion transport. The first system demonstrated a crystallographic-dependent anisotropic electrochemical lithium insertion in single-crystalline silicon anode microstructures. Exploiting this anisotropy, we highlight model silicon anode architectures that limit the maximum strain during electrochemical lithium insertion. This self-strain-limiting is a result of selecting a specific microstructure design such that during lithiation the anisotropic evolution of strain, above a given threshold, blocks further lithium intercalation. Exemplary design rules have achieved self-strain-limited charging capacities ranging from 677 mAhg-1 to 2833 mAhg-1. A second system with variably encapsulated silicon-based anodes demonstrated greater than 98% of their initial capacity after 130+ cycles. This anode also can operate stably at high energy/power densities. A lithium-ion battery with this anode was able to continuously (dis)charge in 10 minutes, corresponding to a power / energy density of ˜1460 W/kg and ˜243 Wh/kg--up to 780% greater power density and 220% higher energy density than conventional lithium-ion batteries. Anodes were also demonstrated with areal capacities of 12.7 mAh/cm^2, two orders of magnitude greater than traditional thin-film silicon anodes.[4pt

  12. The influence of sand mining towards the sustainability of power support and capacity of Lambidaro River

    Science.gov (United States)

    Juniah, Restu; Rahmi, Hisni

    2017-11-01

    Activities of sand mining on the surface stream (river) conducted by Panji Mahakarya company potentially cause various environmental issues. These problems include the destruction of the river ecosystem, decreased the quality of river water quality, increased water pollution load, and another effect on capacity and power support river. The Lambidaro River is one of the rivers found in Palembang, where the inhabitants who live around it take advantage of the existence of this river to meet their daily needs such as bathing, washing, and latrines. The purpose of this research is to know the influence of mining activities towards sustainability of the power support and capacity of the river. The method used in this research is to compare the availability of water and water needs of the population in determining the status of environmental power support based on regulation of the state minister of the environment number 17 in 2009 about the determination of the power guidance support environment in spatial regions, as well as using the index method of pollution based on the decision of the State Minister of the environment number 115 in 2003 about the determination of the status of water quality guidelines with parameters measured are TDS, TSS, pH, DO, COD, dan BOD5. The results of the calculation of the power support river are deficit where SA (34,200,655.64 m3/year) good condition (uncontaminated) and mild pollutant.

  13. A safe, high-power-density lithium battery

    Science.gov (United States)

    Walsh, F.

    1985-03-01

    The Li/SOCl2 battery has received attention because of its high theoretical energy/power density. However, practical Li/SOCl2 cells have not provided the desired power density and have suffered from concerns with cell safety on discharge. In previous work, ECO has shown that the use of a TAA-type catalyst significantly improves the safety of the Li/S0Cl2 cell at high rate. The objective of this Phase 1 program was to determine whether a stacked disk electrode configuration with TAA-catalyzed cathodes would meet a high power-density design goal. Under the program, the effects of cathode thickness, preparation pressure, electrolyte gap and solute concentration on stacked-electrode cell performance and capacity were measured. The results of the Phase 1 program included the demonstration of stacked-electrode cell performance and capacity at levels suitable to meet a design goal of 400 W/kg with high energy density. Further work in a Phase 2 program will be required to demonstrate in laser-sealed fully-packaged cells that the results of Phase 1 can be practically applied to provide a safe high-rate, energy-dense power source for military applications.

  14. Evaluation of high-voltage, high-power, solid-state remote power controllers for amps

    Science.gov (United States)

    Callis, Charles P.

    1987-01-01

    The Electrical Power Branch at Marshall Space Flight Center has a Power System Development Facility where various power circuit breadboards are tested and evaluated. This project relates to the evaluation of a particular remote power controller (RPC) energizing high power loads. The Facility equipment permits the thorough testing and evaluation of high-voltage, high-power solid-state remote power controllers. The purpose is to evaluate a Type E, 30 Ampere, 200 V dc remote power controller. Three phases of the RPC evaluation are presented. The RPC is evaluated within a low-voltage, low-power circuit to check its operational capability. The RPC is then evaluated while performing switch/circuit breaker functions within a 200 V dc, 30 Ampere power circuit. The final effort of the project relates to the recommended procedures for installing these RPC's into the existing Autonomously Managed Power System (AMPS) breadboard/test facility at MSFC.

  15. Effect of tapering on anaerobic power and capacity of tae-kwon-do athletes

    Directory of Open Access Journals (Sweden)

    Leonardo de Sousa Fortes

    2017-05-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2017v19n2p224   The aim of the study was to analyze the effect of a tapering period on anaerobic power and capacity of tae-kwon-do athletes. Thirty-one male tae-kwon-do participants of the Brazilian Championship were selected in a non-probabilistic way. Subjects were randomly divided into two groups, namely: experimental group (EG, n = 15 and control group (CG, n = 17. Both groups followed the same training protocol up to the tapering stage. CG was submitted to training loads contained in the last two weeks of the macrocycle. Only EG was submitted to tapering. Tapering had 2 weeks duration, adopting the linear tapering method. Taekwondo Anaerobic Test was performed by athletes before the start of the season, which was named as pre-intervention, and the last week of each mesocycle [Prep I, Prep II and Tapering (only EG]. Group vs. time effect interaction (p < 0.01 was identified for alactic anaerobic power, with an increase only in EG in tapering (p = 0.01. A significant group vs. time interaction (p <0.01 was revealed to fatigue index, improved anaerobic capacity being checked in EG only after the tapering period (p = 0.01. It was concluded that two weeks of linear type tapering optimized the anaerobic power and capacity of male tae-kwon-do athletes.

  16. Long term effects of different training modalities on power, speed, skill and anaerobic capacity in young male basketball players.

    Science.gov (United States)

    Balčiūnas, Mindaugas; Stonkus, Stanislovas; Abrantes, Catarina; Sampaio, Jaime

    2006-01-01

    The purpose of this study was to identify the effect of 4 months of different training modalities on power, speed, skill and anaerobic capacity in 15-16 year old male basketball players. Thirty five Lithuanian basketball players were randomly assigned into three groups: power endurance group (intermittent exercise, PE, n = 12), general endurance group (continuous exercise, GE, n = 11) and control group (regular basketball training, CG, n = 12). The power endurance model was based in basketball game external structure whereas the general endurance model was based in continuous actions that frequently occur during the basketball game. The training models were used for 16 weeks in sessions conducted 3 times a week during 90 minutes each in the competition period. The following tests were performed: 20 m speed run, Squat jump, Countermovement jump, Running-based Anaerobic Sprint Test (RAST), 2 min. shooting test and the Shuttle ball-dribbling test. A 3×2 repeated measures ANOVA revealed no statistically significant differences in the 20 m speed run, Squat jump and Countermovement jump (p > 0.05). On the other hand, RAST showed significant increases in PE, with greater increases during the 5(th) and 6(th) runs. The PE training model also produced a significant improvement in the shuttle ball-dribbling test (48.7 ± 1.5 in the pretest, 45.5 ± 1.3 in the posttest, p intermittent high intensity exercise) may be more beneficial to prepare junior players according to the game cardiovascular and metabolic specific determinants. Key PointsPower endurance training produced significant increases in anaerobic capacity during the competition period.Power endurance training did not have a detrimental effect on power or speed performance during the competition period.The greatest differences between general endurance and power endurance training were noticed during the 5(th) and 6(th) runs of the RAST test.

  17. Improved Walking Capacity and Muscle Strength After Functional Power-Training in Young Children With Cerebral Palsy.

    Science.gov (United States)

    van Vulpen, Liesbeth F; de Groot, Sonja; Rameckers, Eugene; Becher, Jules G; Dallmeijer, Annet J

    2017-09-01

    Strength training programs for children with cerebral palsy (CP) showed inconclusive evidence for improving walking, despite improvements in strength. Recent studies have suggested that strength training with high movement velocity is more effective for improving walking than traditional resistance training. The purpose of this study was to evaluate the effect of functional high-velocity resistance training (power-training) to improve muscle strength and walking capacity of children with CP. Twenty-two children with spastic CP participated (13 bilateral, Gross Motor Function Classification System [GMFCS] level I [n = 10] and II [n = 12], 7.5 years [SD 1.8, range 4-10 years]). Within-subjects changes in a 14-weeks usual care period were compared with changes in a 14-week functional power-training period (in groups, 3×/wk). Outcome measures were the muscle power sprint test (MPST), 1-minute walk test (1MWT), 10-m shuttle run test (SRT), gross motor function (GMFM-66), isometric strength of lower-limb muscles and dynamic ankle plantar flexor strength. Changes during the training period were significantly larger than changes in the usual care period for all outcome measures ( P training period for walking capacity (ΔMPST [mean]: 27.6 W [95%CI 15.84-39.46, 83% increase], Δ1MWT: 9.4 m [95% CI 4.17-14.68, 13%], ΔSRT: 4.2 [95%CI 2.57-5.83, 56%], ΔGMFM-66: 5.5 [95% CI 3.33-7.74, 7%]) and muscle strength (18%-128%), while outcomes remained stable in the usual care period. The results indicate that functional power-training is an effective training for improving walking capacity in young children with cerebral palsy.

  18. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  19. High power ultrashort pulse lasers

    Energy Technology Data Exchange (ETDEWEB)

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  20. Low Power Design with High-Level Power Estimation and Power-Aware Synthesis

    CERN Document Server

    Ahuja, Sumit; Shukla, Sandeep Kumar

    2012-01-01

    Low-power ASIC/FPGA based designs are important due to the need for extended battery life, reduced form factor, and lower packaging and cooling costs for electronic devices. These products require fast turnaround time because of the increasing demand for handheld electronic devices such as cell-phones, PDAs and high performance machines for data centers. To achieve short time to market, design flows must facilitate a much shortened time-to-product requirement. High-level modeling, architectural exploration and direct synthesis of design from high level description enable this design process. This book presents novel research techniques, algorithms,methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design. Integrates power estimation and reduction for high level synthesis, with low-power, high-level design; Shows spec...

  1. Heatsink Design of High Power Converter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Ki [Chungang University (Korea)

    1999-04-01

    Various ways of designing heat sink are available for commercial high power converters and among them, the method of air cooling is the most popular and practical method than any other ones. In this paper, a practical method of cooling high power converter, which includes a method of reducing noise and vibration caused by the fan and a method of estimating the gap and contact resistances existing between the thyristor and heat sink, is presented. Finally, the heat transfer analysis and implementation methods of heat sink for high power converter is presented. (author). 14 refs., 11 figs., 3 tabs.

  2. High-capacity quantum Fibonacci coding for key distribution

    Science.gov (United States)

    Simon, David S.; Lawrence, Nate; Trevino, Jacob; Dal Negro, Luca; Sergienko, Alexander V.

    2013-03-01

    Quantum cryptography and quantum key distribution (QKD) have been the most successful applications of quantum information processing, highlighting the unique capability of quantum mechanics, through the no-cloning theorem, to securely share encryption keys between two parties. Here, we present an approach to high-capacity, high-efficiency QKD by exploiting cross-disciplinary ideas from quantum information theory and the theory of light scattering of aperiodic photonic media. We propose a unique type of entangled-photon source, as well as a physical mechanism for efficiently sharing keys. The key-sharing protocol combines entanglement with the mathematical properties of a recursive sequence to allow a realization of the physical conditions necessary for implementation of the no-cloning principle for QKD, while the source produces entangled photons whose orbital angular momenta (OAM) are in a superposition of Fibonacci numbers. The source is used to implement a particular physical realization of the protocol by randomly encoding the Fibonacci sequence onto entangled OAM states, allowing secure generation of long keys from few photons. Unlike in polarization-based protocols, reference frame alignment is unnecessary, while the required experimental setup is simpler than other OAM-based protocols capable of achieving the same capacity and its complexity grows less rapidly with increasing range of OAM used.

  3. High current and high power superconducting rectifiers

    NARCIS (Netherlands)

    ten Kate, Herman H.J.; Bunk, P.B.; Britton, R.B.; van de Klundert, L.J.M.

    1981-01-01

    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly.

  4. Design of 1 MHz Solid State High Frequency Power Supply

    Science.gov (United States)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  5. An introduction to high power microwaves

    Science.gov (United States)

    Benford, James; Swegle, John

    1992-02-01

    The area of high power microwaves has emerged in recent years as a new technology allowing new applications and offering innovative approaches to existing applications. The great leap in microwave power levels has been driven by a mix of sources that either push conventional microwave device physics in new directions or employ altogether new interaction mechanisms. Running counter to the trend in conventional microwave electronics toward miniaturization with solid-state devices intrinsically limited in their peak power capability, high power microwave generation taps the immense power and energy reservoirs of modern intense relativistic electron beam technology. The term high power microwaves (HPM) is used to denote devices that exceed 100 MW in peak power and span the cm- and mm-wave range of frequencies between 1 and 300 GHz. This definition is arbitrary, but does cleanly divide the conventional microwave devices, which do not exceed 100 MW, from a collection of microwave-generating devices that have now reached powers as high as 15 GW.

  6. Driver Circuit For High-Power MOSFET's

    Science.gov (United States)

    Letzer, Kevin A.

    1991-01-01

    Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.

  7. Highly-efficient high-power pumps for fiber lasers

    Science.gov (United States)

    Gapontsev, V.; Moshegov, N.; Berezin, I.; Komissarov, A.; Trubenko, P.; Miftakhutdinov, D.; Berishev, I.; Chuyanov, V.; Raisky, O.; Ovtchinnikov, A.

    2017-02-01

    We report on high efficiency multimode pumps that enable ultra-high efficiency high power ECO Fiber Lasers. We discuss chip and packaged pump design and performance. Peak out-of-fiber power efficiency of ECO Fiber Laser pumps was reported to be as high as 68% and was achieved with passive cooling. For applications that do not require Fiber Lasers with ultimate power efficiency, we have developed passively cooled pumps with out-of-fiber power efficiency greater than 50%, maintained at operating current up to 22A. We report on approaches to diode chip and packaged pump design that possess such performance.

  8. High Capacity Communications From Martian Distances. Part 1; Spacecraft Link Design Analysis

    Science.gov (United States)

    Vyas, Hemali N.; Schuchman, Leonard; Orr, Richard; Williams, Wallace Dan; Collins, Michael; Noreen, Gary

    2006-01-01

    High capacity space communications has been a desire for Human Exploration and Science missions. Current Mars missions operate at data rates of 120 kbps for telemetry downlink and it is desirable to study high rate communication links in the range of 100 Mbps to 1 Gbps data rates from Martian distances. This paper will present some assumed scenarios along with link design assumptions and link analysis for high capacity communications from Mars. The paper will focus on RF subsystems namely antenna and power for the downlink communication from a relay orbiter at Mars. The relay orbiter will communicate with the low orbit spacecrafts at Mars or any Martian surface elements such as robots, and relay the data back to the ground networks on Earth. The study will dive into the spacecraft downlink system design and communication link analysis between the relay orbiter and ground network on Earth for data rates ranging from 100 Mbps to 1 Gbps based on the assumed scenarios and link assumptions. With high rate links at larger distances, there will be a significant impact on the antenna and power requirements and the link design will make an attempt to minimize the mass of the RF subsystem on the spacecraft. The results of this study will be presented for three data rates 1 Gbps, 500 Mbps and 100 Mbps at maximum Mars to Earth distance of 2.67AU. The design will use a Ka-band downlink with 90% link availability, along with various ground network G/T assumptions and possible bandwidth efficient modulations. The paper will conclude with what types of high rate communication links are feasible from Martian distances and also identify a range of requirements for antenna and power technologies for these high capacity communications from Mars.

  9. Optimized Planning of Power Source Capacity in Microgrid, Considering Combinations of Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Zifa Liu

    2016-12-01

    Full Text Available Since renewable energy resource is universally accepted as a promising method to solve the global energy problem, optimal planning and utilization of various distributed generators (DG and energy storage (ES devices deserve special concern. ES devices possess various characteristics in power density, energy density, response speed (switching speed and lifetime. Besides, as different load types have various requirements on power supply reliability according to their importance, coordinated planning with consideration of reasonable matching between power source and load can efficiently improve power supply reliability and economic efficiency via a customized power supply and compensation strategy. This paper focuses on optimization of power source capacity in microgrid and a coordinated planning strategy is proposed with integrated consideration of characteristics of DG, ES and load. An index named additional compensation ratio (ACR for balancing economic efficiency and reliability is proposed and considered in the strategy. The objective function which aims to minimize life cycle cost (LCC is established considering economic efficiency, reliability and environmental conservation. The proposed planning strategy and optimizing model is calculated and verified through case study of an autonomy microgrid.

  10. LONG TERM EFFECTS OF DIFFERENT TRAINING MODALITIES ON POWER, SPEED, SKILL AND ANAEROBIC CAPACITY IN YOUNG MALE BASKETBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Mindaugas Balciunas

    2006-03-01

    Full Text Available The purpose of this study was to identify the effect of 4 months of different training modalities on power, speed, skill and anaerobic capacity in 15-16 year old male basketball players. Thirty five Lithuanian basketball players were randomly assigned into three groups: power endurance group (intermittent exercise, PE, n = 12, general endurance group (continuous exercise, GE, n = 11 and control group (regular basketball training, CG, n = 12. The power endurance model was based in basketball game external structure whereas the general endurance model was based in continuous actions that frequently occur during the basketball game. The training models were used for 16 weeks in sessions conducted 3 times a week during 90 minutes each in the competition period. The following tests were performed: 20 m speed run, Squat jump, Countermovement jump, Running-based Anaerobic Sprint Test (RAST, 2 min. shooting test and the Shuttle ball-dribbling test. A 3×2 repeated measures ANOVA revealed no statistically significant differences in the 20 m speed run, Squat jump and Countermovement jump (p > 0.05. On the other hand, RAST showed significant increases in PE, with greater increases during the 5th and 6th runs. The PE training model also produced a significant improvement in the shuttle ball-dribbling test (48.7 ± 1.5 in the pretest, 45.5 ± 1.3 in the posttest, p < 0.05. Globally, our results suggest that both training modalities were able to maintain initial values of speed and power, however, the anaerobic capacity and skill increased only in the players from the power endurance group. Therefore, the power endurance training (intermittent high intensity exercise may be more beneficial to prepare junior players according to the game cardiovascular and metabolic specific determinants

  11. Salzburg Skiing for the Elderly Study: influence of alpine skiing on aerobic capacity, strength, power, and balance.

    Science.gov (United States)

    Müller, E; Gimpl, M; Kirchner, S; Kröll, J; Jahnel, R; Niebauer, J; Niederseer, D; Scheiber, P

    2011-08-01

    Alpine skiing is a recreational sport with high demands on the cardiovascular and neuromuscular systems. It is assumed that skiing could have positive effects on the decline in aerobic capacity, strength, and balance ability of older individuals. In a 12-week intervention study, 47 elderly subjects (age 60-76 years) were randomized into an intervention group (IG) and a control group (CG). The IG averaged 28.5 days of guided skiing during 12 weeks. Aerobic capacity, leg power, and strength as well as postural stability were tested before, immediately after, and 10 weeks after the intervention phase. VO(2 max) improved by 7.2% from Pre to Post for the IG, without any change in the CG. Jump height increased on average by 6% over the 12 weeks for the IG, while jump height for the CG deteriorated by -11.7%. Dynamic maximal strength measured in both legs increased by 16% in the IG during the 12 weeks of skiing. In the CG, it increased by 7%, without being significant. In postural ability, no differences between groups or over time were noted. It appears that, in older individuals, 12 weeks of skiing leads to a significant increase in aerobic capacity, leg muscle power, and strength. © 2011 John Wiley & Sons A/S.

  12. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  13. High power regenerative laser amplifier

    Science.gov (United States)

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  14. Piezoelectric Transformers for a High Power Module

    National Research Council Canada - National Science Library

    Ezaki, T

    2003-01-01

    .... Here, in order to obtain compact and high-power AC-DC adaptors, we explored suitable designs for a multi-layered piezoelectric transformer, by taking into account the effect of the mechanical quality...

  15. High Power Helicon Plasma Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work seeks to develop and optimize an electrode-less plasma propulsion system that is based on a high power helicon (HPH) that is being developed...

  16. High Power Helicon Plasma Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new thruster has been conceived and tested that is based on a high power helicon (HPH) plasma wave. In this new method of propulsion, an antenna generates and...

  17. Mesoporous Silicon-Based Anodes for High Capacity, High Performance Li-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new high capacity anode composite based on mesoporous silicon is proposed. By virtue of a structure that resembles a pseudo one-dimensional phase, the active anode...

  18. Capacity analysis for high-speed terahertz wireless communications

    DEFF Research Database (Denmark)

    Dogadaev, Anton Konstantinovich; Lavrinenko, Andrei; Tafur Monroy, Idelfonso

    2012-01-01

    We report on the analytical capacity analysis of terahertz wireless communications supporting 275–325 GHz frequency band. Our goal in this paper is to provide design guidelines for close proximity links with transmission capacity beyond 100 Gbit/s.......We report on the analytical capacity analysis of terahertz wireless communications supporting 275–325 GHz frequency band. Our goal in this paper is to provide design guidelines for close proximity links with transmission capacity beyond 100 Gbit/s....

  19. Recycling potential for low voltage and high voltage high rupturing capacity fuse links.

    Science.gov (United States)

    Psomopoulos, Constantinos S; Barkas, Dimitrios A; Kaminaris, Stavros D; Ioannidis, George C; Karagiannopoulos, Panagiotis

    2017-12-01

    Low voltage and high voltage high-rupturing-capacity fuse links are used in LV and HV installations respectively, protecting mainly the LV and HV electricity distribution and transportation networks. The Waste Electrical and Electronic Equipment Directive (2002/96/EC) for "Waste of electrical and electronic equipment" is the main related legislation and as it concerns electrical and electronic equipment, it includes electric fuses. Although, the fuse links consist of recyclable materials, only small scale actions have been implemented for their recycling around Europe. This work presents the possibilities for material recovery from this specialized industrial waste for which there are only limited volume data. Furthermore, in order to present the huge possibilities and environmental benefits, it presents the potential for recycling of HRC fuses used by the Public Power Corporation of Greece, which is the major consumer for the country, but one of the smallest ones in Europe and globally, emphasizing in this way in the issue. According to the obtained results, fuse recycling could contribute to the effort for minimize the impacts on the environment through materials recovery and reduction of the wastes' volume disposed of in landfills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  1. A Probabilistic Method for Determining Grid-Accommodable Wind Power Capacity Based on Multiscenario System Operation Simulation

    DEFF Research Database (Denmark)

    Xu, Qianyao; Kang, Chongqing; Zhang, Ning

    2016-01-01

    When conducting the wind power (WP) planning, it is very important for electric power companies to evaluate the penetration limit of the grid-accommodable WP. This paper proposes a probabilistic method for determining grid-accommodable WP capacity based on the multiscenario analysis. Typical power...

  2. Geothermic Power Plants of high capacity - how far?

    OpenAIRE

    R.H. Kozłowski

    2011-01-01

    Purpose: Over the past two hundred years, the mankind has exploited more than 50 percent of all natural resources, including energy minerals. The twenty-first century will be, out of necessity the period of intensive development of energy based on renewable resources.Design/methodology/approach: The average geothermic gradient for the Earth`s crust (30°C/1km) can give us 10-20 MWe as a result (electrical energy) from one deep borehole heat exchanger. The value of electrical energy may be incr...

  3. When high-capacity readers slow down and low-capacity readers speed up: Working memory and locality effects

    Directory of Open Access Journals (Sweden)

    Bruno eNicenboim

    2016-03-01

    Full Text Available We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German, while taking into account readers’ working memory capacity and controlling for expectation (Levy, 2008 and other factors. We predicted only locality effects, that is, a slow-down produced by increased dependency distance (Gibson, 2000; Lewis & Vasishth, 2005. Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.

  4. When High-Capacity Readers Slow Down and Low-Capacity Readers Speed Up: Working Memory and Locality Effects.

    Science.gov (United States)

    Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan

    2016-01-01

    We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.

  5. Can power and anaerobic capacity reduce according to disordered eating behaviors in cyclists?

    Directory of Open Access Journals (Sweden)

    Leonardo de Sousa Fortes

    Full Text Available Abstract The present study aimed to compare the power, anaerobic capacity (AC and performance in a road bicycle race among cyclists with and without risk of disordered eating behaviors (DEB. The sample was selected in a non-probabilistic way, totaling 69 male road cyclists aged between 19 and 30 years. The Wingate test was used to evaluate peak power (PP and mean power. Time in minutes was adopted to determine performance in a 120-km road cycling race (competitive event. The Eating Attitudes Test (EAT-26 was completed to assess DEBs. The results did not indicate a difference in PP among cyclists with and without risk of DEBs (F (2, 67=3.92; p=0.13. Findings showed a difference in mean power among cyclists with and without risk of DEBs (F (2, 67=36.43; p=0.01. The results revealed a difference in performance in 120-km cycling races among cyclists with and without risk of DEBs (F (2, 67=46.03; p=0.01. It could be concluded that DEBs were associated with a lower mean power and performance in a competitive event among male road cyclists, although the same was not true for PP.

  6. ReEDS-Mexico: A Capacity Expansion Model of the Mexican Power System

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Jonathan L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cole, Wesley J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Spyrou, Evangelia [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-29

    This report documents the ReEDS-Mexico capacity expansion model, which is an extension of the ReEDS model to the Mexican power system. In recent years Mexico’s power sector has undergone considerable reform that has significant potential to impact the future electricity mix (Alpizar–Castro and Rodríguez–Monroy 2016). Day-ahead and real-time trading in Mexico’s power markets opened in early 2016. In addition to this reform, Mexico is striving to ensure that 35% of its electricity is generated from clean energy sources by 2024, 40% by 2035, and 50% by 2050 (Presidencia de la República 2016). These rapid changes in both the market and the generation mix create a need for robust tools that can help electricity sector stakeholders make informed decisions. The purpose of this report is to document the extension of the National Renewable Energy Laboratory’s (NREL’s) Regional Energy Deployment System (ReEDS) model (Eurek et al. 2016) to cover the Mexico power system. This extension, which we will refer to throughout this paper as ReEDS-Mexico, provides a model of the Mexico power sector using a system-wide, least-cost optimization framework.

  7. Commercial Impact and Optimum Capacity Determination of Pumped Storage Hydro Plant for a Practical Power System

    Science.gov (United States)

    Latha, P. G.; Anand, S. R.; Imthias, Ahamed T. P.; Sreejith, P. S., Dr.

    2013-06-01

    This paper attempts to study the commercial impact of pumped storage hydro plant on the operation of a stressed power system. The paper further attempts to compute the optimum capacity of the pumped storage scheme that can be provided on commercial basis for a practical power system. Unlike the analysis of commercial aspects of pumped storage scheme attempted in several papers, this paper is presented from the point of view of power system management of a practical system considering the impact of the scheme on the economic operation of the system. A realistic case study is presented as the many factors that influence the pumped storage operation vary widely from one system to another. The suitability of pumped storage for the particular generation mix of a system is well explored in the paper. To substantiate the economic impact of pumped storage on the system, the problem is formulated as a short-term hydrothermal scheduling problem involving power purchase which optimizes the quantum of power to be scheduled and the duration of operation. The optimization model is formulated using an algebraic modeling language, AMPL, which is then solved using the advanced MILP solver CPLEX.

  8. Protection Related to High-power Targets

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Target protection is an important part of machine protection. The beam power in high-intensity accelerators is high enough that a single wayward pulse can cause serious damage. Today's high-power targets operate at the limit of available technology, and are designed for a very narrow range of beam parameters. If the beam pulse is too far off centre, or if the beam size is not correct, or if the beam density is too high, the target can be seriously damaged. We will start with a brief introduction to high-power targets and then move to a discussion of what can go wrong, and what are the risks. Next we will discuss how to control the beam-related risk, followed by examples from a few different accelerator facilities. We will finish with a detailed example of the Oak Ridge Spallation Neutron Source target tune up and target protection.

  9. Bit- and Power-Loading—A Comparative Study on Maximizing the Capacity of RSOA Based Colorless DMT Transmitters

    Directory of Open Access Journals (Sweden)

    Simon Arega Gebrewold

    2017-09-01

    Full Text Available We present a comparative study of the capacity increase brought by bit- and power-loading discrete multi-tone (DMT modulation for low-cost colorless transmitters. Three interesting reflective semiconductor optical amplifier (RSOA based colorless transmitter configurations are compared: First, an amplified spontaneous emission (ASE spectrum-sliced source; second, a self-seeded RSOA fiber cavity laser (FCL and third, an externally seeded RSOA. With bit- and power-loaded DMT, we report record high line rates of 6.25, 20.1 and 30.7 Gbit/s and line rates of 4.17, 10.1 and 24.5 Gbit/s in a back-to-back and in a 25 km nonzero dispersion shifted fiber (NZDSF transmission experiments for the three transmitter configurations, respectively. In all the experiments, BER (bit error ratios below an FEC (forward error correction limit of 7.5 × 10−3 were achieved.

  10. PV Hosting Capacity Analysis and Enhancement Using High Resolution Stochastic Modeling

    Directory of Open Access Journals (Sweden)

    Emilio J. Palacios-Garcia

    2017-09-01

    Full Text Available Reduction of CO2 emissions is a main target in the future smart grid. This goal is boosting the installation of renewable energy resources (RES, as well as a major consumer engagement that seeks for a more efficient utilization of these resources toward the figure of ‘prosumers’. Nevertheless, these resources present an intermittent nature, which requires the presence of an energy storage system and an energy management system (EMS to ensure an uninterrupted power supply. Moreover, network-related issues might arise due to the increasing power of renewable resources installed in the grid, the storage systems also being capable of contributing to the network stability. However, to assess these future scenarios and test the control strategies, a simulation system is needed. The aim of this paper is to analyze the interaction between residential consumers with high penetration of PV generation and distributed storage and the grid by means of a high temporal resolution simulation scenario based on a stochastic residential load model and PV production records. Results of the model are presented for different PV power rates and storage capacities, as well as a two-level charging strategy as a mechanism for increasing the hosting capacity (HC of the network.

  11. On the capacity of multiple access and broadcast fading Channels with full channel state information at low power regime

    KAUST Repository

    Rezki, Zouheir

    2013-07-01

    We study the throughput capacity region of the Gaussian multi-access (MAC) fading channel with perfect channel state information (CSI) at the receiver and at the transmitters (CSI-TR), at low power regime. We show that it has a multidimensional rectangle structure and thus is simply characterized by single user capacity points. More specifically, we show that at low power regime, the boundary surface of the capacity region shrinks to a single point corresponding to the sum-rate maximizer and that the coordinates of this point coincide with single user capacity bounds. Using the duality of Gaussian MAC and broadcast channels (BC), we provide a simple characterization of the BC capacity region at low power regime. © 2013 IEEE.

  12. [High intellectual capacity, problem-solving and creativity].

    Science.gov (United States)

    Sastre-Riba, Sylvia; Pascual-Sufrate, M Teresa

    2013-02-22

    The aim of the study is focused on the characteristics and components of creativity as a multidimensional construct in the context of intelligence, divergent thinking and problem solving, and their incorporation into the definition and explanation of intellectual functioning of giftedness and talent. It shows the progress of the investigation from the initial postulates of Guilford about the nature and cognitive processes involved in the creative act, its features and components, development and differential expression in the high intellectual ability, and the neurological correlates neuropsychological research is beginning to show. We present the results obtained with 41 participants with high intellectual capacity profiles of giftedness or talent of 6 to 14 years. We measure their cognitive skills through BADyG or DAT tests, and creative skills by the Torrance Test of Creative Thinking (TTCT), in two measuring points. Analyses show comparatively among high ability profiles: 1) the creative measurement stability between the two time points, 2) statistically significant differences between the creative components of fluency, flexibility and originality, related to the profiles of giftedness or talent (convergent or divergent), 3) the statistically significant changes among the scores of the creative components, at all ages studied.

  13. High power diode laser Master Oscillator-Power Amplifier (MOPA)

    Science.gov (United States)

    Andrews, John R.; Mouroulis, P.; Wicks, G.

    1994-01-01

    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  14. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    . Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... devices at very high frequencies, switching loss needs to reduced or eliminated, as it would become prohibitively large. In addition, as the frequency increases, hard-switched gate driving becomes less and less of an option, as it embodies the same loss mechanism. A low-loss gate drive methods may need...... drive solution, which is applicable in cases when there are at least two power stages, and with minimal additional hardware requirements. It is experimentally confirmed that the method is suitable for both parallel and serial input configurations. Compared to state-of-the-art solutions, the proposed...

  15. OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros

    This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... Tbit/s data packets, and time lens based serial-to-parallel converter is employed to demultiplex each high-capacity packet into lower bit rate tributaries. A novel optical label scheme is suggested and experimentally demonstrated, where the label information is inserted in-band in the broad signal...... from 640 Gbit/s variable length data packets. Finally, three optical switching scenarios of high-capacity data packets, including a record-high 1×2 optical packet switching of 1.28 Tbit/s serial packets, are experimentally demonstrated using electro-optic based LiNbO3 switches....

  16. High-voltage power supply unit

    CERN Document Server

    Garipov, G K; Silaev, A A; Shirokov, A V

    2002-01-01

    A unit comprising four high-voltage power sources (HPS) is designed for power supply of four independent photomultipliers. Each HPS comprises a pulse-width modulator, digital-to-analog converter, base voltage source and digital interface. HPS unit supplies up to 2000 V output voltage, up to 2.5 mA current and long-term stability equal to +- 0.03%

  17. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng

    2009-09-09

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of ∼2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO2 cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of ∼4 mAh/cm2, which is comparable to commercial battery values. © 2009 American Chemical Society.

  18. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  19. Analysis of Thermal Power Generation Capacity for a Skutterudite-Based Thermoelectric Functional Structure

    Science.gov (United States)

    Sun, Yajing; Chen, Gang; Bai, Guanghui; Yang, Xuqiu; Li, Peng; Zhai, Pengcheng

    2017-05-01

    Due to military or other requirements for hypersonic aircraft, the energy supply devices with the advantages of small size and light weight are urgently needed. Compared with the traditional energy supply method, the skutterudite-based thermoelectric (TE) functional structure is expected to generate electrical energy with a smaller structural space in the hypersonic aircraft. This paper mainly focuses on the responded thermal and electrical characteristics of the skutterudite-based TE functional structure (TEFS) under strong heat flux loads. We conduct TE simulations on the transient model of the TEFS with consideration of the heat flux loads and thermal radiation in the hot end and the cooling effect of the phase change material (PCM) in the cold end. We investigate several influential factors on the power generation capacity, such as the phase transition temperature of the PCM, the heat flux loads, the thickness of the TE materials and the thermal conductivity of the frame materials. The results show that better power generation capacity can be achieved with thicker TE materials, lower phase transition temperature and suitable thermal conductivity of the frame materials.

  20. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  1. An asymmetric Zn//Ag doped polyaniline microparticle suspension flow battery with high discharge capacity

    Science.gov (United States)

    Wu, Sen; Zhao, Yongfu; Li, Degeng; Xia, Yang; Si, Shihui

    2015-02-01

    In this study, the effect of oxygen on the potential of reduced polyaniline (PANI) was investigated. In order to enhance the air oxidation of reduced PANI, several composites of PANI doped with co-catalysts were prepared, and a reasonable flow Zn//PANI suspension cell system was designed to investigate the discharge capacity of obtained PANI composite microparticle suspension cathodes. Compared with PANI doped with Cu2+, La+, Mn2+ and zinc protoporphyrin, Ag doped PANI composite at 0.90 weight percent doping of Ag gave the highest value of discharge capacity for the half-cell potential from the initial value to -0.20 V (vs. SCE). A comparison study on the electrochemical properties of both PANI and Ag doped PANI microparticle suspension was done by using cyclic voltammetry, AC Impedance. Due to partial utilization of Zn//air fuel cell, the discharge capacity for Ag doped PANI reached 470 mA h g-1 at the current density of 20 mA cm-2. At 15 mA cm-2, the discharge capacity even reached up to 1650 mA h g-1 after 220 h constant current discharge at the final discharge voltage of 0.65 V. This work demonstrates an effective and feasible approach toward obtaining high energy and power densities by a Zn//Ag-doped PANI suspension flow battery system combined with Zn//air fuel cell.

  2. Exploring the impact of reduced hydro capacity and lignite resources on the Macedonian power sector development

    Directory of Open Access Journals (Sweden)

    Taseska-Gjorgievskaa Verica

    2014-01-01

    Full Text Available The reference development pathway of the Macedonian energy sector highlights the important role that lignite and hydro power play in the power sector, each accounting for 40% of total capacity in 2021. In 2030, this dominance continues, although hydro has a higher share due to the retirement of some of the existing lignite plants. Three sensitivity runs of the MARKAL-Macedonia energy system model have been undertaken to explore the importance of these technologies to the system, considering that their resource may be reduced with time: (1 Reducing the availability of lignite from domestic mines by 50% in 2030 (with limited capacity of imports, (2 Removing three large hydro options, which account for 310 MW in the business-as-usual case, and (3 Both of the above restrictions. The reduction in lignite availability is estimated to lead to additional overall system costs of 0.7%, compared to hydro restrictions at only 0.1%. With both restrictions applied, the additional costs rise to over 1%, amounting to 348 M€ over the 25 year planning horizon. In particular, costs are driven up by an increasing reliance on electricity imports. In all cases, the total electricity generation decreases, but import increases, which leads to a drop in capacity requirements. In both, the lignite and the hydro restricted cases, it is primarily gas-fired generation and imports that “fill the gap”. This highlights the importance of an increasingly diversified and efficient supply, which should be promoted through initiatives on renewables, energy efficiency, and lower carbon emissions.

  3. High Power Diode Lasers Technology and Applications

    CERN Document Server

    Bachmann, Friedrich; Poprawe, Reinhart

    2007-01-01

    In a very comprehensive way this book covers all aspects of high power diode laser technology for materials processing. Basics as well as new application oriented results obtained in a government funded national German research project are described in detail. Along the technological chain after a short introduction in the second chapter diode laser bar technology is discussed regarding structure, manufacturing technology and metrology. The third chapter illuminates all aspects of mounting and cooling, whereas chapter four gives wide spanning details on beam forming, beam guiding and beam combination, which are essential topics for incoherently coupled multi-emitter based high power diode lasers. Metrology, standards and safety aspects are the theme of chapter five. As an outcome of all the knowledge from chapter two to four various system configurations of high power diode lasers are described in chapter six; not only systems focussed on best available beam quality but especially also so called "modular" set...

  4. Design and development of high voltage high power operational ...

    Indian Academy of Sciences (India)

    systems and the electron deflection systems. Power operational amplifiers have ... approach is cost and availability of high voltage devices in chip form. 2.2 Amplifier with opamp input stage .... power opamp, using chip passive components, semiconductor bare dice minimizes the size while increasing the reliability.

  5. Reduced filamentation in high power semiconductor lasers

    DEFF Research Database (Denmark)

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio....... Experimentally, we generate transverse current profiles by using standard lithography to define a digitated contact pad. Experimental results confirm that the current density is significantly altered and show completely filamentation-free operation up to 34 times threshold....

  6. Advanced Output Coupling for High Power Gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Guss, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lohr, John [General Atomics, La Jolla, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States); Bui, Thuc [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2016-11-28

    The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range of advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.

  7. Compact high-power terahertz radiation source

    Directory of Open Access Journals (Sweden)

    G. A. Krafft

    2004-06-01

    Full Text Available In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator on the return leg, is discussed. Because the beam is recirculated and not stored, short bunches may be produced that radiate coherently in the undulator, yielding exceptionally high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes, limits the charge-per-bunch possible in such a device.

  8. Germanate Glass Fiber Lasers for High Power

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-JP-TR-2016-0020 Germanate glass fiber lasers for high power David Lancaster THE UNIVERSITY OF ADELAIDE Final Report 01/04/2016...COVERED (From - To) 01-07-2014 to 30-06-2015 4. TITLE AND SUBTITLE Germanate glass fiber lasers for high power 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER...germanate based glasses with a specific focus on glass stability during thermal-cycling which is representative of the steps required to fabricate a doped

  9. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Cole, Wesley

    2016-07-18

    This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  10. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    Science.gov (United States)

    Manthiram, Arumugam (Inventor); Wu, Yan (Inventor)

    2010-01-01

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  11. LCA of electricity systems with high wind power penetration

    DEFF Research Database (Denmark)

    Turconi, Roberto; O' Dwyer, C. O.; Flynn, D.

    Electricity systems are shifting from being based on fossil fuels towards renewable sources to enhance energy security and mitigate climate change. However, by introducing high shares of variable renewables - such as wind and solar - dispatchable power plants are required to vary their output...... storage capacity reduces system operating costs at high wind penetrations and limits cycling, the emissions reductions may be negated when coupled with base load coal....... assessment (LCA). Cycling emissions from dispatchable generators due to part-load operation and start-ups [3] were included for the first time in LCA. Part-load operations significantly affected the average power plant efficiency, with all units seeing an average yearly efficiency 1-11% lower than optimal...

  12. Advanced Electrodes for High Power Li-ion Batteries

    Directory of Open Access Journals (Sweden)

    Christian M. Julien

    2013-03-01

    Full Text Available While little success has been obtained over the past few years in attempts to increase the capacity of Li-ion batteries, significant improvement in the power density has been achieved, opening the route to new applications, from hybrid electric vehicles to high-power electronics and regulation of the intermittency problem of electric energy supply on smart grids. This success has been achieved not only by decreasing the size of the active particles of the electrodes to few tens of nanometers, but also by surface modification and the synthesis of new multi-composite particles. It is the aim of this work to review the different approaches that have been successful to obtain Li-ion batteries with improved high-rate performance and to discuss how these results prefigure further improvement in the near future.

  13. Modeling the expenditure and reconstitution of work capacity above critical power.

    Science.gov (United States)

    Skiba, Philip Friere; Chidnok, Weerapong; Vanhatalo, Anni; Jones, Andrew M

    2012-08-01

    The critical power (CP) model includes two constants: the CP and the W' [P = (W' / t) + CP]. The W' is the finite work capacity available above CP. Power output above CP results in depletion of the W' complete depletion of the W' results in exhaustion. Monitoring the W' may be valuable to athletes during training and competition. Our purpose was to develop a function describing the dynamic state of the W' during intermittent exercise. After determination of V˙O(2max), CP, and W', seven subjects completed four separate exercise tests on a cycle ergometer on different days. Each protocol comprised a set of intervals: 60 s at a severe power output, followed by 30-s recovery at a lower prescribed power output. The intervals were repeated until exhaustion. These data were entered into a continuous equation predicting balance of W' remaining, assuming exponential reconstitution of the W'. The time constant was varied by an iterative process until the remaining modeled W' = 0 at the point of exhaustion. The time constants of W' recharge were negatively correlated with the difference between sub-CP recovery power and CP. The relationship was best fit by an exponential (r = 0.77). The model-predicted W' balance correlated with the temporal course of the rise in V˙O(2) (r = 0.82-0.96). The model accurately predicted exhaustion of the W' in a competitive cyclist during a road race. We have developed a function to track the dynamic state of the W' during intermittent exercise. This may have important implications for the planning and real-time monitoring of athletic performance.

  14. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M.; Mullender, B.; Druart, J. [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W.; Beddows, A. [ESTEC-The (Netherlands)

    1996-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  15. High performance computing in power and energy systems

    CERN Document Server

    Khaitan, Siddhartha Kumar

    2012-01-01

    The twin challenge of meeting global energy demands in the face of growing economies and populations and restricting greenhouse gas emissions is one of the most daunting ones that humanity has ever faced. Smart electrical generation and distribution infrastructure will play a crucial role in meeting these challenges. We would  need to develop capabilities to handle large volumes of data generated by the power system components like PMUs, DFRs and other data acquisition devices as well as by the capacity to process these data at high resolution via multi-scale and multi-period simulations, casc

  16. High impact data visualization with Power View, Power Map, and Power BI

    CERN Document Server

    Aspin, Adam

    2014-01-01

    High Impact Data Visualization with Power View, Power Map, and Power BI helps you take business intelligence delivery to a new level that is interactive, engaging, even fun, all while driving commercial success through sound decision-making. Learn to harness the power of Microsoft's flagship, self-service business intelligence suite to deliver compelling and interactive insight with remarkable ease. Learn the essential techniques needed to enhance the look and feel of reports and dashboards so that you can seize your audience's attention and provide them with clear and accurate information. Al

  17. Charging-discharging system with high power factor, high efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Soo; Joe, Kee Yeon; Byun, Young Bok; Koo, Heun Hoi [Korea Electrotechnology Research Institute (Korea, Republic of)

    1995-07-01

    This paper presents equipment for charging and discharging with high power factor and high efficiency. This equipment is consisted of 3{Phi} SPWM AC/DC converter for improving input current waveform and input power factor, and bidirectional DC/DC converter for electric isolation in the DC link Part. Therefore, Input power factor and the total efficiency in the proposed system can be increased more than in the conventional phase-controlled thyristor charging-discharging System. (author). 7 refs., 14 figs., 1 tab.

  18. Development of a high power femtosecond laser

    CSIR Research Space (South Africa)

    Neethling, PH

    2010-10-01

    Full Text Available The Laser Research Institute and the CSIR National Laser Centre are developing a high power femtosecond laser system in a joint project with a phased approach. The laser system consists of an fs oscillator and a regenerative amplifier. An OPCPA...

  19. High power Ar-Xe laser

    NARCIS (Netherlands)

    Witteman, W.J.; Gielkens, S.W.A.; Tskhai, V.N.; Peters, P.J.M.

    1998-01-01

    The discharge conditions of the multi-atmospheric e-beam sustained Ar-Xe laser are investigated. It is observed that the quasi-stationary period of a laser pulse depends on the e-beam current, the discharge power deposition and the gas density. The laser efficiency can be as high as 8%. The pulse

  20. Review on anionic redox for high-capacity lithium- and sodium-ion batteries

    Science.gov (United States)

    Zhao, Chenglong; Wang, Qidi; Lu, Yaxiang; Hu, Yong-Sheng; Li, Baohua; Chen, Liquan

    2017-05-01

    Rechargeable batteries, especially lithium-ion batteries, are now widely used as power sources for portable electronics and electric vehicles, but material innovations are still needed to satisfy the increasing demand for larger energy density. Recently, lithium- and sodium-rich electrode materials, including the A2MO3-family layered compounds (A  =  Li, Na; M  =  Mn4+, Ru4+, etc), have been extensively studied as potential high-capacity electrode materials for a cumulative cationic and anionic redox activity. Negatively charged oxide ions can potentially donate electrons to compensate for the absence of oxidable transition metals as a redox center to further increase the reversible capacity. Understanding and controlling the state-of-the-art anionic redox processes is pivotal for the design of advanced energy materials, highlighted in rechargeable batteries. Hence, experimental and theoretical approaches have been developed to consecutively study the diverting processes, states, and structures involved. In this review, we attempt to present a literature overview and provide insight into the reaction mechanism with respect to the anionic redox processes, proposing some opinions as target oriented. It is hoped that, through this discussion, the search for anionic redox electrode materials with high-capacity rechargeable batteries can be advanced, and practical applications realized as soon as possible.

  1. High power beta electron device - Beyond betavoltaics.

    Science.gov (United States)

    Ayers, William M; Gentile, Charles A

    2018-01-01

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. The approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cells convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 1013Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. The power source can use a variety of beta radioisotopes and scales by stacking the devices. Copyright © 2017. Published by Elsevier Ltd.

  2. Ultra-High Capacity Silicon Photonic Interconnects through Spatial Multiplexing

    Science.gov (United States)

    Chen, Christine P.

    -fabrication. Through ModePROP simulations, optimizing device performance dynamically post-fabrication is analyzed, through either electro-optical or thermo-optical means. By biasing the arm introducing the slight spectral offset, we can quantifiably improve device performance. Scaling bandwidth is experimentally demonstrated through the device at 3 modes, 2 wavelengths, and 40 Gb/s data rate for 240 Gb/s aggregate bandwidth, with the potential to reduce power penalty per the device optimization process we described. A main motivation for this on-chip spatial multiplexing is the need to reduce costs. As the laser source serves as the greatest power consumer in an optical system, mode-division multiplexing and other forms of spatial multiplexing can be implemented to push its potentially prohibitive cost metrics down. In order to demonstrate an intelligent platform capable of dynamically multicasting data and reallocating power as needed by the system, we must first initialize the switch fabric to control with an electronic interface. A dithering mechanism, whereby exact cross, bar, and sub-percentage states are enforced through the device, is described here. Such a method could be employed for actuating the device table of bias values to states automatically. We then employ a dynamic power reallocation algorithm through a data acquisition unit, showing real-time channel recovery for channels experiencing power loss by diverting power from paths that could tolerate it. The data that is being multicast through the system is experimentally shown to be error-free at 40 Gb/s data rate, when transmitting from one to three clients and going from automatic bar/cross states to equalized power distribution. For the last portion of this topic, the switch fabric was inserted into a high-performance computing system. In order to run benchmarks at 10 Gb/s data ontop of the switch fabric, a newer model of the control plane was implemented to toggle states according to the command issued by the server

  3. Thermal analysis of large-capacity LiFePO4 power batteries for electric vehicles

    Science.gov (United States)

    Lin, Chunjing; Xu, Sichuan; Li, Zhao; Li, Bin; Chang, Guofeng; Liu, Jinling

    2015-10-01

    Excellent design of a thermal management system requires good understanding of the thermal behaviors of power batteries. In this study, the electrochemical and heat performances of a prismatic 40 Ah C/LiFePO4 battery are investigated with a focus on the influence of temperature on cell capacity in a mixed charge-discharge cycle. In addition, the heat generation and energy efficiency of a battery are determined during charge and discharge at different current rates. The experimental results indicate that in certain temperature ranges, both the charging and discharging capacities increase significantly as the temperature increases. In addition, the energy efficiency reaches more than 95% when the battery runs at a current rate of 0.33 C-2 C and temperature of 25-45 °C. A thermal mathematical model based on experimentally obtained internal resistances and entropy coefficients is developed. Using this model, the increase in the battery temperature is simulated based on specific heat values that are measured experimentally and calculated theoretically. The results from the simulation indicate that the temperature increase agrees well with the experimental values, the measured specific heat provides better results than the calculated specific heat and the heat generated decreases as the temperature increases.

  4. Laminar composite structures for high power actuators

    Science.gov (United States)

    Hobosyan, M. A.; Martinez, P. M.; Zakhidov, A. A.; Haines, C. S.; Baughman, R. H.; Martirosyan, K. S.

    2017-05-01

    Twisted laminar composite structures for high power and large-stroke actuators based on coiled Multi Wall Carbon Nanotube (MWNT) composite yarns were crafted by integrating high-density Nanoenergetic Gas Generators (NGGs) into carbon nanotube sheets. The linear actuation force, resulting from the pneumatic force caused by expanding gases confined within the pores of laminar structures and twisted carbon nanotube yarns, can be further amplified by increasing NGG loading and yarns twist density, as well as selecting NGG compositions with high energy density and large-volume gas generation. Moreover, the actuation force and power can be tuned by the surrounding environment, such as to increase the actuation by combustion in ambient air. A single 300-μm-diameter integrated MWNT/NGG coiled yarn produced 0.7 MPa stress and a contractile specific work power of up to 4.7 kW/kg, while combustion front propagated along the yarn at a velocity up to 10 m/s. Such powerful yarn actuators can also be operated in a vacuum, enabling their potential use for deploying heavy loads in outer space, such as to unfold solar panels and solar sails.

  5. Aerobic power and flight capacity in birds: a phylogenetic test of the heart-size hypothesis.

    Science.gov (United States)

    Nespolo, Roberto F; González-Lagos, César; Solano-Iguaran, Jaiber J; Elfwing, Magnus; Garitano-Zavala, Alvaro; Mañosa, Santiago; Alonso, Juan Carlos; Altimiras, Jordi

    2018-01-09

    Flight capacity is one of the most important innovations in animal evolution; it only evolved in insects, birds, mammals and the extinct pterodactyls. Given that powered flight represents a demanding aerobic activity, an efficient cardiovascular system is essential for the continuous delivery of oxygen to the pectoral muscles during flight. It is well known that the limiting step in the circulation is stroke volume (the volume of blood pumped from the ventricle to the body during each beat), which is determined by the size of the ventricle. Thus, the fresh mass of the heart represents a simple and repeatable anatomical measure of the aerobic power of an animal. Although several authors have compared heart masses across bird species, a phylogenetic comparative analysis is still lacking. By compiling heart sizes for 915 species and applying several statistical procedures controlling for body size and/or testing for adaptive trends in the dataset (e.g. model selection approaches, phylogenetic generalized linear models), we found that (residuals of) heart size is consistently associated with four categories of flight capacity. In general, our results indicate that species exhibiting continuous hovering flight (i.e. hummingbirds) have substantially larger hearts than other groups, species that use flapping flight and gliding show intermediate values, and that species categorized as poor flyers show the smallest values. Our study reveals that on a broad scale, routine flight modes seem to have shaped the energetic requirements of birds sufficiently to be anatomically detected at the comparative level. © 2018. Published by The Company of Biologists Ltd.

  6. Long Term Effects of Different Training Modalities on Power, Speed, Skill and Anaerobic Capacity in Young Male Basketball Players

    OpenAIRE

    Balčiūnas, Mindaugas; Stonkus, Stanislovas; Abrantes, Catarina; Sampaio, Jaime

    2006-01-01

    The purpose of this study was to identify the effect of 4 months of different training modalities on power, speed, skill and anaerobic capacity in 15-16 year old male basketball players. Thirty five Lithuanian basketball players were randomly assigned into three groups: power endurance group (intermittent exercise, PE, n = 12), general endurance group (continuous exercise, GE, n = 11) and control group (regular basketball training, CG, n = 12). The power endurance model was based in basketbal...

  7. High specific power lithium polymer rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Chu, M.Y.; De Jonghe, L.; Visco, S. [PolyPlus Battery Co., Berkeley, CA (United States)

    1996-11-01

    PolyPlus Battery Company (PPBC) is developing an advanced lithium polymer rechargeable battery based on its proprietary positive electrode. This battery offers high steady-state (> 250 W/kg) and peak power densities (3,000 W/kg), in a low cost and environmentally benign format. This PolyPlus lithium polymer battery also delivers high specific energy. The first generation battery has an energy density of 100 Wh/kg (120 Wh/l) and subsequent generations increases the performance in excess of 500 Wh/kg (600 Wh/l). The high power and energy densities, along with the low toxicity and low cost of materials used in the PolyPlus solid-state cell makes this battery exceptionally attractive for both hybrid and electric vehicle applications.

  8. Concise Approach for Determining the Optimal Annual Capacity Shortage Percentage using Techno-Economic Feasibility Parameters of PV Power System

    Science.gov (United States)

    Alghoul, M. A.; Ali, Amer; Kannanaikal, F. V.; Amin, N.; Sopian, K.

    2017-11-01

    PV power systems have been commercially available and widely used for decades. The performance of a reliable PV system that fulfils the expectations requires correct input data and careful design. Inaccurate input data of the techno-economic feasibility would affect the size, cost aspects, stability and performance of PV power system on the long run. The annual capacity shortage is one of the main input data that should be selected with careful attention. The aim of this study is to reveal the effect of different annual capacity shortages on the techno-economic feasibility parameters and determining the optimal value for Baghdad city location using HOMER simulation tool. Six values of annual capacity shortage percentages (0%, 1%, 2%, 3%, 4%, and 5%), and wide daily load profile range (10 kWh - 100 kWh) are implemented. The optimal annual capacity shortage is the value that always "wins" when each techno-economic feasibility parameter is at its optimal/ reasonable criteria. The results showed that the optimal annual capacity shortage that reduces significantly the cost of PV power system while keeping the PV system with reasonable technical feasibility is 3%. This capacity shortage value can be carried as a reference value in future works for Baghdad city location. Using this approach of analysis at other locations, annual capacity shortage can be always offered as a reference value for those locations.

  9. Free-space optical communications with peak and average constraints: High SNR capacity approximation

    KAUST Repository

    Chaaban, Anas

    2015-09-07

    The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel with both average and peak intensity constraints is studied. A new capacity lower bound is derived by using a truncated-Gaussian input distribution. Numerical evaluation shows that this capacity lower bound is nearly tight at high signal-to-noise ratio (SNR), while it is shown analytically that the gap to capacity upper bounds is a small constant at high SNR. In particular, the gap to the high-SNR asymptotic capacity of the channel under either a peak or an average constraint is small. This leads to a simple approximation of the high SNR capacity. Additionally, a new capacity upper bound is derived using sphere-packing arguments. This bound is tight at high SNR for a channel with a dominant peak constraint.

  10. Website Design Guidelines: High Power Distance and High Context Culture

    Directory of Open Access Journals (Sweden)

    Tanveer Ahmed

    2009-06-01

    Full Text Available This paper aims to address the question of offering a culturally adapted website for a local audience. So far, in the website design arena the vast majority of studies examined mainly Western and the American (low power distance and low context culture disregarding possible cultural discrepancies. This study fills this gap and explores the key cultural parameters that are likely to have an impact on local website design for Asian-Eastern culture high power distance and high context correlating with both Hofstede’s and Hall’s cultural dimensions. It also reviews how website localisation may be accomplished more effectively by extracting the guidelines from two different yet compatible cultural dimensions: high power distance and high context.

  11. MULTIPULSE - high resolution and high power in one TDEM system

    Science.gov (United States)

    Chen, Tianyou; Hodges, Greg; Miles, Philip

    2015-09-01

    An airborne time domain electromagnetic (TEM) system with high resolution and great depth of exploration is desired for geological mapping as well as for mineral exploration. The MULTIPULSE technology enables an airborne TEM system to transmit a high power pulse (a half-sine, for instance) and one or multiple low power pulse(s) (trapezoid or square) within a half-cycle. The high power pulse ensures good depth of exploration and the low power pulse allows a fast transmitter current turn off and earlier off-time measurement thus providing higher frequency signals, which allows higher near-surface resolution and better sensitivity to weak conductors. The power spectrum of the MULTIPULSE waveform comprising a half-sine and a trapezoid pulse clearly shows increased power in the higher frequency range (> ~2.3 kHz) compared to that of a single half-sine waveform. The addition of the low power trapezoid pulse extends the range of the sensitivity 10-fold towards the weak conductors, expanding the geological conductivity range of a system and increasing the scope of its applications. The MULTIPULSE technology can be applied to standard single-pulse airborne TEM systems on both helicopter and fixed-wing. We field tested the HELITEM MULTIPULSE system over a wire-loop in Iroquois Falls, demonstrating the different sensitivity of the high and low power pulses to the overburden and the wire-loop. We also tested both HELITEM and GEOTEM MULTIPULSE systems over a layered oil sand geologic setting in Fort McMurray, Alberta, Canada. The results show comparable shallow geologic resolution of the MULTIPULSE to that of the RESOLVE system while maintaining superior depth of exploration, confirming the increased geological conductivity range of a system employing MULTIPULSE compared to the standard single-pulse systems.

  12. High Power UV LED Industrial Curing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  13. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries.

    Science.gov (United States)

    Shi, Ji-Lei; Xiao, Dong-Dong; Ge, Mingyuan; Yu, Xiqian; Chu, Yong; Huang, Xiaojing; Zhang, Xu-Dong; Yin, Ya-Xia; Yang, Xiao-Qing; Guo, Yu-Guo; Gu, Lin; Wan, Li-Jun

    2018-01-15

    Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1 . The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High-capacity electrode materials for electrochemical energy storage

    Indian Academy of Sciences (India)

    2015-06-02

    Jun 2, 2015 ... electrolyte to form a decomposition product that can be detrimental to capacity retention and cycle life. To stabilize such interface reactivity, the surface of the cathode particle is coated with inorganic oxides that are conducive to lithium transport. There have been numerous examples in literature in the ...

  15. Power balance in highly loaded fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Lister, G G [Osram Sylvania, 71 Cherry Hill Drive, Beverly, MA 01915 (United States); Curry, J J [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8422 (United States); Lawler, J E [Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706 (United States)

    2004-11-21

    Discrepancies reported in the literature between numerical predictions and experimental measurements in low-pressure Hg discharges at high current densities are considered. Elements of a one-dimensional fluid model and recent spectroscopic and Langmuir probe measurements are combined in a semi-empirical way to individually examine components of the positive column power balance and the discharge conductivity. At a Hg vapour pressure of 0.81 Pa (6.1 mTorr) and a current density of 300 mA cm{sup -2}, previous discrepancies in the power balance and discharge conductivity are simultaneously resolved by assuming a higher electron density than that obtained from the Langmuir probe measurements. This conclusion is supported by independent measurements of ion density reported in a companion paper. The importance of radial cataphoresis under these conditions, particularly with regard to radiation transport, is highlighted. This work is of particular interest for the design of fluorescent lamps operating at high current densities.

  16. Methods for High Power EM Pulse Measurement

    Directory of Open Access Journals (Sweden)

    P. Fiala

    2006-12-01

    Full Text Available There are some suitable methods for the measurement of ultra-short solitary electromagnetic pulses that can be generated by high power pulsed generators. The measurement methods properties have to correspond to the fact whether we want to measure pulses of voltage, current or free-space electromagnetic wave. The need for specific measurement methods occurred by the development of high power microwave pulse generator. Applicable methods are presented in this paper. The method utilizing Faraday's induction law allows the measurement of generated current. For the same purpose the magneto-optic method can be utilized, with its advantages. For measurement of output microwave pulse of the generator the calorimetric method was designed and realized.

  17. Present and Future Trends in High Power Generation

    NARCIS (Netherlands)

    Heijster, R.M.E.M. van; Schouten, J.M.

    1995-01-01

    Modern warfare requires high levels of microwave power for various applications. Semiconductors are only suitable for low and medium power levels, for high power generation microwave tubes are still the most effective solution.

  18. Turkey's role as a regional and global player and its power capacity: Turkey's engagement with other emerging states

    Directory of Open Access Journals (Sweden)

    Aylin Gürzel

    2014-06-01

    Full Text Available Turkey's role as a regional power has increased since Justice and Development Party (AKP came to power. AKP leadership not only aspired to become a regional power but also a global player. Turkey has, therefore, assumed different roles: the "natural leader" of the region; a historical "big brother;" and the "protector" of the Muslim minorities. Turkey has also assumed a "mediator" and a "facilitator" role by trying to negotiate a deal with an emerging power such as Brazil in order to attempt to resolve the controversial Iranian nuclear issue. By making use of recent developments, Turkey tried to solidify its long desired role as a "rising power" by increasing its influence in its neighborhood and engaging with other emerging powers. The concept "regional power" is a context-based notion. In other words, the location and geography are contesting and disputed approaches. Notwithstanding the fact that concepts such as "region" and "power" are social constructed reality, this paper analyzes the notion of 'regional power' as a subcategory of 'power'. In this context, this paper will make use of Stefan Schim's criteria while analyzing Turkey's power capacity in the region. Schim posits that the "regional power" needs to have a "role definition," and it should possess material power (hard power. It should also have economic as well as diplomatic and organizational capacity. Its power whether it is 'soft power' (attraction of ones idea's and or the ability to set the political agenda in a way that shapes the preferences of other actors or 'hard power' (material power that can be measured-economic and military power needs to be acknowledged by other actors in the region. It should also be accepted by great powers and emerging powers that are determinant in the international system. dditionally, the regional power (and/ or global power needs to have leverage, thus its power projection needs to yield results. Kalevi Holsti's role theory will be used as

  19. Analysis of Highly Wind Power Integrated Power System model performance during Critical Weather conditions

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2014-01-01

    . For this purpose, the power system model has been developed that represents the relevant dynamic features of power plants and compensates for power imbalances caused by the forecasting error during critical weather conditions. The regulating power plan, as an input time series for the developed power system model......Secure power system operation of a highly wind power integrated power system is always at risk during critical weather conditions, e.g. in extreme high winds. The risk is even higher when 50% of the total electricity consumption has to be supplied by wind power, as the case for the future Danish......, is provided by the hour-ahead power balancing model, i.e. Simulation power Balancing model (SimBa. The regulating power plan is prepared from day-ahead power production plan and hour-ahead wind power forecast. The wind power (forecasts and available) are provided by the Correlated Wind power fluctuations (Cor...

  20. High Capacity Anodes for Advanced Lithium Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion batteries are slowly being introduced into satellite power systems, but their life still presents concerns for longer duration missions. Future NASA...

  1. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes.

    Science.gov (United States)

    Cui, Li-Feng; Ruffo, Riccardo; Chan, Candace K; Peng, Hailin; Cui, Yi

    2009-01-01

    Silicon is an attractive alloy-type anode material for lithium ion batteries because of its highest known capacity (4200 mAh/g). However silicon's large volume change upon lithium insertion and extraction, which causes pulverization and capacity fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large volume changes. In this letter, we introduce a core-shell design of silicon nanowires for highpower and long-life lithium battery electrodes. Silicon crystalline-amorphous core-shell nanowires were grown directly on stainless steel current collectors by a simple one-step synthesis. Amorphous Si shells instead of crystalline Si cores can be selected to be electrochemically active due to the difference of their lithiation potentials. Therefore, crystalline Si cores function as a stable mechanical support and an efficient electrical conducting pathway while amorphous shells store Li(+) ions. We demonstrate here that these core-shell nanowires have high charge storage capacity ( approximately 1000 mAh/g, 3 times of carbon) with approximately 90% capacity retention over 100 cycles. They also show excellent electrochemical performance at high rate charging and discharging (6.8 A/g, approximately 20 times of carbon at 1 h rate).

  2. Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes

    KAUST Repository

    Cui, Li-Feng

    2009-01-14

    Silicon is an attractive alloy-type anode material for lithium ion batteries because of its highest known capacity (4200 mAh/g). However silicon\\'s large volume change upon lithium insertion and extraction, which causes pulverization and capacity fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large volume changes. In this letter, we introduce a core-shell design of silicon nanowires for highpower and long-life lithium battery electrodes. Silicon crystalline- amorphous core-shell nanowires were grown directly on stainless steel current collectors by a simple one-step synthesis. Amorphous Si shells instead of crystalline Si cores can be selected to be electrochemically active due to the difference of their lithiation potentials. Therefore, crystalline Si cores function as a stable mechanical support and an efficient electrical conducting pathway while amorphous shells store Li ions. We demonstrate here that these core-shell nanowires have high charge storage capacity (̃1000 mAh/g, 3 times of carbon) with ̃90% capacity retention over 100 cycles. They also show excellent electrochemical performance at high rate charging and discharging (6.8 A/g, ̃20 times of carbon at 1 h rate). © 2009 American Chemical Society.

  3. High Power Argon, Nitrogen Plasma Torches

    Science.gov (United States)

    Hakki, A.; Kashapov, N.; Sadikov, K.

    2017-11-01

    The paper describes a high power supply for Argon and Nitrogen plasma torches. A high frequency was used in order to drive the pulse width modulation circuit. The average output current consumption (AOCC) was modified from 20A up to 80A by increasing the pulse width from 2μsec up to 3μsec for Argon gas plasma torches. The (AOCC) was reduced from 70A down to 25A by increasing the pulse width from 6μsec up to 8μsec in the case of Nitrogen gas plasma torches.

  4. High Voltage Power Supply With High Output Current and Low Power Consumption for Photomultiplier Tubes

    Science.gov (United States)

    Cunha, José Paulo V. S.; Begalli, Marcia; Bellar, Maria Dias

    2012-04-01

    In some applications, photomultiplier tubes (PMTs) are powered by battery based circuits, where the available energy is severely limited. The most simple approach to design high voltage power supplies (HVPS) for PMTs has considered resistive voltage dividers in order to bias the dynodes. However, this approach usually results in high power losses and, consequently, this undermines the PMT performance. In this work, the proposed solution is the use of a power circuit based on the forward converter connected to a transformer built with several secondary windings. Each secondary voltage is rectified and filtered to eliminate voltage ripple. Each dynode voltage is supplied by a rectified secondary voltage. The proposed topology provides low power consumption as well as low sensitivity of the PMT gain with respect to the dynode currents. Taking into account the Waste Electrical and Electronic Equipment Directive (WEEE), this HVPS has been designed to allow the recycling of old PMTs.

  5. High performance computing in power and energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Khaitan, Siddhartha Kumar [Iowa State Univ., Ames, IA (United States); Gupta, Anshul (eds.) [IBM Watson Research Center, Yorktown Heights, NY (United States)

    2013-07-01

    The twin challenge of meeting global energy demands in the face of growing economies and populations and restricting greenhouse gas emissions is one of the most daunting ones that humanity has ever faced. Smart electrical generation and distribution infrastructure will play a crucial role in meeting these challenges. We would need to develop capabilities to handle large volumes of data generated by the power system components like PMUs, DFRs and other data acquisition devices as well as by the capacity to process these data at high resolution via multi-scale and multi-period simulations, cascading and security analysis, interaction between hybrid systems (electric, transport, gas, oil, coal, etc.) and so on, to get meaningful information in real time to ensure a secure, reliable and stable power system grid. Advanced research on development and implementation of market-ready leading-edge high-speed enabling technologies and algorithms for solving real-time, dynamic, resource-critical problems will be required for dynamic security analysis targeted towards successful implementation of Smart Grid initiatives. This books aims to bring together some of the latest research developments as well as thoughts on the future research directions of the high performance computing applications in electric power systems planning, operations, security, markets, and grid integration of alternate sources of energy, etc.

  6. A Novel Method for Enhancement of System Regulating Capacity by using Seawater Desalination Plant in a Small Island Power System

    Science.gov (United States)

    Yoshihara, Toru; Yokoyama, Akihiko; Imanaka, Masaki; Onda, Yusuke; Baba, Jumpei; Kuniba, Yusuke; Higa, Naoto; Asato, Sadao

    Recently, more and more unstable renewable energy based generations such as photovoltaic generations and wind turbine generations have been installed into power systems. This paper focuses a small island power system operation and proposes a novel control method of power consumption of a seawater desalination plant as a controllable load in order to secure more regulating capacity of the power system considering the customer's convenience of the desalination plant. Through a frequency analysis simulation, fuel cost can be reduced and system frequency fluctuation can be suppressed for the proposed control method of seawater desalination plant.

  7. Assessment of Potential Capacity Increases at Combined Heat and Power Facilities Based on Available Corn Stover and Forest Logging Residues

    Directory of Open Access Journals (Sweden)

    Donald L. Grebner

    2013-08-01

    Full Text Available Combined Heat and Power (CHP production using renewable energy sources is gaining importance because of its flexibility and high-energy efficiency. Biomass materials, such as corn stover and forestry residues, are potential sources for renewable energy for CHP production. In Mississippi, approximately 4.0 MT dry tons of woody biomass is available annually for energy production. In this study, we collected and analyzed 10 years of corn stover data (2001–2010 and three years of forest logging residue data (1995, 1999, and 2002 in each county in Mississippi to determine the potential of these feed stocks for sustainable CHP energy production. We identified six counties, namely Amite, Copiah, Clarke, Wayne, Wilkinson and Rankin, that have forest logging residue feedstocks to sustain a CHP facility with a range of capacity between 8.0 and 9.8 MW. Using corn stover alone, Yazoo and Washington counties can produce 13.4 MW and 13.5 MW of energy, respectively. Considering both feedstocks and based on a conservative amount of 30% available forest logging residue and 33% corn stover, we found that 20 counties have adequate supply for a CHP facility with a capacity of 8.3 MW to 19.6 MW.

  8. High peak power diode stacks for high energy lasers

    Science.gov (United States)

    Negoita, Viorel C.; Vethake, Thilo; Jiang, John; Roff, Robert; Shih, Ming; Duck, Richard; Bauer, Marc; Mite, Roberto; Boucke, Konstantin; Treusch, Georg

    2015-02-01

    High energy solid state lasers are being developed for fusion experiments and other research applications where high energy per pulse is required but the repetition rate is rather low, around 10Hz. We report our results on high peak power diode laser stacks used as optical pumps for these lasers. The stacks are based on 10 mm bars with 4 mm cavity length and 55% fill factor, with peak power exceeding 500 W per bar. These bars are stacked and mounted on a cooler which provides backside cooling and electrical insulation. Currently we mount 25 bars per cooler for a nominal peak power of 12.5 kW, but in principle the mounting scheme can be scaled to a different number of devices depending on the application. Pretesting of these bars before soldering on the cooler enables us to select devices with similar wavelength and thus we maintain tight control of the spectral width (FWHM less than 6 nm). Fine adjustments of the centroid wavelength can be done by means of temperature of the cooling fluid or bias current. The available wavelength range spans from 880 nm to 1000 nm, and the wavelength of the entire assembly of stacks can be controlled to within 0.5 nm of the target value, which makes these stacks suitable for pumping a variety of gain media. The devices are fast axis collimated, with over 95% power being collimated in 6 mrad (full angle). The slow axis divergence is 9° (full angle) for 95% power content.

  9. Industrial Applications of High Average Power FELS

    CERN Document Server

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  10. Optimized VCSELs for high-power arrays

    Science.gov (United States)

    Moench, Holger; Kolb, Johanna S.; Engelhardt, Andreas P.; Gerlach, Philipp; Jaeger, Roland; Pollmann-Retsch, Jens; Weichmann, Ulrich; Witzigmann, Bernd

    2014-02-01

    High-power VCSEL systems with multi kilowatt output power require a good electro-optical efficiency at the point of operation i.e. at elevated temperature. The large number of optimization parameters can be structured in a way that separates system and assembly considerations from the minimization of electrical and optical losses in the epitaxially grown structure. Temperature dependent functions for gain parameters, internal losses and injection efficiency are derived from a fit to experimental data. The empirical description takes into account diameter dependent effects like current spreading or temperature dependent ones like voltage drops over hetero-interfaces in the DBR mirrors. By evaluating experimental measurements of the light output and voltage characteristics over a large range of temperature and diameter, wafer-characteristic parameters are extracted allowing to predict the performance of VCSELs made from this material in any array and assembly configuration. This approach has several beneficial outcomes: Firstly, it gives a general description of a VCSEL independent of its geometry, mounting and detuning, secondly, insights into the structure and the underlying physics can be gained that lead to the improvement potential of the structure and thirdly the performance of the structure in arrays and modules can be predicted. Experimental results validate the approach and demonstrate the significantly improved VCSEL efficiency and the benefit in high power systems.

  11. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    Directory of Open Access Journals (Sweden)

    Sira Maria Karvinen

    2016-07-01

    Full Text Available The production of heat , i.e. thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect body temperature. Here we use rat models that differ for maximal running capacity (Low capacity runners, LCR and High capacity Runners, HCR to study the connection between PA and body temperature. Ten HCR and ten LCR female rats were studied between 9 and 21 months of age. Rectal temperature of HCR and LCR rats was measured before and after one year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs 21 months of age. HCRs had on average 1.3C higher body temperature than LCRs (p < 0.001. Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a marked impact on the body temperature of HCRs (p < 0.001 allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c and OXPHOS contents in the skeletal muscle (p < 0.050. These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050, but not that of HCRs. In conclusion, rats born with high intrinsic aerobic capacity and better health have higher body temperature compared to rats born with low aerobic

  12. Energy system, electricity market and economic studies on increasing nuclear power capacity; Ydinvoimahankkeiden periaatepaeaetoekseen liittyvaet energia- ja kansantaloudelliset selvitykset

    Energy Technology Data Exchange (ETDEWEB)

    Forsstrom, J.; Pursiheimo, E.; Kekkonen, V.; Honkatukia, J.

    2010-04-15

    Objective of this research project is to examine effects of addition of nuclear capacity from three different angles by using energy system, electricity market and economic analysis. In each area the analysis is based on computational methods. Finland is a member of Nordic electricity market which is further connected to networks of Continental Europe and Russia. Due to the foreign connections Finland has been able to import inexpensive electricity from its neighboring countries and this state is expected to continue. Addition of nuclear capacity lowers electricity import demand, affects level of electricity price decreasingly and decreases shortfall of installed production capacity. Substantial additions of nuclear power capacity and generous import supply have disadvantageous effect on profitability of combined heat and power production. The development of import possibilities depends on progression of difficult-to-estimate balance between electricity consumption and production in the neighboring countries. Investments on nuclear power increase national product during the construction phase. Growth of employment is also rather significant, especially during the construction phase. In the long term permanent jobs will be created too. Increase of employment is held back by increasing real wages, but it is though evident that consumer purchasing power is improved due to these nuclear power developments. (orig.)

  13. Digitally Controlled High Availability Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    MacNair, David; /SLAC

    2008-09-25

    This paper reports the design and test results on novel topology, high-efficiency, and low operating temperature, 1,320-watt power modules for high availability power supplies. The modules permit parallel operation for N+1 redundancy with hot swap capability. An embedded DSP provides intelligent start-up and shutdown, output regulation, general control and fault detection. PWM modules in the DSP drive the FET switches at 20 to 100 kHz. The DSP also ensures current sharing between modules, synchronized switching, and soft start up for hot swapping. The module voltage and current have dedicated ADCs (>200 kS/sec) to provide pulse-by-pulse output control. A Dual CAN bus interface provides for low cost redundant control paths. Over-rated module components provide high reliability and high efficiency at full load. Low on-resistance FETs replace conventional diodes in the buck regulator. Saturable inductors limit the FET reverse diode current during switching. The modules operate in a two-quadrant mode, allowing bipolar output from complimentary module groups. Controllable, low resistance FETs at the input and output provide fault isolation and allow module hot swapping.

  14. Binders and Hosts for High-Capacity Lithium-ion Battery Anodes

    Science.gov (United States)

    Dufficy, Martin Kyle

    ≤ 20 wt% tin result in small tin (metallic and tin oxide) particles (≤ 15 nm) within the composite-CNF matrix, which yield long cycle-lives; large reversible capacities of ˜ 600 mAh g-1 are observed at 0.2-C rates, while capacities of ˜ 400 mAh g-1 (double the capacity of CNFs) are observed after hundreds of cycles at 2-C rates. The second method comprises an approach to enhance the cycle life of silicon anodes. Many researchers believe that Si is the future anode material of LIBs, and Si is capable of providing a much needed boost in overall cell performance. Silicon has the highest known charge capacity at ˜ 3579 mAh g-1, nearly an order of magnitude larger than graphite (372 mAh g-1). In attempt to realize the entire capacity of Si anodes, we use binding agents to prolong cycle life. Binding agents enhance capacity retention via favorable interactions with cell components such as active materials and electrolytes. In this study, we introduce galactomannans (specifically, guar) as viable, inexpensive, biopolymer binders for Si electrodes. In attempt to elucidate the role of the binder in Si electrodes, we study guar-electrode and -electrolyte interactions that lead to electrochemical performance enhancements. We recognize that there are deficiencies in guar-silicon systems, which we address in our following approach. Notably, we develop a guar-derived binder to increase the strength and conductivity of Si-based electrodes by crosslinking guar and carbon black dispersions. The crosslinked binders, in effect, enhance electrode adhesion and hinder electrode cracking by self-healing. This study monitors gelation via rheological methods and assesses effects of crosslinking density on physical and electrochemical properties. Lastly, we consider a vacancy-induced manganese vanadate as high-capacity, high-power anodes for LIBs. Rather than assessing nanoparticles, we tailored molecular structure to enhance electrochemical performances. X-ray diffraction studies

  15. Temporal Processing Capacity in High-Level Visual Cortex Is Domain Specific.

    Science.gov (United States)

    Stigliani, Anthony; Weiner, Kevin S; Grill-Spector, Kalanit

    2015-09-09

    Prevailing hierarchical models propose that temporal processing capacity--the amount of information that a brain region processes in a unit time--decreases at higher stages in the ventral stream regardless of domain. However, it is unknown if temporal processing capacities are domain general or domain specific in human high-level visual cortex. Using a novel fMRI paradigm, we measured temporal capacities of functional regions in high-level visual cortex. Contrary to hierarchical models, our data reveal domain-specific processing capacities as follows: (1) regions processing information from different domains have differential temporal capacities within each stage of the visual hierarchy and (2) domain-specific regions display the same temporal capacity regardless of their position in the processing hierarchy. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. Notably, domain-specific temporal processing capacities are not apparent in V1 and have perceptual implications. Behavioral testing revealed that the encoding capacity of body images is higher than that of characters, faces, and places, and there is a correspondence between peak encoding rates and cortical capacities for characters and bodies. The present evidence supports a model in which the natural statistics of temporal information in the visual world may affect domain-specific temporal processing and encoding capacities. These findings suggest that the functional organization of high-level visual cortex may be constrained by temporal characteristics of stimuli in the natural world, and this temporal capacity is a characteristic of domain-specific networks in high-level visual cortex. Significance statement: Visual stimuli bombard us at different rates every day. For example, words and scenes are typically stationary and vary at slow rates. In contrast, bodies are dynamic

  16. Active and Passive RF Components for High-Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nantista, Christopher D.

    2002-09-06

    In recent years, R&D for pulse compression and power distribution systems for the Next Linear Collider has led to the invention of many novel rf components, some of which must handle up to 600 MW of pulsed power at X-band. These include passive waveguide components, active switch designs, and non-reciprocal devices. Among the former is a class of multi-moded, highly efficient rf components based on planar geometries with overmoded rectangular ports. Multi-moding allows us, by means of input phasing, to direct power to different locations through the same waveguide. Planar symmetry allows the height to be increased to improve power handling capacity. Features that invite breakdown, such as coupling slots, irises and H-plane septa, are avoided. This class includes hybrids, directional couplers, an eight-port superhybrid/dual-mode launcher, a mode-selective extractor, mode-preserving bends, a rectangular mode converter, and mode-mixers. We are able to utilize such rectangular waveguide components in systems incorporating low-loss, circular waveguide delay lines by means of specially designed tapers that efficiently transform multiple rectangular waveguide modes into their corresponding circular waveguide modes, specifically TE10 and TE20 into circular TE11 and TE01. These extremely compact tapers can replace well-known mode converters such as the Marie type. Another component, a reflective TE01-TE02 mode converter in circular waveguide, allows us to double the delay in reflective or resonant delay lines. Ideas for multi-megawatt active components, such as switches, have also been pursued. Power-handling capacity for these is increased by making them also highly overmoded. We present a design methodology for active rf magnetic components which are suitable for pulse compression systems of future X-band linear colliders. We also present an active switch based on a PIN diode array. This component comprises an array of active elements arranged so that the electric fields

  17. Earthquake Triggering by High Power Electric Pulses

    Science.gov (United States)

    Novikov, Victor; Konev, Yuri; Zeigarnik, Vladimir

    2010-05-01

    The study carried out by the Joint Institute for High Temperatures in cooperation with the Institute of Physics of the Earth and the Research Station in Bishkek of Russian Academy of Sciences in 1999-2008 showed a response of weak seismicity at field experiments with electric pulsed power systems, as well as acoustic emission of rock specimens under laboratory conditions on high-power electric current pulses applied to the rocks. It was suggested that the phenomenon discovered may be used in practice for partial release of tectonic stresses in the Earth crust for earthquake hazard mitigation. Nevertheless, the mechanism of the influence of man-made electromagnetic field on the regional seismicity is not clear yet. One of possible cause of the phenomenon may be pore fluid pressure increase in the rocks under stressed conditions due to Joule heat generation by electric current injected into the Earth crust. It is known that increase of pore fluid pressure in the fault zone over a critical pressure of about 0.05 MPa is sufficient to trigger an earthquake if the fault is near the critical state due to accumulated tectonic deformations. Detailed 3D-calculaton of electric current density in the Earth crust of the Northern Tien Shan provided by pulsed electric high-power system connected to grounded electric dipole showed that at the depth of earthquake epicenters (over 5 km) the electric current density is lower than 10-7 A/m2 that is not sufficient for increase of pressure in the fluid-saturated porous geological medium due to Joule heat generation, which may provide formation of cracks resulting in the fault propagation and release of tectonic stresses in the Earth crust. Nevertheless, under certain conditions, when electric current will be injected into the fault through the casing pipes of two deep wells with preliminary injection of conductive fluid into the fault, the current density may be high enough for significant increase of mechanic pressure in the porous two

  18. Investigation of Metal Oxide/Carbon Nano Material as Anode for High Capacity Lithium-ion Cells

    Science.gov (United States)

    Wu, James Jianjun; Hong, Haiping

    2014-01-01

    NASA is developing high specific energy and high specific capacity lithium-ion battery (LIB) technology for future NASA missions. Current state-of-art LIBs have issues in terms of safety and thermal stability, and are reaching limits in specific energy capability based on the electrochemical materials selected. For example, the graphite anode has a limited capability to store Li since the theoretical capacity of graphite is 372 mAh/g. To achieve higher specific capacity and energy density, and to improve safety for current LIBs, alternative advanced anode, cathode, and electrolyte materials are pursued under the NASA Advanced Space Power System Project. In this study, the nanostructed metal oxide, such as Fe2O3 on carbon nanotubes (CNT) composite as an LIB anode has been investigated.

  19. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity.

    Science.gov (United States)

    Foster, Carl; Farland, Courtney V; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T; Porcari, John P

    2015-12-01

    High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. There were significant (p training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p training in sedentary young adults. Key pointsSteady state training equivalent to HIIT in untrained studentsMild interval training presents very similar physiologic challenge compared to steady state trainingHIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval trainingEnjoyment of training decreases across the course of an 8 week experimental training program.

  20. Analysis of Total Antioxidant Capacity on Ingredients of Lotek Menu by Ferric Reducing Antioxidant Power Assay

    Directory of Open Access Journals (Sweden)

    Reni Banowati Istiningrum

    2013-08-01

    Full Text Available Total Antioxidant Capacity (TAC determination has been made in the vegetable component of lotek with Ferric Reducing Antioxidant Power (FRAP methods. Samples was crushed and then extracted with water as a polar solvent and centrifuged. The residue was extracted again with acetone as a non-polar solvent. The extract is then reacted with FRAP reagent and the absorbance measured by UV-Vis spectrophotometer at 595 nm. TAC values expressed as mM/mL extract of vegetables component of lotek for the water extract of green beans, peanuts, bean sprouts, cabbage, cucumbers, tomatoes, and spinach respectively is 2,72; 6,79; 1,26; 0,89; 0,33; 1,86; 1,85 mM /mL extract, while the acetone extract is 1,42; 5,41; 0,44; 0,32; 0,25; 1,09; 0,93 mM/mL extract. The three largest contribution to the total TAC is a water extract of peanuts, acetone extract of peanut and water extract of green beans respectively is 25,56; 21,16 and 10,66%.Keywords: lotek, TAC, FRAP, spectrophotometer UV-Vis

  1. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    The large scale integration of renewable energy sources requires suitable energy storage systems to balance energy production and demand in the electrical grid. Bidirectional fuel cells are an attractive technology for energy storage systems due to the high energy density of fuel. Compared...... to traditional unidirectional fuel cell, bidirectional fuel cells have increased operating voltage and current ranges. These characteristics increase the stresses on dc-dc and dc-ac converters in the electrical system, which require proper design and advanced optimization. This work is part of the PhD project...... entitled "High Efficiency Reversible Fuel Cell Power Converter" and it presents the design of a high efficiency dc-dc converter developed and optimized for bidirectional fuel cell applications. First, a brief overview of fuel cell and energy storage technologies is presented. Different system topologies...

  2. High power singlemode edge-emitting master oscillator power amplifier

    Science.gov (United States)

    O'Brien, S.; Parke, R.; Welch, D. F.; Mehuys, D.; Scifres, D.

    1992-01-01

    An edge-emitting monolithically integrated master oscillator power amplifier (M-MOPA) has been fabricated by integrating a distributed Bragg reflector laser with a 500 microns long single mode amplifier. The M-MOPA contains a strained InGaAs quantum well in the active region and operates at about 981.5 nm in an edge-emitting fashion with maximum powers in excess of 175 mW. Single longitudinal and transverse mode operation is maintained to powers in excess of 110 mW CW.

  3. Recent progress in high power ultrafast MIXSELs

    Science.gov (United States)

    Alfieri, C. G. E.; Waldburger, D.; Link, S. M.; Gini, E.; Golling, M.; Tilma, B. W.; Mangold, M.; Keller, U.

    2016-03-01

    The modelocked integrated external-cavity surface emitting laser (MIXSEL) is the most compact technology of ultrafast semiconductor disk laser, combining in the same epitaxial structure an active region and a saturable absorber for stable and self-starting passive modelocking in a linear straight cavity. Here we present the first MIXSEL structure able to produce sub-300-fs pulses at an average output power of 235 mW and 3.35 GHz pulse repetition rate, resulting in a record-high peak power of 240 W. At 10 GHz repetition rate the same MIXSEL generated 279-fs pulses with 310 mW of average output power. An optimized antireflection coating for dispersion minimization together with a reduced field enhancement inside the structure enabled the sensible improvement and the record performances of this novel MIXSEL. Furthermore, thanks to the development of suitable saturable absorbers with fast recovery dynamics and low saturation fluence, we demonstrate the first entirely MOVPE-grown MIXSEL.

  4. High-power converters and AC drives

    CERN Document Server

    Wu, Bin

    2017-01-01

    This new edition reflects the recent technological advancements in the MV drive industry, such as advanced multilevel converters and drive configurations. It includes three new chapters, Control of Synchronous Motor Drives, Transformerless MV Drives, and Matrix Converter Fed Drives. In addition, there are extensively revised chapters on Multilevel Voltage Source Inverters and Voltage Source Inverter-Fed Drives. This book includes a systematic analysis on a variety of high-power multilevel converters, illustrates important concepts with simulations and experiments, introduces various megawatt drives produced by world leading drive manufacturers, and addresses practical problems and their mitigations methods.

  5. New line with elevated natural power increases the capacity of the system; Nova linha de potencia natural elevada aumenta capacidade do sistema

    Energy Technology Data Exchange (ETDEWEB)

    Amon Filho, Jorge; Gabaglia, C.P.R.; Izycki, M.J. [Furnas Centrais Eletricas, Rio de Janeiro, RJ (Brazil); Menezes, R.C.R. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Rigueira, A.S. [A. Rigueira Consultoria, Rio de Janeiro, RJ (Brazil); Dart, F.C. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Silva, J.B.G.F. [Damp Electric, Sabara, MG (Brazil); Ferreira, L.F. [Electrovidro S.A., Sao Goncalo, RJ (Brazil)

    2010-02-15

    The project of R and D developed by Furnas, Brazil, includes the construction of an real scale experimental interval for testing a new conception high capacity line and elevated grade of optimization which environmental and economically allows the transmission of large blocks of power. The paper uses an asymmetric configuration of six cables by phase, and a new conception of chain arrangement. Still, it is performed essays and validation of solution in laboratory and at the field. (author)

  6. High-cost, high-capacity backbone for global brain communication.

    Science.gov (United States)

    van den Heuvel, Martijn P; Kahn, René S; Goñi, Joaquín; Sporns, Olaf

    2012-07-10

    Network studies of human brain structural connectivity have identified a specific set of brain regions that are both highly connected and highly central. Recent analyses have shown that these putative hub regions are mutually and densely interconnected, forming a "rich club" within the human brain. Here we show that the set of pathways linking rich club regions forms a central high-cost, high-capacity backbone for global brain communication. Diffusion tensor imaging (DTI) data of two sets of 40 healthy subjects were used to map structural brain networks. The contributions to network cost and communication capacity of global cortico-cortical connections were assessed through measures of their topology and spatial embedding. Rich club connections were found to be more costly than predicted by their density alone and accounted for 40% of the total communication cost. Furthermore, 69% of all minimally short paths between node pairs were found to travel through the rich club and a large proportion of these communication paths consisted of ordered sequences of edges ("path motifs") that first fed into, then traversed, and finally exited the rich club, while passing through nodes of increasing and then decreasing degree. The prevalence of short paths that follow such ordered degree sequences suggests that neural communication might take advantage of strategies for dynamic routing of information between brain regions, with an important role for a highly central rich club. Taken together, our results show that rich club connections make an important contribution to interregional signal traffic, forming a central high-cost, high-capacity backbone for global brain communication.

  7. Fabrications of High-Capacity Alpha-Ni(OH2

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2017-03-01

    Full Text Available Three different methods were used to produce α-Ni(OH2 with higher discharge capacities than the conventional β-Ni(OH2, specifically a batch process of co-precipitation, a continuous process of co-precipitation with a phase transformation step (initial cycling, and an overcharge at low temperature. All three methods can produce α-Ni(OH2 or α/β mixed-Ni(OH2 with capacities higher than that of conventional β-Ni(OH2 and a stable cycle performance. The second method produces a special core–shell β-Ni(OH2/α-Ni(OH2 structure with an excellent cycle stability in the flooded half-cell configuration, is innovative and also already mass-production ready. The core–shell structure has been investigated by both scanning and transmission electron microscopies. The shell portion of the particle is composed of α-Ni(OH2 nano-crystals embedded in a β-Ni(OH2 matrix, which helps to reduce the stress originating from the lattice expansion in the β-α transformation. A review on the research regarding α-Ni(OH2 is also included in the paper.

  8. Low power, scalable multichannel high voltage controller

    Science.gov (United States)

    Stamps, James Frederick [Livermore, CA; Crocker, Robert Ward [Fremont, CA; Yee, Daniel Dadwa [Dublin, CA; Dils, David Wright [Fort Worth, TX

    2008-03-25

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  9. The acute effects of multi-ingredient pre-workout ingestion on strength performance, lower body power, and anaerobic capacity.

    Science.gov (United States)

    Jagim, Andrew R; Jones, Margaret T; Wright, Glenn A; St Antoine, Carly; Kovacs, Attila; Oliver, Jonathan M

    2016-01-01

    Multi-ingredient pre-workout supplements (MIPS) are popular among resistance trained individuals. Previous research has indicated that acute MIPS ingestion may increase muscular endurance when using a hypertrophy-based protocol but less is known in regard to their effects on strength performance and high intensity running capacity. Therefore, the purpose was to determine if short-term, MIPS ingestion influences strength performance and anaerobic running capacity. In a double-blind, randomized, placebo controlled, crossover design; 12 males (19 ± 1 yrs.; 180 ± 12 cm; 89.3 ± 11 kg; 13.6 ± 4.9 %BF) had their body composition assessed followed by 5-repetition maximum (5RM) determination of back squat (BS; 119.3 ± 17.7 kg) and bench press (BP; 92.1 ± 17.8 kg) exercises. On two separate occasions subjects ingested a MIPS or a placebo (P) 30-minutes prior to performing a counter movement vertical jump test, 5 sets of 5 repetitions at 85 % of 5RM of BS and BP, followed by a single set to failure, and an anaerobic capacity sprint test to assess peak and mean power. Subjective markers of energy levels and fatigue were also assessed. Subjects returned one week later for a second testing session using counter treatment. MIPS resulted in a greater number of repetitions performed in the final set to failure in the BP (MIPS, 9.8 ± 1.7 repetitions; P, 9.1 ± 2; p = 0.03, d = 0.38), which led to a greater total volume load (set x repetitions x load) in the MIPS (753 ± 211 kg) compared to P (710 ± 226 kg; p =0.03, d = .20). MIPS ingestion improved subjective markers of fatigue (p = 0.01, d = 3.78) and alertness (p = 0.048, d = 2.72) following a bout of resistance training. An increase in mean power was observed in the MIPS condition (p = 0.03, d = 0.25) during the anaerobic sprint test. Results suggest that acute ingestion of a MIPS study may increase upper body muscular endurance. In

  10. One-Dimensional Yolk-Shell Sb@Ti-O-P Nanostructures as a High-Capacity and High-Rate Anode Material for Sodium Ion Batteries.

    Science.gov (United States)

    Wang, Nana; Bai, Zhongchao; Qian, Yitai; Yang, Jian

    2017-01-11

    Development of high energy/power density and long cycle life of anode materials is highly desirable for sodium ion batteries, because graphite anode cannot be used directly. Sb stands out from the potential candidates, due to high capacity, good electronic conductivity, and moderate sodiation voltage. Here, one-dimensional yolk-shell Sb@Ti-O-P nanostructures are synthesized by reducing core-shell Sb2O3@TiO2 nanorods with NaH2PO2. This structure has Sb nanorod as the core to increase the capacity and Ti-O-P as the shell to stabilize the interface between electrolyte and electrode material. The gap between the core and the shell accommodates the volume change during sodiation/desodiation. These features endow the structure outstanding performances. It could deliver a capacity of about 760 mA h g(-1) after 200 cycles at 500 mA g(-1), with a capacity retention of about 94%. Even at 10 A g(-1), the reversible capacity is still at 360 mA h g(-1). The full battery of Sb@Ti-O-P//Na3V2(PO4)3-C presents a high output voltage (∼2.7 V) and a capacity of 392 mA h g(-1)anode after 150 cycles at 1 A g(-1)anode.

  11. Experiments on Long-Haul High-Capacity Transmission Systems

    Science.gov (United States)

    Bosco, Gabriella; Matera, Francesco; Ennser, Karin; Ibsen, Morten; Marazzi, Lucia; Parmigiani, Francesca; Petropoulos, Periklis; Poggiolini, Pierluigi; Tabacchiera, Marco; Zannin, Marcelo

    Progress in optical communications has been one of the key factors for the enormous growth of the ICT sector, and, in particular, of the Internet phenomenon. Such a progress has been driven by experimental successes that have been obtained in the last three decades in several laboratories all over the world, and we have witnessed a fantastic challenge among such labs to reach record targets such as maximum bit rate, maximum propagation distance, higher performance, maximum efficiency, and, recently, minimum energy consumption. The search for the maximum bit rate × distance was based on the principle of infinite bandwidth of the optical fiber that let us to imagine transmission of enormous capacities over transoceanic distances, especially after the invention of the optical amplifier.

  12. High capacity adsorption media and method of producing

    Science.gov (United States)

    Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.

    2010-10-05

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  13. Strength and Power Training Effects on Lower Limb Force, Functional Capacity, and Static and Dynamic Balance in Older Female Adults.

    Science.gov (United States)

    Lopes, Paula Born; Pereira, Gleber; Lodovico, Angélica; Bento, Paulo C B; Rodacki, André L F

    2016-03-03

    It has been proposed that muscle power is more effective to prevent falls than muscle force production capacity, as rapid reactions are required to allow the postural control. This study aimed to compare the effects of strength and power training on lower limb force, functional capacity, and static and dynamic balance in older female adults. Thirty-seven volunteered healthy women had been allocated into the strength-training group (n = 14; 69 ± 7.3 years, 155 ± 5.6 cm, 72 ± 9.7 kg), the power-training group (n = 12; 67 ± 7.4 years, 153 ± 5.5 cm, 67.2 ± 7 kg), and control group (n = 11; 65 ± 3.1 years, 154 ± 5.6 cm, 70.9 ± 3 kg). After 12 weeks of training, the strength-training and power-training groups increased significantly maximum dynamic strength (29% and 27%), isometric strength (26% and 37%), and step total time (13% and 14%, dynamic balance), respectively. However, only the power-training group increased the rate of torque development (55%) and the functional capacity in 30-second chair stand (22%) and in time up and go tests (-10%). Empirically, power training may reduce the risk of injuries due to lower loads compared to strength training, and consequently, the physical effort demand during the training session is lower. Therefore, power training should be recommended as attractive training stimuli to improve lower limb force, functional capacity, and postural control of older female adults.

  14. MIMO Intensity-Modulation Channels: Capacity Bounds and High SNR Characterization

    KAUST Repository

    Chaaban, Anas

    2016-10-01

    The capacity of MIMO intensity modulation channels is studied. The nonnegativity of the transmit signal (intensity) poses a challenge on the precoding of the transmit signal, which limits the applicability of classical schemes in this type of channels. To resolve this issue, capacity lower bounds are developed by using precoding-free schemes. This is achieved by channel inversion or QR decomposition to convert the MIMO channel to a set of parallel channels. The achievable rate of a DC-offset SVD based scheme is also derived as a benchmark. Then, a capacity upper bound is derived and is shown to coincide with the achievable rate of the QR decomposition based scheme at high SNR, consequently characterizing the high-SNR capacity of the channel. The high-SNR gap between capacity and the achievable rates of the channel inversion and the DC-offset SVD based schemes is also characterized. Finally, the ergodic capacity of the channel is also briefly discussed.

  15. High Pressure Microwave Powered UV Light Sources

    Science.gov (United States)

    Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.

    1997-10-01

    Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.

  16. Analysis of Plug Load Capacities and Power Requirements in Commercial Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sheppy, M.; Torcellini, P.; Gentile-Polese, L.

    2014-08-01

    Plug and process load power requirements are frequently overestimated because designers often use estimates based on 'nameplate' data, or design assumptions are high because information is not available. This generally results in oversized heating, ventilation, and air-conditioning systems; increased initial construction costs; and increased energy use caused by inefficiencies at low, part-load operation. Rightsizing of chillers in two buildings reduced whole-building energy use by 3%-4%. If an integrated design approach could enable 3% whole-building energy savings in all U.S. office buildings stock, it could save 34 TBtu of site energy per year.

  17. Design and characterization of a novel power over fiber system integrating a high power diode laser

    Science.gov (United States)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsein; Zahuranec, Terry

    2017-02-01

    High power 9xx nm diode lasers along with MH GoPower's (MHGP's) flexible line of Photovoltaic Power Converters (PPCs) are spurring high power applications for power over fiber (PoF), including applications for powering remote sensors and sensors monitoring high voltage equipment, powering high voltage IGBT gate drivers, converters used in RF over Fiber (RFoF) systems, and system power applications, including powering UAVs. In PoF, laser power is transmitted over fiber, and is converted to electricity by photovoltaic cells (packaged into Photovoltaic Power Converters, or PPCs) which efficiently convert the laser light. In this research, we design a high power multi-channel PoF system, incorporating a high power 976 nm diode laser, a cabling system with fiber break detection, and a multichannel PPC-module. We then characterizes system features such as its response time to system commands, the PPC module's electrical output stability, the PPC-module's thermal response, the fiber break detection system response, and the diode laser optical output stability. The high power PoF system and this research will serve as a scalable model for those interested in researching, developing, or deploying a high power, voltage isolated, and optically driven power source for high reliability utility, communications, defense, and scientific applications.

  18. High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion

    Science.gov (United States)

    Sommerer, Timothy J.

    2014-05-01

    We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  19. Invited Article: Polarization diversity and modulation for high-speed optical communications: architectures and capacity

    Science.gov (United States)

    Shieh, William; Khodakarami, Hamid; Che, Di

    2016-07-01

    Polarization is one of the fundamental properties of optical waves. To cope with the exponential growth of the Internet traffic, optical communications has advanced by leaps and bounds within the last decade. For the first time, the polarization domain has been extensively explored for high-speed optical communications. In this paper, we discuss the general principle of polarization modulation in both Jones and Stokes spaces. We show that there is no linear optical device capable of transforming an arbitrary input polarization into one that is orthogonal to itself. This excludes the receiver self-polarization diversity architecture by splitting the signal into two branches, and then transferring one of the branches into orthogonal polarization. We next propose a novel Stokes vector (SV) detection architecture using four single-ended photodiodes (PD) that can recover a full set of SV. We then derive a closed-form expression for the information capacity of different SV detection architectures and compare the capacity of our proposed architectures with that of intensity-modulated directly-detected (IM/DD) method. We next study the 3-PD SV detection architecture where a subset of SV is detected, and devise a novel modulation algorithm that can achieve 2-dimensional modulation with the 3-PD detection. By using cost-effective SV receivers, polarization modulation and multiplexing offers a powerful solution for short-reach optical networks where the wavelength domain is quickly exhausted.

  20. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity

    Directory of Open Access Journals (Sweden)

    Carl Foster, Courtney V. Farland, Flavia Guidotti, Michelle Harbin, Brianna Roberts, Jeff Schuette, Andrew Tuuri, Scott T. Doberstein, John P. Porcari

    2015-12-01

    Full Text Available High intensity interval training (HIIT has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly. Steady-state (n = 19 exercised (cycle ergometer 20 minutes at 90% of ventilatory threshold (VT. Tabata (n = 21 completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15 completed 13 sets of 30s (20 min @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p < 0.05 increases in VO2max (+19, +18 and +18% and PPO (+17, +24 and +14% for each training group, as well as significant increases in peak (+8, + 9 and +5% & mean (+4, +7 and +6% power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05 than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05 across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults.

  1. SDN control of optical nodes in metro networks for high capacity inter-datacentre links

    Science.gov (United States)

    Magalhães, Eduardo; Perry, Philip; Barry, Liam

    2017-11-01

    Worldwide demand for bandwidth has been growing fast for some years and continues to do so. To cover this, mega datacentres need scalable connectivity to provide rich connectivity to handle the heavy traffic across them. Therefore, hardware infrastructures must be able to play different roles according to service and traffic requirements. In this context, software defined networking (SDN) decouples the network control and forwarding functions enabling the network control to become directly programmable and the underlying infrastructure to be abstracted for applications and network services. In addition, elastic optical networking (EON) technologies enable efficient spectrum utilization by allocating variable bandwidth to each user according to their actual needs. In particular, flexible transponders and reconfigurable optical add/drop multiplexers (ROADMs) are key elements since they can offer degrees of freedom to self adapt accordingly. Thus, it is crucial to design control methods in order to optimize the hardware utilization and offer high reconfigurability, flexibility and adaptability. In this paper, we propose and analyze, using a simulation framework, a method of capacity maximization through optical power profile manipulation for inter datacentre links that use existing metropolitan optical networks by exploiting the global network view afforded by SDN. Results show that manipulating the loss profiles of the ROADMs in the metro-network can yield optical signal-to-noise ratio (OSNR) improvements up to 10 dB leading to an increase in 112% in total capacity.

  2. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    assessments of these specific VSCs so that their power densities and reliabilities are quantitatively determined, which requires extensive utilization of the electro-thermal models of the VSCs under investigation. In this thesis, the three-level neutral-point-clamped VSCs (3L-NPC-VSCs), which are classified...

  3. Experiences and challenges running CERN's high capacity tape archive

    CERN Document Server

    Cancio, Germ; Kruse, Daniele Francesco; Leduc, Julien; Cano, Eric; Murray, Steven

    2015-01-01

    CERN's tape-based archive system has collected over 70 Petabytes of data during the first run of the LHC. The Long Shutdown is being used for migrating the complete 100 Petabytes data archive to higher-density tape media. During LHC Run 2, the archive will have to cope with yearly growth rates of up to 40-50 Petabytes. In this contribution, we describe the scalable setup for coping with the storage and long-term archival of such massive data amounts. We also review the challenges resulting and mechanisms devised for measuring and enhancing availability and reliability, as well as ensuring the long-term integrity and bit-level preservation of the complete data repository. The procedures and tools for the proactive and efficient operation of the tape infrastructure are described, including the features developed for automated problem detection, identification and notification. Finally, we present an outlook in terms of future capacity requirements growth and how it matches the expected tape technology evolution...

  4. Experiences and challenges running CERN's high capacity tape archive

    Science.gov (United States)

    Cancio, Germán; Bahyl, Vladimír; Kruse, Daniele Francesco; Leduc, Julien; Cano, Eric; Murray, Steven

    2015-12-01

    CERN's tape-based archive system has collected over 70 Petabytes of data during the first run of the LHC. The Long Shutdown is being used for migrating the complete 100 Petabytes data archive to higher-density tape media. During LHC Run 2, the archive will have to cope with yearly growth rates of up to 40-50 Petabytes. In this contribution, we describe the scalable setup for coping with the storage and long-term archival of such massive data amounts. We also review the challenges resulting and mechanisms devised for measuring and enhancing availability and reliability, as well as ensuring the long-term integrity and bit-level preservation of the complete data repository. The procedures and tools for the proactive and efficient operation of the tape infrastructure are described, including the features developed for automated problem detection, identification and notification. Finally, we present an outlook in terms of future capacity requirements growth and how it matches the expected tape technology evolution.

  5. Series-Tuned High Efficiency RF-Power Amplifiers

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    2008-01-01

    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  6. High-Power Helicon Double Gun Thruster

    Science.gov (United States)

    Murakami, Nao

    While chemical propulsion is necessary to launch a spacecraft from a planetary surface into space, electric propulsion has the potential to provide significant cost savings for the orbital transfer of payloads between planets. Due to extended wave particle interactions, a plasma thruster that can operate in the 100 kW to several MW power regime can only be attained by increasing the size of the thruster, or by using an array of plasma thrusters. The High-Power Helicon (HPH) Double Gun thruster experiment examines whether firing two helicon thrusters in parallel produces an exhaust velocity higher than the exhaust velocity of a single thruster. The scaling law that relates the downstream plasma velocity with the number of helicon antennae is derived, and compared with the experimental result. In conjunction with data analysis, two digital filtering algorithms are developed to filter out the noise from helicon antennae. The scaling law states that the downstream plasma velocity is proportional to square root of the number of helicon antennae, which is in agreement with the experimental result.

  7. Temperature measurements of high power LEDs

    Science.gov (United States)

    Badalan (Draghici), Niculina; Svasta, Paul; Drumea, Andrei

    2016-12-01

    Measurement of a LED junction temperature is very important in designing a LED lighting system. Depending on the junction temperature we will be able to determine the type of cooling system and the size of the lighting system. There are several indirect methods for junction temperature measurement. The method used in this paper is based on the thermal resistance model. The aim of this study is to identify the best device that would allow measuring the solder point temperature and the temperature on the lens of power LEDs. For this purpose four devices for measuring temperature on a high-power LED are presented and compared according to the acquired measurements: an infrared thermal camera from FLIR Systems, a multimeter with K type thermocouple (Velleman DVM4200), an infrared-spot based noncontact thermometer (Raynger ST) and a measurement system based on a digital temperature sensor (DS1821 type) connected to a PC. The measurements were conducted on an 18W COB (chip-on-board) LED. The measurement points are the supply terminals and the lens of the LED.

  8. Innovations in high power fiber laser applications

    Science.gov (United States)

    Beyer, Eckhard; Mahrle, Achim; Lütke, Matthias; Standfuss, Jens; Brückner, Frank

    2012-02-01

    Diffraction-limited high power lasers represent a new generation of lasers for materials processing, characteristic traits of which are: smaller, cost-effective and processing "on the fly". Of utmost importance is the high beam quality of fiber lasers which enables us to reduce the size of the focusing head incl. scanning mirrors. The excellent beam quality of the fiber laser offers a lot of new applications. In the field of remote cutting and welding the beam quality is the key parameter. By reducing the size of the focusing head including the scanning mirrors we can reach scanning frequencies up to 1.5 kHz and in special configurations up to 4 kHz. By using these frequencies very thin and deep welding seams can be generated experienced so far with electron beam welding only. The excellent beam quality of the fiber laser offers a high potential for developing new applications from deep penetration welding to high speed cutting. Highly dynamic cutting systems with maximum speeds up to 300 m/min and accelerations up to 4 g reduce the cutting time for cutting complex 2D parts. However, due to the inertia of such systems the effective cutting speed is reduced in real applications. This is especially true if complex shapes or contours are cut. With the introduction of scanner-based remote cutting systems in the kilowatt range, the effective cutting speed on the contour can be dramatically increased. The presentation explains remote cutting of metal foils and sheets using high brightness single mode fiber lasers. The presentation will also show the effect of optical feedback during cutting and welding with the fiber laser, how those feedbacks could be reduced and how they have to be used to optimize the cutting or welding process.

  9. Splitting of high power, cw proton beams

    CERN Document Server

    Facco, Alberto; Berkovits, Dan; Yamane, Isao; 10.1103/PhysRevSTAB.10.091001

    2007-01-01

    A simple method for splitting a high power, continuous wave (cw) proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line adioactive Ion Beam Facility) design study. The aim of the system is to deliver up to 4 MW of H beam to the main radioactive ion beam production target, and up to 100 kWof proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fractionof the main H- beam, magnetic splitting of H- and H0, and stripping of H0 to H+. The method allowsslow raising and individual fine adjustment of the beam intensity in each branch.

  10. High power solid state laser modulator

    Science.gov (United States)

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.

    2004-04-27

    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  11. Silicon oxide based high capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  12. Selection of local extremophile lactic acid bacteria with high capacity ...

    African Journals Online (AJOL)

    This study is related to the isolation and identification of strains of local thermophilic lactic acid bacteria belonging to the species, Streptococcus thermophilus and Lactobacillus bulgaricus. These bacteria can exist under extreme conditions of the digestive tract (acidity and high concentration of bile salts) and have a high ...

  13. High-temperature alloys for high-power thermionic systems

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang S.; Jacobson, D.L.; D' cruz, L.; Luo, Anhua; Chen, Bor-Ling.

    1990-08-01

    The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

  14. High throughput assay for evaluation of reactive carbonyl scavenging capacity

    Directory of Open Access Journals (Sweden)

    N. Vidal

    2014-01-01

    Full Text Available Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  15. Development of a high capacity longwall conveyor. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, C

    1982-05-01

    The objectives of this program were to develop, fabricate, and demonstrate a longwall conveying system capable of transporting coal at a rate of 9000 tons/day (1000 tons/hr) and capable of accommodating a surge rate of 20 tons/min. The equipment was required to have the structural durability to perform with an operating availability of 90%. A review of available literature and discussions with longwall operators identified the problem areas of conveyor design that required attention. The conveyor under this contract was designed and fabricated with special attention given to these areas, and also to be easily maintainable. The design utilized twin 300 hp drives and twin inboard 26-mm chain at 270 ft/min; predictions of capacity and reliability based on the design indicating that it would satisfy the program requirements. Conveyor components were critically tested and the complete conveyor was surface-tested, the results verifying the design specifications. In addition, an instrumentation system was developed with analysis by computer techniques to monitor the performance of the conveyor. The conveyor was installed at a selected mine site, and it was the intention to monitor its performance over the entire longwall panel. Monitoring of the conveyor performance was conducted over approximately one-third of the longwall panel, at which point further effort was suspended. However, during the monitored period, data collected from various sources showed the conveyor to have exhibited its capability of transporting coal at the desired rate, and also to have conformed to the program requirements of reliability and availability.

  16. Facet engineering of high power single emitters

    Science.gov (United States)

    Yanson, Dan; Levi, Moshe; Shamay, Moshe; Tesler, Renana; Rappaport, Noam; Don, Yaroslav; Karni, Yoram; Schnitzer, Itzhak; Sicron, Noam; Shusterman, Sergey

    2011-03-01

    The ever increasing demand for high-power, high-reliability operation of single emitters at 9xx nm wavelengths requires the development of laser diodes with improved facet regions immune to both catastrophic and wear-out failure modes. In our study, we have evaluated several laser facet definition technologies in application to 90 micron aperture single emitters in asymmetric design (In)GaAs/AlGaAs based material emitting at 915, 925 and 980nm. A common epitaxy and emitter design makes for a straightforward comparison of the facet technologies investigated. Our study corroborates a clear trend of increasing difficulty in obtaining reliable laser operation from 980nm down to 915nm. At 980nm, one can employ dielectric facet passivation with a pre-clean cycle delivering a device lifetime in excess of 3,000 hours at increasing current steps. At 925nm, quantum-well intermixing can be used to define non-absorbing mirrors giving good device reliability, albeit with a large efficiency penalty. Vacuum cleaved emitters have delivered excellent reliability at 915nm, and can be expected to perform just as well at 925 and 980nm. Epitaxial regrowth of laser facets is under development and has yet to demonstrate an appreciable reliability improvement. Only a weak correlation between start-of-life catastrophic optical mirror damage (COMD) levels and reliability was established. The optimized facet design has delivered maximum powers in excess of 19 MW/sq.cm (rollover limited) and product-grade 980nm single emitters with a slope efficiency of >1 W/A and a peak efficiency of >60%. The devices have accumulated over 1,500 hours of CW operation at 11W. A fiber-coupled device emits 10W ex-fiber with 47% efficiency.

  17. Design of a slot-coupled radial line helical array antenna for high power microwave applications

    Directory of Open Access Journals (Sweden)

    Longzhou Yu

    2017-09-01

    Full Text Available An eight-ring radial helical array antenna based on a novel slot-coupled structure is designed and simulated. The novel coupling structure has the advantages of high power-handling capacity and excellent coupling ability. The simulation results of the array antenna agree well with theoretical calculations, and the aperture efficiency is about 78.1% when the beam is in the normal direction. The power-handling capacity is about 100 MW on vacuum condition. The simulation results also show that the gain is 30.7 dB and the main lobe’s axial ratio is 0.25 dB. Furthermore, the structure of the antenna is compact, and it may be applied to larger circular helical arrays to realize higher gain and higher power-handling capacity.

  18. Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits use...

  19. Zinc oxide based nanocomposite thin film electrodes and the effect of D.C. plasma oxidation power on discharge capacity for lithium ion batteries.

    Science.gov (United States)

    Akbulut, Hatem; Guler, Mehmet Oguz; Aydin, Yasemin

    2012-12-01

    Zinc oxide based thin films have been grown on glass and stainless steel substrates in two steps; thermal evaporation from high purity metallic zinc and D.C. plasma oxidation. X-ray diffraction has shown that the films were polycrystalline nature and small predominant orientation at some specific planes. Analysis showed that plasma oxidation starts from the thermally evaporated leaf-like surfaces and produces a core-shell structure of ZnO on the metallic Zn. Increasing plasma oxidation power causes increased amount of ZnO volume and resistivity. Coin-type (CR2016) test cells were assembled in an argon-filled glove box and cyclically tested. The electrochemical performance of the films has been studied by cyclic voltammetry. The dependence of converted Li-ions on voltage profile of the films has been determined. It was found that the Zn/ZnO films exhibited highest the number of converted Li-ions at 175 W plasma oxidation conditions. Discharge capacity measurements revealed the double phase structures of Zn/ZnO exhibited significantly high reversible capacities. The high capacity and low capacity fade values were attributed to the high electrical conductivity and buffering ability of metallic Zn in the anodes.

  20. Switching transients in high-frequency high-power converters using power MOSFET's

    Science.gov (United States)

    Sloane, T. H.; Owen, H. A., Jr.; Wilson, T. G.

    1979-01-01

    The use of MOSFETs in a high-frequency high-power dc-to-dc converter is investigated. Consideration is given to the phenomena associated with the paralleling of MOSFETs and to the effect of stray circuit inductances on the converter circuit performance. Analytical relationships between various time constants during the turning-on and turning-off intervals are derived which provide estimates of plateau and peak levels during these intervals.

  1. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Cole, Wesley

    2016-07-01

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERC region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  2. Design and validation of a low cost, high-capacity weighing device for wheelchair users and bariatrics.

    Science.gov (United States)

    Sherrod, Brandon A; Dew, Dustin A; Rogers, Rebecca; Rimmer, James H; Eberhardt, Alan W

    2017-01-01

    Accessible high-capacity weighing scales are scarce in healthcare facilities, in part due to high device cost and weight. This shortage impairs weight monitoring and health maintenance for people with disabilities and/or morbid obesity. We conducted this study to design and validate a lighter, lower cost, high-capacity accessible weighing device. A prototype featuring 360 kg (800 lbs) of weight capacity, a wheelchair-accessible ramp, and wireless data transmission was fabricated. Forty-five participants (20 standing, 20 manual wheelchair users, and five power wheelchair users) were weighed using the prototype and a calibrated scale. Participants were surveyed to assess perception of each weighing device and the weighing procedure. Weight measurements between devices demonstrated a strong linear correlation (R(2) = 0.997) with absolute differences of 1.4 ± 2.0% (mean±SD). Participant preference ratings showed no difference between devices. The prototype weighed 11 kg (38%) less than the next lightest high-capacity commercial device found by author survey. The prototype's estimated commercial price range, $500-$600, is approximately half the price of the least expensive commercial device found by author survey. Such low cost weighing devices may improve access to weighing instrumentation, which may in turn help eliminate current health disparities. Future work is needed to determine the feasibility of market transition.

  3. High-Capacity Short-Range Optical Communication Links

    DEFF Research Database (Denmark)

    Tatarczak, Anna

    Over the last decade, we have observed a tremendous spread of end-user mobile devices. The user base of a mobile application can grow or shrink by millions per day. This situation creates a pressing need for highly scalable server infrastructure; a need nowadays satisfied through cloud computing...... offered by data centers. As the popularity of cloud computing soars, the demand for high-speed, short-range data center links grows. Vertical cavity surface emitting lasers (VCSEL) and multimode fibers (MMF) prove especially well-suited for such scenarios. VCSELs have high modulation bandwidths......, we achieve 10 Gbps over 400 m and then conrm the approach in an optimized system at 25 Gbps over 300 m. The techniques described in this thesis leverage additional degrees of freedom to better utilize the available resources of short-range links. The proposed schemes enable higher speeds and longer...

  4. High Intrinsic Aerobic Capacity Protects against Ethanol-Induced Hepatic Injury and Metabolic Dysfunction: Study Using High Capacity Runner Rat Model.

    Science.gov (United States)

    Szary, Nicholas; Rector, R Scott; Uptergrove, Grace M; Ridenhour, Suzanne E; Shukla, Shivendra D; Thyfault, John P; Koch, Lauren G; Britton, Steven L; Ibdah, Jamal A

    2015-11-20

    Rats artificially selected over several generations for high intrinsic endurance/aerobic capacity resulting in high capacity runners (HCR) has been developed to study the links between high aerobic fitness and protection from metabolic diseases (Wisloff et al., Science, 2005). We have previously shown that the HCR strain have elevated hepatic mitochondrial content and oxidative capacity. In this study, we tested if the elevated hepatic mitochondrial content in the HCR rat would provide "metabolic protection" from chronic ethanol-induced hepatic steatosis and injury. The Leiber-Decarli liquid diet with ethanol (7% v/v; HCR-E) and without (HCR-C) was given to HCR rats (n = 8 per group) from 14 to 20 weeks of age that were weight matched and pair-fed to assure isocaloric intake. Hepatic triglyceride (TG) content and macro- and microvesicular steatosis were significantly greater in HCR-E compared with HCR-C (p High intrinsic aerobic fitness did not reduce ethanol-induced hepatic steatosis, but protected against ethanol-induced hepatic injury and systemic metabolic dysfunction in a high aerobic capacity rat model.

  5. Beyond the magic number four: Remapping high-capacity, pre-attentive, fragile working memory

    NARCIS (Netherlands)

    Zerr, P.; Gayet, S.; Mulder, K.T.; Sligte, I.G.; Stigchel, S. van der

    2017-01-01

    Visual short term memory allows us to access visual information after termination of its retinal input. Generally, a distinction is made between a robust, capacity-limited form (working memory, WM) and high-capacity, pre-attentive, maskable forms (sensory memory, e.g. fragile memory, FM). Eye

  6. Integration of Electric Vehicles into the Power Distribution Network with a Modified Capacity Allocation Mechanism

    DEFF Research Database (Denmark)

    Hu, Junjie; Morais, Hugo; Sousa, Tiago

    2017-01-01

    The growing penetration of electric vehicles (EVs) represents an operational challenge to system operators, mainly at the distribution level by introducing congestion and voltage drop problems. To solve these potential problems, a two-level coordination approach is proposed in this study....... An aggregation entity, i.e., an EV virtual power plant (EV-VPP), is used to facilitate the interaction between the distribution system operator (DSO) and EV owners considering the decentralized electricity market structure. In level I, to prevent the line congestion and voltage drop problems, the EV......-VPPs, considering the case of EVs charging and discharging. The three mechanisms include: (1) a market-based approach; (2) a pro-rata approach; and (3) a newly-proposed constrained market-based approach. A case study considering a 37-bus distribution network and high penetration of electric vehicles is presented...

  7. VCSEL design and integration for high-capacity optical interconnects

    Science.gov (United States)

    Larsson, Anders; Gustavsson, Johan S.; Westbergh, Petter; Haglund, Erik; Haglund, Emanuel P.; Simpanen, Ewa; Lengyel, Tamas; Szczerba, Krzysztof; Karlsson, Magnus

    2017-02-01

    Vertical-cavity surface-emitting lasers and multi-mode fibers is the dominating technology for short-reach optical interconnects in datacenters and high performance computing systems at current serial rates of up to 25-28 Gbit/s. This is likely to continue at 50-56 Gbit/s. The technology shows potential for 100 Gbit/s.

  8. High power diode lasers converted to the visible

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Andersen, Peter E.

    2017-01-01

    High power diode lasers have in recent years become available in many wavelength regions. However, some spectral regions are not well covered. In particular, the visible spectral range is lacking high power diode lasers with good spatial quality. In this paper, we highlight some of our recent...... results in nonlinear frequency conversion of high power near infrared diode lasers to the visible spectral region....

  9. Capacity Payments in Restructured Markets under Low and High Penetration Levels of Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-11

    remain in implementing capacity markets that provide both adequate operational and investment incentives, particularly under high-VRE scenarios with greater need for flexible capacity.

  10. Implementation and control of electrolysers to achieve high penetrations of renewable power

    Energy Technology Data Exchange (ETDEWEB)

    Troncoso, E.; Newborough, M. [ITM Power plc, Orkney House, Great Chesterford Court, Great Chesterford, Saffron Walden CB10 1PF (United Kingdom)

    2007-09-15

    The mass deployment of electrolysers, within a power system serving a region of high wind resource, as the enabling mechanism for achieving five key objectives is assessed (that is: a very high installed capacity of wind power plant (WPP); zero wind curtailment during times of low demand; a very high load factor for thermal power plant; an electricity supply of low-carbon intensity; and a hydrogen supply of low-carbon intensity). Three electrolyser implementation cases were simulated for three days characterised mainly by wind availability and emphasis was placed on maximizing the smoothness of the load profile (LF) applied to thermal power plant. If zero-carbon hydrogen is to be produced a daily load factor for thermal power plant of 90% is the upper limit, but load factors of up to 100% are achievable if a carbon intensity of 3kgCO{sub 2}/kgH{sub 2} is permitted. For wind penetrations exceeding approximately 30% of system maximum demand, the electrolyser stock must include implementations close to WPP if curtailment is to be avoided. To achieve very high wind penetrations and very high load factors for thermal power plant requires a large stock of electrolysers - for the system investigated approximately 1.1 MW of electrolyser capacity is required per installed MW of wind power. (author)

  11. High RF Power Production for CLIC

    CERN Document Server

    Syratchev, I; Adli, E; Taborelli, M

    2007-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  12. Controlled Compact High Voltage Power Lines

    OpenAIRE

    Postolati V.; Bycova Е.; Suslov V.; Timashova L.; Shakarian Yu.; Kareva S.

    2016-01-01

    Nowadays modern overhead transmission lines (OHL) constructions having several significant differences from conventional ones are being used in power grids more and more widely. Implementation of compact overhead lines equipped with FACTS devices, including phase angle regulator settings (compact controlled OHL), appears to be one of the most effective ways of power grid development. Compact controlled AC HV OHL represent a new generation of power transmission lines embodying recent advanced ...

  13. The capacity of the cascaded fading channel in the low power regime

    KAUST Repository

    Benkhelifa, Fatma

    2014-04-01

    In this paper, we present a simple way to compute the ergodic capacity of cascaded channels with perfect channel state information at both the transmitter and the receiver. We apply our generic results to the Rayleigh-double fading channel, and to the free-space optical channel in the presence of pointing errors and we express their low signal-to-noise ratio capacities. We mainly focus on the low signal-to-noise ratio range.

  14. High-Speed Low Power Design in CMOS

    DEFF Research Database (Denmark)

    Ghani, Arfan; Usmani, S. H.; Stassen, Flemming

    2004-01-01

    Static CMOS design displays benefits such as low power consumption, dominated by dynamic power consumption. In contrast, MOS Current Mode Logic (MCML) displays static rather than dynamic power consumption. High-speed low-power design is one of the many application areas in VLSI that require...

  15. Determination of effective factors on power requirement and conveying capacity of a screw conveyor under three paddy grain varieties.

    Science.gov (United States)

    Askari Asli-Ardeh, Ezzatollah; Mohsenimanesh, Ahmad

    2012-01-01

    An experiment was conducted to investigate the effect of screw speed, inclination angle and variety on the required power, and conveying capacity of a screw conveyor. The experiment was designed with four levels of screw speed (600, 800, 1000, and 1200 rpm), five levels of inclination angle (0, 20, 40, 60, and 80°), and three levels of variety (Alikazemi, Hashemi, and Khazar). The Length, diameter, and pitch of screw were 2, 0.78, and 0.5 m, respectively. The experimental design was a randomized complete block (RCB) with factorial layout. Maximum and minimum power requirements of tested screw conveyor were 99.29 and 81.16 Watt corresponding to conveying capacity of 3.210 and 1.975 ton/hour obtained for khazar and Alikazemi varieties, respectively. The results indicated that as screw inclination angle increased from 0 to 80°, the conveying capacity decreased significantly from 3.581 to 0.932 t/h. It can be concluded that the most conveying capacity was 4.955 t/h at tests with khazar variety and conveyor inclination angle zero degree.

  16. Determination of Effective Factors on Power Requirement and Conveying Capacity of a Screw Conveyor under Three Paddy Grain Varieties

    Directory of Open Access Journals (Sweden)

    Ezzatollah Askari Asli-Ardeh

    2012-01-01

    Full Text Available An experiment was conducted to investigate the effect of screw speed, inclination angle and variety on the required power, and conveying capacity of a screw conveyor. The experiment was designed with four levels of screw speed (600, 800, 1000, and 1200 rpm, five levels of inclination angle (0, 20, 40, 60, and 80∘, and three levels of variety (Alikazemi, Hashemi, and Khazar. The Length, diameter, and pitch of screw were 2, 0.78, and 0.5 m, respectively. The experimental design was a randomized complete block (RCB with factorial layout. Maximum and minimum power requirements of tested screw conveyor were 99.29 and 81.16 Watt corresponding to conveying capacity of 3.210 and 1.975 ton/hour obtained for khazar and Alikazemi varieties, respectively. The results indicated that as screw inclination angle increased from 0 to 80∘, the conveying capacity decreased significantly from 3.581 to 0.932 t/h. It can be concluded that the most conveying capacity was 4.955 t/h at tests with khazar variety and conveyor inclination angle zero degree.

  17. Power MOSFET Linearizer of a High-Voltage Power Amplifier for High-Frequency Pulse-Echo Instrumentation

    OpenAIRE

    Hojong Choi; Park Chul Woo; Jung-Yeol Yeom; Changhan Yoon

    2017-01-01

    A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reduci...

  18. Power Moves Beyond Complementarity: A Staring Look Elicits Avoidance in Low Power Perceivers and Approach in High Power Perceivers

    Science.gov (United States)

    Weick, Mario; McCall, Cade; Blascovich, Jim

    2017-01-01

    Sustained, direct eye-gaze—staring—is a powerful cue that elicits strong responses in many primate and nonprimate species. The present research examined whether fleeting experiences of high and low power alter individuals’ spontaneous responses to the staring gaze of an onlooker. We report two experimental studies showing that sustained, direct gaze elicits spontaneous avoidance tendencies in low power perceivers and spontaneous approach tendencies in high power perceivers. These effects emerged during interactions with different targets and when power was manipulated between-individuals (Study 1) and within-individuals (Study 2), thus attesting to a high degree of flexibility in perceivers’ reactions to gaze cues. Together, the present findings indicate that power can break the cycle of complementarity in individuals’ spontaneous responding: Low power perceivers complement and move away from, and high power perceivers reciprocate and move toward, staring onlookers. PMID:28903712

  19. A high mitochondrial transport rate characterizes CNS neurons with high axonal regeneration capacity.

    Directory of Open Access Journals (Sweden)

    Romain Cartoni

    Full Text Available Improving axonal transport in the injured and diseased central nervous system has been proposed as a promising strategy to improve neuronal repair. However, the contribution of each cargo to the repair mechanism is unknown. DRG neurons globally increase axonal transport during regeneration. Because the transport of specific cargos after axonal insult has not been examined systematically in a model of enhanced regenerative capacity, it is unknown whether the transport of all cargos would be modulated equally in injured central nervous system neurons. Here, using a microfluidic culture system we compared neurons co-deleted for PTEN and SOCS3, an established model of high axonal regeneration capacity, to control neurons. We measured the axonal transport of three cargos (mitochondria, synaptic vesicles and late endosomes in regenerating axons and found that the transport of mitochondria, but not the other cargos, was increased in PTEN/SOCS3 co-deleted axons relative to controls. The results reported here suggest a pivotal role for this organelle during axonal regeneration.

  20. Test of a High Power Target Design

    CERN Multimedia

    2002-01-01

    %IS343 :\\\\ \\\\ A high power tantalum disc-foil target (RIST) has been developed for the proposed radioactive beam facility, SIRIUS, at the Rutherford Appleton Laboratory. The yield and release characteristics of the RIST target design have been measured at ISOLDE. The results indicate that the yields are at least as good as the best ISOLDE roll-foil targets and that the release curves are significantly faster in most cases. Both targets use 20 -25 $\\mu$m thick foils, but in a different internal geometry.\\\\ \\\\Investigations have continued at ISOLDE with targets having different foil thickness and internal geometries in an attempt to understand the release mechanisms and in particular to maximise the yield of short lived isotopes. A theoretical model has been developed which fits the release curves and gives physical values of the diffusion constants.\\\\ \\\\The latest target is constructed from 2 $\\mu$m thick tantalum foils (mass only 10 mg) and shows very short release times. The yield of $^{11}$Li (half-life of ...

  1. The SPES High Power ISOL production target

    Science.gov (United States)

    Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.

    2016-11-01

    SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.

  2. High Precision Current Measurement for Power Converters

    CERN Document Server

    Cerqueira Bastos, M

    2015-01-01

    The accurate measurement of power converter currents is essential to controlling and delivering stable and repeatable currents to magnets in particle accelerators. This paper reviews the most commonly used devices for the measurement of power converter currents and discusses test and calibration methods.

  3. Laboratory Astrophysics on High Power Lasers and Pulsed Power Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B A

    2002-02-05

    Over the past decade a new genre of laboratory astrophysics has emerged, made possible by the new high energy density (HED) experimental facilities, such as large lasers, z-pinch generators, and high current particle accelerators. (Remington, 1999; 2000; Drake, 1998; Takabe, 2001) On these facilities, macroscopic collections of matter can be created in astrophysically relevant conditions, and its collective properties measured. Examples of processes and issues that can be experimentally addressed include compressible hydrodynamic mixing, strong shock phenomena, radiative shocks, radiation flow, high Mach-number jets, complex opacities, photoionized plasmas, equations of state of highly compressed matter, and relativistic plasmas. These processes are relevant to a wide range of astrophysical phenomena, such as supernovae and supernova remnants, astrophysical jets, radiatively driven molecular clouds, accreting black holes, planetary interiors, and gamma-ray bursts. These phenomena will be discussed in the context of laboratory astrophysics experiments possible on existing and future HED facilities.

  4. Radiation of long and high power arcs

    Science.gov (United States)

    Cressault, Y.; Bauchire, J. M.; Hong, D.; Rabat, H.; Riquel, G.; Sanchez, F.; Gleizes, A.

    2015-10-01

    The operators working on electrical installations of low, medium and high voltages can be accidentally exposed to short-circuit arcs ranging from a few kA to several tens of kA. To protect them from radiation, according to the exposure limits, we need to characterize the radiation emitted by the powerful arc. Therefore, we have developed a general experimental and numerical study in order to estimate the spectral irradiance received at a given distance from the arc. The experimental part was based on a very long arc (up to 2 m) with high ac current (between 4 and 40 kA rms, duration 100 ms) using 3 kinds of metallic contacts (copper, steel and aluminium). We measured the irradiance received 10m from the axis of the arc, and integrated on 4 spectral intervals corresponding to the UV, visible, IRA  +  B and IRC. The theoretical part consisted of calculating the radiance of isothermal plasmas in mixtures of air and metal vapour, integrated over the same spectral intervals as defined in the experiments. The comparison between the theoretical and experimental results has allowed the defining of three isothermal radiation sources whose combination leads to a spectral irradiation equivalent to the experimental one. Then the calculation allowed the deduction of the spectral description of the irradiance over all the wavelength range, between 200 nm and 20 μm. The final results indicate that the influence of metal is important in the visible and UVA ranges whereas the IR radiation is due to the air plasma and surrounding hot gas and fumes.

  5. 30 GHz High Power Production for CLIC

    CERN Document Server

    Syratchev, I V

    2006-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous TM01 mode at 30 GHz. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and conveyed to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability along a single decelerator sector (600 m) and the active length of the structure to match the main linac RF power needs and layout. Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.

  6. High-power converters for space applications

    Science.gov (United States)

    Park, J. N.; Cooper, Randy

    1991-06-01

    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  7. Effective capacity of Nakagami-m fading channels with full channel state information in the low power regime

    KAUST Repository

    Benkhelifa, Fatma

    2013-09-01

    The effective capacity have been introduced by Wu and Neji as a link-layer model supporting statistical delay QoS requirements. In this paper, we propose to study the effective capacity of a Nakagami-m fading channel with full channel state information (CSI) at both the transmitter and at the receiver. We focus on the low Signal-to-Noise Ratio (SNR) regime. We show that the effective capacity for any arbitrary but finite statistically delay Quality of Service (QoS) exponent θ, scales essentially as S NRlog(1/SNR) exactly as the ergodic capacity, independently of any QoS constraint. We also characterize the minimum energy required for reliable communication, and the wideband slope to show that our results are in agreement with results established recently by Gursoy et al. We also propose an on-off power control scheme that achieves the capacity asymptotically using only one bit CSI feedback at the transmitter. Finally, some numerical results are presented to show the accuracy of our asymptotic results. © 2013 IEEE.

  8. High Aerobic Capacity Mitigates Changes in the Plasma Metabolomic Profile Associated with Aging.

    Science.gov (United States)

    Falegan, Oluyemi S; Vogel, Hans J; Hittel, Dustin S; Koch, Lauren G; Britton, Steven L; Hepple, Russ T; Shearer, Jane

    2017-02-03

    Advancing age is associated with declines in maximal oxygen consumption. Declines in aerobic capacity not only contribute to the aging process but also are an independent risk factor for morbidity, cardiovascular disease, and all-cause mortality. Although statistically convincing, the relationships between aerobic capacity, aging, and disease risk remain largely unresolved. To this end, we employed sensitive, system-based metabolomics approach to determine whether enhanced aerobic capacity could mitigate some of the changes seen in the plasma metabolomic profile associated with aging. Metabolomic profiles of plasma samples obtained from young (13 month) and old (26 month) rats bred for low (LCR) or high (HCR) running capacity using proton nuclear magnetic resonance spectroscopy ( 1 H NMR) were examined. Results demonstrated strong profile separation in old and low aerobic capacity rats, whereas young and high aerobic capacity rat models were less predictive. Significantly differential metabolites between the groups include taurine, acetone, valine, and trimethylamine-N-oxide among other metabolites, specifically citrate, succinate, isovalerate, and proline, were differentially increased in older HCR animals compared with their younger counterparts. When interactions between age and aerobic capacity were examined, results demonstrated that enhanced aerobic capacity could mitigate some but not all age-associated alterations in the metabolomic profile.

  9. Low-load high-velocity resistance exercises improve strength and functional capacity in diabetic patients

    Directory of Open Access Journals (Sweden)

    Rodrigo Celes

    2017-06-01

    Full Text Available This study investigated the effects of low-load high-velocity resistance exercises on neuromuscular and functional outcomes in patients with Type 2 diabetes (T2D during the early-phase of resistance training. Thirty participants with T2D performed 18 training sessions (6 weeks – 3x week in one of two groups: low-load high-velocity exercises (LLHV, n=15, 62.1±10.5 years or recreational activities (RA, n=15 56.7 ± 19.4 years. LLHV performed resistance exercises with 3x 8reps as fast as possible with 50-60% 1RM. RA performed light activities. Strength, power, and functional tests were assessed. There was significant increasing in the knee extension peak-torque at 60º/s (7.6% and 180º/s (12.2%, rate of force development in the LLHV group (P<0.05, whereas there were no changes in the RA group. Significant increases in functional test were observed in the LLHV group (P<0.01 with no changes in the RA group. In conclusion, the LLHV induced marked improvements in neuromuscular parameters, as well as in the functional capacity of participants with T2D.

  10. High Average Power Diode Pumped Solid State Lasers: Power Scaling With High Spectral and Spatial Coherence

    Science.gov (United States)

    2009-03-30

    power. The PPSLT chip was placed in a home-made mount whose temperature was controlled with a thermo- electric cooler (TEC) and monitored with a...main optical damage mechanisms need to be assessed when dealing with cw lasers, namely (1) optical surface damage arising from the high electric ...Yuen, H. P. Bae, M. A. Wistey, A. Moto , and J. S. Harris Jr., "Enhanced Luminescence in GaInNAsSb Quantum Wells Through Variation of the Arsenic and

  11. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2013-01-01

    in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV......The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... demand is chosen as the studied case. The results show that an optimal operation of PEV in both spot market and regulation market can not only decrease the energy costs for PEV owners, but also significantly decrease the power deviations between West Denmark and Union for the Coordination of Electricity...

  12. Multi-core Fibers in Submarine Networks for High-Capacity Undersea Transmission Systems

    DEFF Research Database (Denmark)

    Nooruzzaman, Md; Morioka, Toshio

    2017-01-01

    Application of multi-core fibers in undersea networks for high-capacity submarine transmission systems is studied. It is demonstrated how different architectures of submerged branching unit affect network component counts in long-haul undersea transmission systems......Application of multi-core fibers in undersea networks for high-capacity submarine transmission systems is studied. It is demonstrated how different architectures of submerged branching unit affect network component counts in long-haul undersea transmission systems...

  13. Frequency Assignment for Joint Aerial Layer Network High-Capacity Backbone

    Science.gov (United States)

    2017-08-11

    is the resource management problems involving multiple antennas per aerial platform, limited available bandwidth and geometric blockage involving the...ARL-TR-8093•AUG 2017 US Army Research Laboratory Frequency Assignment for Joint Aerial Layer Network High -Capacity Backbone by Peng Wang and Brian...2017 US Army Research Laboratory Frequency Assignment for Joint Aerial Layer Network High -Capacity Backbone by Peng Wang and Brian Henz Computational

  14. Comparative Study on Impacts of Power Curve Model on Capacity Factor Estimation of Pitch-Regulated Turbines

    Directory of Open Access Journals (Sweden)

    MH Albadi

    2012-12-01

    Full Text Available The amount of energy produced by a turbine depends on the characteristics of both wind speed at the site under investigation and the turbine's power performance curve. The capacity factor (CF of a wind turbine is commonly used to estimate the turbine's average energy production. This paper investigates the effect of the accuracy of the power curve model on CF estimation. The study considers three CF models. The first CF model is based on a power curve model that underestimates the turbine output throughout the ascending segment of the power curve. To compensate for the aforementioned discrepancy, the Weibull parameters, c and k, which are used to describe wind profile, are calculated based on cubic mean wind speed (CMWS. The second CF model is based on the most accurate generic power curve model available in open literature. The third CF model is based on a new model of power performance curve which mimics the behavior of a typical pitch-regulated turbine curve. As the coefficients of this power curve model are based on a general estimation of the turbine output at different wind speeds, they can be further tuned to provide a more accurate fit with turbine data from a certain manufacturer.

  15. A 380 V High Efficiency and High Power Density Switched-Capacitor Power Converter using Wide Band Gap Semiconductors

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    to compose the proposed power stage. Their switching and loss characteristics are analyzed with transient waveforms and thermal images. Different isolated driving circuits are compared and a compact isolated halfbridge driving circuit is proposed. The full-load efficiencies of 98.3% and 97.6% are achieved......State-of-the-art switched-capacitor DC-DC power converters mainly focus on low voltage and/or high power applications. However, at high voltage and low power levels, new designs are anticipated to emerge and a power converter that has both high efficiency and high power density is highly desirable....... This paper presents such a high voltage low power switched-capacitor DC-DC converter with an input voltage upto 380 V (compatible with rectified European mains) and an output power experimentally validated up to 21.3 W. The wideband gap semiconductor devices of GaN switches and SiC diodes are combined...

  16. Measurement of high-power microwave pulse under intense ...

    Indian Academy of Sciences (India)

    KALI-1000 pulse power system has been used to generate single pulse nanosecond duration high-power microwaves (HPM) from a virtual cathode oscillator (VIRCATOR) device. HPM power measurements were carried out using a transmitting–receiving system in the presence of intense high frequency (a few MHz) ...

  17. Thermoelectric Powered High Temperature Wireless Sensing

    Science.gov (United States)

    Kucukkomurler, Ahmet

    This study describes use of a thermoelectric power converter to transform waste heat into electrical energy to power an RF receiver and transmitter, for use in harsh environment wireless temperature sensing and telemetry. The sensing and transmitting module employs a DS-1820 low power digital temperature sensor to perform temperature to voltage conversion, an ATX-34 RF transmitter, an ARX-34 RF receiver module, and a PIC16f84A microcontroller to synchronize data communication between them. The unit has been tested in a laboratory environment, and promising results have been obtained for an actual automotive wireless under hood temperature sensing and telemetry implementation.

  18. Unique Power Dense, Configurable, Robust, High-Voltage Power Supplies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Princeton Power will develop and deliver three small, lightweight 50 W high-voltage power supplies that have a configurable output voltage range from 500 to 50 kVDC....

  19. Capacity factor prediction and planning in the wind power generation industry

    Energy Technology Data Exchange (ETDEWEB)

    Gurgur, Cigdem Z. [Department of Management and Marketing, Richard T. Doermer School of Business and Management Sciences, Indiana - Purdue University, 2101 Coliseum Blvd. East, Fort Wayne, IN 46805 (United States); Jones, Michael [Xcel Energy, Denver, CO 80223 (United States)

    2010-12-15

    The common practice to calculate wind generation capacity values relies more on heuristic approximations than true system estimations. In this paper we proposed a more accurate method. In the first part of our analysis, a Monte Carlo simulation was created based on Markov chains to provide an independent estimate of the true behavior of wind farm capacity value as a function of system penetration. With this curve as a baseline, a technique for using beta distributions to model the input variables was adopted. A final step to increase accuracy involved the use of numerical convolution within the program to eliminate summation estimates. (author)

  20. Controlled Compact High Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Postolati V.

    2016-04-01

    Full Text Available Nowadays modern overhead transmission lines (OHL constructions having several significant differences from conventional ones are being used in power grids more and more widely. Implementation of compact overhead lines equipped with FACTS devices, including phase angle regulator settings (compact controlled OHL, appears to be one of the most effective ways of power grid development. Compact controlled AC HV OHL represent a new generation of power transmission lines embodying recent advanced achievements in design solutions, including towers and insulation, together with interconnection schemes and control systems. Results of comprehensive research and development in relation to 110–500kV compact controlled power transmission lines together with theoretical basis, substantiation, and methodological approaches to their practical application are presented in the present paper.

  1. A High Power Frequency Doubled Fiber Laser

    Science.gov (United States)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  2. The electricity production capacity of photovoltaic power plants and the selection of solar energy sites in Andalusia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Carrion, J. Aran; Espin Estrella, A.; Aznar Dols, F. [Department of Civil Engineering, Section of Electrical Engineering, University of Granada (Spain); Ridao, A. Ramos [Department of Civil Engineering, Section of Environmental Technology, E.T.S.I.C.C.P., Campus de Fuentenueva s/n, University of Granada, 18071 Granada (Spain)

    2008-04-15

    The privileged climate and orographic setting of southern Spain give Andalusia an enormous potential for the installation of photovoltaic power plants connected to electricity grids and also for individual use. These circumstances as well as the present energy crisis, largely stemming from the world's dependence on fossil fuels, justify this research study. This article describes how the GIS was used to inventory the most suitable land sites for the location of solar power plants for the production of electrical energy in compliance with the legal, environmental, and operational requisites for grid-connected photovoltaic power plants (GPPPs). On the basis of this inventory and the calculation of the global irradiation on horizontal surface, it is estimated that the electrical production capacity of GPPPs in Andalusia doubles the Special Regime electricity demand. The resulting electricity production capacity is estimated at 38,693 GWh/yr for 164,495.37 ha of land, which has no legal and/or environmental impediments to solar power installations. (author)

  3. Advanced Capacitors for High-Power Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the consumer and industrial requirements for compact, high-power-density, electrical power systems grow substantially over the next decade; there will be a...

  4. On the outage capacity of the block fading channel at low-power regime

    KAUST Repository

    Rezki, Zouheir

    2014-06-01

    Outage performance of the M-block fading with additive white Gaussian noise (BF-AWGN) is investigated at low-power regime. We consider delay-constrained constant-rate communications with perfect channel state information (CSI) at both the transmitter and the receiver (CSI-TR), under a short-term power constraint. We show that selection diversity that allocates all the power to the strongest block is asymptotically optimal. Then, we provide a simple characterization of the outage probability in the regime of interest. We quantify the reward due to CSI-TR over the constant-rate constant-power scheme and show that this reward increases with the delay constraint. For instance, for Rayleigh fading, we find that a power gain up to 4.3 dB is achievable. © 2014 IEEE.

  5. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.

    Science.gov (United States)

    Nayak, Prasant Kumar; Levi, Elena; Grinblat, Judith; Levi, Mikhael; Markovsky, Boris; Munichandraiah, N; Sun, Yang Kook; Aurbach, Doron

    2016-09-08

    Li and Mn-rich layered oxides with the general structure x Li2 MnO3 ⋅(1-x) LiMO2 (M=Ni, Mn, Co) are promising cathode materials for Li-ion batteries because of their high specific capacity, which may be greater than 250 mA h g(-1) . However, these materials suffer from high first-cycle irreversible capacity, gradual capacity fading, limited rate capability and discharge voltage decay upon cycling, which prevent their commercialization. The decrease in average discharge voltage is a major issue, which is ascribed to a structural layered-to-spinel transformation upon cycling of these oxide cathodes in wide potential ranges with an upper limit higher than 4.5 V and a lower limit below 3 V versus Li. By using four elements systems (Li, Mn, Ni, O) with appropriate stoichiometry, it is possible to prepare high capacity composite cathode materials that contain LiMn1.5 Ni0.5 O4 and Lix Mny Niz O2 components. The Li and Mn-rich layered-spinel cathode materials studied herein exhibit a high specific capacity (≥200 mA h g(-1) ) with good capacity retention upon cycling in a wide potential domain (2.4-4.9 V). The effect of constituent phases on their electrochemical performance, such as specific capacity, cycling stability, average discharge voltage, and rate capability, are explored here. This family of materials can provide high specific capacity, high rate capability, and promising cycle life. Using Co-free cathode materials is also an obvious advantage of these systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Interference Impact on Coverage and Capacity for Low Power Wide Area IoT Networks

    DEFF Research Database (Denmark)

    Vejlgaard, Benny; Lauridsen, Mads; Nguyen, Huan Cong

    2017-01-01

    In this paper we analyze and discuss the coverage and capacity of Sigfox and LoRaWAN in a large scale urban environments covering 150 km2 in Northern Denmark. First, the study measures and analyzes interference in the European 868 MHz license free industrial, scientific, and medical band, creatin...

  7. A Dynamic Programming based method for optimizing power system restoration with high wind power penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Li, Pengfei

    2016-01-01

    Power system restoration is very significant for the operation reliability. Although a totally blackout in today's power system rarely happens, the operators still have to make the restoration strategies in advance by using their experience or some strategy supportive systems. Nowadays, as distri...... System. The testing system was modified by replacing traditional generators with wind farms to create a high wind penetration system....... and relatively low cost. Thus, many countries are increasing the wind power penetration in their power system step by step, such as Denmark, Spain and Germany. The incremental wind power penetration brings a lot of new issues in operation and programming. The power system sometimes will operate close to its...... stable limits. Once the blackout happens, a well-designed restoration strategy is significant. This paper focuses on how to ameliorate the power system restoration procedures to adapt the high wind power penetration and how to take full advantages of the wind power plants during the restoration...

  8. An Alternative Approach for High Speed Railway Carrying Capacity Calculation Based on Multiagent Simulation

    Directory of Open Access Journals (Sweden)

    Mo Gao

    2016-01-01

    Full Text Available It is a multiobjective mixed integer programming problem that calculates the carrying capacity of high speed railway based on mathematical programming method. The model is complex and difficult to solve, and it is difficult to comprehensively consider the various influencing factors on the train operation. The multiagent theory is employed to calculate high speed railway carrying capacity. In accordance with real operations of high speed railway, a three-layer agent model is developed to simulate the operating process of high speed railway. In the proposed model, railway network agent, line agent, station agent, and train agent are designed, respectively. To validate the proposed model, a case study is performed for Beijing–Shanghai high speed railway by using NetLogo software. The results are consistent with the actual data, which implies that the proposed multiagent method is feasible to calculate the carrying capacity of high speed railway.

  9. Improving Strength, Power, Muscle Aerobic Capacity, and Glucose Tolerance through Short-term Progressive Strength Training Among Elderly People.

    Science.gov (United States)

    Andersson, Eva A; Frank, Per; Pontén, Marjan; Ekblom, Björn; Ekblom, Maria; Moberg, Marcus; Sahlin, Kent

    2017-07-05

    This protocol describes the simultaneous use of a broad span of methods to examine muscle aerobic capacity, glucose tolerance, strength, and power in elderly people performing short-term resistance training (RET). Supervised progressive resistance training for 1 h three times a week over 8 weeks was performed by RET participants (71±1 years, range 65-80). Compared to a control group without training, the RET showed improvements on the measures used to indicate strength, power, glucose tolerance, and several parameters of muscle aerobic capacity. Strength training was performed in a gym with only robust fitness equipment. An isokinetic dynamometer for knee extensor strength permitted the measurement of concentric, eccentric, and static strength, which increased for the RET group (8-12% post- versus pre-test). The power (rate of force development, RFD) at the initial 0-30 ms also showed an increase for the RET group (52%). A glucose tolerance test with frequent blood glucose measurements showed improvements only for the RET group in terms of blood glucose values after 2 h (14%) and the area under the curve (21%). The blood lipid profile also improved (8%). From muscle biopsy samples prepared using histochemistry, the amount of fiber type IIa increased, and a trend towards a decrease in IIx in the RET group reflected a change to a more oxidative profile in terms of fiber composition. Western blot (to determine the protein content related to the signaling for muscle protein synthesis) showed a rise of 69% in both Akt and mTOR in the RET group; this also showed an increase in mitochondrial proteins for OXPHOS complex II and citrate synthase (both ~30%) and for complex IV (90%), in only the RET group. We demonstrate that this type of progressive resistance training offers various improvements (e.g., strength, power, aerobic capacity, glucose tolerance, and plasma lipid profile).

  10. Systematic Approach for Design of Broadband, High Efficiency, High Power RF Amplifiers

    National Research Council Canada - National Science Library

    Mohadeskasaei, Seyed Alireza; An, Jianwei; Chen, Yueyun; Li, Zhi; Abdullahi, Sani Umar; Sun, Tie

    2017-01-01

    ...‐AB RF amplifiers with high gain flatness. It is usually difficult to simultaneously achieve a high gain flatness and high efficiency in a broadband RF power amplifier, especially in a high power design...

  11. Practitioner consensus on the determinants of capacity building practice in high-income countries.

    Science.gov (United States)

    Swanepoel, Elizabeth; Fox, Ann; Hughes, Roger

    2015-07-01

    To assess and develop consensus among experienced public health nutrition practitioners from high-income countries regarding conceptualisation of capacity building in practice, and to test the content validity of a previously published conceptual framework for capacity building in public health nutrition practice. A Delphi study involving three iterations of email-delivered questionnaires testing a range of capacity determinants derived from the literature. Consensus was set at >50% of panellists ranking items as 'very important' on a five-point Likert scale across three survey rounds. Public health nutrition practice in Australia, the UK, Canada and the USA. Public health nutrition practitioners and academics. Result A total of thirty expert panellists (68% of an initial panel of forty-four participants) completed all three rounds of Delphi questionnaires. Consensus identified determinants of capacity building in practice including partnerships, resourcing, community development, leadership, workforce development, intelligence and quality of project management. The findings from the study suggest there is broad agreement among public health nutritionists from high-income countries about how they conceptualise capacity building in public health nutrition practice. This agreement suggests considerable content validity for a capacity building conceptual framework proposed by Baillie et al. (Public Health Nutr 12, 1031-1038). More research is needed to apply the conceptual framework to the implementation and evaluation of strategies that enhance the practice of capacity building approaches by public health nutrition professionals.

  12. Design and development of high voltage high power operational ...

    Indian Academy of Sciences (India)

    Normally power opamps can deliver current more than 50 mA and can operate on the supply voltage more than ±25 V. This paper gives the details of one of the power opamps developed to drive the Piezo Actuators for Active Vibration Control (AVC) of aircraft/aerospace structures. The designed power opamp will work on ...

  13. Dynamic Cooperative Clustering Based Power Assignment: Network Capacity and Lifetime Efficient Topology Control in Cooperative Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Li

    2014-01-01

    Full Text Available Cooperative communication (CC is used in topology control as it can reduce the transmission power and expand the transmission range. However, all previous research on topology control under the CC model focused on maintaining network connectivity and minimizing the total energy consumption, which would lead to low network capacity, transmission interruption, or even network paralysis. Meanwhile, without considering the balance of energy consumption in the network, it would reduce the network lifetime and greatly affect the network performance. This paper tries to solve the above problems existing in the research on topology control under the CC model by proposing a power assignment (DCCPA algorithm based on dynamic cooperative clustering in cooperative ad hoc networks. The new algorithm clusters the network to maximize network capacity and makes the clusters communicate with each other by CC. To reduce the number of redundant links between clusters, we design a static clustering method by using Kruskal algorithm. To maximize the network lifetime, we also propose a cluster head rotating method which can reach a good tradeoff between residual energy and distance for the cluster head reselection. Experimental results show that DCCPA can improve 80% network capacity with Cooperative Bridges algorithm; meanwhile, it can improve 20% network lifetime.

  14. Aerobic capacity in speed-power athletes aged 20-90 years vs endurance runners and untrained participants.

    Science.gov (United States)

    Kusy, K; Zieliński, J

    2014-02-01

    We studied relationships between age and aerobic capacity in three groups of subjects adhering to different exercise modalities. A total of 203 men aged 20-90 years were examined: 52 speed-power track and field athletes (SP), 89 endurance runners (ER) and 62 untrained individuals (UT). Maximal exercise characteristics were obtained during a graded treadmill test until exhaustion: oxygen uptake (VO2max), heart rate (HRmax), oxygen pulse (O2 Pulsemax) and maximal distance (Distmax). Information about training history and weekly training amount was collected. A linear model of regression was adopted. VO2max in SP was lower than in ER, but significantly higher than in UT. The cross-sectional rates of decline in body mass-adjusted VO2max and Distmax were significantly smaller in SP than in ER and UT. About 80 years of age, the levels of VO2max and Distmax reached similar values in SP and ER. The decline in HRmax, but not in O2 Pulsemax was suggested as a cardiac adaptation accounting for between-group differences in VO2max loss. Weekly training volume was a significant positive predictor of age-related changes in aerobic capacity. In conclusion, not only endurance, but also speed-power exercise appears adequate to ensure an elevated aerobic capacity at old age. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. A high capacity mobile communications satellite system for the first generation MSS

    Science.gov (United States)

    Wiedeman, R. A.

    A low-cost high-capacity dual-band mobile communications satellite system using existing equipment is proposed for the first generation MSS. Cost effectiveness and the requirements of beam optimization and passive intermodulation avoidance dictated the choice of two single band satellites for separate UHF and L-band coverage of North America. Similar designs for the two satellites, based on the Intelsat V and Insat/Arabsat configurations, will achieve over 6000 5-kHz SCPC, communications channels for the system. The 12 beam UHF and 17 beam L-band satellites achieve up to a three-fold frequency reuse of the FCC allocated MSS frequency spectrum. Spacecraft design features include separate 9.1 m antennas for sending and receiving, SAW filters for channel noise attenuation, an integrated bipropellant propulsion system, and a 3.8 kW 10-year electrical power subsystem with a solar array. The satellites are compatible with the STS, Ariane, and other expendable boosters.

  16. High-Efficiency, High-Capacity, Low-NOx Aluminum Melting Using Oxygen-Enhanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    D' Agostini, M.D.

    2000-06-02

    This report describes the development and application of a novel oxygen enhanced combustion system with an integrated vacuum swing adsorption (VSA) oxygen supply providing efficient, low NOx melting in secondary aluminum furnaces. The mainstay of the combustion system is a novel air-oxy-natural gas burner that achieves high productivity and energy efficiency with low NOx emissions through advanced mixing concepts and the use of separate high- and low-purity oxidizer streams. The technology was installed on a reverberatory, secondary aluminum melting plant at the Wabash Aluminum Alloy's Syracuse, N.Y. plant, where it is currently in operation. Field testing gave evidence that the new burner technology meets the stringent NOx emissions target of 0.323 lb NO2/ton aluminum, thus complying with regulations promulgated by Southern California's South Coast Air Quality Management District (SCAQMD). Test results also indicated that the burner technology exceeded fuel efficiency and melting capacity goals. Economic modeling showed that the novel air-oxy-fuel (ADF) combustion technology provides a substantial increase in furnace profitability relative to air-fuel operation. Model results also suggest favorable economics for the air-oxy-fuel technology relative to a full oxy-fuel conversion of the furnace.

  17. An Evaluation of Layer 2 and Layer 3 Routing on High Capacity Aerial Directional Links

    Science.gov (United States)

    2016-10-30

    loaded as overall traffic that is generated is much less than the capacity of each link in the topology . The following metrics are used to assess the... topology . • Efficiency: This metric is represented as a ratio of total goodput to total traffic sent, where total goodput is defined as the total data...Surface Network F Aerial High Capacity Backbone Fig. 4: 9 Node Emulated Topology The parameters that affect routing performance metrics for Batman-Adv

  18. Preparation and characterization of magnetic polymer nanospheres with high protein binding capacity

    Science.gov (United States)

    Liu, Xianqiao; Guan, Yueping; Liu, Huizhou; Ma, Zhiya; Yang, Yu; Wu, Xiaobing

    2005-05-01

    A novel magnetic support with high protein binding capacity was prepared by mini-emulsion polymerization. The magnetic poly(methacrylate-divinylbenzene) nanospheres prepared are 390 nm in diameter with narrow size distribution and star-like external morphology which leads to a large increase in specific surface area. Experimental results indicate that the maximum protein binding capacity is 316 mg bovine hemoglobin (BHb)/g support.

  19. Preparation and characterization of magnetic polymer nanospheres with high protein binding capacity

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xianqiao [Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing, 100080 (China); Guan Yueping [Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing, 100080 (China); Liu Huizhou [Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing, 100080 (China)]. E-mail: hzliu@home.ipe.ac.cn; Ma Zhiya [Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing, 100080 (China); Yang Yu [AGTC Gene Technology Company Ltd., Beijing 100176 (China); Wu Xiaobing [AGTC Gene Technology Company Ltd., Beijing 100176 (China)

    2005-05-15

    A novel magnetic support with high protein binding capacity was prepared by mini-emulsion polymerization. The magnetic poly(methacrylate-divinylbenzene) nanospheres prepared are 390 nm in diameter with narrow size distribution and star-like external morphology which leads to a large increase in specific surface area. Experimental results indicate that the maximum protein binding capacity is 316 mg bovine hemoglobin (BHb)/g support.

  20. Power affects performance when the pressure is on: evidence for low-power threat and high-power lift.

    Science.gov (United States)

    Kang, Sonia K; Galinsky, Adam D; Kray, Laura J; Shirako, Aiwa

    2015-05-01

    The current research examines how power affects performance in pressure-filled contexts. We present low-power-threat and high-power-lift effects, whereby performance in high-stakes situations suffers or is enhanced depending on one's power; that is, the power inherent to a situational role can produce effects similar to stereotype threat and lift. Three negotiations experiments demonstrate that role-based power affects outcomes but only when the negotiation is diagnostic of ability and, therefore, pressure-filled. We link these outcomes conceptually to threat and lift effects by showing that (a) role power affects performance more strongly when the negotiation is diagnostic of ability and (b) underperformance disappears when the low-power negotiator has an opportunity to self-affirm. These results suggest that stereotype threat and lift effects may represent a more general phenomenon: When the stakes are raised high, relative power can act as either a toxic brew (stereotype/low-power threat) or a beneficial elixir (stereotype/high-power lift) for performance. © 2015 by the Society for Personality and Social Psychology, Inc.

  1. Energy system modelling – interactions and synergies in a highly renewable Pan-European power system

    Directory of Open Access Journals (Sweden)

    Weitemeyer Stefan

    2014-01-01

    Full Text Available It is very likely that the European power supply system will be transformed in the next decades to a low carbon system based almost entirely on Renewable Energy Sources (RES. However, due to the natural fluctuations of the most powerful RES (wind and solar energy, it is also very likely that a significant amount of balancing and controllable backup power capacities will be required to ensure a stable grid operation. This implies high additional investments and operating costs. Therefore this work provides an overview of potential options and possibly more cost-effective alternatives to the installation of costly storage capacities, namely grid expansion, demand side management, an optimised mix between different RES as well as the use of overcapacities. Furthermore, the paper provides an approximation of the maximum RES penetration of the German electricity system in the absence of significant storage capacities. Our calculations show that from a numerical perspective on average approximately half of the load can be met by RES if flexible conventional power stations would provide the remaining electricity demand. However, in a 100% RES scenario a significant amount of storage capacities as well as limited overcapacities are required to ensure a reliable electricity supply.

  2. New high power CW klystrons at TED

    CERN Document Server

    Beunas, A; Marchesin, R

    2003-01-01

    Thales Electron Devices (TED) has been awarded a contract by CERN to develop and produce 20 units of the klystrons needed to feed the Large Hadrons Collider (LHC). Each of these delivers 300 kW of CW RF power at 400 MHz. Three klystrons have been delivered to CERN up to now.

  3. Designing high efficient solar powered lighting systems

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune; Lindén, Johannes

    2016-01-01

    -Port-Converters respectively for 1-10Wp and 10-50 Wp with a peak efficiency of 97% at 1.8 W of PV power for the 10 Wp version. Furthermore, a modelling tool for L2L products has been developed and a laboratory for feeding in component data not available in the datasheets to the model is described....

  4. Designing high efficient solar powered lighting systems

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune; Lindén, Johannes

    -Port-Converters respectively for 1-10Wp and 10-50 Wp with a peak efficiency of 97% at 1.8 W of PV power for the 10 Wp version. Furthermore, a modelling tool for L2L products has been developed and a laboratory for feeding in component data not available in the datasheets to the model is described....

  5. High power for rotors; Rotor unter Starkstrom

    Energy Technology Data Exchange (ETDEWEB)

    Marter, H.J.

    2003-08-01

    Tidal energy is going strong: A new tidal power plant is projected off the coast of southern England. Of the envisaged underwater rotors, one has been installed for test purposes. (orig.) [German] Wellenenergie ist en vogue: Vor der Kueste Suedenglands wird ein neuartiges Tidenkraftwerk getestet. Die starke Stroemung soll maechtige Unterwasser-Rotoren antreiben. Zum Test dreht sich erst einmal nur einer. (orig.)

  6. Short-time weight-bearing capacity assessment for non-ambulatory patients with subacute stroke: reliability and discriminative power.

    Science.gov (United States)

    Stoller, Oliver; Rosemeyer, Heike; Baur, Heiner; Schindelholz, Matthias; Hunt, Kenneth J; Radlinger, Lorenz; Schuster-Amft, Corina

    2015-11-26

    Weight-bearing capacity (WBC) on the hemiparetic leg is crucial for independent walking, and is thus an important outcome to monitor after a stroke. A specific and practical assessment in non-ambulatory patients is not available. This is of importance considering the increasing administration of high intensive gait training for the severely impaired stroke population. The aim was to develop a fast and easy-to-perform assessment for WBC on a foot pressure plate to be used in clinical routine. WBC was assessed in the frontal plane in 30 non-ambulatory patients with subacute stroke and 10 healthy controls under 3 conditions: static, dynamic, and rhythmic. Force-time curves for the hemiparetic leg (patients with stroke) and the non-dominant leg (healthy controls) were normalised as a percentage of body weight (%BW), and the means analysed over 60, 30, and 15 s (static) and the mean of the peak values for 15, 10, 5, 4, and 3 repetition trials (dynamic, rhythmic). The data were tested for discriminative power and reliability. Dynamic and rhythmic tests could discriminate between patients with stroke and healthy controls over all periods (15, 10, 5, 4, and 3 repetitions) (p 0.829] and inter-session reliability (ICC = 0.740) were found for 3 repetitions in the dynamic test with acceptable absolute reliability [standard error of measurement (SEM) <5 %BW, minimal detectable difference (MDD) <12.4 %BW] and no within- or between-test differences (trial 1, p = 0.792; trial 2, p = 0.067; between trials, p = 0.102). Three dynamic repetitions of loading the hemiparetic leg are sufficient to assess WBC in non-ambulatory patients with subacute stroke. This is an important finding regarding the implementation of a fast and easy-to-perform assessment for routine clinical usage in patients with limited standing ability.

  7. High-capacity, transient retention of direction-of-motion information for multiple moving objects.

    Science.gov (United States)

    Shooner, Christopher; Tripathy, Srimant P; Bedell, Harold E; Ogmen, Haluk

    2010-06-01

    The multiple-object tracking paradigm (MOT) has been used extensively for studying dynamic visual attention, but the basic mechanisms which subserve this capability are as yet unknown. Among the unresolved issues surrounding MOT are the relative importance of motion (as opposed to positional) information and the role of various memory mechanisms. We sought to quantify the capacity and dynamics for retention of direction-of-motion information when viewing a multiple-object motion stimulus similar to those used in MOT. Observers viewed three to nine objects in random linear motion and then reported motion direction after motion ended. Using a partial-report paradigm and varying the parameters of set size and time of retention, we found evidence for two complementary memory systems, one transient with high capacity and a second sustained system with low capacity. For the transient high-capacity memory, retention capacity was equally high whether object motion lasted several seconds or a fraction of a second. Also, a graded deterioration in performance with increased set size lends support to a flexible-capacity theory of MOT.

  8. The relationship of aerobic capacity, anaerobic peak power and experience to performance in in CrossFit exercise

    Directory of Open Access Journals (Sweden)

    D Bellar

    2015-11-01

    Full Text Available CrossFit is becoming increasingly popular as a method to increase fitness and as a competitive sport in both the Unites States and Europe. However, little research on this mode of exercise has been performed to date. The purpose of the present investigation involving experienced CrossFit athletes and naïve healthy young men was to investigate the relationship of aerobic capacity and anaerobic power to performance in two representative CrossFit workouts: the first workout was 12 minutes in duration, and the second was based on the total time to complete the prescribed exercise. The participants were 32 healthy adult males, who were either naïve to CrossFit exercise or had competed in CrossFit competitions. Linear regression was undertaken to predict performance on the first workout (time with age, group (naïve or CrossFit athlete, VO 2 max and anaerobic power, which were all significant predictors (p<0.05 in the model. The second workout (repetitions, when examined similarly using regression, only resulted in CrossFit experience as a significant predictor (p<0.05. The results of the study suggest that a history of participation in CrossFit competition is a key component of performance in CrossFit workouts which are representative of those performed in CrossFit, and that, in at least one these workouts, aerobic capacity and anaerobic power are associated with success.

  9. The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise.

    Science.gov (United States)

    Bellar, D; Hatchett, A; Judge, L W; Breaux, M E; Marcus, L

    2015-11-01

    CrossFit is becoming increasingly popular as a method to increase fitness and as a competitive sport in both the Unites States and Europe. However, little research on this mode of exercise has been performed to date. The purpose of the present investigation involving experienced CrossFit athletes and naïve healthy young men was to investigate the relationship of aerobic capacity and anaerobic power to performance in two representative CrossFit workouts: the first workout was 12 minutes in duration, and the second was based on the total time to complete the prescribed exercise. The participants were 32 healthy adult males, who were either naïve to CrossFit exercise or had competed in CrossFit competitions. Linear regression was undertaken to predict performance on the first workout (time) with age, group (naïve or CrossFit athlete), VO2max and anaerobic power, which were all significant predictors (p CrossFit experience as a significant predictor (p CrossFit competition is a key component of performance in CrossFit workouts which are representative of those performed in CrossFit, and that, in at least one these workouts, aerobic capacity and anaerobic power are associated with success.

  10. Reducing the power consumption in LTE-Advanced wireless access networks by a capacity based deployment tool

    Science.gov (United States)

    Deruyck, Margot; Joseph, Wout; Tanghe, Emmeric; Martens, Luc

    2014-09-01

    As both the bit rate required by applications on mobile devices and the number of those mobile devices are steadily growing, wireless access networks need to be expanded. As wireless networks also consume a lot of energy, it is important to develop energy-efficient wireless access networks in the near future. In this study, a capacity-based deployment tool for the design of energy-efficient wireless access networks is proposed. Capacity-based means that the network responds to the instantaneous bit rate requirements of the users active in the selected area. To the best of our knowledge, such a deployment tool for energy-efficient wireless access networks has never been presented before. This deployment tool is applied to a realistic case in Ghent, Belgium, to investigate three main functionalities incorporated in LTE-Advanced: carrier aggregation, heterogeneous deployments, and Multiple-Input Multiple-Output (MIMO). The results show that it is recommended to introduce femtocell base stations, supporting both MIMO and carrier aggregation, into the network (heterogeneous deployment) to reduce the network's power consumption. For the selected area and the assumptions made, this results in a power consumption reduction up to 70%. Introducing femtocell base stations without MIMO and carrier aggregation can already result in a significant power consumption reduction of 38%.

  11. Using SRAM based FPGAs for power-aware high performance wireless sensor networks.

    Science.gov (United States)

    Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa

    2012-01-01

    While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today's applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements.

  12. 76 FR 30753 - Notice of Availability of a Record of Decision (ROD) for the Proposed Honolulu High-Capacity...

    Science.gov (United States)

    2011-05-26

    ... Honolulu High-Capacity Transit Corridor Project (HHCTCP) Segment at Honolulu International Airport (HNL... for the construction and operation of a 3-mile segment at HNL for the proposed Honolulu High-Capacity...-mile project in January 2011. The Project would provide a high-capacity rapid transit service in the...

  13. Integration of electric drive vehicles in the Danish electricity network with high wind power penetration

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob; Larsen, Esben

    2010-01-01

    /conventional) which are likely to fuel these cars. The study was carried out considering the Danish electricity network state around 2025, when the EDV penetration levels would be significant enough to have an impact on the power system. Some of the interesting findings of this study are - EDV have the potential......This paper presents the results of a study carried out to examine the feasibility of integrating electric drive vehicles (EDV) in the Danish electricity network which is characterised by high wind power penetration. One of the main aims of this study was to examine the effect of electric drive...... vehicles on the Danish electricity network, wind power penetration and electricity market. In particular the study examined the effect of electric drive vehicles on the generation capacity constraints, load curve, cross border transmission capacity and the type of generating sources (renewable...

  14. Study of Flexible Load Dispatch to Improve the Capacity of Wind Power Absorption

    Science.gov (United States)

    Yunlei, Yang; Shifeng, Zhang; Xiao, Chang; Da, Lei; Min, Zhang; Jinhao, Wang; Shengwen, Li; Huipeng, Li

    2017-05-01

    The dispatch method which track the trend of load demand by arranging the generation scheme of controllable hydro or thermal units faces great difficulties and challenges. With the increase of renewable energy sources such as wind power and photovoltaic power introduced to grid, system has to arrange much more spinning reserve units to compensate the unbalanced power. How to exploit the peak-shaving potential of flexible load which can be shifted with time or storage energy has become many scholars’ research direction. However, the modelling of different kinds of load and control strategy is considerably difficult, this paper choose the Air Conditioner with compressor which can storage energy in fact to study. The equivalent thermal parameters of Air Conditioner has been established. And with the use of “loop control” strategies, we can predict the regulated power of Air Conditioner. Then we established the Gen-Load optimal scheduling model including flexible load based on traditional optimal scheduling model. At last, an improved IEEE-30 case is used to verify. The result of simulation shows that flexible load can fast-track renewable power changes. More than that, with flexible load and reasonable incentive method to consumers, the operating cost of the system can be greatly cut down.

  15. High specific power flexible integrated IMM photovoltaic blanket Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Originally designed for space applications, multi-junction solar cells have a high overall power conversion efficiency (>30%) which compares favorably to...

  16. High Efficiency Hall Thruster Discharge Power Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek leveraged previous, internally sponsored, high power, Hall thruster discharge converter development which allowed it to design, build, and test new printed...

  17. Temperature Stabilized Characterization of High Voltage Power Supplies

    CERN Document Server

    Krarup, Ole

    2017-01-01

    High precision measurements of the masses of nuclear ions in the ISOLTRAP experiment relies on an MR-ToF. A major source of noise and drift is the instability of the high voltage power supplies employed. Electrical noise and temperature changes can broaden peaks in time-of-flight spectra and shift the position of peaks between runs. In this report we investigate how the noise and drift of high-voltage power supplies can be characterized. Results indicate that analog power supplies generally have better relative stability than digitally controlled ones, and that the high temperature coefficients of all power supplies merit efforts to stabilize them.

  18. Design High Efficiency PWM Boost Converter for Wind Power Generation

    National Research Council Canada - National Science Library

    SULAIMAN R. Diary; MUHAMMAD A. Aree

    2010-01-01

    ...; it is offer high efficiency performance andprovides power management circuit designers with theability to approach a broad range of designapplications with flexible and easy-to-implementsolutions...

  19. High Efficiency Thermoelectric Radioisotope Power Systems

    Science.gov (United States)

    El-Genk, Mohamed; Saber, Hamed; Caillat, Thierry

    2004-01-01

    The work performed and whose results presented in this report is a joint effort between the University of New Mexico s Institute for Space and Nuclear Power Studies (ISNPS) and the Jet Propulsion Laboratory (JPL), California Institute of Technology. In addition to the development, design, and fabrication of skutterudites and skutterudites-based segmented unicouples this effort included conducting performance tests of these unicouples for hundreds of hours to verify theoretical predictions of the conversion efficiency. The performance predictions of these unicouples are obtained using 1-D and 3-D models developed for that purpose and for estimating the actual performance and side heat losses in the tests conducted at ISNPS. In addition to the performance tests, the development of the 1-D and 3-D models and the development of Advanced Radioisotope Power systems for Beginning-Of-Life (BOM) power of 108 We are carried out at ISNPS. The materials synthesis and fabrication of the unicouples are carried out at JPL. The research conducted at ISNPS is documented in chapters 2-5 and that conducted at JP, in documented in chapter 5. An important consideration in the design and optimization of segmented thermoelectric unicouples (STUs) is determining the relative lengths, cross-section areas, and the interfacial temperatures of the segments of the different materials in the n- and p-legs. These variables are determined using a genetic algorithm (GA) in conjunction with one-dimensional analytical model of STUs that is developed in chapter 2. Results indicated that when optimized for maximum conversion efficiency, the interfacial temperatures between various segments in a STU are close to those at the intersections of the Figure-Of-Merit (FOM), ZT, curves of the thermoelectric materials of the adjacent segments. When optimizing the STUs for maximum electrical power density, however, the interfacial temperatures are different from those at the intersections of the ZT curves, but

  20. Capacity Calculation of Shunt Active Power Filters for Electric Vehicle Charging Stations Based on Harmonic Parameter Estimation and Analytical Modeling

    Directory of Open Access Journals (Sweden)

    Niancheng Zhou

    2014-08-01

    Full Text Available The influence of electric vehicle charging stations on power grid harmonics is becoming increasingly significant as their presence continues to grow. This paper studies the operational principles of the charging current in the continuous and discontinuous modes for a three-phase uncontrolled rectification charger with a passive power factor correction link, which is affected by the charging power. A parameter estimation method is proposed for the equivalent circuit of the charger by using the measured characteristic AC (Alternating Current voltage and current data combined with the charging circuit constraints in the conduction process, and this method is verified using an experimental platform. The sensitivity of the current harmonics to the changes in the parameters is analyzed. An analytical harmonic model of the charging station is created by separating the chargers into groups by type. Then, the harmonic current amplification caused by the shunt active power filter is researched, and the analytical formula for the overload factor is derived to further correct the capacity of the shunt active power filter. Finally, this method is validated through a field test of a charging station.

  1. Sexual aggression when power is new: Effects of acute high power on chronically low-power individuals.

    Science.gov (United States)

    Williams, Melissa J; Gruenfeld, Deborah H; Guillory, Lucia E

    2017-02-01

    Previous theorists have characterized sexually aggressive behavior as an expression of power, yet evidence that power causes sexual aggression is mixed. We hypothesize that power can indeed create opportunities for sexual aggression-but that it is those who chronically experience low power who will choose to exploit such opportunities. Here, low-power men placed in a high-power role showed the most hostility in response to a denied opportunity with an attractive woman (Studies 1 and 2). Chronically low-power men and women given acute power were the most likely to say they would inappropriately pursue an unrequited workplace attraction (Studies 3 and 4). Finally, having power over an attractive woman increased harassment behavior among men with chronic low, but not high, power (Study 5). People who see themselves as chronically denied power appear to have a stronger desire to feel powerful and are more likely to use sexual aggression toward that end. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Moderate-Load Muscular Endurance Strength Training Did Not Improve Peak Power or Functional Capacity in Older Men and Women

    Directory of Open Access Journals (Sweden)

    Simon Walker

    2017-09-01

    Full Text Available The present study determined the effects of muscular endurance strength training on maximum strength and power, functional capacity, muscle activation and hypertrophy in older men and women. Eighty-one men and women acted as an intervention group while 22 acted as non-training controls (age range 64–75 y. Intervention training included super-sets (i.e., paired exercises, immediately performing the second exercises following completion of the first with short rest intervals (30–60 s between sets at an intensity of 50–60% one-repetition maximum (1-RM for 15–20 repetitions. Concentric leg press actions measured maximum strength (1-RM and concentric peak power. Functional capacity was assessed by maximum speed walking tests (i.e., forward walk, backward walk, timed-up-and-go, and stair climb tests. Quadriceps muscle activation was assessed by surface electromyogram and twitch interpolation technique. Vastus lateralis cross-sectional area was measured by panoramic ultrasound. Compared to control, the intervention groups increased maximum strength (1-RM; men: 10 ± 7% vs. 2 ± 3%, women: 14 ± 9% vs. 1 ± 6% both P < 0.01 and vastus lateralis cross-sectional area (men: 6 ± 7% vs. −3 ± 6%, women: 10 ± 10% vs. 0 ± 4% both P < 0.05. But there were no between-group differences in peak power, muscle activation or functional capacity (e.g., stair climb; men: −5 ± 7% vs. −4 ± 3%, women: −5 ± 6% vs. −2 ± 5% both P > 0.05. While benefits occurred during muscular endurance strength training, specific stimuli are probably needed to target all aspects of age-related health.

  3. Generation Capacity Investments and High Levels of Renewables. The Impact of a German Capacity Market on Northwest Europe. Discussion paper

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, O.; De Joode, J.; Koutstaal, P.R.; Van Hout, M. [ECN Policy Studies, Amsterdam (Netherlands)

    2013-05-15

    Presently, Northwest European centralised electricity markets are designed as 'energy-only' markets. In an energy-only market, the price received for electricity produced is set by the marginal generation unit. Potentially, the designs of these markets could leave the owners of these units with 'missing money': i.e. money that is required to recover investment cost. Further, increasing penetration of renewables could exacerbate this problem. Of all the different options available to tackle the 'missing money' problem, capacity mechanisms have attracted most of the attention in recent policy debates in Europe. This paper contributes to ongoing policy discussions by providing a quantitative analysis of the phenomena of 'missing money' and capacity mechanisms in Northwest Europe. Our analysis shows that in the case of energy-only markets with a much higher penetration of intermittent electricity sources such as wind and solar PV, the 'missing money' problem may be aggravated, because operating hours for peak and mid-merit order capacity will be considerably reduced. Furthermore, unilateral introduction of capacity mechanisms in integrated electricity markets can have considerable impacts on cross-border electricity flows and investment decisions. Stand-alone introduction of a capacity market in Germany will likely result in higher investments in Germany at the expense of lower investments outside Germany and an increase in net exports from Germany. A possible advantage of a unilateral capacity mechanism in Germany may be a reduction in super-peak prices in the larger market area. Thus, neighbouring countries may have the possibility to free ride on the increase in flexible capacity in Germany. However, this advantage is conditional and depends on sufficient availability of interconnection capacity necessary to be able to use this reserve capacity. Otherwise, security of supply might be more at risk if the German

  4. Design High Efficiency PWM Boost Converter for Wind Power Generation

    OpenAIRE

    SULAIMAN R. Diary; MUHAMMAD A. Aree

    2010-01-01

    The uses of renewable power source toprovide electric power as an alternative become amajor consideration than the costly classical powersources. However, due to research on very lowmaintenancedesigns, small wind turbines becomingmore popularity than economical ways to bring thebenefits of power production to home.The efficiency, size, and cost are the primaryadvantages of switching DC-DC boost powerconverters; it is offer high efficiency performance andprovides power management circuit desig...

  5. Constant Power Generation of Photovoltaic Systems Considering the Distributed Grid Capacity

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Wang, Huai

    2014-01-01

    With an imperative demand of clean and reliable electricity generation in some countries, the increasing adoption of new photovoltaic (PV) systems pushes the Distribution System Operators (DSOs) to expand the transmission/distributed lines. However, the potential cost brought by such extensions...... and increased maintenances introduce new obstacles. In view of this concern, the DSOs starts to reduce PV installations in order to avoid an extension of the power infrastructure. Besides, another alternative solution is to limit the maximum feed-in power of the existing PV systems to a certain level. It can...

  6. Evaluation Method of Allowable Capacity of Intermittent Renewable Energy Sources in a Microgrid with Tie-line Power Control

    Science.gov (United States)

    Sasaki, Yuta; Bando, Shigeru; Asano, Hiroshi; Tagami, Seiji

    We propose a cooperative control system of gas engine generators and lead-acid battery in a microgrid. The control system enables a microgrid system to balance between electric power demand/supply and to control the state of charge (SOC) of the battery at the same time. To evaluate this control system, we simulated its performance in balancing the control of an experimental microgrid facility with two reciprocating engine generators for a day in which large fluctuation in PV and wind turbine output was observed. The capacity ratio of renewable energy installed in a microgrid can be increased beyond 50%.

  7. High-power CSI-fed induction motor drive with optimal power distribution based control

    Science.gov (United States)

    Kwak, S.-S.

    2011-11-01

    In this article, a current source inverter (CSI) fed induction motor drive with an optimal power distribution control is proposed for high-power applications. The CSI-fed drive is configured with a six-step CSI along with a pulsewidth modulated voltage source inverter (PWM-VSI) and capacitors. Due to the PWM-VSI and the capacitor, sinusoidal motor currents and voltages with high quality as well as natural commutation of the six-step CSI can be obtained. Since this CSI-fed drive can deliver required output power through both the six-step CSI and PWM-VSI, this article shows that the kVA ratings of both the inverters can be reduced by proper real power distribution. The optimal power distribution under load requirements, based on power flow modelling of the CSI-fed drive, is proposed to not only minimise the PWM-VSI rating but also reduce the six-step CSI rating. The dc-link current control of the six-step CSI is developed to realise the optimal power distribution. Furthermore, a vector controlled drive for high-power induction motors is proposed based on the optimal power distribution. Experimental results verify the high-power CSI-fed drive with the optimal power distribution control.

  8. A Model of Small Capacity Power Plant in Tateli Village, North Sulawesi

    Science.gov (United States)

    Sangari, F. J.; Rompas, P. T. D.

    2017-03-01

    The electricity supply in North Sulawesi is still very limited so ubiquitous electric current outage. It makes rural communities have problems in life because most uses electrical energy. One of the solutions is a model of power plants to supply electricity in Tateli village, Minahasa, North Sulawesi, Indonesia. The objective of this research is to get the model that generate electrical energy for household needs through power plant that using a model of Picohydro with cross flow turbine in Tateli village. The method used the study of literature, survey the construction site of the power plant and the characteristics of the location being a place of research, analysis of hydropower ability and analyzing costs of power plant. The result showed that the design model of cross flow turbines used in pico-hydro hydropower installations is connected to a generator to produce electrical energy maximum of 3.29 kW for household needs. This analyze will be propose to local government of Minahasa, North Sulawesi, Indonesia to be followed.

  9. High Volumetric Capacity Three-Dimensionally Sphere-Caged Secondary Battery Anodes.

    Science.gov (United States)

    Liu, Jinyun; Chen, Xi; Kim, Jinwoo; Zheng, Qiye; Ning, Hailong; Sun, Pengcheng; Huang, Xingjiu; Liu, Jinhuai; Niu, Junjie; Braun, Paul V

    2016-07-13

    High volumetric energy density secondary batteries are important for many applications, which has led to considerable efforts to replace the low volumetric capacity graphite-based anode common to most Li-ion batteries with a higher energy density anode. Because most high capacity anode materials expand significantly during charging, such anodes must contain sufficient porosity in the discharged state to enable the expansion, yet not excess porosity, which lowers the overall energy density. Here, we present a high volumetric capacity anode consisting of a three-dimensional (3D) nanocomposite formed in only a few steps which includes both a 3D structured Sn scaffold and a hollow Sn sphere within each cavity where all the free Sn surfaces are coated with carbon. The anode exhibits a high volumetric capacity of ∼1700 mA h cm(-3) over 200 cycles at 0.5C, and a capacity greater than 1200 mA h cm(-3) at 10C. Importantly, the anode can even be formed into a commercially relevant ∼100 μm thick form. When assembled into a full cell the anode shows a good compatibility with a commercial LiMn2O4 cathode. In situ TEM observations confirm the electrode design accommodates the necessary volume expansion during lithiation.

  10. Flexible Lithium-Ion Batteries with High Areal Capacity Enabled by Smart Conductive Textiles.

    Science.gov (United States)

    Ha, Sung Hoon; Shin, Kyu Hang; Park, Hae Won; Lee, Yun Jung

    2018-02-05

    Increasing demand for flexible devices in various applications, such as smart watches, healthcare, and military applications, requires the development of flexible energy-storage devices, such as lithium-ion batteries (LIBs) with high flexibility and capacity. However, it is difficult to ensure high capacity and high flexibility simultaneously through conventional electrode preparation processes. Herein, smart conductive textiles are employed as current collectors for flexible LIBs owing to their inherent flexibility, fibrous network, rough surface for better adhesion, and electrical conductivity. Conductivity and flexibility are further enhanced by nanosizing lithium titanate oxide (LTO) and lithium iron phosphate (LFP) active materials, and hybridizing them with a flexible 2D graphene template. The resulting LTO/LFP full cells demonstrate high areal capacity and flexibility with tolerance to mechanical fatigue. The battery achieves a capacity of 1.2 mA h cm-2 while showing excellent flexibility. The cells demonstrate stable open circuit voltage retention under repeated flexing for 1000 times at a bending radius of 10 mm. The discharge capacity of the unflexed battery is retained in cells subjected to bending for 100 times at bending radii of 30, 20, and 10 mm, respectively, confirming that the suggested electrode configuration successfully prevents structural damage (delamination or cracking) upon repeated deformation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Crack-resistant polyimide coating for high-capacity battery anodes

    Science.gov (United States)

    Li, Yingshun; Wang, Shuo; Lee, Pui-Kit; He, Jieqing; Yu, Denis Y. W.

    2017-10-01

    Electrode cracking is a serious problem that hinders the application of many next-generation high-capacity anode materials for lithium-ion batteries. Even though nano-sizing the material can reduce fracturing of individual particles, capacity fading is still observed due to large volume change and loss of contact in the electrode during lithium insertion and extraction. In this study, we design a crack-resistant high-modulus polyimide coating with high compressive strength which can hold multiple particles together during charge and discharge to maintain contact. The effectiveness of the coating is demonstrated on tin dioxide, a high-capacity large-volume-change material that undergoes both alloy and conversion reactions. The polyimide coating improves capacity retention of SnO2 from 80% to 100% after 80 cycles at 250 mA g-1. Stable capacity of 585 mAh g-1 can be obtained even at 500 mA g-1 after 300 cycles. Scanning electron microscopy and in-situ dilatometry confirm that electrode cracking is suppressed and thickness change is reduced with the coating. In addition, the chemically-stable polyimide film can separate the surface from direct contact with electrolyte, improving coulombic efficiency to ∼100%. We expect the novel strategy of suppressing electrode degradation with a crack-resistant coating can also be used for other alloy and conversion-based anodes.

  12. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan

    2012-09-30

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  13. A Model of Equilibrium Conditions of Roof Rock Mass Giving Consideration to the Yielding Capacity of Powered Supports

    Science.gov (United States)

    Jaszczuk, Marek; Pawlikowski, Arkadiusz

    2017-12-01

    The work presents the model of interactions between the powered roof support units and the rock mass, while giving consideration to the yielding capacity of the supports - a value used for the analysis of equilibrium conditions of roof rock mass strata in geological and mining conditions of a given longwall. In the model, the roof rock mass is kept in equilibrium by: support units, the seam, goafs, and caving rocks (Fig. 1). In the assumed model of external load on the powered roof support units it is a new development - in relation to the model applied in selection of supports based on the allowable deflection of roof theory - that the load bearing capacity is dependent on the increment of the inclination of the roof rock mass and on the properties of the working medium, while giving consideration to the air pockets in the hydraulic systems, the load of the caving rocks on the caving shield, introducing the RA support value of the roof rock mass by the coal seam as a closed-form expression and while giving consideration to the additional support provided by the rocks of the goaf as a horizontal component R01H of the goaf reaction. To determine the roof maintenance conditions it is necessary to know the characteristics linking the yielding capacity of the support units with the heading convergence, which may be measured as the inclination angle of the roof rock mass. In worldwide mining, Ground Reaction Curves are used, which allow to determine the required yielding capacity of support units based on the relation between the load exerted on the unit and the convergence of the heading ensuring the equilibrium of the roof rock mass. (Figs. 4 and 8). The equilibrium of the roof rock mass in given conditions is determined at the displacement of the rock mass by the α angle, which impacts the following values: yielding capacity of units FN, vertical component of goaf reaction R01V and the horizontal component of goaf reaction R01H. In the model of load on the support

  14. Calorimetric Measuring Systems for Characterizing High Frequency Power Losses in Power Electronic Components and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Pedersen, John Kim; Ritchie, Andrew Ewen

    2002-01-01

    High frequency power losses in power electronic components and systems are very difficult to measure. The same applies to the efficiency of high-efficiency systems and components. An important method to measure losses with high accuracy is the calorimetric measuring systems. This paper describes...... two different calorimetric measuring systems, one for power losses up to 50 W and one for power losses up to 1500 W. These differ in size and also the systems which can be analysed. The basic concept of calorimetry is discussed and the overall performance of the two systems is specified. Methods...

  15. A reversible dendrite-free high-areal-capacity lithium metal electrode

    Science.gov (United States)

    Wang, Hui; Matsui, Masaki; Kuwata, Hiroko; Sonoki, Hidetoshi; Matsuda, Yasuaki; Shang, Xuefu; Takeda, Yasuo; Yamamoto, Osamu; Imanishi, Nobuyuki

    2017-04-01

    Reversible dendrite-free low-areal-capacity lithium metal electrodes have recently been revived, because of their pivotal role in developing beyond lithium ion batteries. However, there have been no reports of reversible dendrite-free high-areal-capacity lithium metal electrodes. Here we report on a strategy to realize unprecedented stable cycling of lithium electrodeposition/stripping with a highly desirable areal-capacity (12 mAh cm-2) and exceptional Coulombic efficiency (>99.98%) at high current densities (>5 mA cm-2) and ambient temperature using a diluted solvate ionic liquid. The essence of this strategy, that can drastically improve lithium electrodeposition kinetics by cyclic voltammetry premodulation, lies in the tailoring of the top solid-electrolyte interphase layer in a diluted solvate ionic liquid to facilitate a two-dimensional growth mode. We anticipate that this discovery could pave the way for developing reversible dendrite-free metal anodes for sustainable battery chemistries.

  16. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.

  17. Laser Cooled High-Power Fiber Amplifier

    OpenAIRE

    Nemova, Galina

    2009-01-01

    A theoretical model for laser cooled continuous-wave fiber amplifier is presented. The amplification process takes place in the Tm3+-doped core of the fluoride ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass fiber. The cooling process takes place in the Yb3+:ZBLAN fiber cladding. It is shown that for each value of the pump power and the amplified signal there is a distribution of the concentration of the Tm3+ along the length of the fiber amplifier, which provides its athermal operation. The influence ...

  18. Self-commutating converters for high power applications

    CERN Document Server

    Arrillaga, Jos; Watson, Neville R; Murray, Nicholas J

    2010-01-01

    For very high voltage or very high current applications, the power industry still relies on thyristor-based Line Commutated Conversion (LCC), which limits the power controllability to two quadrant operation. However, the ratings of self-commutating switches such as the Insulated-Gate Bipolar Transistor (IGBT) and Integrated Gate-Commutated Thyristor (IGCT), are reaching levels that make the technology possible for very high power applications. This unique book reviews the present state and future prospects of self-commutating static power converters for applications requiring either ultr

  19. A probabilistic method for calculating the usefulness of a store with finite energy capacity for smoothing electricity generation from wind and solar power

    Science.gov (United States)

    Barton, John P.; Infield, David G.

    This paper describes a novel method of modelling an energy store used to match the power output from a wind turbine and a solar PV array to a varying electrical load. The model estimates the fraction of time that an energy store spends full or empty. It can also estimate the power curtailed when the store is full and the unsatisfied demand when the store is empty. The new modelling method has been validated against time-stepping methods and shows generally good agreement over a wide range of store power ratings, store efficiencies, wind turbine capacities and solar PV capacities. Example results are presented for a system with 1 MW of wind power capacity, 2 MW of photovoltaic capacity, an energy store of 75% efficiency and a range of loads from 0 to 3 MW average.

  20. Adequacy of Frequency Reserves for High Wind Power Generation

    DEFF Research Database (Denmark)

    Das, Kaushik; Litong-Palima, Marisciel; Maule, Petr

    2017-01-01

    are developed through this methodology. Furthermore, the probability of reducing this frequency containment reserve requirement is investigated through this methodology with activation of different volumes and speed of frequency restoration reserve. Wind power generation for 2020 and 2030 scenarios......In this article, a new methodology is developed to assess the adequacy of frequency reserves to handle power imbalances caused by wind power forecast errors. The goal of this methodology is to estimate the adequate volume and speed of activation of frequency reserves required to handle power...... imbalances caused due to high penetration of wind power. An algorithm is proposed and developed to estimate the power imbalances due to wind power forecast error following activation of different operating reserves. Frequency containment reserve requirements for mitigating these power imbalances...

  1. Low reflectance high power RF load

    Energy Technology Data Exchange (ETDEWEB)

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  2. 3-D Printed High Power Microwave Magnetrons

    Science.gov (United States)

    Jordan, Nicholas; Greening, Geoffrey; Exelby, Steven; Gilgenbach, Ronald; Lau, Y. Y.; Hoff, Brad

    2015-11-01

    The size, weight, and power requirements of HPM systems are critical constraints on their viability, and can potentially be improved through the use of additive manufacturing techniques, which are rapidly increasing in capability and affordability. Recent experiments on the UM Recirculating Planar Magnetron (RPM), have explored the use of 3-D printed components in a HPM system. The system was driven by MELBA-C, a Marx-Abramyan system which delivers a -300 kV voltage pulse for 0.3-1.0 us, with a 0.15-0.3 T axial magnetic field applied by a pair of electromagnets. Anode blocks were printed from Water Shed XC 11122 photopolymer using a stereolithography process, and prepared with either a spray-coated or electroplated finish. Both manufacturing processes were compared against baseline data for a machined aluminum anode, noting any differences in power output, oscillation frequency, and mode stability. Evolution and durability of the 3-D printed structures were noted both visually and by tracking vacuum inventories via a residual gas analyzer. Research supported by AFOSR (grant #FA9550-15-1-0097) and AFRL.

  3. E- and W-band high-capacity hybrid fiber-wireless link

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Pang, Xiaodan; Tafur Monroy, Idelfonso

    2014-01-01

    In this paper we summarize the work conducted in our group in the area of E- and W-band optical high-capacity fiber-wireless links. We present performance evaluations of E- and W-band mm-wave signal generation using photonic frequency upconversion employing both VCSELs and ECLs, along with transm......In this paper we summarize the work conducted in our group in the area of E- and W-band optical high-capacity fiber-wireless links. We present performance evaluations of E- and W-band mm-wave signal generation using photonic frequency upconversion employing both VCSELs and ECLs, along...

  4. Low-power laser irradiation enhance macrophage phagocytic capacity through Src activation

    Science.gov (United States)

    Wu, Shengnan; Zhou, Feifan; Xing, Da

    2012-03-01

    Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immunity in mammals. Laser irradiation has been found to produce photobiological effects with evidence of interference with organic functions. In this study, we focused our attention on the effects of He-Ne laser on the phagocytic activity of macrophages, the regulation mechanism of phagocytosis was also discussed. Our results indicated that Low-power laser irradiation can enhance the phagocytosis of macrophage through activation of Src.

  5. Shear Capacity and Failure Behavior of Steel-Reinforced High Ductile Concrete Beams

    Directory of Open Access Journals (Sweden)

    Mingke Deng

    2015-01-01

    Full Text Available The shear behavior of six high ductile fiber reinforced concrete (HDC beams is studied to investigate the influence of shear-span ratio and HDC mechanical property on the improvement of the shear failure mode and shear capacity of short beams. Four steel-reinforced high ductile concrete beams (SHDC beams with different shear span ratios are tested under concentrated load at midspan. To study the effect of stirrups and steel on the shear capacity of short beams, two additional specimens without steel but one including stirrups are investigated. The main aspects of SHDC beams are discussed in detail, such as failure mode, deformability, and shear capacity. Test results show that the SHDC short beams keep high residual bearing capacity and great integrity when suffering from large deformation. It is revealed that HDC increased the shear ductility and improved the shear failure mode of short beams. A comparison with the shear equations of Chinese YB9082-2006 shows that the Chinese Code equation provides conservative estimation for HDC beams. This study proposes modifications to the equation for predicting the shear capacity of HDC beams.

  6. Reassembling and testing of a high-precision heat capacity drop calorimeter. Heat capacity of some polyphenyls at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luis M.N.B.F., E-mail: lbsantos@fc.up.pt [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Rocha, Marisa A.A.; Rodrigues, Ana S.M.C. [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Stejfa, Vojtech; Fulem, Michal [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, CZ-166 28 Prague 6 (Czech Republic); Bastos, Margarida [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2011-12-15

    Graphical abstract: Highlights: > We present the reassembling, improvement and testing of a high-precision C{sub p} drop calorimeter. > The apparatus was tested, using benzoic acid and hexafluorobenzene. > The high sensitivity of the apparatus is comparable to the one obtained in adiabatic calorimetry. > Heat capacities at T = 298.15 K of some polyphenyls were measured. > Subtle heat capacity differences among position isomers (ortho, meta, para) were detected. - Abstract: The description of the reassembling and testing of a twin heat conduction, high-precision, drop microcalorimeter for the measurement of heat capacities of small samples are presented. The apparatus, originally developed and used at the Thermochemistry Laboratory, Lund, Sweden, has now been reassembled and modernized, with changes being made as regarding temperature sensors, electronics and data acquisition system. The apparatus was thereafter thoroughly tested, using benzoic acid and hexafluorobenzene as test substances. The accuracy of the C{sub p,m}{sup 0} (298.15 K) data obtained with this apparatus is comparable to that achieved by high-precision adiabatic calorimetry. Here we also present the results of heat capacity measurements on of some polyphenyls (1,2,3-triphenylbenzene, 1,3,5-triphenylbenzene, p-terphenyl, m-terphenyl, o-terphenyl, p-quaterphenyl) at T = 298.15 K, measured with the renewed high precision heat capacity drop calorimeter system. The high resolution and accuracy of the obtained heat capacity data enabled differentiation among the ortho-, meta-, and para-phenyl isomers.

  7. Optimizing Capacities of Distributed Generation and Energy Storage in a Small Autonomous Power System Considering Uncertainty in Renewables

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2015-03-01

    Full Text Available This paper explores real power generation planning, considering distributed generation resources and energy storage in a small standalone power system. On account of the Kyoto Protocol and Copenhagen Accord, wind and photovoltaic (PV powers are considered as clean and renewable energies. In this study, a genetic algorithm (GA was used to determine the optimal capacities of wind-turbine-generators, PV, diesel generators and energy storage in a small standalone power system. The investment costs (installation, unit and maintenance costs of the distributed generation resources and energy storage and the cost of fuel for the diesel generators were minimized while the reliability requirement and CO2 emission limit were fulfilled. The renewable sources and loads were modeled by random variables because of their uncertainties. The equality and inequality constraints in the genetic algorithms were treated by cumulant effects and cumulative probability of random variables, respectively. The IEEE reliability data for an 8760 h load profile with a 150 kW peak load were used to demonstrate the applicability of the proposed method.

  8. Linear and nonlinear filters under high power microwave conditions

    Directory of Open Access Journals (Sweden)

    F. Brauer

    2009-05-01

    Full Text Available The development of protection circuits against a variety of electromagnetic disturbances is important to assure the immunity of an electronic system. In this paper the behavior of linear and nonlinear filters is measured and simulated with high power microwave (HPM signals to achieve a comprehensive protection against different high power electromagnetic (HPEM threats.

  9. Terahertz radiation source using a high-power industrial electron ...

    Indian Academy of Sciences (India)

    We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial ...

  10. In-volume heating using high-power laser diodes

    NARCIS (Netherlands)

    Denisenkov, V.S.; Kiyko, V.V.; Vdovin, G.V.

    2015-01-01

    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface

  11. Improved cutting performance in high power laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    2003-01-01

    Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described.......Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described....

  12. Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes.

    Science.gov (United States)

    Zuo, Tong-Tong; Wu, Xiong-Wei; Yang, Chun-Peng; Yin, Ya-Xia; Ye, Huan; Li, Nian-Wu; Guo, Yu-Guo

    2017-08-01

    The Li metal anode has long been considered as one of the most ideal anodes due to its high energy density. However, safety concerns, low efficiency, and huge volume change are severe hurdles to the practical application of Li metal anodes, especially in the case of high areal capacity. Here it is shown that that graphitized carbon fibers (GCF) electrode can serve as a multifunctional 3D current collector to enhance the Li storage capacity. The GCF electrode can store a huge amount of Li via intercalation and electrodeposition reactions. The as-obtained anode can deliver an areal capacity as high as 8 mA h cm(-2) and exhibits no obvious dendritic formation. In addition, the enlarged surface area and porous framework of the GCF electrode result in lower local current density and mitigate high volume change during cycling. Thus, the Li composite anode displays low voltage hysteresis, high plating/stripping efficiency, and long lifespan. The multifunctional 3D current collector promisingly provides a new strategy for promoting the cycling lifespan of high areal capacity Li anodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Power Constrained High-Level Synthesis of Battery Powered Digital Systems

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard; Madsen, Jan

    2003-01-01

    We present a high-level synthesis algorithm solving the combined scheduling, allocation and binding problem minimizing area under both latency and maximum power per clock-cycle constraints. Our approach eliminates the large power spikes, resulting in an increased battery lifetime, a property...... of utmost importance for battery powered embedded systems. Our approach extends the partial-clique partitioning algorithm by introducing power awareness through a heuristic algorithm which bounds the design space to those of power feasible schedules. We have applied our algorithm on a set of dataflow graphs...

  14. Capacity and investments in power production. Studies concerning Germany, the Netherlands and Poland; Kapasitet og investeringer i kraftproduksjon. Landstudier for Tyskland, Nederland og Polen

    Energy Technology Data Exchange (ETDEWEB)

    Haugland, Torleif; Magnus, Eivind; Moen, Paal; Bowitz, Einar

    1998-12-01

    This report describes the production capacity for electricity in Germany, the Netherlands and Poland and presents plans existing in these countries for investments in new capacity and scrapping of existing capacity. Using economic theory it discusses some issues that influence investments in a liberalized market. It is part of a project undertaken to quantify the value of power in the Norwegian hydroelectric power system. The observations and conclusions will form an important empirical foundation for the analysis of the adaptation and stability properties of the Nordic power market as one approaches full capacity with respect to power at peak load. The report will be followed up by an analysis of the developments of investments, market balance and prices up to 2015 in the three countries. These countries have considerable surplus capacities, but for reasons that vary from country to country. The composition of the surplus capacities also vary considerably from one country to the other, which is important for the impact that the capacity and market balance in these countries might have on the Nordic power market in the future. 16 refs., 23 figs., 17 tabs.

  15. Moderate-Load Muscular Endurance Strength Training Did Not Improve Peak Power or Functional Capacity in Older Men and Women.

    Science.gov (United States)

    Walker, Simon; Haff, Guy G; Häkkinen, Keijo; Newton, Robert U

    2017-01-01

    The present study determined the effects of muscular endurance strength training on maximum strength and power, functional capacity, muscle activation and hypertrophy in older men and women. Eighty-one men and women acted as an intervention group while 22 acted as non-training controls (age range 64-75 y). Intervention training included super-sets (i.e., paired exercises, immediately performing the second exercises following completion of the first) with short rest intervals (30-60 s between sets) at an intensity of 50-60% one-repetition maximum (1-RM) for 15-20 repetitions. Concentric leg press actions measured maximum strength (1-RM) and concentric peak power. Functional capacity was assessed by maximum speed walking tests (i.e., forward walk, backward walk, timed-up-and-go, and stair climb tests). Quadriceps muscle activation was assessed by surface electromyogram and twitch interpolation technique. Vastus lateralis cross-sectional area was measured by panoramic ultrasound. Compared to control, the intervention groups increased maximum strength (1-RM; men: 10 ± 7% vs. 2 ± 3%, women: 14 ± 9% vs. 1 ± 6% both P 0.05). While benefits occurred during muscular endurance strength training, specific stimuli are probably needed to target all aspects of age-related health.

  16. Low power, high voltage power supply with fast rise/fall time

    Science.gov (United States)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  17. 1.55 Micron High Peak Power Fiber Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a 1.55 micron single frequency high energy and high peak power fiber amplifier by developing an innovative...

  18. High power UV and VUV pulsed excilamps

    Science.gov (United States)

    Tarasenko, V.; Erofeev, M.; Lomaev, M.; Rybka, D.

    2008-07-01

    Emission characteristics of a nanosecond discharge in inert gases and its halogenides without preionization of the gap from an auxiliary source have been investigated. A volume discharge, initiated by an avalanche electron beam (VDIAEB) was realized at pressures up to 12 atm. In xenon at pressure of 1.2 atm, the energy of spontaneous radiation in the full solid angle was sim 45 mJ/cm^3, and the FWHM of a radiation pulse was sim 110 ns. The spontaneous radiation power rise in xenon was observed at pressures up to 12 atm. Pulsed radiant exitance of inert gases halogenides excited by VDIAEB was sim 4.5 kW/cm^2 at efficiency up to 5.5 %.

  19. Transient response of a high-capacity heat pipe for Space Station Freedom

    Science.gov (United States)

    Ambrose, J. H.; Holmes, H. R.

    1991-01-01

    High-capacity heat pipe radiator panels have been proposed as the primary means of heat rejection for Space Station Freedom. In this system, the heat pipe would interface with the thermal bus condensers. Changes in system heat load can produce large temperature and heat load variations in individual heat pipes. Heat pipes could be required to start from an initially cold state, with heat loads temporarily exceeding their low-temperature transport capacity. The present research was motivated by the need for accurate prediction of such transient operating conditions. In this work, the cold startup of a 6.7-meter long high-capacity heat pipe is investigated experimentally and analytically. A transient thermohydraulic model of the heat pipe was developed which allows simulation of partially-primed operation. The results of cold startup tests using both constant temperature and constant heat flux evaporator boundary conditions are shown to be in good agreement with predicted transient response.

  20. Eighth CW and High Average Power RF Workshop

    CERN Document Server

    2014-01-01

    We are pleased to announce the next Continuous Wave and High Average RF Power Workshop, CWRF2014, to take place at Hotel NH Trieste, Trieste, Italy from 13 to 16 May, 2014. This is the eighth in the CWRF workshop series and will be hosted by Elettra - Sincrotrone Trieste S.C.p.A. (www.elettra.eu). CWRF2014 will provide an opportunity for designers and users of CW and high average power RF systems to meet and interact in a convivial environment to share experiences and ideas on applications which utilize high-power klystrons, gridded tubes, combined solid-state architectures, high-voltage power supplies, high-voltage modulators, high-power combiners, circulators, cavities, power couplers and tuners. New ideas for high-power RF system upgrades and novel ways of RF power generation and distribution will also be discussed. CWRF2014 sessions will start on Tuesday morning and will conclude on Friday lunchtime. A visit to Elettra and FERMI will be organized during the workshop. ORGANIZING COMMITTEE (OC): Al...

  1. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  2. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  3. Enhanced Dissociation of Intact Proteins with High Capacity Electron Transfer Dissociation.

    Science.gov (United States)

    Riley, Nicholas M; Mullen, Christopher; Weisbrod, Chad R; Sharma, Seema; Senko, Michael W; Zabrouskov, Vlad; Westphall, Michael S; Syka, John E P; Coon, Joshua J

    2016-03-01

    Electron transfer dissociation (ETD) is a valuable tool for protein sequence analysis, especially for the fragmentation of intact proteins. However, low product ion signal-to-noise often requires some degree of signal averaging to achieve high quality MS/MS spectra of intact proteins. Here we describe a new implementation of ETD on the newest generation of quadrupole-Orbitrap-linear ion trap Tribrid, the Orbitrap Fusion Lumos, for improved product ion signal-to-noise via ETD reactions on larger precursor populations. In this new high precursor capacity ETD implementation, precursor cations are accumulated in the center section of the high pressure cell in the dual pressure linear ion trap prior to charge-sign independent trapping, rather than precursor ion sequestration in only the back section as is done for standard ETD. This new scheme increases the charge capacity of the precursor accumulation event, enabling storage of approximately 3-fold more precursor charges. High capacity ETD boosts the number of matching fragments identified in a single MS/MS event, reducing the need for spectral averaging. These improvements in intra-scan dynamic range via reaction of larger precursor populations, which have been previously demonstrated through custom modified hardware, are now available on a commercial platform, offering considerable benefits for intact protein analysis and top down proteomics. In this work, we characterize the advantages of high precursor capacity ETD through studies with myoglobin and carbonic anhydrase.

  4. Overview on the high power excimer laser technology

    Science.gov (United States)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  5. Development of High Power Lasers for Materials Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hackel, L A

    2003-04-11

    The Lawrence Livermore National Laboratory (LLNL) has a long history of developing high power lasers for use in basic science and applications. The Laser Science and Technology Program (LS&T) at LLNL supports advanced lasers and optics development both for the National Ignition Facility (NIF) as well as for high power lasers and optics technology for a broader range of government, military and industrial applications. The NIF laser is currently under construction with the first of the 192 beamlines being activated. When finished NIF will have an output energy of 2 MJ at 351 nm. This system will be used for studies of high energy density physics, equation of state and inertial confinement fusion. It is now generally acknowledged that the future of laser missile defense lies with solid state lasers. The leading laser technology for theater missile defense is under development within the LS&T and funded by the US Army SMDC. This high average power technology is based on a solid state laser operated in a heat capacity mode. In the concept the heat producing lasing cycle is separated in time from the cooling cycle thus reducing thermal gradients and allowing significantly greater average output power. Under the current program, an LLNL developed laser has achieved a record setting 13 kW of average power in 20 second duration bursts. We have also performed target lethality experiments showing a previously unrecognized advantage of a pulsed laser format. The LLNL work is now focused on achieving improved output beam quality and in developing a 100 kW output with diode pumping of a large aperture crystal gain medium on a compact mobile platform. The Short Pulse Laser Group of LS&T has been developing high power short pulse laser systems for a number of applications. Of great importance is petawatt (10{sup 12} Watt) and greater power output to support experiments on the NIF. We are developing a system of 5 M class output and 5 to 10 ps pulse duration for generating intense

  6. High-power femtosecond Raman frequency shifter.

    Science.gov (United States)

    Vicario, Carlo; Shalaby, Mostafa; Konyashchenko, Aleksandr; Losev, Leonid; Hauri, Christoph P

    2016-10-15

    We report on the generation of broadband, high-energy femtosecond pulses centered at 1.28 μm by stimulated Raman scattering in a pressurized hydrogen cell. Stimulated Raman scattering is performed by two chirped and delayed pulses originating from a multi-mJ Ti:sapphire amplifier. The Stokes pulse carries record-high energy of 4.4 mJ and is recompressed down to 66 fs by a reflective grating pair. We characterized the short-wavelength mid-infrared source in view of energy stability, beam profile, and conversion efficiency at repetition rates of 100 and 10 Hz. The demonstrated high-energy frequency shifter will benefit intense THz sources based on highly nonlinear organic crystals.

  7. High-Power Triggered Gas Switches

    National Research Council Canada - National Science Library

    Giri, David

    1999-01-01

    .... There are several reasons to build triggered versions of the basic high-voltage spark gap. They include synchronization with an external event, timed-array antenna for steering directed energy systems etc...

  8. An overview of the reliability prediction related aspects of high power IGBTs in wind power applications

    DEFF Research Database (Denmark)

    Busca, Christian; Teodorescu, Remus; Blaabjerg, Frede

    2011-01-01

    Reliability is becoming more and more important as the size and number of installed Wind Turbines (WTs) increases. Very high reliability is especially important for offshore WTs because the maintenance and repair of such WTs in case of failures can be very expensive. WT manufacturers need...... to consider the reliability aspect when they design new power converters. By designing the power converter considering the reliability aspect the manufacturer can guarantee that the end product will ensure high availability. This paper represents an overview of the various aspects of reliability prediction...... of high power Insulated Gate Bipolar Transistors (IGBTs) in the context of wind power applications. At first the latest developments and future predictions about wind energy are briefly discussed. Next the dominant failure mechanisms of high power IGBTs are described and the most commonly used lifetime...

  9. Support for High Power Laser Ablation 2010

    Science.gov (United States)

    2010-04-16

    Spaces from the Ministry of Education, Culture, Sport , Science and Technology, Japan. 27 [24] An Analytical Model of Ablation in Gas Flow Leonid...Targets at 0.1-10 TW/cm2 John L. Remo Dept. of Astronomy and Dept. of Earth and Planetary Sciences, Harvard University, 20 Oxford St. and Harvard...modeling of planetary cores and high velocity impact. [43] Laser and Z-pinch Simulation of High Energy Density Planetary Interactions John L. Remo

  10. The analysis of the geothermal energy capacity for power generation in Serbia

    Directory of Open Access Journals (Sweden)

    Stojković Jana S.

    2013-01-01

    Full Text Available An estimate of deep groundwater temperature is necessary for the research and utilization of this geothermal resource. Geothermometers are based on the temperature relation of some chemical reactions or the solubility of some minerals. Researchers mostly use silicon-based (quartz, chalcedony, amorphous silica and cation-based (Na-K, Na-K-Ca, Na-K-Mg, and so forth geothermometers. Temperatures of some prospectively abundant geothermal water resources in Serbia are estimated using the silicon-based geothermometers. In the absence of hot water resources, temperature of deep thermal groundwater has to be estimated and considered for power generation with the Kalina or the Rankine binary cycle. Best thermal waters (temperatures from 130° to 160°C for the purpose are located in the spa of Vrnjačka Banja, followed by Kuršumlijska, Sijarinska and Jošanička spas and Bogatić of Mačva. Pumped at the present rate of 200 l/s, the mentioned sources may generate 70 [MWt] , of which some 30 [MWt] the Vranjska Banja alone. Total power (for the five tested resources is estimated at about 2200 [TJ] per year. [Projekat Ministarstva nauke Republike Srbije, br. 43004

  11. Thrust stand for high-power electric propulsion devices

    Science.gov (United States)

    Haag, T. W.

    1991-01-01

    This paper describes a new high-power thrust stand developed for use with high-power (up to 250 kW) magnetoplasmadynamic (MPD) thrusters, which is installed in a high-vacuum MPD facility at Lewis Research Center. The design of the stand is based on inverted pendulum configuration, with the result of large displacements and high resolution. Calibration results showed that thrust measurements were linear and repeatable to within a fraction of 1 percent. The thrust stand was used for testing water-cooled MPD thrusters at power levels up to 125 kW. The thruster, however, is quite well suited for testing other types of electric propulsion devices.

  12. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase II Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fission-based power systems with power levels of 30 to ≥100 kWe will be needed for planetary surface bases. Development of high temperature, high efficiency...

  13. EFFECTS OF SODIUM PHOSPHATE LOADING ON AEROBIC POWER AND CAPACITY IN OFF ROAD CYCLISTS

    Directory of Open Access Journals (Sweden)

    Scott Woska

    2009-12-01

    Full Text Available The main aim of this paper was to evaluate the effects of short- term (6 days phosphate loading, as well as prolonged (21 days intake of sodium phosphate on aerobic capacity in off-road cyclists. Nineteen well-trained cyclists were randomly divided into a supplemental (S and control group (C. Group S was supplemented for 6 days with tri-sodium phosphate, in a dose of 50 mg·kg-1 of FFM/d, while a placebo was provided for the C group. Additionally, group S was further subjected to a 3-week supplementation of 25 mg·kg-1 FFM/d, while group C received 2g of glucose. The results indicate a significant (p < 0.05 increase in VO2max, VEmax, and O2/HR, due to sodium phosphate intake over 6 days. Also a significant (p < 0.05 decrease in HRrest and HRmax occurred. The supplementation procedure caused a significant increase (p < 0.05 in Pmax and a shift of VAT towards higher loads. There were no significant changes in the concentration of 2,3-DPG, acid-base balance and lactate concentration, due to phosphate salt intake

  14. Highly efficient solutions for smart and bulk power transmission of 'green energy'

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Wilfried; Retzmann, Dietmar; Uecker, Karl

    2010-09-15

    Environmental constraints, loss minimization and CO2 reduction will play an increasingly more important role in future. Security and sustainability of power supply as well as economic efficiency needs application of advanced technologies. Innovative solutions with HVDC (High Voltage Direct Current) and FACTS (Flexible AC Transmission Systems) have the potential to cope with these challenges. They provide the features which are necessary to avoid technical problems in power systems, they increase the transmission capacity and system stability very efficiently and help prevent cascading outages. Furthermore, they are essential for Grid Access of Renewable Energy Sources such as Hydro, Wind and Solar-Energy.

  15. The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid State Laser

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R; Bhachu, B; Cutter, K; Fochs, S; Letts, S; Parks, C; Rotter, M; Soules, T

    2007-09-24

    The advent of large transparent ceramics is one of the key enabling technological advances that have shown that the development of very high average power compact solid state lasers is achievable. Large ceramic neodymium doped yttrium aluminum garnet (Nd:YAG) amplifier slabs are used in Lawrence Livermore National Laboratory's (LLNL) Solid State Heat Capacity Laser (SSHCL), which has achieved world record average output powers in excess of 67 kilowatts. We will describe the attributes of using large transparent ceramics, our present system architecture and corresponding performance; as well as describe our near term future plans.

  16. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  17. Static reactive power compensators for high-voltage power systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    A study conducted to summarize the role of static reactive power compensators for high voltage power system applications is described. This information should be useful to the utility system planning engineer in applying static var systems (SVS) to high voltage as (HVAC) systems. The static var system is defined as a form of reactive power compensator. The general need for reactive power compensation in HVAC systems is discussed, and the static var system is compared to other devices utilized to provide reactive power compensation. Examples are presented of applying SVS for specific functions, such as the prevention of voltage collapse. The operating principles of commercially available SVS's are discussed in detail. The perormance and active power loss characteristics of SVS types are compared.

  18. Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders

    Science.gov (United States)

    Napoli, Antonio; Berenguer, Pablo Wilke; Rahman, Talha; Khanna, Ginni; Mezghanni, Mahdi M.; Gardian, Lennart; Riccardi, Emilio; Piat, Anna Chiadò; Calabrò, Stefano; Dris, Stefanos; Richter, André; Fischer, Johannes Karl; Sommerkorn-Krombholz, Bernd; Spinnler, Bernhard

    2018-02-01

    Digital pre-compensation techniques are among the enablers for cost-efficient high-capacity transponders. In this paper we describe various methods to mitigate the impairments introduced by state-of-the-art components within modern optical transceivers. Numerical and experimental results validate their performance and benefits.

  19. Supporting Leadership Development: An Examination of High School Principals' Efforts to Develop Leaders' Personal Capacities

    Science.gov (United States)

    Huggins, Kristin Shawn; Klar, Hans W.; Hammonds, Hattie L.; Buskey, Frederick C.

    2016-01-01

    In this article, we report findings from an exploratory, qualitative study in which we used a constructivist lens to examine how two high school principals endeavored to develop the personal capacities of teachers and other leaders in their schools. We collected data from semistructured interviews with the principals and three other leaders from…

  20. Addition of titanium as a potential catalyst for a high-capacity hydrogen storage medium

    NARCIS (Netherlands)

    Zuliani, F.; Baerends, E.J.

    2008-01-01

    In recent years there has been increased interest in the characterization of titanium as a catalyst for high-capacity hydrogen storage materials. A first-principles study (Yildirim and Ciraci 2005 Phys. Rev. Lett. 94 175501) demonstrated that a single Ti atom coated on a single-walled nanotube

  1. Principals Fostering the Instructional Leadership Capacities of Department Chairs: A Strategy for Urban High School Reform

    Science.gov (United States)

    Klar, Hans W.

    2013-01-01

    A growing body of literature has highlighted the affordances of distributive forms of instructional leadership as a means to broaden and deepen instructional leadership capacity within schools. Yet, specifically how the capabilities of such key leaders as high school department chairs can be fostered to realize enhanced instructional capacity…

  2. Functional Capacity Assessed by the Map Task in Individuals at Clinical High-Risk for Psychosis.

    Science.gov (United States)

    McLaughlin, Danielle; Carrión, Ricardo E; Auther, Andrea M; Olvet, Doreen M; Addington, Jean; Bearden, Carrie E; Cadenhead, Kristin S; Cannon, Tyrone D; Heinssen, Robert K; Mathalon, Daniel H; McGlashan, Thomas H; Perkins, Diana O; Seidman, Larry J; Tsuang, Ming T; Walker, Elaine F; Woods, Scott W; Goldberg, Terry E; Harvey, Philip D; Cornblatt, Barbara A

    2016-09-01

    Recent studies have recognized that signs of functional disability in schizophrenia are evident in early phases of the disorder, and, as a result, can potentially serve as vulnerability markers of future illness. However, functional measures in the psychosis prodrome have focused exclusively on real-world achievements, rather than on the skills required to carry-out a particular real-world function (ie, capacity). Despite growing evidence that diminished capacity is critical to the etiology of the established disorder, virtually no attention has been directed towards assessing functional capacity in the pre-illness stages. In the present study, we introduce the Map task, a measure to assess functional capacity in adolescent and young-adult high-risk populations. The Map task was administered to 609 subjects at Clinical High-Risk (CHR) for psychosis and 242 Healthy Controls (HCs) participating in the North American Prodrome Longitudinal Study (NAPLS2). Subjects were required to efficiently complete a set of specified errands in a fictional town. CHR participants showed large impairments across major indices of the Map task, relative to the HCs. Most importantly, poor performance on the Map task significantly predicted conversion to psychosis, even after adjusting for age, IQ, clinical state, and other potential confounders. To the best of our knowledge, the Map task is one of the first laboratory-based measures to assess functional capacity in high-risk populations. Functional capacity deficits prior to the onset of psychosis may reflect a basic mechanism that underlies risk for psychosis. Early intervention targeting this domain may help to offset risk and independently improve long-term outcome. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Analysis of chaos in high-dimensional wind power system

    Science.gov (United States)

    Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping

    2018-01-01

    A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.

  4. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan; Li, Xing; Engelhard, Mark H.; Cao, Ruiguo; Zhang, Ji-Guang; Xu, Wu

    2018-01-01

    Lithium (Li) metal batteries (LMBs) are regarded as the most promising power sources for electric vehicles. Besides the Li dendrite growth and low Li Coulombic efficiency, how to well match Li metal anode with a high loading (normally over 3.0 mAh cm-2) cathode is another key challenge to achieve the real high energy density battery. In this work, we systematically investigate the effects of the Li metal capacity usage in each cycle, manipulated by varying the cathode areal loading, on the stability of Li metal anode and the cycling performance of LMBs using the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and an additive-containing dual-salt/carbonate-solvent electrolyte. It is demonstrated that the Li||NMC cells show decent long-term cycling performance even with NMC areal capacity loading up to ca. 4.0 mAh cm-2 and at a charge current density of 1.0 mA cm-2. The increase of the Li capacity usage in each cycle causes variation in the components of the solid electrolyte interphase (SEI) layer on Li metal anode and generates more ionic conductive species from this electrolyte. Further study reveals for the first time that the degradation of Li metal anode and the thickness of SEI layer on Li anode show linear relationship with the areal capacity of NMC cathode. Meanwhile, the expansion rate of consumed Li and the ratio of SEI thickness to NMC areal loading are kept almost the same value with increasing cathode loading, respectively. These fundamental findings provide new perspectives on the rational evaluation of Li metal anode stability for the development of rechargeable LMBs.

  5. On the exergetic capacity factor of a wind – Solar power generation system

    DEFF Research Database (Denmark)

    Xydis, George

    2013-01-01

    In the recent years, exergy analysis has become a very important tool in the evaluation of systems’ efficiency. It aims on minimizing the energy related-system losses and therefore maximizing energy savings and helps society substantially to move towards sustainable development and cleaner...... irradiation losses play a crucial role in identifying the real and net wind and solar power output while planning new renewable energy projects and in fact do play a significant role on the wind – solar plant’s overall exergetic efficiency. In specific, it was found that air density varies from site to site......, are continually increasing, and new areas are required, the basic idea behind this research, was not only to introduce ExCF, as a new evaluation index for RES, but also to investigate the combined use of wind and solar energy under the same area and the benefits coming out of this combination....

  6. Energy producing capacity of the territory: considerations and a micro wind power case study

    Directory of Open Access Journals (Sweden)

    Adriano Magliocco

    2011-04-01

    Full Text Available One of the strategies used to exploit renewable energy resources is that of distributed microgeneration. It is necessary to integrate the dominant, but scarcely efficient, photovoltaic technology with others able to exploit the resources available throughout the territory. Micro wind power has entered into the market of integrated building systems thanks to a gradual renewal of local legislation. The complexity of predictive mechanisms for this technology dictates the utilisation of auxiliary design tools. Technological innovation must be stimulated by experiments that create a demand for self-production, a sort of savings for the local people and development of the entire community. This is all about a process at different scales commencing at the urban planning phase.

  7. Knowledge brokerage - potential for increased capacities and shared power in impact assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rosario Partidario, Maria, E-mail: mrp@civil.ist.utl.pt [Instituto Superior Tecnico, Lisbon, Portugal, Av. Rovisco Pais, 1049-001 LISBOA (Portugal); Sheate, William R., E-mail: w.sheate@imperial.ac.uk [Centre for Environmental Policy, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Collingwood Environmental Planning Ltd, London, 1E, The Chandlery, 50 Westminster Bridge Road, London SE1 7QY (United Kingdom)

    2013-02-15

    Constructive and collaborative planning theory has exposed the perceived limitations of public participation in impact assessment. At strategic levels of assessment the established norm can be misleading and practice is illusive. For example, debates on SEA effectiveness recognize insufficiencies, but are often based on questionable premises. The authors of this paper argue that public participation in strategic assessment requires new forms of information and engagement, consistent with the complexity of the issues at these levels and that strategic assessments can act as knowledge brokerage instruments with the potential to generate more participative environments and attitudes. The paper explores barriers and limitations, as well as the role of knowledge brokerage in stimulating the engagement of the public, through learning-oriented processes and responsibility sharing in more participative models of governance. The paper concludes with a discussion on building and inter-change of knowledge, towards creative solutions to identified problems, stimulating learning processes, largely beyond simple information transfer mechanisms through consultative processes. The paper argues fundamentally for the need to conceive strategic assessments as learning platforms and design knowledge brokerage opportunities explicitly as a means to enhance learning processes and power sharing in IA. - Highlights: Black-Right-Pointing-Pointer Debates on SEA recognize insufficiencies on public participation Black-Right-Pointing-Pointer We propose new forms of engagement consistent with complex situations at strategic levels of decision-making Black-Right-Pointing-Pointer Constructive and collaborative planning theories help explain how different actors acquire knowledge and the value of knowledge exchange Black-Right-Pointing-Pointer Strategic assessments can act as knowledge brokerage instruments Black-Right-Pointing-Pointer The paper argues for strategic assessments as learning

  8. High Power Silicon Carbide (SiC) Power Processing Unit Development

    Science.gov (United States)

    Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.

  9. The Capacity of Finite-State Channels in the High-Noise Regime

    CERN Document Server

    Pfister, Henry D

    2010-01-01

    This paper considers the derivative of the entropy rate of a hidden Markov process with respect to the observation probabilities. The main result is a compact formula for the derivative that can be evaluated easily using Monte Carlo methods. It is applied to the problem of computing the capacity of a finite-state channel (FSC) and, in the high-noise regime, the formula has a simple closed-form expression that enables series expansion of the capacity of a FSC. This expansion is evaluated for a binary-symmetric channel under a (0,1) run-length limited constraint and an intersymbol-interference channel with Gaussian noise.

  10. Primary reserve studies for high wind power penetrated systems

    DEFF Research Database (Denmark)

    Das, Kaushik; Altin, Müfit; Hansen, Anca Daniela

    2015-01-01

    With high penetration of non-synchronous wind generations replacing conventional generators, the inertia of power system will reduce. A large disturbance in such a power system can cause faster frequency change in this power system and might invoke emergency defence strategies like underfrequency....... This paper further explores the capabilities of wind turbines to provide support during underfrequency to prevent load shedding. Maximum wind penetration possible without causing load shedding following a large disturbance is also investigated....

  11. Modular high voltage power supply for chemical analysis

    Science.gov (United States)

    Stamps, James F [Livermore, CA; Yee, Daniel D [Dublin, CA

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  12. Robust, High Capacity, High Power Lithium Ion Batteries for Space Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium ion battery technology provides the highest energy density of all rechargeable battery technologies available today. However, the majority of the research...

  13. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  14. A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries

    Science.gov (United States)

    Kovalenko, Igor; Zdyrko, Bogdan; Magasinski, Alexandre; Hertzberg, Benjamin; Milicev, Zoran; Burtovyy, Ruslan; Luzinov, Igor; Yushin, Gleb

    2011-10-01

    The identification of similarities in the material requirements for applications of interest and those of living organisms provides opportunities to use renewable natural resources to develop better materials and design better devices. In our work, we harness this strategy to build high-capacity silicon (Si) nanopowder-based lithium (Li)-ion batteries with improved performance characteristics. Si offers more than one order of magnitude higher capacity than graphite, but it exhibits dramatic volume changes during electrochemical alloying and de-alloying with Li, which typically leads to rapid anode degradation. We show that mixing Si nanopowder with alginate, a natural polysaccharide extracted from brown algae, yields a stable battery anode possessing reversible capacity eight times higher than that of the state-of-the-art graphitic anodes.

  15. Metal-organic frameworks with high capacity and selectivity for harmful gases

    Science.gov (United States)

    Britt, David; Tranchemontagne, David; Yaghi, Omar M.

    2008-01-01

    Benchmarks have been established for the performance of six metal-organic frameworks (MOFs) and isoreticular MOFs (IRMOFs, which have the same underlying topology as MOF-5), MOF-5, IRMOF-3, MOF-74, MOF-177, MOF-199, and IRMOF-62, as selective adsorbents for eight harmful gases: sulfur dioxide, ammonia, chlorine, tetrahydrothiophene, benzene, dichloromethane, ethylene oxide, and carbon monoxide. Kinetic breakthrough measurements are used to determine the calculated dynamic adsorption capacity of each “benchmark” MOF for each gas. The capacity of each MOF is compared to that of a sample of Calgon BPL activated carbon. We find that pore functionality plays a dominant role in determining the dynamic adsorption performance of MOFs. MOFs featuring reactive functionality outperform BPL carbon in all but one case and exhibit high dynamic adsorption capacities up to 35% by weight. PMID:18711128

  16. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature.

    Science.gov (United States)

    Millward, Andrew R; Yaghi, Omar M

    2005-12-28

    Metal-organic frameworks (MOFs) show high CO2 storage capacity at room temperature. Gravimetric CO2 isotherms for MOF-2, MOF-505, Cu3(BTC)2, MOF-74, IRMOFs-11, -3, -6, and -1, and MOF-177 are reported up to 42 bar. Type I isotherms are found in all cases except for MOFs based on Zn4O(O2C)6 clusters, which reveal a sigmoidal isotherm (having a step). The various pressures of the isotherm steps correlate with increasing pore size, which indicates potential for gas separations. The amine functionality of the IRMOF-3 pore shows evidence of relatively increased affinity for CO2. Capacities qualitatively scale with surface area and range from 3.2 mmol/g for MOF-2 to 33.5 mmol/g (320 cm3(STP)/cm3, 147 wt %) for MOF-177, the highest CO2 capacity of any porous material reported.

  17. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  18. High-Capacity Hybrid Optical Fiber-Wireless Communications Links in Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan

    and radio-over-fiber (RoF) systems employing wireless multi-input multi-output (MIMO) multiplexing technologies. Regarding high speed mm-wave links, this thesis focuses on high capacity fiber-wireless transmissions in both the V-band (50-75 GHz) and the Wband (75-110 GHz). Photonic mm-wave signal generation...... techniques with both coherent and incoherent optical sources are studied and demonstrated. Employments of advanced modulation formats including phase-shift keying (PSK), M-quadrature amplitude modulation (QAM) and orthogonal frequency-division multiplexing (OFDM) for high speed photonic-wireless transmission...... techniques. In conclusion, the results presented in the thesis show the feasibility of employing mm-wave signals, advanced modulation formats and spatial multiplexing technologies in next generation high capacity hybrid optical fiber-wireless access systems....

  19. Total lung capacity by plethysmography and high-resolution computed tomography in COPD.

    Science.gov (United States)

    Garfield, Jamie L; Marchetti, Nathaniel; Gaughan, John P; Steiner, Robert M; Criner, Gerard J

    2012-01-01

    To characterize and compare total lung capacity (TLC) measured by plethysmography with high-resolution computed tomography (HRCT), and to identify variables that predict the difference between the two modalities. Fifty-nine consecutive patients referred for the evaluation of COPD were retrospectively reviewed. Patients underwent full pulmonary function testing and HRCT within 3 months. TLC was obtained by plethysmography as per American Thoracic Society/European Respiratory Society standards and by HRCT using custom software on 0.75 and 5 mm thick contiguous slices performed at full inspiration (TLC). TLC measured by plethysmography correlated with TLC measured by inspiratory HRCT (r = 0.92, P volume in 1 second/forced vital capacity [FVC] and FVC%), static lung volumes (residual volume, percent predicted [RV%], total lung capacity, percent predicted [TLC%], functional residual capacity, percent predicted [FRC%], and inspiratory capacity, percent predicted), and percent emphysema. TLC by plethysmography and HRCT both demonstrated significant inverse correlations with diffusion impairment. The absolute difference between TLC measured by plethysmography and HRCT increased as RV%, TLC%, and FRC% increased. Gas trapping (RV% and FRC%) independently predicted the difference in TLC between plethysmography and HRCT. In COPD, TLC by plethysmography can be up to 2 L greater than inspiratory HRCT. Gas trapping independently predicts patients for whom TLC by plethysmography differs significantly from HRCT.

  20. Development of High-Power Hall Thruster Power Processing Units at NASA GRC

    Science.gov (United States)

    Pinero, Luis R.; Bozak, Karin E.; Santiago, Walter; Scheidegger, Robert J.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested four different power processor concepts for high power Hall thrusters. Each design satisfies unique goals including the evaluation of a novel silicon carbide semiconductor technology, validation of innovative circuits to overcome the problems with high input voltage converter design, development of a direct-drive unit to demonstrate potential benefits, or simply identification of lessonslearned from the development of a PPU using a conventional design approach. Any of these designs could be developed further to satisfy NASA's needs for high power electric propulsion in the near future.

  1. High-power arrays of quantum cascade laser master-oscillator power-amplifiers.

    Science.gov (United States)

    Rauter, Patrick; Menzel, Stefan; Goyal, Anish K; Wang, Christine A; Sanchez, Antonio; Turner, George; Capasso, Federico

    2013-02-25

    We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 μm. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays that are based on different seed-section designs is thoroughly studied and compared. High output power and excellent beam quality render the arrays highly suitable for stand-off spectroscopy applications.

  2. High power and high energy electrodes using carbon nanotubes

    Science.gov (United States)

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  3. High-Capacity and Photoregenerable Composite Material for Efficient Adsorption and Degradation of Phenanthrene in Water.

    Science.gov (United States)

    Liu, Wen; Cai, Zhengqing; Zhao, Xiao; Wang, Ting; Li, Fan; Zhao, Dongye

    2016-10-18

    We report a novel composite material, referred to as activated charcoal supported titanate nanotubes (TNTs@AC), for highly efficient adsorption and photodegradation of a representative polycyclic aromatic hydrocarbon (PAH), phenanthrene. TNTs@AC was prepared through a one-step hydrothermal method, and is composed of an activated charcoal core and a shell of carbon-coated titanate nanotubes. TNTs@AC offered a maximum Langmuir adsorption capacity of 12.1 mg/g for phenanthrene (a model PAH), which is ∼11 times higher than the parent activated charcoal. Phenanthrene was rapidly concentrated onto TNTs@AC, and subsequently completely photodegraded under UV light within 2 h. The photoregenerated TNTs@AC can then be reused for another adsorption-photodegradation cycle without significant capacity or activity loss. TNTs@AC performed well over a wide range of pH, ionic strength, and dissolved organic matter. Mechanistically, the enhanced adsorption capacity is attributed to the formation of carbon-coated ink-bottle pores of the titanate nanotubes, which are conducive to capillary condensation; in addition, the modified microcarbon facilitates transfer of excited electrons, thereby inhibiting recombination of the electron-hole pairs, resulting in high photocatalytic activity. The combined high adsorption capacity, photocatalytic activity, and regenerability/reusability merit TNTs@AC a very attractive material for concentrating and degrading a host of micropollutants in the environment.

  4. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  5. The Study on the Reliability of High Power LED Streetlights

    Science.gov (United States)

    Dong-Ge, Yao; Jian-Xin, Chen

    2011-02-01

    This paper was about a reliable research on high-power LED lighting. Based on the samples of the self-developed high-power LED streetlights, an electrical stress ageing test was carried out and thermocouple method was used in the temperature test. The ageing test showed that the initial flux reduction was mainly due to the absorption of the light lamp or the block by some parts of the lighting. And the late light decling was mainly caused by the decay of the high-power LED light source itself. Some suggestions on improving the design of streetlights will be given according to my research.

  6. High performance protection circuit for power electronics applications

    Science.gov (United States)

    Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-01

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  7. High performance protection circuit for power electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, PO 5 Box 700, 400293 Cluj-Napoca (Romania)

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  8. An Implementation fo a Flexible Topology Management System for Aerial High Capacity Directional Networks

    Science.gov (United States)

    2015-10-01

    different transmit and receive frequency bands from the local wide-area coverage links. The primary performance metric for candidate topology ...An Implementation of a Flexible Topology Management System for Aerial High Capacity Directional Networks Joy Wang, Patricia Deutsch, Andrea Coyle...several advantages such as high data rates at long ranges and interference resistant links when paired with directional systems. On the flip side, topology

  9. High Capacity and High Voltage Composite Oxide Cathode for Li-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Currently used cathode materials in energy storage devices do not fully satisfy the power density and energy density requirements for NASA's exploration missions....

  10. Liquid state DNP using a 260 GHz high power gyrotron.

    Science.gov (United States)

    Denysenkov, Vasyl; Prandolini, Mark J; Gafurov, Marat; Sezer, Deniz; Endeward, Burkhard; Prisner, Thomas F

    2010-06-14

    Dynamic nuclear polarization (DNP) at high magnetic fields (9.2 T, 400 MHz (1)H NMR frequency) requires high microwave power sources to achieve saturation of the EPR transitions. Here we describe the first high-field liquid-state DNP results using a high-power gyrotron microwave source (20 W at 260 GHz). A DNP enhancement of -29 on water protons was obtained for an aqueous solution of Fremy's Salt; in comparison the previous highest value was -10 using a solid-state microwave power source (maximum power 45 mW). The increased enhancements are partly due to larger microwave saturation and elevated sample temperature. These experimentally observed DNP enhancements, which by far exceed the predicted values extrapolated from low-field DNP experiments, demonstrate experimentally that DNP is possible in the liquid state also at high magnetic fields.

  11. Predicting High-Power Performance in Professional Cyclists.

    Science.gov (United States)

    Sanders, Dajo; Heijboer, Mathieu; Akubat, Ibrahim; Meijer, Kenneth; Hesselink, Matthijs K

    2017-03-01

    To assess if short-duration (5 to ~300 s) high-power performance can accurately be predicted using the anaerobic power reserve (APR) model in professional cyclists. Data from 4 professional cyclists from a World Tour cycling team were used. Using the maximal aerobic power, sprint peak power output, and an exponential constant describing the decrement in power over time, a power-duration relationship was established for each participant. To test the predictive accuracy of the model, several all-out field trials of different durations were performed by each cyclist. The power output achieved during the all-out trials was compared with the predicted power output by the APR model. The power output predicted by the model showed very large to nearly perfect correlations to the actual power output obtained during the all-out trials for each cyclist (r = .88 ± .21, .92 ± .17, .95 ± .13, and .97 ± .09). Power output during the all-out trials remained within an average of 6.6% (53 W) of the predicted power output by the model. This preliminary pilot study presents 4 case studies on the applicability of the APR model in professional cyclists using a field-based approach. The decrement in all-out performance during high-intensity exercise seems to conform to a general relationship with a single exponential-decay model describing the decrement in power vs increasing duration. These results are in line with previous studies using the APR model to predict performance during brief all-out trials. Future research should evaluate the APR model with a larger sample size of elite cyclists.

  12. Supporting Control Room Operators in Highly Automated Future Power Networks

    DEFF Research Database (Denmark)

    Chen, Minjiang; Catterson, Victoria; Syed, Mazheruddin

    2017-01-01

    Operating power systems is an extremely challenging task, not least because power systems have become highly interconnected, as well as the range of network issues that can occur. It is therefore a necessity to develop decision support systems and visualisation that can effectively support the hu...

  13. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    Science.gov (United States)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  14. In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes.

    Science.gov (United States)

    Sun, Yongming; Lee, Hyun-Wook; Zheng, Guangyuan; Seh, Zhi Wei; Sun, Jie; Li, Yanbin; Cui, Yi

    2016-02-10

    The initial lithium loss during the formation stage is a critical issue that significantly reduces the specific capacity and energy density of current rechargeable lithium-ion batteries (LIBs). An effective strategy to solve this problem is using electrode prelithiation additives that can work as a secondary lithium source and compensate the initial lithium loss. Herein we show that nanocomposites of lithium fluoride and metal (e.g., LiF/Co and LiF/Fe) can be efficient cathode prelithiation materials. The thorough mixing of ultrafine lithium fluoride and metal particles (∼5 nm) allows lithium to be easily extracted from the nanocomposites via an inverse conversion reaction. The LiF/Co nanocomposite exhibits an open circuit voltage (OCV, 1.5 V) with good compatibility with that of existing cathode materials and delivers a high first-cycle "donor" lithium-ion capacity (516 mA h g(-1)). When used as an additive to a LiFePO4 cathode, the LiF/Co nanocomposite provides high lithium compensation efficiency. Importantly, the as-formed LiF/metal nanocomposites possess high stability and good compatibility with the regular solvent, binder, and existing battery processing conditions, in contrast with the anode prelithiation materials that usually suffer from issues of high chemical reactivity and instability. The facile synthesis route, high stability in ambient and battery processing conditions, and high "donor" lithium-ion capacity make the LiF/metal nanocomposites ideal cathode prelithiation materials for LIBs.

  15. APPLICATION OF HIGH VOLTAGE DIVIDERS FOR POWER QUALITY INDICES MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Y. L. Anokhin

    2017-12-01

    Full Text Available Introduction. Determination of power quality indices in high-voltage power grids allows to find the reasons for the deterioration of the power quality. The relevant national and International Standards for power quality contain relevant norms of quality indices and requirements for their accuracy measurement. Problem. The most complicated part in the process of measuring the power quality indices at high voltage is the selection of the corresponding high-voltage scale voltage converters. Therefore, comparing the requirements of IEC 61000-4-30 to high voltage scale voltage converters is an important task. Goal. Analysis of the International Standard IEC 61000-4-30 requirements feasibility for measuring the indices of power quality in high-voltage electrical networks using different types of high-voltage scale voltage converters. Methodology. Comparison of the requirements of IEC 61000-4-30 Standard to high-voltage scale voltage converters, when measuring power quality indices, with the characteristics of high voltage electromagnetic transformers used in Ukraine, and with promising developments of high-voltage converters of other types. Results. It is shown in the study that in order to fulfill some of the requirements for class A of IEC 61000-4-30, the characteristics of electromagnetic voltage transformers should be determined in the substation conditions using mobile calibration high-voltage laboratories. To meet all the requirements for Class A IEC 61000-4-30, it is recommended to use broadband high-voltage dividers of resistive-capacitive type. Originality. In study it is shown firstly that all the requirements of the IEC 61000-4-30 Standard for high-voltage scale voltage converters can be performed on the basis of the use of broadband resistive-capacitive damped voltage dividers. Practical value. Expositions of specific types of resistive-capacitive high-voltage dividers are presented, their parameters are confirmed by the results of state

  16. A Novel WPT System Based on Dual Transmitters and Dual Receivers for High Power Applications: Analysis, Design and Implementation

    Directory of Open Access Journals (Sweden)

    Yong Li

    2017-02-01

    Full Text Available Traditional Wireless Power Transfer (WPT systems only have one energy transmission path, which can hardly meet the power demand for high power applications, e.g., railway applications (electric trains and trams, etc. due to the capacity constraints of power electronic devices. A novel WPT system based on dual transmitters and dual receivers is proposed in this paper to upgrade the power capacity of the WPT system. The reliability and availability of the proposed WPT system can be dramatically improved due to the four energy transmission paths. A three-dimensional finite element analysis (FEA tool ANSYS MAXWELL (ANSYS, Canonsburg, PA, USA is adopted to investigate the proposed magnetic coupling structure. Besides, the effects of the crossing coupling mutual inductances among the transmitters and receivers are analyzed. It shows that the same-side cross couplings will decrease the efficiency and transmitted power. Decoupling transformers are employed to mitigate the effects of the same-side cross couplings. Meanwhile, the output voltage in the secondary side can be regulated at its designed value with a fast response performance, and the system can continue work even with a faulty inverter. Finally, a scale-down experimental setup is provided to verify the proposed approach. The experimental results indicate that the proposed method could improve the transmitted power capacity, overall efficiency and reliability, simultaneously. The proposed WPT structure is a potential alternative for high power applications.

  17. Integrated Very High Frequency Switch Mode Power Supplies: Design Considerations

    DEFF Research Database (Denmark)

    Hertel, Jens Christian; Nour, Yasser; Knott, Arnold

    2017-01-01

    This paper presents a power supply using an increased switching frequency to minimize the size of energy storing components, thereby addressing the demands for increased power densities in power supplies. 100 MHz and higher switching frequencies have been used in resonant power converters, which...... simulations. The required spiral inductors was modeled, and simulations show Q values of as high as 14 at a switching frequency of 250 MHz. Simulations of the converter show an efficiency of 55 % with a self oscillating gate drive. However the modeled inductor was not adequate for operating with the self...

  18. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

    Science.gov (United States)

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M.; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M.

    2016-01-01

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging. PMID:27319783

  19. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

    Science.gov (United States)

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M.; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M.

    2016-06-01

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging.

  20. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability.

    Science.gov (United States)

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M

    2016-06-20

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm(2). The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm(2), a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging.