WorldWideScience

Sample records for high capacity mercury

  1. High activity carbon sorbents for mercury capture

    Directory of Open Access Journals (Sweden)

    Stavropoulos George G.

    2006-01-01

    Full Text Available High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N2 adsorption at 77 K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior.

  2. Biosorption of mercury from aqueous solutions using highly characterised peats

    Directory of Open Access Journals (Sweden)

    A.M. Rizzuti

    2015-02-01

    Full Text Available This research investigated the biosorption of mercury from aqueous solutions by six highly characterised peats. Samples of the peats were tested both in unaltered condition and after being treated with hydrochloric acid (HCl to free up any occupied exchange sites. Other variables tested were sample dose, contact time, mixing temperature, and the concentration and pH of the mercury solution. Desorption studies were also performed, and tests were done to determine whether the peats could be re-used for mercury biosorption. The results indicate that all six peat types biosorb mercury from aqueous solutions extremely well (92−100 % removal and that their mercury removal capacities are not significantly affected by manipulation of the various factors tested. The factor that had the greatest impact on the mercury removal capacities of the peats was the pH of the mercury solution. The optimal mercury solution pH for mercury removal was in the range 5−7 for four of the peats and in the range 2−3 for the other two. The desorption results indicate that it may be possible to recover up to 41 % of the removed mercury. All of the peat types tested can be repeatedly re-used for additional mercury biosorption cycles. Hence, their disposal should not become a hazardous waste problem.

  3. Innate stimulatory capacity of high molecular weight transition metals Au (gold) and Hg (mercury).

    Science.gov (United States)

    Rachmawati, Dessy; Alsalem, Inás W A; Bontkes, Hetty J; Verstege, Marleen I; Gibbs, Sue; von Blomberg, B M E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2015-03-01

    Nickel, cobalt and palladium ions can induce an innate immune response by triggering Toll-like receptor (TLR)-4 which is present on dendritic cells (DC). Here we studied mechanisms of action for DC immunotoxicity to gold and mercury. Next to gold (Na3Au (S2O3)2⋅2H2O) and mercury (HgCl2), nickel (NiCl2) was included as a positive control. MoDC activation was assessed by release of the pro-inflammatory mediator IL-8. Also PBMC were studied, and THP-1 cells were used as a substitution for DC for evaluation of cytokines and chemokines, as well as phenotypic, alterations in response to gold and mercury. Our results showed that both Na3Au (S2O3)2⋅2H2O and HgCl2 induce substantial release of IL-8, but not IL-6, CCL2 or IL-10, from MoDc, PBMC, or THP-1 cells. Also gold and, to a lesser extent mercury, caused modest dendritic cell maturation as detected by increased membrane expression of CD40 and CD80. Both metals thus show innate immune response capacities, although to a lower extent than reported earlier for NiCl2, CoCl2 and Na2 [PdCl4]. Importantly, the gold-induced response could be ascribed to TLR3 rather than TLR4 triggering, whereas the nature of the innate mercury response remains to be clarified. In conclusion both gold and mercury can induce innate immune responses, which for gold could be ascribed to TLR3 dependent signalling. These responses are likely to contribute to adaptive immune responses to these metals, as reflected by skin and mucosal allergies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. [Evaluation of the mercury accumulating capacity of pepper (Capsicum annuum)].

    Science.gov (United States)

    Pérez-Vargas, Híver M; Vidal-Durango, Jhon V; Marrugo-Negrete, José L

    2014-01-01

    To assess the mercury accumulating capacity in contaminated soils from the community of Mina Santa Cruz, in the south of the department of Bolívar, Colombia, of the pepper plant (Capsicum annuum), in order to establish the risk to the health of the consuming population. Samples were taken from tissues (roots, stems, and leaves) of pepper plants grown in two soils contaminated with mercury and a control soil during the first five months of growth to determine total mercury through cold vapor atomic absorption spectrometry. Total mercury was determined in the samples of pepper plant fruits consumed in Mina Santa Cruz. The mean concentrations of total mercury in the roots were higher than in stems and leaves. Accumulation in tissues was influenced by mercury levels in soil and the growth time of the plants. Mercury concentrations in fruits of pepper plant were lower than tolerable weekly intake provided by WHO. Percent of translocation of mercury to aerial parts of the plant were low in both control and contaminated soils. Despite low levels of mercury in this food, it is necessary to minimize the consumption of food contaminated with this metal.

  5. Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation.

    Science.gov (United States)

    Hlodák, Michal; Urík, Martin; Matúš, Peter; Kořenková, Lucia

    2016-01-01

    Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.

  6. Behavior of mercury in high-temperature vitrification processes

    International Nuclear Information System (INIS)

    Goles, R.W.; Holton, K.K.; Sevigny, G.J.

    1992-01-01

    This paper reports that the Pacific Northwest Laboratory (PNL) has evaluated the waste processing behavior of mercury in simulated defense waste. A series of tests were performed under various operating conditions using an experimental-scale liquid-fed ceramic melter (LFCM). This solidification technology had no detectable capacity for incorporating mercury into its product, borosilicate glass. Chemically, the condensed mercury effluent was composed almost entirely of chlorides, and except in a low-temperature test, Hg 2 Cl 2 was the primary chloride formed. As a result, combined mercury accounted for most of the insoluble mass collected by the process quench scrubber. Although macroscopic quantities of elemental mercury were never observed in process secondary waste streams, finely divided and dispersed mercury that blackened all condensed Hg 2 Cl 2 residues was capable of saturating the quenched process exhaust with mercury vapor. The vapor pressure of mercury, however, in the quenched melter exhaust was easily and predictably controlled with the off-gas stream chiller

  7. Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution

    Science.gov (United States)

    Li, Baiyan; Zhang, Yiming; Ma, Dingxuan; Shi, Zhan; Ma, Shengqian

    2014-11-01

    Highly effective and highly efficient decontamination of mercury from aqueous media remains a serious task for public health and ecosystem protection. Here we report that this task can be addressed by creating a mercury ‘nano-trap’ as illustrated by functionalizing a high surface area and robust porous organic polymer with a high density of strong mercury chelating groups. The resultant porous organic polymer-based mercury ‘nano-trap’ exhibits a record-high saturation mercury uptake capacity of over 1,000 mg g-1, and can effectively reduce the mercury(II) concentration from 10 p.p.m. to the extremely low level of smaller than 0.4 p.p.b. well below the acceptable limits in drinking water standards (2 p.p.b.), and can also efficiently remove >99.9% mercury(II) within a few minutes. Our work therefore presents a new benchmark for mercury adsorbent materials and provides a new perspective for removing mercury(II) and also other heavy metal ions from contaminated water for environmental remediation.

  8. Influence of coal properties on mercury uptake from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Brown, S.D.; Snape, C.E. [Miskolc University, Miskolc-Egyetemvaros (Hungary). Research Inst. of Applied Chemistry

    1999-10-01

    The uptake of mercury (II) from aqueous solution by a range of coals has been studied and the results have been compared to those for a number of other sorbents, including commercial active carbons and cation-exchange resins. At pH 5 in a buffer medium, the capacities for mercury removal of the low-rank coals and the oxidized bituminous coals investigated are comparable to those of the other sorbents tested. For the lignites investigated, a high content of organic sulfur does not markedly affect the capacity for mercury uptake in relatively neutral and low chloride media, owing to redox reactions being the most likely mechanism involved. However, in highly acidic solutions, the capacities for mercury uptake are considerably greater for the high-sulfur coals investigated than for their low-sulfur counterparts due to chelation being the major sorption process involved. 36 refs., 4 figs., 7 tabs.

  9. Method for high temperature mercury capture from gas streams

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  10. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).

    Science.gov (United States)

    Figueiredo, Neusa L; Canário, João; O'Driscoll, Nelson J; Duarte, Aida; Carvalho, Cristina

    2016-02-01

    Aerobic mercury-resistant bacteria were isolated from the sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and one natural reserve area (Alcochete) in order to test their capacity to transform mercury. Bacterial species were identified using 16S rRNA amplification and sequencing techniques and the results indicate the prevalence of Bacillus sp. Resistance patterns to mercurial compounds were established by the determination of minimal inhibitory concentrations. Representative Hg-resistant bacteria were further tested for transformation pathways (reduction, volatilization and methylation) in cultures containing mercury chloride. Bacterial Hg-methylation was carried out by Vibrio fluvialis, Bacillus megaterium and Serratia marcescens that transformed 2-8% of total mercury into methylmercury in 48h. In addition, most of the HgR bacterial isolates showed Hg(2+)-reduction andHg(0)-volatilization resulting 6-50% mercury loss from the culture media. In summary, the results obtained under controlled laboratory conditions indicate that aerobic Hg-resistant bacteria from the Tagus Estuary significantly affect both the methylation and reduction of mercury and may have a dual face by providing a pathway for pollution dispersion while forming methylmercury, which is highly toxic for living organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Fixed-bed studies of the interactions between mercury and coal combustion fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Grant E.; DeWall, Raymond A. [Energy and Environmental Research Center, 15 North 23rd Street, Grand Forks, ND 58203 (United States); Senior, Constance L. [Reaction Engineering International, 77 West 200 South, Suite 210, Salt Lake City, UT 84101 (United States)

    2003-08-15

    Sixteen different fly ash samples, generated from both pilot-scale and full-scale combustion systems, were exposed to a simulated flue gas containing either elemental mercury or HgCl{sub 2} in a bench-scale reactor system at the Energy and Environmental Research Center to evaluate the interactions and determine the effects of temperature, mercury species, and ash type on adsorption of mercury and oxidation of elemental mercury. The fly ash samples were characterized for surface area, loss on ignition, and forms of iron in the ash. While many of the ash samples oxidized elemental mercury, not all of the samples that oxidized mercury also captured elemental mercury. However, no capture of elemental mercury was observed without accompanying oxidation. Generally, oxidation of elemental mercury increased with increasing amount of magnetite in the ash. However, one high-carbon subbituminous ash with no magnetite showed considerable mercury oxidation that may have been due to unburned carbon. Surface area as well as the nature of the surface appeared to be important for oxidation and adsorption of elemental mercury. The capacity of the ash samples for HgCl{sub 2} was similar to that for elemental mercury. There was a good correlation between the capacity for HgCl{sub 2} and the surface area; capacity decreased with increasing temperature.

  12. Physics of mercury-free high-pressure discharge lamps

    International Nuclear Information System (INIS)

    Born, M

    2002-01-01

    This paper gives a summary of recent results about the replacement of mercury in high-pressure discharge lamps by metallic zinc. Actually, this topic is of high relevance for the lighting industry due to the need of more environmentally friendly products. The work presented here is supported by the German government under contract no 13N8072 and 13N8264. Due to upcoming European legislations which are expected for the year 2003, the replacement of mercury in lighting products is a high priority task. For example, mercury-free headlight discharge lamps are requested by the automotive industry. Pure zinc/argon discharges as well as lamps including zinc or mercury and metal halide additives are investigated. Experimental data are compared with model calculations of the energy balance involving the transport of heat and radiation. Since the excitation energies of relevant zinc transitions are lower than for mercury, axis temperatures of pure zinc lamps are about 300 K below the value of mercury arcs. In addition, the thermal conductivity of zinc including the contribution of radiation diffusion is larger than compared to mercury. From lamp voltage measurements it is found that the cross section for elastical electron scattering by zinc atoms is about the same than for mercury. When adding metal halides to a pure zinc discharge with argon as a starting gas, i.e. NaI, TlI, DyI 3 , axis temperatures decrease to about 5100 K due to strong radiation cooling. In order to obtain sufficiently large lamp voltages, wall temperatures of more than 1300 K are adjusted by means of polycrystalline aluminaoxide (Al 2 O 3 ) as a wall material. Electric field strengths of 6.0 and 8.6 V mm -1 are measured for metal halide lamps containing zinc or mercury, respectively. The light technical data of the discharges are very close, since mercury and zinc do not contribute significantly to the radiation in the visible range. Efficacies of up to 93 and 100 lm W -1 are found in metal halide

  13. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  14. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2012-05-01

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  15. EURISOL-DS METEX: Cooling and Temperature Control of the Mercury Loop

    CERN Document Server

    Stefan Joray

    The cooling of the mercury loop is described on pages two, three and four. The gaps in the water jackets of the heat exchangers are too large and the cooling water capacity is too low. Convection from the wall into water is bad. The mercury temperature is too high. On page five is a proposal how the mercury temperature can be kept low and constant.

  16. Assessing The Impact Of Mercury Contamination To Lake Balkyldak In Kazakhstan

    Science.gov (United States)

    Adjacent to Lake Balkyldak in Kazakhstan, there is a large wastewater holding pond from a former mercury cell chloralkali plant which contains high levels of mercury-contamination. The holding pond capacity is 74 million m3 with a water-surface area of 18 km2

  17. Removal of mercury by adsorption: a review.

    Science.gov (United States)

    Yu, Jin-Gang; Yue, Bao-Yu; Wu, Xiong-Wei; Liu, Qi; Jiao, Fei-Peng; Jiang, Xin-Yu; Chen, Xiao-Qing

    2016-03-01

    Due to natural and production activities, mercury contamination has become one of the major environmental problems over the world. Mercury contamination is a serious threat to human health. Among the existing technologies available for mercury pollution control, the adsorption process can get excellent separation effects and has been further studied. This review is attempted to cover a wide range of adsorbents that were developed for the removal of mercury from the year 2011. Various adsorbents, including the latest adsorbents, are presented along with highlighting and discussing the key advancements on their preparation, modification technologies, and strategies. By comparing their adsorption capacities, it is evident from the literature survey that some adsorbents have shown excellent potential for the removal of mercury. However, there is still a need to develop novel, efficient adsorbents with low cost, high stability, and easy production and manufacture for practical utility.

  18. Mercury cycling in a wastewater treatment plant treating waters with high mercury contents.

    Science.gov (United States)

    García-Noguero, Eva M.; García-Noguero, Carolina; Higueras, Pablo; Reyes-Bozo, Lorenzo; Esbrí, José M.

    2015-04-01

    The Almadén mercury mining district has been historically the most important producer of this element since Romans times to 2004, when both mining and metallurgic activities ceased as a consequence both of reserves exhaustion and persistent low prices for this metal. The reclamation of the main dump of the mine in 2007-2008 reduced drastically the atmospheric presence of the gaseous mercury pollutant in the local atmosphere. But still many areas, and in particular in the Almadén town area, can be considered as contaminated, and produce mercury releases that affect the urban residual waters. Two wastewater treatment plants (WWTP) where built in the area in year 2002, but in their design the projects did not considered the question of high mercury concentrations received as input from the town area. This communication presents data of mercury cycling in one of the WWTP, the Almadén-Chillón one, being the larger and receiving the higher Hg concentrations, due to the fact that it treats the waters coming from the West part of the town, in the immediate proximity to the mine area. Data were collected during a number of moments of activity of the plant, since April 2004 to nowadays. Analyses were carried out by means of cold vapor-atomic fluorescence spectroscopy (CV-AFS), using a PSA Millennium Merlin analytical device with gold trap. The detection limit is 0.1 ng/l. The calibration standards are prepared using the Panreac ICP Standard Mercury Solution (1,000±0,002 g/l Hg in HNO3 2-5%). Results of the surveys indicate that mercury concentrations in input and output waters in this plant has suffered an important descent since the cessation of mining and metallurgical activities, and minor reduction also after the reclamation of the main mine's dump. Since 2009, some minor seasonal variations are detected, in particular apparently related to accumulation during summer of mercury salts and particles, which are washed to the plant with the autumn's rains. Further

  19. Physical aspects of mercury-free high pressure discharge lamps

    International Nuclear Information System (INIS)

    Born, M.

    2002-01-01

    This paper gives a summary of recent results about the replacement of mercury in high pressure discharge lamps by metallic zinc. Actually, this topic is of high relevance for the lighting industry due to the need of more environmentally friendly products. The work presented here is supported by the German government under contract no. 13N8072. Pure zinc/argon discharges as well as lamps including zinc or mercury and metal halide additives are investigated. Experimental data are compared with model calculations of the energy balance involving the transport of heat and radiation. Since the excitation energies of relevant zinc transistions are lower than for mercury, axis temperatures of pure zinc lamps are about 300 K below the value of mercury arcs. In addition, the thermal conductivity of zinc including the contribution of radiation diffusion is larger than compared to mercury. From lamp voltage measurements it is found that the cross section for elastical electron scattering by zinc atoms is about the same as for mercury. When adding metal halides to a pure zinc discharge with argon as a starting gas, i.e. NaI, TlI, DyI3, axis temperatures decrease to about 5100 K due to strong radiation cooling. In order to obtain sufficiently large lamp voltages, wall temperatures of more than 1300 K are adjusted by means of polycrystalline aluminaoxide (Al2O3) as a wall material. Electrical field strenghts of 6.0 V/mm and 8.6 V/mm are measured for metal halide lamps containing zinc or mercury, respectively. The light technical data of the discharges are very close, since mercury and zinc do not contribute significantly to the radiation in the visible range. Efficacies of up to 93 lm/W and 100 lm/W are found in metal halide lamps with zinc and mercury, respectively. Consequently, zinc turns out to be an attractive replacer for mercury in this type of lamp not only from an environmental point of view

  20. Mercury in terrestrial forested systems with highly elevated mercury deposition in southwestern China: The risk to insects and potential release from wildfires

    International Nuclear Information System (INIS)

    Zhou, Jun; Wang, Zhangwei; Sun, Ting; Zhang, Huan; Zhang, Xiaoshan

    2016-01-01

    Forests are considered a pool of mercury in the global mercury cycle. However, few studies have investigated the distribution of mercury in the forested systems in China. Tieshanping forest catchment in southwest China was impacted by mercury emissions from industrial activities and coal combustions. Our work studied mercury content in atmosphere, soil, vegetation and insect with a view to estimating the potential for mercury release during forest fires. Results of the present study showed that total gaseous mercury (TGM) was highly elevated and the annual mean concentration was 3.51 ± 1.39 ng m"−"2. Of the vegetation tissues, the mercury concentration follows the order of leaf/needle > root > bark > branch > bole wood for each species. Total ecosystem mercury pool was 103.5 mg m"−"2 and about 99.4% of the mercury resides in soil layers (0–40 cm). The remaining 0.6% (0.50 mg m"−"2) of mercury was stored in biomass. The large mercury stocks in the forest ecosystem pose a serious threat for large pluses to the atmospheric mercury during potential wildfires and additional ecological stress to forest insect: dung beetles, cicada and longicorn, with mercury concentration of 1983 ± 446, 49 ± 38 and 7 ± 5 ng g"−"1, respectively. Hence, the results obtained in the present study has implications for global estimates of mercury storage in forests, risks to forest insect and potential release to the atmosphere during wildfires. - Highlights: • Mercury in air, soil, biomass and insect were studied at a subtropical forest. • 99.4% of the total ecosystem mercury pools was resided in soil layers. • High mercury pools were large pulses to the atmosphere during potential wildfires. • High mercury deposition in forest pose an ecological stress to insect. - Large mercury pools in forest pose a serious threat for large pluses to the atmospheric mercury during potential wildfires and ecological stress to insect.

  1. Treating high-mercury-containing lamps using full-scale thermal desorption technology.

    Science.gov (United States)

    Chang, T C; You, S J; Yu, B S; Chen, C M; Chiu, Y C

    2009-03-15

    The mercury content in high-mercury-containing lamps are always between 400 mg/kg and 200,000 mg/kg. This concentration is much higher than the 260 mg/kg lower boundary recommended for the thermal desorption process suggested by the US Resource Conservation and Recovery Act. According to a Taiwan EPA survey, about 4,833,000 cold cathode fluorescent lamps (CCFLs), 486,000 ultraviolet lamps and 25,000 super high pressure mercury lamps (SHPs) have been disposed of in the industrial waste treatment system, producing 80, 92 and 9 kg-mercury/year through domestic treatment, offshore treatment and air emissions, respectively. To deal with this problem we set up a full-scale thermal desorption process to treat and recover the mercury from SHPs, fluorescent tube tailpipes, fluorescent tubes containing mercury-fluorescent powder, and CCFLs containing mercury-fluorescent powder and monitor the use of different pre-heating temperatures and desorption times. The experimental results reveal that the average thermal desorption efficiency of SHPs and fluorescent tube tailpipe were both 99.95%, while the average thermal desorption efficiencies of fluorescent tubes containing mercury-fluorescent powder were between 97% and 99%. In addition, a thermal desorption efficiency of only 69.37-93.39% was obtained after treating the CCFLs containing mercury-fluorescent powder. These differences in thermal desorption efficiency might be due to the complexity of the mercury compounds contained in the lamps. In general, the thermal desorption efficiency of lamps containing mercury-complex compounds increased with higher temperatures.

  2. Characterization of the binding capacity of mercurial species in Lactobacillus strains.

    Science.gov (United States)

    Alcántara, Cristina; Jadán-Piedra, Carlos; Vélez, Dinoraz; Devesa, Vicenta; Zúñiga, Manuel; Monedero, Vicente

    2017-12-01

    Metal sequestration by bacteria has been proposed as a strategy to counteract metal contamination in foodstuffs. Lactobacilli can interact with metals, although studies with important foodborne metals such as inorganic [Hg(II)] or organic (CH 3 Hg) mercury are lacking. Lactobacilli were evaluated for their potential to bind these contaminants and the nature of the interaction was assessed by the use of metal competitors, chemical and enzymatical treatments, and mutants affected in the cell wall structure. Lactobacillus strains efficiently bound Hg(II) and CH 3 Hg. Mercury binding by Lactobacillus casei BL23 was independent of cell viability. In BL23, both forms of mercury were cell wall bound. Their interaction was not inhibited by cations and it was resistant to chelating agents and protein digestion. Lactobacillus casei mutants affected in genes involved in the modulation of the negative charge of the cell wall anionic polymer lipoteichoic acid showed increased mercury biosorption. In these mutants, mercury toxicity was enhanced compared to wild-type bacteria. These data suggest that lipoteichoic acid itself or the physicochemical characteristics that it confers to the cell wall play a major role in mercury complexation. This is the first example of the biosorption of Hg(II) and CH 3 Hg in lactobacilli and it represents a first step towards their possible use as agents for diminishing mercury bioaccessibility from food at the gastrointestinal tract. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Recovery of Mercury From Contaminated Liquid Wastes

    International Nuclear Information System (INIS)

    1998-01-01

    The Base Contract program emphasized the manufacture and testing of superior sorbents for mercury removal, testing of the sorption process at a DOE site, and determination of the regeneration conditions in the laboratory. During this project, ADA Technologies, Inc. demonstrated the following key elements of a successful regenerable mercury sorption process: (1) sorbents that have a high capacity for dissolved, ionic mercury; (2) removal of ionic mercury at greater than 99% efficiency; and (3) thermal regeneration of the spent sorbent. ADA's process is based on the highly efficient and selective sorption of mercury by noble metals. Contaminated liquid flows through two packed columns that contain microporous sorbent particles on which a noble metal has been finely dispersed. A third column is held in reserve. When the sorbent is loaded with mercury to the point of breakthrough at the outlet of the second column, the first column is taken off-line and the flow of contaminated liquid is switched to the second and third columns. The spent column is regenerated by heating. A small flow of purge gas carries the desorbed mercury to a capture unit where the liquid mercury is recovered. Laboratory-scale tests with mercuric chloride solutions demonstrated the sorbents' ability to remove mercury from contaminated wastewater. Isotherms on surrogate wastes from DOE's Y-12 Plant in Oak Ridge, Tennessee showed greater than 99.9% mercury removal. Laboratory- and pilot-scale tests on actual Y-12 Plant wastes were also successful. Mercury concentrations were reduced to less than 1 ppt from a starting concentration of 1,000 ppt. The treatment objective was 50 ppt. The sorption unit showed 10 ppt discharge after six months. Laboratory-scale tests demonstrated the feasibility of sorbent regeneration. Results show that sorption behavior is not affected after four cycles

  4. [Effects of low molecular weight organic acids on redox reactions of mercury].

    Science.gov (United States)

    Zhao, Shi-Bo; Sun, Rong-Guo; Wang, Ding-Yong; Wang, Xiao-Wen; Zhang, Cheng

    2014-06-01

    To study the effects of the main component of vegetation root exudates-low molecular weight organic acids on the redox reactions of mercury, laboratory experiments were conducted to investigate the roles of tartaric, citric, and succinic acid in the redox reactions of mercury, and to analyze their interaction mechanism. The results indicated that tartaric acid significantly stimulated the mercury reduction reaction, while citric acid had inhibitory effect. Succinic acid improved the reduction rate at low concentration, and inhibited the reaction at high concentration. The mercury reduction rate by tartaric acid treatment was second-order with respect to Hg2+ concentration, ranging from 0.0014 L x (ng x min)(-1) to 0.005 6 L x (ng x min)(-1). All three organic acids showed a capacity for oxidating Hg(0) in the early stage, but the oxidized Hg(0) was subsequently reduced. The oxidation capacity of the three organic acids was in the order of citric acid > tartaric acid > succinic acid.

  5. Mercury removal from liquid and solid mixed waste

    International Nuclear Information System (INIS)

    Gates, D.D.; Klasson, K.T.; Corder, S.L.; Cameron, P.A.; Perona, J.J.

    1995-01-01

    Based on bench-scale laboratory experiments, the following conclusions were reached: Sulfur-impregnated, activated, carbon pellets (Mersorb) can be used to remove mercury (Hg 2+ ) to below EPA's toxic characteristic level (0.2 mg/L). Mersorb works under acid conditions (pH 2) but its capacity is reduced by approximately 50% compared with neutral conditions. Competing ions present in the target waste stream reduced the Mersorb capacity by 50%. Mersorb appears to be economical compared with leading ion exchange resin. KI/I 2 leaching solution can be used to remove up to 99% of Hg in contaminated soil and glass. KI/I 2 leaching solution worked well with several mercury species, including Hg 0 , HgO, HgS, and HgCl 2 . KI/I 2 leaching solution worked well with a wide variety of initial mercury concentrations. Radionuclide surrogate studies suggested that uranium will not partition into KI/I 2 leaching solutions. Cesium may partition into the KI/I 2 leaching solution because of the high solubility of cesium salts

  6. Study of high levels indoor air mercury contamination from mercury amalgam use in dentistry

    International Nuclear Information System (INIS)

    Khwaja, M.A.; Abbasi, M.S.; Mehmood, F.; Jahangir, S.

    2014-01-01

    In 2005, United Nations Environment Programme (UNEP) estimated that 362 tonnes of dental mercury are consumed annually worldwide. Dental mercury amalgams also called silver fillings and amalgam fillings are widely done. These fillings gave off mercury vapours. Estimated average absorbed concentrations of mercury vapours from dental fillings vary from 3,000 to 17,000 ng Hg. Mercury (Hg) also known as quick silver is an essential constituent of dental amalgam. It is a toxic substance of global concern. A persistent pollutant, mercury is not limited to its source but it travels, on time thousands of kilometers away from the source. Scientific evidence, including, UNEP Global Mercury report, establishes mercury as an extremely toxic substance, which is a major threat to wildlife, ecosystem and human health, at a global scale. Children are more at risk from mercury poisoning which affects their neurological development and brain. Mercury poisoning diminishes memory, attention, thinking and sight. In the past, a number of studies at dental sites in many countries have been carried out and reported which have been reviewed and briefly described. This paper describes and discusses the recent investigations, regarding mercury vapours level in air, carried out at 18 dental sites in Pakistan and other countries. It is evident from the data of 42 dental sites in 17 countries, including, selected dental sites in five main cities of Pakistan, described and discussed in this paper that at most dental sites in many countries including Pakistan, the indoor mercury vapours levels exceed far above the permissible limit, recommended for safe physical and mental health. At these sites, public, in general, and the medical, paramedical staff and vulnerable population, in particular, are at most serious risk to health resulting from exposure to toxic and hazardous mercury. (author)

  7. Mercury(II) and methyl mercury speciation on Streptococcus pyogenes loaded Dowex Optipore SD-2

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Karaman, Isa; Soylak, Mustafa

    2009-01-01

    A solid phase extraction procedure based on speciation of mercury(II) and methyl mercury on Streptococcus pyogenes immobilized on Dowex Optipore SD-2 has been established. Selective and sequential elution with 0.1 mol L -1 HCl for methyl mercury and 2 mol L -1 HCl for mercury(II) were performed at pH 8. The determination of mercury levels was performed by cold vapour atomic absorption spectrometry (CVAAS). Optimal analytical conditions including pH, amounts of biosorbent, sample volumes, etc., were investigated. The influences of the some alkaline and earth alkaline ions and some transition metals on the recoveries were also investigated. The capacity of biosorbent for mercury(II) and methyl mercury was 4.8 and 3.4 mg g -1 . The detection limit (3 sigma) of the reagent blank for mercury(II) and methyl mercury was 2.1 and 1.5 ng L -1 . Preconcentration factor was calculated as 25. The relative standard deviations of the procedure were below 7%. The validation of the presented procedure is performed by the analysis of standard reference material (NRCC-DORM 2 Dogfish Muscle). The procedure was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and environmental samples.

  8. Mercury(II) and methyl mercury speciation on Streptococcus pyogenes loaded Dowex Optipore SD-2

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa, E-mail: m.tuzen@gmail.com [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Uluozlu, Ozgur Dogan [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Karaman, Isa [Gaziosmanpasa University, Faculty of Science and Arts, Biology Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)

    2009-09-30

    A solid phase extraction procedure based on speciation of mercury(II) and methyl mercury on Streptococcus pyogenes immobilized on Dowex Optipore SD-2 has been established. Selective and sequential elution with 0.1 mol L{sup -1} HCl for methyl mercury and 2 mol L{sup -1} HCl for mercury(II) were performed at pH 8. The determination of mercury levels was performed by cold vapour atomic absorption spectrometry (CVAAS). Optimal analytical conditions including pH, amounts of biosorbent, sample volumes, etc., were investigated. The influences of the some alkaline and earth alkaline ions and some transition metals on the recoveries were also investigated. The capacity of biosorbent for mercury(II) and methyl mercury was 4.8 and 3.4 mg g{sup -1}. The detection limit (3 sigma) of the reagent blank for mercury(II) and methyl mercury was 2.1 and 1.5 ng L{sup -1}. Preconcentration factor was calculated as 25. The relative standard deviations of the procedure were below 7%. The validation of the presented procedure is performed by the analysis of standard reference material (NRCC-DORM 2 Dogfish Muscle). The procedure was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and environmental samples.

  9. Disposal strategy of proton irradiated mercury from high power spallation sources

    International Nuclear Information System (INIS)

    Chiriki, Suresh

    2010-01-01

    Large spallation sources are intended to be constructed in Europe (EURISOL: nuclear physics research facility and ESS: European Spallation Source). These facilities would accumulate more than 20 metric tons of irradiated mercury in the target, which has to be treated as highly radioactive and chemo-toxic waste. Liquid waste cannot be tolerated in European repositories. As part of this work on safety/decommissioning of high-power spallation sources, our investigations were focused mainly to study experimentally and theoretically the solidification of liquid mercury waste (selection of an adequate solid mercury form and of an immobilization matrix, chemical engineering process studies on solidification/stabilization and on encapsulating in a matrix). Based on experimental results and supported by literature Hg-chalcogens (HgS, HgSe) will be more stable in repositories than amalgams. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in possible accidents with water ingress in a repository. Additionally immobilization of mercury in a cement matrix and polysiloxane matrix were tested. HgS formation from liquid target mercury by a wet process is identified as a suitable formation procedure. These investigations reveal that an almost 99.9% elementary Hg conversion can be achieved and that wet process can be reasonably handled under hot cell conditions. (orig.)

  10. Disposal strategy of proton irradiated mercury from high power spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Chiriki, Suresh

    2010-07-01

    Large spallation sources are intended to be constructed in Europe (EURISOL: nuclear physics research facility and ESS: European Spallation Source). These facilities would accumulate more than 20 metric tons of irradiated mercury in the target, which has to be treated as highly radioactive and chemo-toxic waste. Liquid waste cannot be tolerated in European repositories. As part of this work on safety/decommissioning of high-power spallation sources, our investigations were focused mainly to study experimentally and theoretically the solidification of liquid mercury waste (selection of an adequate solid mercury form and of an immobilization matrix, chemical engineering process studies on solidification/stabilization and on encapsulating in a matrix). Based on experimental results and supported by literature Hg-chalcogens (HgS, HgSe) will be more stable in repositories than amalgams. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in possible accidents with water ingress in a repository. Additionally immobilization of mercury in a cement matrix and polysiloxane matrix were tested. HgS formation from liquid target mercury by a wet process is identified as a suitable formation procedure. These investigations reveal that an almost 99.9% elementary Hg conversion can be achieved and that wet process can be reasonably handled under hot cell conditions. (orig.)

  11. Mercury species, selenium, metallothioneins and glutathione in two dolphins from the southeastern Brazilian coast: Mercury detoxification and physiological differences in diving capacity

    International Nuclear Information System (INIS)

    Kehrig, Helena A.; Hauser-Davis, Rachel A.; Seixas, Tercia G.; Pinheiro, Ana Beatriz; Di Beneditto, Ana Paula M.

    2016-01-01

    In the present study, the concentration of trace elements, total mercury (Hg) and selenium (Se) and mercury forms (MeHg, Hg inorg and HgSe) in the vulnerable coastal dolphins Pontoporia blainvillei and Sotalia guianensis were appraised and compared, using metallothioneins (MT) and glutathione (GSH) as biomarkers for trace element exposure. The trace element concentrations varied between muscle and liver tissues, with liver of all dolphin specimens showing higher Hg and Se concentrations than those found in muscle. Hg, MeHg and Hg inorg molar concentrations showed a clear increase with Se molar concentrations in the liver of both dolphins, and Se concentrations were higher than those of Hg on a molar basis. Se plays a relevant role in the detoxification of MeHg in the hepatic tissue of both dolphins, forming Hg-Se amorphous crystals in liver. In contrast, MT were involved in the detoxification process of Hg inorg in liver. GSH levels in P. blainvillei and S. guianensis muscle tissue suggest that these dolphins have different diving capacities. Muscle Hg concentrations were associated to this tripeptide, which protects dolphin cells against Hg stress. - Highlights: • Se aids in MeHg detoxification in dolphin liver, forming Hg-Se amorphous crystals. • MT was involved in liver Hg inorg detoxification and GSH was associated to muscle Hg. • Feeding habits seem to influence muscle GSH, suggesting different diving capacities. • MT, GSH and Se and Hg in different forms were investigated in two dolphin species. • Hepatic Hg, MeHg and Hg inorg increased with higher Se concentrations. - “Coastal dolphins showed Se-mediated detoxification of MeHg and MT-mediated detoxification of Hg inorg , while GSH suggests different diving capacities”.

  12. Mercury reduction and removal during high-level radioactive waste processing and vitrification

    International Nuclear Information System (INIS)

    Eibling, R.E.; Fowler, J.R.

    1981-01-01

    A reference process for immobilizing the high-level radioactive waste in borosilicate glass has been developed at the Savannah River Plant. This waste contains a substantial amount of mercury from separations processing. Because mercury will not remain in borosilicate glass at the processing temperature, mercury must be removed before vitrification or must be handled in the off-gas system. A process has been developed to remove mercury by reduction with formic acid prior to vitrification. Additional benefits of formic acid treatment include improved sludge handling and glass melter redox control

  13. Got Mercury?

    Science.gov (United States)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  14. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.

    Science.gov (United States)

    Rodríguez-Pérez, Jorge; López-Antón, M Antonia; Díaz-Somoano, Mercedes; García, Roberto; Martínez-Tarazona, M Rosa

    2013-09-15

    This work demonstrates that regenerable sorbents containing nano-particles of gold dispersed on an activated carbon are efficient and long-life materials for capturing mercury species from coal combustion flue gases. These sorbents can be used in such a way that the high investment entailed in their preparation will be compensated for by the recovery of all valuable materials. The characteristics of the support and dispersion of gold in the carbon surface influence the efficiency and lifetime of the sorbents. The main factor that determines the retention of mercury and the regeneration of the sorbent is the presence of reactive gases that enhance mercury retention capacity. The capture of mercury is a consequence of two mechanisms: (i) the retention of elemental mercury by amalgamation with gold and (ii) the retention of oxidized mercury on the activated carbon support. These sorbents were specifically designed for retaining the mercury remaining in gas phase after the desulfurization units in coal power plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Chronic mercury vapor poisoning of the lung plain radiography and high resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choong Ki; Hwang, Woo Cheol; Nho, Joon Young; Ahn, Bum Gyu; Woo, Hyo Cheol; Kim, Heung Cheol; Lee, Myoung Koo [Hallym University College of Medicine, Seoul (Korea, Republic of)

    1993-09-15

    Authors analyzed the findings of chest radiographs and high-resolution CT(HRCT) of the chronic mercury vapor poisoning in 12 patients who were diagnosed by previous working history for mercury-thermometer and high level of mercury in blood and urine. The purpose of this paper is to introduce the HRCT findings of chronic mercury vapor poisoning. Duration of mercury exposure was ranged from 10 to 41 months(mean, 21.8 months). Estimated value of serum mercury was ranged from 3.6 to 8.7 {mu} g/dl(mean, 5.3 {mu} g/dl: normal value is less than 0.5 {mu} g/dl). Estimated value of mercury in urine was ranged from 104 to 482 {mu} g/l(mean, 291.4 {mu} g/l; normal value is less than 20 {mu} g/l). Chest radiographs showed positive findings such as ground glass opacities and peribronchial cuffings in only 2 out of 12 patients, but HRCT showed positive findings such as ground glass opacities in 8 patients, peribronchial cuffings in 7 patients, centrilobular abnormalities in 5 patients, interface sign in 4 patients, interlobular septal thickening with intralobular lines in 2 patients and lobular consolidation in one patient. In conclusion, chest HRCT is superior to chest radiograph to show the pulmonary manifestation of chronic mercury vapor poisoning. In patients with chronic mercury vapor poisoning. HRCT findings of centrilobular distributed ground glass opacities and peribroncjial cuffinges are characteristic.

  16. Chronic mercury vapor poisoning of the lung plain radiography and high resolution CT

    International Nuclear Information System (INIS)

    Park, Choong Ki; Hwang, Woo Cheol; Nho, Joon Young; Ahn, Bum Gyu; Woo, Hyo Cheol; Kim, Heung Cheol; Lee, Myoung Koo

    1993-01-01

    Authors analyzed the findings of chest radiographs and high-resolution CT(HRCT) of the chronic mercury vapor poisoning in 12 patients who were diagnosed by previous working history for mercury-thermometer and high level of mercury in blood and urine. The purpose of this paper is to introduce the HRCT findings of chronic mercury vapor poisoning. Duration of mercury exposure was ranged from 10 to 41 months(mean, 21.8 months). Estimated value of serum mercury was ranged from 3.6 to 8.7 μ g/dl(mean, 5.3 μ g/dl: normal value is less than 0.5 μ g/dl). Estimated value of mercury in urine was ranged from 104 to 482 μ g/l(mean, 291.4 μ g/l; normal value is less than 20 μ g/l). Chest radiographs showed positive findings such as ground glass opacities and peribronchial cuffings in only 2 out of 12 patients, but HRCT showed positive findings such as ground glass opacities in 8 patients, peribronchial cuffings in 7 patients, centrilobular abnormalities in 5 patients, interface sign in 4 patients, interlobular septal thickening with intralobular lines in 2 patients and lobular consolidation in one patient. In conclusion, chest HRCT is superior to chest radiograph to show the pulmonary manifestation of chronic mercury vapor poisoning. In patients with chronic mercury vapor poisoning. HRCT findings of centrilobular distributed ground glass opacities and peribroncjial cuffinges are characteristic

  17. RECOVERY OF MERCURY FROM CONTAMINATED PRIMARY AND SECONDARY WASTES

    International Nuclear Information System (INIS)

    A. Faucette; J. Bognar; T. Broderick; T. Battaglia

    2000-01-01

    Effective removal of mercury contamination from water is a complex and difficult problem. In particular, mercury treatment of natural waters is difficult because of the low regulatory standards. For example, the Environmental Protection Agency has established a national ambient water quality standard of 12 parts-per-trillion (ppt), whereas the standard is 1.8 ppt in the Great Lakes Region. In addition, mercury is typically present in several different forms, but sorption processes are rarely effective with more than one or two of these forms. To meet the low regulatory discharge limits, a sorption process must be able to address all forms of mercury present in the water. One approach is to apply different sorbents in series depending on the mercury speciation and the regulatory discharge limits. Four new sorbents have been developed to address the variety of mercury species present in industrial discharges and natural waters. Three of these sorbents have been field tested on contaminated creek water at the Y-12 Plant. Two of these sorbents have demonstrated very high removal efficiencies for soluble mercury species, with mercury concentrations at the outlet of a pilot-scale system less than 12 ppt for as long as six months. The other sorbent tested at the Y-12 Plant is targeted at colloidal mercury that is not removed by standard sorption or filtration processes. At the Y-12 Plant, colloidal mercury appears to be associated with iron, so a sorbent that removes mercury-iron complexes in the presence of a magnetic field was evaluated. Field results indicate good removal of this mercury fraction from the Y-12 waters. In addition, this sorbent is easily regenerated by simply removing the magnetic field and flushing the columns with water. The fourth sorbent is still undergoing laboratory development, but results to date indicate exceptionally high mercury sorption capacity. The sorbent is capable of removing all forms of mercury typically present in natural and

  18. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  19. Methyl mercury exposure in Swedish women with high fish consumption

    International Nuclear Information System (INIS)

    Bjoernberg, Karolin Ask; Vahter, Marie; Grawe, Kierstin Petersson; Berglund, Marika

    2005-01-01

    We studied the exposure to methyl mercury (MeHg) in 127 Swedish women of childbearing age with high consumption of various types of fish, using total mercury (T-Hg) in hair and MeHg in blood as biomarkers. Fish consumption was assessed using a food frequency questionnaire (FFQ), including detailed information about consumption of different fish species, reflecting average intake during 1 year. We also determined inorganic mercury (I-Hg) in blood, and selenium (Se) in serum. The average total fish consumption, as reported in the food frequency questionnaire, was approximately 4 times/week (range 1.6-19 times/week). Fish species potentially high in MeHg, included in the Swedish dietary advisories, was consumed by 79% of the women. About 10% consumed such species more than once a week, i.e., more than what is recommended. Other fish species potentially high in MeHg, not included in the Swedish dietary advisories, was consumed by 54% of the women. Eleven percent never consumed fish species potentially high in MeHg. T-Hg in hair (median 0.70 mg/kg; range 0.08-6.6 mg/kg) was associated with MeHg in blood (median 1.7 μg/L; range 0.30-14 μg/L; r s =0.78; p s =0.32; p s =0.37; p s =0.35; p=0.002, respectively). I-Hg in blood (median 0.24 μg/L; range 0.01-1.6 μg/L) increased with increasing number of dental amalgam fillings. We found no statistical significant associations between the various mercury species measured and the Se concentration in serum. Hair mercury levels exceeded the levels corresponding to the EPA reference dose (RfD) of 0.1 μg MeHg/kg b.w. per day in 20% of the women. Thus, there seems to be no margin of safety for neurodevelopmental effects in fetus, for women with high fish consumption unless they decrease their intake of certain fish species

  20. High-field MRI and mercury release from dental amalgam fillings.

    Science.gov (United States)

    Mortazavi, S M J; Neghab, M; Anoosheh, S M H; Bahaeddini, N; Mortazavi, G; Neghab, P; Rajaeifard, A

    2014-04-01

    Mercury is among the most toxic nonradioactive elements which may cause toxicity even at low doses. Some studies showed release of mercury from dental amalgam fillings in individuals who used mobile phone. This study was conducted to assess the effect of high-field MRI on mercury release from dental amalgam filling. We studied two groups of students with identical tooth decays requiring a similar pattern of restorative dentistry. They were exposed to a magnetic flux density of 1.5 T produced by a MRI machine. 16 otherwise healthy students with identical dental decay participated in this study. They underwent similar restorative dentistry procedures and randomly divided into two groups of MRI-exposed and control arms. Urinary concentrations of mercury in the control subjects were measured before (hour 0) and 48 and 72 hrs after amalgam restoration, using cold vapor atomic absorption spectrometry. Urinary concentrations of mercury in exposed individuals were determined before (hour 0), and 24, 48, 72 and 96 hrs after amalgam restoration. Unlike control subjects, they underwent conventional brain MRI (15 min, 99 slices), 24 hrs after amalgam restoration. The mean±SD urinary mercury levels in MRI-exposed individuals increased linearly from a baseline value of 20.70±17.96 to 24.83±22.91 μg/L 72 hrs after MRI. In the control group, the concentration decreased linearly from 20.70±19.77 to 16.14±20.05 μg/L. The difference between urinary mercury in the exposed and control group, 72 hrs after MRI (96 h after restoration),was significant (p=0.046). These findings provide further support for the noxious effect of MRI (exposure to strong magnetic field)and release of mercury from dental amalgam fillings.

  1. High-Field MRI and Mercury Release from Dental Amalgam Fillings

    Directory of Open Access Journals (Sweden)

    SMJ Mortazavi

    2014-04-01

    Full Text Available Mercury is among the most toxic nonradioactive elements which may cause toxicity even at low doses. Some studies showed release of mercury from dental amalgam fillings in individuals who used mobile phone. This study was conducted to assess the effect of high-field MRI on mercury release from dental amalgam filling. We studied two groups of students with identical tooth decays requiring a similar pattern of restorative dentistry. They were exposed to a magnetic flux density of 1.5 T produced by a MRI machine. 16 otherwise healthy students with identical dental decay participated in this study. They underwent similar restorative dentistry procedures and randomly divided into two groups of MRI-exposed and control arms. Urinary concentrations of mercury in the control subjects were measured before (hour 0 and 48 and 72 hrs after amalgam restoration, using cold vapor atomic absorption spectrometry. Urinary concentrations of mercury in exposed individuals were determined before (hour 0, and 24, 48, 72 and 96 hrs after amalgam restoration. Unlike control subjects, they underwent conventional brain MRI (15 min, 99 slices, 24 hrs after amalgam restoration. The mean±SD urinary mercury levels in MRI-exposed individuals increased linearly from a baseline value of 20.70±17.96 to 24.83±22.91 μg/L 72 hrs after MRI. In the control group, the concentration decreased linearly from 20.70±19.77 to 16.14±20.05 μg/L. The difference between urinary mercury in the exposed and control group, 72 hrs after MRI (96 h after restoration,was significant (p=0.046. These findings provide further support for the noxious effect of MRI (exposure to strong magnetic fieldand release of mercury from dental amalgam fillings.

  2. Planet Mercury

    Science.gov (United States)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  3. Introduction of Molecular Building Blocks to Improve the Stability of Metal-Organic Frameworks for Efficient Mercury Removal.

    Science.gov (United States)

    Jiang, Shu-Yi; He, Wen-Wen; Li, Shun-Li; Su, Zhong-Min; Lan, Ya-Qian

    2018-05-08

    With expanding human needs, many heavy metals were mined, smelted, processed, and manufactured for commercialization, which caused serious environmental pollutions. Currently, many adsorption materials are applied in the field of adsorption of heavy metals. Among them, the principle of many mercury adsorbents is based on the interaction between mercury and sulfur. Here, a S-containing metal-organic framework NENU-400 was synthesized for effective mercury extraction. Unfortunately, the skeleton of NENU-400 collapsed easily when exposed to the mercury liquid solution. To improve the stability, a synthetic strategy installing molecular building blocks (MBBs) into the channels was used. Modified by the MBBs, a more stable nanoporous framework was synthesized, which not only exhibits a high capacity of saturation mercury uptake but also shows high selectivity and efficient recyclability.

  4. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites.

    Science.gov (United States)

    Xun, Yu; Feng, Liu; Li, Youdan; Dong, Haochen

    2017-12-01

    Cyrtomium macrophyllum naturally grown in 225.73 mg kg -1 of soil mercury in mining area was found to be a potential mercury accumulator plant with the translocation factor of 2.62 and the high mercury concentration of 36.44 mg kg -1 accumulated in its aerial parts. Pot experiments indicated that Cyrtomium macrophyllum could even grow in 500 mg kg -1 of soil mercury with observed inhibition on growth but no obvious toxic effects, and showed excellent mercury accumulation and translocation abilities with both translocation and bioconcentration factors greater than 1 when exposed to 200 mg kg -1 and lower soil mercury, indicating that it could be considered as a great mercury accumulating species. Furthermore, the leaf tissue of Cyrtomium macrophyllum showed high resistance to mercury stress because of both the increased superoxide dismutase activity and the accumulation of glutathione and proline induced by mercury stress, which favorited mercury translocation from the roots to the aerial parts, revealing the possible reason for Cyrtomium macrophyllum to tolerate high concentration of soil mercury. In sum, due to its excellent mercury accumulation and translocation abilities as well as its high resistance to mercury stress, the use of Cyrtomium macrophyllum should be a promising approach to remediating mercury polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. High levels of reactive gaseous mercury observed at a high elevation research laboratory in the Rocky Mountains

    Directory of Open Access Journals (Sweden)

    X. Faïn

    2009-10-01

    Full Text Available The chemical cycling and spatiotemporal distribution of mercury in the troposphere is poorly understood. We measured gaseous elemental mercury (GEM, reactive gaseous mercury (RGM and particulate mercury (HgP along with carbon monoxide (CO, ozone (O3, aerosols, and meteorological variables at Storm Peak Laboratory at an elevation of 3200 m a.s.l., in Colorado, from 28 April to 1 July 2008. The mean mercury concentrations were 1.6 ng m−3 (GEM, 20 pg m−3 (RGM and 9 pg m−3 (HgP. We observed eight events of strongly enhanced atmospheric RGM levels with maximum concentrations up to 137 pg m−3. RGM enhancement events lasted for long time periods of 2 to 6 days showing both enriched level during daytime and nighttime when other tracers (e.g., aerosols showed different representations of boundary layer air and free tropospheric air. During seven of these events, RGM was inversely correlated to GEM (RGM/GEM regression slope ~−0.1, but did not exhibit correlations with ozone, carbon monoxide, or aerosol concentrations. Relative humidity was the dominant factor affecting RGM levels with high RGM levels always present whenever relative humidity was below 40 to 50%. We conclude that RGM enhancements observed at Storm Peak Laboratory were not induced by pollution events and were related to oxidation of tropospheric GEM. High RGM levels were not limited to upper tropospheric or stratospherically influenced air masses, indicating that entrainment processes and deep vertical mixing of free tropospheric air enriched in RGM may lead to high RGM levels throughout the troposphere and into the boundary layer over the Western United States. Based on backtrajectory analysis and a lack of mass balance between RGM and GEM, atmospheric production of RGM may also have occurred in some distance allowing for scavenging and/or deposition of RGM prior to reaching the laboratory. Our

  6. High levels of reactive gaseous mercury observed at a high elevation research laboratory in the Rocky Mountains

    Science.gov (United States)

    Faïn, X.; Obrist, D.; Hallar, A. G.; McCubbin, I.; Rahn, T.

    2009-10-01

    The chemical cycling and spatiotemporal distribution of mercury in the troposphere is poorly understood. We measured gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate mercury (HgP) along with carbon monoxide (CO), ozone (O3), aerosols, and meteorological variables at Storm Peak Laboratory at an elevation of 3200 m a.s.l., in Colorado, from 28 April to 1 July 2008. The mean mercury concentrations were 1.6 ng m-3 (GEM), 20 pg m-3 (RGM) and 9 pg m-3 (HgP). We observed eight events of strongly enhanced atmospheric RGM levels with maximum concentrations up to 137 pg m-3. RGM enhancement events lasted for long time periods of 2 to 6 days showing both enriched level during daytime and nighttime when other tracers (e.g., aerosols) showed different representations of boundary layer air and free tropospheric air. During seven of these events, RGM was inversely correlated to GEM (RGM/GEM regression slope ~-0.1), but did not exhibit correlations with ozone, carbon monoxide, or aerosol concentrations. Relative humidity was the dominant factor affecting RGM levels with high RGM levels always present whenever relative humidity was below 40 to 50%. We conclude that RGM enhancements observed at Storm Peak Laboratory were not induced by pollution events and were related to oxidation of tropospheric GEM. High RGM levels were not limited to upper tropospheric or stratospherically influenced air masses, indicating that entrainment processes and deep vertical mixing of free tropospheric air enriched in RGM may lead to high RGM levels throughout the troposphere and into the boundary layer over the Western United States. Based on backtrajectory analysis and a lack of mass balance between RGM and GEM, atmospheric production of RGM may also have occurred in some distance allowing for scavenging and/or deposition of RGM prior to reaching the laboratory. Our observations provide evidence that the tropospheric pool of mercury is frequently enriched in divalent

  7. Geo-Spatial Characterization of Soil Mercury and Arsenic at a High-Altitude Bolivian Gold Mine.

    Science.gov (United States)

    Johnson, Glen D; Pavilonis, Brian; Caravanos, Jack; Grassman, Jean

    2018-02-01

    Soil mercury concentrations at a typical small-scale mine site in the Bolivian Andes were elevated (28-737 mg/kg or ppm) in localized areas where mercury amalgams were either formed or vaporized to release gold, but was not detectable beyond approximately 10 m from its sources. Arsenic was measurable, exceeding known background levels throughout the mine site (77-137,022 ppm), and was also measurable through the local village of Ingenio (36-1803 ppm). Although arsenic levels were high at all surveyed locations, its spatial pattern followed mercury, being highest where mercury was high.

  8. Methyl mercury exposure in Swedish women with high fish consumption

    Energy Technology Data Exchange (ETDEWEB)

    Bjoernberg, Karolin Ask [Division of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm (Sweden); Vahter, Marie [Division of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm (Sweden); Grawe, Kierstin Petersson [Toxicology Division, National Food Administration, Box 622, SE-751 26 Uppsala (Sweden); Berglund, Marika [Division of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm (Sweden)]. E-mail: Marika.Berglund@imm.ki.se

    2005-04-01

    We studied the exposure to methyl mercury (MeHg) in 127 Swedish women of childbearing age with high consumption of various types of fish, using total mercury (T-Hg) in hair and MeHg in blood as biomarkers. Fish consumption was assessed using a food frequency questionnaire (FFQ), including detailed information about consumption of different fish species, reflecting average intake during 1 year. We also determined inorganic mercury (I-Hg) in blood, and selenium (Se) in serum. The average total fish consumption, as reported in the food frequency questionnaire, was approximately 4 times/week (range 1.6-19 times/week). Fish species potentially high in MeHg, included in the Swedish dietary advisories, was consumed by 79% of the women. About 10% consumed such species more than once a week, i.e., more than what is recommended. Other fish species potentially high in MeHg, not included in the Swedish dietary advisories, was consumed by 54% of the women. Eleven percent never consumed fish species potentially high in MeHg. T-Hg in hair (median 0.70 mg/kg; range 0.08-6.6 mg/kg) was associated with MeHg in blood (median 1.7 {mu}g/L; range 0.30-14 {mu}g/L; r {sub s}=0.78; p<0.001). Hair T-Hg, blood MeHg and serum Se (median 70 {mu}g/L; range 46-154 {mu}g/L) increased with increasing total fish consumption (r {sub s}=0.32; p<0.001, r {sub s}=0.37; p<0.001 and r {sub s}=0.35; p=0.002, respectively). I-Hg in blood (median 0.24 {mu}g/L; range 0.01-1.6 {mu}g/L) increased with increasing number of dental amalgam fillings. We found no statistical significant associations between the various mercury species measured and the Se concentration in serum. Hair mercury levels exceeded the levels corresponding to the EPA reference dose (RfD) of 0.1 {mu}g MeHg/kg b.w. per day in 20% of the women. Thus, there seems to be no margin of safety for neurodevelopmental effects in fetus, for women with high fish consumption unless they decrease their intake of certain fish species.

  9. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography.

    Science.gov (United States)

    Hölz, K; Lietard, J; Somoza, M M

    2017-01-03

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p -type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.

  10. Advanced Utility Mercury-Sorbent Field-Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  11. High mercury seafood consumption associated with fatigue at specialty medical clinics on Long Island, NY

    Directory of Open Access Journals (Sweden)

    Shivam Kothari

    2015-01-01

    Full Text Available We investigated the association between seafood consumption and symptoms related to potential mercury toxicity in patients presenting to specialty medical clinics at Stony Brook Medical Center on Long Island, New York. We surveyed 118 patients from April–August 2012 about their seafood consumption patterns, specifically how frequently they were eating each type of fish, to assess mercury exposure. We also asked about symptoms associated with mercury toxicity including depression, fatigue, balance difficulties, or tingling around the mouth. Of the 118 adults surveyed, 14 consumed high mercury seafood (tuna steak, marlin, swordfish, or shark at least weekly. This group was more likely to suffer from fatigue than other patients (p = 0.02. Logistic regression confirmed this association of fatigue with frequent high mercury fish consumption in both unadjusted analysis (OR = 5.53; 95% CI: 1.40–21.90 and analysis adjusted for age, race, sex, income, and clinic type (OR = 7.89; 95% CI: 1.63–38.15. No associations were observed between fish intake and depression, balance difficulties, or tingling around the mouth. Findings suggest that fatigue may be associated with eating high mercury fish but sample size is small. Larger studies are needed to determine whether fish intake patterns or blood mercury tests warrant consideration as part of the clinical work-up in coastal regions.

  12. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    Science.gov (United States)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  13. Isolation of Mercury-Resistant Fungi from Mercury-Contaminated Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Reginawanti Hindersah

    2018-02-01

    Full Text Available Illegal gold mining and the resulting gold mine tailing ponds on Buru Island in Maluku, Indonesia have increased Mercury (Hg levels in agricultural soil and caused massive environmental damage. High levels of Hg in soil lowers plant productivity and threatens the equilibrium of the food web. One possible method of handling Hg-contaminated soils is through bioremediation, which could eliminate Hg from the rhizosphere (root zone. In this study, indigenous fungi isolated from Hg-contaminated soil exhibited Hg-resistance in vitro. Soil samples were collected from the rhizosphere of pioneer plants which grew naturally in areas contaminated with gold mine tailing. The fungi’s capacity for Hg-resistance was confirmed by their better growth in chloramphenicol-boosted potato dextrose agar media which contained various HgCl2 concentrations. Four isolates exhibited resistance of up to 25 mg kg−1 of Hg, and in an experiment with young Chinese cabbage (Brassica rapa L. test plants, two fungi species (including Aspergillus were demonstrated to increase the soil’s availability of Hg. The results suggest that Hg-resistant indigenous fungi can mobilize mercury in the soil and serve as potential bioremediation agents for contaminated agricultural land.

  14. Influence of seasonality on the interaction of mercury with aquatic humic substances extracted from the Middle Negro River Basin (Amazon)

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luciana C. de, E-mail: lcamargo@ufscar.br [Federal University of Sao Carlos (UFSCar), Sorocaba, SP (Brazil); Botero, Wander G. [Federal University of Alagoas (UFAL), Arapiraca, AL (Brazil); Santos, Felipe A. [Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP (Brazil); Sargentini Junior, Ezio [National Amazon Research Institute (INPA), Manaus, AM (Brazil); Rocha, Julio C.; Santos, Ademir dos [Institute of Chemistry of Araraquara, Sao Paulo State University (UNESP), Araraquara, SP (Brazil)

    2012-09-15

    High mercury concentrations in different environmental matrices in the Amazon have been attributed to mining activities. However, high concentrations of mercury are also present in the soil and water in places like in the middle of the Negro River Basin, which is far away from any anthropogenic emission sources. The Amazon region is characterized by two different regional seasons, with well-defined flood and low water periods. The objective of this work was to investigate the seasonal influences of the interaction between mercury and aquatic humic substances (AHS), which are the main agents of the natural organic complexation capacity. The results of the multivariate statistical analysis of the data showed that the humic substances had different structural characteristics, depending on each season. The ability of humic substances to form complexes with Hg(II) is not directly related to their carbon content, but to the nature and availability of the functional groups present in its structure. The functional groups are carboxylic and aromatic directly related to the higher complexation capacity of AHS by mercury ions. (author)

  15. Influence of seasonality on the interaction of mercury with aquatic humic substances extracted from the Middle Negro River Basin (Amazon)

    International Nuclear Information System (INIS)

    Oliveira, Luciana C. de; Botero, Wander G.; Santos, Felipe A.; Sargentini Junior, Ezio; Rocha, Julio C.; Santos, Ademir dos

    2012-01-01

    High mercury concentrations in different environmental matrices in the Amazon have been attributed to mining activities. However, high concentrations of mercury are also present in the soil and water in places like in the middle of the Negro River Basin, which is far away from any anthropogenic emission sources. The Amazon region is characterized by two different regional seasons, with well-defined flood and low water periods. The objective of this work was to investigate the seasonal influences of the interaction between mercury and aquatic humic substances (AHS), which are the main agents of the natural organic complexation capacity. The results of the multivariate statistical analysis of the data showed that the humic substances had different structural characteristics, depending on each season. The ability of humic substances to form complexes with Hg(II) is not directly related to their carbon content, but to the nature and availability of the functional groups present in its structure. The functional groups are carboxylic and aromatic directly related to the higher complexation capacity of AHS by mercury ions. (author)

  16. Does seasonal snowpacks enhance or decrease mercury contamination of high elevation ecosystems?

    Science.gov (United States)

    Pierce, A.; Fain, X.; Obrist, D.; Helmig, D.; Barth, C.; Jacques, H.; Chowanski, K.; Boyle, D.; William, M.

    2009-12-01

    Mercury (Hg) is an extremely toxic pollutant globally dispersed in the environment. Natural and anthropogenic sources emit Hg to the atmosphere, either as gaseous elemental mercury (GEM; Hg0) or as divalent mercury species. Due to the long lifetime of GEM mercury contamination is not limited to industrialized sites, but also a concern in remote areas such as high elevation mountain environments. During winter and spring 2009, we investigated the fate of atmospheric mercury deposited to mountain ecosystems in the Sierra Nevada (Sagehen station, California, USA) and the Rocky Mountains (Niwot Ridge station, Colorado, USA). At Sagehen, we monitored mercury in snow (surface snow sampling and snow pits), wet deposition, and stream water during the snow-dominated season. Comparison of Hg stream discharge to snow Hg wet deposition showed that only a small fraction of Hg wet deposition reached stream in the melt water. Furthermore, Hg concentration in soil transects (25 different locations) showed no correlations to wet deposition Hg loads due to pronounced altitudinal precipitation gradient suggesting that Hg deposited to the snowpack was not transferred to ecosystems. At Niwot Ridge, further characterization of the chemical transformation involving mercury species within snowpacks was achieved by 3-months of continuous monitoring of GEM and ozone concentrations in the snow air at eight depths from the soil-snow interface to the top of the up to 2 meter deep snowpack. Divalent mercury concentrations were monitored as well (surface snow sampling and snow pits). GEM levels in snow air exhibited strong diurnal pattern indicative of both oxidation and reduction processes. Low levels of divalent mercury concentrations in snow pack suggest that large fractions of Hg originally deposited as wet deposition was reemitted back to the atmosphere after reduction. Hence, these results suggest that the presence of a seasonal snowpack may decrease effective wet deposition of mercury and

  17. Regenerative process for removal of mercury and other heavy metals from gases containing H.sub.2 and/or CO

    Science.gov (United States)

    Jadhav, Raja A [Naperville, IL

    2009-07-07

    A method for removal of mercury from a gaseous stream containing the mercury, hydrogen and/or CO, and hydrogen sulfide and/or carbonyl sulfide in which a dispersed Cu-containing sorbent is contacted with the gaseous stream at a temperature in the range of about 25.degree. C. to about 300.degree. C. until the sorbent is spent. The spent sorbent is contacted with a desorbing gaseous stream at a temperature equal to or higher than the temperature at which the mercury adsorption is carried out, producing a regenerated sorbent and an exhaust gas comprising released mercury. The released mercury in the exhaust gas is captured using a high-capacity sorbent, such as sulfur-impregnated activated carbon, at a temperature less than about 100.degree. C. The regenerated sorbent may then be used to capture additional mercury from the mercury-containing gaseous stream.

  18. Evaluation of passive sampling of gaseous mercury using different sorbing materials.

    Science.gov (United States)

    Lin, Huiming; Zhang, Wei; Deng, Chunyan; Tong, Yingdong; Zhang, Qianggong; Wang, Xuejun

    2017-06-01

    Atmospheric mercury monitoring is essential because of its potential human health and ecological impacts. Current automated monitoring systems include limitations such as high cost, complicated configuration, and electricity requirements. Passive samplers require no electric power and are more appropriate for screening applications and long-term monitoring. Sampling rate is a major factor to evaluate the performance of a passive sampler. In this study, laboratory experiments were carried out using an exposure chamber to search for high efficiency sorbents for gaseous mercury. Four types of sorbents, including sulfur-impregnated carbon (SIC), chlorine-impregnated carbon (CIC), bromine-impregnated carbon (BIC), and gold-coated sand (GCS) were evaluated under a wide range of meteorological parameters, including temperature, relative humidity, and wind speed. The results showed that the four sorbents all have a high sampling rate above 0.01 m 3 g -1  day -1 , and wind speed has a positive correlation with the sampling rate. Under different temperature and relative humidity, the sampling rate of SIC keeps stable. The sampling rate of CIC and BIC shows a negative correlation with temperature, and GCS is influenced by all the three meteorological factors. Furthermore, long-term experiments were carried out to investigate the uptake capacity of GCS and SIC. Uptake curves show that the mass amount of sorbent in a passive sampler can influence uptake capacity. In the passive sampler, 0.9 g SIC or 0.9 g GCS can achieve stable uptake efficiency for at least 110 days with gaseous mercury concentration at or below 2 ng/m 3 . For mercury concentration at or below 21 ng/m 3 , 0.9 g SIC can maintain stable uptake efficiency for 70 days, and 0.9 g GCS can maintain stability for 45 days.

  19. Mercury's exosphere: observations during MESSENGER's First Mercury flyby.

    Science.gov (United States)

    McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C

    2008-07-04

    During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby.

  20. Mercury flow experiments. 4th report Measurements of erosion rate caused by mercury flow

    CERN Document Server

    Kinoshita, H; Hino, R; Kaminaga, M

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a construction plan of the Material-Life Science Facility, which is consisted of a Muon Science Facility and a Neutron Scattering Facility, in order to open up the new science fields. The Neutron Scattering Facility will be utilized for advanced fields of Material and Life science using high intensity neutron generated by the spallation reaction of a 1 MW pulsed proton beam and mercury target. Design of the spallation mercury target system aims to obtain high neutron performance with high reliability and safety. Since the target system is using mercury as the target material and contains large amount of radioactive spallation products, it is necessary to estimate reliability for strength of instruments in a mercury flow system during lifetime of the facility. Piping and components in the mercury flow system would be damaged by erosion with mercury flow, since these components will be we...

  1. Mercury

    International Nuclear Information System (INIS)

    Vilas, F.; Chapman, C.R.; Matthews, M.S.

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury

  2. Enhanced capture of elemental mercury by bamboo-based sorbents

    International Nuclear Information System (INIS)

    Tan, Zengqiang; Xiang, Jun; Su, Sheng; Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong

    2012-01-01

    Highlights: ► The KI-modified BC has excellent capacity for elemental mercury removal. ► The chemisorption plays a dominant role for the modified BC materials. ► The BC-I has strong anti-poisoning ability with the presence of NO or SO 2 . - Abstract: To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO 2 on gas-phase Hg 0 adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents’ BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 °C and 180 °C. The presence of NO or SO 2 could inhibit Hg 0 capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed.

  3. High levels of maternally transferred mercury disrupt magnetic responses of snapping turtle hatchlings (Chelydra serpentina).

    Science.gov (United States)

    Landler, Lukas; Painter, Michael S; Coe, Brittney Hopkins; Youmans, Paul W; Hopkins, William A; Phillips, John B

    2017-09-01

    The Earth's magnetic field is involved in spatial behaviours ranging from long-distance migration to non-goal directed behaviours, such as spontaneous magnetic alignment (SMA). Mercury is a harmful pollutant most often generated from anthropogenic sources that can bio-accumulate in animal tissue over a lifetime. We compared SMA of hatchling snapping turtles from mothers captured at reference (i.e., low mercury) and mercury contaminated sites. Reference turtles showed radio frequency-dependent SMA along the north-south axis, consistent with previous studies of SMA, while turtles with high levels of maternally inherited mercury failed to show consistent magnetic alignment. In contrast, there was no difference between reference and mercury exposed turtles on standard performance measures. The magnetic field plays an important role in animal orientation behaviour and may also help to integrate spatial information from a variety of sensory modalities. As a consequence, mercury may compromise the performance of turtles in a wide variety of spatial tasks. Future research is needed to determine the threshold for mercury effects on snapping turtles, whether mercury exposure compromises spatial behaviour of adult turtles, and whether mercury has a direct effect on the magnetoreception mechanism(s) that mediate SMA or a more general effect on the nervous system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Removal of mercury from coal-combustion flue gas using regenerable sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C S; Albiston, J; Broderick, T E; Stewart, R M

    1999-07-01

    The US EPA estimates that coal-fired power plants constitute the largest anthropogenic source of mercury emissions in the US. The Agency has contemplated emission regulations for power plants, but the large gas-flow rates and low mercury concentrations involved have made current treatment options prohibitively expensive. ADA Technologies, Inc. (Englewood, Colorado), in conjunction with the US DOE, is developing regenerable sorbents for the removal and recovery of mercury from flue gas. These sorbents are based on the ability of noble metals to amalgamate mercury at typical flue-gas temperatures and release mercury at higher temperatures. The process allows for recovery of mercury with minimal volumes of secondary wastes and no impact on fly ash quality. In 1997 and 1998, ADA tested a 20-cfm sorbent unit at CONSOL Inc.'s coal-combustion test facility in Library, PA. Results from the 1997 tests indicated that the sorbent can remove elemental and oxidized mercury and can be regenerated without loss of capacity. Design changes were implemented in 1998 to enhance the thermal efficiency of the process and to recover the mercury in a stable form. Testing during autumn, 1998 demonstrated 60% to 90% removal efficiency of mercury from a variety of different coals. However, contradictory removal results were obtained at the end of the test period. Subsequent laboratory analyses indicated that the sorbent had lost over half its capacity for mercury due to a decrease in available sites for mercury sorption. The presence of sulfur compounds on the sorbent suggests that thermal cycling may have condensed acid gases on the sorbent leading to deterioration of the active sorption sites. The regeneration time/temperature profile has been altered to minimize this potential in the upcoming power plant tests.

  5. Mercury flow experiments. 4th report: Measurements of erosion rate caused by mercury flow

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Kaminaga, Masanori; Haga, Katsuhiro; Hino, Ryutaro

    2002-06-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a construction plan of the Material-Life Science Facility, which is consisted of a Muon Science Facility and a Neutron Scattering Facility, in order to open up the new science fields. The Neutron Scattering Facility will be utilized for advanced fields of Material and Life science using high intensity neutron generated by the spallation reaction of a 1 MW pulsed proton beam and mercury target. Design of the spallation mercury target system aims to obtain high neutron performance with high reliability and safety. Since the target system is using mercury as the target material and contains large amount of radioactive spallation products, it is necessary to estimate reliability for strength of instruments in a mercury flow system during lifetime of the facility. Piping and components in the mercury flow system would be damaged by erosion with mercury flow, since these components will be weak by thickness decreasing. This report presents experimental results of wall thickness change by erosion using a mercury experimental loop. In the experiments, an erosion test section and coupons were installed in the mercury experimental loop, and their wall thickness was measured with an ultra sonic thickness gage after every 1000 hours. As a result, under 0.7 m/s of mercury velocity condition which is slightly higher than the practical velocity in mercury pipelines, the erosion is about 3 μm in 1000 hours. The wall thickness decrease during facility lifetime of 30 years is estimated to be less than 0.5 mm. According to the experimental result, it is confirmed that the effect of erosion on component strength is extremely small. Moreover, a measurement of residual mercury on the piping surface was carried out. As a result, 19 g/m 2 was obtained as the residual mercury for the piping surface. According to this result, estimated amount of residual mercury for

  6. Adsorption of mercury (II from liquid solutions using modified activated carbons

    Directory of Open Access Journals (Sweden)

    Hugo Soé Silva

    2010-06-01

    Full Text Available Mercury is one of the most toxic metals present in the environment. Adsorption has been proposed among the technologies for mercury abatement. Activated carbons are universal adsorbents which have been found to be a very effective alternative for mercury removal from water. The effectiveness with which a contaminant is adsorbed by the solid surface depends, among other factors, on the charge of the chemical species in which the contaminant is in solution and on the net charge of the adsorbent surface which depend on the pH of the adsorption system. In this work, activated carbon from carbonized eucalyptus wood was used as adsorbent. Two sulphurization treatments by impregnation with sulphuric acid and with carbon disulphide, have been carried out to improve the adsorption capacity for mercury entrapment. Batch adsorption tests at different temperatures and pH of the solution were carried out. The influence of the textural properties, surface chemistry and operation conditions on the adsorption capacity, is discussed.

  7. Mercury Flow Through the Mercury-Containing Lamp Sector of the Economy of the United States

    Science.gov (United States)

    Goonan, Thomas G.

    2006-01-01

    Introduction: This Scientific Investigations Report examines the flow of mercury through the mercury-containing lamp sector of the U.S. economy in 2001 from lamp manufacture through disposal or recycling. Mercury-containing lamps illuminate commercial and industrial buildings, outdoor areas, and residences. Mercury is an essential component in fluorescent lamps and high-intensity discharge lamps (high-pressure sodium, mercury-vapor, and metal halide). A typical fluorescent lamp is composed of a phosphor-coated glass tube with electrodes located at either end. Only a very small amount of the mercury is in vapor form. The remainder of the mercury is in the form of either liquid mercury metal or solid mercury oxide (mercury oxidizes over the life of the lamp). When voltage is applied, the electrodes energize the mercury vapor and cause it to emit ultraviolet energy. The phosphor coating absorbs the ultraviolet energy, which causes the phosphor to fluoresce and emit visible light. Mercury-containing lamps provide more lumens per watt than incandescent lamps and, as a result, require from three to four times less energy to operate. Mercury is persistent and toxic within the environment. Mercury-containing lamps are of environmental concern because they are widely distributed throughout the environment and are easily broken in handling. The magnitude of lamp sector mercury emissions, estimated to be 2.9 metric tons per year (t/yr), is small compared with the estimated mercury losses of the U.S. coal-burning and chlor-alkali industries, which are about 70 t/yr and about 90 t/yr, respectively.

  8. Time resolved Thomson scattering measurements on a high pressure mercury lamp

    International Nuclear Information System (INIS)

    Vries, N de; Zhu, X; Kieft, E R; Mullen, J van der

    2005-01-01

    Time resolved Thomson scattering (TS) measurements have been performed on an ac driven high pressure mercury lamp. For this high intensity discharge (HID) lamp, TS is coherent and a coherent fitting routine, including rotational Raman calibration, was used to determine n e and T e from the measured spectrum. The maximum electron density and electron temperature obtained in the centre of the discharge varied in a time period of 5 ms between 1 x 10 21 m -3 e 21 m -3 and 6500 K e < 7100 K. In order to test the non-intrusive character of TS, we have derived a general expression for the heating of the electrons. By applying this to our mercury lamp and laser settings, we have confirmed the non-intrusiveness of our method. This is supported by the experimental findings. Furthermore, because the TS results were obtained directly, thus, without the local thermodynamic equilibrium (LTE) assumptions, they enabled us to follow the deviations from LTE as a function of time. Contrary to the generally made assumption that HID lamps are in LTE, we have found deviations from both the thermal and chemical equilibrium inside the high pressure mercury lamp at different phases of the applied current

  9. Mercury adsorption in the Mississippi River deltaic plain freshwater marsh soil of Louisiana Gulf coastal wetlands.

    Science.gov (United States)

    Park, Jong-Hwan; Wang, Jim J; Xiao, Ran; Pensky, Scott M; Kongchum, Manoch; DeLaune, Ronald D; Seo, Dong-Cheol

    2018-03-01

    Mercury adsorption characteristics of Mississippi River deltaic plain (MRDP) freshwater marsh soil in the Louisiana Gulf coast were evaluated under various conditions. Mercury adsorption was well described by pseudo-second order and Langmuir isotherm models with maximum adsorption capacity of 39.8 mg g -1 . Additional fitting of intraparticle model showed that mercury in the MRDP freshwater marsh soil was controlled by both external surface adsorption and intraparticle diffusion. The partition of adsorbed mercury (mg g -1 ) revealed that mercury was primarily adsorbed into organic-bond fraction (12.09) and soluble/exchangeable fraction (10.85), which accounted for 63.5% of the total adsorption, followed by manganese oxide-bound (7.50), easily mobilizable carbonate-bound (4.53), amorphous iron oxide-bound (0.55), crystalline Fe oxide-bound (0.41), and residual fraction (0.16). Mercury adsorption capacity was generally elevated along with increasing solution pH even though dominant species of mercury were non-ionic HgCl 2 , HgClOH and Hg(OH) 2  at between pH 3 and 9. In addition, increasing background NaCl concentration and the presence of humic acid decreased mercury adsorption, whereas the presence of phosphate, sulfate and nitrate enhanced mercury adsorption. Mercury adsorption in the MRDP freshwater marsh soil was reduced by the presence of Pb, Cu, Cd and Zn with Pb showing the greatest competitive adsorption. Overall the adsorption capacity of mercury in the MRDP freshwater marsh soil was found to be significantly influenced by potential environmental changes, and such factors should be considered in order to manage the risks associated with mercury in this MRDP wetland for responding to future climate change scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Risk assessment of mercury contaminated sites

    International Nuclear Information System (INIS)

    Hempel, M.

    1993-01-01

    At two sites, highly contaminated with mercury, risk assessment was executed. Methods were developed to determine organomercury compounds in water, air and soil. Toxicity tests demonstrated the high toxicity of organomercury compounds compared to inorganic mercury. Besides highly toxic methylmercury, ethylmercury was found in soils close to a chemical plant in Marktredwitz. In ultrafiltration-experiments mercury showed great affinity to high molecular substances in water. Lysimeter-experiments proved, that organomercury compounds are adsorbed and transformed to inorganic and elemental mercury. (orig.) [de

  11. Mercury adsorption of modified mulberry twig chars in a simulated flue gas.

    Science.gov (United States)

    Shu, Tong; Lu, Ping; He, Nan

    2013-05-01

    Mulberry twig chars were prepared by pyrolysis, steam activation and impregnation with H2O2, ZnCl2 and NaCl. Textural characteristics and surface functional groups were performed using nitrogen adsorption and FTIR, respectively. Mercury adsorption of different modified MT chars was investigated in a quartz fixed-bed absorber. The results indicated that steam activation and H2O2-impregnation can improve pore structure significantly and H2O2-impregnation and chloride-impregnation promote surface functional groups. However, chloride-impregnation has adverse effect on pore structure. Mercury adsorption capacities of impregnated MT chars with 10% or 30% H2O2 are 2.02 and 1.77 times of steam activated MT char, respectively. Mercury adsorption capacity of ZnCl2-impregnated MT char increase with increasing ZnCl2 content and is better than that of NaCl-impregnated MT char at the same chloride content. The modified MT char (MT873-A-Z5) prepared by steam activation following impregnation with 5% ZnCl2 exhibits a higher mercury adsorption capacity (29.55 μg g(-1)) than any other MT chars. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Enhanced capture of elemental mercury by bamboo-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zengqiang [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Xiang, Jun, E-mail: xiangjun@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Su, Sheng, E-mail: susheng_sklcc@hotmail.com [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The KI-modified BC has excellent capacity for elemental mercury removal. Black-Right-Pointing-Pointer The chemisorption plays a dominant role for the modified BC materials. Black-Right-Pointing-Pointer The BC-I has strong anti-poisoning ability with the presence of NO or SO{sub 2}. - Abstract: To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO{sub 2} on gas-phase Hg{sup 0} adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents' BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 Degree-Sign C and 180 Degree-Sign C. The presence of NO or SO{sub 2} could inhibit Hg{sup 0} capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed.

  13. Mercury (Environmental Health Student Portal)

    Science.gov (United States)

    ... in contact with) to mercury is by eating fish or shellfish that have high levels of mercury. You can also get sick from: Touching it Breathing it in Drinking contaminated water How can mercury ...

  14. Mercury Emission Measurement in Coal-Fired Boilers by Continuous Mercury Monitor and Ontario Hydro Method

    Science.gov (United States)

    Zhu, Yanqun; Zhou, Jinsong; He, Sheng; Cai, Xiaoshu; Hu, Changxin; Zheng, Jianming; Zhang, Le; Luo, Zhongyang; Cen, Kefa

    2007-06-01

    The mercury emission control approach attaches more importance. The accurate measurement of mercury speciation is a first step. Because OH method (accepted method) can't provide the real-time data and 2-week time for results attained, it's high time to seek on line mercury continuous emission monitors(Hg-CEM). Firstly, the gaseous elemental and oxidized mercury were conducted to measure using OH and CEM method under normal operation conditions of PC boiler after ESP, the results between two methods show good consistency. Secondly, through ESP, gaseous oxidized mercury decrease a little and particulate mercury reduce a little bit, but the elemental mercury is just the opposite. Besides, the WFGD system achieved to gaseous oxidized mercury removal of 53.4%, gaseous overall mercury and elemental mercury are 37.1% and 22.1%, respectively.

  15. Tolerance of High Inorganic Mercury of Perna viridis : Laboratory ...

    African Journals Online (AJOL)

    Tolerance of High Inorganic Mercury of Perna viridis : Laboratory Studies of Its Accumulation, Depuration and Distribution. ... coefficient, indicating that it could act as one of the excretion routes for Hg and it can be proposed as a sensitive biomonitoring material for Hg. The fecal materials released by the mussel had elevated ...

  16. Mercury flow tests (first report). Wall friction factor measurement tests and future tests plan

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Kinoshita, Hidetaka; Haga, Katsuhiro; Hino, Ryutaro; Sudo, Yukio

    1999-07-01

    In the neutron science project at JAERI, we plan to inject a pulsed proton beam of a maximum power of 5 MW from a high intense proton accelerator into a mercury target in order to produce high energy neutrons of a magnitude of ten times or more than existing facilities. The neutrons produced by the facility will be utilized for advanced field of science such as the life sciences etc. An urgent issue in order to accomplish this project is the establishment of mercury target technology. With this in mind, a mercury experimental loop with the capacity to circulate mercury up to 15 L/min was constructed to perform thermal hydraulic tests, component tests and erosion characteristic tests. A measurement of the wall friction factor was carried out as a first step of the mercury flow tests, while testing the characteristic of components installed in the mercury loop. This report presents an outline of the mercury loop and experimental results of the wall friction factor measurement. From the wall friction factor measurement, it was made clear that the wettability of the mercury was improved with an increase of the loop operation time and at the same time the wall friction factors were increased. The measured wall friction factors were much lower than the values calculated by the Blasius equation at the beginning of the loop operation because of wall slip caused by a non-wetted condition. They agreed well with the values calculated by the Blasius equation within a deviation of 10% when the sum of the operation time increased more than 11 hours. This report also introduces technical problems with a mercury circulation and future tests plan indispensable for the development of the mercury target. (author)

  17. Total mercury and methyl-mercury contents and accumulation in polar microbial mats.

    Science.gov (United States)

    Camacho, Antonio; Rochera, Carlos; Hennebelle, Raphaëlle; Ferrari, Christophe; Quesada, Antonio

    2015-03-15

    Although polar regions are considered isolated and pristine areas, the organisms that inhabit these zones are exposed to global pollution. Heavy metals, such as mercury, are global pollutants and can reach almost any location on Earth. Mercury may come from natural, volcanic or geological sources, or result from anthropogenic sources, in particular industrial or mining activities. In this study, we have investigated one of the most prominent biological non-marine communities in both polar regions, microbial mats, in terms of their Hg and methyl-mercury (MeHg) concentrations and accumulation capacities. The main hypotheses posed argued on the importance of different factors, and to test them, we have measured Hg concentrations in microbial mats that were collected from 6 locations in different ecological situations. For this purpose, the direct anthropogenic impacts, volcanic influences, proximity to the seashore, latitudinal gradients and C contents were investigated. Our results show that, other than the direct anthropogenic influence, none of the other hypotheses alone satisfactorily explains the Hg content in microbial mats. In contrast, the MeHg contents were noticeably different between the investigated locations, with a higher proportion of MeHg on the McMurdo Ice Shelf (Antarctica) and a lower proportion on Ward Hunt Island (High Arctic). Furthermore, our results from in situ experiments indicated that the microbial mats from South Shetland Islands could quickly accumulate (48 h) Hg when Hg dissolved salts were supplied. Over short-term periods, these mats do not transform Hg into MeHg under field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    International Nuclear Information System (INIS)

    Dong Jie; Xu Zhenghe; Wang Feng

    2008-01-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2 /g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective

  19. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    Science.gov (United States)

    Dong, Jie; Xu, Zhenghe; Wang, Feng

    2008-03-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2/g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective.

  20. 1990s: High Capacity Backbones

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. 1990s: High Capacity Backbones. Backbone capacities increased from 2.5 Gb/s to 100s of Gb/s during the 1990's. Wavelength division multiplexing with 160 waves of 10 Gb/s was commercially available. Several high-capacity backbones built in the US and Europe.

  1. Time resolved Thomson scattering measurements on a high pressure mercury lamp

    NARCIS (Netherlands)

    Vries, de N.; Zhu, Xiao-Yan; Kieft, E.R.; Mullen, van der J.J.A.M.

    2005-01-01

    Time resolved Thomson scattering (TS) measurements have been performed on an ac driven high pressure mercury lamp. For this high intensity discharge (HID) lamp, TS is coherent and a coherent fitting routine, including rotational Raman calibration, was used to determine ne and Te from the measured

  2. Mercury content in Hot Springs

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, R

    1974-01-01

    A method of determination of mercury in hot spring waters by flameless atomic absorption spectrophotometry is described. Further, the mercury content and the chemical behavior of the elementary mercury in hot springs are described. Sulfide and iodide ions interfered with the determination of mercury by the reduction-vapor phase technique. These interferences could, however, be minimized by the addition of potassium permanganate. Waters collected from 55 hot springs were found to contain up to 26.0 ppb mercury. High concentrations of mercury have been found in waters from Shimoburo Springs, Aomori (10.0 ppb), Osorezan Springs, Aomori (1.3 approximately 18.8 ppb), Gosyogake Springs, Akita (26.0 ppb), Manza Springs, Gunma (0.30 approximately 19.5 ppb) and Kusatu Springs, Gunma (1.70 approximately 4.50 ppb). These hot springs were acid waters containing a relatively high quantity of chloride or sulfate.

  3. Mercury and halogens in coal--Their role in determining mercury emissions from coal combustion

    Science.gov (United States)

    Kolker, Allan; Quick, Jeffrey C.; Senior, Connie L.; Belkin, Harvey E.

    2012-01-01

    Mercury is a toxic pollutant. In its elemental form, gaseous mercury has a long residence time in the atmosphere, up to a year, allowing it to be transported long distances from emission sources. Mercury can be emitted from natural sources such as volcanoes, or from anthropogenic sources, such as coal-fired powerplants. In addition, all sources of mercury on the Earth's surface can re-emit it from land and sea back to the atmosphere, from which it is then redeposited. Mercury in the atmosphere is present in such low concentrations that it is not considered harmful. Once mercury enters the aquatic environment, however, it can undergo a series of biochemical transformations that convert a portion of the mercury originally present to methylmercury, a highly toxic organic form of mercury that accumulates in fish and birds. Many factors contribute to creation of methylmercury in aquatic ecosystems, including mercury availability, sediment and nutrient load, bacterial influence, and chemical conditions. In the United States, consumption of fish with high levels of methylmercury is the most common pathway for human exposure to mercury, leading the U.S. Environmental Protection Agency (EPA) to issue fish consumption advisories in every State. The EPA estimates that 50 percent of the mercury entering the atmosphere in the United States is emitted from coal-burning utility powerplants. An EPA rule, known as MATS (for Mercury and Air Toxics Standards), to reduce emissions of mercury and other toxic pollutants from powerplants, was signed in December 2011. The rule, which is currently under review, specifies limits for mercury and other toxic elements, such as arsenic, chromium, and nickel. MATS also places limits on emission of harmful acid gases, such as hydrochloric acid and hydrofluoric acid. These standards are the result of a 2010 detailed nationwide program by the EPA to sample stack emissions and thousands of shipments of coal to coal-burning powerplants. The United

  4. Mercury pollution in Wuchuan mercury mining area, Guizhou, Southwestern China: the impacts from large scale and artisanal mercury mining.

    Science.gov (United States)

    Li, Ping; Feng, Xinbin; Qiu, Guangle; Shang, Lihai; Wang, Shaofeng

    2012-07-01

    To evaluate the environmental impacts from large scale mercury mining (LSMM) and artisanal mercury mining (AMM), total mercury (THg) and methyl mercury (MeHg) were determined in mine waste, ambient air, stream water and soil samples collected from Wuchuan mercury (Hg) mining area, Guizhou, Southwestern China. Mine wastes from both LSMM and AMM contained high THg concentrations, which are important Hg contamination sources to the local environment. Total gaseous mercury (TGM) concentrations in the ambient air near AMM furnaces were highly elevated, which indicated that AMM retorting is a major source of Hg emission. THg concentrations in the stream water varied from 43 to 2100 ng/L, where the elevated values were mainly found in the vicinity of AMM and mine waste heaps of LSMM. Surface soils were seriously contaminated with Hg, and land using types and organic matter played an important role in accumulation and transportation of Hg in soil. The results indicated heavy Hg contaminations in the study area, which were resulted from both LSMM and AMM. The areas impacted by LSMM were concentrated in the historical mining and smelting facilities, while Hg pollution resulted from AMM can be distributed anywhere in the Hg mining area. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Sorption of mercury by activated carbon in the presence of flue gas components

    International Nuclear Information System (INIS)

    Diamantopoulou, Ir.; Skodras, G.; Sakellaropoulos, G.P.

    2010-01-01

    The purpose of the current study is to evaluate the mercury removal ability of F400 and Norit FGD activated carbons, through fixed bed adsorption tests at inert atmosphere (Hg + N 2 ). Additionally, adsorption tests were realized on F400 activated carbon, in the presence of HCl, O 2 , SO 2 and CO 2 in nitrogen flow. The obtained results, revealed that F400 activated carbon, with a high-developed micropore structure and increased BET area, exhibit larger Hg adsorptive capacity compared to Norit. HCl and O 2 , can strongly affect mercury adsorption, owing to heterogeneous oxidation and chemisorption reactions, which is in accordance with the assumptions of some researchers. Additionally, SO 2 presence enhances mercury adsorption, in contrast with the conclusions evaluated in other studies. The above result could be attributed to the possible formation of sulphur spaces on activated carbon surface and consist of a clarification for the role of SO 2 on mercury adsorption. On the contrary, the mercury adsorption efficiency of F400 activated carbon showed a decrease at about 25%, with increasing CO 2 concentration from 0 to 12%. (author)

  6. Sorption of mercury by activated carbon in the presence of flue gas components

    Energy Technology Data Exchange (ETDEWEB)

    Diamantopoulou, Ir. [Chemical Process Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki (Greece); Skodras, G. [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece); Sakellaropoulos, G.P. [Chemical Process Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki (Greece); Laboratory of Energy and Environmental Processes, Chemical Process Engineering Research Institute, Thessaloniki (Greece)

    2010-02-15

    The purpose of the current study is to evaluate the mercury removal ability of F400 and Norit FGD activated carbons, through fixed bed adsorption tests at inert atmosphere (Hg + N{sub 2}). Additionally, adsorption tests were realized on F400 activated carbon, in the presence of HCl, O{sub 2}, SO{sub 2} and CO{sub 2} in nitrogen flow. The obtained results, revealed that F400 activated carbon, with a high-developed micropore structure and increased BET area, exhibit larger Hg adsorptive capacity compared to Norit. HCl and O{sub 2}, can strongly affect mercury adsorption, owing to heterogeneous oxidation and chemisorption reactions, which is in accordance with the assumptions of some researchers. Additionally, SO{sub 2} presence enhances mercury adsorption, in contrast with the conclusions evaluated in other studies. The above result could be attributed to the possible formation of sulphur spaces on activated carbon surface and consist of a clarification for the role of SO{sub 2} on mercury adsorption. On the contrary, the mercury adsorption efficiency of F400 activated carbon showed a decrease at about 25%, with increasing CO{sub 2} concentration from 0 to 12%. (author)

  7. The Role of Carbon in Core Formation Under Highly Reducing Conditions With Implications for the Planet Mercury

    Science.gov (United States)

    Vander Kaaden, Kathleen E..; McCubbin, Francis M.; Ross, D. Kent; Draper, David S.

    2017-01-01

    Results from the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft have shown elevated abundances of carbon on the surface of Mercury. Furthermore, the X-Ray Spectrometer on board MESSENGER measured elevated abundances of sulfur and low abundances of iron, suggesting the planet's oxygen fugacity (fO2) is several log10 units below the Iron-Wüstite (IW) buffer. Similar to the role of other volatiles (e.g. sulfur) on highly reducing planetary bodies, carbon is expected to behave differently than it would under higher fO2. As discussed by Nittler et al. and Hauck et al., under such highly reducing conditions, the majority of the iron partitions into the core. On Mercury, this resulted in a relatively large core and a thin mantle. Using a composition similar to the largest volcanic field on the planet (the northern volcanic plains), Vander Kaaden and McCubbin conducted sink-float experiments to determine the density of melts and minerals on Mercury. They showed that graphite would be the only buoyant mineral in a mercurian magma ocean. Therefore, Vander Kaaden and McCubbin proposed a possible primary flotation crust on the planet composed of graphite. Concurrently, Peplowski et al. used GRS data from MESSENGER to show an average northern hemisphere abundance of C on the planet of 1.4 +/- 0.9 wt%. However, as this result was only at the one-sigma detection limit, possible carbon abundances at the three-sigma detection limit for Mercury range from 0 to 4.1 wt% carbon. Additionally, Murchie et al. investigated the possible darkening agent on Mercury and concluded that coarse-grained graphite could darken high reflectance plains to the low reflectance material. To further test the possibility of elevated abundances of carbon in Mercury's crust, Peplowski et al. used the low-altitude MESSENGER data to show that carbon is the only material consistent with both the visible to near-infrared spectra and the neutron measurements of low

  8. Mercury Report-Children's exposure to elemental mercury

    Science.gov (United States)

    ... gov . Mercury Background Mercury Report Additional Resources Mercury Report - Children's Exposure to Elemental Mercury Recommend on Facebook ... I limit exposure to mercury? Why was the report written? Children attending a daycare in New Jersey ...

  9. Understanding the mercury reduction issue: the impact of mercury on the environment and human health.

    Science.gov (United States)

    Kao, Richard T; Dault, Scott; Pichay, Teresa

    2004-07-01

    Mercury has been used in both medicine and dentistry for centuries. Recent media attention regarding the increased levels of mercury in dietary fish, high levels of mercury in air emissions, and conjecture that certain diseases may be caused by mercury exposure has increased public awareness of the potential adverse health effects of high doses of mercury. Dentistry has been criticized for its continued use of mercury in dental amalgam for both public health and environmental reasons. To address these concerns, dental professionals should understand the impact of the various levels and types of mercury on the environment and human health. Mercury is unique in its ability to form amalgams with other metals. Dental amalgam--consisting of silver, copper, tin, and mercury--has been used as a safe, stable, and cost-effective restorative material for more than 150 years. As a result of this use, the dental profession has been confronted by the public on two separate health issues concerning the mercury content in amalgam. The first issue is whether the mercury amalgamated with the various metals to create dental restorations poses a health issue for patients. The second is whether the scraps associated with amalgam placement and the removal of amalgam restorations poses environmental hazards which may eventually have an impact on human health. Despite the lack of scientific evidence for such hazards, there is growing pressure for the dental profession to address these health issues. In this article, the toxicology of mercury will be reviewed and the impact of amalgam on health and the environment will be examined.

  10. High Maternal Blood Mercury Level Is Associated with Low Verbal IQ in Children.

    Science.gov (United States)

    Jeong, Kyoung Sook; Park, Hyewon; Ha, Eunhee; Shin, Jiyoung; Hong, Yun Chul; Ha, Mina; Park, Hyesook; Kim, Bung Nyun; Lee, Boeun; Lee, Soo Jeong; Lee, Kyung Yeon; Kim, Ja Hyeong; Kim, Yangho

    2017-07-01

    The objective of the present study was to investigate the relationship of IQ in children with maternal blood mercury concentration during late pregnancy. The present study is a component of the Mothers and Children's Environmental Health (MOCEH) study, a multi-center birth cohort project in Korea that began in 2006. The study cohort consisted of 553 children whose mothers underwent testing for blood mercury during late pregnancy. The children were given the Korean language version of the Wechsler Preschool and Primary Scale of Intelligence, revised edition (WPPSI-R) at 60 months of age. Multivariate linear regression analysis, with adjustment for covariates, was used to assess the relationship between verbal, performance, and total IQ in children and blood mercury concentration of mothers during late pregnancy. The results of multivariate linear regression analysis indicated that a doubling of blood mercury was associated with the decrease in verbal and total IQ by 2.482 (95% confidence interval [CI], 0.749-4.214) and 2.402 (95% CI, 0.526-4.279), respectively, after adjustment. This inverse association remained after further adjustment for blood lead concentration. Fish intake is an effect modifier of child IQ. In conclusion, high maternal blood mercury level is associated with low verbal IQ in children. © 2017 The Korean Academy of Medical Sciences.

  11. Mercury emission monitoring on municipal waste combustion

    International Nuclear Information System (INIS)

    Braun, H.; Gerig, A.

    1991-01-01

    In waste incineration, mercury is the only heavy metal to be released as a gas, mostly as mercury(II) chloride, because of its high volatility. Continuous emission monitoring is possible only when mercury occurs in its elemental form. This paper reports on various possibilities of converting Hg(II) into Hg(0) that has been studied and tested on a laboratory scale and in the TAMARA refuse incineration pilot facility. Continuous mercury emission measurement appears to be possible, provided mercury is converted in the flue gas condensate precipitated. The measuring results obtained on two municipal solid waste and on one sewage treatment sludge incineration plants show that the mercury monitor is a highly sensitive and selective continuously working instrument for mercury emission monitoring

  12. Mercury absorption in aqueous hypochlorite

    International Nuclear Information System (INIS)

    Zhao, L.L.; Rochelle, G.T.

    1999-01-01

    The absorption of elemental Hg vapor into aqueous hypochlorite was measured in a stirred tank reactor at 25 and 55C. NaOCl strongly absorbs Hg even at high pH. Low pH, high Cl - and high-temperature favor mercury absorption. Aqueous free Cl 2 was the active species that reacted with mercury. However, chlorine desorption was evident at high Cl - and pH 15 M -1 s -1 at 25C and 1.4x10 17 M -1 s -1 at 55C. Gas-phase reaction was observed between Hg and Cl 2 on apparatus surfaces. Strong mercury absorption in water was also detected with Cl 2 present. Results indicate that the chlorine concentration, moisture, and surface area contribute positively to mercury removal. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Mercury

    CERN Document Server

    Balogh, André; Steiger, Rudolf

    2008-01-01

    Mercury, the planet closest to the Sun, is different in several respects from the other three terrestrial planets. In appearance, it resembles the heavily cratered surface of the Moon, but its density is high, it has a magnetic field and magnetosphere, but no atmosphere or ionosphere. This book reviews the progress made in Mercury studies since the flybys by Mariner 10 in 1974-75, based on the continued research using the Mariner 10 archive, on observations from Earth, and on increasingly realistic models of its interior evolution.

  14. High levels of reactive gaseous mercury observed at a high elevation research laboratory in the Rocky Mountains

    OpenAIRE

    Faïn, X.; Obrist, D.; Hallar, A. G.; Mccubbin, I.; Rahn, T.

    2009-01-01

    The chemical cycling and spatiotemporal distribution of mercury in the troposphere is poorly understood. We measured gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate mercury (HgP) along with carbon monoxide (CO), ozone (O3), aerosols, and meteorological variables at Storm Peak Laboratory at an elevation of 3200 m a.s.l., in Colorado, from 28 April to 1 July 2008. The mean mercury concentrations were 1.6 ng m

  15. Mercury release from deforested soils triggered by base cation enrichment

    International Nuclear Information System (INIS)

    Farella, N.; Lucotte, M.; Davidson, R.; Daigle, S.

    2006-01-01

    The Brazilian Amazon has experienced considerable colonization in the last few decades. Family agriculture based on slash-and-burn enables millions of people to live in that region. However, the poor nutrient content of most Amazonian soils requires cation-rich ashes from the burning of the vegetation biomass for cultivation to be successful, which leads to forest ecosystem degradation, soil erosion and mercury contamination. While recent studies have suggested that mercury present in soils was transferred towards rivers upon deforestation, little is known about the dynamics between agricultural land-use and mercury leaching. In this context, the present study proposes an explanation that illustrates how agricultural land-use triggers mercury loss from soils. This explanation lies in the competition between base cations and mercury in soils which are characterized by a low adsorption capacity. Since these soils are naturally very poor in base cations, the burning of the forest biomass suddenly brings high quantities of base cations to soils, destabilizing the previous equilibrium amongst cations. Base cation enrichment triggers mobility in soil cations, rapidly dislocating mercury atoms. This conclusion comes from principal component analyses illustrating that agricultural land-use was associated with base cation enrichment and mercury depletion. The overall conclusions highlight a pernicious cycle: while soil nutrient enrichment actually occurs through biomass burning, although on a temporary basis, there is a loss in Hg content, which is leached to rivers, entering the aquatic chain, and posing a potential health threat to local populations. Data presented here reflects three decades of deforestation activities, but little is known about the long-term impact of such a disequilibrium. These findings may have repercussions on our understanding of the complex dynamics of deforestation and agriculture worldwide

  16. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Kotnik, J.; Horvat, M.; Mandic, V.; Logar, M. [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg{sup 2+}, Hg{sup 0}) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  17. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    Science.gov (United States)

    Kotnik; Horvat; Mandic; Logar

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg2+, Hg0) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  18. Thermal shocks and magnetohydrodynamics in high power mercury jet targets

    CERN Document Server

    Lettry, Jacques; Gilardoni, S S; Benedikt, Michael; Farhat, M; Robert, E

    2003-01-01

    The response of mercury samples submitted to a pulsed proton beam and the magnetohydrodynamic (MHD) effects of a mercury jet injected into a 20 T magnetic field are reported. The experimental conditions differ from those of proposed neutrino factories and the purpose of these measurements is to provide benchmarks for simulation tools of a realistic free mercury jet target. These measurements were completed in June 2002. Analysis is ongoing and the presented results are preliminary. (12 refs).

  19. Isolation, screening and identification of mercury resistant bacteria from mercury contaminated soil

    OpenAIRE

    Kowalczyk Anna; Wilińska Magdalena; Chyc Marek; Bojko Monika; Latowski Dariusz

    2016-01-01

    New bacterial strains resistant to high concentration of mercury were obtained and character iz ed focusing on their potential application in bioremediation. The biological material was isolated from soil contaminated with mercury. The ability to removal of Hg from the liquid medium and the effect of the various pH and mercury concentrations in the environment on bacterial strains growth kinetics were tested. The selected strains were identified by analysis of the 16S ribosome subunit coding ...

  20. Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity.

    Science.gov (United States)

    Spiller, Henry A

    2018-05-01

    , including selenoprotein P, K, and T. Impairment of the thioredoxin and glutaredoxin systems allows for proliferation intracellular reactive oxygen species which leads to glutamate excitosis, calcium dyshomeostasis, mitochondrial injury/loss, lipid peroxidation, impairment of protein repair, and apoptosis. Methylmercury is a more potent inhibitor of the thioredoxin system, partially explaining its increased neurotoxicity. A second important mechanism is due to the high affinity of mercury for selenium and the subsequent depletion of selenium stores needed for insertion into de novo generation of replacement selenoproteins. This mercury-induced selenium deficiency state inhibits regeneration of the selenoproteins to restore the cellular redox environment. The effects of selenium on mercury and the role this plays in biological response to mercury: Early research suggested selenium may provide a protective role in mercury poisoning, and with limitations this is true. The roles selenium plays in this reduction of mercury toxicity partially depends on the form of mercury and may be multifaceted including: 1) facilitating demethylation of organic mercury to inorganic mercury; 2) redistribution of mercury to less sensitive target organs; 3) binding to inorganic mercury and forming an insoluble, stable and inert Hg:Se complex; 4) reduction of mercury absorption from the GI tract; 5) repletion of selenium stores (reverse selenium deficiency); and 6) restoration of target selenoprotein activity and restoring the intracellular redox environment. There is conflicting evidence as to whether selenium increases or hinders mercury elimination, but increased mercury elimination does not appear to be a major role of selenium. Selenium supplementation has been shown to restore selenoprotein function and reduce the toxicity of mercury, with several significant limitations including: the form of mercury (methylmercury toxicity is less responsive to amelioration) and mercury dose. The

  1. Mercury

    Science.gov (United States)

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  2. Highly Reducing Partitioning Experiments Relevant to the Planet Mercury

    Science.gov (United States)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface Space ENvironment GEochemistry and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER on the planet's surface suggests a low oxygen fugacity of the present planetary materials. Estimates of the oxygen fugacity for Mercurian magmas are approximately 3-7 log units below the Iron-Wüstite (Fe-FeO) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from such as the Earth, Moon, or Mars. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions are available in our collections (e.g., enstatite chondrites, achondrites, aubrites). With this limited amount of material, we must perform experiments to determine the elemental partitioning behavior of typically lithophile elements as a function of decreasing oxygen fugacity. Experiments are being conducted at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were selected for the final run products to contain metal, silicate melt, and sulfide melt phases. Oxygen fugacity is controlled in the experiments by adding silicon metal to the samples, using the Si-SiO2 oxygen buffer, which is approximately 5 log units more reducing than the Fe-FeO oxygen buffer at our temperatures of interest. The target silicate melt compositional is diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. Elements detected on Mercury

  3. Installation of the Ferranti Mercury computer in building 2 on 30 June 1958

    CERN Multimedia

    1958-01-01

    The Ferranti Mercury was CERN's first "central" computer. It was installed in building 2 on 30 June 1958. The Mercury's performance did not compare to the simplest of today's pocket calculators. Its clock speed was a modest 1 MHz and its RAM capacity was 2000 20-bit words.

  4. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.

    Science.gov (United States)

    Al-Ghouti, Mohammad A; Abuqaoud, Reem H; Abu-Dieyeh, Mohammed H

    2016-03-01

    The spent fluorescent lamps (SFLs) are being classified as a hazardous waste due to having mercury as one of its main components. Mercury is considered the second most toxic heavy metal (arsenic is the first) with harmful effects on animal nervous system as it causes different neurological disorders. In this research, the mercury from phosphor powder was leached, then bioremediated using bacterial strains isolated from Qatari environment. Leaching of mercury was carried out with nitric and hydrochloric acid solutions using two approaches: leaching at ambient conditions and microwave-assisted leaching. The results obtained from this research showed that microwave-assisted leaching method was significantly better in leaching mercury than the acid leaching where the mercury leaching efficiency reached 76.4%. For mercury bio-uptake, twenty bacterial strains (previously isolated and purified from petroleum oil contaminated soils) were sub-cultured on Luria Bertani (LB) plates with mercury chloride to check the bacterial tolerance to mercury. Seven of these twenty strains showed a degree of tolerance to mercury. The bio-uptake capacities of the promising strains were investigated using the mercury leached from the fluorescent lamps. Three of the strains (Enterobacter helveticus, Citrobacter amalonaticus, and Cronobacter muytjensii) showed bio-uptake efficiency ranged from 28.8% to 63.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Solubility of helium in mercury for bubbling technology of the spallation neutron mercury target

    International Nuclear Information System (INIS)

    Hasegawa, S.; Naoe, T.; Futakawa, M.

    2010-01-01

    The pitting damage of mercury target container that originates in the pressure wave excited by the proton beam incidence becomes a large problem to reach the high-power neutron source in JSNS and SNS. The lifetime of mercury container is decreased remarkably by the pitting damage. As one of solutions, the pressure wave is mitigated by injecting the helium micro bubbles in mercury. In order to inject the helium micro bubbles into mercury, it is important to understand the characteristic of micro bubbles in mercury. The solubility of mercury-helium system is a key factor to decide bubbling conditions, because the disappearance behavior, i.e. the lifetime of micro bubbles, depends on the solubility. In addition, the bubble generation method is affected by it. Moreover, the experimental data related to the solubility of helium in mercury hardly exist. In this work, the solubility was obtained experimentally by measuring precisely the pressure drop of the gas that is facing to mercury surface. The pressure drop was attributed to the helium dissolution into mercury. Based on the measured solubility, the lifetime of micro bubbles and the method of the bubble generation is estimated using the solubility data.

  6. Mercury and gold concentrations of highly polluted environmental samples determined using prompt gamma-ray analysis and instrument neutron activation analysis

    Science.gov (United States)

    Osawa, Takahito; Hatsukawa, Yuichi; Appel, Peter W. U.; Matsue, Hideaki

    2011-04-01

    The authors have established a method of determining mercury and gold in severely polluted environmental samples using prompt gamma-ray analysis (PGA) and instrumental neutron activation analysis (INAA). Since large amounts of mercury are constantly being released into the environment by small-scale gold mining in many developing countries, the mercury concentration in tailings and water has to be determined to mitigate environmental pollution. Cold-vapor atomic absorption analysis, the most pervasive method of mercury analysis, is not suitable because tailings and water around mining facilities have extremely high mercury concentrations. On the other hand, PGA can determine high mercury concentrations in polluted samples as it has an appropriate level of sensitivity. Moreover, gold concentrations can be determined sequentially by using INAA after PGA. In conclusion, the analytical procedure established in this work using PGA and INAA is the best way to evaluate the degree of pollution and the tailing resource value. This method will significantly contribute to mitigating problems in the global environment.

  7. Mercury and gold concentrations of highly polluted environmental samples determined using prompt gamma-ray analysis and instrument neutron activation analysis

    International Nuclear Information System (INIS)

    Osawa, Takahito; Hatsukawa, Yuichi; Appel, Peter W.U.; Matsue, Hideaki

    2011-01-01

    The authors have established a method of determining mercury and gold in severely polluted environmental samples using prompt gamma-ray analysis (PGA) and instrumental neutron activation analysis (INAA). Since large amounts of mercury are constantly being released into the environment by small-scale gold mining in many developing countries, the mercury concentration in tailings and water has to be determined to mitigate environmental pollution. Cold-vapor atomic absorption analysis, the most pervasive method of mercury analysis, is not suitable because tailings and water around mining facilities have extremely high mercury concentrations. On the other hand, PGA can determine high mercury concentrations in polluted samples as it has an appropriate level of sensitivity. Moreover, gold concentrations can be determined sequentially by using INAA after PGA. In conclusion, the analytical procedure established in this work using PGA and INAA is the best way to evaluate the degree of pollution and the tailing resource value. This method will significantly contribute to mitigating problems in the global environment.

  8. Design study on large-scale mercury loop for engineering test of target of high-intensity proton accelerator

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Haga, Katsuhiro; Aita, Hideki; Sekita, Kenji; Sudo, Yukio; Koiso, Kohji; Kaminaga, Masanori; Takahashi, Hiromichi.

    1997-03-01

    A heavy liquid-metal target has been proposed as a representative target of a 5MW-scale neutron source for a neutron scattering facility coupled with a high-intensity proton accelerator. In the report, about mercury considered to be the best material of the heavy liquid-metal target, its properties needed for the design were formulated, and results of research on mercury treatment and of evaluation of heat removal performance on the basis of generating heat obtained by a numerical calculation of a spallation reaction were presented. From these results, a 1.5MW-scale mercury loop which equals to that for the first stage operation of the neutron science program of JAERI was designed conceptually for obtaining design data of the mercury target, and basic flow diagram of the loop and specifications of components were decided: diameter of pipelines flowing mercury at the velocity below 1m/s, power of an electro-magnet pump and structure of a cooler. Through the design, engineering problems were made clear such as selection and development of mercury-resistant materials and optimization of the loop and components for decreasing mercury inventory. (author)

  9. Biomarkers of mercury exposure at a mercury recycling facility in Ukraine

    Science.gov (United States)

    Gibb, H.J.; Kozlov, K.; Buckley, J.P.; Centeno, J.; Jurgenson, V.; Kolker, A.; Conko, K.; Landa, E.; Panov, B.; Panov, Y.; Xu, H.

    2008-01-01

    This study evaluates biomarkers of occupational mercury exposure among workers at a mercury recycling operation in Gorlovka, Ukraine. The 29 study participants were divided into three occupational categories for analysis: (1) those who worked in the mercury recycling operation (Group A, n = 8), (2) those who worked at the facility but not in the yard where the recycling was done (Group B, n = 14), and (3) those who did not work at the facility (Group C, n = 7). Urine, blood, hair, and nail samples were collected from the participants, and a questionnaire was administered to obtain data on age, gender, occupational history, smoking, alcohol consumption, fish consumption, tattoos, dental amalgams, home heating system, education, source of drinking water, and family employment in the former mercury mine/smelter located on the site of the recycling facility. Each factor was tested in a univariate regression with total mercury in urine, blood, hair, and nails. Median biomarker concentrations were 4.04 ??g/g-Cr (urine), 2.58 ??g/L (blood), 3.95 ??g/g (hair), and 1.16 ??g/g (nails). Occupational category was significantly correlated (p < 0.001) with both blood and urinary mercury concentrations but not with hair or nail mercury. Four individuals had urinary mercury concentrations in a range previously found to be associated with subtle neurological and subjective symptoms (e.g., fatigue, loss of appetite, irritability), and one worker had a urinary mercury concentration in a range associated with a high probability of neurological effects and proteinuria. Comparison of results by occupational category found that workers directly involved with the recycling operation had the highest blood and urinary mercury levels. Those who worked at the facility but were not directly involved with the recycling operation had higher levels than those who did not work at the facility. Copyright ?? 2008 JOEH, LLC.

  10. Decommissioning and safety issues of liquid-mercury waste generated from high power spallation sources with particle accelerators

    CERN Document Server

    Chiriki, S; Odoj, R; Moormann, R; Hinssen, H. K; Bukaemskiy, A

    2009-01-01

    Large spallation sources are intended to be constructed in Europe (EURISOL nuclear physics facility and ESS-European Spallation Source). These facilities accumulate more than 20 metric tons of irradiated mercury in the target, which has to be treated as highly radioactive and chemo-toxic waste. Because solids are the only appropriate (immobile) form for this radiotoxic and toxic type of waste solidification is required for irradiated mercury. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in assumed accidents with water ingress in a repository compared to amalgams. For preparation of mercury sulfide a wet process is more suitable than a dry one. It is easier to perform under hot cell conditions and allows complete Hg-conversion. Embedding HgS in a cementitious matrix increases its stability.

  11. Mercury's radius change estimates revisited using high incidence angle MESSENGER data

    Science.gov (United States)

    Di Achille, G.; Popa, C.; Massironi, M.; Ferrari, S.; Mazzotta Epifani, E.; Zusi, M.; Cremonese, G.; Palumbo, P.

    2012-04-01

    Estimates of Mercury's radius decrease obtained using the amount of strain recorded by tectonics on the planet range from 0.5 km to 2 km. These latter figures appear too low with respect to the radius contraction (up to 5-6 km) predicted by the most accredited studies based on thermo-mechanical evolution models. For this reason, it has been suggested that there may be hidden strain accommodated by features yet unseen on Mercury. Indeed, as it has been already cautioned by previous studies, the identification of tectonic features on Mercury might be largely biased by the lighting geometry of the used basemaps. This limitation might have affected the results of the extrapolations for estimating the radius change. In this study, we mapped tectonic features at the terminator thus using images acquired at high sun incidence angle (>50°) that represents the optimal condition for their observation. In fact, images with long shadows enhance the topography and texture of the surface and are ideal to detect tectonic structures. This favorable illumination conditions allowed us to infer reliable measurements of spatial distribution (i.e. frequency, orientation, and areal density) of tectonic features which can be used to estimate the average contractional strain and planetary radius decrease. We digitized tectonic structures within a region extending for an area of about 12 million sq. km (~16% of planet's surface). More than 1300 tectonic lineaments were identified and interpreted to be compressional features (i.e. lobate scarps, wrinkle ridges, and high relief ridges) with a total length of more than 12300 km. Assuming that the extensional strain is negligible within the area, the average contractional strain calculated for the survey area is ~0.21-0.28% (~0.24% for θ=30°). This strain, extrapolated to the entire surface, corresponds to a contraction in radius of about 2.5-3.4 km (~2.9 km for θ=30°). Interestingly, the values of contractional strain and radius decrease

  12. PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code

    International Nuclear Information System (INIS)

    Iandola, F.N.; O'Brien, M.J.; Procassini, R.J.

    2010-01-01

    Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.

  13. Distribution of mercury in guinea pig offspring after in utero exposure to mercury vapor during late gestation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Minoru; Yamamura, Yukio; Sataoh, Hiroshi

    1986-04-01

    Organ distribution of mercury after in utero mercury vapor exposure was investigated in neonatal guinea pigs. Mother guinea pigs in late gestation were exposed to 0.2-0.3 mg/m/sup 3/ mercury vapor 2 h per day until giving birth. Mercury concentrations in neonatal brain, lungs, heart, kidneys, plasma and erythrocytes were much lower than those of maternal organs and tissues. Neonatal liver, however, showed a mercury concentration twice as high as maternal liver. Mercury concentration ratios of erythrocytes to plasma in offspring were quite different from those of mothers, being 0.2-0.4 for offspring, and 1.3-3.0 for mothers. These results suggested that mercury vapor metabolism in fetuses was quite different from that in their mothers. This may be due to the different blood circulation, as mercury vapor transferred through the placental barrier would be rapidly oxidized into ionic mercury in fetal liver and accumulated in the organ. The different mercury vapor metabolism may prevent fetal brain, which is rapidly developing, and thus vulnerable, from being exposed to excessive mercury vapor.

  14. Measurements of atmospheric mercury with high time resolution: recent applications in environmental research and monitoring.

    Science.gov (United States)

    Ebinghaus, R; Kock, H H; Schmolke, S R

    2001-11-01

    In the past five years automated high time-resolution measurements of mercury species in ambient air have promoted remarkable progress in the understanding of the spatial distribution, short-term variability, and fate of this priority pollutant in the lower troposphere. Examples show the wide range of possible applications of these techniques in environmental research and monitoring. Presented applications of measurement methods for total gaseous mercury (TGM) include long-term monitoring of atmospheric mercury at a coastal station, simultaneous measurements during a south-to-north transect measurement campaign covering a distance of approximately 800 km, the operation on board of a research aircraft, and the quantification of mercury emissions from naturally enriched surface soils. First results obtained with a new method for the determination of reactive gaseous mercury (RGM) are presented. Typical background concentrations of TGM are between 1.5 and 2 ng m(-3) in the lower troposphere. Concentrations of RGM have been determined at a rural site in Germany between 2 and 35 pg m(-3). Flux measurements over naturally enriched surface soils in the Western U.S.A. have revealed emission fluxes of up to 200 ng Hg m(-1) h(-1) under dry conditions.

  15. Bench-scale studies on capture of mercury on mineral non-carbon based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Wendt, Jost O.L. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Zhang, Junying; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    A new high-temperature, mineral non-carbon based dispersed sorbent derived from paper recycling products has been shown to capture mercury at high temperatures in excess of 600 C. The sorbent is consisted of kaolinite/calcite/lime mixtures. Experiments have been conducted on chemi-sorption of elemental mercury in air on a packed bed. The sorption occurs at temperatures between 600 and 1,100 C and requires activation of the minerals contained within the sorbents. Mercury capture is dominated by temperature and capture on sorbents over long time scales. The capture shows a maximum effectiveness at 1,000 C and increases monotonically with temperature. The presence of oxygen is also the required. Freshly activated sorbent is the most effective, and deactivation of sorbents occurs at high temperatures with long pre-exposure times. This activation is suspected to involve a solid-solid reaction between intimately mixed calcium oxide and silica that are both contained within the sorbent. Deactivation occurs at temperatures higher than 1,000 C, and this is due to melting of the substrate and pore closure. The situation in packed beds is complicated because the bed also shrinks, thus allowing channeling and by-passing, and consequent ambiguities in determining sorbent saturation. Sorbent A had significantly greater capacity for mercury sorption than did Sorbent B, for all temperatures and exposure time examined. The effect of SiO{sub 2} on poor Sorbent B is much larger than sorbent A.

  16. Intake of mercury through fish consumption

    International Nuclear Information System (INIS)

    Sarmani, S.B.; Kiprawi, A.Z.; Ismail, R.B.; Hassan, R.B.; Wood, A.K.; Rahman, S.A.

    1995-01-01

    Fish has been known as a source of non-occupational mercury exposure to fish consuming population groups, and this is shown by the high hair mercury levels. In this study, hair samples collected from fishermen and their families, and commercial marine fishes were analyzed for mercury and methylmercury by neutron activation and gas chromatography. The results showed a correlation between hair mercury levels and fish consumption patterns. The levels of mercury found in this study were similar to those reported by other workers for fish consuming population groups worldwide. (author)

  17. Mercury erosion experiments for spallation target system

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Kaminaga, Masanori; Haga, Katsuhiro; Hino, Ryutaro

    2003-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a plan to construct the spallation neutron source at the Tokai Research Establishment, JAERI, under the High-Intensity Proton Accelerator Project (J-PARC). A mercury circulation system has been designed so as to supply mercury to the target stably under the rated flow rate of 41 m 3 /hr. Then, it was necessary to confirm a mercury pump performance from the viewpoint of making the mercury circulation system feasible, and more, to investigate erosion rate under the mercury flow as well as an amount of mercury remained on the surface after drain from the viewpoints of mechanical strength relating to the lifetime and remote handling of mercury components. The mercury pump performance was tested under the mercury flow conditions by using an experimental gear pump, which had almost the same structure as a practical mercury pump to be expected in the mercury circulation system, and the erosion rates in a mercury pipeline as well as the amount of mercury remained on the surface were also investigated. The discharged flow rates of the experimental gear pump increased linearly with the rotation speed, so that the gear pump would work as the flow meter. Erosion rates obtained under the mercury velocity less than 1.6 m/s was found to be so small that decrease of pipeline wall thickness would be 390 μm after 30-year operation under the rated mercury velocity of 0.7 m/s. For the amount of remaining mercury on the pipeline, remaining rates of weight and volume were estimated at 50.7 g/m 2 and 3.74 Hg-cm 3 /m 2 , respectively. Applying these remaining rates of weight and volume to the mercury target, the remaining mercury was estimated at about 106.5 g and 7.9 cm 3 . Radioactivity of this remaining mercury volume was found to be three-order lower than that of the target casing. (author)

  18. Toward a Unified Understanding of Mercury and Methylated Mercury from the World's Oceans

    Science.gov (United States)

    McNutt, M. K.; Krabbenhoft, D. P.; Landing, W. M.; Sunderland, E. M.

    2012-12-01

    -profile concentration maxima, however, the depth of the maxima are more varied than the total mercury profiles (150 - 700m). Also, our observed distribution of methylated mercury highly correlated with organic carbon remineralization rates (OCRR) in the North Pacific and Indian Oceans. Interestingly, we find the highest methylated mercury concentrations in the Southern Ocean, suggesting the possibility of unique mechanisms for methylmercury production, preservation, and degradation in polar ecosystems such as cold water temperatures, extended periods of sea ice cover, and annual atmospheric mercury depletion events. We are using these data to better link oceanic production of bioaccumulative mercury to models for atmospheric and oceanic transport and bioaccumulation. This will ultimately lead to a better understanding of mercury levels in consumable fish and shell fish.

  19. Removal of mercury vapor from ambient air of dental clinics using an air cleaning system based on silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Chiman Saeidi

    2015-06-01

    Full Text Available Background & objective: Mercury is a toxic and bio-accumulative pollutant that has adverse effects on environmental and human health. There have been a number of attempts to regulate mercury emissions tothe atmosphere. Silver nanoparticles are a number of materials that have highly potential to absorb mercury and formation of mercury amalgam.The aim of this study is removal of mercury vapors in the dental clinic using a n a ir cleaning system based on silver nanoparticles. Methods: In this study, silver nanoparticles coated on the bed of foam and chemical and structural properties were determined using a number of methods such as UV-VIS-NIR spectroscopy and Scanning Electron Microscope (SEM connected the X-ray Emission Spectroscopy Energy (EDS. The a ir cleaning system efficiency to remove of the mercury vapor in simulated conditions in the laboratory and real conditions in the dental clinicwere measured by Cold Vapor Atomic Absorption Spectroscopy (CVAAS. Results: The images of SEM, showed that average sizeof silver nanoparticles in colloidal solution was ∼ 30nm and distribution of silver nanoparticles coated on foam was good. EDS spectrum confirmed associated the presence of silver nanoparticles coated on foam. The significantly difference observed between the concentration of mercury vapor in the off state (9.43 ± 0.342 μg.m-3 and on state (0.51 ± 0.031μg.m-3 of the a ir cleaning system. The mercury vapor removal efficiencyof the a ir cleaning system was calculated 95%. Conclusion : The air cleaning system based on foam coated by silver nanoparticles, undertaken to provide the advantages such as use facilitating, highly efficient operational capacity and cost effective, have highly sufficiency to remove mercury vapor from dental clinics.

  20. Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic

    DEFF Research Database (Denmark)

    Møller, Annette; Barkay, Tamar; Abu Al-Soud, Waleed

    2011-01-01

    It is well-established that atmospheric deposition transports mercury from lower latitudes to the Arctic. The role of bacteria in the dynamics of the deposited mercury, however, is unknown. We characterized mercury-resistant bacteria from High Arctic snow, freshwater and sea-ice brine. Bacterial...... densities were 9.4 × 10(5), 5 × 10(5) and 0.9-3.1 × 10(3) cells mL(-1) in freshwater, brine and snow, respectively. Highest cultivability was observed in snow (11.9%), followed by freshwater (0.3%) and brine (0.03%). In snow, the mercury-resistant bacteria accounted for up to 31% of the culturable bacteria, but...

  1. Simulation of mercury capture by sorbent injection using a simplified model.

    Science.gov (United States)

    Zhao, Bingtao; Zhang, Zhongxiao; Jin, Jing; Pan, Wei-Ping

    2009-10-30

    Mercury pollution by fossil fuel combustion or solid waste incineration is becoming the worldwide environmental concern. As an effective control technology, powdered sorbent injection (PSI) has been successfully used for mercury capture from flue gas with advantages of low cost and easy operation. In order to predict the mercury capture efficiency for PSI more conveniently, a simplified model, which is based on the theory of mass transfer, isothermal adsorption and mass balance, is developed in this paper. The comparisons between theoretical results of this model and experimental results by Meserole et al. [F.B. Meserole, R. Chang, T.R. Carrey, J. Machac, C.F.J. Richardson, Modeling mercury removal by sorbent injection, J. Air Waste Manage. Assoc. 49 (1999) 694-704] demonstrate that the simplified model is able to provide good predictive accuracy. Moreover, the effects of key parameters including the mass transfer coefficient, sorbent concentration, sorbent physical property and sorbent adsorption capacity on mercury adsorption efficiency are compared and evaluated. Finally, the sensitive analysis of impact factor indicates that the injected sorbent concentration plays most important role for mercury capture efficiency.

  2. Assessing the difference of tolerance and phytoremediation potential in mercury contaminated soil of a non-food energy crop, Helianthus tuberosus L. (Jerusalem artichoke

    Directory of Open Access Journals (Sweden)

    Shiqi Lv

    2018-02-01

    Full Text Available This study was conducted to evaluate the effects of mercury stress on growth, photosynthesis and mercury accumulation in different cultivars of a non-food energy crop, Jerusalem artichoke, and to screen appropriate cultivars for their efficacy in the phytoremediation of mercury (Hg2+ contaminated soil. Cultivars LZJ033 (high above-ground biomass and nutrient content, and strongly sexual reproduction and LZJ119 (a long period of vegetative growth exhibited more tolerance to mercury stress than LZJ047 (the highest tuber yield and total sugar content. The lines LZJ119 and LZJ047 showed delays in emergence time of about four weeks, and LZJ047 exhibited the highest mortality rate, 85.19%, under treatment with 10 mg kg-1 mercury. The MDA (malondialdehyde content increased whereas and the Pn (net photosynthetic rate, Fv∕Fm (the maximum quantum yield of PSII photochemistry and chlorophyll content decreased in response to mercury stress. The stem diameter, stem biomass and photosynthetic rate of Jerusalem artichoke showed some modest increases in response to mercury stress and exhibited hormesis at least 1 mg kg-1 mercury treatment. Overall, LZJ119 produced more biomass under mercury stress, whereas LZJ033 exhibited a greater capacity for mercury bioaccumulation. Accordingly, LZJ119 may be a good candidate cultivar for use in cases of moderate—low mercury contamination, whereas LZJ033 may be a better candidate under conditions of high mercury contamination. When Jerusalem artichoke was cultivated in mercury contaminated soil, it not only removed the mercury from soil but also produced large amounts of tubers and shoots which could be used as feedstock for the production of bioethanol.

  3. Assessing the difference of tolerance and phytoremediation potential in mercury contaminated soil of a non-food energy crop, Helianthus tuberosus L. (Jerusalem artichoke).

    Science.gov (United States)

    Lv, Shiqi; Yang, Bin; Kou, Yixuan; Zeng, Jun; Wang, Ruixiong; Xiao, Yumeng; Li, Fencan; Lu, Ying; Mu, Yuwen; Zhao, Changming

    2018-01-01

    This study was conducted to evaluate the effects of mercury stress on growth, photosynthesis and mercury accumulation in different cultivars of a non-food energy crop, Jerusalem artichoke, and to screen appropriate cultivars for their efficacy in the phytoremediation of mercury (Hg 2+ ) contaminated soil. Cultivars LZJ033 (high above-ground biomass and nutrient content, and strongly sexual reproduction) and LZJ119 (a long period of vegetative growth) exhibited more tolerance to mercury stress than LZJ047 (the highest tuber yield and total sugar content). The lines LZJ119 and LZJ047 showed delays in emergence time of about four weeks, and LZJ047 exhibited the highest mortality rate, 85.19%, under treatment with 10 mg kg -1 mercury. The MDA (malondialdehyde) content increased whereas and the P n (net photosynthetic rate), F v ∕ F m (the maximum quantum yield of PSII photochemistry) and chlorophyll content decreased in response to mercury stress. The stem diameter, stem biomass and photosynthetic rate of Jerusalem artichoke showed some modest increases in response to mercury stress and exhibited hormesis at least 1 mg kg -1 mercury treatment. Overall, LZJ119 produced more biomass under mercury stress, whereas LZJ033 exhibited a greater capacity for mercury bioaccumulation. Accordingly, LZJ119 may be a good candidate cultivar for use in cases of moderate-low mercury contamination, whereas LZJ033 may be a better candidate under conditions of high mercury contamination. When Jerusalem artichoke was cultivated in mercury contaminated soil, it not only removed the mercury from soil but also produced large amounts of tubers and shoots which could be used as feedstock for the production of bioethanol.

  4. Sorption equilibrium of mercury onto ground-up tree fern.

    Science.gov (United States)

    Ho, Yuh-Shan; Wang, Chung-Chi

    2008-08-15

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as DeltaG degrees, DeltaH degrees, and DeltaS degrees, were calculated and compared with the sorption of mercury by other sorbents.

  5. Sorption equilibrium of mercury onto ground-up tree fern

    International Nuclear Information System (INIS)

    Ho, Y.-S.; Wang, C.-C.

    2008-01-01

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as ΔG o , ΔH o , and ΔS o , were calculated and compared with the sorption of mercury by other sorbents

  6. Sorption equilibrium of mercury onto ground-up tree fern

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Y.-S. [Department of Chemical Engineering, I-Shou University, No. 1, Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung County 840, Taiwan (China)], E-mail: ysho@isu.edu.tw; Wang, C.-C. [Department of Chemical Engineering, I-Shou University, No. 1, Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung County 840, Taiwan (China)

    2008-08-15

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as {delta}G{sup o}, {delta}H{sup o}, and {delta}S{sup o}, were calculated and compared with the sorption of mercury by other sorbents.

  7. Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation.

    Science.gov (United States)

    Clack, Herek L

    2009-03-01

    Efforts to reduce anthropogenic mercury emissions worldwide have recently focused on a variety of sources, including mercury emitted during coal combustion. Toward that end, much research has been ongoing seeking to develop new processes for reducing coal combustion mercury emissions. Among air pollution control processes that can be applied to coal-fired boilers, electrostatic precipitators (ESPs) are by far the most common, both on a global scale and among the principal countries of India, China, and the U.S. that burn coal for electric power generation. A previously reported theoretical model of in-flight mercury capture within ESPs is herein evaluated against data from a number of full-scale tests of activated carbon injection for mercury emissions control. By using the established particle size distribution of the activated carbon and actual or estimated values of its equilibrium mercury adsorption capacity, the incremental reduction in mercury concentration across each ESP can be predicted and compared to experimental results. Because the model does not incorporate kinetics associated with gas-phase mercury transformation or surface adsorption, the model predictions representthe mass-transfer-limited performance. Comparing field data to model results reveals many facilities performing at or near the predicted mass-transfer-limited maximum, particularly at low rates of sorbent injection. Where agreement is poor between field data and model predictions, additional chemical or physical phenomena may be responsible for reducing mercury removal efficiencies.

  8. Development of Nano-Sulfide Sorbent for Efficient Removal of Elemental Mercury from Coal Combustion Fuel Gas.

    Science.gov (United States)

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Shih, Kaimin

    2016-09-06

    The surface area of zinc sulfide (ZnS) was successfully enlarged using nanostructure particles synthesized by a liquid-phase precipitation method. The ZnS with the highest surface area (named Nano-ZnS) of 196.1 m(2)·g(-1) was then used to remove gas-phase elemental mercury (Hg(0)) from simulated coal combustion fuel gas at relatively high temperatures (140 to 260 °C). The Nano-ZnS exhibited far greater Hg(0) adsorption capacity than the conventional bulk ZnS sorbent due to the abundance of surface sulfur sites, which have a high binding affinity for Hg(0). Hg(0) was first physically adsorbed on the sorbent surface and then reacted with the adjacent surface sulfur to form the most stable mercury compound, HgS, which was confirmed by X-ray photoelectron spectroscopy analysis and a temperature-programmed desorption test. At the optimal temperature of 180 °C, the equilibrium Hg(0) adsorption capacity of the Nano-ZnS (inlet Hg(0) concentration of 65.0 μg·m(-3)) was greater than 497.84 μg·g(-1). Compared with several commercial activated carbons used exclusively for gas-phase mercury removal, the Nano-ZnS was superior in both Hg(0) adsorption capacity and adsorption rate. With this excellent Hg(0) removal performance, noncarbon Nano-ZnS may prove to be an advantageous alternative to activated carbon for Hg(0) removal in power plants equipped with particulate matter control devices, while also offering a means of reusing fly ash as a valuable resource, for example as a concrete additive.

  9. Mercury exposure in a high fish eating Bolivian Amazonian population with intense small-scale gold-mining activities.

    Science.gov (United States)

    Barbieri, Flavia Laura; Cournil, Amandine; Gardon, Jacques

    2009-08-01

    Methylmercury exposure in Amazonian communities through fish consumption has been widely documented in Brazil. There is still a lack of data in other Amazonian countries, which is why we conducted this study in the Bolivian Amazon basin. Simple random sampling was used from a small village located in the lower Beni River, where there is intense gold mining and high fish consumption. All participants were interviewed and hair samples were taken to measure total mercury concentrations. The hair mercury geometric mean in the general population was 3.02 microg/g (CI: 2.69-3.37; range: 0.42-15.65). Age and gender were not directly associated with mercury levels. Fish consumption showed a positive relation and so did occupation, especially small-scale gold mining. Hair mercury levels were lower than those found in Brazilian studies, but still higher than in non-exposed populations. It is necessary to assess mercury exposure in the Amazonian regions where data is still lacking, using a standardized indicator.

  10. Mercury in Canadian crude oil

    International Nuclear Information System (INIS)

    Hollebone, B.P.

    2005-01-01

    Estimates for average mercury concentrations in crude oil range widely from 10 ng/g of oil to 3,500 ng/g of oil. With such a broad range of estimates, it is difficult to determine the contributions of the petroleum sector to the total budget of mercury emissions. In response to concerns that the combustion of petroleum products may be a major source of air-borne mercury pollution, Environment Canada and the Canadian Petroleum Products Institute has undertaken a survey of the average total mercury concentration in crude oil processed in Canadian refineries. In order to calculate the potential upper limit of total mercury in all refined products, samples of more than 30 different types of crude oil collected from refineries were measured for their concentration of mercury as it enters into a refinery before processing. High temperature combustion, cold vapour atomic absorption and cold vapour atomic fluorescence were the techniques used to quantify mercury in the samples. The results of the study provide information on the total mass of mercury present in crude oil processed in Canada each year. Results can be used to determine the impact of vehicle exhaust emissions to the overall Canadian mercury emission budget. 17 refs., 2 tabs., 2 figs

  11. Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.

    Science.gov (United States)

    Park, Jeongmin; Lee, Sang-Sup

    2018-04-25

    Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.

  12. High Fructose Corn Syrup, Mercury, and Autism--Is There a Link?

    Science.gov (United States)

    Opalinski, Heather A.

    2012-01-01

    The purpose of this article is to review relevant background literature and research regarding the evidence linking high fructose corn syrup (HFCS), mercury, and the increased incidence of autism among the population in the United States. Results of review suggest that rigorous scientific studies need to be performed to conclusively identify the…

  13. Preparation and evaluation of coal-derived activated carbons for removal of mercury vapor from simulated coal combustion flue fases

    Science.gov (United States)

    Hsi, H.-C.; Chen, S.; Rostam-Abadi, M.; Rood, M.J.; Richardson, C.F.; Carey, T.R.; Chang, R.

    1998-01-01

    Coal-derived activated carbons (CDACs) were tested for their suitability in removing trace amounts of vapor-phase mercury from simulated flue gases generated by coal combustion. CDACs were prepared in bench-scale and pilot-scale fluidized-bed reactors with a three-step process, including coal preoxidation, carbonization, and then steam activation. CDACs from high-organicsulfur Illinois coals had a greater equilibrium Hg0 adsorption capacity than activated carbons prepared from a low-organic-sulfur Illinois coal. When a low-organic-sulfur CDAC was impregnated with elemental sulfur at 600 ??C, its equilibrium Hg0 adsorption capacity was comparable to the adsorption capacity of the activated carbon prepared from the high-organicsulfur coal. X-ray diffraction and sulfur K-edge X-ray absorption near-edge structure examinations showed that the sulfur in the CDACs was mainly in organic forms. These results suggested that a portion of the inherent organic sulfur in the starting coal, which remained in the CDACs, played an important role in adsorption of Hg0. Besides organic sulfur, the BET surface area and micropore area of the CDACs also influenced Hg0 adsorption capacity. The HgCl2 adsorption capacity was not as dependent on the surface area and concentration of sulfur in the CDACs as was adsorption of Hg0. The properties and mercury adsorption capacities of the CDACs were compared with those obtained for commercial Darco FGD carbon.

  14. Mercury Spill Responses - Five States, 2012-2015.

    Science.gov (United States)

    Wozniak, Ryan J; Hirsch, Anne E; Bush, Christina R; Schmitz, Stuart; Wenzel, Jeff

    2017-03-17

    Despite measures to educate the public about the dangers of elemental mercury, spills continue to occur in homes, schools, health care facilities, and other settings, endangering the public's health and requiring costly cleanup. Mercury is most efficiently absorbed by the lungs, and exposure to high levels of mercury vapor after a release can cause cough, sore throat, shortness of breath, nausea, vomiting, diarrhea, headaches, and visual disturbances (1). Children and fetuses are most susceptible to the adverse effects of mercury vapor exposure. Because their organ systems are still developing, children have increased respiratory rates, and they are closer to the ground where mercury vapors are most highly concentrated (2). To summarize key features of recent mercury spills and lessons learned, five state health departments involved in the cleanup (Iowa, Michigan, Missouri, North Carolina, and Wisconsin) compiled data from various sources on nonthermometer mercury spills from 2012 to 2015. The most common sites of contamination were residences, schools and school buses, health care facilities, and commercial and industrial facilities. Children aged mercury exposure. To protect the public's health after a mercury spill, it is important that local, state, and federal agencies communicate and coordinate effectively to ensure a quick response, and to minimize the spread of contamination. To reduce the number of mercury spills that occur in the United States, public health officials should increase awareness about exchange programs for mercury-containing items and educate school and health care workers about sources of mercury and how to dispose of them properly.

  15. OCCURRENCE OF MERCURY-RESISTANT MICROORGANISMS IN MERCURY-CONTAMINATED SOILS AND SEDIMENTS IN PAVLODAR, KAZAKHSTAN

    Science.gov (United States)

    There is extensive mercury contamination of soil surrounding a chloralkali plant in Pavlodar, Kazakhstan that operated from 1970 to 1990. High-level mercury contamination exists within the confines of the plant, at nearby off-site waste storage and evaporation ponds, and in Balky...

  16. Chemical mechanisms in mercury emission control technologies

    Energy Technology Data Exchange (ETDEWEB)

    Olson, E.S.; Laumb, J.D.; Benson, S.A.; Dunham, G.E.; Sharma, R.K.; Mibeck, B.A.; Miller, S.J.; Holmes, M.J.; Pavlish, J.H. [University of North Dakota, Energy and Environmental Research Center, Grand Forks, ND (United States)

    2003-05-01

    The emission of elemental mercury in the flue gas from coal-burning power plants is a major environmental concern. Control technologies utilizing activated carbon show promise and are currently under intense review. Oxidation and capture of elemental mercury on activated carbon was extensively investigated in a variety of flue gas atmospheres. Extensive parametric testing with individual and a variety of combinations and concentrations of reactive flue gas components and spectroscopic examination of the sulfur and chlorine forms present before and after breakthrough have led to an improved model to explain the kinetic and capacity results. The improved model delineates the independent Lewis acid oxidation site as well as a zig-zag carbene site on the carbon edge that performs as a Lewis base in reacting with both the oxidized mercury formed at the oxidation site and with the acidic flue gas components in competing reactions to form organochlorine, sulfinate, and sulfate ester moieties on the carbon edge.

  17. Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury.

    Science.gov (United States)

    Dakova, Ivanka; Karadjova, Irina; Georgieva, Ventsislava; Georgiev, George

    2009-04-30

    Metal ion-imprinted polymer particles have been prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as cross-linking agent and 2,2'-azobisisobutyronitrile as initiator, in the presence of Hg(II)-1-(2-thiazolylazo)-2-naphthol complex. The separation and preconcentration characteristics of the Hg-ion-imprinted microbeads for inorganic mercury have been investigated by batch procedure. The optimal pH value for the quantitative sorption is 7. The adsorbed inorganic mercury is easily eluted by 2 mL 4M HNO(3). The adsorption capacity of the newly synthesized Hg ion-imprinted microbeads is 32.0 micromol g(-1) for dry copolymer. The selectivity of the copolymer toward inorganic mercury (Hg(II)) ion is confirmed through the comparison of the competitive adsorptions of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II)) and high values of the selectivity and distribution coefficients have been calculated. Experiments performed for selective determination of inorganic mercury in mineral and sea waters showed that the interfering matrix does not influence the extraction efficiency of Hg ion-imprinted microbeads. The detection limit for inorganic mercury is 0.006 microg L(-1) (3 sigma), determined by cold vapor atomic adsorption spectrometry. The relative standard deviation varied in the range 5-9 % at 0.02-1 microg L(-1) Hg levels. The new Hg-ion-imprinted microbeads have been tested and applied for the speciation of Hg in river and mineral waters: inorganic mercury has been determined selectively in nondigested sample, while total mercury e.g. sum of inorganic and methylmercury, has been determined in digested sample.

  18. An investigation of the possibility of mercury phytoremediation from Bandar ImamChlor-alkali plants' wastewater using Phragmites australis

    International Nuclear Information System (INIS)

    Tayebi, L.; Hamidian, A.H.; Danehkar, A.; Poorbagher, H.

    2016-01-01

    The Petrochemical industry is the most important and most widely active industries in the country. Due to the variety and complexity of industrial products, it also produces a wild range of pollutants. Mercury waste disposal from Chlor-alkali units is one of the fundamental problems of this industry. Various studies have shown that Phytoremediation system for removal of mercury from aqueous solutions is very efficient and, in some cases up to 95% of mercury has been removed from the solution. The purpose of this study was to evaluate the ability of common reed (Phragmites australis) in the removal of mercury from the Chlor-alkali effluent in Bandar Imam Petrochemical. Plant samples Harvested from Shadegan wetland were cultured hydroponically in plastic aquariums. Effluent samples which were taken from Chlor-alkali plants were added to the culture medium. An aquarium containing wastewater, water and nutrients was considered as control. Mercury concentrations in water and plant at 1, 3, 5 and 7 days were measured by Varian Spectra 220 Atomic Absorption Spectroscopy. The results showed that Time has a direct effect on mercury up taking by common reed. The common Reed absorption average was 2657.25 ppm within 7 days, that shows a high capacity of mercury absorption from Chlor-alkali plant effluents. Also In the study period, 96.25% of mercury were removed from common reed aquarium effulgent water.

  19. Factors influencing mercury concentrations in walleyes in northern Wisconsin lakes

    Science.gov (United States)

    Wiener, J.G.; Martini, R.E.; Sheffy, T.B.; Glass, G.E.

    1990-01-01

    The authors examined relations between mercury concentrations in walleyes Stizostedion vitreum and the characteristics of clear-water Wisconsin lakes, which spanned a broad range of pH values (5.0-8.1) and acid- neutralizing capacities (-9 to 1,017 mu eq/L). Total concentrations of mercury in axial muscle tissue of walleyes (total length, 25-56 cm) varied from 0.12 to 1.74 mu g/g wet weight. Concentrations were greatest in fish from the eight lakes with pH less than 7.0; concentrations in these fish equaled or exceeded 0.5 mu g/g in 88% of the samples analyzed and 1.0 mu g/g in 44%. In the five lakes with pH of 7.0 and above, concentrations exceeded 0.5 mu g/g in only 1 of 21 walleyes. Multiple regression revealed that lake pH and total length of fish accounted for 69% of the variation in mercury concentration in walleyes. Regression models with total length and either waterborne calcium or acid-neutralizing capacity as independent variables accounted for 67% of the variation in concentration.

  20. Mercury

    NARCIS (Netherlands)

    de Vries, Irma

    2017-01-01

    Mercury is a naturally occurring metal that exists in several physical and chemical forms. Inorganic mercury refers to compounds formed after the combining of mercury with elements such as chlorine, sulfur, or oxygen. After combining with carbon by covalent linkage, the compounds formed are called

  1. Tolerance to various toxicants by marine bacteria highly resistant to mercury

    Digital Repository Service at National Institute of Oceanography (India)

    De, J.; Ramaiah, N.; Mesquita, A.; Verlecar, X.N.

    of growth in media containing 5 ppm mercury. Plasmid-curing assays done in this study ascertained that resistance to mercury antibiotics, and toxic xenobiotics is mediated by chromosomally borne genes and/or transposable elements rather than by plasmids...

  2. Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species

    Directory of Open Access Journals (Sweden)

    J. Bieser

    2017-06-01

    Full Text Available Atmospheric chemistry and transport of mercury play a key role in the global mercury cycle. However, there are still considerable knowledge gaps concerning the fate of mercury in the atmosphere. This is the second part of a model intercomparison study investigating the impact of atmospheric chemistry and emissions on mercury in the atmosphere. While the first study focused on ground-based observations of mercury concentration and deposition, here we investigate the vertical and interhemispheric distribution and speciation of mercury from the planetary boundary layer to the lower stratosphere. So far, there have been few model studies investigating the vertical distribution of mercury, mostly focusing on single aircraft campaigns. Here, we present a first comprehensive analysis based on various aircraft observations in Europe, North America, and on intercontinental flights. The investigated models proved to be able to reproduce the distribution of total and elemental mercury concentrations in the troposphere including interhemispheric trends. One key aspect of the study is the investigation of mercury oxidation in the troposphere. We found that different chemistry schemes were better at reproducing observed oxidized mercury patterns depending on altitude. High concentrations of oxidized mercury in the upper troposphere could be reproduced with oxidation by bromine while elevated concentrations in the lower troposphere were better reproduced by OH and ozone chemistry. However, the results were not always conclusive as the physical and chemical parameterizations in the chemistry transport models also proved to have a substantial impact on model results.

  3. OCCURRENCE OF MICROORGANISMS RESISTANT TO MERCURY IN MERCURY CONTAMINATED SOILS AND SEDIMENTS IN PAVLODAR, KAZAKHSTAN

    Science.gov (United States)

    There is extensive mercury contamination of soil surrounding a chloralkali plant in Pavlodar, Kazakhstan that operated from 1970 to 1990. High-level mercury contamination exists within the confines of the plant, at nearby off-site waste storage and evaporation ponds, and in Balky...

  4. Mercury in the environment : a primer

    Energy Technology Data Exchange (ETDEWEB)

    Lourie, B; Glenn, W [ed.; Ogilvie, K; Everhardus, E; Friesen, K; Rae, S

    2003-06-01

    This report provides an overview of the occurrence and effects of mercury in the environment and its impacts on human health. Low levels of mercury occur naturally everywhere in the environment in plants, animals, rocks and air. Incidental emissions occur when natural mercury is released to the environment through human activity. In Canada, coal burning and metal processing are the two largest point sources of atmospheric mercury emissions. Energy facilities have the option to invest in expensive control technologies for coal plants, or they can generate electricity from alternative energy sources. Energy conservation, however, offers the greatest overall benefits for the environment and the public. Mercury can also be released when products containing mercury (such as electrical switches, thermostats, dental amalgam, and thermometers) are broken while in use, or when they are crushed in garbage trucks and dumped in landfills. Source separation is the best way to reduce waste-related emissions. Once mercury is released to the natural environment, it can be transported long distances through air or watercourses. It is volatile, therefore evaporates readily to the atmosphere where it may do one of three things: it may fall out near the point where it was emitted; it may be transported long distances to some point downwind; or, it may enter the global atmospheric mercury pool where it will circle the globe for a year or more within the Earth's major weather systems before being deposited. Data from Canada's National Pollutant Release Inventory indicates that mercury releases and transfers total 28,674 kg per year. The most critical component of the mercury cycle is the conversion of inorganic forms of mercury to the organic compound methylmercury which is more toxic to humans. Most concern about mercury focuses on lakes and other aquatic ecosystems. Fish in hydroelectric reservoirs have been found to contain elevated methylmercury levels because natural mercury in the

  5. Occupational Metallic Mercury Poisoning in Gilders

    Directory of Open Access Journals (Sweden)

    M Vahabzadeh

    2016-04-01

    Full Text Available Occupational exposure to elemental mercury vapor usually occurs through inhalation during its utilizations. This leads to a variety of adverse health effects. In some Islamic cities, this type of poisoning may occur during gilding of shrines using elemental mercury with gold. Herein, we report on three male patients aged 20–53 years, who were diagnosed with occupational metallic mercury poisoning due to gilding of a shrine. All patients presented with neuro-psychiatric disorders such as anxiety, loss of memory and concentration, and sleep disorders with high urinary mercury concentrations of 326–760 μg/L upon referring, 3–10 days after cessation of elemental mercury exposure. Following chelating therapy, the patients recovered clinically and their mercury concentrations declined to non-toxic level (<25 μg/L. Health, environmental and labor authorities, as well as the gilders should be aware of the toxicity risk of exposure to metalic mercury during gilding in closed environments and act accordingly.

  6. Magnesium-rich Basalts on Mercury

    Science.gov (United States)

    Martel, L. M. V.

    2013-05-01

    X-ray and gamma-ray spectrometers on NASA's MESSENGER spacecraft are making key measurements regarding the composition and properties of the surface of Mercury, allowing researchers to more clearly decipher the planet's formation and geologic history. The origin of the igneous rocks in the crust of Mercury is the focus of recent research by Karen Stockstill-Cahill and Tim McCoy (National Museum of Natural History, Smithsonian Institution), along with Larry Nittler and Shoshana Weider (Carnegie Institution of Washington) and Steven Hauck II (Case Western Reserve University). Using the well-known MELTS computer code Stockstill-Cahill and coauthors worked with MESSENGER-derived and rock-analog compositions to constrain petrologic models of the lavas that erupted on the surface of Mercury. Rock analogs included a partial melt of the Indarch meteorite and a range of Mg-rich terrestrial rocks. Their work shows the lavas on Mercury are most similar to terrestrial magnesian basalt (with lowered FeO content). The implications of the modeling are that Mg-rich lavas came from high-temperature sources in Mercury's mantle and erupted at high temperature with exceptionally low viscosity into thinly bedded and laterally extensive flows, concepts open to further evaluation by laboratory experiments and by geologic mapping of Mercury's surface using MESSENGER's imaging system and laser altimeter to document flow features and dimensions.

  7. Non-carbon sorbents for mercury removal from flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, G.O.; Dubovik, M.; Cesario, M. [TDA Research Inc., Wheat Ridge, CO (United States)

    2005-07-01

    TDA Research Inc. is developing a new sorbent that can effectively remove mercury from flue gases. It is made of non-carbon based materials and will therefore not alter the properties of the fly ash. The sorbent can be produced as an injectable powder. The paper summarises the initial testing results of the new sorbent. The sorbent exhibited 7.5 to 11.0 mg/g mercury absorption capacity under representative flue gas streams depending on the operating temperature and gas hourly space velocity. The sorbent also showed resistance to sulfur poisoning by sulfur dioxide. 6 refs., 3 figs., 1 tab.

  8. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Science.gov (United States)

    2010-10-01

    ... ounces) of mercury per package; (iv) Tubes which are completely jacketed in sealed leakproof metal cases... 49 Transportation 2 2010-10-01 2010-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For...

  9. Recovery of mercury from mercury compounds via electrolytic methods

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  10. Mercury reduction and complexation by natural organic matter

    International Nuclear Information System (INIS)

    Gu, Baohua; Bian, Yongrong; Miller, Carrie L.; Dong, Wenming; Jiang, Xin; Liang, Liyuan

    2011-01-01

    Mercuric Hg(II) species form complexes with natural dissolved organic matter (DOM) such as humic acid (HA), and this binding is known to affect the chemical and biological transformation and cycling of mercury in aquatic environments. Dissolved elemental mercury, Hg(0), is also widely observed in sediments and water. However, reactions between Hg(0) and DOM have rarely been studied in anoxic environments. Here, under anoxic dark conditions we show strong interactions between reduced HA and Hg(0) through thiol-ligand induced oxidative complexation with an estimated binding capacity of about 3.5 umol Hg(0)/g HA and a partitioning coefficient greater than 10 6 mL/g. We further demonstrate that Hg(II) can be effectively reduced to Hg(0) in the presence of as little as 0.2 mg/L reduced HA, whereas production of purgeable Hg(0) is inhibited by complexation as HA concentration increases. This dual role played by DOM in the reduction and complexation of mercury is likely widespread in anoxic sediments and water and can be expected to significantly influence the mercury species transformations and biological uptake that leads to the formation of toxic methylmercury.

  11. Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests

    Science.gov (United States)

    Wong, Wayne A.

    2003-01-01

    The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in

  12. CSTI High Capacity Power

    International Nuclear Information System (INIS)

    Winter, J.M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed

  13. Ignition of mercury-free high intensity discharge lamps

    International Nuclear Information System (INIS)

    Czichy, M; Mentel, J; Awakowicz, P; Hartmann, T

    2008-01-01

    To achieve a better understanding of the ignition behaviour of D4 lamps for automotive headlights the ignition of mercury-free metal iodide test lamps characterized by a high xenon pressure, a small electrode distance and small electrode-wall distances is investigated. The ignition of these lamps is dominated by a high voltage requirement. Nevertheless lamps are found that show a surprisingly low ignition voltage. Electrical measurements and simultaneous optical observations of the ultra-fast streamer processes show that the breakdown takes place in two different modes. One of the ignition modes which requires a high ignition voltage is characterized by a breakdown in the volume between the electrode tips. The other mode is characterized by streamer discharges along the wall. In this case the cathode, its base and the wall around is involved in the ignition process and the lamp breaks down at low voltages

  14. Isolation, screening and identification of mercury resistant bacteria from mercury contaminated soil

    Directory of Open Access Journals (Sweden)

    Kowalczyk Anna

    2016-01-01

    Full Text Available New bacterial strains resistant to high concentration of mercury were obtained and character iz ed focusing on their potential application in bioremediation. The biological material was isolated from soil contaminated with mercury. The ability to removal of Hg from the liquid medium and the effect of the various pH and mercury concentrations in the environment on bacterial strains growth kinetics were tested. The selected strains were identified by analysis of the 16S ribosome subunit coding sequenc es as Pseudomonas syringae. The analysis of Hg concentration in liquid medium as effect of microbial metabolism demonstrated that P. syringae is able to remove almost entire metal from medium after 120 hours of incubation. Obtained results revealed new ability of the isolated strain P. syringae. Analyzed properties of this soil bacteria species able to reduce concentration of Hg ors immobi lize this metal are promising for industrial wastewater treatment and bioremediation of the soils polluted especially by mercury lamps scrapping, measuring instruments, dry batteries, detonators or burning fuels made from crude oil, which may also contain mercury. Selected bacteria strains provide efficient and relatively low-cost bioremediation of the areas and waters contaminated with Hg.

  15. Below a Historic Mercury Mine: Non-linear Patterns of Mercury Bioaccumulation in Aquatic Organisms

    Science.gov (United States)

    Haas, J.; Ichikawa, G.; Ode, P.; Salsbery, D.; Abel, J.

    2001-12-01

    Unlike most heavy metals, mercury is capable of bioaccumulating in aquatic food-chains, primarily because it is methylated by bacteria in sediment to the more toxic methylmercury form. Mercury concentrations in a number of riparian systems in California are highly elevated as a result of historic mining activities. These activities included both the mining of cinnabar in the coastal ranges to recover elemental mercury and the use of elemental mercury in the gold fields of the Sierra Nevada Mountains. The most productive mercury mining area was the New Almaden District, now a county park, located in the Guadalupe River drainage of Santa Clara County, where cinnabar was mined and retorted for over 100 years. As a consequence, riparian systems in several subwatersheds of the Guadalupe River drainage are contaminated with total mercury concentrations that exceed state hazardous waste criteria. Mercury concentrations in fish tissue frequently exceed human health guidelines. However, the potential ecological effects of these elevated mercury concentrations have not been thoroughly evaluated. One difficulty is in extrapolating sediment concentrations to fish tissue concentrations without accounting for physical and biological processes that determine bioaccumulation patterns. Many processes, such as methylation and demethylation of mercury by bacteria, assimilation efficiency in invertebrates, and metabolic rates in fish, are nonlinear, a factor that often confounds attempts to evaluate the effects of mercury contamination on aquatic food webs. Sediment, benthic macroinvertebrate, and fish tissue samples were collected in 1998 from the Guadalupe River drainage in Santa Clara County at 13 sites upstream and downstream from the historic mining district. Sediment and macroinvertebrate samples were analyzed for total mercury and methylmercury. Fish samples were analyzed for total mercury as whole bodies, composited by species and size. While linear correlations of sediment

  16. Mercury-cycling in surface waters and in the atmosphere - species analysis for the investigation of transformation and transport properties of mercury

    International Nuclear Information System (INIS)

    Ebinghaus, R.; Hintelmann, H.; Wilken, R.D.

    1994-01-01

    The river Elbe has been one of the most contaminated rivers with regard to mercury for many years. In 1991 a length-profile has been measured for mercury and methylmercury (CH 3 Hg + ) from Obristvi, Czech Republic, to the German bight. Total mercury has been measured by cold vapor atomic absorption spectrometry (CVAAS). The organo mercury compounds have been separated by high performance liquid chromatography (HPLC) connected on-line to an atomic fluorescence spectrometer (AFS) by a continuous flow-system. Total mercury up to 120 mg Hg + /kg and CH 3 Hg + concentrations up to 130 μg CH 3 Hg + /kg could be detected in special sites. The formation of CH 3 Hg + in sediments can be caused besides the methylation of mercury, by sulphate reducing or methanogenic bacteria and transmethylation reactions with organometals. Atmospheric mercury concentrations have been measured at three different European sites. Samples have been collected on gold-coated glass balls or on quartz wool, respectively. After thermal desorption mercury has been determined using the two step amalgamation technique with AFS detection. Compared to natural background concentrations of total gaseous mercury (TGM), slightly increased levels could be detected at a rural site in Germany. This increase can probably be explained by long-range transport processes. Within the vicinity of a inactivated mercury production plant high concentrations of up to 13.5 ng/m 3 particle associated mercury (Hg part ) have been detected. Consequently, dry deposition of mercury in the particulate form can intensify the total deposition flux close to Hg-emitting sources. (orig.)

  17. Atmospheric mercury accumulation between 5900 and 800 calibrated years BP in the high arctic of Canada recorded by Peat Hummocks

    DEFF Research Database (Denmark)

    Givelet, N.; Roos-Barraclough, F.; Goodsite, Michael Evan

    2004-01-01

    In this paper, we present the first comprehensive long-term record of preanthropogenic rates of atmospheric mercury accumulation in dated peat deposits for the High Arctic of Canada. Geochemical studies of two peat hummocks from Bathurst Island, Nunavut reveal substantial inputs from soil dust...... (titanium), marine aerosols (bromine), and mineral-water interactions (uranium). Mercury, however, was supplied to these peat mounds exclusively by atmospheric deposition. Mercury concentration measurements and age dating of the peat profiles indicate rather constant natural "background" mercury flux of ca....... 1 microgram per square meter per year from 5900 to 800 calibrated years BP. These values are well within the range of the mercury fluxes reported from other Arctic locations, but also by peat cores from southern Canada that provide a record of atmospheric Hg accumulation extending back 8000 years...

  18. Human accumulation of mercury in Greenland

    DEFF Research Database (Denmark)

    Johansen, Poul; Mulvad, Gert; Pedersen, Henning Sloth

    2007-01-01

    In the Arctic, the traditional diet exposes its people to a high intake of mercury especially from marine mammals. To determine whether the mercury is accumulated in humans, we analyzed autopsy samples of liver, kidney and spleen from adult ethnic Greenlanders who died between 1990 and 1994 from...... a wide range of causes, natural and violent. Liver, kidney and spleen samples from between 33 and 71 case subjects were analyzed for total mercury and methylmercury, and liver samples also for selenium. Metal levels in men and women did not differ and were not related to age except in one case, i.......e. for total mercury in liver, where a significant declining concentration with age was observed. The highest total mercury levels were found in kidney followed by liver and spleen. Methylmercury followed the same pattern, but levels were much lower, constituting only 19% of the total mercury concentration...

  19. Human accumulation of mercury in Greenland

    DEFF Research Database (Denmark)

    Johansen, P.; Mulvad, G.; Pedersen, H. S.

    2007-01-01

    a wide range of causes, natural and violent. Liver, kidney and spleen samples from between 33 and 71 case subjects were analyzed for total mercury and methylmercury, and liver samples also for selenium. Metal levels in men and women did not differ and were not related to age except in one case, i......In the Arctic, the traditional diet exposes its people to a high intake of mercury especially from marine mammals. To determine whether the mercury is accumulated in humans, we analyzed autopsy samples of liver, kidney and spleen from adult ethnic Greenlanders who died between 1990 and 1994 from.......e. for total mercury in liver, where a significant declining concentration with age was observed. The highest total mercury levels were found in kidney followed by liver and spleen. Methylmercury followed the same pattern, but levels were much lower, constituting only 19% of the total mercury concentration...

  20. Capacity Bounds and High-SNR Capacity of MIMO Intensity-Modulation Optical Channels

    KAUST Repository

    Chaaban, Anas

    2018-02-19

    The capacity of the intensity modulation direct detection multiple-input multiple-output channel is studied. Therein, the nonnegativity constraint of the transmit signal limits the applicability of classical schemes, including precoding. Thus, new ways are required for deriving capacity bounds for this channel. To this end, capacity lower bounds are developed in this paper by deriving the achievable rates of two precodingfree schemes: Channel inversion and QR decomposition. The achievable rate of a DC-offset SVD-based scheme is also derived as a benchmark. Then, capacity upper bounds are derived and compared against the lower bounds. As a result, the capacity at high signal-to-noise ratio (SNR) is characterized for the case where the number of transmit apertures is not larger than the number of receive apertures, and is shown to be achievable by the QR decomposition scheme. This is shown for a channel with average intensity or peak intensity constraints. Under both constraints, the high-SNR capacity is approximated within a small gap. Extensions to a channel with more transmit apertures than receive apertures are discussed, and capacity bounds for this case are derived.

  1. Capacity Bounds and High-SNR Capacity of MIMO Intensity-Modulation Optical Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2018-01-01

    The capacity of the intensity modulation direct detection multiple-input multiple-output channel is studied. Therein, the nonnegativity constraint of the transmit signal limits the applicability of classical schemes, including precoding. Thus, new ways are required for deriving capacity bounds for this channel. To this end, capacity lower bounds are developed in this paper by deriving the achievable rates of two precodingfree schemes: Channel inversion and QR decomposition. The achievable rate of a DC-offset SVD-based scheme is also derived as a benchmark. Then, capacity upper bounds are derived and compared against the lower bounds. As a result, the capacity at high signal-to-noise ratio (SNR) is characterized for the case where the number of transmit apertures is not larger than the number of receive apertures, and is shown to be achievable by the QR decomposition scheme. This is shown for a channel with average intensity or peak intensity constraints. Under both constraints, the high-SNR capacity is approximated within a small gap. Extensions to a channel with more transmit apertures than receive apertures are discussed, and capacity bounds for this case are derived.

  2. Study of the environmental cycling of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Frades, J P; Hildebrand, S G; Huckabee, J W; Murias, B; Diaz, F S; Wilson, R H

    1977-01-01

    A study of mercury in the environment is under way near the mercury mine at Almaden, Spain. The main aspects of the project are: ecology; atmospheric monitoring; and human studies. The mercury deposit at Almaden is described. The liquid effluent from the mine and smelter contains high concentrations of mercury that pollute nearby rivers. Sample collection and analytical methods used in the ecological survey are reviewed. Ecological experiments are considered. Air monitoring studies and human studies currently being performed are assessed. (1 map)

  3. Chelating capacity and the adverse effects of two treatments (N-acetylcysteine and D-penicillamine in patients with mercury poisoning in Segovia, a municipality at the northeastern part of Antioquia, Colombia

    Directory of Open Access Journals (Sweden)

    Fanny Cuesta González

    2008-02-01

    Full Text Available

    OBJECTIVE: to compare the chelating capacity and the adverse effects of treatments with either Nacetylcysteine or D-penicillamine in patients with mercury poisoning in Segovia, a municipality at the northeastern part of Antioquia, Colombia.

    METHODS: 50 patients with toxic levels of mercury were enrolled in a 10 days open label, randomized comparison of either D-penicillamine (750 mg/day or Nacetilcysteine (1.8 g/day. Patients were followed on a daily basis to assess the elimination of mercury in urine and the frequency of adverse effects of each treatment.

    RESULTS: 32 patients completed 10 days of drug treatment. Averages of mercury elimination in 24 hours urine, before and after treatment with D-penicillamine and N-acetylcysteine, were not different (211.96 mcg ± 190 and 262.15 mcg ± 305 and 232.85 mcg ± 248 and 218.65 mcg ± 240, respectively, P > 0.05 for all comparisons. Evaluation of the frequency of adverse effects showed a significant difference between the two groups: D-penicillamine (50% and N-acetylcysteine (11% p = 0.0079.

    CONCLUSION: this study

  4. Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic.

    Science.gov (United States)

    Korosi, Jennifer B; Griffiths, Katherine; Smol, John P; Blais, Jules M

    2018-06-02

    Recent climate change may be enhancing mercury fluxes to Arctic lake sediments, confounding the use of sediment cores to reconstruct histories of atmospheric deposition. Assessing the independent effects of climate warming on mercury sequestration is challenging due to temporal overlap between warming temperatures and increased long-range transport of atmospheric mercury following the Industrial Revolution. We address this challenge by examining mercury trends in short cores (the last several hundred years) from eight lakes centered on Cape Herschel (Canadian High Arctic) that span a gradient in microclimates, including two lakes that have not yet been significantly altered by climate warming due to continued ice cover. Previous research on subfossil diatoms and inferred primary production indicated the timing of limnological responses to climate warming, which, due to prevailing ice cover conditions, varied from ∼1850 to ∼1990 for lakes that have undergone changes. We show that climate warming may have enhanced mercury deposition to lake sediments in one lake (Moraine Pond), while another (West Lake) showed a strong signal of post-industrial mercury enrichment without any corresponding limnological changes associated with warming. Our results provide insights into the role of climate warming and organic carbon cycling as drivers of mercury deposition to Arctic lake sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Searching for the Source of Salt Marsh Buried Mercury.

    Science.gov (United States)

    Brooke, C. G.; Nelson, D. C.; Fleming, E. J.

    2016-12-01

    Salt marshes provide a barrier between upstream mercury contamination and coastal ecosystems. Mercury is sorbed, transported, and deposited in estuarine systems. Once the upstream mercury source has been remediated, the downstream mercury contaminated salt marsh sediments should become "capped" or buried by uncontaminated sediments preventing further ecosystem contamination. Downstream from a remediated mercury mine, an estuarine intertidal marsh in Tomales Bay, CA, USA, scavengers/predators (e.g. Pachygrapsus crassipes, Lined Shore Crab) have leg mercury concentrations as high as 5.5 ppm (dry wt./dry wt.), which increase significantly with crab size, a surrogate for trophic level. These elevated mercury concentrations suggests that "buried" mercury is rereleased into the environment. To locate possible sources of mercury release in Walker Marsh, we sampled a transect across the marsh that included diverse micro-environments (e.g. rhizoshere, stratified sediments, faunal burrows). From each location we determined the sediment structure, sediment color, total sediment mercury, total sediment iron, and microbial composition (n = 28). Where flora or fauna had perturbed the sediment, mercury concentrations were 10% less than undisturbed stratified sediments (1025 ppb vs. 1164 ppb, respectively). High-throughput SSU rRNA gene sequencing and subsequent co-occurrence network analysis genera indicated that in flora- or fauna- perturbed sediments there was an increased likelihood that microbial genera contained mercury mobilizing genes (94% vs 57%; in perturbed vs stratified sediments, respectively). Our observations are consistent with findings by others that in perturbed sites mercury mobility increased. We did however identify a microbial and geochemical profile with increased mercury mobility. For future work we plan to quantify the role these micro-environments have on mercury-efflux from salt marshes.

  6. Mercury and Your Health

    Science.gov (United States)

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  7. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    Directory of Open Access Journals (Sweden)

    Gonzalez-Ruiz Gloriene

    2011-08-01

    Full Text Available Abstract Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1 and polyphosphate kinase (ppk genes in bacteria in order to provide high mercury resistance and accumulation. Results In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. Conclusion The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and

  8. MERCURY CONTROL WITH CALCIUM-BASED SORBENTS AND OXIDIZING AGENTS

    Energy Technology Data Exchange (ETDEWEB)

    Thomas K. Gale

    2002-06-01

    The initial tasks of this DOE funded project to investigate mercury removal by calcium-based sorbents have been completed, and initial testing results have been obtained. Mercury monitoring capabilities have been obtained and validated. An approximately 1MW (3.4 Mbtu/hr) Combustion Research Facility at Southern Research Institute was used to perform pilot-scale investigations of mercury sorbents, under conditions representative of full-scale boilers. The initial results of ARCADIS G&M proprietary sorbents, showed ineffective removal of either elemental or oxidized mercury. Benchscale tests are currently underway to ascertain the importance of differences between benchscale and pilot-scale experiments. An investigation of mercury-capture temperature dependence using common sorbents has also begun. Ordinary hydrated lime removed 80 to 90% of the mercury from the flue gas, regardless of the temperature of injection. High temperature injection of hydrated lime simultaneously captured SO{sub 2} at high temperatures and Hg at low temperatures, without any deleterious effects on mercury speciation. Future work will explore alternative methods of oxidizing elemental mercury.

  9. Prenatal and early postnatal intoxication by inorganic mercury resulting from the maternal use of mercury containing soap.

    Science.gov (United States)

    Lauwerys, R; Bonnier, C; Evrard, P; Gennart, J P; Bernard, A

    1987-05-01

    A case of slight renal tubular dysfunction associated with cataract and anaemia was diagnosed in a 3-month-old black boy in whom high levels of mercury were found in blood and urine. Several arguments suggest that the renal, ocular and haematological defects may have resulted from exposure to mercury during foetal life and the 1-month lactation period due to the extensive use of inorganic mercury containing cosmetics by the mother.

  10. Acclimation of subsurface microbial communities to mercury

    DEFF Research Database (Denmark)

    de Lipthay, Julia R; Rasmussen, Lasse D; Øregaard, Gunnar

    2008-01-01

    of mercury tolerance and functional versatility of bacterial communities in contaminated soils initially were higher for surface soil, compared with the deeper soils. However, following new mercury exposure, no differences between bacterial communities were observed, which indicates a high adaptive potential......We studied the acclimation to mercury of bacterial communities of different depths from contaminated and noncontaminated floodplain soils. The level of mercury tolerance of the bacterial communities from the contaminated site was higher than those of the reference site. Furthermore, the level...... of the subsurface communities, possibly due to differences in the availability of mercury. IncP-1 trfA genes were detected in extracted community DNA from all soil depths of the contaminated site, and this finding was correlated to the isolation of four different mercury-resistance plasmids, all belonging...

  11. High Mercury Wet Deposition at a "Clean Air" Site in Puerto Rico.

    Science.gov (United States)

    Shanley, James B; Engle, Mark A; Scholl, Martha; Krabbenhoft, David P; Brunette, Robert; Olson, Mark L; Conroy, Mary E

    2015-10-20

    Atmospheric mercury deposition measurements are rare in tropical latitudes. Here we report on seven years (April 2005 to April 2012, with gaps) of wet Hg deposition measurements at a tropical wet forest in the Luquillo Mountains, northeastern Puerto Rico, U.S. Despite receiving unpolluted air off the Atlantic Ocean from northeasterly trade winds, during two complete years the site averaged 27.9 μg m(-2) yr(-1) wet Hg deposition, or about 30% more than Florida and the Gulf Coast, the highest deposition areas within the U.S. These high Hg deposition rates are driven in part by high rainfall, which averaged 2855 mm yr(-1). The volume-weighted mean Hg concentration was 9.8 ng L(-1), and was highest during summer and lowest during the winter dry season. Rainout of Hg (decreasing concentration with increasing rainfall depth) was minimal. The high Hg deposition was not supported by gaseous oxidized mercury (GOM) at ground level, which remained near global background concentrations (<10 pg m(-3)). Rather, a strong positive correlation between Hg concentrations and the maximum height of rain detected within clouds (echo tops) suggests that droplets in high convective cloud tops scavenge GOM from above the mixing layer. The high wet Hg deposition at this "clean air" site suggests that other tropical areas may be hotspots for Hg deposition as well.

  12. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2004-12-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.

  13. High Capacity cylinder roller bearing; High Capacity Zylinderrollenlager. Ein vollrolliges Lager mit Kaefig

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, J.; Baum, J. [SKF, Schweinfurt (Germany)

    2007-07-15

    The high capacity cylinder roller bearing is an example for continuous development of SKF products and does an effective contribution to increase operational safety and offers the possibility to reduce weight and compact design. (GL)

  14. Anthropogenic mercury deposition to arctic lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hermanson, M.H. [Westchester University, Westchester, PA (United States). Dept. of Health

    1998-01-01

    The history of atmospheric mercury inputs to remote arctic regions can be measured in lake sediment cores using lead-210 chronology. In the investigation, total mercury deposition is measured in sediments from Imitavik and Annak Lakes on the Belcher Islands in southeastern Hudson Bay, an area in the southern Canadian Arctic with no history of local industrial or agricultural sources of contamination. Both lakes received background and atmospheric inputs of mercury while Annak also received mercury from raw domestic sewage from the Hamlet of Sanikiluaq, a growing Inuit community of about 550 established in the late 1960s. Results from Imitavik show that anthropogenic mercury inputs, apparently transported through the atmosphere, began to appear in the mid-eighteenth century, and continued to the 1990s. Annak had a similar mercury history until the late 1960s when disposal of domestic sewage led to increased sediment and contaminant accumulation. The high input of mercury to Annak confirms that Sanikiluaq residents are exposed to mercury through native food sources. 39 refs., 7 figs., 3 tabs.

  15. A Target-Lighted dsDNA-Indicator for High-Performance Monitoring of Mercury Pollution and Its Antagonists Screening.

    Science.gov (United States)

    Qing, Zhihe; Zhu, Lixuan; Li, Xiaoxuan; Yang, Sheng; Zou, Zhen; Guo, Jingru; Cao, Zhong; Yang, Ronghua

    2017-10-17

    As well-known, the excessive discharge of heavy-metal mercury not only destroys the ecological environment, bust also leads to severe damage of human health after ingestion via drinking and bioaccumulation of food chains, and mercury ion (Hg 2+ ) is designated as one of most prevalent toxic metal ions in drinking water. Thus, the high-performance monitoring of mercury pollution is necessary. Functional nucleic acids have been widely used as recognition probes in biochemical sensing. In this work, a carbazole derivative, ethyl-4-[3,6-bis(1-methyl-4-vinylpyridium iodine)-9H-carbazol -9-yl)] butanoate (EBCB), has been synthesized and found as a target-lighted DNA fluorescent indicator. As a proof-of-concept, Hg 2+ detection was carried out based on EBCB and Hg 2+ -mediated conformation transformation of a designed DNA probe. By comparison with conventional nucleic acid indicators, EBCB held excellent advantages, such as minimal background interference and maximal sensitivity. Outstanding detection capabilities were displayed, especially including simple operation (add-and-read manner), ultrarapidity (30 s), and low detection limit (0.82 nM). Furthermore, based on these advantages, the potential for high-performance screening of mercury antagonists was also demonstrated by the fluorescence change of EBCB. Therefore, we believe that this work is meaningful in pollution monitoring, environment restoration and emergency treatment, and may pave a way to apply EBCB as an ideal signal transducer for development of high-performance sensing strategies.

  16. Cold cathode arc model in mercury discharges

    International Nuclear Information System (INIS)

    Li, Y.M.; Byszewski, W.W.; Budinger, A.B.

    1990-01-01

    Voltage/current characteristics measured during the starting of metal halide lamps indicate a low voltage discharge when condensates (mainly mercury) are localized on the electrodes. In this case, even with a cold cathode which does not emit electrons, the current is very high and voltage across the lamp drops to about 15 to 20 V. This type of discharge is similar to the cold cathode mercury vapor arc found in mercury pool rectifiers. The cathode sheath in the mercury vapor arc is characterized by very small cathode spot size, on the order of 10 -c cm 2 , very high current density of about 10 6 A/cm 2 and very low cathode fall of approximately 10 volts. The discharge is modified and generalized to describe the cathode phenomena in the cold cathode mercury vapor arc. The sensitivity of calculated discharge parameters with respect to such modifications were examined. Results show that the cathode fall voltage remains fairly constant (7-8 volts) with large fractional variations of metastable mercury atoms bombarding the cathode. This result compares very well with experimental waveforms when anode fall and plasma voltage approximations are incorporated

  17. Mercury Quick Facts: Health Effects of Mercury Exposure

    Science.gov (United States)

    ... 2012 What are the Health Effects of Mercury Exposure? The health effects that can be caused by breathing mercury depend ... they breathe faster and have smaller lungs. Health effects caused by long-term exposure to mercury vapors • • Anxiety • • Excessive shyness • • Anorexia • • Sleeping ...

  18. Volcanic mercury in Pinus canariensis

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  19. Volcanic mercury in Pinus canariensis.

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg(-1)) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg(-1)). Thus, mercury emissions originating from the eruption remained only as a mark-in pyroclastic wounds-and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg(-1)) and bark (6.0 μg kg(-1)) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  20. Mercury balance analysis

    International Nuclear Information System (INIS)

    Maag, J.; Lassen, C.; Hansen, E.

    1996-01-01

    A detailed assessment of the consumption of mercury, divided into use areas, was carried out. Disposal and emissions to the environment were also qualified. The assessment is mainly based on data from 1992 - 1993. The most important source of emission of mercury to air is solid waste incineration which is assessed in particular to be due to the supply of mercury in batteries (most likely mercury oxide batteries from photo equipment) and to dental fillings. The second most important source of mercury emission to air is coal-fired power plants which are estimated to account for 200-500 kg of mercury emission p.a. Other mercury emissions are mainly related to waste treatment and disposal. The consumption of mercury is generally decreasing. During the period from 1982/83 - 1992-93, the total consumption of mercury in Denmark was about halved. This development is related to the fact that consumption with regard to several important use areas (batteries, dental fillings, thermometers etc.) has been significantly reduced, while for other purposes the use of mercury has completely, or almost disappeared, i.e. (fungicides for seed, tubes etc.). (EG)

  1. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    International Nuclear Information System (INIS)

    Jain, V.; Shah, H.; Wilmarth, W. R.

    2016-01-01

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  2. High Power Proton Beam Shocks and Magnetohydrodynamics in a Mercury Jet Target for a Neutrino Factory

    CERN Document Server

    Fabich, A; Fabjan, Christian

    2002-01-01

    The feasibility of liquid metal jet targets for secondary particle production with high power proton beams has been studied. The main aspects of the thesis were benchmark experiments covering the behaviour of liquid targets under thermal shock waves induced by high power proton beams, and also magnetohydrodynamic effects. Severe challenges were imposed by safety issues and the restricted beam time to the tests in ISOLDE at CERN and at the High Magnetic Field Laboratory at Grenoble. Restricted access times in high radiation level areas were of the order of minutes and in this short time span, the complete experimental setup had to be performed and verified. The involvement of mercury as liquid target material and its activation during beam tests demanded special confinement precautions. The setup for both experiments was based on the use of a high speed camera system for observation of the mercury target. The presence of high radiation or high magnetic field required the installation of the sensitive camera sy...

  3. Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER.

    Science.gov (United States)

    Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C

    2016-03-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  4. PSYCHROPHILIC PSEUDOMONAS SP. RESISTANT TO MERCURY FROM PAVLODAR, KAZAKHSTAN

    Science.gov (United States)

    As mercury circulates and deposits globally, the remediation of extensive mercury contamination surrounding a chloralkali plant in Pavlodar, Kazakhstan is critical. High-levels of mercury contamination exist within the confines of the plant, at nearby off-site waste storage and e...

  5. Assessing elemental mercury vapor exposure from cultural and religious practices.

    Science.gov (United States)

    Riley, D M; Newby, C A; Leal-Almeraz, T O; Thomas, V M

    2001-08-01

    Use of elemental mercury in certain cultural and religious practices can cause high exposures to mercury vapor. Uses include sprinkling mercury on the floor of a home or car, burning it in a candle, and mixing it with perfume. Some uses can produce indoor air mercury concentrations one or two orders of magnitude above occupational exposure limits. Exposures resulting from other uses, such as infrequent use of a small bead of mercury, could be well below currently recognized risk levels. Metallic mercury is available at almost all of the 15 botanicas visited in New York, New Jersey, and Pennsylvania, but botanica personnel often deny having mercury for sale when approached by outsiders to these religious and cultural traditions. Actions by public health authorities have driven the mercury trade underground in some locations. Interviews indicate that mercury users are aware that mercury is hazardous, but are not aware of the inhalation exposure risk. We argue against a crackdown by health authorities because it could drive the practices further underground, because high-risk practices may be rare, and because uninformed government intervention could have unfortunate political and civic side effects for some Caribbean and Latin American immigrant groups. We recommend an outreach and education program involving religious and community leaders, botanica personnel, and other mercury users.

  6. Mercury Hair Concentration among Primary School Children in Malaysia

    Directory of Open Access Journals (Sweden)

    Nurul Izzah Abdul Samad

    2017-12-01

    Full Text Available The main concern regarding mercury exposure is the adverse health effect on the developing nervous system. The objective of this cross-sectional study was to determine hair mercury levels and their association with socio-demographic characteristics, complaints about mercury poisoning symptoms and the fish consumption pattern among children in Malaysia. A cross-sectional study was conducted among 215 school children aged 11 years old. Hair was collected from the children and the total mercury was analyzed using oxygen combustion–gold amalgamation atomic absorption spectrophotometry. Anthropometric data, a fish consumption questionnaire and mercury poisoning symptoms were collected during a personal interview. The mean hair mercury level among primary school children was 0.63 ± 0.59 µg/g with the geometric mean of 0.47 µg/g. A total of 14% of respondents had hair mercury levels above 1 µg/g. A multiple binary logistic regression analysis outlined that fish consumption of at least one meal per week increased the likelihood of having a high mercury level (odds ratio (OR 3.7, 95% confidence interval (CI 1.3–10.4. This study confirms the existence of a mercury burden among Malaysian children and the level is high compared to other regional studies. This study provides important baseline data regarding the mercury level among children in Malaysia.

  7. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  8. In-Beam Studies of High-Spin States in Mercury -183 and MERCURY-181

    Science.gov (United States)

    Shi, Detang

    The high-spin states of ^{183 }Hg were studied by using the reaction ^{155}Gd(^{32}S, 4n)^{183}Hg at a beam energy of 160 MeV with the tandem-linac accelerator system and the multi-element gamma-ray detection array at Florida State University. Two new bands, consisting of stretched E2 transitions and connected by M1 inter-band transitions, were identified in ^{183}Hg. Several new levels were added to the previously known bands at higher spin. The spins and parities to the levels in ^{183}Hg were determined from the analysis of their DCO ratios and B(M1)/B(E2) ratios. While the two pairs of previously known bands in ^ {183}Hg were proposed to 7/2^ -[514] and 9/2^+ [624], the two new bands are assigned as the 1/2^-[521] ground state configuration based upon the systematics of Nilsson orbitals in this mass region. The 354-keV transition previously was considered to be an E2 transition and assigned as the only transition from a band which is built on an oblate deformed i_{13/2} isomeric state. However, our DCO ratio analysis indicates that the 354-keV gamma-ray is an M1 transition. This changes the decay pattern of the 9/2^+[624 ] prolate structure in ^ {183}Hg, so it is seen to feed only into the i_{13/2} isomer band head. Our knowledge of the mercury nuclei far from stability was then extended through an in-beam study of the reaction ^{144}Sm(^{40 }Ar, 3n)^{181}Hg by using the Fragment Mass Analyzer (FMA) and the ten-Compton-suppressed -germanium-detector system at Argonne National Laboratory. Band structures to high-spin states are established for the first time in ^{181}Hg in the present experiment. The observed level structure of ^{181}Hg is midway between those in ^{185}Hg and in ^{183}Hg. The experimental results are analyzed in the framework of the cranking shell model (CSM). Alternative theoretical explanations are also presented and discussed. Systematics of neighboring mercury isotopes and N = 103 isotones is analyzed.

  9. Mercury in breast milk - a health hazard for infants in gold mining areas?

    Science.gov (United States)

    Bose-O'Reilly, Stephan; Lettmeier, Beate; Roider, Gabriele; Siebert, Uwe; Drasch, Gustav

    2008-10-01

    Breast-feeding can be a source of mercury exposure for infants. The main concern up to now is methyl-mercury exposure of women at child-bearing age. Certain fish species have high levels of methyl-mercury leading to consumer's advisory guidelines in regard of fish consumption to protect infants from mercury exposure passing through breast milk. Little is known about the transfer of inorganic mercury passing through breast milk to infants. Epidemiological studies showed negative health effects of inorganic mercury in gold mining areas. Small-scale gold miners use mercury to extract the gold from the ore. Environmental and health assessments of gold mining areas in Indonesia, Tanzania and Zimbabwe showed a high exposure with inorganic mercury in these gold mining areas, and a negative health impact of the exposure to the miners and the communities. This paper reports about the analysis and the results of 46 breast milk samples collected from mercury-exposed mothers. The median level of 1.87mug/l is fairly high compared to other results from literature. Some breast milk samples showed very high levels of mercury (up to 149mug/l). Fourteen of the 46 breast milk samples exceed 4mug/l which is considered to be a "high" level. US EPA recommends a "Reference Dose" of 0.3mug inorganic mercury/kg body weight/day [United States Environmental Protection Agency, 1997. Volume V: Health Effects of Mercury and Mercury Compounds. Study Report EPA-452/R-97-007: US EPA]. Twenty-two of the 46 children from these gold mining areas had a higher calculated total mercury uptake. The highest calculated daily mercury uptake of 127mug exceeds by far the recommended maximum uptake of inorganic mercury. Further systematic research of mercury in breast milk from small-scale gold mining areas is needed to increase the knowledge about the bio-transfer of mercury from mercury vapour-exposed mothers passing through breast milk to the breast-fed infant.

  10. Effect of diet on the capacity to remove mercury from the body of a penguin (Spheniscus demersus living in the ZOO

    Directory of Open Access Journals (Sweden)

    Falkowska L.

    2013-04-01

    Full Text Available Birds due to its position in the trophic chain are good monitors of the marine environment in terms of mercury contamination. For the proper interpretation of results it is necessary to know both the processes of accumulation of this metal in their bodies and processes of elimination. Research involving the Penguin (Spheniscus demersus living in a ZOO has identified the relationship between diet and the amount of mercury removed from the penguin body in guano, feathers, and in the case of females with eggs. The research was conducted in years 2009-2011. Total mercury was determined in elements responsible for detoxification and in the diet of penguins. Mercury concentration was determined by atomic absorption spectrophotometry with AMA-254 automatic mercury analyzer. The highest average mercury concentrations were determined in feathers: 1781.12 ngHg•g−1d.w., lower in eggs: 950.88 ngHg•g−1 dry weight (d.w.. and in a guano: 139.18 ngHg•g−1. In food, herrings caught in the southern Baltic, Hg concentrations were relatively low with averaged value 31.81 ngHg•g−1d.w.

  11. Mercury in Nelson's Sparrow subspecies at breeding sites.

    Directory of Open Access Journals (Sweden)

    Virginia L Winder

    Full Text Available BACKGROUND: Mercury is a persistent, biomagnifying contaminant that can cause negative effects on ecosystems. Marshes are often areas of relatively high mercury methylation and bioaccumulation. Nelson's Sparrows (Ammodramus nelsoni use marsh habitats year-round and have been documented to exhibit tissue mercury concentrations that exceed negative effects thresholds. We sought to further characterize the potential risk of Nelson's Sparrows to mercury exposure by sampling individuals from sites within the range of each of its subspecies. METHODOLOGY/PRINCIPAL FINDINGS: From 2009 to 2011, we captured adult Nelson's Sparrows at sites within the breeding range of each subspecies (A. n. nelsoni: Grand Forks and Upham, North Dakota; A. n. alterus: Moosonee, Ontario; and A. n. subvirgatus: Grand Manan Island, New Brunswick and sampled breast feathers, the first primary feather (P1, and blood for total mercury analysis. Mean blood mercury in nelsoni individuals captured near Grand Forks ranged from 0.84 ± 0.37 to 1.65 ± 1.02 SD ppm among years, between 2.0 and 4.9 times as high as concentrations at the other sites (P<0.01. Breast feather mercury did not vary among sites within a given sampling year (site means ranged from 0.98 ± 0.69 to 2.71 ± 2.93 ppm. Mean P1 mercury in alterus (2.96 ± 1.84 ppm fw was significantly lower than in any other sampled population (5.25 ± 2.24-6.77 ± 3.51 ppm; P ≤ 0.03. CONCLUSIONS/SIGNIFICANCE: Our study further characterized mercury in Nelson's Sparrows near Grand Forks; we documented localized and potentially harmful mercury concentrations, indicating that this area may represent a biological mercury hotspot. This finding warrants further research to determine if wildlife populations of conservation or recreational interest in this area may be experiencing negative effects due to mercury exposure. We present preliminary conclusions about the risk of each sampled population to mercury exposure.

  12. Mercury emission, control and measurement from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering; Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Cao, Yan [Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Zhang, Kai [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering

    2013-07-01

    Coal-fired electric power generation accounts for 65% of U.S. emissions of sulfur dioxide (SO2), 22% of nitrogen oxides (NOx), and 37% of mercury (Hg). The proposed Clear Air Interstate Rule (CAIR) and Clean Air Mercury Rule (CAMR) will attempt to regulate these emissions using a cap-and-trade program to replace a number of existing regulatory requirements that will impact this industry over the next decade. Mercury emissions remain the largest source that has not yet been efficiently controlled, in part because this is one of the most expensive to control. Mercury is a toxic, persistent pollutant that accumulates in the food chain. During the coal combustion process, when both sampling and accurate measurements are challenging, we know that mercury is present in three species: elemental, oxidized and particulate. There are three basic types of mercury measurement methods: Ontario Hydro Method, mercury continuous emission monitoring systems (CEMS) and sorbent-based monitoring. Particulate mercury is best captured by electrostatic precipitators (ESP). Oxidized mercury is best captured in wet scrubbers. Elemental mercury is the most difficult to capture, but selective catalytic reduction units (SCRs) are able to convert elemental mercury to oxidized mercury allowing it to be captured by wet flue gas desulfurization (FGD). This works well for eastern coals with high chlorine contents, but this does not work well on the Wyoming Powder River Basin (PRB) coals. However, no good explanation for its mechanism, correlations of chlorine content in coal with SCR performance, and impacts of higher chlorine content in coal on FGD re-emission are available. The combination of SCR and FGD affords more than an 80% reduction in mercury emissions in the case of high chlorine content coals. The mercury emission results from different coal ranks, boilers, and the air pollution control device (APCD) in power plant will be discussed. Based on this UAEPA new regulation, most power plants

  13. Distribution and retention of organic and inorganic mercury in methyl mercury-treated neonatal rats

    International Nuclear Information System (INIS)

    Thomas, D.J.; Fisher, H.L.; Sumler, M.R.; Hall, L.L.; Mushak, P.

    1988-01-01

    Seven-day-old Long Evans rats received one mumol of 203 Hg-labeled methyl mercury/kg sc and whole body retention and tissue distribution of organic and inorganic mercury were examined for 32 days postdosing. Neonates cleared mercury slowly until 10 days postdosing when the clearance rate abruptly increased. During the interval when whole body clearance of mercury was extremely slow, methyl mercury was metabolized to inorganic mercury. Peak concentration of mercury in kidney occurred at 2 days postdosing. At 32 days postdosing, 8% of mercury in kidney was in an organic from. Liver mercury concentration peaked at 2 days postdosing and organic mercury accounted for 38% at 32 days postdosing. Brain concentrations of mercury peaked at 2 days postdosing. At 10 days postdosing, organic mercury accounted for 86% of the brain mercury burden, and, at 32 days postdosing, for 60%. The percentage of mercury body burden in pelt rose from 30 to 70% between 1 and 10 days postdosing. At 32 days postdosing pelt contained 85% of the body burden of mercury. At all time points, about 95% of mercury in pelt was in an organic form. Compartmental analysis of these data permitted development of a model to describe the distribution and excretion of organic and inorganic mercury in methyl mercury-treated neonatal rats

  14. Behavior of mercury and iodine during vitrification of simulated alkaline Purex waste

    International Nuclear Information System (INIS)

    Holton, L.K.

    1981-09-01

    Current plans indicate that the high-level wastes stored at the Savannah River Plant will be solidified by vitrification. The behavior of mercury and iodine during the vitrification process is of concern because: mercury is present in the waste in high concentrations (0.1 to 2.8 wt%); mercury will react with iodine and the other halogens present in the waste during vitrification and; the mercury compounds formed will be volatilized from the vitrification process placing a high particulate load in the vitrification system off-gas. Twelve experiments were completed to study the behavior of mercury during vitrification of simulated SRP Purex waste. The mercury was completely volatized from the vitrification system in all experiments. The mercury reacted with iodine, chlorine and oxygen to form a fine particulate solid. Quantitative recovery of mercury compounds formed in the vitrification system off-gas was not possible due to high (37 to 90%) deposition of solids in the off-gas piping. The behavior of mercury and iodine was most strongly influenced by the vitrification system atmosphere. During experiments performed in which the oxygen content of the vitrification system atmosphere was low (< 1 vol%); iodine retention in the glass product was 27 to 55%, the mercury composition of the solids recovered from the off-gas scrub solutions was 75 to 85 wt%, and a small quantity of metallic mercury was recovered from the off-gas scrub solution. During experiments performed in which the oxygen content of the vitrification system atmosphere was high (20 vol%), iodide retention in the glass product was 3 to 15%, the mercury composition of the solids recovered from the off-gas scrub solutions was 60 to 80 wt%, and very little metallic mercury was recovered from the off-gas scrub solution

  15. Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implications of mercury emission sources

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2013-10-01

    Full Text Available Continuous measurements of atmospheric mercury concentration and speciation play a key role in identifying mercury sources and its behavior in the atmosphere. In this study, speciated atmospheric mercury including gaseous elemental mercury (GEM, reactive gaseous mercury (RGM and particle-bound mercury (PBM were continuously measured at Miyun, a rural site in Beijing, China, from December 2008 to November 2009. The average GEM, RGM and PBM concentrations were found to be 3.22 ± 1.74, 10.1 ± 18.8 and 98.2 ± 112.7 pg m−3, respectively, about 2–20 times higher than the background concentration of the Northern Hemisphere. The results indicated that atmospheric mercury concentrations in northern China were highly affected by anthropogenic emissions. The atmospheric mercury showed obvious seasonal variations, with the highest seasonal average GEM concentration in summer (3.48 ng m−3 and the lowest value in winter (2.66 ng m−3. In autumn and winter a diurnal variation of GEM was observed, with peak levels in the late afternoon till midnight. Most of the high RGM concentration values occurred in the afternoon of all seasons due to the higher oxidation. The PBM concentration was higher in early morning of all seasons because of the the temperature inversion that increases in depth as the night proceeds. The ratio of GEM to CO indicates that residential boilers play an important role in the elevation of GEM in winter. The ratio of RGM to O3 could be an indicator of the contribution of local primary sources. The ratio of PBM to PM2.5 reveals that the air mass from the east and southwest of the site in spring and summer carries more atmospheric mercury. The HYSPLIT back-trajectory analysis indicated that the monitoring site is affected by local, regional and interregional sources simultaneously during heavy pollution episodes. The results from the potential source contribution function (PSCF model indicate that the atmospheric transport

  16. Evaluation of Agricultural Use of Vicia sativa L. in Mercury Contaminated Soils

    International Nuclear Information System (INIS)

    Andres, A.; Millan, R.; Esteban, E.

    2010-01-01

    This study is framed in the project Recuperation de suelos contaminados por mercurio: recomendaciones de uso de suelos y plantas en la comarca minera de Almaden (REUSA), funded by Spanish Ministry of Education and Science. Moreover, this article is the result of the work carried out by Andres Andres for his Bachelors dissertation. Soils from the Almaden mining district are contaminated with high mercury concentrations, due to the extraction activities of that metal through the years. After the end of mining exploitation, which was the main source of wealth in the region, alternative uses of soils are needed in order to promote the socio-economic development of the studied area. The project here intends to evaluate the viability of the common vetch (Vicia sativa L.) crop in a substrate under similar conditions to the ones observed in the Almaden soils, by studying the mercury absorption capacity of the above mentioned species. (Author) 20 refs.

  17. Method for removal and stabilization of mercury in mercury-containing gas streams

    Science.gov (United States)

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  18. Making Mercury's Core with Light Elements

    Science.gov (United States)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft showed the surface of Mercury has low FeO abundances (less than 2 wt%) and high S abundances (approximately 4 wt%), suggesting the oxygen fugacity of Mercury's surface materials is somewhere between 3 to 7 log10 units below the IW buffer. The highly reducing nature of Mercury has resulted in a relatively thin mantle and a large core that has the potential to exhibit an exotic composition in comparison to the other terrestrial planets. This exotic composition may extend to include light elements (e.g., Si, C, S). Furthermore, has argued for a possible primary floatation crust on Mercury composed of graphite, which may require a core that is C-saturated. In order to investigate mercurian core compositions, we conducted piston cylinder experiments at 1 GPa, from 1300 C to 1700 C, using a range of starting compositions consisting of various Si-Fe metal mixtures (Si5Fe95, Si10Fe90, Si22Fe78, and Si35Fe65). All metals were loaded into graphite capsules used to ensure C-saturation during the duration of each experimental run. Our experiments show that Fe-Si metallic alloys exclude carbon relative to more Fe-rich metal. This exclusion of carbon commences within the range of 5 to 10 wt% Si. These results indicate that if Mercury has a Si-rich core (having more than approximately 5 wt% silicon), it would have saturated in carbon at low C abundances allowing for the possible formation of a graphite floatation crust as suggested by. These results have important implications for the thermal and magmatic evolution of Mercury.

  19. Mercury-impacted scrap metal: Source and nature of the mercury.

    Science.gov (United States)

    Finster, Molly E; Raymond, Michelle R; Scofield, Marcienne A; Smith, Karen P

    2015-09-15

    The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 °C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent

  20. Mercury pollution in Malaysia.

    Science.gov (United States)

    Hajeb, Parvaneh; Jinap, S; Ismail, Ahmad; Mahyudin, Nor Ainy

    2012-01-01

    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to

  1. Mercury in Nelson's Sparrow Subspecies at Breeding Sites

    Science.gov (United States)

    Winder, Virginia L.; Emslie, Steven D.

    2012-01-01

    Background Mercury is a persistent, biomagnifying contaminant that can cause negative effects on ecosystems. Marshes are often areas of relatively high mercury methylation and bioaccumulation. Nelson's Sparrows (Ammodramus nelsoni) use marsh habitats year-round and have been documented to exhibit tissue mercury concentrations that exceed negative effects thresholds. We sought to further characterize the potential risk of Nelson's Sparrows to mercury exposure by sampling individuals from sites within the range of each of its subspecies. Methodology/Principal Findings From 2009 to 2011, we captured adult Nelson's Sparrows at sites within the breeding range of each subspecies (A. n. nelsoni: Grand Forks and Upham, North Dakota; A. n. alterus: Moosonee, Ontario; and A. n. subvirgatus: Grand Manan Island, New Brunswick) and sampled breast feathers, the first primary feather (P1), and blood for total mercury analysis. Mean blood mercury in nelsoni individuals captured near Grand Forks ranged from 0.84±0.37 to 1.65±1.02 SD ppm among years, between 2.0 and 4.9 times as high as concentrations at the other sites (Pmercury did not vary among sites within a given sampling year (site means ranged from 0.98±0.69 to 2.71±2.93 ppm). Mean P1 mercury in alterus (2.96±1.84 ppm fw) was significantly lower than in any other sampled population (5.25±2.24–6.77±3.51 ppm; P≤0.03). Conclusions/Significance Our study further characterized mercury in Nelson's Sparrows near Grand Forks; we documented localized and potentially harmful mercury concentrations, indicating that this area may represent a biological mercury hotspot. This finding warrants further research to determine if wildlife populations of conservation or recreational interest in this area may be experiencing negative effects due to mercury exposure. We present preliminary conclusions about the risk of each sampled population to mercury exposure. PMID:22384194

  2. MERIT - The high intensity liquid mercury target experiment at the CERN PS

    CERN Document Server

    Efthymiopoulos, I

    2009-01-01

    The MERIT experiment is a proof-of-principle test of a target system for high power proton beams to be used as front-end for a Neutrino Factory complex or a Muon Collider. The experiment took data in autumn 2007 with the fast extracted beam from the CERN Proton Synchrotron (PS) to a maximum intensity of about 30 × 1012 protons per pulse. The target system, based on a free mercury jet, allowed investigation of the interseption of a 4-MW proton beam inside a 15-T magnetic field required to capture the low-energy secondary pions as the source of the required intense muon beams. Particle detectors have been installed around the target setup to measure the secondary particle flux out of the target and probe cavitation effects in the mercury jet when exited with a beam of variable intensity. With the analysis of the data ongoing, results will be presented here that demonstrate the validity of the liquid target concept.

  3. Mercury contamination extraction

    Science.gov (United States)

    Fuhrmann, Mark [Silver Spring, MD; Heiser, John [Bayport, NY; Kalb, Paul [Wading River, NY

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  4. Global Trends in Mercury Management

    Science.gov (United States)

    Choi, Kyunghee

    2012-01-01

    The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

  5. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  6. Improved estimates of filtered total mercury loadings and total mercury concentrations of solids from potential sources to Sinclair Inlet, Kitsap County, Washington

    Science.gov (United States)

    Paulson, Anthony J.; Conn, Kathleen E.; DeWild, John F.

    2013-01-01

    . Studies of groundwater in the other two fill areas were conducted under worst-case higher high tidal conditions. A December 2011 study found that concentrations of filtered total mercury in the well in the fill area on the eastern boundary of the Bremerton naval complex were less than or equal to 11 nanograms per liter, indicating that releases from the eastern area were unlikely. In addition, concentrations of total mercury of solids were low (systems on the complex in a manner that precluded this bias confirmed that suspended-solids concentrations and total mercury concentrations of suspended solids varied considerably during pumping cycles. These new data result in revised estimates of solids loadings from the dry docks. Although most of the solids discharged by the dry docks seem to be recycled Operable Unit B Marine sediment, a total of about 3.2 metric tons of solids per year containing high concentrations of total mercury were estimated to be discharged by the two dry dock systems. A simple calculation, in which solids (from dry docks, the steam plant, and tidal flushing of the largest stormwater drain) are widely dispersed throughout Operable Unit B Marine, suggests that Bremerton naval complex solids would likely have little effect on Operable Unit B Marine sediments because of high concentrations of mercury already present in the sediment.

  7. Observations of Mercury in 1988 and 1989

    International Nuclear Information System (INIS)

    Schmude, R.W. Jr.

    1990-01-01

    A visual study of the planet Mercury was carried out in May 1988 and in April and May 1989. Most of the observations were made with the 35.5-cm telescope at the Texas A ampersand M University Observatory. This report presents drawings and a map of Mercury that covers the longitude range of 195-285 deg. One important finding was that a polarizing filter combined with color filters gives a sharper view of the planet. It is also concluded that high-resolution images of Mercury's terminator, either as seen from the earth or with the Hubble Space Telescope, can provide information about Mercury's topography. 10 refs

  8. Mercury in marine organisms of the Tay region

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A M; Jones, Y; Stewart, W D.P.

    1972-07-21

    The problem of mercury pollution in the Tay region of the United Kingdom is discussed with emphasis on mercury concentration within marine algae and invertebrates. High levels of Hg were found in Broughty Ferry algae while there was no detectable mercury in any of the samples collected from north of Arbroath. Most was found in the thallose algae, Ulva lactuca and Porphyra umbilicalis, and in Ceramium rubrum. In studies carried out on molluscs, high levels were found in the lamellibranch, Mytilus edulis and in the gastropods Littorina littoralis and Nucella lapillus. 12 references, 3 tables.

  9. High mercury wet deposition at a “clean Air” site in Puerto Rico

    Science.gov (United States)

    Shanley, James B.; Engle, Mark A.; Scholl, Martha A.; Krabbenhoft, David P.; Brunette, Robert; Olson, Mark L.; Conroy, Mary E.

    2015-01-01

    Atmospheric mercury deposition measurements are rare in tropical latitudes. Here we report on seven years (April 2005 to April 2012, with gaps) of wet Hg deposition measurements at a tropical wet forest in the Luquillo Mountains, northeastern Puerto Rico, U.S. Despite receiving unpolluted air off the Atlantic Ocean from northeasterly trade winds, during two complete years the site averaged 27.9 μg m–2 yr–1 wet Hg deposition, or about 30% more than Florida and the Gulf Coast, the highest deposition areas within the U.S. These high Hg deposition rates are driven in part by high rainfall, which averaged 2855 mm yr–1. The volume-weighted mean Hg concentration was 9.8 ng L–1, and was highest during summer and lowest during the winter dry season. Rainout of Hg (decreasing concentration with increasing rainfall depth) was minimal. The high Hg deposition was not supported by gaseous oxidized mercury (GOM) at ground level, which remained near global background concentrations (<10 pg m–3). Rather, a strong positive correlation between Hg concentrations and the maximum height of rain detected within clouds (echo tops) suggests that droplets in high convective cloud tops scavenge GOM from above the mixing layer. The high wet Hg deposition at this “clean air” site suggests that other tropical areas may be hotspots for Hg deposition as well.

  10. Mercury speciation analysis in marine samples by HPLC-ICPMS

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Svendsen, Maja Erecius; Herbst, M. Birgitte Koch

    Mercury (Hg) is a naturally occurring element, which is found in the earth’s crust and can be released into the environment through both natural and anthropogenic processes. Mercury exists as elemental mercury (metallic), inorganic mercury and organic mercury (primarily methylmercury......). Methylmercury is highly toxic, particularly to the nervous system, and the developing brain is thought to be the most sensitive target organ for methylmercury toxicity. Methylmercury bioaccumulates and biomagnifies along the food chain and it is the most common mercury species in fish and seafood. Human...... hydrochloric acid by sonication. Hereby the protein-bound mercury species are released. The extracts were then centrifuged (10 min at 3170 x g) and the supernatant decanted (extraction step was repeated twice). The combined extracts were added 10 M sodium hydroxide to increase pH, following further dilution...

  11. Distribution of mercury in the brain and its subcellular units in experimental organic mercury poisonings

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Y; Mozai, T; Nakao, K

    1966-01-01

    The relation between mercury content and histological changes in dog brain was studied. The compounds used were methylmercury thioacetamide (CH/sub 3/HgSCH/sub 2/CONH/sub 2/) with and without /sup 203/Hg. The most noticeable histological change was observed in the calcarine area where the mercury level was always higher than in other areas. In some dogs the mercury content in the cerebellum was noticeably high, but this was not a constant finding. Chemical fractionation of the brain of the rat poisoned with the radioactive methylmercury compound revealed that almost all radioactivity resided in the protein fraction, there being little radioactivity in the lipid and nucleic acid fractions. Hydrolysis of the protein released mercury. It is noteworthy that a latent period exists between the time when the concentration of the poison in the brain reaches its peak and the development of nervous symptoms.

  12. Mercury analysis in hair: Comparability and quality assessment within the transnational COPHES/DEMOCOPHES project.

    Science.gov (United States)

    Esteban, Marta; Schindler, Birgit Karin; Jiménez, José Antonio; Koch, Holger Martin; Angerer, Jürgen; Rosado, Montserrat; Gómez, Silvia; Casteleyn, Ludwine; Kolossa-Gehring, Marike; Becker, Kerstin; Bloemen, Louis; Schoeters, Greet; Den Hond, Elly; Sepai, Ovnair; Exley, Karen; Horvat, Milena; Knudsen, Lisbeth E; Joas, Anke; Joas, Reinhard; Aerts, Dominique; Biot, Pierre; Borošová, Daniela; Davidson, Fred; Dumitrascu, Irina; Fischer, Marc E; Grander, Margaretha; Janasik, Beata; Jones, Kate; Kašparová, Lucie; Larssen, Thorjørn; Naray, Miklos; Nielsen, Flemming; Hohenblum, Philipp; Pinto, Rui; Pirard, Catherine; Plateel, Gregory; Tratnik, Janja Snoj; Wittsiepe, Jürgen; Castaño, Argelia

    2015-08-01

    Human biomonitoring (HBM) is an effective tool for assessing actual exposure to chemicals that takes into account all routes of intake. Although hair analysis is considered to be an optimal biomarker for assessing mercury exposure, the lack of harmonization as regards sampling and analytical procedures has often limited the comparison of data at national and international level. The European-funded projects COPHES and DEMOCOPHES developed and tested a harmonized European approach to Human Biomonitoring in response to the European Environment and Health Action Plan. Herein we describe the quality assurance program (QAP) for assessing mercury levels in hair samples from more than 1800 mother-child pairs recruited in 17 European countries. To ensure the comparability of the results, standard operating procedures (SOPs) for sampling and for mercury analysis were drafted and distributed to participating laboratories. Training sessions were organized for field workers and four external quality-assessment exercises (ICI/EQUAS), followed by the corresponding web conferences, were organized between March 2011 and February 2012. ICI/EQUAS used native hair samples at two mercury concentration ranges (0.20-0.71 and 0.80-1.63) per exercise. The results revealed relative standard deviations of 7.87-13.55% and 4.04-11.31% for the low and high mercury concentration ranges, respectively. A total of 16 out of 18 participating laboratories the QAP requirements and were allowed to analyze samples from the DEMOCOPHES pilot study. Web conferences after each ICI/EQUAS revealed this to be a new and effective tool for improving analytical performance and increasing capacity building. The procedure developed and tested in COPHES/DEMOCOPHES would be optimal for application on a global scale as regards implementation of the Minamata Convention on Mercury. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Sources of speciated atmospheric mercury at a residential neighborhood impacted by industrial sources.

    Science.gov (United States)

    Manolopoulos, Helen; Snyder, David C; Schauer, James J; Hill, Jason S; Turner, Jay R; Olson, Mark L; Krabbenhoft, David P

    2007-08-15

    Speciated measurements of atmospheric mercury plumes were obtained at an industrially impacted residential area of East St. Louis, IL. These plumes were found to result in extremely high mercury concentrations at ground level that were composed of a wide distribution of mercury species. Ground level concentrations as high as 235 ng m(-3) for elemental mercury (Hg0) and 38 300 pg m(-3) for reactive mercury species (reactive gaseous (RGM) plus particulate (PHg) mercury) were measured. The highest mercury concentrations observed during the study were associated with plumes that contained high concentrations of all mercury species (Hg0, RGM, and PHg) and originated from a source located southwest of the sampling site. Variations in proportions of Hg0/RGM/PHg among plumes, with Hg0 dominating some plumes and RGM and/or PHg dominating others, were attributed to differences in emissions from different sources. Correlations between mercury plumes and elevated NO(x) were not observed; however, a correlation between elevated SO2 and mercury plumes was observed during some but not all plume events. Despite the presence of six coal-fired power plants within 60 km of the study site, wind direction data along with Hg/SO2 and Hg/NO(x) ratios suggest that high-concentration mercury plumes impacting the St. Louis-Midwest Particle Matter Supersite are attributable to local point sources within 5 km of the site.

  14. Mercurial poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Gorton, B

    1924-01-01

    Cats which had been kept in a thermometer factory to catch rats were afflicted with mercury poisoning. So were the rats they were supposed to eat. The symptoms of mercury poisoning were the same in both species. The source of mercury for these animals is a fine film of the metal which coats floors, a result of accidental spills during the manufacturing process.

  15. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography

    OpenAIRE

    H?lz, K.; Lietard, J.; Somoza, M. M.

    2016-01-01

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition...

  16. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  17. UNEP Demonstrations of Mercury Emission Reduction at Two Coal-fired Power Plants in Russia

    Directory of Open Access Journals (Sweden)

    Jozewicz W.

    2013-04-01

    Full Text Available The United Nations Environment Programme (UNEP partnership area “Mercury releases from coal combustion” (The UNEP Coal Partnership has initiated demonstrations of mercury air emission reduction at two coal-fired power plants in Russia. The first project has modified the wet particulate matter (PM scrubber installed in Toliatti thermal plant to allow for addition of chemical reagents (oxidants into the closedloop liquid spray system. The addition of oxidant resulted in significant improvement of mercury capture from 20% total mercury removal (without the additive up to 60% removal (with the additive. It demonstrates the effectiveness of sorbent injection technologies in conjunction with an electrostatic precipitator (ESP. ESPs are installed at 60%, while wet PM scrubbers are installed at 30% of total coal-fired capacity in Russia. Thus, the two UNEP Coal Partnership projects address the majority of PM emission control configurations occurring in Russia.

  18. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    Science.gov (United States)

    Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety. PMID:23230464

  19. Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes.

    Science.gov (United States)

    Wan, Qi; Feng, Xinbin; Lu, Julia; Zheng, Wei; Song, Xinjie; Li, Ping; Han, Shijie; Xu, Hao

    2009-08-01

    Reactive gaseous mercury (RGM) and particulate mercury (Hgp) concentrations in ambient air from a remote site at Changbai Mountain area in northeastern China were intermittently monitored from August 2005 to July 2006 totaling 93 days representing fall, winter-spring and summer season, respectively. Rainwater and snow samples were collected during a whole year, and total mercury (THg) in rain samples were used to calculate wet depositional flux. A throughfall method and a model method were used to estimate dry depositional flux. Results showed mean concentrations of RGM and Hgp are 65 and 77 pg m(-3). Compared to background concentrations of atmospheric mercury species in Northern Hemisphere, RGM and Hgp are significantly elevated in Changbai area. Large values for standard deviation indicated fast reactivity and a low residence time for these mercury species. Seasonal variability is also important, with lower mercury levels in summer compared to other seasons, which is attributed to scavenging by rainfall and low local mercury emissions in summer. THg concentrations ranged from 11.5 to 15.9 ng L(-1) in rainwater samples and 14.9-18.6 ng L(-1) in throughfall samples. Wet depositional flux in Changbai area is calculated to be 8.4 microg m(-2) a(-1), and dry deposition flux is estimated to be 16.5 microg m(-2) a(-1) according to a throughfall method and 20.2 microg m(-2) a(-1) using a model method.

  20. A rhodamine B-based fluorescent sensor toward highly selective mercury (II) ions detection.

    Science.gov (United States)

    Jiao, Yang; Zhang, Lei; Zhou, Peng

    2016-04-01

    This work presented the design, syntheses and photophysical properties of a rhodamine B-based fluorescence probe, which exhibited a sensitive and selective recognition towards mercury (II). The chemosensor RA (Rhodamine- amide- derivative) contained a 5-aminoisophthalic acid diethyl ester and a rhodamine group, and the property of spirolactone of this chemosensor RA was detected by X-ray crystal structure analyses. Chemosensor RA afforded turn-on fluorescence enhancement and displayed high brightness for Hg(2+), which leaded to the opening of the spirolactone ring and consequently caused the appearance of strong absorption at visible range, moreover, the obvious and characteristic color changed from colorless to pink was observed. We envisioned that the chemosensor RA exhibited a considerable specificity with two mercury (II) ions which was attributed to the open of spirolactone over other interference metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. High capacity getter pump for UHV operation

    International Nuclear Information System (INIS)

    Manini, P.; Marino, M.; Belloni, F.; Porro, M.

    1993-01-01

    UHV pumps based on non-evaporable getter coated strips find widespread use in particle accelerators, synchrotron radiation machines and nuclear fusion experimental devices. Depending on the geometric constraints, pressure operation conditions and the foreseen gas loads, optimized getter structures, such as modules and cartridges, can be designed and assembled into a high-efficiency pump. In the present paper, the design and performance of a newly conceived High Capacity Getter Pump (HCGP) based on sintered getter bodies, in the shape of blades instead of strips, is illustrated. The porosity and the specific surface area of the blades and their arrangement in the cartridge have been optimized to significantly increase sorption capacity at a given speed. These pumps are well suited for those applications where a very high gas load is expected during the machine operation. The sintered getter bodies increase surface area and capacity, requiring less frequent reactivation and facilitating greater overall life of the pump. A discussion of the experimental results in terms of sorption speed and capacity for various gases is presented

  2. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  3. Mapping the Topography of Mercury with MESSENGER Laser Altimetry

    Science.gov (United States)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Smith, David E..; Zubor, Maria T.

    2012-01-01

    The Mercury Laser Altimeter onboard MESSENGER involves unique design elements that deal with the challenges of being in orbit around Mercury. The Mercury Laser Altimeter (MLA) is one of seven instruments on NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. MESSENGER was launched on 3 August 2004, and entered into orbit about Mercury on 18 March 2011 after a journey through the inner solar system. This involved six planetary flybys, including three of Mercury. MLA is designed to map the topography and landforms of Mercury's surface. It also measures the planet's forced libration (motion about the spin axis), which helps constrain the state of the core. The first science measurements from orbit taken with MLA were made on 29 March 2011 and continue to date. MLA had accumulated about 8.3 million laser ranging measurements to Mercury's surface, as of 31 July 2012, i.e., over six Mercury years (528 Earth days). Although MLA is the third planetary lidar built at the NASA Goddard Space Flight Center (GSFC), MLA must endure a much harsher thermal environment near Mercury than the previous instruments on Mars and Earth satellites. The design of MLA was derived in part from that of the Mars Orbiter Laser Altimeter on Mars Global Surveyor. However, MLA must range over greater distances and often in off-nadir directions from a highly eccentric orbit. In MLA we use a single-mode diode-pumped Nd:YAG (neodymium-doped yttrium aluminum garnet) laser that is highly collimated to maintain a small footprint on the planet. The receiver has both a narrow field of view and a narrow spectral bandwidth to minimize the amount of background light detected from the sunlit hemisphere of Mercury. We achieve the highest possible receiver sensitivity by employing the minimum receiver detection threshold.

  4. Assessment of mercury in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Kvartek, E.J.; Carlton, W.H.; Denham, M.; Eldridge, L.; Newman, M.C.

    1994-09-01

    Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities` gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city of Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard.

  5. Assessment of mercury in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Kvartek, E.J.; Carlton, W.H.; Denham, M.; Eldridge, L.; Newman, M.C.

    1994-09-01

    Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities' gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city of Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard

  6. Functionalized diatom silica microparticles for removal of mercury ions

    International Nuclear Information System (INIS)

    Yu Yang; Addai-Mensah, Jonas; Losic, Dusan

    2012-01-01

    Diatom silica microparticles were chemically modified with self-assembled monolayers of 3-mercaptopropyl-trimethoxysilane (MPTMS), 3-aminopropyl-trimethoxysilane (APTES) and n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTMS), and their application for the adsorption of mercury ions (Hg(II)) is demonstrated. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses revealed that the functional groups (–SH or –NH 2 ) were successfully grafted onto the diatom silica surface. The kinetics and efficiency of Hg(II) adsorption were markedly improved by the chemical functionalization of diatom microparticles. The relationship among the type of functional groups, pH and adsorption efficiency of mercury ions was established. The Hg(II) adsorption reached equilibrium within 60 min with maximum adsorption capacities of 185.2, 131.7 and 169.5 mg g -1 for particles functionalized with MPTMS, APTES and AEAPTMS, respectively. The adsorption behavior followed a pseudo-second-order reaction model and Langmuirian isotherm. These results show that mercapto- or amino-functionalized diatom microparticles are promising natural, cost-effective and environmentally benign adsorbents suitable for the removal of mercury ions from aqueous solutions.

  7. The processing of simulated high-level radioactive waste sludges containing nitrites and mercury

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Hutson, N.D.; Ritter, J.A.; Carter, J.T.

    1991-01-01

    The reaction of formic acid with simulated alkaline sludge containing mercury and nitrite was studied in an engineering-scale facility. Quantification of offgas production was performed, with the major offgases being CO 2 and NO x . A small amount of CO was also found. The NO x was scrubbed in the offgas condenser and formed very acidic solutions of nitrous and nitric acids. These acids dissolved mercury that was stripped from the sludge. However, the overall efficiency of mercury stripping was greater than expected, and the final mercury concentration in the sludge was lower than expected. The NO x in the offgas also caused large temperature rises in the offgas system due to the exothermic reaction of NO with O 2 . This temperature rise had a detrimental effect on the performance of the Formic Acid Vent Condenser, such that redesign is being contemplated. 6 refs., 6 figs., 3 tabs

  8. Mercury risk in poultry in the Wanshan Mercury Mine, China

    International Nuclear Information System (INIS)

    Yin, Runsheng; Zhang, Wei; Sun, Guangyi; Feng, Zhaohui; Hurley, James P.; Yang, Liyuan; Shang, Lihai; Feng, Xinbin

    2017-01-01

    In this study, total mercury (THg) and methylmercury (MeHg) concentrations in muscles (leg and breast), organs (intestine, heart, stomach, liver) and blood were investigated for backyard chickens, ducks and geese of the Wanshan Mercury Mine, China. THg in poultry meat products range from 7.9 to 3917.1 ng/g, most of which exceeded the Chinese national standard limit for THg in meat (50 ng/g). Elevated MeHg concentrations (0.4–62.8 ng/g) were also observed in meat products, suggesting that poultry meat can be an important human MeHg exposure source. Ducks and geese showed higher Hg levels than chickens. For all poultry species, the highest Hg concentrations were observed in liver (THg: 23.2–3917.1 ng/g; MeHg: 7.1–62.8 ng/g) and blood (THg: 12.3–338.0 ng/g; MeHg: 1.4–17.6 ng/g). We estimated the Hg burdens in chickens (THg: 15.3–238.1 μg; MeHg: 2.2–15.6 μg), ducks (THg: 15.3–238.1 μg; MeHg: 3.5–14.7 μg) and geese (THg: 83.8–93.4 μg; MeHg: 15.4–29.7 μg). To not exceed the daily intake limit for THg (34.2 μg/day) and MeHg (6 μg/day), we suggested that the maximum amount (g) for chicken leg, breast, heart, stomach, intestine, liver, and blood should be 1384, 1498, 2315, 1214, 1081, 257, and 717, respectively; the maximum amount (g) for duck leg, breast, heart, stomach, intestine, liver, and blood should be 750, 1041, 986, 858, 752, 134, and 573, respectively; and the maximum amount (g) for goose leg, breast, heart, stomach, intestine, liver, and blood should be 941, 1051, 1040, 1131, 964, 137, and 562, respectively. - Highlights: • Elevated mercury levels were observed in poultry from Wanshan Mercury Mine, China. • Ducks and geese showed higher mercury levels than chickens. • Liver and blood showed the highest mercury levels. • Poultry can be an important dietary Hg exposure source for local residents. - High levels of Hg associated with poultry surrounding the Wanshan Mercury Mine pose a great risk of Hg exposure to

  9. Sources of speciated atmospheric mercury at a residential neighborhood impacted by industrial sources

    Energy Technology Data Exchange (ETDEWEB)

    Helen Manolopoulos; David C. Snyder; James J. Schauer; Jason S. Hill; Jay R. Turner; Mark L. Olson; David P. Krabbenhoft [University of Wisconsin-Madison, Madison, WI (United States). Environmental Chemistry and Technology Program

    2007-08-15

    Speciated measurements of atmospheric mercury plumes were obtained at an industrially impacted residential area of East St. Louis, IL. These plumes were found to result in extremely high mercury concentrations at ground level that were composed of a wide distribution of mercury species. Ground level concentrations as high as 235 ng m{sup -3} for elemental mercury (Hg{sup 0}) and 38,300 pg m{sup -3} for reactive mercury species (reactive gaseous (RGM) plus particulate (PHg) mercury) were measured. The highest mercury concentrations observed during the study were associated with plumes that contained high concentrations of all mercury species (Hg{sup 0}, RGM, and PHg) and originated from a source located southwest of the sampling site. Variations in proportions of Hg{sup 0}/RGM/PHg among plumes, with Hg{sup 0} dominating some plumes and RGM and/or PHg dominating others, were attributed to differences in emissions from different sources. Correlations between mercury plumes and elevated NOx were not observed; however, a correlation between elevated SO{sub 2} and mercury plumes was observed during some but not all plume events. Despite the presence of six coal-fired power plants within 60 km of the study site, wind direction data along with Hg/SO{sub 2} and Hg/NOx ratios suggest that high-concentration mercury plumes impacting the St. Louis-Midwest Particle Matter Supersite are attributable to local point sources within 5 km of the site. 35 refs., 5 figs.

  10. Mercury Hazard Assessment for Piscivorous Wildlife in Glacier National Park

    KAUST Repository

    Stafford, Craig P.

    2016-12-14

    We examined the mercury hazard posed to selected piscivorous wildlife in Glacier National Park (GNP), Montana. Logging Lake was our focal site where we estimated the dietary mercury concentrations of wildlife (common loon [Gavia immer], American mink [Neovison vison], river otter [Lontra canadensis], and belted kingfisher [Megaceryle alcyon]) by assuming that fishes were consumed in proportion to their relative abundances. To evaluate if Logging Lake provided a suitable baseline for our study, we made geographic comparisons of fish mercury levels and investigated the distribution and abundance of high mercury fishes within GNP. We complimented our assessment by examining selenium:mercury molar ratios in fishes from Logging Lake and Saint Mary Lake. Our results suggest fish consumption does not imperil wildlife from Logging Lake based on published thresholds for adverse mercury effects, but some hazard may exist particularly if there is strong feeding selectivity for the most contaminated species, northern pikeminnow (Ptychocheilus oregonensis). The geographic comparisons of fish mercury levels, together with the distribution and abundance of high mercury fishes within GNP, suggest that Logging Lake provided a relatively protective baseline among our study lakes. Risk may be further reduced by the molar excess of selenium relative to mercury, particularly in the smaller fishes typically consumed by GNP wildlife. Our findings contrast with studies from northeastern US and southeastern Canada where greater mercury hazard to wildlife exists. An emergent finding from our research is that waterborne concentrations of methylmercury may provide limited insight into regional differences in fish mercury levels.

  11. Mercury Hazard Assessment for Piscivorous Wildlife in Glacier National Park

    KAUST Repository

    Stafford, Craig P.; Downs, Christopher C.; Langner, Heiko W.

    2016-01-01

    We examined the mercury hazard posed to selected piscivorous wildlife in Glacier National Park (GNP), Montana. Logging Lake was our focal site where we estimated the dietary mercury concentrations of wildlife (common loon [Gavia immer], American mink [Neovison vison], river otter [Lontra canadensis], and belted kingfisher [Megaceryle alcyon]) by assuming that fishes were consumed in proportion to their relative abundances. To evaluate if Logging Lake provided a suitable baseline for our study, we made geographic comparisons of fish mercury levels and investigated the distribution and abundance of high mercury fishes within GNP. We complimented our assessment by examining selenium:mercury molar ratios in fishes from Logging Lake and Saint Mary Lake. Our results suggest fish consumption does not imperil wildlife from Logging Lake based on published thresholds for adverse mercury effects, but some hazard may exist particularly if there is strong feeding selectivity for the most contaminated species, northern pikeminnow (Ptychocheilus oregonensis). The geographic comparisons of fish mercury levels, together with the distribution and abundance of high mercury fishes within GNP, suggest that Logging Lake provided a relatively protective baseline among our study lakes. Risk may be further reduced by the molar excess of selenium relative to mercury, particularly in the smaller fishes typically consumed by GNP wildlife. Our findings contrast with studies from northeastern US and southeastern Canada where greater mercury hazard to wildlife exists. An emergent finding from our research is that waterborne concentrations of methylmercury may provide limited insight into regional differences in fish mercury levels.

  12. Excretion and distribution of mercury in rats, antidotes for mercury and effects of egg production and fertility of hens after mercury administration

    Energy Technology Data Exchange (ETDEWEB)

    Ulfvarson, U

    1973-01-01

    The results of investigations of the distribution and excretion of organic and inorganic mercury compounds in albino rats and white leghorn hens conducted over a period of ten years are surveyed. The storage of mercury in eggs as well as its effects on the egg-lay-frequency and hatchability of the eggs have also been studied. All investigated mercury compounds were labelled with the radioactive mercury isotope /sup 203/Hg and the mercury level was measured with a scintillation technique. Since antidotes used in the treatment of mercury poisoning influence not only the excretion of mercury, but also its distribution in the body, the effects of nine antidotes on the metabolism of different mercury compounds were also investigated. The results of the survey are presented graphically. 6 references, 15 figures, 1 table.

  13. Landfill is an important atmospheric mercury emission source

    Institute of Scientific and Technical Information of China (English)

    FENG Xinbin; TANG Shunlin; LI Zhonggen; WANG Shaofeng; LIANG Lian

    2004-01-01

    Since municipal wastes contain refuses with high mercury contents, incineration of municipal wastes becomes the major anthropogenic atmospheric mercury emission source. In China, landfills are however the main way to dispose of municipal wastes. Total gaseous mercury (TGM) concentrations in landfill gas of Gaoyan sanitary landfill located in suburb of Guiyang City were monitored using a high temporal resolved automated mercury analyzer, and mono-methylmercury (MMHg) and dimethylmercury (DMHg) concentrations in landfill gas were also measured using GC coupled with the cold vapor atomic fluorescence (CVAFS) method. Meanwhile, the TGM exchange fluxes between exposed waste and air and the soil surface of the landfill and air, were measured using low Hg blank quartz flux chamber coupled with high temporal resolved automated mercury analyzer technique. TGM concentrations in landfill gas from half year filling area averaged out at 665.52±291.25 ng/m3, which is comparable with TGM concentrations from flue gas of a small coal combustion boiler in Guiyang. The average MMHg and DMHg concentrations averaged out at 2.06±1.82 ng/m3 and 9.50±5.18 ng/m3, respectively. It is proven that mercury emission is the predominant process at the surfaces of both exposed wastes and soil of landfill. Landfills are not only TGM emission source, but also methylmercury emission source to the ambient air. There are two ways to emit mercury to the air from landfills, one is with the landfill gas through landfill gas duct, and the other through soil/air exchange. The Hg emission processes from landfills are controlled by meteorological parameters.

  14. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: Implications for mercury bioaccumulation

    International Nuclear Information System (INIS)

    Liu Guangliang; Cai Yong; Philippi, Thomas; Kalla, Peter; Scheidt, Daniel; Richards, Jennifer; Scinto, Leonard; Appleby, Charlie

    2008-01-01

    We analyzed Hg species distribution patterns among ecosystem compartments in the Everglades at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation and to investigate major biogeochemical processes that are pertinent to the observed Hg distribution patterns. At an Everglade-wide scale, THg concentrations were significantly increased in the following order: periphyton < flocculent material (floc) < soil, while relatively high MeHg concentrations were observed in floc and periphyton. Differences in the methylation potential, THg concentration, and MeHg retention capacity could explain the relatively high MeHg concentrations in floc and periphyton. The MeHg/THg ratio was higher for water than for soil, floc, or periphyton probably due to high dissolved organic carbon (DOC) concentrations present in the Everglades. Mosquitofish THg positively correlated with periphyton MeHg and DOC-normalized water MeHg. The relative THg and MeHg distribution patterns among ecosystem compartments favor Hg bioaccumulation in the Everglades. - Mercury bioaccumulation in Florida Everglades is related to the distribution patterns of mercury species among ecosystem compartments

  15. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: Implications for mercury bioaccumulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guangliang [Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199 (United States); Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States); Cai Yong [Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199 (United States); Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States)], E-mail: cai@fiu.edu; Philippi, Thomas [Department of Biological Sciences, Florida International University, Miami, FL 33199 (United States); Kalla, Peter; Scheidt, Daniel [US Environmental Protection Agency, Region 4, Science and Ecosystem Support Division, Athens, GA 30605 (United States); Richards, Jennifer [Department of Biological Sciences, Florida International University, Miami, FL 33199 (United States); Scinto, Leonard [Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States); Appleby, Charlie [US Environmental Protection Agency, Region 4, Science and Ecosystem Support Division, Athens, GA 30605 (United States)

    2008-05-15

    We analyzed Hg species distribution patterns among ecosystem compartments in the Everglades at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation and to investigate major biogeochemical processes that are pertinent to the observed Hg distribution patterns. At an Everglade-wide scale, THg concentrations were significantly increased in the following order: periphyton < flocculent material (floc) < soil, while relatively high MeHg concentrations were observed in floc and periphyton. Differences in the methylation potential, THg concentration, and MeHg retention capacity could explain the relatively high MeHg concentrations in floc and periphyton. The MeHg/THg ratio was higher for water than for soil, floc, or periphyton probably due to high dissolved organic carbon (DOC) concentrations present in the Everglades. Mosquitofish THg positively correlated with periphyton MeHg and DOC-normalized water MeHg. The relative THg and MeHg distribution patterns among ecosystem compartments favor Hg bioaccumulation in the Everglades. - Mercury bioaccumulation in Florida Everglades is related to the distribution patterns of mercury species among ecosystem compartments.

  16. The development and application of high-capacity thickening techniques

    International Nuclear Information System (INIS)

    Ji Zhenwan; Song Yuejie

    1995-01-01

    On the basis of sedimentation theory and comparison between the high-capacity and conventional thickening techniques, the authors analyse the ways to increase capacity and to improve technological parameters of thickeners, describes the construction features, development, application, automatic control and test installations of high-capacity thickeners at home and abroad

  17. The sorption characteristics of mercury as affected by organic matter content and/or soil properties

    Science.gov (United States)

    Šípková, Adéla; Šillerová, Hana; Száková, Jiřina

    2014-05-01

    The determination and description of the mercury sorption extend on soil is significant for potential environmental toxic effects. The aim of this study was to assess the effectiveness of mercury sorption at different soil samples and vermicomposts. Mercury interactions with soil organic matter were studied using three soils with different physical-chemical properties - fluvisol, cambisol, and chernozem. Moreover, three different vermicomposts based on various bio-waste materials with high organic matter content were prepared in special fermentors. First was a digestate, second was represented by a mixture of bio-waste from housing estate and woodchips, and third was a garden bio-waste. In the case of vermicompost, the fractionation of organic matter was executed primarily using the resin SuperliteTM DAX-8. Therefore, the representation of individual fractions (humic acid, fulvic acid, hydrophilic compounds, and hydrophobic neutral organic matter) was known. The kinetics of mercury sorption onto materials of interest was studied by static sorption experiments. Samples were exposed to the solution with known Hg concentration of 12 mg kg-1 for the time from 10 minutes to 24 hours. Mercury content in the solutions was measured by the inductively coupled plasma mass spectrometry (ICP-MS). Based on this data, the optimum conditions for following sorption experiments were chosen. Subsequently, the batch sorption tests for all soil types and vermicomposts were performed in solution containing variable mercury concentrations between 1 and 12 mg kg-1. Equilibrium concentration values measured in the solution after sorption and calculated mercury content per kilogram of the soil or the vermi-compost were plotted. Two basic models of sorption isotherm - Langmuir and Freundlich, were used for the evaluation of the mercury sorption properties. The results showed that the best sorption properties from studied soil were identified in chernozem with highest cation exchange

  18. Mercury poisoning | Shamley | South African Medical Journal

    African Journals Online (AJOL)

    The diagnosis of mercury poisoning requires a high index of suspicion. Mercury poisoning in a patient involved in illicit gold extraction is reported and 6 other cases considered. Some of the clinical features and treatment of this condition are discussed. S Afr Med J 1989; 76: 114-116 ...

  19. Mercury Thermal Hydraulic Loop (MTHL) Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crye, Jason Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wendel, Mark W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Farquharson, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jallouk, Philip A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McFee, Marshall T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruggles, Art E. [Univ. of Tennessee, Knoxville, TN (United States); Carbajo, Juan J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The Spallation Neutron Source (SNS) is a high-power linear accelerator built at Oak Ridge National Laboratory (ORNL) which incorporates the use of a flowing liquid mercury target. The Mercury Thermal Hydraulic Loop (MTHL) was constructed to investigate and verify the heat transfer characteristics of liquid mercury in a rectangular channel. This report provides a compilation of previously reported results from the water-cooled and electrically heated straight and curved test sections that simulate the geometry of the window cooling channel in the target nose region.

  20. Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic.

    Science.gov (United States)

    Møller, Annette K; Barkay, Tamar; Abu Al-Soud, Waleed; Sørensen, Søren J; Skov, Henrik; Kroer, Niels

    2011-03-01

    It is well-established that atmospheric deposition transports mercury from lower latitudes to the Arctic. The role of bacteria in the dynamics of the deposited mercury, however, is unknown. We characterized mercury-resistant bacteria from High Arctic snow, freshwater and sea-ice brine. Bacterial densities were 9.4 × 10(5), 5 × 10(5) and 0.9-3.1 × 10(3) cells mL(-1) in freshwater, brine and snow, respectively. Highest cultivability was observed in snow (11.9%), followed by freshwater (0.3%) and brine (0.03%). In snow, the mercury-resistant bacteria accounted for up to 31% of the culturable bacteria, but levels of most isolates were not temperature dependent. Of the resistant isolates, 25% reduced Hg(II) to Hg(0). No relation between resistance level, ability to reduce Hg(II) and phylogenetic group was observed. An estimation of the potential bacterial reduction of Hg(II) in snow suggested that it was important in the deeper snow layers where light attenuation inhibited photoreduction. Thus, by reducing Hg(II) to Hg(0), mercury-resistant bacteria may limit the supply of substrate for methylation processes and, hence, contribute to lowering the risk that methylmercury is being incorporated into the Arctic food chains. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Mercury exposure may influence fluctuating asymmetry in waterbirds

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2017-01-01

    Variation in avian bilateral symmetry can be an indicator of developmental instability in response to a variety of stressors, including environmental contaminants. The authors used composite measures of fluctuating asymmetry to examine the influence of mercury concentrations in 2 tissues on fluctuating asymmetry within 4 waterbird species. Fluctuating asymmetry increased with mercury concentrations in whole blood and breast feathers of Forster's terns (Sterna forsteri), a species with elevated mercury concentrations. Specifically, fluctuating asymmetry in rectrix feather 1 was the most strongly correlated structural variable of those tested (wing chord, tarsus, primary feather 10, rectrix feather 6) with mercury concentrations in Forster's terns. However, for American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), and Caspian terns (Hydroprogne caspia), the authors found no relationship between fluctuating asymmetry and either whole-blood or breast feather mercury concentrations, even though these species had moderate to elevated mercury exposure. The results indicate that mercury contamination may act as an environmental stressor during development and feather growth and contribute to fluctuating asymmetry of some species of highly contaminated waterbirds.

  2. Mercury recycling in the United States in 2000

    Science.gov (United States)

    Brooks, William E.; Matos, Grecia R.

    2005-01-01

    Reclamation and recycling of mercury from used mercury- containing products and treatment of byproduct mercury from gold mining is vital to the continued, though declining, use of this metal. Mercury is reclaimed from mercury-containing waste by treatment in multistep high-temperature retorts-the mercury is volatized and then condensed for purification and sale. Some mercury-containing waste, however, may be landfilled, and landfilled material represents loss of a recyclable resource and a threat to the environment. Related issues include mercury disposal and waste management, toxicity and human health, and regulation of mercury releases in the environment. End-users of mercury-containing products may face fines and prosecution if these products are improperly recycled or not recycled. Local and State environmental regulations require adherence to the Resource Conservation and Recovery Act and the Comprehensive Environmental Response, Compensation, and Liability Act to regulate generation, treatment, and disposal of mercury-containing products. In the United States, several large companies and a number of smaller companies collect these products from a variety of sources and then reclaim and recycle the mercury. Because mercury has not been mined as a principal product in the United States since 1992, mercury reclamation from fabricated products has become the main source of mercury. Principal product mercury and byproduct mercury from mining operations are considered to be primary materials. Mercury may also be obtained as a byproduct from domestic or foreign gold-processing operations. In the early 1990s, U.S. manufacturers used an annual average that ranged from 500 to 600 metric tons of recycled and imported mercury for fabrication of automobile convenience switches, dental amalgam, fluorescent lamps, medical uses and thermometers, and thermostats. The amount now used for fabrication is estimated to be 200 metric tons per year or less. Much of the data on

  3. New insights into the atmospheric mercury cycling in central Antarctica and implications on a continental scale

    Directory of Open Access Journals (Sweden)

    H. Angot

    2016-07-01

    Full Text Available Under the framework of the GMOS project (Global Mercury Observation System atmospheric mercury monitoring has been implemented at Concordia Station on the high-altitude Antarctic plateau (75°06′ S, 123°20′ E, 3220 m above sea level. We report here the first year-round measurements of gaseous elemental mercury (Hg(0 in the atmosphere and in snowpack interstitial air on the East Antarctic ice sheet. This unique data set shows evidence of an intense oxidation of atmospheric Hg(0 in summer (24-hour daylight due to the high oxidative capacity of the Antarctic plateau atmosphere in this period of the year. Summertime Hg(0 concentrations exhibited a pronounced daily cycle in ambient air with maximal concentrations around midday. Photochemical reactions and chemical exchange at the air–snow interface were prominent, highlighting the role of the snowpack on the atmospheric mercury cycle. Our observations reveal a 20 to 30 % decrease of atmospheric Hg(0 concentrations from May to mid-August (winter, 24 h darkness. This phenomenon has not been reported elsewhere and possibly results from the dry deposition of Hg(0 onto the snowpack. We also reveal the occurrence of multi-day to weeklong atmospheric Hg(0 depletion events in summer, not associated with depletions of ozone, and likely due to a stagnation of air masses above the plateau triggering an accumulation of oxidants within the shallow boundary layer. Our observations suggest that the inland atmospheric reservoir is depleted in Hg(0 in summer. Due to katabatic winds flowing out from the Antarctic plateau down the steep vertical drops along the coast and according to observations at coastal Antarctic stations, the striking reactivity observed on the plateau most likely influences the cycle of atmospheric mercury on a continental scale.

  4. Sulfur rich microporous polymer enables rapid and efficient removal of mercury(II) from water.

    Science.gov (United States)

    Xu, Dan; Wu, Winston Duo; Qi, Hao-Jun; Yang, Rui-Xia; Deng, Wei-Qiao

    2018-04-01

    Design and synthesis of adsorbents for efficient decontamination of hazardous contaminants Hg 2+ from wastewater, based on a facile and economical strategy, is an attractive target. Here, a novel sulfur rich microporous polymer (sulfur content of 31.4 wt %) with high surface area as well as densely populated sulfur atom with fast accessibility was reported to remove mercury (II) from water. The as prepared polymer (SMP) exhibited high binding affinity, high adsorption capacities, rapid adsorption kinetics, and good recyclability for Hg 2+ . The adsorption capacity of SMP was 595.2 mg g -1 . Furthermore, SMP could reduce trace concentrations of Hg 2+ from 200 p. p. b. to a level below drinking water standards (2 p. p. b.) within 3 min. This work allows large-scale production of sulfur rich porous materials for the practical application in water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. High-capacity nanocarbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Haitao; Sun, Xianzhong; Zhang, Xiong; Lin, He; Wang, Kai; Ma, Yanwei

    2015-01-01

    Highlights: • The nanocarbon anodes in lithium-ion batteries deliver a high capacity of ∼1100 mA h g −1 . • The nanocarbon anodes exhibit excellent cyclic stability. • A novel structure of carbon materials, hollow carbon nanoboxes, has potential application in lithium-ion batteries. - Abstract: High energy and power density of secondary cells like lithium-ion batteries become much more important in today’s society. However, lithium-ion battery anodes based on graphite material have theoretical capacity of 372 mA h g −1 and low charging-discharging rate. Here, we report that nanocarbons including mesoporous graphene (MPG), carbon tubular nanostructures (CTN), and hollow carbon nanoboxes (HCB) are good candidate for lithium-ion battery anodes. The nanocarbon anodes have high capacity of ∼1100, ∼600, and ∼500 mA h g −1 at 0.1 A g −1 for MPG, CTN, and HCB, respectively. The capacity of 181, 141, and 139 mA h g −1 at 4 A g −1 for MPG, CTN, and HCB anodes is retained. Besides, nanocarbon anodes show high cycling stability during 1000 cycles, indicating formation of a passivating layer—solid electrolyte interphase, which support long-term cycling. Nanocarbons, constructed with graphene layers which fulfill lithiation/delithiation process, high ratio of graphite edge structure, and high surface area which facilitates capacitive behavior, deliver high capacity and improved rate-capability

  6. Strong adsorbability of mercury ions on aniline/sulfoanisidine copolymer nanosorbents.

    Science.gov (United States)

    Li, Xin-Gui; Feng, Hao; Huang, Mei-Rong

    2009-01-01

    The highest Hg-ion adsorbance so far, namely up to 2063 mg g(-1), has been achieved by poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Sorption of Hg ions occurs mainly by redox and chelation mechanisms (see scheme), but also by ion exchange and physisorption.Poly(aniline (AN)-co-5-sulfo-2-anisidine (SA)) nanoparticles were synthesized by chemical oxidative copolymerization of AN and SA monomers, and their extremely strong adsorption of mercury ions in aqueous solution was demonstrated. The reactivity ratios of AN and SA comonomers were found to be 2.05 and 0.02, respectively. While AN monomer tends to homopolymerize, SA monomer tends to copolymerize with AN monomer because of the great steric hindrance and electron-attracting effect of the sulfo groups, despite the effect of conjugation of the methoxyl group with the benzene ring. The effects of initial mercury(II) concentration, sorption time, sorption temperature, ultrasonic treatment, and sorbent dosage on mercury-ion sorption onto AN/SA (50/50) copolymer nanoparticles with a number-average diameter of around 120 nm were significantly optimized. The results show that the maximum Hg-ion sorption capacity on the particulate nanosorbents can even reach 2063 mg of Hg per gram of sorbent, which would be the highest Hg-ion adsorbance so far. The sorption data fit to the Langmuir isotherm, and the process obeys pseudo-second-order kinetics. The IR and UV/Vis spectral data of the Hg-loaded copolymer particles suggest that some mercury(II) was directly reduced by the copolymer to mercury(I) and even mercury(0). A mechanism of sorption between the particles and Hg ions in aqueous solution is proposed, and a physical/ion exchange/chelation/redox sorption ratio of around 2/3/45/50 was found. Copolymer nanoparticles may be one of the most powerful and cost-effective sorbents of mercury ions, with a wide range of potential applications for the efficient removal and even recovery of the mercury ions from aqueous solution.

  7. Investigating Mercury's South Polar Deposits: Arecibo Radar Observations and High-Resolution Determination of Illumination Conditions

    Science.gov (United States)

    Chabot, Nancy L.; Shread, Evangela E.; Harmon, John K.

    2018-02-01

    There is strong evidence that Mercury's polar deposits are water ice hosted in permanently shadowed regions. In this study, we present new Arecibo radar observations of Mercury's south pole, which reveal numerous radar-bright deposits and substantially increase the radar imaging coverage. We also use images from MESSENGER's full mission to determine the illumination conditions of Mercury's south polar region at the same spatial resolution as the north polar region, enabling comparisons between the two poles. The area of radar-bright deposits in Mercury's south is roughly double that found in the north, consistent with the larger permanently shadowed area in the older, cratered terrain at the south relative to the younger smooth plains at the north. Radar-bright features are strongly associated with regions of permanent shadow at both poles, consistent with water ice being the dominant component of the deposits. However, both of Mercury's polar regions show that roughly 50% of permanently shadowed regions lack radar-bright deposits, despite some of these locations having thermal environments that are conducive to the presence of water ice. The observed uneven distribution of water ice among Mercury's polar cold traps may suggest that the source of Mercury's water ice was not a steady, regular process but rather that the source was an episodic event, such as a recent, large impact on the innermost planet.

  8. Battery designs with high capacity anode materials and cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.

    2017-10-03

    Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.

  9. Hidden sources of mercury in clinical laboratories.

    Science.gov (United States)

    Alvarez-Chavez, C R; Federico-Perez, R A; Gomez-Alvarez, A; Velazquez-Contreras, L E; Perez-Rios, R

    2014-09-01

    The healthcare sector is an important contributor to mercury (Hg) pollution because of the potential presence of mercury in thermometers, blood pressure cuffs, amalgams, etc. There are also other potential sources of mercury in this sector which are used frequently and in high volumes where the presence of the metal is not obvious and which might be collectively contributing to pollution. For instance, some chemicals used for the clinical diagnosis of illness may contain mercury. The goal of this study was to investigate potential sources of mercury pollution, which originate from clinical laboratory discharges, using an exploratory approach. The focus was on the residue generated during automatic analysis of patients' bodily fluids at a medical center in Hermosillo, Sonora, Mexico. This study shows an overview of what might be happening in the region or the country related to non-obvious sources of mercury in the healthcare sector. The results showed measurable levels of mercury in the residues coming from urine sediment analysis. These amounts do not exceed the maximum allowed by Mexican environmental regulations; nevertheless, the frequency and cumulative volume of residues generated, combined with the potential for persistence and the bioaccumulation of mercury in the environment, warrant attention. The work carried out in this study is being taken as a model for future studies for pollution prevention in the healthcare sector with the goal of measuring mercury emissions to the environment from clinical laboratory wastewater, including identifying sources which--while not obvious--could be important given the frequency and volume of their use in the clinical diagnosis.

  10. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    Science.gov (United States)

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  11. Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites

    Directory of Open Access Journals (Sweden)

    A. S. Cole

    2013-02-01

    Full Text Available Global emissions of mercury continue to change at the same time as the Arctic is experiencing ongoing climatic changes. Continuous monitoring of atmospheric mercury provides important information about long-term trends in the balance between transport, chemistry, and deposition of this pollutant in the Arctic atmosphere. Ten-year records of total gaseous mercury (TGM from 2000 to 2009 were analyzed from two high Arctic sites at Alert (Nunavut, Canada and Zeppelin Station (Svalbard, Norway; one sub-Arctic site at Kuujjuarapik (Nunavik, Québec, Canada; and three temperate Canadian sites at St. Anicet (Québec, Kejimkujik (Nova Scotia and Egbert (Ontario. Five of the six sites examined showed a decreasing trend over this time period. Overall trend estimates at high latitude sites were: −0.9% yr−1 (95% confidence limits: −1.4, 0 at Alert and no trend (−0.5, +0.7 at Zeppelin Station. Faster decreases were observed at the remainder of the sites: −2.1% yr−1 (−3.1, −1.1 at Kuujjuarapik, −1.9% yr−1 (−2.1, −1.8 at St. Anicet, −1.6% yr−1 (−2.4, −1.0 at Kejimkujik and −2.2% yr−1 (−2.8, −1.7 at Egbert. Trends at the sub-Arctic and mid-latitude sites agree with reported decreases in background TGM concentration since 1996 at Mace Head, Ireland, and Cape Point, South Africa, but conflict with estimates showing an increase in global anthropogenic emissions over a similar period. Trends in TGM at the two high Arctic sites were not only less negative (or neutral overall but much more variable by season. Possible reasons for differences in seasonal and overall trends at the Arctic sites compared to those at lower latitudes are discussed, as well as implications for the Arctic mercury cycle. The first calculations of multi-year trends in reactive gaseous mercury (RGM and total particulate mercury (TPM at Alert were also performed, indicating increases from 2002 to 2009

  12. Oligotrophic wetland sediments susceptible to shifts in microbiomes and mercury cycling with dissolved organic matter addition

    Directory of Open Access Journals (Sweden)

    Emily B. Graham

    2018-04-01

    Full Text Available Recent advances have allowed for greater investigation into microbial regulation of mercury toxicity in the environment. In wetlands in particular, dissolved organic matter (DOM may influence methylmercury (MeHg production both through chemical interactions and through substrate effects on microbiomes. We conducted microcosm experiments in two disparate wetland environments (oligotrophic unvegetated and high-C vegetated sediments to examine the impacts of plant leachate and inorganic mercury loadings (20 mg/L HgCl2 on microbiomes and MeHg production in the St. Louis River Estuary. Our research reveals the greater relative capacity for mercury methylation in vegetated over unvegetated sediments. Further, our work shows how mercury cycling in oligotrophic unvegetated sediments may be susceptible to DOM inputs in the St. Louis River Estuary: unvegetated microcosms receiving leachate produced substantially more MeHg than unamended microcosms. We also demonstrate (1 changes in microbiome structure towards Clostridia, (2 metagenomic shifts toward fermentation, and (3 degradation of complex DOM; all of which coincide with elevated net MeHg production in unvegetated microcosms receiving leachate. Together, our work shows the influence of wetland vegetation in controlling MeHg production in the Great Lakes region and provides evidence that this may be due to both enhanced microbial activity as well as differences in microbiome composition.

  13. Carbon bed mercury emissions control for mixed waste treatment.

    Science.gov (United States)

    Soelberg, Nick; Enneking, Joe

    2010-11-01

    Mercury has various uses in nuclear fuel reprocessing and other nuclear processes, and so it is often present in radioactive and mixed (radioactive and hazardous) wastes. Compliance with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include (1) the depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests; (2) MERSORB carbon can sorb mercury up to 19 wt % of the carbon mass; and (3) the spent carbon retained almost all (98.3-99.99%) of the mercury during Toxicity Characteristic Leachability Procedure (TCLP) tests, but when even a small fraction of the total mercury dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high mercury concentrations.

  14. Influence of mercury ore roasting sites from 16th and 17th century on the mercury dispersion in surroundings of Idrija

    Directory of Open Access Journals (Sweden)

    Mateja Gosar

    2006-06-01

    Full Text Available In the first decade of mercury mining in Idrija the ore was roasted in piles. After that the ore was roasted for 150 years, until 1652, in earthen vessels at various sites in the woods around Idrija. Up to present 21 localities of ancient roasting sites were established.From the roasting areas Frbej‘ene trate, lying on a wide dolomitic terrace on the left side of the road from Idrija to ^ekovnik, 3 soil profiles are discussed. In all three profiles in the upper, organic matter rich soil horizon very high mercury contents (from 3 to 4,000mg/kg were found. In two profiles the contents rapidly decrease with depth, to about 10- times lower values already at 0.5 m. Below that, the mercury contents decrease slowly, to reach at the 1.3 m depth a few mg/kg metal. In the third profile the upper humic layer is followed downward by an additional humic layer containing very abundant pottery fragments. In this layer the maximum mercury contents were determined, 7.474 mg/kg Hg. The underlying loamy soil contains between 1000 and 2000 mg/kg mercury. Pšenk is one of the larger localities of roasting vessels fragments. It is located at Lačna voda brook below Hlev{e, above its confluence with the Padar ravine. The most abundant pottery remains are found in the upper western margin of the area, just below the way to Hleviše. The considered geochemical profile P{enk contains at the top a 45 cm thick humic layer with 4,000 to 5,000 mg/kg mercury. Deeper the contents fall to around 100 mg/kg mercury. The alculations result in an estimated amount of 1.4 t mercury still present at the P{enk locality, and in about 40 t of mercury on all roasting sites described up to present.The determined mercury contents in soils at old roasting sites are very high, and they surpass all hitherto described localities at Idrija and in the surroundings.

  15. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries.

    Science.gov (United States)

    Shi, Ji-Lei; Xiao, Dong-Dong; Ge, Mingyuan; Yu, Xiqian; Chu, Yong; Huang, Xiaojing; Zhang, Xu-Dong; Yin, Ya-Xia; Yang, Xiao-Qing; Guo, Yu-Guo; Gu, Lin; Wan, Li-Jun

    2018-03-01

    Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg -1 . The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Concentration of mercury in wheat samples stored with mercury tablets as preservative

    International Nuclear Information System (INIS)

    Lalit, B.Y.; Ramachandran, T.V.

    1977-01-01

    Tablets consisting of mercury in the form of a dull grey powder made by triturating mercury with chalk and sugar are used in Indian household for storing food-grains. The contamination of wheat samples by mercury, when stored with mercury tablets for period of upto four years has been assessed by using non-destructive neutron activation analysis. The details of the analytical procedure used have also been briefly described. The concentration of mercury in wheat increases with storage period. Loss of weight of mercury tablet is proportional to the storage period to a first approximation. In the present experiment, the average weight loss at the and end of first year was 0.009716 g corresponding to 6 ppm in wheat. (T.G.)

  17. Mercury speciation during in situ thermal desorption in soil

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Min, E-mail: cmpark80@gmail.com; Katz, Lynn E.; Liljestrand, Howard M.

    2015-12-30

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg{sup 0} gas until the temperature reached 358.15 K. • Phase change of HgCl{sub 2(s)} completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg{sup 0}) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  18. Mercury speciation during in situ thermal desorption in soil

    International Nuclear Information System (INIS)

    Park, Chang Min; Katz, Lynn E.; Liljestrand, Howard M.

    2015-01-01

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg"0 gas until the temperature reached 358.15 K. • Phase change of HgCl_2_(_s_) completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg"0) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  19. Practical isolation of methyl mercury in natural waters

    International Nuclear Information System (INIS)

    Schintu, M.; Kauri, T.; Contu, A.; Kudo, A.

    1987-01-01

    A simple method to isolate both organic and inorganic mercury in natural waters is described. The mercuric compounds were quantitatively extracted with dithizone from six different kinds of water spiked at nanogram levels with radioactive mercuric chloride and methylmercuric chloride. After the separation from the inorganic mercury with sodium nitrite, methyl mercury was transferred to aqueous medium with sodium thiosulfate. The method provides a high recovery of organic as well as inorganic mercury to an aqueous medium, prior to their determination by gold-trap cold vapor atomic absorption spectrophotometry. This method is easy, rapid, and inexpensive. Furthermore, the limited number of analytical steps should reduce loss and contamination

  20. Estimating mercury emissions from a zinc smelter in relation to China's mercury control policies

    International Nuclear Information System (INIS)

    Wang, S.X.; Song, J.X.; Li, G.H.; Wu, Y.; Zhang, L.; Wan, Q.; Streets, D.G.; Chin, Conrad K.; Hao, J.M.

    2010-01-01

    Mercury concentrations of flue gas at inlet/outlet of the flue gas cleaning, electrostatic demister, reclaiming tower, acid plant, and mercury contents in zinc concentrate and by-products were measured in a hydrometallurgical zinc smelter. The removal efficiency of flue gas cleaning, electrostatic demister, mercury reclaiming and acid plant was about 17.4%, 30.3%, 87.9% and 97.4% respectively. Flue gas cleaning and electrostatic demister captured 11.7% and 25.3% of the mercury in the zinc concentrate, respectively. The mercury reclaiming tower captured 58.3% of the mercury in the zinc concentrate. About 4.2% of the mercury in the zinc concentrate was captured by the acid plant. Consequently, only 0.8% of the mercury in the zinc concentrate was emitted to the atmosphere. The atmospheric mercury emission factor was 0.5 g t -1 of zinc produced for the tested smelter, indicating that this process offers the potential to effectively reduce mercury emissions from zinc smelting. - Modern scale production equipped with acid plant and Hg reclaiming tower will significantly reduce Hg emissions from zinc smelters in China.

  1. Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world's highest per capita mercury pollution.

    Science.gov (United States)

    Cordy, Paul; Veiga, Marcello M; Salih, Ibrahim; Al-Saadi, Sari; Console, Stephanie; Garcia, Oseas; Mesa, Luis Alberto; Velásquez-López, Patricio C; Roeser, Monika

    2011-12-01

    The artisanal gold mining sector in Colombia has 200,000 miners officially producing 30tonnes Au/a. In the Northeast of the Department of Antioquia, there are 17 mining towns and between 15,000 and 30,000 artisanal gold miners. Guerrillas and paramilitary activities in the rural areas of Antioquia pushed miners to bring their gold ores to the towns to be processed in Processing Centers or entables. These Centers operate in the urban areas amalgamating the whole ore, i.e. without previous concentration, and later burn gold amalgam without any filtering/condensing system. Based on mercury mass balance in 15 entables, 50% of the mercury added to small ball mills (cocos) is lost: 46% with tailings and 4% when amalgam is burned. In just 5 cities of Antioquia, with a total of 150,000 inhabitants: Segovia, Remedios, Zaragoza, El Bagre, and Nechí, there are 323 entables producing 10-20tonnes Au/a. Considering the average levels of mercury consumption estimated by mass balance and interviews of entables owners, the mercury consumed (and lost) in these 5 municipalities must be around 93tonnes/a. Urban air mercury levels range from 300ng Hg/m(3) (background) to 1million ng Hg/m(3) (inside gold shops) with 10,000ng Hg/m(3) being common in residential areas. The WHO limit for public exposure is 1000ng/m(3). The total mercury release/emissions to the Colombian environment can be as high as 150tonnes/a giving this country the shameful first position as the world's largest mercury polluter per capita from artisanal gold mining. One necessary government intervention is to cut the supply of mercury to the entables. In 2009, eleven companies in Colombia legally imported 130tonnes of metallic mercury, much of it flowing to artisanal gold mines. Entables must be removed from urban centers and technical assistance is badly needed to improve their technology and reduce emissions. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Monsoon-facilitated characteristics and transport of atmospheric mercury at a high-altitude background site in southwestern China

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2016-10-01

    Full Text Available To better understand the influence of monsoonal climate and transport of atmospheric mercury (Hg in southwestern China, measurements of total gaseous mercury (TGM, defined as the sum of gaseous elemental mercury, GEM, and gaseous oxidized mercury, GOM, particulate bound mercury (PBM and GOM were carried out at Ailaoshan Station (ALS, 2450 m a.s.l. in southwestern China from May 2011 to May 2012. The mean concentrations (± SD for TGM, GOM and PBM were 2.09 ± 0.63, 2.2 ± 2.3 and 31.3 ± 28.4 pg m−3, respectively. TGM showed a monsoonal distribution pattern with relatively higher concentrations (2.22 ± 0.58 ng m−3, p  =  0.021 during the Indian summer monsoon (ISM, from May to September and the east Asia summer monsoon (EASM, from May to September periods than that (1.99 ± 0.66 ng m−3 in the non-ISM period. Similarly, GOM and PBM concentrations were higher during the ISM period than during the non-ISM period. This study suggests that the ISM and the EASM have a strong impact on long-range and transboundary transport of Hg between southwestern China and south and southeast Asia. Several high TGM events were accompanied by the occurrence of northern wind during the ISM period, indicating anthropogenic Hg emissions from inland China could rapidly increase TGM levels at ALS due to strengthening of the EASM. Most of the TGM and PBM events occurred at ALS during the non-ISM period. Meanwhile, high CO concentrations were also observed at ALS, indicating that a strong south tributary of westerlies could have transported Hg from south and southeast Asia to southwestern China during the non-ISM period. The biomass burning in southeast Asia and anthropogenic Hg emissions from south Asia are thought to be the source of atmospheric Hg in remote areas of southwestern China during the non-ISM period.

  3. Spatial variation of mercury bioaccumulation in bats of Canada linked to atmospheric mercury deposition.

    Science.gov (United States)

    Chételat, John; Hickey, M Brian C; Poulain, Alexandre J; Dastoor, Ashu; Ryjkov, Andrei; McAlpine, Donald; Vanderwolf, Karen; Jung, Thomas S; Hale, Lesley; Cooke, Emma L L; Hobson, Dave; Jonasson, Kristin; Kaupas, Laura; McCarthy, Sara; McClelland, Christine; Morningstar, Derek; Norquay, Kaleigh J O; Novy, Richard; Player, Delanie; Redford, Tony; Simard, Anouk; Stamler, Samantha; Webber, Quinn M R; Yumvihoze, Emmanuel; Zanuttig, Michelle

    2018-06-01

    Wildlife are exposed to neurotoxic mercury at locations distant from anthropogenic emission sources because of long-range atmospheric transport of this metal. In this study, mercury bioaccumulation in insectivorous bat species (Mammalia: Chiroptera) was investigated on a broad geographic scale in Canada. Fur was analyzed (n=1178) for total mercury from 43 locations spanning 20° latitude and 77° longitude. Total mercury and methylmercury concentrations in fur were positively correlated with concentrations in internal tissues (brain, liver, kidney) for a small subset (n=21) of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus), validating the use of fur to indicate internal mercury exposure. Brain methylmercury concentrations were approximately 10% of total mercury concentrations in fur. Three bat species were mainly collected (little brown bats, big brown bats, and northern long-eared bats [M. septentrionalis]), with little brown bats having lower total mercury concentrations in their fur than the other two species at sites where both species were sampled. On average, juvenile bats had lower total mercury concentrations than adults but no differences were found between males and females of a species. Combining our dataset with previously published data for eastern Canada, median total mercury concentrations in fur of little brown bats ranged from 0.88-12.78μg/g among 11 provinces and territories. Highest concentrations were found in eastern Canada where bats are most endangered from introduced disease. Model estimates of atmospheric mercury deposition indicated that eastern Canada was exposed to greater mercury deposition than central and western sites. Further, mean total mercury concentrations in fur of adult little brown bats were positively correlated with site-specific estimates of atmospheric mercury deposition. This study provides the largest geographic coverage of mercury measurements in bats to date and indicates that atmospheric

  4. Metallic mercury recycling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M.A.

    1994-07-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made.

  5. Metallic mercury recycling. Final report

    International Nuclear Information System (INIS)

    Beck, M.A.

    1994-01-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made

  6. Thiosulphate assisted phytoextraction of mercury contaminated soils at the Wanshan Mercury Mining District, Southwest China

    Directory of Open Access Journals (Sweden)

    J. Wang

    2013-10-01

    Full Text Available Wanshan, known as the “Mercury Capital” of China, is located in the Southwest of China. Due to the extensive mining and smelting works in the Wanshan area, the local ecosystem has been serious contaminated with mercury. In the present study, a number of soil samples were taken from the Wanshan mercury mining area and the mercury fractionations in soils were analyzed using sequential extraction procedure technique. The obtained results showed that the dominate mercury fractions (represent 95% of total mercury were residual and organic bound mercury. A field trial was conducted in a mercury polluted farmland at the Wanshan mercury mine. Four plant species Brassica juncea Czern. et Coss.var. ASKYC (ASKYC, Brassica juncea Czern. et Coss.var.DPDH (DPDH, Brassica juncea Czern. et Coss.var.CHBD(CHBD, Brassica juncea Czern. et Coss.var.LDZY (LDZY were tested their ability to extract mercury from soil with thiosulphate amendment. The results indicated that the mercury concentration in the roots and shoots of the four plants were significantly increased with thiosulphate treatment. The mercury phytoextraction yield of ASKYC, DPDH, CHBD and LDZY were 92, 526, 294 and 129 g/ha, respectively

  7. Thiosulphate assisted phytoextraction of mercury contaminated soils at the Wanshan Mercury Mining District, Southwest China

    Directory of Open Access Journals (Sweden)

    J Wang

    2013-10-01

    Full Text Available Wanshan, known as the “Mercury Capital” of China, is located in the Southwest of China. Due to the extensive mining and smelting works in the Wanshan area, the local ecosystem has been serious contaminated with mercury. In the present study, a number of soil samples were taken from the Wanshan mercury mining area and the mercury fractionations in soils were analyzed using sequential extraction procedure technique. The obtained results showed that the dominate mercury fractions (represent 95% of total mercury were residual and organic bound mercury. A field trial was conducted in a mercury polluted farmland at the Wanshan mercury mine. Four plant species Brassica juncea Czern. et Coss.var. ASKYC (ASKYC, Brassica juncea Czern. et Coss.var.DPDH (DPDH, Brassica juncea Czern. et Coss.var.CHBD(CHBD, Brassica juncea Czern. et Coss.var.LDZY (LDZY were tested their ability to extract mercury from soil with thiosulphate amendment. The results indicated that the mercury concentration in the roots and shoots of the four plants were significantly increased with thiosulphate treatment. The mercury phytoextraction yield of ASKYC, DPDH, CHBD and LDZY were 92, 526, 294 and 129 g/ha, respectively.

  8. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability.

    Science.gov (United States)

    Ruiz, Oscar N; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2011-06-01

    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183,000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioneins in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  9. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  10. Photodegradation of 17α-ethynylestradiol in aqueous solution exposed to a high-pressure mercury lamp (250 W)

    International Nuclear Information System (INIS)

    Liu, X.L.; Wu, F.; Deng, N.S.

    2003-01-01

    The photodegradation of 17α-ethynylestradiol (EE 2 ) induced by high-pressure mercury lamp (λ≥313, 250 W) in aqueous solution of EE 2 was investigated initially. The affecting factors on the photodegradation were studied and described in details, such as EE 2 initial concentration, Fe 3+ , algae, exposure time, and so on. The concentration of EE 2 in distilled water was mainly determined using fluorescence spectrophotometer. The photodegradation of EE 2 in aqueous solution exposed to high-pressure mercury lamp was evident and could be accelerated by Fe 3+ or algae (e.g. Anabaena cylindrica) in general. With the algae concentration increasing, photodegradation rate increased. In this paper, the mechanism of photocatalytic degradation of EE 2 by Fe 3+ or algae is discussed primarily. - Photodegradation increased with increasing concentrations of algae

  11. Global Mercury Observatory System (GMOS): measurements of atmospheric mercury in Celestun, Yucatan, Mexico during 2012.

    Science.gov (United States)

    Velasco, Antonio; Arcega-Cabrera, Flor; Oceguera-Vargas, Ismael; Ramírez, Martha; Ortinez, Abraham; Umlauf, Gunther; Sena, Fabrizio

    2016-09-01

    Within the Global Mercury Observation System (GMOS) project, long-term continuous measurements of total gaseous mercury (TGM) were carried out by a monitoring station located at Celestun, Yucatan, Mexico, a coastal site along the Gulf of Mexico. The measurements covered the period from January 28th to October 17th, 2012. TGM data, at the Celestun site, were obtained using a high-resolution mercury vapor analyzer. TGM data show values from 0.50 to 2.82 ng/m(3) with an annual average concentration of 1.047 ± 0.271 ng/m(3). Multivariate analyses of TGM and meteorological variables suggest that TGM is correlated with the vertical air mass distribution in the atmosphere, which is influenced by diurnal variations in temperature and relative humidity. Diurnal variation is characterized by higher nighttime mercury concentrations, which might be influenced by convection currents between sea and land. The back trajectory analysis confirmed that local sources do not significantly influence TGM variations. This study shows that TGM monitoring at the Celestun site fulfills GMOS goals for a background site.

  12. Mercury bioaccumulation in Southern Appalachian birds, assessed through feather concentrations

    Science.gov (United States)

    Rebecca Hylton Keller; Lingtian Xie; David B. Buchwalter; Kathleen E. Franzreb; Theodore R Simons

    2014-01-01

    Mercury contamination in wildlife has rarely been studied in the Southern Appalachians despite high deposition rates in the region. From 2006 to 2008 we sampled feathers from 458 birds representing 32 species in the Southern Appalachians for total mercury and stable isotope ä 15N. Mercury concentrations (mean ± SE) averaged 0.46...

  13. Accumulation of mercury in selected plant species grown in soils contaminated with different mercury compounds

    International Nuclear Information System (INIS)

    Su, Yi; Han, Fengxiang; Shiyab, Safwan; Chen, Jian; Monts, David L.

    2007-01-01

    The objective of our research is to screen and search for suitable plant species for phyto-remediation of mercury-contaminated soil. Currently our effort is specifically focused on mercury removal from the U.S. Department of Energy (DOE) sites, where mercury contamination is a major concern. In order to cost effectively implement mercury remediation efforts, it is necessary now to obtain an improved understanding of biological means of removing mercury and mercury compounds.. Phyto-remediation is a technology that uses various plants to degrade, extract, contain, or immobilize contaminants from soil and water. In particular, phyto-extraction is the uptake of contaminants by plant roots and translocation within the plants to shoots or leaves. Contaminants are generally removed by harvesting the plants. We have investigated phyto-extraction of mercury from contaminated soil by using some of the known metal-accumulating plants since no natural plant species with mercury hyper-accumulating properties has yet been identified. Different natural plant species have been studied for mercury uptake, accumulation, toxicity and overall mercury removal efficiency. Various mercury compounds, such as HgS, HgCl 2 , and Hg(NO 3 ) 2 , were used as contaminant sources. Different types of soil were examined and chosen for phyto-remediation experiments. We have applied microscopy and diffuse reflectance spectrometry as well as conventional analytical chemistry to monitor the phyto-remediation processes of mercury uptake, translocation and accumulation, and the physiological impact of mercury contaminants on selected plant species. Our results indicate that certain plant species, such as beard grass (Polypogon monospeliensis), accumulated a very limited amount of mercury in the shoots ( 2 powder, respectively; no visual stress symptoms were observed. We also studied mercury phyto-remediation using aged soils that contained HgS, HgCl 2 , or Hg(NO 3 ) 2 . We have found that up to hundreds

  14. REEMISSION OF MERCURY COMPOUNDS FROM SEWAGE SLUDGE DISPOSAL

    Directory of Open Access Journals (Sweden)

    Beata Janowska

    2016-12-01

    Full Text Available The sewage sludge disposal and cultivation methods consist in storage, agricultural use, compost production, biogas production or heat treatment. The sewage sludge production in municipal sewage sludge treatment plants in year 2013 in Poland amounted to 540.3 thousand Mg d.m. The sewage sludge for agricultural or natural use must satisfy chemical, sanitary and environmental safety requirements. The heavy metal content, including the mercury content, determines the sewage sludge disposal method. Mercury has a high chemical activity and biological form compounds with different properties. The properties of the mercury present in sewage sludge or composts, its potential bioavailability depend on its physicochemical forms. Different forms of mercury, which are found in soil and sediments and sewage sludge, may be determined using various techniques sequential extraction. In order to assess the bioavailability the analysis of fractional of mercury in samples of sewage sludge and composts was made. For this purpose the analytical procedure based on a four sequential extraction process was applied. Mercury fractions were classified as exchangeable (EX, base soluble (BS, acids soluble (AS and oxidizable (OX. This article presents the research results on the mercury compounds contents in sewage sludge subjected to drying process, combustion and in composted sewage sludge. During drying and combustion process of the sewage sludge, mercury transforms into volatile forms that could be emitted into the atmosphere. The mercury fractionation in composted sewage sludge proved that mercury in compost occurs mainly in an organic fraction and in a residual fraction that are scarce in the environment.

  15. Selenium and mercury molar ratios in saltwater fish from New Jersey: Individual and species variability complicate use in human health fish consumption advisories☆

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael

    2014-01-01

    Balancing risk versus benefits to humans and other organisms from consuming fish is a national concern in the USA, as well as in many other parts of the world. Protecting public health is both a federal and state responsibility, and states respond by issuing fish consumption advisories, particularly for mercury. Recently it has been emphasized that the protective role of selenium against mercury toxicity depends on their molar ratios, which should be evaluated as an indication of selenium’s protective capacity, and incorporated in risk assessments for fish consumption. However, there is no single “protective” ratio agreed upon. In this paper we examine the selenium:mercury (Se:Hg) molar ratios in a wide range of saltwater fish caught and eaten by recreational fishers along the New Jersey coast. We were particularly interested in interspecific and intraspecific variability, and whether the molar ratios were consistent within a species, allowing for its use in managing risk. The selenium–mercury molar ratio showed significant variation among and within fish species. The molar ratio decreased with the size of the fish species, decreased with the mercury levels, and within a fish species, the selenium:mercury ratio decreased with fish size. As an essential element, selenium undergoes some homeostatic regulation, but it is also highly toxic. Within species, mercury level tends to increase with size, accounting for the negative relationship between size and ratio. This variability may make it difficult to use the selenium:mercury molar ratio in risk assessment, risk management, and risk communication at this time, and more information is needed on how mercury and selenium actually interact and on the relationship between the molar ratios and health outcomes. PMID:22405995

  16. Mercury emissions control technologies for mixed waste thermal treatment

    International Nuclear Information System (INIS)

    Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D.

    1997-01-01

    EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates

  17. Methyl mercury, but not inorganic mercury, associated with higher blood pressure during pregnancy.

    Science.gov (United States)

    Wells, Ellen M; Herbstman, Julie B; Lin, Yu Hong; Hibbeln, Joseph R; Halden, Rolf U; Witter, Frank R; Goldman, Lynn R

    2017-04-01

    Prior studies addressing associations between mercury and blood pressure have produced inconsistent findings; some of this may result from measuring total instead of speciated mercury. This cross-sectional study of 263 pregnant women assessed total mercury, speciated mercury, selenium, and n-3 polyunsaturated fatty acids in umbilical cord blood and blood pressure during labor and delivery. Models with a) total mercury or b) methyl and inorganic mercury were evaluated. Regression models adjusted for maternal age, race/ethnicity, prepregnancy body mass index, neighborhood income, parity, smoking, n-3 fatty acids and selenium. Geometric mean total, methyl, and inorganic mercury concentrations were 1.40µg/L (95% confidence interval: 1.29, 1.52); 0.95µg/L (0.84, 1.07); and 0.13µg/L (0.10, 0.17), respectively. Elevated systolic BP, diastolic BP, and pulse pressure were found, respectively, in 11.4%, 6.8%, and 19.8% of mothers. In adjusted multivariable models, a one-tertile increase of methyl mercury was associated with 2.83mmHg (0.17, 5.50) higher systolic blood pressure and 2.99mmHg (0.91, 5.08) higher pulse pressure. In the same models, an increase of one tertile of inorganic mercury was associated with -1.18mmHg (-3.72, 1.35) lower systolic blood pressure and -2.51mmHg (-4.49, -0.53) lower pulse pressure. No associations were observed with diastolic pressure. There was a non-significant trend of higher total mercury with higher systolic blood pressure. We observed a significant association of higher methyl mercury with higher systolic and pulse pressure, yet higher inorganic mercury was significantly associated with lower pulse pressure. These results should be confirmed with larger, longitudinal studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. High capacity photonic integrated switching circuits

    NARCIS (Netherlands)

    Albores Mejia, A.

    2011-01-01

    As the demand for high-capacity data transfer keeps increasing in high performance computing and in a broader range of system area networking environments; reconfiguring the strained networks at ever faster speeds with larger volumes of traffic has become a huge challenge. Formidable bottlenecks

  19. Uptake of mercury vapor by wheat. An assimilation model

    International Nuclear Information System (INIS)

    Browne, C.L.; Fang, S.C.

    1978-01-01

    Using a whole-plant chamber and 203 Hg-labeled mercury, a quantitative study was made of the effect of environmental parameters on the uptake, by wheat (Triticum aestivum), of metallic mercury vapor, an atmospheric pollutant. Factors were examined in relation to their influence on components of the gas-assimilation model, U(Hg) = (C/sub A' -- C/sub L')/(r/sub L.Hg/ + r/sub M.Hg/) where U(Hg) is the rate of mercury uptake per unit leaf surface, C/sub A'/ is the ambient mercury vapor concentration, C/sub L'/ is the mercury concentration at immobilization sites within the plant (assumed to be zero), r/sub L.Hg/ is the total leaf resistance to mercury vapor exchange, and r/sub M.Hg/ is a residual term to account for unexplained physical and biochemical resistances to mercury vapor uptake. Essentially all mercury vapor uptake was confined to the leaves. r/sub L.Hg/ was particularly influenced by illumination (0 to 12.8 klux), but unaffected by ambient temperature (17 to 33 0 C) and mercury vapor concentration (0 to 40 μg m -3 ). The principal limitation to mercury vapor uptake was r/sub M.Hg/, which was linearly related to leaf temperature, but unaffected by mercury vapor concentration and illumination, except for apparent high values in darkness. Knowing C/sub A'/ and estimating r/sub L.Hg/ and r/sub M.Hg/ from experimental data, mercury vapor uptake by wheat in light was accurately predicted for several durations of exposure using the above model

  20. High visual working memory capacity in trait social anxiety.

    Science.gov (United States)

    Moriya, Jun; Sugiura, Yoshinori

    2012-01-01

    Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions.

  1. Failure probability analysis on mercury target vessel

    International Nuclear Information System (INIS)

    Ishikura, Syuichi; Futakawa, Masatoshi; Kogawa, Hiroyuki; Sato, Hiroshi; Haga, Katsuhiro; Ikeda, Yujiro

    2005-03-01

    Failure probability analysis was carried out to estimate the lifetime of the mercury target which will be installed into the JSNS (Japan spallation neutron source) in J-PARC (Japan Proton Accelerator Research Complex). The lifetime was estimated as taking loading condition and materials degradation into account. Considered loads imposed on the target vessel were the static stresses due to thermal expansion and static pre-pressure on He-gas and mercury and the dynamic stresses due to the thermally shocked pressure waves generated repeatedly at 25 Hz. Materials used in target vessel will be degraded by the fatigue, neutron and proton irradiation, mercury immersion and pitting damages, etc. The imposed stresses were evaluated through static and dynamic structural analyses. The material-degradations were deduced based on published experimental data. As a result, it was quantitatively confirmed that the failure probability for the lifetime expected in the design is very much lower, 10 -11 in the safety hull, meaning that it will be hardly failed during the design lifetime. On the other hand, the beam window of mercury vessel suffered with high-pressure waves exhibits the failure probability of 12%. It was concluded, therefore, that the leaked mercury from the failed area at the beam window is adequately kept in the space between the safety hull and the mercury vessel by using mercury-leakage sensors. (author)

  2. Mercury toxicity in the Amazon: contrast sensitivity and color discrimination of subjects exposed to mercury

    Directory of Open Access Journals (Sweden)

    A.R. Rodrigues

    2007-03-01

    Full Text Available We measured visual performance in achromatic and chromatic spatial tasks of mercury-exposed subjects and compared the results with norms obtained from healthy individuals of similar age. Data were obtained for a group of 28 mercury-exposed subjects, comprising 20 Amazonian gold miners, 2 inhabitants of Amazonian riverside communities, and 6 laboratory technicians, who asked for medical care. Statistical norms were generated by testing healthy control subjects divided into three age groups. The performance of a substantial proportion of the mercury-exposed subjects was below the norms in all of these tasks. Eleven of 20 subjects (55% performed below the norms in the achromatic contrast sensitivity task. The mercury-exposed subjects also had lower red-green contrast sensitivity deficits at all tested spatial frequencies (9/11 subjects; 81%. Three gold miners and 1 riverine (4/19 subjects, 21% performed worse than normal subjects making more mistakes in the color arrangement test. Five of 10 subjects tested (50%, comprising 2 gold miners, 2 technicians, and 1 riverine, performed worse than normal in the color discrimination test, having areas of one or more MacAdam ellipse larger than normal subjects and high color discrimination thresholds at least in one color locus. These data indicate that psychophysical assessment can be used to quantify the degree of visual impairment of mercury-exposed subjects. They also suggest that some spatial tests such as the measurement of red-green chromatic contrast are sufficiently sensitive to detect visual dysfunction caused by mercury toxicity.

  3. Fish consumption limit for mercury compounds

    Directory of Open Access Journals (Sweden)

    Abbas Esmaili-Sari

    2011-09-01

    Full Text Available Background and objectives: Methyl mercury can carry out harmful effects on the reproductive, respiratory, and nervous system of human. Moreover, mercury is known as the most toxic heavy metal in nature. Fish and seafood consumption is the major MeHg exposure route for human. The present study tries to cover researches which have been conducted on mercury levels in 21 species of fish from Persian Gulf, Caspian Sea and Anzali Wetland during the past 6 years, and in addition to stating mercury level, it provides recommendations about the restriction of monthly fish consumption for each species separately. Material and methods: Fish samples were transferred to the laboratory and stored in refrigerator under -20oC until they were dissected. Afterwards, the muscle tissues were separated and dried. The dried samples were ground and changed into a homogenous powder and then the mercury concentration rate has been determined by advanced mercury analyzer, model 254. Results: In general, mercury contamination in fishes caught from Anzali Wetland was much more than fishes from Caspian Sea. Also, from among all studied fishes, oriental sole (Euryglossa orientalis, caught from Persian Gulf, allocated the most mercury level to itself with the rate of 5.61ml per kg., therefore, it exercises a severe consumption restriction for pregnant women and vulnerable groups. Conclusion: Based on the calculations, about 50% of fishes, mostly with short food chain, can be easily consumed during the year. However, with regard to Oriental sole (Euryglossa orientalis and shark (Carcharhinus dussumieri, caught from Persian Gulf, special consideration should be taken in their consumption. On the other hand, careful planning should be made for the high rate of fish consumption among fishing community.

  4. Modeling Mercury in Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  5. Application of a three-dimensional model for a study of the energy transfer of a high-pressure mercury horizontal lamp

    Energy Technology Data Exchange (ETDEWEB)

    Ben Hamida, M. B.; Charrada, K. [Unite d' Etude des Milieux Ionises et Reactifs, IPEIM, 5019 route de Kairouan Monastir (Tunisia)

    2012-06-15

    This paper is devoted to study the dynamics of a discharge lamp with high intensity in a horizontal position. As an example of application, we chose the high-pressure mercury lamp. For this, we realized a three-dimensional model, a stable and powered DC. After the validation of this model, we used it to reproduce the influence of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp operating in a horizontal position. Indeed, the mass of mercury and the electric current are modified and the effect of convective transport is studied.

  6. Spatial Patterns of Mercury Bioaccumulation in the Upper Clark Fork River Basin, MT

    Science.gov (United States)

    Staats, M. F.; Langner, H.; Moore, J. N.

    2010-12-01

    The Upper Clark Fork River Basin (UCFRB) in Montana has a legacy of historic gold/silver mine waste that contributes large quantities of mercury into the watershed. Mercury bioaccumulation at higher levels of the aquatic food chain, such as the mercury concentration in the blood of pre-fledge osprey, exhibit an irregular spatial signature based on the location of the nests throughout the river basin. Here we identify regions with a high concentration of bioavailable mercury and the major factors that allow the mercury to bioaccumulate within trophic levels. This identification is based on the abundance of mercury sources and the potential for mercury methylation. To address the source term, we did a survey of total mercury in fine sediments along selected UCFRB reaches, along with the assessment of environmental river conditions (percentage of backwaters/wetlands, water temperature and pH, etc). In addition, we analyzed the mercury levels of a representative number of macroinvertebrates and fish from key locations. The concentration of total mercury in sediment, which varies from reach to reach (tributaries of the Clark Fork River, 5mg/kg) affects the concentration of mercury found at various trophic levels. However, reaches with a low supply of mine waste-derived mercury can also yield substantial concentrations of mercury in the biota, due to highly favorable conditions for mercury methylation. We identify that the major environmental factor that affects the methylation potential in the UCFRB is the proximity and connectivity of wetland areas to the river.

  7. Mercury is Moon's brother

    International Nuclear Information System (INIS)

    Ksanfomalifi, L.V.

    1976-01-01

    The latest information on Mercury planet is presented obtained by studying the planet with the aid of radar and space vehicles. Rotation of Mercury about its axis has been discovered; within 2/3 of its year it executes a complete revolution about its axis. In images obtained by the ''Mariner-10'' Mercurys surface differs little from that of the Moon. The ''Mariner-10'' has also discovered the Mercurys atmosphere, which consists of extremely rarefied helium. The helium is continuously supplied to the planet by the solar wind. The Mercury's magnetic field has been discovered, whose strength is 35 x 10 -4 at the Equator and 70 x 10 -4 E at the poles. The inclination of the dipole axis to the Mercury's rotation axis is 7 deg

  8. Analysis of gas-phase mercury sorption with coke and lignite dust

    Directory of Open Access Journals (Sweden)

    Marczak Marta

    2017-01-01

    Full Text Available In recent years the problem of mercury emission became a widely discussed topic. Its high impact is caused by its toxicity and ability to accumulate in living organisms, properties that justified the United States Environmental Protection Agency (US EPA to classify mercury as hazardous pollutant. The problem of mercury emission is crucial for countries like Poland, where the most of the emission is caused by coaldepended energy sector. Current technology of mercury removal utilizes adsorption of mercury on the surface of activated carbon. Due to high price of activated carbon, this technological approach seems to be uneconomical and calls for cheaper alternative. One possible solution can be usage of other sorptive materials obtained from thermal processes like coke production. Example of such material is coke dust obtained from dry quenching of coke. The aim of this work was to analyse the sorption potential of lignite and coke dust and determine parameters influencing mercury behaviour during combustion.

  9. Solid-phase partitioning of mercury in artisanal gold mine tailings from selected key areas in Mindanao, Philippines, and its implications for mercury detoxification.

    Science.gov (United States)

    Opiso, Einstine M; Aseneiro, John Paul J; Banda, Marybeth Hope T; Tabelin, Carlito B

    2018-03-01

    The solid-phase partitioning of mercury could provide necessary data in the identification of remediation techniques in contaminated artisanal gold mine tailings. This study was conducted to determine the total mercury content of mine wastes and identify its solid-phase partitioning through selective sequential extraction coupled with cold vapour atomic absorption spectroscopy. Samples from mine tailings and the carbon-in-pulp (CIP) process were obtained from selected key areas in Mindanao, Philippines. The results showed that mercury use is still prevalent among small-scale gold miners in the Philippines. Tailings after ball mill-gravity concentration (W-BM and Li-BM samples) from Mt Diwata and Libona contained high levels of mercury amounting to 25.024 and 6.5 mg kg -1 , respectively. The most prevalent form of mercury in the mine tailings was elemental/amalgamated mercury, followed by water soluble, exchangeable, organic and strongly bound phases, respectively. In contrast, mercury content of carbon-in-pulp residues were significantly lower at only 0.3 and 0.06 mg kg -1 for P-CIP (Del Pilar) and W-CIP (Mt Diwata), respectively. The bulk of mercury in P-CIP samples was partitioned in residual fraction while in W-CIP samples, water soluble mercury predominated. Overall, this study has several important implications with regards to mercury detoxification of contaminated mine tailings from Mindanao, Philippines.

  10. Soil mercury levels in the area surrounding the Cerro Prieto geothermal complex, MEXICO.

    Science.gov (United States)

    Pastrana-Corral, M A; Wakida, F T; García-Flores, E; Rodriguez-Mendivil, D D; Quiñonez-Plaza, A; Piñon-Colin, T D J

    2016-08-01

    Even though geothermal energy is a renewable energy source that is seen as cost-effective and environmentally friendly, emissions from geothermal plants can impact air, soil, and water in the vicinity of geothermal power plants. The Cerro Prieto geothermal complex is located 30 km southeast of the city of Mexicali in the Mexican state of Baja California. Its installed electricity generation capacity is 720 MW, being the largest geothermal complex in Mexico. The objective of this study was to evaluate whether the emissions generated by the geothermal complex have increased the soil mercury concentration in the surrounding areas. Fifty-four surface soil samples were collected from the perimeter up to an approximate distance of 7660 m from the complex. Additionally, four soil depth profiles were performed in the vicinity of the complex. Mercury concentration in 69 % of the samples was higher than the mercury concentration found at the baseline sites. The mercury concentration ranged from 0.01 to 0.26 mg/kg. Our results show that the activities of the geothermal complex have led to an accumulation of mercury in the soil of the surrounding area. More studies are needed to determine the risk to human health and the ecosystems in the study area.

  11. High capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  12. Mercury Wet Scavenging and Deposition Differences by Precipitation Type.

    Science.gov (United States)

    Kaulfus, Aaron S; Nair, Udaysankar; Holmes, Christopher D; Landing, William M

    2017-03-07

    We analyze the effect of precipitation type on mercury wet deposition using a new database of individual rain events spanning the contiguous United States. Measurements from the Mercury Deposition Network (MDN) containing single rainfall events were identified and classified into six precipitation types. Mercury concentrations in surface precipitation follow a power law of precipitation depth that is modulated by precipitation system morphology. After controlling for precipitation depth, the highest mercury deposition occurs in supercell thunderstorms, with decreasing deposition in disorganized thunderstorms, quasi-linear convective systems (QLCS), extratropical cyclones, light rain, and land-falling tropical cyclones. Convective morphologies (supercells, disorganized, and QLCS) enhance wet deposition by a factor of at least 1.6 relative to nonconvective morphologies. Mercury wet deposition also varies by geographic region and season. After controlling for other factors, we find that mercury wet deposition is greater over high-elevation sites, seasonally during summer, and in convective precipitation.

  13. Determination of Mercury Daily Intake and Hair-to-Blood Mercury Concentration Ratio in People Resident of the Coast of the Persian Gulf, Iran.

    Science.gov (United States)

    Okati, Narjes; Esmaili-Sari, Abbas

    2018-01-01

    The objectives of this study were to understand the mercury daily intake and hair-to-blood mercury ratio in fishermen and non-fishermen families in the coast of the Persian Gulf in Iran. The mean mercury concentration in the hair of fishermen and non-fishermen families was 5.76 and 2.27 μg/g, respectively. The mean mercury concentrations of RBCs were obtained for fishermen families and non-fishermen families: 35.96 and 17.18 μg/L, respectively. Hair mercury concentrations in 17% of people were higher than 10 μg/g, the No Observed Adverse Effects Level set by the World Health Organization. 78% of people had a blood mercury value > 5.8 μg/L, the standard level set by the U.S. Environmental Protection Agency. A significant correlation (r = 0.94, p = 0.000) was seen between log hair and RBCs mercury concentrations. The mean mercury daily intake for fishermen and non-fishermen families was 0.42 and 0.20 µg/kg BW per day, respectively. The mean mercury daily intake of fishermen families was higher than the provisional tolerable daily intake (0.23 µg/kg BW per day) suggested by the Joint Expert Committee on Food Additives. Mercury daily intake significantly correlated with fish consumption (r = 0.50, p = 0.000) and log hair mercury (r = 0.88, p = 0.000). The total mean of hair-to-blood mercury concentration ratio was 306. We conclude that the use of mercury concentrations in the hair and RBCs could have been suitable biomarkers for predicting mercury exposure of people with a high rate of fish consumption.

  14. Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp. B50A.

    Science.gov (United States)

    Giovanella, Patricia; Cabral, Lucélia; Bento, Fátima Menezes; Gianello, Clesio; Camargo, Flávio Anastácio Oliveira

    2016-01-25

    This study aimed to isolate mercury resistant bacteria, determine the minimum inhibitory concentration for Hg, estimate mercury removal by selected isolates, explore the mer genes, and detect and characterize the activity of the enzyme mercuric (II) reductase produced by a new strain of Pseudomonas sp. B50A. The Hg removal capacity of the isolates was determined by incubating the isolates in Luria Bertani broth and the remaining mercury quantified by atomic absorption spectrophotometry. A PCR reaction was carried out to detect the merA gene and the mercury (II) reductase activity was determined in a spectrophotometer at 340 nm. Eight Gram-negative bacterial isolates were resistant to high mercury concentrations and capable of removing mercury, and of these, five were positive for the gene merA. The isolate Pseudomonas sp. B50A removed 86% of the mercury present in the culture medium and was chosen for further analysis of its enzyme activity. Mercuric (II) reductase activity was detected in the crude extract of this strain. This enzyme showed optimal activity at pH 8 and at temperatures between 37 °C and 45 °C. The ions NH4(+), Ba(2+), Sn(2+), Ni(2+) and Cd(2+) neither inhibited nor stimulated the enzyme activity but it decreased in the presence of the ions Ca(2+), Cu(+) and K(+). The isolate and the enzyme detected were effective in reducing Hg(II) to Hg(0), showing the potential to develop bioremediation technologies and processes to clean-up the environment and waste contaminated with mercury. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Mechanics of high-capacity electrodes in lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhu, Ting

    2016-01-01

    Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy landscape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research. (topical review)

  16. Some like it cold: microbial transformations of mercury in polar regions

    Directory of Open Access Journals (Sweden)

    Niels Kroer

    2011-12-01

    Full Text Available The contamination of polar regions with mercury that is transported from lower latitudes as inorganic mercury has resulted in the accumulation of methylmercury (MeHg in food chains, risking the health of humans and wildlife. While production of MeHg has been documented in polar marine and terrestrial environments, little is known about the responsible transformations and transport pathways and the processes that control them. We posit that as in temperate environments, microbial transformations play a key role in mercury geochemical cycling in polar regions by: (1 methylating mercury by one of four proposed pathways, some not previously described; (2 degrading MeHg by activities of mercury resistant and other bacteria; and (3 carrying out redox transformations that control the supply of the mercuric ion, the substrate of methylation reactions. Recent analyses have identified a high potential for mercury-resistant microbes that express the enzyme mercuric reductase to affect the production of gaseous elemental mercury when and where daylight is limited. The integration of microbially mediated processes in the paradigms that describe mercury geochemical cycling is therefore of high priority especially in light of concerns regarding the effect of global warming and permafrost thawing on input of MeHg to polar regions.

  17. Removal of mercury from water using pottery

    International Nuclear Information System (INIS)

    Helal, A.A.A.

    2006-01-01

    In a previous study, the sorption of radiocobalt by powdered pottery materials was investigated. The use of these materials as immobilization matrix for liquid radioactive waste requires the employment of pottery vessels. Therefore, the present study aims to give detailed investigations of the decontamination of radionuclides and toxic elements using pottery containers. These investigations are equally useful to elucidate how far these vessels can be utilized for water purification through decontamination of toxic and heavy metals. The radionuclide or heavy metal removal capability using pottery pots, as low cost sorbents, has been investigated for both radioactive ( 203 Hg) and stable mercury. The results indicated that Hg 2+ is better removed by pottery from neutral to alkaline solutions. The capacity of the used pottery container (100 ml in volume) for complete removal of mercury was found to reach 3 x 10 -4 mol/l, and the time needed was 8 hours. The sorption process was suggested to occur via adsorption and ion exchange. The effect of presence of humic or fulvic acid, as ligands abundant in water, is also investigated. The results imply that, in absence of humic or fulvic acid the sorption follows the expected behaviour, i.e. sorption sites with similar affinity for mercury. In presence of humic or fulvic acid, additional sorption sites are available by the organic molecule when it is associated to the pottery. (orig.)

  18. Concentration of mercury in wheat samples stored with mercury tablets as preservative. [Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Lalit, B Y; Ramachandran, T V [Bhabha Atomic Research Centre, Bombay (India). Air Monitoring Section

    1977-01-01

    Tablets consisting of mercury in the form of a dull grey powder made by triturating mercury with chalk and sugar are used in Indian household for storing food-grains. The contamination of wheat samples by mercury, when stored with mercury tablets for period of upto four years has been assessed by using non-destructive neutron activation analysis. The details of the analytical procedure used have also been briefly described. The concentration of mercury in wheat increases with storage period. Loss of weight of mercury tablet is proportional to the storage period to a first approximation. In the present experiment, the average weight loss at the and end of first year was 0.009716 g corresponding to 6 ppm in wheat.

  19. Thiomersal photo-degradation with visible light mediated by graphene quantum dots: Indirect quantification using optical multipath mercury cold-vapor absorption spectrophotometry

    Science.gov (United States)

    Miranda-Andrades, Jarol R.; Khan, Sarzamin; Toloza, Carlos A. T.; Romani, Eric C.; Freire Júnior, Fernando L.; Aucelio, Ricardo Q.

    2017-12-01

    Thiomersal is employed as preservative in vaccines, cosmetic and pharmaceutical products due to its capacity to inhibit bacterial growth. Thiomersal contains 49.55% of mercury in its composition and its highly toxic ethylmercury degradation product has been linked to neurological disorders. The photo-degradation of thiomersal has been achieved by visible light using graphene quantum dots as catalysts. The generated mercury cold vapor (using adjusted experimental conditions) was detected by multipath atomic absorption spectrometry allowing the quantification of thiomersal at values as low as 20 ng L- 1 even in complex samples as aqueous effluents of pharmaceutical industry and urine. A kinetic study (pseudo-first order with k = 0.11 min- 1) and insights on the photo-degradation process are presented.

  20. Mercury removal from natural gas and associated condensates

    Energy Technology Data Exchange (ETDEWEB)

    Hennico, A.; Barthel, Y.; Courty, P. (Institut Francais du Petrole, 31 - Rueil-Malmaison (France). Direction Industrielle)

    1990-01-01

    IFP mercury trapping systems are based on CMG 273, the recently developed Procatalyse product which is the heart of IFP's gas phase and liquid phase mercury removal technology. This material, made of highly macroporous alumina supporting a metal sulfide, presents a very high reactivity towards mecury within a broad range of operating conditions, including those operating in the liquid phase. Characteristics of CMG 273 are presented. (orig.).

  1. Practical aspects of the environmental behavior of mercury

    International Nuclear Information System (INIS)

    Bittel, Robert; Patti, Francois.

    1976-12-01

    Mercury is to be found in the natural environment; yet at very low concentrations it can be toxic for living beings, especially higher animals and man. Its behavior in the physical environment and food chains is highly different according as alkyl compounds are to be found or not. The changes between the various chemical forms of mercury under the dependence of environmental conditions - and especially microbiological life - make it difficult to appreciate the hazards resulting from mercury releases. In spite of the many basic investigations, and on account of the difficulties stated above, the practical aspects of mercury transfers from the production source to man show a number of gaps, except for marine chains. Anyhow, the chief transfers of mercury seem to be: direct atmospheric transfer by inhalation, indirect atmospheric transfer by deposit on certain plants, marine food chains, and perhaps transfer resulting from the use and valorization of wastes [fr

  2. Mercury removal sorbents

    Science.gov (United States)

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  3. COMBINED THEORETICAL AND EXPERIMENTAL INVESTIGATION OF MECHANISMS AND KINETICS OF VAPOR-PHASE MERCURY UPTAKE BY CARBONACOUES SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Radisav D. Vidic

    2002-05-01

    The first part of this study evaluated the application of a versatile optical technique to study the adsorption and desorption of model adsorbates representative of volatile polar (acetone) and non-polar (propane) organic compounds on a model carbonaceous surface under ultra high vacuum (UHV) conditions. The results showed the strong correlation between optical differential reflectance (ODR) and adsorbate coverage determined by temperature programmed desorption (TPD). ODR technique was proved to be a powerful tool to investigate surface adsorption and desorption from UHV to high pressure conditions. The effects of chemical functionality and surface morphology on the adsorption/desorption behavior of acetone, propane and mercury were investigated for two model carbonaceous surfaces, namely air-cleaved highly oriented pyrolytic graphite (HOPG) and plasma-oxidized HOPG. They can be removed by thermal treatment (> 500 K). The presence of these groups almost completely suppresses propane adsorption at 90K and removal of these groups leads to dramatic increase in adsorption capacity. The amount of acetone adsorbed is independent of surface heat treatment and depends only on total exposure. The effects of morphological heterogeneity is evident for plasma-oxidized HOPG as this substrate provides greater surface area, as well as higher energy binding sites. Mercury adsorption at 100 K on HOPG surfaces with and without chemical functionalities and topological heterogeneity created by plasma oxidation occurs through physisorption. The removal of chemical functionalities from HOPG surface enhances mercury physisorption. Plasma oxidation of HOPG provides additional surface area for mercury adsorption. Mercury adsorption by activated carbon at atmospheric pressure occurs through two distinct mechanisms, physisorption below 348 K and chemisorption above 348 K. No significant impact of oxygen functionalities was observed in the chemisorption region. The key findings of this study

  4. Action of mercury in plant mitosis II

    Energy Technology Data Exchange (ETDEWEB)

    Lorente, R

    1972-01-01

    The cytological abnormalities induced by mercurochrome on mitosis and meiosis of Allium cepa are studied and the capacity of the chemical agent to induce c-mitosis is shown. Inhibition of the cytokinetic process as well as alterations of the nucleoli and pollen-mother cells (from pachytene to division II) have also been observed. These cytological effects may be ascribed to the affinity of the mercurial compounds for the thyolic groups existing in the nucleoproteins and protoplasmic proteins, with the subsequent inhibitory effect on the enzymatic mechanisms.

  5. Report to Congress on the Global Supply and Trade of Elemental Mercury

    Science.gov (United States)

    This report assembles available information on the global supply and trade of mercury, including both primary mercury mining as well as mercury that has been recovered from a wide variety of sources and redistilled to a high level of purity.

  6. Mercury concentrations in king penguin (Aptenodytes patagonicus) feathers at Crozet Islands (sub-Antarctic): temporal trend between 1966--1974 and 2000--2001.

    Science.gov (United States)

    Scheifler, Renaud; Gauthier-Clerc, Michel; Le Bohec, Céline; Crini, Nadia; Coeurdassier, Michaël; Badot, Pierre-Marie; Giraudoux, Patrick; Le Maho, Yvon

    2005-01-01

    Remote sub-Antarctic islands and their wildlife may be contaminated by mercury via atmospheric and oceanic currents. Because of mercury's high toxicity and its capacity to be biomagnified in marine food chains, top predators like seabirds may be threatened by secondary poisoning. The present study provides data regarding mercury concentrations in breast feathers sampled in 2000 and 2001 on king penguins (Aptenodytes patagonicus) living at Crozet Islands. These contemporary concentrations were compared to those measured in feathers of king penguins sampled in the same colony between 1966 and 1974 and preserved in a museum (1970s sample). The average concentration of the contemporary sample is 1.98 microg g(-1) (dry mass) and is significantly different than the concentrations reported in some other penguin species. The concentration of the contemporary sample is significantly lower than the concentration of the 1970s sample (2.66 microg g(-1)). This suggests that mercury concentrations in southern hemisphere seabirds do not increase, which conflicts with the trends observed in the northern hemisphere. This difference in temporal trends between the northern and southern hemispheres usually is attributed mainly to a higher degree of pollutant emission in the northern hemisphere. Parameters that may explain the interspecies differences in mercury concentrations are discussed. These first results may constitute a basis for further ecotoxicological and/or biomonitoring studies of king penguins in these remote ecosystems.

  7. Radioactive mercury distribution in biological fluids and excretion in human subjects after inhalation of mercury vapor

    International Nuclear Information System (INIS)

    Cherian, M.G.; Hursh, J.B.; Clarkson, T.W.; Allen, J.

    1978-01-01

    The distribution of mercury in red blood cells (RBCs) and plasma, and its excretion in urine and feces are described in five human subjects during the first 7 days following inhalation of radioactive mercury vapor. A major portion (98%) of radioactive mercury in whole blood is initially accumulated in the RBCs and is transferred partly to the plasma compartment until the ratio of mercury in RBCs to plasma is about 2 within 20 h. The cumulative urinary and fecal excretion of mercury for 7 days is about 11.6% of the retained dose, and is closely related to the percent decline in body burden of mercury. There is little correlation between either the urinary excretion and plasma radioactivity of mercury, or the specific activities of urine and plasma mercury, suggesting a mechanism other than a direct glomerular filtration involved in the urinary excretion of recently exposed mercury. These studies suggest that blood mercury levels can be used as an index of recent exposure, while urinary levels may be an index of renal concentration of mercury. However, there is no reliable index for mercury concentration in the brain

  8. The MESSENGER mission to Mercury: scientific objectives and implementation

    Science.gov (United States)

    Solomon, Sean C.; McNutt, Ralph L.; Gold, Robert E.; Acuña, Mario H.; Baker, Daniel N.; Boynton, William V.; Chapman, Clark R.; Cheng, Andrew F.; Gloeckler, George; Head, James W., III; Krimigis, Stamatios M.; McClintock, William E.; Murchie, Scott L.; Peale, Stanton J.; Phillips, Roger J.; Robinson, Mark S.; Slavin, James A.; Smith, David E.; Strom, Robert G.; Trombka, Jacob I.; Zuber, Maria T.

    2001-12-01

    Mercury holds answers to several critical questions regarding the formation and evolution of the terrestrial planets. These questions include the origin of Mercury's anomalously high ratio of metal to silicate and its implications for planetary accretion processes, the nature of Mercury's geological evolution and interior cooling history, the mechanism of global magnetic field generation, the state of Mercury's core, and the processes controlling volatile species in Mercury's polar deposits, exosphere, and magnetosphere. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission has been designed to fly by and orbit Mercury to address all of these key questions. After launch by a Delta 2925H-9.5, two flybys of Venus, and two flybys of Mercury, orbit insertion is accomplished at the third Mercury encounter. The instrument payload includes a dual imaging system for wide and narrow fields-of-view, monochrome and color imaging, and stereo; X-ray and combined gamma-ray and neutron spectrometers for surface chemical mapping; a magnetometer; a laser altimeter; a combined ultraviolet-visible and visible-near-infrared spectrometer to survey both exospheric species and surface mineralogy; and an energetic particle and plasma spectrometer to sample charged species in the magnetosphere. During the flybys of Mercury, regions unexplored by Mariner 10 will be seen for the first time, and new data will be gathered on Mercury's exosphere, magnetosphere, and surface composition. During the orbital phase of the mission, one Earth year in duration, MESSENGER will complete global mapping and the detailed characterization of the exosphere, magnetosphere, surface, and interior.

  9. Mercury regulation, fate, transport, transformation, and abatement within cement manufacturing facilities: review.

    Science.gov (United States)

    Sikkema, Joel K; Alleman, James E; Ong, Say Kee; Wheelock, Thomas D

    2011-09-15

    The USEPA's 2010 mercury rule, which would reduce emissions from non-hazardous waste burning cement manufacturing facilities by an estimated 94%, represents a substantial regulatory challenge for the industry. These regulations, based on the performance of facilities that benefit from low concentrations of mercury in their feedstock and fuel inputs (e.g., limestone concentration was less than 25 ppb at each facility), will require non-compliant facilities to develop innovative controls. Control development is difficult because each facility's emissions must be assessed and simple correlation to mercury concentrations in limestone or an assumption of 'typically observed' mercury concentrations in inputs are unsupported by available data. Furthermore, atmospheric emissions are highly variable due to an internal control mechanism that captures and loops mercury between the high-temperature kiln and low-temperature raw materials mill. Two models have been reported to predict emissions; however, they have not been benchmarked against data from the internal components that capture mercury and do not distinguish between mercury species, which have different sorption and desorption properties. Control strategies include technologies applied from other industries and technologies developed specifically for cement facilities. Reported technologies, listed from highest to lowest anticipated mercury removal, include purge of collected dust or raw meal, changes in feedstocks and fuels, wet scrubbing, cleaning of mercury enriched dust, dry sorbent injection, and dry and semi-dry scrubbing. The effectiveness of these technologies is limited by an inadequate understanding of sorption, desorption, and mercury species involved in internal loop mercury control. To comply with the mercury rule and to improve current mercury control technologies and practices, research is needed to advance fundamental knowledge regarding mercury species sorption and desorption dynamics on materials

  10. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  11. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    International Nuclear Information System (INIS)

    Stine, Ernie F.

    2002-01-01

    The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw

  12. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    Energy Technology Data Exchange (ETDEWEB)

    Ernie F. Stine

    2002-08-14

    The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw

  13. Mercury speciation comparison. BrooksApplied Laboratories and Eurofins Frontier Global Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-16

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences (FGS), Inc. in Bothell, WA on behalf of the Savannah River Remediation (SRR) Mercury Program Team. These samples were analyzed for seven species including: total mercury, dissolved mercury, inorganic mercury ((Hg(I) and Hg(II)), elemental mercury, methylmercury, ethylmercury, and dimethylmercury, with an eighth species, particulate mercury, calculated from the difference between total and dissolved mercury after subtracting the elemental mercury. The species fraction of total mercury measured has ranged broadly from a low of 32% to a high of 146%, though the vast majority of samples have been <100%. This can be expected since one is summing multiple values that each have at least a ± 20% measurement uncertainty. Two liquid waste tanks particularly important to understanding the distribution of mercury species in the Savannah River Site (SRS) Tank Farm were selected for a round robin analysis by Eurofins FGS and BrooksApplied Laboratories (BAL). The analyses conducted by BAL on the Tank 22 and 38 samples and their agreement with those obtained from Eurofins FGS for total mercury, dissolved mercury, methylmercury, ethylmercury, and dimethylmercury provide a strong degree of confidence in these species measurements

  14. Mercury speciation comparison. BrooksApplied Laboratories and Eurofins Frontier Global Sciences

    International Nuclear Information System (INIS)

    Bannochie, C. J.; Wilmarth, W. R.

    2016-01-01

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences (FGS), Inc. in Bothell, WA on behalf of the Savannah River Remediation (SRR) Mercury Program Team. These samples were analyzed for seven species including: total mercury, dissolved mercury, inorganic mercury ((Hg(I) and Hg(II)), elemental mercury, methylmercury, ethylmercury, and dimethylmercury, with an eighth species, particulate mercury, calculated from the difference between total and dissolved mercury after subtracting the elemental mercury. The species fraction of total mercury measured has ranged broadly from a low of 32% to a high of 146%, though the vast majority of samples have been <100%. This can be expected since one is summing multiple values that each have at least a ± 20% measurement uncertainty. Two liquid waste tanks particularly important to understanding the distribution of mercury species in the Savannah River Site (SRS) Tank Farm were selected for a round robin analysis by Eurofins FGS and BrooksApplied Laboratories (BAL). The analyses conducted by BAL on the Tank 22 and 38 samples and their agreement with those obtained from Eurofins FGS for total mercury, dissolved mercury, methylmercury, ethylmercury, and dimethylmercury provide a strong degree of confidence in these species measurements

  15. Interaction of ethanol and mercury body burden in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.D.

    1978-01-01

    The interaction of ethanol with mercury in the body resulting in increased exhalation of the metal was studied in the mouse. A persistent elimination of the metal in the breath was demonstrated after single, sublethal (<1 mgHg/Kg body weight) exposures to mercury vapor (Hg/sup 0/) or mercury II chloride (HgCl/sub 2/). The amount of mercury exhaled per unit time was enhanced by oral or parenteral administration of ethanol solutions. These modifications were investigated in dose-response studies in which the drug was administered in doses ranging from 0.2g to 5.5g/Kg to mice pretreated with mercury. The EC/sub 50/ for blood ethanol with respect to mercury exhalation was determined to be approximately 200 mg/dl corresponding to an output rate of approximately 0.1% of the simultaneous body burden in 30 min several days after mercury. A hypothesis that mercury expired by these animals was proportional to the body burden after mercury administration was addressed in experiments whereby mice given one of several doses of mercuric chloride (0.16 to 500 ..mu..g/Kg) were monitored for pulmonary mercury elimination for a fifteen day period. The high correlation obtained between the amount of mercury exhaled in a standard time period and the body burden by group indicated that breath sampling could be applied as an indicator of the mercury body burden which may not be limited to the mouse.

  16. Influence of the addition of fertilizers and organic matter amendment on mercury contaminated soil

    International Nuclear Information System (INIS)

    Carrasco, S.; Millan, R.

    2008-01-01

    The objective of this work was to evaluate the mercury mobilization in a soil where fertilizers and organic matter were added. The study was carried out using a soil from the mercury mining district of Almaden (Spain). This area constitutes the largest and most unusual concentration of mercury in the World. The soil has been classified as an Alfisol Xeralf Haploxeral (USDA taxonomy), and the total mercury content is 14,16 0,65 mg kg-1in average. The experimental work was performed in 1 L glass columns filled with 500 g of soil. It was carried out 3 different treatments. The fi rst one, a NPK fertilizer (15:15:15) that was applied at three different doses (recommended dose -by farmers, half recommended dose and double recommended dose). The second one, a peat (Sphagnum) with a ph between 5,5-7, and the third one, a liquid organic amendment (Molex). The experimental work was carried out using 21 columns in total, where 3 of them were used as a control (C). During ten consecutive weeks, the columns were irrigated with distilled water (150 ml) once a week. The contact time was two days; after that, the leachates were collected and filtered. Finally, the soil contained in glass columns at soil fi eld capacity was centrifuged to get the wilting point. Mercury was determined using an Advanced Mercury Analyzer (AMA-254). Results show that mercury content in all samples was under detection limit (0,5 μg L-1). It is according to the fact that mercury is mainly in a cinnabar form, which had a very low solubility. The addition of fertilizers and organic matter amendment do not increase the mercury content in the leachates either in the soil solution. (Author) 102 refs

  17. Mercury Exposure and Heart Diseases

    Science.gov (United States)

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system. PMID:28085104

  18. Mercury Exposure and Heart Diseases.

    Science.gov (United States)

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-12

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  19. Mercury Exposure and Heart Diseases

    Directory of Open Access Journals (Sweden)

    Giuseppe Genchi

    2017-01-01

    Full Text Available Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  20. Mercury Exposure and Heart Rate Variability: A Systematic Review

    Science.gov (United States)

    Gribble, Matthew O.; Cheng, Alan; Berger, Ronald D.; Rosman, Lori; Guallar, Eliseo

    2015-01-01

    Background Mercury affects the nervous system and has been implicated in altering heart rhythm and function. We sought to better define its role in modulating heart rate variability, a well-known marker of cardiac autonomic function. Design Systematic review. Methods We searched PubMed, Embase, TOXLINE and DART databases without language restriction. We report findings as a qualitative systematic review because heterogeneity in study design and assessment of exposures and outcomes across studies, as well as other methodological limitations of the literature, precluded a quantitative meta-analysis. Results We identified 12 studies of mercury exposure and heart rate variability in human populations (10 studies involving primarily environmental methylmercury exposure and two studies involving occupational exposure to inorganic mercury) conducted in Japan, the Faroe Islands, Canada, Korea, French Polynesia, Finland and Egypt. The association of prenatal mercury exposure with lower high-frequency band scores (thought to reflect parasympathetic activity) in several studies, in particular the inverse association of cord blood mercury levels with the coefficient of variation of the R-R intervals and with low frequency and high frequency bands at 14 years of age in the Faroe Islands birth cohort study, suggests that early mercury exposure could have a long-lasting effect on cardiac parasympathetic activity. Studies with later environmental exposures to mercury in children or in adults were heterogeneous and did not show consistent associations. Conclusions The evidence was too limited to draw firm causal inferences. Additional research is needed to elucidate the effects of mercury on cardiac autonomic function, particularly as early-life exposures might have lasting impacts on cardiac parasympathetic function. PMID:26231507

  1. Modeling MESSENGER Observations of Calcium in Mercury's Exosphere

    Science.gov (United States)

    Burger, Matthew Howard; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Merkel, Aimee W.; Sprague, Ann L.; Sarantos, Menelaos

    2012-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MESSENGER spacecraft has made the first high-spatial-resolution observations of exospheric calcium at Mercury. We use a Monte Carlo model of the exosphere to track the trajectories of calcium atoms ejected from the surface until they are photoionized, escape from the system, or stick to the surface. This model permits an exploration of exospheric source processes and interactions among neutral atoms, solar radiation, and the planetary surface. The MASCS data have suggested that a persistent, high-energy source of calcium that was enhanced in the dawn, equatorial region of Mercury was active during MESSENGER's three flybys of Mercury and during the first seven orbits for which MASCS obtained data. The total Ca source rate from the surface varied between 1.2x10(exp 23) and 2.6x10(exp 23) Ca atoms/s, if its temperature was 50,000 K. The origin of this high-energy, asymmetric source is unknown, although from this limited data set it does not appear to be consistent with micrometeoroid impact vaporization, ion sputtering, electron-stimulated desorption, or vaporization at dawn of material trapped on the cold nightside.

  2. Mercury levels in eggs, embryos, and neonates of Trachemys callirostris (Testudines, Emydidae)

    International Nuclear Information System (INIS)

    Rendon Valencia, Beatriz; Zapata, Lina M; Bock, Brian C; Paez, Vivian P; Palacio, Jaime A.

    2014-01-01

    We quantified total mercury concentrations in eggshells, egg yolks, and embryos from 16 nests of the Colombian slider (Trachemys callirostris). Nests were collected in different stages of development, but estimated time of incubation in natural substrates was not correlated with mercury levels in the eggs, suggesting that mercury was not absorbed from the substrate, but more likely passed on to the embryos during folliculogenesis by the reproductive females who had bioaccumulated the mercury from environmental sources. Mean mercury concentrations were higher in embryos than in eggshells or egg yolks, indicating that embryos also bioaccumulate mercury present in other egg tissues. Intra-clutch variation in egg yolk mercury concentrations was relatively high. Egg yolk mercury concentrations were not associated with any of the fitness proxies we quantified for the nests (hatching success rates, initial neonate sizes and first-month juvenile growth rates). After five months of captive rearing in a mercury-free laboratory environment, 86 % of the juveniles had eliminated the mercury from their tissues.

  3. Sexual differences in the excretion of organic and inorganic mercury by methyl mercury-treated rats

    International Nuclear Information System (INIS)

    Thomas, D.J.; Fisher, H.L.; Sumler, M.R.; Mushak, P.; Hall, L.L.

    1987-01-01

    Adult male and female Long Evans rats received 1 mumole of methyl ( 203 Hg) mercuric chloride per kilogram sc. Whole-body retention of mercury and excretion of organic and inorganic mercury in urine and feces were monitored for 98 days after dosing. Females cleared mercury from the body more rapidly than did males. The major route of mercury excretion was feces. By 98 days after dosing, cumulative mercury excretion in feces accounted for about 51% of the dose in males and about 54% of the dose in females. For both sexes, about 33% of the dose was excreted in feces as inorganic mercury. Cumulative excretion of organic mercury in feces accounted for about 18 and 21% of the dose in males and females, respectively. Urinary excretion of mercury was quantitatively a smaller route for mercury clearance but important sexual differences in loss by this route were found. Over the 98-day experimental period, males excreted in urine about 3.2% of the dose and females excreted 7.5%. Cumulative organic Hg excretion in urine accounted for 1.8% of the dose in males and 5.3% of the dose in females. These sexual differences in urinary and fecal excretion of organic and inorganic mercury following methyl mercury treatment were consistent with previous reports of sexual differences in mercury distribution and retention in methyl mercury-treated rats, particularly sexual differences in organic mercury uptake and retention in the kidney. Relationships between body burdens of organic or inorganic Hg and output of these forms of Hg in urine and feces were also found to be influenced by the interval after MeHg treatment and by sex. Relationship between concentration of Hg in liver and feces and in kidney and urine differed for organic and inorganic Hg and depended upon sexual status and interval after MeHg treatment

  4. Experimental investigations on the accumulation of mercury in water organisms

    Energy Technology Data Exchange (ETDEWEB)

    Hannerz, L

    1968-01-01

    During the last few decades alcyle and alcoxyalcyle mercury compounds have come into an increased use in agriculture as seed disinfectants. In the pulp industry, phenylmercuric acetate has become an important means of slime control and the predominating conservant for wet ground pulp. Mercury has been carried to streams, lakes and the sea in increasing amounts with waste waters from the pulp industry and run-off from the fields. Investigations, using the neutron activation analytical method have revealed high mercury concentration in fish from many lakes and streams in the southern and central parts of Sweden. Values as high as 8000 ng Hg/g have been reported, as compared with the 30-180 ng Hg/g that can be regarded as a normal background concentration for fresh-water fish. There are many indications that the high mercury concentrations found in fish and other water organisms are direct consequences of the use of mercury in agriculture and industry. Fish from certain lakes have actually been judged unfit for human consumption. This alarming situation emphasized the need for a better knowledge of the accumulation, retention and elimination of the mercury compounds concerned in fish and other water organisms and the experimental studies reported here were therefore started in 1965. They have been financially supported by the Swedish Agricultural Research Council.

  5. Evaluation of potential toxicity from mercury in ayurvedic preparations

    International Nuclear Information System (INIS)

    Subramanian, Suresh; Maral, Anand; Mukherjee, Archana; Patankar, A.V.; Sarma, H.D.; Pillai, M.R.A.; Venkatesh, Meera

    2003-01-01

    Kajjali - which is a defined combination of purified elemental mercury and sulphur is used in Ayurvedic prescriptions. Kajjali is claimed to accelerate the therapeutic effects of various medicinal components. The exact role of Kajjali in this process is not as yet ascertained. Ayurveda literature claims that toxic effects of mercury are neutralised in the presence of sulphur. Mercury is known for its toxicity especially with respect to the nervous system and the amount of mercury used in the preparation of Kajjali is quite high. Hence, to study the pharmaco-kinetics of the preparation, bio-distribution studies using 203 Hg as a tracer in Kajjali were carried out in Wistar rats. (author)

  6. Speciation analysis of mercury in sediments, zoobenthos and river water samples by high-performance liquid chromatography hyphenated to atomic fluorescence spectrometry following preconcentration by solid phase extraction

    International Nuclear Information System (INIS)

    Margetinova, Jana; Houserova-Pelcova, Pavlina; Kuban, Vlastimil

    2008-01-01

    A high-pressure microwave digestion was applied for microwave-assisted extraction (MAE) of mercury species from sediments and zoobenthos samples. A mixture containing 3 mol L -1 HCl, 50% aqueous methanol and 0.2 mol L -1 citric acid (for masking co-extracted Fe 3+ ) was selected as the most suitable extraction agent. The efficiency of proposed extraction method was better than 95% with R.S.D. below 6%. A preconcentration method utilizing a 'homemade' C18 solid phase extraction (SPE) microcolumns was developed to enhance sensitivity of the mercury species determination using on-column complex formation of mercury-2-mercaptophenol complexes. Methanol was chosen for counter-current elution of the retained mercury complexes achieving a preconcentration factor as much as 1000. The preconcentration method was applied for the speciation analysis of mercury in river water samples. The high-performance liquid chromatography-cold vapour atomic fluorescence spectrometric (HPLC/CV-AFS) method was used for the speciation analysis of mercury. The complete separation of four mercury species was achieved by an isocratic elution of aqueous methanol (65%/35%) on a Zorbax SB-C18 column (4.6 mm x 150 mm, 5 μm) using the same complexation reagent (2-mercaptophenol). The limits of detection were 4.3 μg L -1 for methylmercury (MeHg + ), 1.4 μg L -1 for ethylmercury (EtHg + ), 0.8 μg L -1 for inorganic mercury (Hg 2+ ), 0.8 μg L -1 for phenylmercury (PhHg + )

  7. 76 FR 13851 - National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...

    Science.gov (United States)

    2011-03-14

    ... National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali...-5] RIN 2060-AN99 National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants AGENCY: Environmental Protection Agency (EPA). ACTION: Supplemental...

  8. Accumulation of mercury in Typha domingensis under field conditions.

    Science.gov (United States)

    Lominchar, M A; Sierra, M J; Millán, R

    2015-01-01

    Typha species is a common wetland plant used in the treatment of urban and industrial effluents. But, despite their widespread implementation, there are not many studies based on the behaviour of this plant growing in an areas affected by mercury. The present work investigates the ability of Typha domingensis to accumulate mercury under field conditions. The study area was along the Valdeazogues river which flows through the Almadén mining district (Ciudad Real, Spain) that is considered the largest mercury reservoir in the world. The mercury concentration in different plant fractions was measured as well as the available and total concentration in the bottom sediments. The results showed that the highest mercury concentrations were found in the belowground organs. T. domingensis had a high efficiency to accumulate mercury in their organs although available metal concentrations in the environment did not exceed 0.16 mg kg(-1). Bioaccumulation factors (BAF) ranged between 121 and 3168 in roots. Furthermore, significant correlations were found between mercury concentration in all plant organs and Hg in sediments (both total and available). These results demonstrated that T. domingensis could be used as a biomonitor as well as in phytoextraction technology in areas affected by mercury. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Mercury's interior, surface, and surrounding environment latest discoveries

    CERN Document Server

    Clark, Pamela Elizabeth

    2015-01-01

    This SpringerBrief details the MESSENGER Mission, the findings of which present challenges to widely held conventional views and remaining mysteries surrounding the planet. The work answers the question of why Mercury is so dense, and the implications from geochemical data on its planetary formation. It summarizes imaging and compositional data from the terrestrial planet surface processes and explains the geologic history of Mercury.  It also discusses the lack of southern hemisphere coverage. Our understanding of the planet Mercury has been in a transitional phase over the decades since Mariner 10. The influx of new data from the NASA MESSENGER Mission since it was inserted into the orbit of Mercury in March of 2011 has greatly accelerated that shift. The combined compositional data of relatively high volatiles (S, K), relatively low refractories (Al, Ca), and low crustal iron, combined with an active, partially molten iron rich core, has major implications for Mercury and Solar System formation. From a s...

  10. Impacts of Mercury Exposure on Free-Ranging Post-Fledged Piscivorous Birds

    Science.gov (United States)

    Mercury is one of the priority pollutants of concern for several EPA programs, other federal agencies, and state governments. The concern is especially focused on methyl mercury because of its high toxicity and its propensity for extremely high bioaccumulation in aquatic food web...

  11. Mercury in Nordic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Munthe, John; Waengberg, Ingvar (IVL Swedish Environmental Research Inst., Stockholm (SE)); Rognerud, Sigurd; Fjeld, Eirik (Norwegian Inst. for Water Research (NIVA), Oslo (Norway)); Verta, Matti; Porvari, Petri (Finnish Environment Inst. (SYKE), Helsinki (Finland)); Meili, Markus (Inst. of Applied Environmental Research (ITM), Stockholm (Sweden))

    2007-12-15

    This report provides a first comprehensive compilation and assessment of available data on mercury in air, precipitation, sediments and fish in the Nordic countries. The main conclusion is that mercury levels in Nordic ecosystems continue to be affected by long-range atmospheric transport. The geographical patterns of mercury concentrations in both sediments and fish are also strongly affected by ecosystem characteristics and in some regions possibly by historical pollution. An evaluation of geographical variations in mercury concentrations in precipitation indicates that the influence from anthropogenic sources from Central European areas is still significant. The annual variability of deposition is large and dependant of precipitation amounts. An evaluation of data from stations around the North Sea has indicated a significant decrease in mercury concentrations in precipitation indicating a continuous decrease of emissions in Europe (Waengberg et al., 2007). For mercury in air (TGM), the geographical pattern is less pronounced indicating the influence of mercury emissions and distribution over a larger geographical area (i.e. hemispherical transport). Comparison of recent (surficial) and historical lake sediments show significantly elevated concentrations of mercury most likely caused by anthropogenic atmospheric deposition over the past century. The highest pollution impact was observed in the coastal areas of southern Norway, in south western Finland and in Sweden from the coastal areas in the southwest across the central parts to the north-east. The general increase in recent versus old sediments was 2-5 fold. Data on mercury in Nordic freshwater fish was assembled and evaluated with respect to geographical variations. The fish data were further compared with temporal and spatial trends in mercury deposition and mercury contamination of lake sediments in order to investigate the coupling between atmospheric transport and deposition of mercury and local mercury

  12. Potential for Increased Mercury Accumulation in the Estuary Food Web

    Directory of Open Access Journals (Sweden)

    Jay A Davis

    2003-10-01

    Full Text Available Present concentrations of mercury in large portions of San Francisco Bay (Bay, the Sacramento-San Joaquin Delta (Delta, and the Sacramento and San Joaquin rivers are high enough to warrant concern for the health of humans and wildlife. Large scale tidal wetland restoration is currently under consideration as a means of increasing populations of fish species of concern. Tidal wetland restoration activities may lead to increased concentrations of mercury in the estuarine food web and exacerbate the existing mercury problem. This paper evaluates our present ability to predict the local and regional effects of restoration actions on mercury accumulation in aquatic food webs. A sport fish consumption advisory is in place for the Bay, and an advisory is under consideration for the Delta and lower Sacramento and San Joaquin rivers. Mercury concentrations in eggs of several water bird species from the Bay have exceeded the lowest observed effect level. A variety of mercury sources, largely related to historic mercury and gold mining, is present in the watershed and has created a spatially heterogeneous distribution of mercury in the Bay-Delta Estuary. Mercury exists in the environment in a variety of forms and has a complex biogeochemical cycle. The most hazardous form, methylmercury, is produced at a relatively high rate in wetlands and newly flooded aquatic habitats. It is likely that distinct spatial variation on multiple spatial scales exists in net methylmercury production in Bay-Delta tidal wetlands, including variation within each tidal wetland, among tidal wetlands in the same region, and among tidal wetlands in different regions. Understanding this spatial variation and its underlying causes will allow environmental managers to minimize the negative effects of mercury bioaccumulation as a result of restoration activities. Actions needed to reduce the uncertainty associated with this issue include a long term, multifaceted research effort, long

  13. Detecting Airborne Mercury by Use of Palladium Chloride

    Science.gov (United States)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Jewell, April; Manatt, Kenneth; Torres, Julia; Soler, Jessica; Taylor, Charles

    2009-01-01

    Palladium chloride films have been found to be useful as alternatives to the gold films heretofore used to detect airborne elemental mercury at concentrations of the order of parts per billion (ppb). Somewhat more specifically, when suitably prepared palladium chloride films are exposed to parts-per-billion or larger concentrations of airborne mercury, their electrical resistances change by amounts large enough to be easily measurable. Because airborne mercury adversely affects health, it is desirable to be able to detect it with high sensitivity, especially in enclosed environments in which there is a risk of leakage of mercury from lamps or other equipment. The detection of mercury by use of gold films involves the formation of gold/mercury amalgam. Gold films offer adequate sensitivity for detection of airborne mercury and could easily be integrated into an electronic-nose system designed to operate in the temperature range of 23 to 28 C. Unfortunately, in order to regenerate a gold-film mercury sensor, one must heat it to a temperature of 200 C for several minutes in clean flowing air. In preparation for an experiment to demonstrate the present sensor concept, palladium chloride was deposited from an aqueous solution onto sets of gold electrodes and sintered in air to form a film. Then while using the gold electrodes to measure the electrical resistance of the films, the films were exposed, at a temperature of 25 C, to humidified air containing mercury at various concentrations from 0 to 35 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury in room-temperature air at concentrations of at least 2.5 ppb and can readily be regenerated at temperatures <40 C.

  14. Mercury speciation by high-performance liquid chromatography atomic fluorescence spectrometry using an integrated microwave/UV interface. Optimization of a single step procedure for the simultaneous photo-oxidation of mercury species and photo-generation of Hg0

    International Nuclear Information System (INIS)

    Quadros, Daiane P.C. de; Campanella, Beatrice; Onor, Massimo; Bramanti, Emilia; Borges, Daniel L.G.; D'Ulivo, Alessandro

    2014-01-01

    We described the hyphenation of photo-induced chemical vapor generation with high performance liquid chromatography–atomic fluorescence spectrometry (HPLC–AFS) for the quantification of inorganic mercury, methylmercury (MeHg) and ethylmercury (EtHg). In the developed procedure, formic acid in mobile phase was used for the photodecomposition of organomercury compounds and reduction of Hg 2+ to mercury vapor under microwave/ultraviolet (MW/UV) irradiation. We optimized the proposed method studying the influence of several operating parameters, including the type of organic acid and its concentration, MW power, composition of HPLC mobile phase and catalytic action of TiO 2 nanoparticles. Under the optimized conditions, the limits of detection were 0.15, 0.15 and 0.35 μg L −1 for inorganic mercury, MeHg and EtHg, respectively. The developed method was validated by determination of the main analytical figures of merit and applied to the analysis of three certified reference materials. The online interfacing of liquid chromatography with photochemical-vapor generation–atomic fluorescence for mercury determination is simple, environmentally friendly, and represents an attractive alternative to the conventional tetrahydroborate (THB) system. - Highlights: • Inorganic and organic mercury were determined by photochemical vapor generation using a MW/UV photochemical reactor. • The optimized procedure has been applied to the speciation of Hg(II), MeHg and EtHg coupling HPLC with PVG–AFS. • The proposed method is simple, sensitive, and is established for mercury determination in biological materials

  15. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    Energy Technology Data Exchange (ETDEWEB)

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.; George, Graham N.; Krone, Patrick H. (Saskatchewan)

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.

  16. Calcium in Mercury's Exosphere: Modeling MESSENGER Data

    Science.gov (United States)

    Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Merkel, Aimee; Vervack, Ronald J.; Sarantos, Menelaos; Sprague, Ann L.

    2011-01-01

    Mercury is surrounded by a surface-bounded exosphere comprised of atomic species including hydrogen, sodium, potassium, calcium, magnesium, and likely oxygen. Because it is collisionless. the exosphere's composition represents a balance of the active source and loss processes. The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface. Space ENvironment. GEochemistry. and Ranging (MESSENGER) spacecraft has made high spatial-resolution observations of sodium, calcium, and magnesium near Mercury's surface and in the extended, anti-sunward direction. The most striking feature of these data has been the substantial differences in the spatial distribution of each species, Our modeling demonstrates that these differences cannot be due to post-ejection dynamics such as differences in photo-ionization rate and radiation pressure. but instead point to differences in the source mechanisms and regions on the surface from which each is ejected. The observations of calcium have revealed a strong dawn/dusk asymmetry. with the abundance over the dawn hemisphere significantly greater than over the dusk. To understand this asymmetry, we use a Monte Carlo model of Mercury's exosphere that we developed to track the motions of exospheric neutrals under the influence of gravity and radiation pressure. Ca atoms can be ejected directly from the surface or produced in a molecular exosphere (e.g., one consisting of CaO). Particles are removed from the system if they stick to the surface or escape from the model region of interest (within 15 Mercury radii). Photoionization reduces the final weighting given to each particle when simulating the Ca radiance. Preliminary results suggest a high temperature ( I-2x 10(exp 4) K) source of atomic Ca concentrated over the dawn hemisphere. The high temperature is consistent with the dissociation of CaO in a near-surface exosphere with scale height <= 100 km, which imparts 2 eV to the freshly produced Ca atom. This

  17. Verification of High Temperature Free Atom Thermal Scattering in MERCURY Compared to TART

    International Nuclear Information System (INIS)

    Cullen, D E; McKinley, S; Hagmann, C

    2006-01-01

    This is part of a series of reports verifying the accuracy of the relatively new MERCURY [1] Monte Carlo particle transport code by comparing its results to those of the older TART [2] Monte Carlo particle transport code. In the future we hope to extend these comparisons to include deterministic (Sn) codes [3]. Here we verify the accuracy of the free atom thermal scattering model [4] by using it over a very large temperature range. We would like to be able to use these Monte Carlo codes for astrophysical applications, where the temperature of the medium can be extremely high compared to the temperatures we normally encounter in our terrestrial applications [5]. The temperature is so high that is it often defined in eV rather than Kelvin. For a correspondence between the two scale 293.6 Kelvin (room temperature) corresponds to 0.0253 eV ∼ 1/40 eV. So that 1 eV temperature is about 12,000 Kelvin, and 1 keV temperature is about 12 million Kelvin. Here we use a relatively small system measured in cm, but by using ρR scaling [6] our results are equally applicable to systems measured in Km or thousands of Km or any size that we need for astrophysical applications. The emphasis here is not on modeling any given real system, but rather in verifying the accuracy of the free atom model to represent theoretical results over a large temperature range. There are two primary objectives of this report: (1) Verify agreement between MERCURY and TART results, both using continuous energy cross sections. In particular we want to verify the free atom scattering treatment in MERCURY as used over an extended temperature range; by comparison to many other codes for TART this has already been verified over many years [4, 7]. (2) Demonstrate that this agreement depends on using continuous energy cross sections. To demonstrate this we also present TART using the Multi-Band method [8, 9], which accounts for resonance self-shielding, and Multi-Group method, without self-shielding [9

  18. Association between Toenail Mercury and Metabolic Syndrome Is Modified by Selenium

    Directory of Open Access Journals (Sweden)

    Kyong Park

    2016-07-01

    Full Text Available Background: Although Asian populations consume relatively large amounts of fish and seafood and have a high prevalence of metabolic diseases, few studies have investigated the association between chronic mercury exposure and metabolic syndrome and its effect modification by selenium. Methods: We analyzed baseline data from the Trace Element Study of Korean Adults in the Yeungnam area. Participants included 232 men and 269 women, aged 35 years or older, who had complete data regarding demographic, lifestyle, diet, toenail mercury and selenium levels, and health. Toenail mercury and selenium concentrations were measured using instrumental neutron-activation analysis. The metabolic biomarker levels were obtained through biannual medical checkups. Results: Higher toenail mercury levels were associated with habitual consumption of whale and shark meats, older age, obesity, smoking, alcohol drinking, and higher household income. Multivariable analysis showed a positive association between toenail mercury exposure and metabolic syndrome. In addition, this association was significantly stronger at lower selenium levels and was weaker at higher selenium levels. Conclusion: The possible harmful effects of mercury on metabolic syndrome may be attenuated by high levels of selenium. Future studies are needed to suggest optimal dietary guidelines regarding fish and selenium intakes, particularly for Asians with high levels of fish intake.

  19. Mercury exposure in the freshwater tilapia Oreochromis niloticus

    Energy Technology Data Exchange (ETDEWEB)

    Wang Rui [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wong Minghung [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.h [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2010-08-15

    Mercury (Hg) can be strongly accumulated and biomagnified along aquatic food chain, but the exposure pathway remains little studied. In this study, we quantified the uptake and elimination of both inorganic mercury [as Hg(II)] and methylmercury (as MeHg) in an important farmed freshwater fish, the tilapia Oreochromis niloticus, using {sup 203}Hg radiotracer technique. The dissolved uptake rates of both mercury species increased linearly with Hg concentration (tested at ng/L levels), and the uptake rate constant of MeHg was 4 times higher than that of Hg(II). Dissolved uptake of mercury was highly dependent on the water pH and dissolved organic carbon concentration. The dietborne assimilation efficiency of MeHg was 3.7-7.2 times higher than that of Hg(II), while the efflux rate constant of MeHg was 7.1 times lower. The biokinetic modeling results showed that MeHg was the greater contributor to the overall mercury bioaccumulation and dietary exposure was the predominant pathway. - Trophic transfer was the predominant pathway for mercury accumulation in tilapia, and methylmercury was more important in contributing to Hg accumulation than Hg(II).

  20. Mercury exposure in the freshwater tilapia Oreochromis niloticus

    International Nuclear Information System (INIS)

    Wang Rui; Wong Minghung; Wang Wenxiong

    2010-01-01

    Mercury (Hg) can be strongly accumulated and biomagnified along aquatic food chain, but the exposure pathway remains little studied. In this study, we quantified the uptake and elimination of both inorganic mercury [as Hg(II)] and methylmercury (as MeHg) in an important farmed freshwater fish, the tilapia Oreochromis niloticus, using 203 Hg radiotracer technique. The dissolved uptake rates of both mercury species increased linearly with Hg concentration (tested at ng/L levels), and the uptake rate constant of MeHg was 4 times higher than that of Hg(II). Dissolved uptake of mercury was highly dependent on the water pH and dissolved organic carbon concentration. The dietborne assimilation efficiency of MeHg was 3.7-7.2 times higher than that of Hg(II), while the efflux rate constant of MeHg was 7.1 times lower. The biokinetic modeling results showed that MeHg was the greater contributor to the overall mercury bioaccumulation and dietary exposure was the predominant pathway. - Trophic transfer was the predominant pathway for mercury accumulation in tilapia, and methylmercury was more important in contributing to Hg accumulation than Hg(II).

  1. Assessing the Behavior of Typically Lithophile Elements Under Highly Reducing Conditions Relevant to the Planet Mercury

    Science.gov (United States)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high Sand low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wtistite (lW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at I GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multianvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-Si02 buffer, which is approximately 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi206) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of

  2. Assessing the Behavior of Typically Lithophile Elements Under Highly Reducing Conditions Relevant to the Planet Mercury

    Science.gov (United States)

    Rowland, R. L., II; Vander Kaaden, K. E.; McCubbin, F. M.; Danielson, L. R.

    2017-12-01

    With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wüstite (IW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at 1 GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850°C. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-SiO2 buffer, which is 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of the fate of

  3. Impacts of Sublethal Mercury Exposure on Birds: A Detailed Review.

    Science.gov (United States)

    Whitney, Margaret C; Cristol, Daniel A

    Mercury is a ubiquitous environmental contaminant known to accumulate in, and negatively affect, fish-eating and oceanic bird species, and recently demonstrated to impact some terrestrial songbirds to a comparable extent. It can bioaccumulate to concentrations of >1 μg/g in tissues of prey organisms such as fish and insects. At high enough concentrations, exposure to mercury is lethal to birds. However, environmental exposures are usually far below the lethal concentrations established by dosing studies.The objective of this review is to better understand the effects of sublethal exposure to mercury in birds. We restricted our survey of the literature to studies with at least some exposures >5 μg/g. The majority of sublethal effects were subtle and some studies of similar endpoints reached different conclusions. Strong support exists in the literature for the conclusion that mercury exposure reduces reproductive output, compromises immune function, and causes avoidance of high-energy behaviors. For some endpoints, notably certain measures of reproductive success, endocrine and neurological function, and body condition, there is weak or contradictory evidence of adverse effects and further study is required. There was no evidence that environmentally relevant mercury exposure affects longevity, but several of the sublethal effects identified likely do result in fitness reductions that could adversely impact populations. Overall, 72% of field studies and 91% of laboratory studies found evidence of deleterious effects of mercury on some endpoint, and thus we can conclude that mercury is harmful to birds, and the many effects on reproduction indicate that bird population declines may already be resulting from environmental mercury pollution.

  4. Getting Mercury out of Schools.

    Science.gov (United States)

    1999

    This guide was prepared while working with many Massachusetts schools to remove items that contain mercury and to find suitable alternatives. It contains fact sheets on: mercury in science laboratories and classrooms, mercury in school buildings and maintenance areas, mercury in the medical office and in medical technology classrooms in vocational…

  5. Substance Flow Analysis of Mercury in China

    Science.gov (United States)

    Hui, L. M.; Wang, S.; Zhang, L.; Wang, F. Y.; Wu, Q. R.

    2015-12-01

    In previous studies, the emission of anthropogenic atmospheric Hg in China as well as single sector have been examined a lot. However, there might have been more Hg released as solid wastes rather than air. Hg stored in solid wastes may be released to air again when the solid wastes experience high temperature process or cause local pollution if the solid wastes are stacked casually for a long time. To trace the fate of Hg in China, this study developed the substance flow of Hg in 2010 covering all the sectors summarized in table 1. Below showed in Figure 1, the total Hg input is 2825t. The unintentional input of Hg, mined Hg, and recycled Hg account for 57%, 32% and 11% respectively. Figure 2 provides the detail information of substance flow of Hg. Byproducts from one sector may be used as raw materials of another, causing cross Hg flow between sectors. The Hg input of cement production is 303 t, of which 34% comes from coal and limestone, 33% comes from non-ferrous smelting, 23% comes from coal combustion, 7% comes from iron and steel production and 3% comes from mercury mining. Hg flowing to recycledHg production is 639 t, mainly from Hg contained in waste active carbon and mercuric chloride catalyst from VCM production and acid sludge from non-ferrous smelting. There are 20 t mercury flowing from spent mercury adding products to incineration. Figure1 and Figure 2 also show that 46% of the output Hg belongs to "Lagged release", which means this part of mercury might be released later. The "Lagged release" Hg includes 809 t Hg contained in stacked byproducts form coal combustion, non-ferrous smelting, iron and steel production, Al production, cement production and mercury mining, 161t Hg stored in the pipeline of VCM producing, 10 t Hg in fluorescent lamps that are in use and 314 t mercury stored in materials waiting to be handled with in recycled mercury plants. There is 112 t Hg stored in landfill and 129 t Hg exported abroad with the export of mercury adding

  6. MIMO Intensity-Modulation Channels: Capacity Bounds and High SNR Characterization

    KAUST Repository

    Chaaban, Anas

    2016-10-01

    The capacity of MIMO intensity modulation channels is studied. The nonnegativity of the transmit signal (intensity) poses a challenge on the precoding of the transmit signal, which limits the applicability of classical schemes in this type of channels. To resolve this issue, capacity lower bounds are developed by using precoding-free schemes. This is achieved by channel inversion or QR decomposition to convert the MIMO channel to a set of parallel channels. The achievable rate of a DC-offset SVD based scheme is also derived as a benchmark. Then, a capacity upper bound is derived and is shown to coincide with the achievable rate of the QR decomposition based scheme at high SNR, consequently characterizing the high-SNR capacity of the channel. The high-SNR gap between capacity and the achievable rates of the channel inversion and the DC-offset SVD based schemes is also characterized. Finally, the ergodic capacity of the channel is also briefly discussed.

  7. Hair mercury levels in Amazonian populations: spatial distribution and trends

    Directory of Open Access Journals (Sweden)

    Barbieri Flavia L

    2009-12-01

    Full Text Available Abstract Background Mercury is present in the Amazonian aquatic environments from both natural and anthropogenic sources. As a consequence, many riverside populations are exposed to methylmercury, a highly toxic organic form of mercury, because of their intense fish consumption. Many studies have analysed this exposure from different approaches since the early nineties. This review aims to systematize the information in spatial distribution, comparing hair mercury levels by studied population and Amazonian river basin, looking for exposure trends. Methods The reviewed papers were selected from scientific databases and online libraries. We included studies with a direct measure of hair mercury concentrations in a sample size larger than 10 people, without considering the objectives, approach of the study or mercury speciation. The results are presented in tables and maps by river basin, displaying hair mercury levels and specifying the studied population and health impact, if any. Results The majority of the studies have been carried out in communities from the central Amazonian regions, particularly on the Tapajós River basin. The results seem quite variable; hair mercury means range from 1.1 to 34.2 μg/g. Most studies did not show any significant difference in hair mercury levels by gender or age. Overall, authors emphasized fish consumption frequency as the main risk factor of exposure. The most studied adverse health effect is by far the neurological performance, especially motricity. However, it is not possible to conclude on the relation between hair mercury levels and health impact in the Amazonian situation because of the relatively small number of studies. Conclusions Hair mercury levels in the Amazonian regions seem to be very heterogenic, depending on several factors. There is no obvious spatial trend and there are many areas that have never been studied. Taking into account the low mercury levels currently handled as acceptable, the

  8. Determination of organic and inorganic mercury species in Sungai Kinta, Perak by reversed-phase high performance liquid chromatography (HPLC) on-line coupled with ICP-MS

    International Nuclear Information System (INIS)

    Norshidah Baharuddin; Norashikin Saim; Rozita Osman; Sharifuddin Mohd Zain

    2012-01-01

    This paper describes a simple method for mercury speciation in river water samples of Sungai Kinta, Perak. Separation and measurement were done by high-performance liquid chromatography on-line with inductively coupled plasma mass spectrometry (HPLC/ ICP-MS). Separation of mercury species was accomplished within 6 minutes on an AQ C18 4.6 mm i.d x 150 mm, 5 μm reversed phase column with 0.1 % (w/ v) L-cysteine as mobile phase. Under the optimum instrumental conditions, recoveries of 101-104 % for MeHg + and 96 - 104 % for Hg 2+ were obtained with experimental detection limits of 1ngL -1 for inorganic mercury and 1.5 μgL -1 for organic mercury. (author)

  9. Atmospheric mercury distribution in Northern Europe and in the Mediterranean region

    Science.gov (United States)

    Wängberg, I.; Munthe, J.; Pirrone, N.; Iverfeldt, Å.; Bahlman, E.; Costa, P.; Ebinghaus, R.; Feng, X.; Ferrara, R.; Gårdfeldt, K.; Kock, H.; Lanzillotta, E.; Mamane, Y.; Mas, F.; Melamed, E.; Osnat, Y.; Prestbo, E.; Sommar, J.; Schmolke, S.; Spain, G.; Sprovieri, F.; Tuncel, G.

    Mercury species in air have been measured at five sites in Northwest Europe and at five coastal sites in the Mediterranean region during measurements at four seasons. Observed concentrations of total gaseous mercury (TGM), total particulate mercury (TPM) and reactive gaseous mercury (RGM) were generally slightly higher in the Mediterranean region than in Northwest Europe. Incoming clean Atlantic air seems to be enriched in TGM in comparison to air in Scandinavia. Trajectory analysis of events where high concentrations of TPM simultaneously were observed at sites in North Europe indicate source areas in Central Europe and provide evidence of transport of mercury on particles on a regional scale.

  10. Environmental Mercury and Its Toxic Effects

    Directory of Open Access Journals (Sweden)

    Kevin M. Rice

    2014-03-01

    Full Text Available Mercury exists naturally and as a man-made contaminant. The release of processed mercury can lead to a progressive increase in the amount of atmospheric mercury, which enters the atmospheric-soil-water distribution cycles where it can remain in circulation for years. Mercury poisoning is the result of exposure to mercury or mercury compounds resulting in various toxic effects depend on its chemical form and route of exposure. The major route of human exposure to methylmercury (MeHg is largely through eating contaminated fish, seafood, and wildlife which have been exposed to mercury through ingestion of contaminated lower organisms. MeHg toxicity is associated with nervous system damage in adults and impaired neurological development in infants and children. Ingested mercury may undergo bioaccumulation leading to progressive increases in body burdens. This review addresses the systemic pathophysiology of individual organ systems associated with mercury poisoning. Mercury has profound cellular, cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive, and embryonic toxicological effects.

  11. Data quality through a web-based QA/QC system: implementation for atmospheric mercury data from the global mercury observation system.

    Science.gov (United States)

    D'Amore, Francesco; Bencardino, Mariantonia; Cinnirella, Sergio; Sprovieri, Francesca; Pirrone, Nicola

    2015-08-01

    The overall goal of the on-going Global Mercury Observation System (GMOS) project is to develop a coordinated global monitoring network for mercury, including ground-based, high altitude and sea level stations. In order to ensure data reliability and comparability, a significant effort has been made to implement a centralized system, which is designed to quality assure and quality control atmospheric mercury datasets. This system, GMOS-Data Quality Management (G-DQM), uses a web-based approach with real-time adaptive monitoring procedures aimed at preventing the production of poor-quality data. G-DQM is plugged on a cyberinfrastructure and deployed as a service. Atmospheric mercury datasets, produced during the first-three years of the GMOS project, are used as the input to demonstrate the application of the G-DQM and how it identifies a number of key issues concerning data quality. The major issues influencing data quality are presented and discussed for the GMOS stations under study. Atmospheric mercury data collected at the Longobucco (Italy) station is used as a detailed case study.

  12. Histochemical demonstration of two mercury pools in trout tissues: mercury in kidney and liver after mercuric chloride exposure

    International Nuclear Information System (INIS)

    Baatrup, E.; Nielsen, M.G.; Danscher, G.

    1986-01-01

    Juvenile rainbow trout (Salmo gairdneri) were exposed to 100 ppb mercury (as HgCl 2 ) in the water for 14 days. Concentrations of mercury in water and fish organs were monitored using radiolabeled mercury. Tissues from kidney and liver were fixed, and sections were developed by autometallography, a method whereby accumulations of mercury sulfides and/or mercury selenides are silver amplified. In the kidney, mercury was found within lysosomes and extracellularly in the basal lamina of proximal tubules. In the liver, mercury was found within lysosomes of the hepatocytes. Additional groups of mercury-exposed trout were subjected to selenium (as Na 2 SeO 3 ), administered intraperitoneally 2 hr before fixation. Following this treatment, additional mercury could be visualized in the kidney circulatory system, including glomeruli, and in the nucleus and endoplasmic reticulum of liver cells. It is suggested that the mercury visualized prior to selenium treatment represents inorganic mercury, while additional mercury visualized after selenium administration represents an organic form

  13. MESSENGER, MErcury: Surface, Space ENvironment, GEochemistry, and Ranging; A Mission to Orbit and Explore the Planet Mercury

    Science.gov (United States)

    1999-01-01

    MESSENGER is a scientific mission to Mercury. Understanding this extraordinary planet and the forces that have shaped it is fundamental to understanding the processes that have governed the formation, evolution, and dynamics of the terrestrial planets. MESSENGER is a MErcury Surface, Space ENvironment, GEochemistry and Ranging mission to orbit Mercury for one Earth year after completing two flybys of that planet following two flybys of Venus. The necessary flybys return significant new data early in the mission, while the orbital phase, guided by the flyby data, enables a focused scientific investigation of this least-studied terrestrial planet. Answers to key questions about Mercury's high density, crustal composition and structure, volcanic history, core structure, magnetic field generation, polar deposits, exosphere, overall volatile inventory, and magnetosphere are provided by an optimized set of miniaturized space instruments. Our goal is to gain new insight into the formation and evolution of the solar system, including Earth. By traveling to the inner edge of the solar system and exploring a poorly known world, MESSENGER fulfills this quest.

  14. Analysis of Halogen-Mercury Reactions in Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

    2010-01-01

    was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

  15. The Merit(nTOF-11) High Intensity Liquid Mercury Target Experiment at the CERN PS

    CERN Document Server

    Efthymiopoulos, I; Caretta, O; Carroll, A J; Fabich, A; Graves, V B; Grudiev, A; Haug, F; Kirk, H G; Lettry, Jacques; Loveridge, P; McDonald, K T; Mokhov, N; Palm, M; Park, H; Pernegger, H; Spampinato, P T; Steerenberg, R; Striganov, S; Tsang, T

    2008-01-01

    The MERIT(nTOF-11) experiment is a proof-ofprinciple test of a target system for a high power proton beam to be used as front-end for a neutrino factory or a muon collider. The experiment took data in autumn 2007 with the fast-extracted beam from the CERN Proton Synchrotron (PS) to a maximum intensity of $30 × 10^{12}$ per pulse. The target system, based on a free mercury jet, is capable of intercepting a 4-MW proton beam inside a 15-T magnetic field required to capture the low energy secondary pions as the source for intense muon beams. Partice detectors installed around the target setup measure the secondary particle flux out of the target and can probe cavitation effects in the mercury jet when excited by an intense proton beam.Preliminary results of the data analysis will be presented here.

  16. Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex.

    Science.gov (United States)

    Teixeira, Francisco B; de Oliveira, Ana C A; Leão, Luana K R; Fagundes, Nathália C F; Fernandes, Rafael M; Fernandes, Luanna M P; da Silva, Márcia C F; Amado, Lilian L; Sagica, Fernanda E S; de Oliveira, Edivaldo H C; Crespo-Lopez, Maria E; Maia, Cristiane S F; Lima, Rafael R

    2018-01-01

    Mercury is a toxic metal that can be found in the environment in three different forms - elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood-brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2), an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats.

  17. Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex

    Directory of Open Access Journals (Sweden)

    Francisco B. Teixeira

    2018-05-01

    Full Text Available Mercury is a toxic metal that can be found in the environment in three different forms – elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood–brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2, an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats.

  18. Behaviour of mercury compounds in soil

    Energy Technology Data Exchange (ETDEWEB)

    Booer, J R

    1944-01-01

    The uses of inorganic compounds of mercury for the control of plant pests is reviewed, and a summary of the relevant chemical and physical properties of the compounds concerned is given. On chemical evidence a working hypothesis is propounded showing that all compounds may be expected to decompose into metallic mercury. A pot technique is described by means of which a correlation can be obtained between the effective mercury content of a given soil sample and the rate of growth of wheat seedlings. The mathematical treatment of the results is described, and the validity of the pot technique is verified by statistical analysis of results. Using the pot technqiue it is shown that volatilization losses are insignificant but that mercury is slowly rendered ineffective by the formation of mercuric sulphide. The effect of sulphur-reducing bacteria is considered and the influence of Vibrio desulphuricans on mercury is studied in detail. Experimental evidence obtained by the pot technique is produced to show that mercurous chloride slowly decomposes in the soil giving mercury and mercuric chloride, mercuric chloride rapidly decomposes into mercury and mercurous chloride, and other inorganic compounds decompose directly into mercury. The working hypothesis is substantiated in all major aspects. The uses and properties of the organo-mercury compounds are then discussed. Type compounds selected are ethyl mercury phosphate, phenyl mercury acetate and methoxyethyl mercury acetate. Using the pot technique it is shown that the formation of organo-mercury clays takes place and that these clays decompose giving metallic mercury. A mechanism is suggested.

  19. Mercury in the environment : a review

    International Nuclear Information System (INIS)

    Goodarzi, F.

    2000-01-01

    Both geogenic and anthropogenic sources are responsible for the input of mercury into the environment. However, mercury comes mostly from geogenic sources and is found naturally in air, water and soil. Crustal degassing results in emission of mercury into the atmosphere. Mercury in water and soil is due mostly to input from sedimentary rocks. Mercury in lake sediments is related mainly to input by country rock and anthropogenic activities such as agriculture. The mercury content of coal is similar to or less than the amount found in the earths crust. Natural charcoal is also able to capture mercury at low temperature combustion. The amount of mercury emitted from the stack of coal-fired power plants is related to the nature of the milled coal and its mineralogical and elemental content. Mercury emissions originating from the combustion of coal from electric utility power plants are considered to be among the greatest contributors to global mercury air emissions. In order to quantify the impact the electric power industry has on the environment, information regarding mercury concentrations in coal and their speciation is needed. For this reason the author examined the behaviour of mercury in three coal samples ashed at increasing temperatures. Mercury removal from coal-fired power plants ranges from 10 to 50 per cent by fabric filters and 20 to 95 per cent by FGD systems. This data will help in regulating emissions of hazardous air pollutants from electric utility steam generating units and will potentially provide insight into the industry's contribution to the global mercury burden. 50 refs

  20. Characteristics and Stability of Mercury Vapor Adsorption over Two Kinds of Modified Semicoke

    Directory of Open Access Journals (Sweden)

    Zhang Huawei

    2014-01-01

    Full Text Available In an attempt to produce effective and lower price gaseous Hg0 adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mnx+, and O=C–OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg0. Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously.

  1. Characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke.

    Science.gov (United States)

    Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang

    2014-01-01

    In an attempt to produce effective and lower price gaseous Hg(0) adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mn (x+) , and O=C-OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg(0). Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously.

  2. Axial mercury segregation in direct current operated low-pressure argon-mercury gas discharge: Part II. Model

    International Nuclear Information System (INIS)

    Gielen, John W A M; Groot, Simon de; Dijk, Jan van; Mullen, Joost J A M van der

    2004-01-01

    In a previous paper we had presented experimental results on mercury segregation due to cataphoresis in direct current operated low-pressure argon-mercury gas discharges. In this paper, we present our model to describe cataphoretic segregation in argon (or another noble gas)-mercury discharges. The model is based on the balance equations for mass and momentum and includes electrophoresis effects of electrons on mercury. Good agreement is found between the experimental results and model calculations. The model confirms our experimental observation that the mercury vapour pressure gradient depends on the local mercury vapour pressure. Furthermore, the model predicts the reversal of the direction of the transport of mercury under certain conditions (the phenomenon known as retrograde cataphoresis)

  3. MESSENGER: Exploring Mercury's Magnetosphere

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  4. Mercury: Photomosaic of the Shakespeare Quadrangle of Mercury (Southern Half) H-3

    Science.gov (United States)

    1974-01-01

    This computer generated photomosaic from Mariner 10 is of the southern half of Mercury's Shakespeare Quadrangle, named for the ancient Shakespeare crater located on the upper edge to the left of center. This portion of the quadrangle covers the geographic region from 20 to 45 degrees north latitude and from 90 to 180 degrees longitude. The photomosaic was produced using computer techniques and software developed in the Image Processing Laboratory of NASA's Jet Propulsion Laboratory. The pictures have been high-pass filtered and contrast enhanced to accentuate surface detail, and geometrically transformed into a Lambert conformal projection.Well defined bright streaks or ray systems radiating away from craters constitute another distinctive feature of the Mercurian surface, remarkably similar to the Moon. The rays cut across and are superimposed on all other surface features, indicating that the source craters are the youngest topographic features on the surface of Mercury.The above material was taken from the following publication... Davies, M. E., S. E. Dwornik, D. E. Gault, and R. G. Strom, Atlas of Mercury,NASA SP-423 (1978).The Mariner 10 mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  5. Mercury speciation by high-performance liquid chromatography atomic fluorescence spectrometry using an integrated microwave/UV interface. Optimization of a single step procedure for the simultaneous photo-oxidation of mercury species and photo-generation of Hg{sup 0}

    Energy Technology Data Exchange (ETDEWEB)

    Quadros, Daiane P.C. de [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); Campanella, Beatrice; Onor, Massimo; Bramanti, Emilia [National Research Council of Italy, C.N.R., Instituto di Chimica dei Composti Organo Metallici – ICCOM – UOS Pisa, Area della Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Borges, Daniel L.G. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); D' Ulivo, Alessandro, E-mail: dulivo@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Instituto di Chimica dei Composti Organo Metallici – ICCOM – UOS Pisa, Area della Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2014-11-01

    We described the hyphenation of photo-induced chemical vapor generation with high performance liquid chromatography–atomic fluorescence spectrometry (HPLC–AFS) for the quantification of inorganic mercury, methylmercury (MeHg) and ethylmercury (EtHg). In the developed procedure, formic acid in mobile phase was used for the photodecomposition of organomercury compounds and reduction of Hg{sup 2+} to mercury vapor under microwave/ultraviolet (MW/UV) irradiation. We optimized the proposed method studying the influence of several operating parameters, including the type of organic acid and its concentration, MW power, composition of HPLC mobile phase and catalytic action of TiO{sub 2} nanoparticles. Under the optimized conditions, the limits of detection were 0.15, 0.15 and 0.35 μg L{sup −1} for inorganic mercury, MeHg and EtHg, respectively. The developed method was validated by determination of the main analytical figures of merit and applied to the analysis of three certified reference materials. The online interfacing of liquid chromatography with photochemical-vapor generation–atomic fluorescence for mercury determination is simple, environmentally friendly, and represents an attractive alternative to the conventional tetrahydroborate (THB) system. - Highlights: • Inorganic and organic mercury were determined by photochemical vapor generation using a MW/UV photochemical reactor. • The optimized procedure has been applied to the speciation of Hg(II), MeHg and EtHg coupling HPLC with PVG–AFS. • The proposed method is simple, sensitive, and is established for mercury determination in biological materials.

  6. Characteristics of mercury emission from linear type of spent fluorescent lamp.

    Science.gov (United States)

    Rhee, Seung-Whee; Choi, Hyo-Hyun; Park, Hun-Su

    2014-06-01

    In order to recycle the linear type of SFL (spent fluorescent lamp), mercury from SFL should be controlled to prevent leaking into the environment. For mercury emission from SFL, mercury concentration is estimated in the parts of SFL such as glass tube, phosphor powder, and base cap using the end-cutting unit. It is also evaluated mercury emission in the effluent gas in the end-cutting unit with changing flow rate. From the results of mercury emission from SFLs, phosphor powder has greater than 80% of mercury amount in SFL and about 15% of mercury amount contained in glass tube. The initial mercury concentration in vapor phase is almost decreased linearly with increasing airflow rate from 0.7 L/min to 1.3 L/min. It is desirable that airflow rate should be high until the concentration of mercury vapor will be stable because the stabilized concentration becomes to be low and the stabilized time goes to be short as increased airflow rate. From KET and TCLP results, finally, phosphor powder should be managed as a hazardous waste but base-cap and glass are not classified as hazardous wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Monitoring of mercury concentration in atmosphere in Usti nad Labem

    International Nuclear Information System (INIS)

    Synek, V.; Baloch, T.; Otcenasek, J.; Kremlova, S.; Subrt, P.

    2007-01-01

    This study elaborates the observation of mercury pollution of the atmosphere in the city of Usti nad Labem. The biggest source of the polluting mercury in Usti nad Labem is the chlor-alkali production in the factory of Spolchemie Inc. The method of mercury determination applied is based on capturing the mercury contented in a volume of the air on an amalgamator and measuring the mercury by an atomic absorption spectrometer (Perkin -Elmer 4100ZL) equipped with a special adapter after a thermal release of the mercury from the amalgamator. The basic characteristics of this method were evaluated; e.g. the limit of detection and limit of determination are, respectively, 0.43 and 1.4 ng/m 3 , the relative expanded uncertainty is 28 %. The work gives results of long-term (1998-2006) observations in a few localities in Usti nad Labem situated in various distances from the mercury source (e.g. means of 28.6 and 14.1 ng/m3 were obtained, respectively, in places 350 and 700 m far from the electrolysis plant) and also in a different city (Duchcov). The cases with a higher mercury concentration are very frequent so the sets of the obtained results have lognormal distributions. This study statistically compares the total level and variability of the mercury concentrations in the time series. It also investigates their trends, correlations between them and meteorological influences upon the levels of mercury concentration in the air. The effect of the mercury emission from the chlor-alkali plant is dominant. It as the only factor determines when the cases with a high mercury concentration in the atmosphere occur. (author)

  8. Mercury's Dynamic Magnetic Tail

    Science.gov (United States)

    Slavin, James A.

    2010-01-01

    The Mariner 10 and MESSENGER flybys of Mercury have revealed a magnetosphere that is likely the most responsive to upstream interplanetary conditions of any in the solar system. The source of the great dynamic variability observed during these brief passages is due to Mercury's proximity to the Sun and the inverse proportionality between reconnection rate and solar wind Alfven Mach number. However, this planet's lack of an ionosphere and its small physical dimensions also contribute to Mercury's very brief Dungey cycle, approx. 2 min, which governs the time scale for internal plasma circulation. Current observations and understanding of the structure and dynamics of Mercury's magnetotail are summarized and discussed. Special emphasis will be placed upon such questions as: 1) How much access does the solar wind have to this small magnetosphere as a function of upstream conditions? 2) What roles do heavy planetary ions play? 3) Do Earth-like substorms take place at Mercury? 4) How does Mercury's tail respond to extreme solar wind events such coronal mass ejections? Prospects for progress due to advances in the global magnetohydrodynamic and hybrid simulation modeling and the measurements to be taken by MESSENGER after it enters Mercury orbit on March 18, 2011 will be discussed.

  9. Mercury in Your Environment

    Science.gov (United States)

    Basic information about mercury, how it gets in the air, how people are exposed to it and health effects associated with exposure; what EPA and other organizations are doing to limit exposures; what citizens should know to minimize exposures and to reduce mercury in the environment; and information about products that contain mercury.

  10. Construction and Capacity Analysis of High-Rank LoS MIMO Channels in High Speed Railway Scenarios

    Directory of Open Access Journals (Sweden)

    Jingya Yang

    2012-01-01

    Full Text Available The validity of the maximum capacity criterion applied to realize high-rank line-of-sight (LoS multiple-input multiple-output (MIMO channels is investigated for high speed railway scenarios. Performance is evaluated by ergodic capacity. Numerical results demonstrate that by simply adjusting antenna spacing according to the maximum capacity criterion, significant capacity gains are achievable. We find relatively low sensitivity of the system to displacements from the optimal point and angle in relatively short range. Thus, we present two proposals to reconfigure antenna arrays so as to maximize LoS MIMO capacity in the high speed railway scenarios

  11. Mercury separation from aqueous wastes

    International Nuclear Information System (INIS)

    Taylor, P.A.; Klasson, K.T.; Corder, S.L.

    1995-07-01

    This project is providing an assessment of new sorbents for removing mercury from wastes at US Department of Energy sites. Four aqueous wastes were chosen for lab-scale testing; a high-salt, acidic waste currently stored at Idaho National Engineering Laboratory (INEL); a high-salt, alkaline waste stored at the Savannah River Site (SRS); a dilute lithium hydroxide solution stored at the Oak Ridge Y-12 Plant; and a low-salt, neutral groundwater generated at the Y-12 Plant. Eight adsorbents have been identified for testing, covering a wide range of cost and capability. Screening tests have been completed, which identified the most promising adsorbents for each waste stream. Batch isotherm tests have been completed using the most promising adsorbents, and column tests are in progress. Because of the wide range of waste compositions tested, no one adsorbent is effective in all of these waste streams. Based on loading capacity and compatibility with the waste solutions. the most effective adsorbents identified to date are SuperLig 618 for the INEL tank waste stimulant; Mersorb followed by lonac SR-3 for the SRS tank waste stimulant; Durasil 70 and Ionac SR-3) for the LIOH solution; and lonac SR-3 followed by lonac SR-4 and Mersorb for the Y-12 groundwater

  12. Rapid Monitoring of Mercury in Air from an Organic Chemical Factory in China Using a Portable Mercury Analyzer

    Directory of Open Access Journals (Sweden)

    Akira Yasutake

    2011-01-01

    Full Text Available A chemical factory, using a production technology of acetaldehyde with mercury catalysis, was located southeast of Qingzhen City in Guizhou Province, China. Previous research showed heavy mercury pollution through an extensive downstream area. A current investigation of the mercury distribution in ambient air, soils, and plants suggests that mobile mercury species in soils created elevated mercury concentrations in ambient air and vegetation. Mercury concentrations of up to 600 ng/m3 in air over the contaminated area provided evidence of the mercury transformation to volatile Hg(0. Mercury analysis of soil and plant samples demonstrated that the mercury concentrations in soil with vaporized and plant-absorbable forms were higher in the southern area, which was closer to the factory. Our results suggest that air monitoring using a portable mercury analyzer can be a convenient and useful method for the rapid detection and mapping of mercury pollution in advanced field surveys.

  13. EDITORIAL: Mercury-free discharges for lighting

    Science.gov (United States)

    Haverlag, M.

    2007-07-01

    This special Cluster of articles in Journal of Physics D: Applied Physics covers the subject of mercury-free discharges that are being investigated by different light source researchers, as an alternative to existing mercury-containing lamps. The main driving force to move away from mercury-containing discharge light sources is connected to the environmentally unfriendly nature of mercury. After inhalation or direct contact, severe mercury exposure can lead to damage to human brain cells, the kidneys, the liver and the nervous system. For this reason, the use of mercury in products is becoming more and more restricted by different governmental bodies. In the lighting industry, however, many products still make use of mercury, for different reasons. The main reason is that mercury-containing products are, in most cases, more efficient than mercury-free products. For a realistic comparison of the environmental impact, the mercury-contamination due to electricity production must be taken into account, which depends on the type of fuel being used. For an average European fuel-mix, the amount of mercury that is released into the environment is around 29 μg kWh-1. This means that a typical 30 W TL lamp during a lifetime of 20,000 hours will release a total of about 20 mg mercury due to electricity production, which exceeds the total mercury dose in the lamp (more and more of which is being recycled) by a factor of 5-10 for a modern TL lamp. This illustrates that, quite apart from other environmental arguments like increased CO2 production, mercury-free alternatives that use more energy can in fact be detrimental for the total mercury pollution over the lifetime of the lamp. For this reason, the lighting industry has concentrated on lowering the mercury content in lamps as long as no efficient alternatives exist. Nevertheless, new initiatives for HID lamps and fluorescent lamps with more or less equal efficiency are underway, and a number of them are described in this

  14. Infiltration behaviour of elemental mercury DNAPL in fully and partially water saturated porous media

    Science.gov (United States)

    D'Aniello, Andrea; Hartog, Niels; Sweijen, Thomas; Pianese, Domenico

    2018-02-01

    Mercury is a contaminant of global concern due to its harmful effects on human health and for the detrimental consequences of its release in the environment. Sources of liquid elemental mercury are usually anthropogenic, such as chlor-alkali plants. To date insight into the infiltration behaviour of liquid elemental mercury in the subsurface is lacking, although this is critical for assessing both characterization and remediation approaches for mercury DNAPL contaminated sites. Therefore, in this study the infiltration behaviour of elemental mercury in fully and partially water saturated systems was investigated using column experiments. The properties affecting the constitutive relations governing the infiltration behaviour of liquid Hg0, and PCE for comparison, were determined using Pc(S) experiments with different granular porous media (glass beads and sands) for different two- and three-phase configurations. Results showed that, in water saturated porous media, elemental mercury, as PCE, acted as a non-wetting fluid. The required entry head for elemental mercury was higher (from about 5 to 7 times). However, due to the almost tenfold higher density of mercury, the required NAPL entry heads of 6.19 cm and 12.51 cm for mercury to infiltrate were 37.5% to 20.7% lower than for PCE for the same porous media. Although Leverett scaling was able to reproduce the natural tendency of Hg0 to be more prone than PCE to infiltrate in water saturated porous media, it considerably underestimated Hg0 infiltration capacity in comparison with the experimental results. In the partially water saturated system, in contrast with PCE, elemental mercury also acted as a nonwetting fluid, therefore having to overcome an entry head to infiltrate. The required Hg0 entry heads (10.45 and 15.74 cm) were considerably higher (68.9% and 25.8%) than for the water saturated porous systems. Furthermore, in the partially water saturated systems, experiments showed that elemental mercury displaced

  15. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. IV. Bioconcentration of mercury in in situ aquatic and terrestrial plants at Ganjam, India.

    Science.gov (United States)

    Lenka, M; Panda, K K; Panda, B B

    1992-02-01

    In situ aquatic and terrestrial plants including a few vegetable and crop plants growing in and around a chloralkali plant at Ganjam, India were analyzed for concentrations of root and shoot mercury. The aquatic plants found to bioconcentrate mercury to different degrees included Marsilea spp., Spirodela polyrhiza, Jussiea repens, Paspalum scrobiculatam, Pistia stratiotes, Eichhornia crassipes, Hygrophila schulli, Monochoria hastata and Bacopa monniera. Among wild terrestrial plants Chloris barbata, Cynodon dactylon, Cyperus rotundus and Croton bonplandianum were found growing on heavily contaminated soil containing mercury as high as 557 mg/kg. Analysis of mercury in root and shoot of these plants in relation to the mercury levels in soil indicated a significant correlation between soil and plant mercury with the exception of C. bonplandianum. Furthermore, the tolerance to mercury toxicity was highest with C. barbata followed by C. dactylon and C. rotundus, in that order. The rice plants analyzed from the surrounding agricultural fields did not show any significant levels of bioconcentrated mercury. Of the different vegetables grown in a contaminated kitchen garden with mercury level at 8.91 mg/kg, the two leafy vegetables, namely cabbage (Brassica oleracea) and amaranthus (Amaranthus oleraceous), were found to bioconcentrate mercury at statistically significant levels. The overall study indicates that the mercury pollution is very much localized to the specific sites in the vicinity of the chloralkali plant.

  16. Isotopic Fractionation of Mercury in Great Lakes Precipitation

    Science.gov (United States)

    Gratz, L. E.; Keeler, G. J.; Blum, J. D.; Sherman, L. S.

    2009-12-01

    atmospheric samples for high precision mercury isotopic analysis and was an initial attempt to quantify the isotopic composition of mercury in atmospheric samples. While it is not possible at this time to identify specific source contributions to the individual samples collected in this study, results do offer preliminary information on the extent of isotopic variation and fractionation of atmospheric mercury in the Great Lakes region.

  17. Intoxication with metallic mercury

    International Nuclear Information System (INIS)

    Fichte, B.; Assmann, H.; Ritzau, F.

    1984-01-01

    Intoxications by metallic mercury are extremely rare. Report of a patient, who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism. (orig.) [de

  18. Intoxication with metallic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Fichte, B.; Ritzau, F.; Assmann, H.

    1984-02-01

    Intoxications by metallic mercury are extremely rare. Report is given of a patient who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism.

  19. Intoxication with metallic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Fichte, B.; Assmann, H.; Ritzau, F.

    1984-02-01

    Intoxications by metallic mercury are extremely rare. Report is given of a patient, who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism.

  20. Mercury in dated Greenland marine sediments

    DEFF Research Database (Denmark)

    Asmund, G.; Nielsen, S.P.

    2000-01-01

    Twenty marine sediment cores from Greenland were analysed for mercury, and dated by the lead-210 method. In general the cores exhibit a mercury profile with higher mercury concentrations in the upper centimetres of the core. The cores were studied by linear regression of In Hg vs, age of the sedi......Twenty marine sediment cores from Greenland were analysed for mercury, and dated by the lead-210 method. In general the cores exhibit a mercury profile with higher mercury concentrations in the upper centimetres of the core. The cores were studied by linear regression of In Hg vs, age...... indicating that the mercury mainly originates from atmospheric washout. But the large variability indicates that other processes also influence the mercury flux to Arctic marine sediments. (C) 2000 Elsevier Science B.V. All rights reserved....

  1. [Study on mercury re-emissions during fly ash utilization].

    Science.gov (United States)

    Meng, Yang; Wang, Shu-Xiao

    2012-09-01

    The amount of fly ash produced during coal combustion is around 400 million tons per year in China. About 65%-68% of fly ash is used in building material production, road construction, architecture and agriculture. Some of these utilization processes include high temperature procedures, which may lead to mercury re-emissions. In this study, experiments were designed to simulate the key process in cement production and steam-cured brick production. A temperature programmed desorption (TPD) method was used to study the mercury transformation in the major utilization processes. Mercury re-emission during the fly ash utilization in China was estimated based on the experimental results. It was found that mercury existed as HgCl2 (Hg2 Cl2), HgS and HgO in the fly ash. During the cement production process, more than 98% of the mercury in fly ash was re-emitted. In the steam-curing brick manufacturing process, the average mercury re-emission percentage was about 28%, which was dominated by the percentage of HgCl2 (Hg2 Cl2). It is estimated that the mercury re-emission during the fly ash utilization have increased from 4.07 t in 2002 to 9.18 t in 2008, of which cement industry contributes about 96.6%.

  2. Changing patterns in the use, recycling, and material substitution of mercury in the United States

    Science.gov (United States)

    Wilburn, David R.

    2013-01-01

    Environmental concerns have led to numerous regulations that have dramatically decreased the reported production and use of mercury in the United States since the 1980s. Government legislation and subsequent industry actions have led to increased collection of mercury-containing materials and the recovery of mercury through recycling. Mercury emissions have been reduced and effective alternatives to mercury products have been developed for many applications. This study updates and quantifies the changes in demand, supply, use, and material flow for mercury in various sectors in the United States that have taken place since 1996. Nearly all primary mercury produced in the United States is derived as a byproduct of processing of gold and silver ore in Nevada. Since 2001, annual production of mercury from gold and silver mining in Nevada has decreased by 22 percent overall because ore from greater depths containing low grade mercury is recovered, and mercury emissions from this source have decreased by 95 percent as a result of increased regulation and improved collection and suppression technology. The distribution of consumption of mercury in the United States has changed as a result of regulation (elimination of large-scale mercury use in the paint and battery sectors), reduction by consumers (decommissioning of mercury-cell chloralkali manufacturing capacity), and technological advances (improvements in dental, lighting, and wiring sectors). Mercury use in the chloralkali sector, the leading end-use sector in the United States in 1996, has declined by 98 percent from 136 metric tons (t) in 1996 to about 0.3 t in 2010 because of increased processing and recycling efficiencies and plant closures or conversion to other technologies. As plants were closed, mercury recovered from the infrastructure of decommissioned plants has been exported, making the United States a net exporter of mercury, even though no mercury has been produced as the primary product from mines in

  3. Mercury kinetics in marine zooplankton

    International Nuclear Information System (INIS)

    Fowler, S.W.; Heyraud, M.; LaRosa, J.

    1976-01-01

    Mercury, like many other heavy metals, is potentially available to marine animals by uptake directly from water and/or through the organisms food. Furthermore, bioavailability, assimilation and subsequent retention in biota may be affected by the chemical species of the element in sea water. While mercury is known to exist in the inorganic form in sea water, recent work has indicated that, in certain coastal areas, a good portion of the total mercury appears to be organically bound; however, the exact chemical nature of the organic fraction has yet to be determined. Methyl mercury may be one constituent of the natural organically bound fraction since microbial mechanisms for in situ methylation of mercury have been demonstrated in the aquatic environment. Despite the fact that naturally produced methyl mercury probably comprises only a small fraction of an aquatic ecosystem, the well-documented toxic effects of this organo-mercurial, caused by man-made introductions into marine food chains, make it an important compound to study

  4. Microbiological stimulation of phytoremediation process using Salvinia natans to mercury contamined water

    Science.gov (United States)

    Filyarovskaya, Viktoriya; Sitarska, Magdalena; Traczewska, Teodora; Wolf, Mirela

    2017-11-01

    An alternative to traditional cleaning methods of heavy metals in the water environment is phytoremediation. They efficiency depends on used technological process conditions as well as plant species. One of the most dangerous metallic elements mercury plays a particular role, which is a trace element and a physiologically foreign in living organisms. Mercury has a high degree of toxicity with strong affinity to thiol groups. This may cause an adverse effect on the enzymatic processes and consequently inhibiting the physiological functions. Because of high risk for human health, water environment treatment from mercury is essential proecological action. Mercury removal studies were conducted using Salvinia natans pleustofit, sampled from its natural water environment. In the first step, epiphytic bacteria, which was resistant to high concentrations of mercury (0,6 mgHg/l), was isolated from the plant and than selected by the tiles gradient mthod. In the next step, the identification using molecular biology methods was made. In the following step plant Salvinia natans was exposure to high levels of mercury in the presence of the three isolated Pseudomonas strains with exceptional resistance characteristics to environmental factors. Has been found a positive bacteria effect on the plant condition because the selected strains belong to Pseudomonas species producing materials supporting plant growth. The use of microbial stimulation to phytoremediation by hyperaccumulator Salvinia natans can multiply the effectiveness of the process.

  5. Microbiological stimulation of phytoremediation process using Salvinia natans to mercury contamined water

    Directory of Open Access Journals (Sweden)

    Filyarovskaya Viktoriya

    2017-01-01

    Full Text Available An alternative to traditional cleaning methods of heavy metals in the water environment is phytoremediation. They efficiency depends on used technological process conditions as well as plant species. One of the most dangerous metallic elements mercury plays a particular role, which is a trace element and a physiologically foreign in living organisms. Mercury has a high degree of toxicity with strong affinity to thiol groups. This may cause an adverse effect on the enzymatic processes and consequently inhibiting the physiological functions. Because of high risk for human health, water environment treatment from mercury is essential proecological action. Mercury removal studies were conducted using Salvinia natans pleustofit, sampled from its natural water environment. In the first step, epiphytic bacteria, which was resistant to high concentrations of mercury (0,6 mgHg/l, was isolated from the plant and than selected by the tiles gradient mthod. In the next step, the identification using molecular biology methods was made. In the following step plant Salvinia natans was exposure to high levels of mercury in the presence of the three isolated Pseudomonas strains with exceptional resistance characteristics to environmental factors. Has been found a positive bacteria effect on the plant condition because the selected strains belong to Pseudomonas species producing materials supporting plant growth. The use of microbial stimulation to phytoremediation by hyperaccumulator Salvinia natans can multiply the effectiveness of the process.

  6. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.

    Science.gov (United States)

    He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei

    2016-01-01

    The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.

  7. Biomarkers of mercury exposure at a mercury recycling facility in Ukraine.

    Science.gov (United States)

    Gibb, Herman Jones; Kozlov, Kostj; Buckley, Jessie Poulin; Centeno, Jose; Jurgenson, Vera; Kolker, Allan; Conko, Kathryn; Landa, Edward; Panov, Boris; Panov, Yuri; Xu, Hanna

    2008-08-01

    This study evaluates biomarkers of occupational mercury exposure among workers at a mercury recycling operation in Gorlovka, Ukraine. The 29 study participants were divided into three occupational categories for analysis: (1) those who worked in the mercury recycling operation (Group A, n = 8), (2) those who worked at the facility but not in the yard where the recycling was done (Group B, n = 14), and (3) those who did not work at the facility (Group C, n = 7). Urine, blood, hair, and nail samples were collected from the participants, and a questionnaire was administered to obtain data on age, gender, occupational history, smoking, alcohol consumption, fish consumption, tattoos, dental amalgams, home heating system, education, source of drinking water, and family employment in the former mercury mine/smelter located on the site of the recycling facility. Each factor was tested in a univariate regression with total mercury in urine, blood, hair, and nails. Median biomarker concentrations were 4.04 microg/g-Cr (urine), 2.58 microg/L (blood), 3.95 microg/g (hair), and 1.16 microg/g (nails). Occupational category was significantly correlated (p recycling operation had the highest blood and urinary mercury levels. Those who worked at the facility but were not directly involved with the recycling operation had higher levels than those who did not work at the facility.

  8. High variability of atmospheric mercury in the summertime boundary layer through the central Arctic Ocean.

    Science.gov (United States)

    Yu, Juan; Xie, Zhouqing; Kang, Hui; Li, Zheng; Sun, Chen; Bian, Lingen; Zhang, Pengfei

    2014-08-15

    The biogeochemical cycles of mercury in the Arctic springtime have been intensively investigated due to mercury being rapidly removed from the atmosphere. However, the behavior of mercury in the Arctic summertime is still poorly understood. Here we report the characteristics of total gaseous mercury (TGM) concentrations through the central Arctic Ocean from July to September, 2012. The TGM concentrations varied considerably (from 0.15 ng/m(3) to 4.58 ng/m(3)), and displayed a normal distribution with an average of 1.23 ± 0.61 ng/m(3). The highest frequency range was 1.0-1.5 ng/m(3), lower than previously reported background values in the Northern Hemisphere. Inhomogeneous distributions were observed over the Arctic Ocean due to the effect of sea ice melt and/or runoff. A lower level of TGM was found in July than in September, potentially because ocean emission was outweighed by chemical loss.

  9. Groundwater Modeling Of Mercury Pollution At A Former Mercury Cell Chlor Alkali Facility In Pavoldar, Kazakhstan

    Science.gov (United States)

    In Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severly contaminated with mercury and mercury compounds as a result of the industrial activity of this chemical pla...

  10. Crack-resistant polyimide coating for high-capacity battery anodes

    Science.gov (United States)

    Li, Yingshun; Wang, Shuo; Lee, Pui-Kit; He, Jieqing; Yu, Denis Y. W.

    2017-10-01

    Electrode cracking is a serious problem that hinders the application of many next-generation high-capacity anode materials for lithium-ion batteries. Even though nano-sizing the material can reduce fracturing of individual particles, capacity fading is still observed due to large volume change and loss of contact in the electrode during lithium insertion and extraction. In this study, we design a crack-resistant high-modulus polyimide coating with high compressive strength which can hold multiple particles together during charge and discharge to maintain contact. The effectiveness of the coating is demonstrated on tin dioxide, a high-capacity large-volume-change material that undergoes both alloy and conversion reactions. The polyimide coating improves capacity retention of SnO2 from 80% to 100% after 80 cycles at 250 mA g-1. Stable capacity of 585 mAh g-1 can be obtained even at 500 mA g-1 after 300 cycles. Scanning electron microscopy and in-situ dilatometry confirm that electrode cracking is suppressed and thickness change is reduced with the coating. In addition, the chemically-stable polyimide film can separate the surface from direct contact with electrolyte, improving coulombic efficiency to ∼100%. We expect the novel strategy of suppressing electrode degradation with a crack-resistant coating can also be used for other alloy and conversion-based anodes.

  11. Mercury embrittlement of Cu-Al alloys under cyclic loading

    Science.gov (United States)

    Regan, T. M.; Stoloff, N. S.

    1977-01-01

    The effect of mercury on the room temperature, high cycle fatigue properties of three alloys: Cu-5.5 pct Al, Cu-7.3 pct Al, and Cu-6.3 pct Al-2.5 pct Fe has been determined. Severe embrittlement under cyclic loading in mercury is associated with rapid crack propagation in the presence of the liquid metal. A pronounced grain size effect is noted under mercury, while fatigue properties in air are insensitive to grain size. The fatigue results are discussed in relation to theories of adsorption-induced liquid metal embrittlement.

  12. Process for low mercury coal

    Science.gov (United States)

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  13. THE BEHAVIOR OF MICROORGANISMS RESISTANT TO MERCURY FROM PAVLODAR, KAZAKHSTAN

    Science.gov (United States)

    There is extensive mercury contamination surrounding a chloralkali plant in Pavlodar, Kazakhstan that operated from 1970 to 1990. High-level mercury contamination exists within the confines of the plant, at nearby off-site waste storage and evaporation ponds, in Balkyldak Lake w...

  14. Assessment of mercury exposure and malaria in a Brazilian Amazon riverine community

    International Nuclear Information System (INIS)

    Crompton, Peter; Ventura, Ana Maria; Souza, Jose Maria de; Santos, Elisabeth; Strickland, G. Thomas; Silbergeld, Ellen

    2002-01-01

    Small-scale gold mining in the Brazilian Amazon occurs in areas with high rates of malaria transmission. Amazonian populations can be exposed to mercury through direct contact with the mining process and/or through fish consumption. Because of data from experimental studies, we examined the potential for mercury to affect host response to malaria. A cross-sectional survey was done in Jacareacanga, a riverine community in Para state, in a region of intense alluvial gold mining. A sample of 205 persons was selected by cluster sampling from the total population of approximately 2000. A brief medical history and exam were conducted, malaria slides were obtained, and air samples were taken to measure mercury levels. The average hair mercury level was 8.6 μg/g, ranging from 0.3 to 83.2 μg/g. The most important predictors of elevated mercury levels were high fish consumption and low income. Although there was no prevalent malaria, the odds of reporting a past malaria infection was four times higher for those also reporting a history of working with mercury

  15. Arsenic and mercury partitioning in fly ash at a Kentucky power plant

    Energy Technology Data Exchange (ETDEWEB)

    Tanaporn Sakulpitakphon; James C. Hower; Alan S. Trimble; William H. Schram; Gerald A. Thomas [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2003-08-01

    Coal and fly ash samples were collected from a 500-MW unit at a Kentucky power plant, with the objective of studying the distribution of arsenic, mercury, and other trace elements in fly ash. The coal feed was low-sulfur, high volatile A bituminous central West Virginia coal. The plant produced a relatively low-carbon fly ash. In contrast to power plants with high-mercury feed coal, the fly ashes from the lower-mercury feed coal had low mercury values, generally not exceeding 0.01 ppm Hg. Mercury capture by fly ash varies with both the amount and type of carbon and the collection temperature; mercury capture is more efficient at lower temperatures. Arsenic in the feed coal and in the flue gas is of concern to the utility, because of the potential for catalyst poisoning in the selective catalytic reduction system (in the planning stage at the time of the sampling). Arsenic is captured in the fly ash, increasing in concentration in the more-distant (from the boiler) reaches of the electrostatic precipitator system. 16 refs., 2 figs., 5 tabs.

  16. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Ness, N.F.

    1988-01-01

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  17. Atmospheric gaseous elemental mercury (GEM concentrations and mercury depositions at a high-altitude mountain peak in south China

    Directory of Open Access Journals (Sweden)

    X. W. Fu

    2010-03-01

    Full Text Available China is regarded as the largest contributor of mercury (Hg to the global atmospheric Hg budget. However, concentration levels and depositions of atmospheric Hg in China are poorly known. Continuous measurements of atmospheric gaseous elemental mercury (GEM were carried out from May 2008 to May 2009 at the summit of Mt. Leigong in south China. Simultaneously, deposition fluxes of THg and MeHg in precipitation, throughfall and litterfall were also studied. Atmospheric GEM concentrations averaged 2.80±1.51 ng m−3, which was highly elevated compared to global background values but much lower than semi-rural and industrial/urban areas in China. Sources identification indicates that both regional industrial emissions and long range transport of Hg from central, south and southwest China were corresponded to the elevated GEM level. Seasonal and diurnal variations of GEM were observed, which reflected variations in source intensity, deposition processes and meteorological factors. Precipitation and throughfall deposition fluxes of THg and MeHg in Mt. Leigong were comparable or lower compared to those reported in Europe and North America, whereas litterfall deposition fluxes of THg and MeHg were higher compared to Europe and North America. This highlights the importance of vegetation to Hg atmospheric cycling. In th remote forest ecosystem of China, deposition of GEM via uptake of foliage followed by litterfall was very important for the depletion of atmospheric Hg. Elevated GEM level in ambient air may accelerate the foliar uptake of Hg through air which may partly explain the elevated litterfall deposition fluxes of Hg observed in Mt. Leigong.

  18. Vertical Distribution of Total Mercury and Mercury Methylation in a Landfill Site in Japan

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2018-06-01

    Full Text Available Mercury is a neurotoxin, with certain organic forms of the element being particularly harmful to humans. The Minamata Convention was adopted to reduce the intentional use and emission of mercury. Because mercury is an element, it cannot be decomposed. Mercury-containing products and mercury used for various processes will eventually enter the waste stream, and landfill sites will become a mercury sink. While landfill sites can be a source of mercury pollution, the behavior of mercury in solid waste within a landfill site is still not fully understood. The purpose of this study was to determine the depth profile of mercury, the levels of methyl mercury (MeHg, and the factors controlling methylation in an old landfill site that received waste for over 30 years. Three sampling cores were selected, and boring sampling was conducted to a maximum depth of 18 m, which reached the bottom layer of the landfill. Total mercury (THg and MeHg were measured in the samples to determine the characteristics of mercury at different depths. Bacterial species were identified by 16S rRNA amplification and sequencing, because the methylation process is promoted by a series of genes. It was found that the THg concentration was 19–975 ng/g, with a geometric mean of 298 ng/g, which was slightly less than the 400 ng/g concentration recorded 30 years previously. In some samples, MeHg accounted for up to 15–20% of THg, which is far greater than the general level in soils and sediments, although the source of MeHg was unclear. The genetic data indicated that hgcA was present mostly in the upper and lower layers of the three cores, merA was almost as much as hgcA, while the level of merB was hundreds of times less than those of the other two genes. A significant correlation was found between THg and MeHg, as well as between MeHg and MeHg/THg. In addition, a negative correlation was found between THg and merA. The coexistence of the three genes indicated that both

  19. Mercury exposure may influence fluctuating asymmetry in waterbirds.

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A; Ackerman, Joshua T

    2017-06-01

    Variation in avian bilateral symmetry can be an indicator of developmental instability in response to a variety of stressors, including environmental contaminants. The authors used composite measures of fluctuating asymmetry to examine the influence of mercury concentrations in 2 tissues on fluctuating asymmetry within 4 waterbird species. Fluctuating asymmetry increased with mercury concentrations in whole blood and breast feathers of Forster's terns (Sterna forsteri), a species with elevated mercury concentrations. Specifically, fluctuating asymmetry in rectrix feather 1 was the most strongly correlated structural variable of those tested (wing chord, tarsus, primary feather 10, rectrix feather 6) with mercury concentrations in Forster's terns. However, for American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), and Caspian terns (Hydroprogne caspia), the authors found no relationship between fluctuating asymmetry and either whole-blood or breast feather mercury concentrations, even though these species had moderate to elevated mercury exposure. The results indicate that mercury contamination may act as an environmental stressor during development and feather growth and contribute to fluctuating asymmetry of some species of highly contaminated waterbirds. Environ Toxicol Chem 2017;36:1599-1605. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  20. A survey of topsoil arsenic and mercury concentrations across France.

    Science.gov (United States)

    Marchant, B P; Saby, N P A; Arrouays, D

    2017-08-01

    Even at low concentrations, the presence of arsenic and mercury in soils can lead to ecological and health impacts. The recent European-wide LUCAS Topsoil Survey found that the arsenic concentration of a large proportion of French soils exceeded a threshold which indicated that further investigation was required. A much smaller proportion of soils exceeded the corresponding threshold for mercury but the impacts of mining and industrial activities on mercury concentrations are not well understood. We use samples from the French national soil monitoring network (RMQS: Réseau de Mesures de la Qualité des Sols) to explore the variation of topsoil arsenic and mercury concentrations across mainland France at a finer spatial resolution than was reported by LUCAS Topsoil. We use geostatistical methods to map the expected concentrations of these elements in the topsoil and the probabilities that the legislative thresholds are exceeded. We find that, with the exception of some areas where the geogenic concentrations and soil adsorption capacities are very low, arsenic concentrations are generally larger than the threshold which indicates that further assessment of the area is required. The lower of two other guideline values indicating risks to ecology or health is exceeded in fewer than 5% of RMQS samples. These exceedances occur in localised hot-spots primarily associated with mining and mineralization. The probabilities of mercury concentrations exceeding the further assessment threshold value are everywhere less than 0.01 and none of the RMQS samples exceed either of the ecological and health risk thresholds. However, there are some regions with elevated concentrations which can be related to volcanic material, natural mineralizations and industrial contamination. These regions are more diffuse than the hot-spots of arsenic reflecting the greater volatility of mercury and therefore the greater ease with which it can be transported and redeposited. The maps provide a

  1. Effective removal of hexavalent mercury from aqueous solution by modified polymeric nanoadsorbent

    Directory of Open Access Journals (Sweden)

    Lida Rahmanzadeh

    2016-07-01

    Full Text Available Mercury is one of the most toxic metals present in the environment. Adsorption has been proposed among the technologies for mercury adsorbent. The kinetics of adsorption depends on the adsorbent concentration, and the physical and chemical characteristics of adsorbent. In this study we were used a novel adsorbent, magnetite-polyrhodanine core- shell nanoparticles, for removing Hg(II from aqueous solution. The effect of pH, initial Hg(II concentration, initial adsorbent concentration and contact time on the efficiency of Hg(II removal were investigated systematically by batch experiments. The maximum adsorption capacity was obtained 29.14 mg g-1 at PH=6.5 and 25°C with 10 g L-1 nano adsorbent. The kinetic data of adsorption of Hg(II ion on the synthesized adsorbent were best described by a pseudo- second- order equation, indicating their chemical adsorption. The Freundlich, Langmuir and Temkin isotherms were used to modeling of mercury adsorption on Hg(II in aqueous medium which modeled best by the Freundlich isotherm is whole concentration rage.

  2. Elimination of mercury in health care facilities.

    Science.gov (United States)

    2000-03-01

    Mercury is a persistent, bioaccumulative toxin that has been linked to numerous health effects in humans and wildlife. It is a potent neurotoxin that may also harm the brain, kidneys, and lungs. Unborn children and young infants are at particular risk for brain damage from mercury exposure. Hospitals' use of mercury in chemical solutions, thermometers, blood pressure gauges, batteries, and fluorescent lamps makes these facilities large contributors to the overall emission of mercury into the environment. Most hospitals recognize the dangers of mercury. In a recent survey, four out of five hospitals stated that they have policies in place to eliminate the use of mercury-containing products. Sixty-two percent of them require vendors to disclose the presence of mercury in chemicals that the hospitals purchase. Only 12 percent distribute mercury-containing thermometers to new parents. Ninety-two percent teach their employees about the health and environmental effects of mercury, and 46 percent teach all employees how to clean up mercury spills. However, the same study showed that many hospitals have not implemented their policies. Forty-two percent were not aware whether they still purchased items containing mercury. In addition, 49 percent still purchase mercury thermometers, 44 percent purchase mercury gastrointestinal diagnostic equipment, and 64 percent still purchase mercury lab thermometers.

  3. Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives

    Science.gov (United States)

    Ahn, Soonho; Kim, Youngduk; Kim, Kyung Joon; Kim, Tae Hyung; Lee, Hyungkeun; Kim, Myung H.

    As lithium ion cells dominate the battery market, the performance improvement is an utmost concern among developers and researchers. Conductive additives are routinely employed to enhance electrode conductivity and capacity. Carbon particulates—graphite or carbon black powders—are conventional and popular choices as conductive fillers. However, percolation requirements of particles demand significant volumetric content of impalpable, and thereby high area conductive fillers. As might be expected, the electrode active surface area escalates unnecessarily, resulting in overall increase in reaction with electrolytes and organic solvents. The increased reactions usually manifest as an irreversible loss of anode capacity, gradual oxidation and consumption of electrolyte on the cathode—which causes capacity decline during cycling—and an increased threat to battery safety by gas evolution and exothermic solvent oxidation. In this work we have utilized high aspect ratio, flexible, micronic metal fibers as low active area and high conductivity additives. The metal fibers appear well dispersed within the electrode and to satisfy percolation requirements very efficiently at very low volumetric content compared to conventional carbon-based conductive additives. Results from 18650-type cells indicate significant enhancements in electrode capacity and high rate capability while the irreversible capacity loss is negligible.

  4. When High-Capacity Readers Slow Down and Low-Capacity Readers Speed Up: Working Memory and Locality Effects.

    Science.gov (United States)

    Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan

    2016-01-01

    We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.

  5. When high-capacity readers slow down and low-capacity readers speed up: Working memory and locality effects

    Directory of Open Access Journals (Sweden)

    Bruno eNicenboim

    2016-03-01

    Full Text Available We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German, while taking into account readers’ working memory capacity and controlling for expectation (Levy, 2008 and other factors. We predicted only locality effects, that is, a slow-down produced by increased dependency distance (Gibson, 2000; Lewis & Vasishth, 2005. Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.

  6. Mercury in Pelecanus occidentalis of the Cispata bay, Colombia

    Directory of Open Access Journals (Sweden)

    Saudith Burgos N.

    2014-06-01

    Full Text Available Objective. Assessment the total concentration of mercury in the liver and feathers of Pelecanus occidentalis of the Cispata bay, Colombia. Materials and methods. Mercury concentrations in liver and feather of Pelecanus occidentalis residents in the Cispata bay – Colombia were evaluated by digestion with an acidic mixture of H2SO4–HNO3 and KMnO4 to eliminate organic matter. The concentration of mercury was determined by the Atomic Absorption - Cold Vapor method (CVAAS. Results. Total mercury levels found in this study were higher in feathers (0.31-9.17 mgHg/kg than in the liver (0.63–6.29 mgHg/kg, being higher than those reported in other seabirds studies. Conclusions. The high levels of total mercury in feathers and liver can be explained by the feeding habits of the organisms under study, showing the utility of feathers as a potential non-invasive tool for the monitoring of the ecosystem and thereby preventing the sacrifice of specimens.

  7. Autometallographic tracing of mercury in frog liver

    International Nuclear Information System (INIS)

    Loumbourdis, N.S.; Danscher, G.

    2004-01-01

    The distribution of mercury in the liver of the frog Rana ridibunda with the autometallographic method was investigated. The mercury specific autometallographic (HgS/Se AMG ) technique is a sensitive histochemical approach for tracing mercury in tissues from mercury-exposed organisms. Mercury accumulates in vivo as mercury sulphur/mercury selenium nanocrystals that can be silver-enhanced. Thus, only a fraction of the Hg can be visualized. Six animals were exposed for one day and another group of six animals for 6 days in 1 ppm mercury (as HgCI 2 ) dissolved in fresh water. A third group of six animals, served as controls, were sacrificed the day of arrival at the laboratory. First, mercury appears in the blood plasma and erythrocytes. Next, mercury moves to hepatocytes and in the apical part of the cells, that facing bile canaliculi. In a next step, mercury appears in the endothelial and Kupffer cells. It seems likely that, the mercury of hepatocytes moves through bile canaliculi to the gut, most probably bound to glutathione and/or other similar ligands. Most probably, the endothelial and Kupffer cells comprise the first line of defense against metal toxicity. - Frogs can be good bioindicators of mercury

  8. Characterization and speciation of mercury in mosses and lichens from the high-altitude Tibetan Plateau.

    Science.gov (United States)

    Shao, Jun-Juan; Liu, Cheng-Bin; Zhang, Qing-Hua; Fu, Jian-Jie; Yang, Rui-Qiang; Shi, Jian-Bo; Cai, Yong; Jiang, Gui-Bin

    2017-06-01

    The accumulation and species of mercury (Hg) in mosses and lichens collected from high-altitude Tibetan Plateau were studied. The altitudes of the sampling sites spanned from 1983 to 5147 m, and a total of 130 mosses and 52 lichens were analyzed. The total mercury (THg) contents in mosses and lichens were in the ranges of 13.1-273.0 and 20.2-345.9 ng/g, respectively. The average ratios of methylmercury (MeHg) in THg in mosses and lichens were 2.4 % (0.3-11.1 %) and 2.7 % (0.4-9.6 %), respectively, which were higher than those values reported in other regions. The contents of THg in both mosses and lichens were not correlated with the THg in soils (p > 0.05). The lipid contents displayed a significantly positive correlation with concentrations of MeHg in mosses (r = 0.461, p Tibetan Plateau.

  9. Are liver and renal lesions in East Greenland polar bears (Ursus maritimus associated with high mercury levels?

    Directory of Open Access Journals (Sweden)

    Born Erik W

    2007-04-01

    Full Text Available Abstract Background In the Arctic, polar bears (Ursus maritimus bio-accumulate mercury as they prey on polluted ringed seals (Phoca hispida and bearded seals (Erignathus barbatus. Studies have shown that polar bears from East Greenland are among the most mercury polluted species in the Arctic. It is unknown whether these levels are toxic to liver and kidney tissue. Methods We investigated the histopathological impact from anthropogenic long-range transported mercury on East Greenland polar bear liver (n = 59 and kidney (n = 57 tissues. Results Liver mercury levels ranged from 1.1–35.6 μg/g wet weight and renal levels ranged from 1–50 μg/g wet weight, of which 2 liver values and 9 kidney values were above known toxic threshold level of 30 μg/g wet weight in terrestrial mammals. Evaluated from age-correcting ANCOVA analyses, liver mercury levels were significantly higher in individuals with visible Ito cells (p Conclusion Based on these relationships and the nature of the chronic inflammation we conclude that the lesions were likely a result of recurrent infections and ageing but that long-term exposure to mercury could not be excluded as a co-factor. The information is important as it is likely that tropospheric mercury depletion events will continue to increase the concentrations of this toxic heavy metal in the Sub Arctic and Arctic marine food webs.

  10. Mercury in Arctic snow: Quantifying the kinetics of photochemical oxidation and reduction

    Energy Technology Data Exchange (ETDEWEB)

    Mann, E.A. [Department of Environmental Science, Acadia University, Wolfville, NS (Canada); Environmental Science Programme, Memorial University of Newfoundland, St. John' s, NL (Canada); Mallory, M.L. [Department of Biology, Acadia University, Wolfville, NS (Canada); Ziegler, S.E. [Environmental Science Programme, Memorial University of Newfoundland, St. John' s, NL (Canada); Tordon, R. [Environment Canada, Dartmouth, NS (Canada); O' Driscoll, N.J., E-mail: nelson.odriscoll@acadiau.ca [Department of Environmental Science, Acadia University, Wolfville, NS (Canada)

    2015-03-15

    Controlled experiments were performed with frozen and melted Arctic snow to quantify relationships between mercury photoreaction kinetics, ultra violet (UV) radiation intensity, and snow ion concentrations. Frozen (− 10 °C) and melted (4 °C) snow samples from three Arctic sites were exposed to UV (280–400 nm) radiation (1.26–5.78 W · m{sup −2}), and a parabolic relationship was found between reduction rate constants in frozen and melted snow with increasing UV intensity. Total photoreduced mercury in frozen and melted snow increased linearly with greater UV intensity. Snow with the highest concentrations of chloride and iron had larger photoreduction and photooxidation rate constants, while also having the lowest Hg(0) production. Our results indicate that the amount of mercury photoreduction (loss from snow) is the highest at high UV radiation intensities, while the fastest rates of mercury photoreduction occurred at both low and high intensities. This suggests that, assuming all else is equal, earlier Arctic snow melt periods (when UV intensities are less intense) may result in less mercury loss to the atmosphere by photoreduction and flux, since less Hg(0) is photoproduced at lower UV intensities, thereby resulting in potentially greater mercury transport to aquatic systems with snowmelt. - Highlights: • Mercury photochemical kinetics were studied in frozen and melted Arctic snow. • UV-induced photoreduction and photooxidation rate constants were quantified. • Chloride ion, iron, and DOC influence mercury photoreactions in snow. • Frozen and melted snow have different mercury photoreduction characteristics. • Kinetic information provided can be used to model mercury fate in the Arctic.

  11. Mercury in Arctic snow: Quantifying the kinetics of photochemical oxidation and reduction

    International Nuclear Information System (INIS)

    Mann, E.A.; Mallory, M.L.; Ziegler, S.E.; Tordon, R.; O'Driscoll, N.J.

    2015-01-01

    Controlled experiments were performed with frozen and melted Arctic snow to quantify relationships between mercury photoreaction kinetics, ultra violet (UV) radiation intensity, and snow ion concentrations. Frozen (− 10 °C) and melted (4 °C) snow samples from three Arctic sites were exposed to UV (280–400 nm) radiation (1.26–5.78 W · m −2 ), and a parabolic relationship was found between reduction rate constants in frozen and melted snow with increasing UV intensity. Total photoreduced mercury in frozen and melted snow increased linearly with greater UV intensity. Snow with the highest concentrations of chloride and iron had larger photoreduction and photooxidation rate constants, while also having the lowest Hg(0) production. Our results indicate that the amount of mercury photoreduction (loss from snow) is the highest at high UV radiation intensities, while the fastest rates of mercury photoreduction occurred at both low and high intensities. This suggests that, assuming all else is equal, earlier Arctic snow melt periods (when UV intensities are less intense) may result in less mercury loss to the atmosphere by photoreduction and flux, since less Hg(0) is photoproduced at lower UV intensities, thereby resulting in potentially greater mercury transport to aquatic systems with snowmelt. - Highlights: • Mercury photochemical kinetics were studied in frozen and melted Arctic snow. • UV-induced photoreduction and photooxidation rate constants were quantified. • Chloride ion, iron, and DOC influence mercury photoreactions in snow. • Frozen and melted snow have different mercury photoreduction characteristics. • Kinetic information provided can be used to model mercury fate in the Arctic

  12. Dissolved gaseous mercury and mercury flux measurements in Mediterranean coastal waters: A short review

    Directory of Open Access Journals (Sweden)

    Fantozzi L.

    2013-04-01

    Full Text Available There is a general agreement in the scientific community that the marine ecosystem can be a sink and/or source of the mercury that is cycling in the global environment, and current estimates of the global mercury budget for the Mediterranean region are affected by high uncertainty, primarily due to the little progress made so far in evaluating the role of chemical, physical and biological processes in the water system and in the lower atmosphere above the sea water (air-water interface. The lack of knowledge of the magnitude of the air-sea exchange mechanisms is, therefore, one of the main factors affecting the overall uncertainty associated with the assessment of net fluxes of Hg between the atmospheric and marine environments in the Mediterranean region. Results obtained during the last 15 years in the Mediterranean basin indicate the quantitative importance of such emission in the biogeochemical cycle of this element, highlighting the need for thorough investigations on the mechanisms of production and volatilization of dissolved gaseous mercury in waters.

  13. Method and apparatus for sampling atmospheric mercury

    Science.gov (United States)

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  14. Integrity Monitoring of Mercury Discharge Lamps

    Science.gov (United States)

    Tjoelker, Robert L.

    2010-01-01

    Mercury discharge lamps are critical in many trapped ion frequency standard applications. An integrity monitoring system can be implemented using end-of-life signatures observed in operational mercury discharge lamps, making it possible to forecast imminent failure and to take action to mitigate the consequences (such as switching to a redundant system). Mercury lamps are used as a source of 194-nm ultraviolet radiation for optical pumping and state selection of mercury trapped ion frequency standards. Lamps are typically fabricated using 202Hg distilled into high-purity quartz, or other 194-nm transmitting material (e.g., sapphire). A buffer gas is also placed into the bulb, typically a noble gas such as argon, neon, or krypton. The bulbs are driven by strong RF fields oscillating at .200 MHz. The lamp output may age over time by two internal mechanisms: (1) the darkening of the bulb that attenuates light transmission and (2) the loss of mercury due to migration or chemical interactions with the bulb surface. During fabrication, excess mercury is placed into a bulb, so that the loss rate is compensated with new mercury emanating from a cool tip or adjacent reservoir. The light output is nearly constant or varies slightly at a constant rate for many months/years until the mercury source is depleted. At this point, the vapor pressure abruptly falls and the total light output and atomic clock SNR (signal-to-noise ratio) decrease. After several days to weeks, the light levels decrease to a point where the atomic clock SNR is no longer sufficient to stay in lock, or the lamp self-extinguishes. This signature has been observed in four separate end-of-life lamp failures while operating in the Deep Space Network (DSN). A simple integrator circuit can observe and document steady-state lamp behavior. When the light levels drop over a predetermined time interval by a specified amount (e.g., 20 percent), an alarm is set. For critical operational applications, such as the DSN

  15. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic.

    Science.gov (United States)

    Meagher, Richard B; Heaton, Andrew C P

    2005-12-01

    xylem up to leaves, and efficient xylem unloading aboveground. These systems can be enhanced for the movement of arsenic and mercury. (6) Aboveground control over the electrochemical state and chemical speciation of elemental pollutants will maximize their storage in leaves, stems, and vascular tissues. Our research suggests ionic Hg(II) and arsenite will be the best chemical species to trap aboveground. (7) Chemical sinks can increase the storage capacity for essential nutrients like iron, zinc, copper, sulfate, and phosphate. Organic acids and thiol-rich chelators are among the important chemical sinks that could trap maximal levels of mercury and arsenic aboveground. (8) Physical sinks such as subcellular vacuoles, epidermal trichome cells, and dead vascular elements have shown the evolutionary capacity to store large quantities of a few toxic pollutants aboveground in various native hyperaccumulators. Specific plant transporters may already recognize gluthione conjugates of Hg(II) or arsenite and pump them into vacuole.

  16. Methods for dispensing mercury into devices

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1987-04-28

    A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

  17. Mercury in Some Lakes of Gold Mining Area of the Southern Ural

    Directory of Open Access Journals (Sweden)

    Tatsy Y. G.

    2013-04-01

    Full Text Available The mercury content in bottom sediments of Kalkan Lake, of the Uchala district, the Southern Ural. It was assumed that high concentrations of mercury in fish due to pollution of bottom sediments as a result of amalgamation at developing of gold placers. Detailed study of distribution of different elements in sediments show close association Hg with the chalcophylic elements, whose anomalies do not have technogenic nature. Association of mercury with the elements-companions of gold placers is evidence of basic contribution of natural mercury to its anomalous accumulation in sediments and fish. This is result of steady long-term natural mercury pollution.

  18. Histochemical demonstration of two mercury pools in trout tissues: mercury in kidney and liver after mercuric chloride exposure

    DEFF Research Database (Denmark)

    Baatrup, E; Nielsen, M G; Danscher, G

    1987-01-01

    Juvenile rainbow trout (Salmo gairdneri) were exposed to 100 ppb mercury (as HgCl2) in the water for 14 days. Concentrations of mercury in water and fish organs were monitored using radiolabeled mercury. Tissues from kidney and liver were fixed, and sections were developed by autometallography......, a method whereby accumulations of mercury sulfides and/or mercury selenides are silver amplified. In the kidney, mercury was found within lysosomes and extracellularly in the basal lamina of proximal tubules. In the liver, mercury was found within lysosomes of the hepatocytes. Additional groups of mercury......-exposed trout were subjected to selenium (as Na2SeO3), administered intraperitoneally 2 hr before fixation. Following this treatment, additional mercury could be visualized in the kidney circulatory system, including glomeruli, and in the nucleus and endoplasmic reticulum of liver cells. It is suggested...

  19. The effect of mercury deposition to ecosystem around coal-power plants in Tan-An peninsular, S. Korea

    Science.gov (United States)

    Kim, Y.; Lee, J.; Song, K.; Shin, S.; Han, J.; Hong, E.; Jung, G.

    2009-12-01

    According to UNEP’s Report in 2008, Korea is one of the largest mercury emitting country with emission amount of 32 tones and the contribution of stationary coal combustion is estimated around 59%, as one of major mercury emission sources. There are growing needs of ecosystem mercury monitoring to evaluate the effectiveness on mercury emission controls by regulations. Thus, the aim of this study was to identify the useful monitoring indicators by comparing mercury levels of various environmental matrices in different ecosystems. Tae-an coal power plant, located on the west coastal of Korea is selected for study sites since it is one of the largest coal power plant in Korea with 4000 MW capacities. We chose 2 reservoirs near to Tae-an coal power plant and 2 others in An-myeon and Baeg-ryeong island for control study. Total gaseous mercury of ambient air was 3.6, 4.5 and 1.2 ng/m3 for Tae-an, An-myeon and Baeg-ryeong sites, respectively. From these results, we investigated and compared total mercury and methylmercury concentrations in surface water, soil, sediment, leaves and freshwater fish between reservoirs, which were known for the indicators of mercury atmospheric deposition. Estimates for the potential rates of methylation and activities of sulfur reducing bacteria were also made by injection radioactive isotopes of 203Hg and 35S. Potential methylation rate and acid volatile sulfide formation potential were dramatically changed by depth and maximum values were found in the top sediment section.

  20. Ameliorative effect of ascorbic acid on mercury chloride‑induced ...

    African Journals Online (AJOL)

    Introduction: Mercury is a highly toxic metal that exerts its adverse effects on the health of humans and animals through air, soil, water and food. Aim: The present study was aimed at the evaluation of the effects of ascorbic acid on mercury chloride-induced changes on the histomorphology of the spleen of adult Wistar Rats.

  1. Mercury uptake in vivo by normal and acatalasemic mice exposed to metallic mercury vapor (203Hg degrees) and injected with metallic mercury or mercuric chloride (203HgCl2)

    International Nuclear Information System (INIS)

    Ogata, M.; Kenmotsu, K.; Hirota, N.; Meguro, T.; Aikoh, H.

    1985-01-01

    Levels of mercury in the brain and liver of acatalasemic mice immediately following exposure to metallic mercury vapor or injection of metallic mercury were higher than those found in normal mice. Acatalasemic mice had decreased levels of mercury in the blood and kidneys when the levels were compared with those of normal mice, which indicated that catalase plays a role in oxidizing and taking up mercury. Thus, the brain/blood or liver/blood ratio of mercury concentration in acatalasemic mice was significantly higher than that of normal mice. These results suggest that metallic mercury in the blood easily passed through the blood-brain or blood-liver barrier. The levels of mercury distribution to the kidneys of normal and acatalasemic mice, 1 hr after injection of mercuric chloride solution, were higher than that of normal and acatalasemic mice, respectively, 1 hr after injection of metallic mercury

  2. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  3. Mercury concentration on Enhalus acoroides and Thalassia hemprichii at Seribu Islands

    Science.gov (United States)

    Suratno; Irawan, Andri

    2018-02-01

    Mercury is a toxic heavy metal element that can damage embryo development. Although this element is highly toxic, some human activities such as mining and industries are still using it. The uncontrolled usage of this element leads to pollution problem in the environment, which includes the seagrass ecosystem in the coastal area of Seribu Islands. For that, to gather more information about mercury pollution in the seagrass beds of these islands, the concentration of mercury (Hg) was measured in sediment, rhizomes, roots and leaves of two species of seagrass (Enhalus acoroides and Thalassia hemprichii) from Lancang Island, Pari Island and Panggang Island at Seribu Islands, Indonesia in April-May 2017. The highest concentration of mercury was found in sediment on Lancang Island. The concentration of mercury was significantly higher on leaves compare to on roots or rhizomes in E. acoroides on Lancang Island and Panggang Island. T. hemprichii accumulate mercury higher than E. acoroides on Lancang Island. Overall, mercury accumulation on both species ranges at 7.12 - 87.41 ug/kg dw and this shows that they have the potential as bio-indicator of mercury bio accumulation.

  4. Method and apparatus for monitoring mercury emissions

    Science.gov (United States)

    Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  5. Treatability study for removal of leachable mercury in crushed fluorescent lamps

    International Nuclear Information System (INIS)

    Bostick, W.D.; Beck, D.E.; Bowser, K.T.

    1996-02-01

    Nonserviceable fluorescent lamps removed from radiological control areas at the Oak Ridge Department of Energy facilities have been crushed and are currently managed as mixed waste (hazardous and radiologically contaminated). We present proposed treatment flowsheets and supporting treatability study data for conditioning this solid waste residue so that it can qualify for disposal in a sanitary landfill. Mercury in spent fluorescent lamps occurs primarily as condensate on high-surface-area phosphor material. It can be solubilized with excess oxidants (e.g., hypochlorite solution) and stabilized by complexation with halide ions. Soluble mercury in dechlorinated saline solution is effectively removed by cementation with zero-valent iron in the form of steel wool. In packed column dynamic flow testing, soluble mercury was reduced to mercury metal and insoluble calomel, loading > 1.2 g of mercury per grain of steel wool before an appreciable breakthrough of soluble mercury in the effluent

  6. Treatability study for removal of leachable mercury in crushed fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Beck, D.E.; Bowser, K.T. [and others

    1996-02-01

    Nonserviceable fluorescent lamps removed from radiological control areas at the Oak Ridge Department of Energy facilities have been crushed and are currently managed as mixed waste (hazardous and radiologically contaminated). We present proposed treatment flowsheets and supporting treatability study data for conditioning this solid waste residue so that it can qualify for disposal in a sanitary landfill. Mercury in spent fluorescent lamps occurs primarily as condensate on high-surface-area phosphor material. It can be solubilized with excess oxidants (e.g., hypochlorite solution) and stabilized by complexation with halide ions. Soluble mercury in dechlorinated saline solution is effectively removed by cementation with zero-valent iron in the form of steel wool. In packed column dynamic flow testing, soluble mercury was reduced to mercury metal and insoluble calomel, loading > 1.2 g of mercury per grain of steel wool before an appreciable breakthrough of soluble mercury in the effluent.

  7. Amended Silicated for Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where

  8. Return to Mercury: a global perspective on MESSENGER's first Mercury flyby.

    Science.gov (United States)

    Solomon, Sean C; McNutt, Ralph L; Watters, Thomas R; Lawrence, David J; Feldman, William C; Head, James W; Krimigis, Stamatios M; Murchie, Scott L; Phillips, Roger J; Slavin, James A; Zuber, Maria T

    2008-07-04

    In January 2008, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft became the first probe to fly past the planet Mercury in 33 years. The encounter revealed that Mercury is a dynamic system; its liquid iron-rich outer core is coupled through a dominantly dipolar magnetic field to the surface, exosphere, and magnetosphere, all of which interact with the solar wind. MESSENGER images confirm that lobate scarps are the dominant tectonic landform and record global contraction associated with cooling of the planet. The history of contraction can be related to the history of volcanism and cratering, and the total contractional strain is at least one-third greater than inferred from Mariner 10 images. On the basis of measurements of thermal neutrons made during the flyby, the average abundance of iron in Mercury's surface material is less than 6% by weight.

  9. Avian mercury exposure and toxicological risk across western North America: A synthesis

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark; Hartman, Christopher; Peterson, Sarah; Evers, David C.; Jackson, Allyson K.; Elliott, John E.; Vander Pol, Stacy S.; Bryan, Colleen E.

    2016-01-01

    Methylmercury contamination of the environment is an important issue globally, and birds are useful bioindicators for mercury monitoring programs. The available data on mercury contamination of birds in western North America were synthesized. Original data from multiple databases were obtained and a literature review was conducted to obtain additional mercury concentrations. In total, 29219 original bird mercury concentrations from 225 species were compiled, and an additional 1712 mean mercury concentrations, representing 19998 individuals and 176 species, from 200 publications were obtained. To make mercury data comparable across bird tissues, published equations of tissue mercury correlations were used to convert all mercury concentrations into blood-equivalent mercury concentrations. Blood-equivalent mercury concentrations differed among species, foraging guilds, habitat types, locations, and ecoregions. Piscivores and carnivores exhibited the greatest mercury concentrations, whereas herbivores and granivores exhibited the lowest mercury concentrations. Bird mercury concentrations were greatest in ocean and salt marsh habitats and lowest in terrestrial habitats. Bird mercury concentrations were above toxicity benchmarks in many areas throughout western North America, and multiple hotspots were identified. Additionally, published toxicity benchmarks established in multiple tissues were summarized and translated into a common blood-equivalent mercury concentration. Overall, 66% of birds sampled in western North American exceeded a blood-equivalent mercury concentration of 0.2 μg/g wet weight (ww; above background levels), which is the lowest-observed effect level, 28% exceeded 1.0 μg/g ww (moderate risk), 8% exceeded 3.0 μg/g ww (high risk), and 4% exceeded 4.0 μg/g ww (severe risk). Mercury monitoring programs should sample bird tissues, such as adult blood and eggs, that are most-easily translated into tissues with well-developed toxicity benchmarks and that

  10. Maternal Steller sea lion diets elevate fetal mercury concentrations in an area of population decline

    Energy Technology Data Exchange (ETDEWEB)

    Rea, Lorrie D., E-mail: lorrie.rea@alaska.gov [Division of Wildlife Conservation, Alaska Department of Fish and Game, Fairbanks, AK 99701 (United States); Castellini, J. Margaret, E-mail: maggie.c@alaska.edu [Wildlife Toxicology Laboratory, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Correa, Lucero, E-mail: lucero.correa@alaska.gov [Division of Wildlife Conservation, Alaska Department of Fish and Game, Fairbanks, AK 99701 (United States); Wildlife Toxicology Laboratory, College of Natural Sciences and Mathematics, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Fadely, Brian S., E-mail: brian.fadely@noaa.gov [National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98115 (United States); O' Hara, Todd M., E-mail: tmohara@alaska.edu [Wildlife Toxicology Laboratory, College of Natural Sciences and Mathematics, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States)

    2013-06-01

    Total mercury concentrations ([THg]) measured in western Aleutian Island Steller sea lion pup hair were the highest maximum [THg] documented in this endangered species to date. Some pups exceeded concentrations at which other fish-eating mammals can exhibit adverse neurological and reproductive effects (21% and 15% pups above 20 and 30 μg/g in hair, respectively). Of particular concern is fetal exposure to mercury during a particularly vulnerable stage of neurological development in late gestation. Hair and blood [THg] were highly correlated and 20% of pups sampled in the western Aleutian Islands of Alaska exceeded mammalian risk thresholds established for each of these tissues. Higher nitrogen isotope ratios suggested that pups accumulated the highest [THg] when their dams fed on higher trophic level prey during late gestation. - Highlights: • High total mercury concentrations in western Aleutian Island Steller sea lions • Some pups exceeded thresholds for adverse neurological and reproductive effects. • Fetal exposure to mercury during a vulnerable stage of neurological development • Mercury concentrations in hair were highly correlated with circulating blood levels. • High mercury levels in pups related to dams feeding on high trophic level prey.

  11. Maternal Steller sea lion diets elevate fetal mercury concentrations in an area of population decline

    International Nuclear Information System (INIS)

    Rea, Lorrie D.; Castellini, J. Margaret; Correa, Lucero; Fadely, Brian S.; O'Hara, Todd M.

    2013-01-01

    Total mercury concentrations ([THg]) measured in western Aleutian Island Steller sea lion pup hair were the highest maximum [THg] documented in this endangered species to date. Some pups exceeded concentrations at which other fish-eating mammals can exhibit adverse neurological and reproductive effects (21% and 15% pups above 20 and 30 μg/g in hair, respectively). Of particular concern is fetal exposure to mercury during a particularly vulnerable stage of neurological development in late gestation. Hair and blood [THg] were highly correlated and 20% of pups sampled in the western Aleutian Islands of Alaska exceeded mammalian risk thresholds established for each of these tissues. Higher nitrogen isotope ratios suggested that pups accumulated the highest [THg] when their dams fed on higher trophic level prey during late gestation. - Highlights: • High total mercury concentrations in western Aleutian Island Steller sea lions • Some pups exceeded thresholds for adverse neurological and reproductive effects. • Fetal exposure to mercury during a vulnerable stage of neurological development • Mercury concentrations in hair were highly correlated with circulating blood levels. • High mercury levels in pups related to dams feeding on high trophic level prey

  12. Mercury: Aspects of its ecology and environmental toxicity. [physiological effects of mercury compound contamination of environment

    Science.gov (United States)

    Siegel, S. M.

    1973-01-01

    A study was conducted to determine the effects of mercury pollution on the environment. The possible sources of mercury contamination in sea water are identified. The effects of mercury on food sources, as represented by swordfish, are analyzed. The physiological effects of varying concentrations of mercury are reported. Emphasis is placed on the situation existing in the Hawaiian Islands.

  13. Axial mercury segregation in direct current operated low-pressure argon-mercury gas discharges: Part I. Experimental

    International Nuclear Information System (INIS)

    Gielen, John W A M; Groot, Simon de; Mullen, Joost J A M van der

    2004-01-01

    Due to cataphoresis, axial segregation of mercury will occur when the gas discharge of a fluorescent lamp is operated by means of a direct current. A consequence of this is a non-uniform axial luminance distribution along the lamp. To determine the degree of axial mercury segregation experimentally, axial luminance distributions have been measured which are converted into axial mercury vapour pressure distributions by an appropriate calibration method. The mercury segregation has been investigated for variations in lamp tube radius (3.6-4.8 mm), argon buffer gas pressure (200-600 Pa) and lamp current (100-250 mA) at mercury vapour pressures set at the anode in the range from 0.2 to 9.0 Pa. From the experiments it has been concluded that the mercury vapour pressure gradient at any axial position for a certain lamp tube diameter, argon pressure and lamp current depends on the local mercury vapour pressure. This observation is in contrast to assumptions made in earlier modelling publications in which one mercury vapour pressure gradient is used for all axial positions. By applying a full factorial design, an empirical relation of the mercury segregation is found for any set of parameters inside the investigated parameter ranges

  14. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    Science.gov (United States)

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more

  15. Mercury Sorption onto Malt Spent Rootlets

    Science.gov (United States)

    Manariotis, I. D.; Anagnostopoulos, V.; Karapanagioti, H. K.; Chrysikopoulos, C.

    2011-12-01

    Mercury is a metal of particular concern due to its toxicity even at relatively low concentrations. The maximum permissible level for mercury in drinking water set by the European Union is 0.001 mg/L. Mercury is released into the environment via four principal pathways: (1) natural processes; i.e. a volcanic eruption, (2) incidental to some other activity; i.e. coal burning power plants, (3) accidentally during the manufacture, breakage or disposal of products that have mercury put into them deliberately, and (4) direct use in industrial settings. The present study focuses on the removal of mercury (II) from aqueous solutions via sorption onto Malt Spent Rootlets (MSR). Batch experiments were conducted employing MSR with size ranging from 0.18 to 1 mm. The effects of pH, mercury concentration, contact time, and solid to liquid ratio on mercury sorption onto MSR were investigated. The highest mercury removal from the aqueous phase, of 41%, was observed at pH of 5.

  16. Mercury in sediment, water, and fish in a managed tropical wetland-lake ecosystem.

    Science.gov (United States)

    Malczyk, Evan A; Branfireun, Brian A

    2015-08-15

    Mercury pollution has not been well documented in the inland lakes or fishes of Mexico, despite the importance of freshwater fish as a source of protein in local diets. Total mercury and methylmercury in waters, sediments, and the commercial fish catch were investigated in Lake Zapotlán, Mexico. Concentrations of total and methylmercury were very high in runoff and wastewater inputs, but very low in sediments and surface waters of the open water area of the lake. Concentrations of total mercury in tilapia and carp were very low, consistent with the low concentrations in lake water and sediments. Particle settling, sorption, the biogeochemical environment, and/or bloom dilution are all plausible explanations for the significant reductions in both total mercury and methylmercury. Despite very high loading of mercury, this shallow tropical lake was not a mercury-impaired ecosystem, and these findings may translate across other shallow, alkaline tropical lakes. Importantly, the ecosystem services that seemed to be provided by peripheral wetlands in reducing mercury inputs highlight the potential for wetland conservation or restoration in Mexico. Copyright © 2015. Published by Elsevier B.V.

  17. ICP OES and CV AAS in determination of mercury in an unusual fatal case of long-term exposure to elemental mercury in a teenager.

    Science.gov (United States)

    Lech, Teresa

    2014-04-01

    In this work, a case of deliberate self-poisoning is presented. A 14-year-old girl suddenly died during one of the several hospitalizations. Abdominal computer tomography showed a large number of metallic particles in the large intestine. Analysis of blood and internal organs for mercury and other toxic metals carried out by inductively coupled plasma optical emission spectrometry (ICP OES) revealed high concentrations of mercury in kidneys and liver (64,200 and 2470ng/g, respectively), less in stomach (90ng/g), and none in blood. Using cold vapor-atomic absorption spectrometry (CV AAS), high levels of mercury were confirmed in all examined materials, including blood (87ng/g), and additionally in hair. The results of analysis obtained by two techniques revealed that the exposure to mercury was considerable (some time later, it was stated that the mercury originated from thermometers that had been broken over the course of about 1 year, because of Münchausen syndrome). CV AAS is a more sensitive technique, particularly for blood samples (negative results using ICP OES), and tissue samples - with LOQ: 0.63ng/g of Hg (CV AAS) vis-à-vis 70ng/g of Hg (ICP OES). However, ICP OES may be used as a screening technique for autopsy material in acute poisoning by a heavy metal, even one as volatile as mercury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Mercury levels in defined population groups

    International Nuclear Information System (INIS)

    Ingrao, G.; Belloni, P.; Santaroni, G.P.

    1995-01-01

    Hair samples from subjects living in the areas of Bagnara Calabra, Fiumicino and Ravenna, having a fish consumption above the national average, have been analyzed. A new location close to the Lagoon of Grado and Marano, located near the border with Slovenia, has been Selected because of the high natural levels of mercury in this lagoon due to the discharge of the Isonzo river, a tributary of which crosses the mercury rich area of Idria in Slovenia. During the last year, a group of pregnant women were selected in Rome, Bagnara Calabra, Ravenna and the area of the Lagoon of Grado and Marano. Samples of hair, pubic hair and placenta were collected from each of the subjects. A sample of the newborn hair was also collected whenever possible. The preliminary results indicate higher mercury levels in the subjects living in the area around the Lagoon of Grado and Marano. (author)

  19. Potassium permanganate for mercury vapor environmental control

    Science.gov (United States)

    Kuivinen, D. E.

    1972-01-01

    Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.

  20. Mercury levels in defined Italian population groups

    International Nuclear Information System (INIS)

    Ingrao, G.; Belloni, P.

    1992-01-01

    The consumption of fish and seafood usually is the main source of intake of methylmercury for members of the general population. Therefore subjects having a diet rich in these food items present a high risk of exceeding the tolerable recommended weekly intake of mercury set by FAO and WHO. The average consumption of fish at a national level is rather small in Italy, 12.5 kg per year, consequently the risk of exposure to elevated levels of mercury through the diet for members of the Italian general population is rather negligible. However, fish is one of the main components of the diet of some population groups. These groups are usually found in coastal towns close fishing ports and include subjects working as fishermen, fish dealers, restaurant workers and their families. The purpose of this research programme, carried our with the collaboration of the National Institute of Nutrition is to determine the levels of mercury and methylmercury in hair samples of subjects having a higher than average fish consumption and to evaluate the effects of elevated intakes of mercury. 1 ref., 13 figs

  1. Mercury Exposure: Protein Biomarkers of Mercury Exposure in Jaraqui Fish from the Amazon Region.

    Science.gov (United States)

    Vieira, José Cavalcante Souza; Braga, Camila Pereira; de Oliveira, Grasieli; Padilha, Cilene do Carmo Federici; de Moraes, Paula Martin; Zara, Luiz Fabricio; Leite, Aline de Lima; Buzalaf, Marília Afonso Rabelo; Padilha, Pedro de Magalhães

    2018-05-01

    This study presents data on the extraction and characterization of proteins associated with mercury in the muscle and liver tissues of jaraqui (Semaprochilodus spp.) from the Madeira River in the Brazilian Amazon. Protein fractionation was carried out by two-dimensional electrophoresis (2D-PAGE). Mercury determination in tissues, pellets, and protein spots was performed by graphite furnace atomic absorption spectrometry (GFAAS). Proteins in the spots that showed mercury were characterized by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The highest mercury concentrations were found in liver tissues and pellets (426 ± 6 and 277 ± 4 μg kg -1 ), followed by muscle tissues and pellets (132 ± 4 and 86 ± 1 μg kg -1 , respectively). Mercury quantification in the protein spots allowed us to propose stoichiometric ratios in the range of 1-4 mercury atoms per molecule of protein in the protein spots. The proteins characterized in the analysis by ESI-MS/MS were keratin, type II cytoskeletal 8, parvalbumin beta, parvalbumin-2, ubiquitin-40S ribosomal S27a, 39S ribosomal protein L36 mitochondrial, hemoglobin subunit beta, and hemoglobin subunit beta-A/B. The results suggest that proteins such as ubiquitin-40S ribosomal protein S27a, which have specific domains, possibly zinc finger, can be used as biomarkers of mercury, whereas mercury and zinc present characteristics of soft acids.

  2. Adsorption of elemental mercury vapors from synthetic exhaust combustion gas onto HGR carbon.

    Science.gov (United States)

    Musmarra, D; Karatza, D; Lancia, A; Prisciandaro, M; Mazziotti di Celso, G

    2016-07-01

    An activated carbon commercially available named HGR, produced by Calgon-Carbon Group, was used to adsorbe metallic mercury. The work is part of a wider research activity by the same group focused on the removal of metallic and divalent mercury from combustion flue gas. With respect to previously published papers, this one is aimed at studying in depth thermodynamic equilibria of metallic mercury adsorption onto a commercial activated carbon. The innovativeness lies in the wider operative conditions explored (temperature and mercury concentrations) and in the evaluation of kinetic and thermodynamic data for a commercially available adsorbing material. In detail, experimental runs were carried out on a laboratory-scale plant, in which Hg° vapors were supplied in a nitrogen gas stream at different temperature and mercury concentration. The gas phase was flowed through a fixed bed of adsorbent material. Adsorbate loading curves for different Hg° concentrations together with adsorption isotherms were achieved as a function of temperature (120, 150, 200°C) and Hg° concentrations (1.0-7.0 mg/m(3)). Experimental runs demonstrated satisfying results of the adsorption process, while Langmuir parameters were evaluated with gas-solid equilibrium data. Especially, they confirmed that adsorption capacity is a favored process in case of lower temperature and they showed that the adsorption heat was -20 kJ/mol. Furthermore, a numerical integration of differential equations that model the adsorption process was proposed. Scanning electron microscopy (SEM) investigation was an useful tool to investigate about fresh and saturated carbon areas. The comparison between them allowed identification of surface sites where mercury is adsorbed; these spots correspond to carbon areas where sulfur concentration is greater. Mercury compounds can cause severe harm to human health and to the ecosystem. There are a lot of sources that emit mercury species to the atmosphere; the main ones are

  3. EVALUATING REGIONAL PREDICTIVE CAPACITY OF A PROCESS-BASED MERCURY EXPOSURE MODEL, REGIONAL-MERCURY CYCLING MODEL (R-MCM), APPLIED TO 91 VERMONT AND NEW HAMPSHIRE LAKES AND PONDS, USA

    Science.gov (United States)

    Regulatory agencies must develop fish consumption advisories for many lakes and rivers with limited resources. Process-based mathematical models are potentially valuable tools for developing regional fish advisories. The Regional Mercury Cycling model (R-MCM) was specifically d...

  4. Method for the removal and recovery of mercury

    Science.gov (United States)

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  5. Measurement of cesium and mercury emissions from the vitrification of simulated high level radioactive waste

    International Nuclear Information System (INIS)

    Zamecnik, J.R.

    1992-01-01

    In the Defense Waste Processing Facility at the Savannah River Site, it is desired to measure non-radioactive cesium in the offgas system from the glass melter. From a pilot scale melter system, offgas particulate samples were taken on filter paper media and analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The ICP-MS method proved to be sufficiently sensitive to measure cesium quantities as low as 0.135 μg, with the sensitivity being limited by the background cesium present in the filter paper. This sensitivity allowed determination of cesium decontamination factors for four of the five major components of the offgas system. In addition, total particulate measurements were also made. Measurements of mercury decontamination factors were made on the same equipment; the results indicate that most of the mercury in the offgas system probably exists as elemental mercury and HgCl 2 , with some HgO and Hg 2 Cl 2 . The decontamination factors determined for cesium, total particulate, and mercury all compared favorably with the design values

  6. Mercury removal from coal combustion flue gas by fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Junyan [Chinese Academy of Sciences, Beijing (China). Research Center for Process Pollution Control; Chinese Academy of Sciences, Beijing (China). Graduate Univ.; Xu, Wenqing; Zhu, Tingyu; Jing, Pengfei [Chinese Academy of Sciences, Beijing (China). Research Center for Process Pollution Control

    2013-07-01

    The effect of physicochemical properties on the mercury adsorption performance of three fly ash samples has been investigated. The samples were tested for mercury adsorption using a fixed-bed with a simulated gas. X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy and other methods were used to characterize the samples. The results indicate that mercury adsorption on fly ash is mainly physisorption and chemisorption. Uncompleted burned carbon is an important factor for the improvement of mercury removal efficiency, especially, the C-M bond may improve the oxidation of mercury, which formed via the reaction of C and Ti, Si and other elements. The higher specific surface areas and smaller pore diameter are all beneficial for the high mercury removal efficiency. The presence of O{sub 2} plays a positive role on Hg adsorption of modified fly ash, while SO{sub 2} has double role of inhibition because of competitive adsorption and promotion to chemisorption. In addition, sample modified with FeCl{sub 3} has a great performance in Hg removal.

  7. Mercury pollution in Asia: a review of the contaminated sites.

    Science.gov (United States)

    Li, P; Feng, X B; Qiu, G L; Shang, L H; Li, Z G

    2009-09-15

    This article describes the mercury contaminated sites in Asia. Among the various regions, Asia has become the largest contributor of anthropogenic atmospheric mercury (Hg), responsible for over half of the global emission. Based on different emission source categories, the mercury contaminated sites in Asia were divided into various types, such as Hg pollution from Hg mining, gold mining, chemical industry, metal smelting, coal combustion, metropolitan cities, natural resources and agricultural sources. By the review of a large number of studies, serious Hg pollutions to the local environment were found in the area influenced by chemical industry, mercury mining and gold mining. With the probable effects of a unique combination of climatic (e.g. subtropical climate), environmental (e.g. acid rain), economic (e.g. swift growth) and social factors (e.g. high population density), more effort is still needed to understand the biogeochemistry cycle of Hg and associated health effects in Asia. Safer alternatives and cleaner technologies must be developed and effectively implemented to reduce mercury emission; remedial techniques are also required to restore the historical mercury pollution in Asia.

  8. Removal of mercury by foam fractionation using surfactin, a biosurfactant.

    Science.gov (United States)

    Chen, Hau-Ren; Chen, Chien-Cheng; Reddy, A Satyanarayana; Chen, Chien-Yen; Li, Wun Rong; Tseng, Min-Jen; Liu, Hung-Tsan; Pan, Wei; Maity, Jyoti Prakash; Atla, Shashi B

    2011-01-01

    The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ions was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required 10 × CMC. However, the enrichment of mercury ions in the foam was superior with surfactin, the mercury enrichment value corresponding to the highest metal recovery (10.4%) by surfactin being 1.53. Dilute solutions (2-mg L(-1) Hg(2+)) resulted in better separation (36.4%), while concentrated solutions (100 mg L(-1)) enabled only a 2.3% recovery using surfactin. An increase in the digestion time of the metal solution with surfactin yielded better separation as compared with a freshly-prepared solution, and an increase in the airflow rate increased bubble production, resulting in higher metal recovery but low enrichment. Basic solutions yielded higher mercury separation as compared with acidic solutions due to the precipitation of surfactin under acidic conditions.

  9. Removal of Mercury by Foam Fractionation Using Surfactin, a Biosurfactant

    Directory of Open Access Journals (Sweden)

    Shashi B. Atla

    2011-11-01

    Full Text Available The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin and chemical surfactants (SDS and Tween-80 was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ions was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required < 10 × CMC and Tween-80 >10 × CMC. However, the enrichment of mercury ions in the foam was superior with surfactin, the mercury enrichment value corresponding to the highest metal recovery (10.4% by surfactin being 1.53. Dilute solutions (2-mg L−1 Hg2+ resulted in better separation (36.4%, while concentrated solutions (100 mg L−1 enabled only a 2.3% recovery using surfactin. An increase in the digestion time of the metal solution with surfactin yielded better separation as compared with a freshly-prepared solution, and an increase in the airflow rate increased bubble production, resulting in higher metal recovery but low enrichment. Basic solutions yielded higher mercury separation as compared with acidic solutions due to the precipitation of surfactin under acidic conditions.

  10. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing, E-mail: liujing27@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Cheney, Marcos A. [Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853 (United States); Wu Fan; Li Meng [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-02-15

    A systematic theoretical study using density functional theory is performed to provide molecular-level understanding of the effects of chemical functional groups on mercury adsorption on carbonaceous surfaces. The zigzag and armchair edges were used in modeling the carbonaceous surfaces to simulate different adsorption sites. The edge atoms on the upper side of the models are unsaturated to simulate active sites. All calculations (optimizations, energies, and frequencies) were made at B3PW91 density functional theory level, using RCEP60VDZ basis set for mercury and 6-31G(d) pople basis set for other atoms. The results indicate that the embedding of halogen atom can increase the activity of its neighboring site which in turn increases the adsorption capacity of the carbonaceous surface for Hg{sup 0}. The adsorption belongs to chemisorptions, which is in good agreement with the experimental results. For the effects of oxygen functional groups, lactone, carbonyl and semiquinone favor Hg{sup 0} adsorption because they increase the neighboring site's activity for mercury adsorption. On the contrary, phenol and carboxyl functional groups show a physisorption of Hg{sup 0}, and reduce Hg capture. This result can explain the seemingly conflicting experimental results reported in the literature concerning the influence of oxygen functional groups on mercury adsorption on carbonaceous surface.

  11. Groundwater Modeling of Mercury Pollution at a Former Mercury Cell Chlor Alkali Facility in Pavlodar City, Kazakhstan

    Science.gov (United States)

    In northern Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severely contaminated with mercury and mercury compounds as a result of the industrial activity of this ch...

  12. Atmospheric mercury dispersion modelling from two nearest hypothetical point sources

    Energy Technology Data Exchange (ETDEWEB)

    Al Razi, Khandakar Md Habib; Hiroshi, Moritomi; Shinji, Kambara [Environmental and Renewable Energy System (ERES), Graduate School of Engineering, Gifu University, Yanagido, Gifu City, 501-1193 (Japan)

    2012-07-01

    The Japan coastal areas are still environmentally friendly, though there are multiple air emission sources originating as a consequence of several developmental activities such as automobile industries, operation of thermal power plants, and mobile-source pollution. Mercury is known to be a potential air pollutant in the region apart from SOX, NOX, CO and Ozone. Mercury contamination in water bodies and other ecosystems due to deposition of atmospheric mercury is considered a serious environmental concern. Identification of sources contributing to the high atmospheric mercury levels will be useful for formulating pollution control and mitigation strategies in the region. In Japan, mercury and its compounds were categorized as hazardous air pollutants in 1996 and are on the list of 'Substances Requiring Priority Action' published by the Central Environmental Council of Japan. The Air Quality Management Division of the Environmental Bureau, Ministry of the Environment, Japan, selected the current annual mean environmental air quality standard for mercury and its compounds of 0.04 ?g/m3. Long-term exposure to mercury and its compounds can have a carcinogenic effect, inducing eg, Minamata disease. This study evaluates the impact of mercury emissions on air quality in the coastal area of Japan. Average yearly emission of mercury from an elevated point source in this area with background concentration and one-year meteorological data were used to predict the ground level concentration of mercury. To estimate the concentration of mercury and its compounds in air of the local area, two different simulation models have been used. The first is the National Institute of Advanced Science and Technology Atmospheric Dispersion Model for Exposure and Risk Assessment (AIST-ADMER) that estimates regional atmospheric concentration and distribution. The second is the Hybrid Single Particle Lagrangian Integrated trajectory Model (HYSPLIT) that estimates the atmospheric

  13. A rapid neutron activation method for the determination of traces of mercury. The mercury content of biological material of differing geographical and chronological origin

    International Nuclear Information System (INIS)

    Rohde, H.

    1975-08-01

    A rapid method based on activation analysis has been developed for the determination of mercury in biological material. The method employs the delayed gamma rays as prompt gamma rays have been shown to display insufficient sensitivity. The mercury content of 182 fish derived from the waters of the region of South Western Germany has been determined. Relatively high concentrations (> 1 ppm) have been measured in the muscle of Rhine fish. Similar mercury contents have been observed in aged biological material (birds feathers and human hair) and contemporary living organisms. (orig.) [de

  14. Mercury in tunas and blue marlin in the North Pacific Ocean.

    Science.gov (United States)

    Drevnick, Paul E; Brooks, Barbara A

    2017-05-01

    Models and data from the North Pacific Ocean indicate that mercury concentrations in water and biota are increasing in response to (global or hemispheric) anthropogenic mercury releases. In the present study, we provide an updated record of mercury in yellowfin tuna (Thunnus albacares) caught near Hawaii that confirms an earlier conclusion that mercury concentrations in these fish are increasing at a rate similar to that observed in waters shallower than 1000 m. We also compiled and reanalyzed data from bigeye tuna (Thunnus obesus) and blue marlin (Makaira nigricans) caught near Hawaii in the 1970s and 2000s. Increases in mercury concentrations in bigeye tuna are consistent with the trend found in yellowfin tuna, in both timing and magnitude. The data available for blue marlin do not allow for a fair comparison among years, because mercury concentrations differ between sexes for this species, and sex was identified (or reported) in only 3 of 7 studies. Also, mercury concentrations in blue marlin may be insensitive to modest changes in mercury exposure, because this species appears to have the ability to detoxify mercury. The North Pacific Ocean is a region of both relatively high rates of atmospheric mercury deposition and capture fisheries production. Other data sets that allow temporal comparisons in mercury concentrations, such as pacific cod (Gadus macrocephalus) in Alaskan waters and albacore tuna (Thunnus alalunga) off the US Pacific coast, should be explored further, to aid in understanding human health and ecological risks and to develop additional baseline knowledge for assessing changes in a region expected to respond strongly to reductions in anthropogenic mercury emissions. Environ Toxicol Chem 2017;36:1365-1374. © 2017 SETAC. © 2017 SETAC.

  15. Mercury emission from crematories in Japan

    Directory of Open Access Journals (Sweden)

    M. Takaoka

    2010-04-01

    Full Text Available Anthropogenic sources of mercury emissions have a significant impact on global pollution. Therefore, finding uncharacterised sources and assessing the emissions from these sources are important. However, limited data are available worldwide on mercury emissions from crematories. In Japan, 99.9% of dead bodies are cremated, which is the highest percentage in the world, and more than 1600 crematories are in operation. We thus focused on emissions from crematories in Japan. The number of targeted facilities was seven, and we used continuous emission monitoring to measure the mercury concentrations and investigate mercury behaviour. The total mercury concentrations in stack gases were a few μg/Nm3 (normal cubic meters. Considering the time profile of mercury and its species in cremations, the findings confirmed that the mercury in stack gas originated from dental amalgam. The amount of mercury emissions was calculated using the total concentration and gas flow rate. Furthermore, the annual amount of mercury emission from crematories in Japan was estimated by using the total number of corpses. The emission amount was considerably lower than that estimated in the United Kingdom. From statistical analyses on population demographics and measurements, future total emissions from crematories were also predicted. As a result, the amount of mercury emitted by crematories will likely increase by 2.6-fold from 2007 to 2037.

  16. Modeling dynamic exchange of gaseous elemental mercury at polar sunrise.

    Science.gov (United States)

    Dastoor, Ashu P; Davignon, Didier; Theys, Nicolas; Van Roozendael, Michel; Steffen, Alexandra; Ariya, Parisa A

    2008-07-15

    At polar sunrise, gaseous elemental mercury (GEM) undergoes an exceptional dynamic exchange in the air and at the snow surface during which GEM can be rapidly removed from the atmosphere (the so-called atmospheric mercury depletion events (AMDEs)) as well as re-emitted from the snow within a few hours to days in the Polar Regions. Although high concentrations of total mercury in snow following AMDEs is well documented, there is very little data available on the redox transformation processes of mercury in the snow and the fluxes of mercury at the air/snow interface. Therefore, the net gain of mercury in the Polar Regions as a result of AMDEs is still an open question. We developed a new version of the global mercury model, GRAHM, which includes for the first time bidirectional surface exchange of GEM in Polar Regions in spring and summer by developing schemes for mercury halogen oxidation, deposition, and re-emission. Also for the first time, GOME satellite data-derived boundary layer concentrations of BrO have been used in a global mercury model for representation of halogen mercury chemistry. Comparison of model simulated and measured atmospheric concentrations of GEM at Alert, Canada, for 3 years (2002-2004) shows the model's capability in simulating the rapid cycling of mercury during and after AMDEs. Brooks et al. (1) measured mercury deposition, reemission, and net surface gain fluxes of mercury at Barrow, AK, during an intensive measurement campaign for a 2 week period in spring (March 25 to April 7, 2003). They reported 1.7, 1.0 +/- 0.2, and 0.7 +/- 0.2 microg m(-2) deposition, re-emission, and net surface gain, respectively. Using the optimal configuration of the model, we estimated 1.8 microg m(-2) deposition, 1.0 microg m(-2) re-emission, and 0.8 microg m(-2) net surface gain of mercury for the same time period at Barrow. The estimated net annual accumulation of mercury within the Arctic Circle north of 66.5 degrees is approximately 174 t with +/-7 t of

  17. Free-space optical communications with peak and average constraints: High SNR capacity approximation

    KAUST Repository

    Chaaban, Anas

    2015-09-07

    The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel with both average and peak intensity constraints is studied. A new capacity lower bound is derived by using a truncated-Gaussian input distribution. Numerical evaluation shows that this capacity lower bound is nearly tight at high signal-to-noise ratio (SNR), while it is shown analytically that the gap to capacity upper bounds is a small constant at high SNR. In particular, the gap to the high-SNR asymptotic capacity of the channel under either a peak or an average constraint is small. This leads to a simple approximation of the high SNR capacity. Additionally, a new capacity upper bound is derived using sphere-packing arguments. This bound is tight at high SNR for a channel with a dominant peak constraint.

  18. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    Science.gov (United States)

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs. PMID:27504097

  19. Genetic effects of organic mercury compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramel, C

    1967-01-01

    Organic mercury compounds have a c-mitotic effect on plant cells that cause polyploidi. Studies were performed on Allium root cells. These investigations involved methyl mercury dicyandiamide, methyl mercury hydroxide, and phenyl mercury hydroxide. The lowest concentration necessary for a cytologically observable effect was about 0.05 ppM Hg for the methyl compounds. For the phenyl compound, the value was lower. Experiments were performed on Drosophila melanogaster. The question was whether the mercury would reach the gonads. Experimental data with mercury treated larvae indicated a chromosome disjunction. Data indicated a preferential segregation at the meiotic division might be involved. Experiments are being performed on mice inbred (CBA) in order to investigate teratogenic effects and dominant lethality caused by organic mercury compounds. The mutagenic effects of these compounds are studied on Neurospora Drosophila. No conclusive data is now available.

  20. Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya.

    Science.gov (United States)

    Odumo, Benjamin Okang'; Carbonell, Gregoria; Angeyo, Hudson Kalambuka; Patel, Jayanti Purshottam; Torrijos, Manuel; Rodríguez Martín, José Antonio

    2014-11-01

    This work considered the environmental impact of artisanal mining gold activity in the Migori-Transmara area (Kenya). From artisanal gold mining, mercury is released to the environment, thus contributing to degradation of soil and water bodies. High mercury contents have been quantified in soil (140 μg kg(-1)), sediment (430 μg kg(-1)) and tailings (8,900 μg kg(-1)), as expected. The results reveal that the mechanism for transporting mercury to the terrestrial ecosystem is associated with wet and dry depositions. Lichens and mosses, used as bioindicators of pollution, are related to the proximity to mining areas. The further the distance from mining areas, the lower the mercury levels. This study also provides risk maps to evaluate potential negative repercussions. We conclude that the Migori-Transmara region can be considered a strongly polluted area with high mercury contents. The technology used to extract gold throughout amalgamation processes causes a high degree of mercury pollution around this gold mining area. Thus, alternative gold extraction methods should be considered to reduce mercury levels that can be released to the environment.

  1. MERCURY IN MARINE LIFE DATABASE

    Science.gov (United States)

    The purpose of the Mercury in Marine Life Project is to organize information on estuarine and marine species so that EPA can better understand both the extent of monitoring for mercury and level of mercury contamination in the biota of coastal environments. This report follows a ...

  2. Possible interferences of mercury sulfur compounds with ethylated and methylated mercury species using HPLC-ICP-MS

    International Nuclear Information System (INIS)

    Wilken, R.D.; Nitschke, F.; Falter, R.

    2003-01-01

    The HPLC-ICP-MS coupling technique is able to separate and detect methyl, ethyl and inorganic mercury isotopes specifically. An identification of ethyl mercury(+) is not possible when the widely used sodium tetraethylborate derivatisation method in combination with GC-AFS/AAS or ICP-MS techniques is performed because it contains ethyl groups. An unidentified compound with the same retention time as ethyl mercury was found in the HPLC chromatograms of industrial sewage samples and humic-rich soils of microcosm experiments after applying water vapour distillation. We also observed such unidentified peaks in samples of heavily contaminated sites in Eastern Germany, separated by HPLC fractionation only. In the experiments described, different mercury sulfur adducts were synthesised and tested for their retention times in the HPLC-ICP-MS system. It was found that the compound CH 3 -S-Hg + showed the same retention time as the ethyl mercury standard. It is therefore possible that ethyl mercury detected in chromatography by comparison of the retention time could also be due to an adduct of a sulfur compound and a mercury species. CH 3 -S-Hg + should be tested in other chromatographic mercury speciation methods for this effect. This work can also be regarded as a contribution to the discussion of artificially occurring methyl mercury in sediments during sample preparation. (orig.)

  3. Total mercury levels in commercial fish species from Italian fishery and aquaculture.

    Science.gov (United States)

    Di Lena, Gabriella; Casini, Irene; Caproni, Roberto; Fusari, Andrea; Orban, Elena

    2017-06-01

    Total mercury levels were measured in 42 commercial fish species caught off the Central Adriatic and Tyrrhenian coasts of Italy and in 6 aquaculture species. The study on wild fish covered species differing in living habitat and trophic level. The study on farmed fish covered marine and freshwater species from intensive and extensive aquaculture and their feed. Mercury levels were analysed by thermal decomposition-amalgamation-atomic absorption spectrophotometry. Total mercury concentrations in the muscle of wild fish showed a high variability among species (0.025-2.20 mg kg -1 wet weight). The lowest levels were detected in low trophic-level demersal and pelagic-neritic fish and in young individuals of high trophic-level species. Levels exceeding the European Commission limits were found in large-size specimens of high trophic-level pelagic and demersal species. Fish from intensive farming showed low levels of total mercury (0.008-0.251 mg kg -1 ). Fish from extensive rearing showed variable contamination levels, depending on the area of provenience. An estimation of the human intake of mercury associated to the consumption of the studied fish and its comparison with the tolerable weekly intake is provided.

  4. Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters

    International Nuclear Information System (INIS)

    Straka, Elisabeth; Ellinger, Isabella; Balthasar, Christina; Scheinast, Matthias; Schatz, Jasmin; Szattler, Tamara; Bleichert, Sonja; Saleh, Leila; Knöfler, Martin; Zeisler, Harald; Hengstschläger, Markus; Rosner, Margit; Salzer, Hans; Gundacker, Claudia

    2016-01-01

    Highlights: • It is known that MeHg is able to pass the placenta and to affect fetal brain development. • Uptake and efflux transporters were examined in human primary trophoblast cells and BeWo cells. • Involvement in mercury transfer was assessed by measurement of cellular mercury content upon siRNA mediated gene knockdown. • Localization of transporters was determined by immunofluorescence microscopy. • LAT1 and rBAT at the apical membrane of the syncytiotrophoblast (STB) are involved in MeHg uptake. • MRP1 located at basal membrane of STB mediates mercury efflux. - Abstract: Background: The capacity of the human placenta to handle exogenous stressors is poorly understood. The heavy metal mercury is well-known to pass the placenta and to affect brain development. An active transport across the placenta has been assumed. The underlying mechanisms however are virtually unknown. Objectives: Uptake and efflux transporters (17 candidate proteins) assumed to play a key role in placental mercury transfer were examined for expression, localization and function in human primary trophoblast cells and the trophoblast-derived choriocarcinoma cell line BeWo. Methods: To prove involvement of the transporters, we used small interfering RNA (siRNA) and exposed cells to methylmercury (MeHg). Total mercury contents of cells were analyzed by Cold vapor-atomic fluorescence spectrometry (CV-AFS). Localization of the proteins in human term placenta sections was determined via immunofluorescence microscopy. Results: We found the amino acid transporter subunits L-type amino acid transporter (LAT)1 and rBAT (related to b 0,+ type amino acid transporter) as well as the efflux transporter multidrug resistance associated protein (MRP)1 to be involved in mercury kinetics of trophoblast cells (t-test P < 0.05). Conclusion: The amino acid transporters located at the apical side of the syncytiotrophoblast (STB) manage uptake of MeHg. Mercury conjugated to glutathione (GSH) is

  5. Micrometeorological methods for measurements of mercury emissions over contaminated soils

    International Nuclear Information System (INIS)

    Kim, K.H.; Lindberg, S.E.; Hanson, P.J.; Owens, J.; Myers, T.P.

    1993-01-01

    As part of a larger study involving development and application of field and laboratory methods (micrometeorological, dynamic enclosure chamber, and controlled laboratory chamber methods) to measure the air/surface exchange of Hg vapor, we performed a series of preliminary measurements over contaminated soils. From March--April 1993, we used the modified Bowen ratio (MBR) method to measure emission rates of mercury over a floodplain contaminated with mercury near Oak Ridge, TN. The mercury emission rates measured from contaminated EFPC soils using the MBR method during early spring show that (1) in all cases, the contaminated soils acted as a source of mercury to the atmosphere with source strengths ranging from 17 to 160 ng m -2 h -1 ; and (2) the strengths of mercury emissions can be greatly influenced by the combined effects of surface soil temperature, residence time of air masses over the source area, and turbulence conditions. The mercury fluxes measured in a controlled flow chamber indicate that contaminated soils can exhibit up to an order of magnitude higher emission rates of Hg under conditions of elevated soil temperature, soil structure disturbance, and high turbulence. Mercury emissions from contaminated soils exceeded emissions from background soils by one to two orders of magnitude

  6. Effect of environmental exposure to mercury on the functioning of the human body

    Directory of Open Access Journals (Sweden)

    Maciej Cyran

    2013-09-01

    Full Text Available Mercury is classified as a heavy metal and thus is commonly referred to as a death metal due to its high toxicity. In the environment it occurs in metallic form or in combination with other compounds. Amidst the sources of exposure to mercury, the most important environmental sources are dental amalgam and mercury vapor from the production of chlorine which is the most important source of occupational exposure. Mercury is easily soluble in fats, so it penetrates through biological membranes. Both - acute and chronic mercury poisoning causes characteristic clinical symptoms. There are several connections between exposure to this metal and toxic effects on the nervous system, cardiovascular system, endocrine system and kidneys. Thus mercury damages the structure of many organs and impairs their function

  7. Carbon Dioxide Sealing Capacity: Textural or Compositional Controls?

    Energy Technology Data Exchange (ETDEWEB)

    Cranganu, Constantin; Soleymani, Hamidreza; Sadiqua, Soleymani; Watson, Kieva

    2013-11-30

    . Mercury Injection Porosimetry (MIP), Scanning Electron Microsco-py SEM, and Sedigraph measurements are used to assess the pore-throat-size distribu-tion, sorting, texture, and grain size of the samples. Also, displacement pressure at 10% mercury saturation (Pd) and graphically derived threshold pressure (Pc) were deter-mined by MIP technique. SEM images were used for qualitative study of the minerals and pores texture of the core samples. Moreover, EDS (Energy Dispersive X-Ray Spec-trometer), BET specific surface area, and Total Organic Carbon (TOC) measurements were performed to study various parameters and their possible effects on sealing capaci-ty of the samples. We found that shales have the relatively higher average sealing threshold pressure (Pc) than carbonate and sandstone samples. Based on these observations, shale formations could be considered as a promising caprock in terms of retarding scCO{sub 2} flow and leak-age into above formations. We hypothesized that certain characteristics of shales (e.g., 3 fine pore size, pore size distribution, high specific surface area, and strong physical chemical interaction between wetting phase and mineral surface) make them an effi-cient caprock for sealing super critical CO{sub 2}. We found that the displacement pressure at 10% mercury saturation could not be the ultimate representative of the sealing capacity of the rock sample. On the other hand, we believe that graphical method, introduced by Cranganu (2004) is a better indicator of the true sealing capacity. Based on statistical analysis of our samples from Oklahoma Panhandle we assessed the effects of each group of properties (textural and compositional) on maximum supercriti-cal CO{sub 2} height that can be hold by the caprock. We conclude that there is a relatively strong positive relationship (+.40 to +.69) between supercritical CO{sub 2} column height based on Pc and hard/ soft mineral content index (ratio of minerals with Mohs hardness more than 5 over minerals

  8. Mercury Information Clearinghouse

    Energy Technology Data Exchange (ETDEWEB)

    Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

    2006-03-31

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through

  9. Off-line tests on pitting damage in mercury target

    CERN Document Server

    Futakawa, M; Ishikura, S; Kogawa, H; Tsai, C C

    2003-01-01

    A liquid-mercury target system for the MW-scale target is being developed in the world. The moment the proton beams bombard the target, stress waves will be imposed on the beam window and pressure waves will be generated in the mercury by the thermally shocked heat deposition. Provided that the negative pressure generates through its propagation in the mercury target and causes cavitation in the mercury, there is the possibility for the cavitation bubbles collapse to form pits on the interface between the mercury and the target vessel wall. In order to estimate the cavitation erosion damage due to pitting, two types of off-line tests were performed: Split Hopkinson Pressure Bar (SHPB), and Magnetic IMpact Testing Machine (MIMTM). The data on the piping damage at the high cycle impacts up to 10 million were given by the MIMTM. Additionally the data obtained were compared with classical vibratory horn tests. As a result, it is confirmed that the mean depth erosion is predictable using a homologous line in the s...

  10. On the High Altitude Platform (HAP W-CDMA System Capacity

    Directory of Open Access Journals (Sweden)

    L. de Haro-Ariet

    2004-06-01

    Full Text Available The performance of a downlink power control model, based on a n-thpower distance law, is evaluated for high altitude platform station(HAPS W-CDMA systems. The downlink capacity using this model iscompared with the uplink capacity. It is shown that the uplink capacityis higher than the downlink capacity.

  11. The Plasma Environment at Mercury

    Science.gov (United States)

    Raines, James M.; Gershman, Daniel J.; Zurbuchen, Thomas H.; Gloeckler, George; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Krimigis, Stamatios M.; Killen, Rosemary M.; Sarantos, Menalos; hide

    2011-01-01

    Mercury is the least explored terrestrial planet, and the one subjected to the highest flux of solar radiation in the heliosphere. Its highly dynamic, miniature magnetosphere contains ions from the exosphere and solar wind, and at times may allow solar wind ions to directly impact the planet's surface. Together these features create a plasma environment that shares many features with, but is nonetheless very different from, that of Earth. The first in situ measurements of plasma ions in the Mercury space environment were made only recently, by the Fast Imaging Plasma Spectrometer (FIPS) during the MESSENGER spacecraft's three flybys of the planet in 2008-2009 as the probe was en route to insertion into orbit about Mercury earlier this year. Here. we present analysis of flyby and early orbital mission data with novel techniques that address the particular challenges inherent in these measurements. First. spacecraft structures and sensor orientation limit the FIPS field of view and allow only partial sampling of velocity distribution functions. We use a software model of FIPS sampling in velocity space to explore these effects and recover bulk parameters under certain assumptions. Second, the low densities found in the Mercury magnetosphere result in a relatively low signal-to-noise ratio for many ions. To address this issue, we apply a kernel density spread function to guide removal of background counts according to a background-signature probability map. We then assign individual counts to particular ion species with a time-of-flight forward model, taking into account energy losses in the carbon foil and other physical behavior of ions within the instrument. Using these methods, we have derived bulk plasma properties and heavy ion composition and evaluated them in the context of the Mercury magnetosphere.

  12. Mercury-free high pressure discharge lamps dominated by molecular radiation

    International Nuclear Information System (INIS)

    Kaening, M; Hitzschke, L; Berger, M; Schalk, B; Franke, St; Methling, R

    2011-01-01

    High intensity discharge (HID) lamps dominated by molecular radiation offer a very promising alternative for use in future light sources. They are able to deliver competitive efficacies of about 110 lm W -1 and higher, excellent colour rendering index above 90 and a correlated colour temperature in the 3000-4000 K region at the operating point near the Planckian locus. Moreover, these lamps are opening up the possibility of dimming. Due to the fact that they are able to omit mercury they are environmentally friendly. The emission spectra generated by these HID lamps differ significantly from those of conventional lamps. The reason for this is the dominance of molecular radiation processes. In comparison with conventional HID lamps atomic contributions are usually rather small. In the present case they amount to less than about 10% of the total intensity in the visible range.

  13. Mercury-free high pressure discharge lamps dominated by molecular radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaening, M; Hitzschke, L; Berger, M [Research Europe, OSRAM GmbH, Werner-von-Siemens Strasse 6, 86159 Augsburg (Germany); Schalk, B [Vitec Group Videocom Division, Erfurter Strasse 16, 85386 Eching (Germany); Franke, St; Methling, R, E-mail: m.kaening@osram.de [INP, Leibniz-Institut fuer Plasmaforschung und Technologie e. V., Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany)

    2011-06-08

    High intensity discharge (HID) lamps dominated by molecular radiation offer a very promising alternative for use in future light sources. They are able to deliver competitive efficacies of about 110 lm W{sup -1} and higher, excellent colour rendering index above 90 and a correlated colour temperature in the 3000-4000 K region at the operating point near the Planckian locus. Moreover, these lamps are opening up the possibility of dimming. Due to the fact that they are able to omit mercury they are environmentally friendly. The emission spectra generated by these HID lamps differ significantly from those of conventional lamps. The reason for this is the dominance of molecular radiation processes. In comparison with conventional HID lamps atomic contributions are usually rather small. In the present case they amount to less than about 10% of the total intensity in the visible range.

  14. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils.

    Science.gov (United States)

    Worthington, Max J H; Kucera, Renata L; Albuquerque, Inês S; Gibson, Christopher T; Sibley, Alexander; Slattery, Ashley D; Campbell, Jonathan A; Alboaiji, Salah F K; Muller, Katherine A; Young, Jason; Adamson, Nick; Gascooke, Jason R; Jampaiah, Deshetti; Sabri, Ylias M; Bhargava, Suresh K; Ippolito, Samuel J; Lewis, David A; Quinton, Jamie S; Ellis, Amanda V; Johs, Alexander; Bernardes, Gonçalo J L; Chalker, Justin M

    2017-11-16

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury-rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. FINAL REPORT ON THE AQUATIC MERCURY ASSESSMENT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, N

    2008-09-30

    . Methylmercury ranged from 0.002 ng/l in Upper Three Runs to 2.60 ng/l in Tims Branch. Total mercury in the Savannah River ranged from 0.62 ng/l to 43.9 ng/l, and methylmercury ranged from 0.036 ng/l to 7.54 ng/l. Both total and methylmercury concentrations were consistently high in the river near the mouth of Steel Creek. Total mercury was positively correlated with methylmercury (r = 0.88). Total mercury bound to particulates ranged from 41% to 57% in the river and from 28% to 90% in the streams. Particulate methylmercury varied from 9% to 37% in the river and from 6% to 79% in the streams. Small temporary pools in the Savannah River swamp area near and around Fourmile Branch had the highest concentrations observed in the Savannah River watershed, reaching 1,890 ng/l for total mercury and 34.0 ng/l for methylmercury. The second study developed a mercury bioaccumulation factor (BAF) for the Savannah River near SRS. A BAF is the ratio of the concentration of mercury in fish flesh to the concentration of mercury in the water. BAFs are important in the TMDL process because target concentrations for mercury in water are computed from BAFs. Mercury BAFs are known to differ substantially among fish species, water bodies, and possibly seasons. Knowledge of such variation is needed to determine a BAF that accurately represents average and extreme conditions in the water body under study. Analysis of fish tissue and aqueous methylmercury samples collected at a number of locations and over several seasons in a 110 km (68 mile) reach of the Savannah River demonstrated that BAFs for each species under study varied by factors of three to eight. Influences on BAF variability were location, habitat and season-related differences in fish mercury levels and seasonal differences in methylmercury levels in the water. Overall (all locations, habitats, and seasons) average BAFs were 3.7 x 10{sup 6} for largemouth bass, 1.4 x 10{sup 6} for sunfishes, and 2.5 x 10{sup 6} for white catfish. This study

  16. Quarter 9 Mercury information clearinghouse final report

    Energy Technology Data Exchange (ETDEWEB)

    Laudal, D.L.; Miller, S.; Pflughoeft-Hassett, D.; Ralston, N.; Dunham, G.; Weber, G.

    2005-12-15

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. A total of eight reports were completed and are summarized and updated in this final CEA quarterly report. Selected topics were discussed in detail in each quarterly report. Issues related to mercury from coal-fired utilities include the general areas of measurement, control, policy, and transformations. Specific topics that have been addressed in previous quarterly reports include the following: Quarterly 1 - Sorbent Control Technologies for Mercury Control; Quarterly 2 - Mercury Measurement; Quarterly 3 - Advanced and Developmental Mercury Control Technologies; Quarterly 4 - Prerelease of Mercury from Coal Combustion By-Products; Quarterly 5 - Mercury Fundamentals; Quarterly 6 - Mercury Control Field Demonstrations; Quarterly 7 - Mercury Regulations in the United States: Federal and State; and Quarterly 8 - Commercialization Aspects of Sorbent Injection Technologies in Canada. In this last of nine quarterly reports, an update of these mercury issues is presented that includes a summary of each topic, with recent information pertinent to advances made since the quarterly reports were originally presented. In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. 86 refs., 11 figs., 8 tabs.

  17. Risk factors for mercury exposure of children in a rural mining town in northern Chile.

    Directory of Open Access Journals (Sweden)

    Johan Ohlander

    Full Text Available Traditional gold mining is associated with mercury exposure. Especially vulnerable to its neurotoxic effects is the developing nervous system of a child. We aimed to investigate risk factors of mercury exposure among children in a rural mining town in Chile.Using a validated questionnaire distributed to the parents of the children, a priori mercury risk factors, potential exposure pathways and demographics of the children were obtained. Mercury levels were measured through analyzing fingernail samples. Logistic regression modeling the effect of risk factors on mercury levels above the 75(th percentile were made, adjusted for potential confounders.The 288 children had a mean age of 9.6 years (SD = 1.9. The mean mercury level in the study population was 0.13 µg/g (SD 0.11, median 0.10, range 0.001-0.86 µg/g. The strongest risk factor for children's odds of high mercury levels (>75(th percentile, 0.165 µg/g was to play inside a house where a family member worked with mercury (OR adjusted 3.49 95% CI 1.23-9.89. Additionally, children whose parents worked in industrial gold mining had higher odds of high mercury levels than children whose parents worked in industrial copper mining or outside mining activities.Mercury exposure through small-scale gold mining might affect children in their home environments. These results may further help to convince the local population of banning mercury burning inside the households.

  18. Thermal-hydraulic design of cross-flow type mercury target for JAERI/KEK joint project

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Terada, Atsuhiko; Haga, Katsuhiro; Kinoshita, Hidetaka; Hino, Ryutaro

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a plan to construct a neutron scattering facility. In the facility, 1 MW pulsed proton beam from a high-intensity proton accelerator will be injected into a mercury target in order to produce high-intensity neutrons for use in the fields of life and material sciences. In the spallation mercury target system design, an integrated structure of target vessel with a safety hull was proposed to ensure the safety and to collect mercury in case of mercury leakage caused by the target beam window failure. The inner structure arrangement of the mercury target vessel was determined based on the thermal hydraulic analytical results of 3 GeV, 1 MW proton beam injection. The safety hull consists of vessels for helium and heavy water. The vessels for mercury target, helium and heavy water will be connected each other by reinforcement ribs mounted on the surface of each vessel. From the structural analyses, the structural integrity of the safety hull would be maintained under the static pressure of 0.5 MPa. (author)

  19. Minamata Convention on Mercury

    Science.gov (United States)

    On November 6, 2013 the United States signed the Minamata Convention on Mercury, a new multilateral environmental agreement that addresses specific human activities which are contributing to widespread mercury pollution

  20. Total Mercury content of skin toning creams

    African Journals Online (AJOL)

    Administrator

    2008-04-01

    Apr 1, 2008 ... used it for cosmetics (Silberberg, 1995). Mercury- ... Cosmetic preparations containing mercury com- pounds are .... mercury determination by a modified version of an open .... level mercury exposure, which could lead to a.

  1. The Origin of Mercury's Surface Composition, an Experimental Investigation

    Science.gov (United States)

    Boujibar, A.; Righter, K.; Rapp, J. F.; Ross, D. K.; Pando, K. M.; Danielson, L. R.; Fontaine, E.

    2016-01-01

    Introduction: Results from MESSENGER spacecraft have confirmed the reduced nature of Mercury, based on its high core/mantle ratio and its FeO-poor and S-rich surface. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting major melting stages of the Mercurian mantle. In addition, MESSENGER has provided the most precise data to date on major elemental compositions of Mercury's surface. These results revealed considerable chemical heterogeneities that suggested several stages of differentiation and re-melting processes. This interpretation was challenged by our experimental previous study, which showed a similar compositional variation in the melting products of enstatite chondrites, which are a possible Mercury analogue. However, these experimental melts were obtained over a limited range of pressure (1 bar to 1 gigapascal) and were not compared to the most recent elemental maps. Therefore, here we extend the experimental dataset to higher pressures and perform a more quantitative comparison with Mercury's surface compositions measured by MESSENGER. In particular, we test whether these chemical heterogeneities result from mixing between polybaric melts. Our experiments and models show that the majority of chemical diversity of Mercury's surface can result from melting of a primitive mantle compositionally similar to enstatite chondrites in composition at various depths and degrees of melting. The high-Mg region's composition is reproduced by melting at high pressure (3 gigapascals) (Tab. 1), which is consistent with previous interpretation as being a large degraded impact basin based on its low elevation and thin average crust. While low-Mg NVP (North Volcanic Plains) are the result of melting at low pressure (1 bar), intermediate-Mg NVP, Caloris Basin and Rachmaninoff result from mixing of a high-pressure (3 gigapascals) and low-pressure components (1 bar for Rachmaninoff and 1 gigapascal for the other regions

  2. Effects of cadmium, zinc, lead, and mercury on respiration and fermentation of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Grafl, H J; Schwantes, H O

    1983-01-01

    Zinc and lead did not affect the rate of respiration and fermentation. Concentrations of cadmium higher than 10/sup -7/ M and concentrations of mercury higher than 5 x 10/sup -5/ M significantly reduced the O/sub 2/ consumption and the CO/sub 2/ production. 10/sup -2/ M cadmium and 10/sup -3/ M mercury completely inhibited respiration and fermentation. Low concentrations of mercury inhibited respiration irreversibly and fermentation reversibly. High concentrations of zinc reduced the toxicity of low concentrations of cadmium but they enhanced the effects of high concentrations of cadmium and mercury. No interactions between lead and the other tested heavy metals were observed.

  3. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish.

    Science.gov (United States)

    Ackerman, Joshua T; Kraus, Tamara E C; Fleck, Jacob A; Krabbenhoft, David P; Horwath, William R; Bachand, Sandra M; Herzog, Mark P; Hartman, C Alex; Bachand, Philip A M

    2015-05-19

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  4. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish

    Science.gov (United States)

    Ackerman, Joshua T.; Kraus, Tamara E.C.; Fleck, Jacob A.; Krabbenhoft, David P.; Horwarth, William R.; Bachand, Sandra M.; Herzog, Mark; Hartman, Christopher; Bachand, Philip A.M.

    2015-01-01

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California’s Sacramento–San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  5. Determination of mercury in plant material

    Energy Technology Data Exchange (ETDEWEB)

    Pickard, J A; Martin, J T

    1960-07-01

    An analytical procedure used for the determination of traces of mercury in plant material is described. The conditions of combustion of organic matter are controlled to avoid loss of mercury and EDTA is used to reduce the values for apparent mercury on uncontaminated samples. Satisfactory recoveries of mercury added to apples, tomatoes and coffee are obtained. 10 references, 1 table.

  6. [Mercury Distribution Characteristics and Atmospheric Mercury Emission Factors of Typical Waste Incineration Plants in Chongqing].

    Science.gov (United States)

    Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin

    2016-02-15

    Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.

  7. Diurnal variability and biogeochemical reactivity of mercury species in an extreme high-altitude lake ecosystem of the Bolivian Altiplano.

    Science.gov (United States)

    Alanoca, L; Amouroux, D; Monperrus, M; Tessier, E; Goni, M; Guyoneaud, R; Acha, D; Gassie, C; Audry, S; Garcia, M E; Quintanilla, J; Point, D

    2016-04-01

    Methylation and demethylation represent major transformation pathways regulating the net production of methylmercury (MMHg). Very few studies have documented Hg reactivity and transformation in extreme high-altitude lake ecosystems. Mercury (Hg) species concentrations (IHg, MMHg, Hg°, and DMHg) and in situ Hg methylation (M) and MMHg demethylation (D) potentials were determined in water, sediment, floating organic aggregates, and periphyton compartments of a shallow productive Lake of the Bolivian Altiplano (Uru Uru Lake, 3686 m). Samples were collected during late dry season (October 2010) and late wet season (May 2011) at a north (NS) and a south (SS) site of the lake, respectively. Mercury species concentrations exhibited significant diurnal variability as influenced by the strong diurnal biogeochemical gradients. Particularly high methylated mercury concentrations (0.2 to 4.5 ng L(-1) for MMHgT) were determined in the water column evidencing important Hg methylation in this ecosystem. Methylation and D potentials range were, respectively, production in both water (up to 0.45 ng MMHg L(-1) day(-1)) and sediment compartments (2.0 to 19.7 ng MMHg g(-1) day(-1)). While the sediment compartment appears to represent a major source of MMHg in this shallow ecosystem, floating organic aggregates (dry season, SS) and Totora's periphyton (wet season, NS) were found to act as a significant source (5.8 ng MMHg g(-1) day(-1)) and a sink (-2.1 ng MMHg g(-1) day(-1)) of MMHg, respectively. This work demonstrates that high-altitude productive lake ecosystems can promote MMHg formation in various compartments supporting recent observations of high Hg contents in fish and water birds.

  8. The thermal evolution of Mercury's Fe-Si core

    Science.gov (United States)

    Knibbe, Jurriën Sebastiaan; van Westrenen, Wim

    2018-01-01

    We have studied the thermal and magnetic field evolution of planet Mercury with a core of Fe-Si alloy to assess whether an Fe-Si core matches its present-day partially molten state, Mercury's magnetic field strength, and the observed ancient crustal magnetization. The main advantages of an Fe-Si core, opposed to a previously assumed Fe-S core, are that a Si-bearing core is consistent with the highly reduced nature of Mercury and that no compositional convection is generated upon core solidification, in agreement with magnetic field indications of a stable layer at the top of Mercury's core. This study also present the first implementation of a conductive temperature profile in the core where heat fluxes are sub-adiabatic in a global thermal evolution model. We show that heat migrates from the deep core to the outer part of the core as soon as heat fluxes at the outer core become sub-adiabatic. As a result, the deep core cools throughout Mercury's evolution independent of the temperature evolution at the core-mantle boundary, causing an early start of inner core solidification and magnetic field generation. The conductive layer at the outer core suppresses the rate of core growth after temperature differences between the deep and shallow core are relaxed, such that a magnetic field can be generated until the present. Also, the outer core and mantle operate at higher temperatures than previously thought, which prolongs mantle melting and mantle convection. The results indicate that S is not a necessary ingredient of Mercury's core, bringing bulk compositional models of Mercury more in line with reduced meteorite analogues.

  9. Assessment of mercury content in Panga (Pangasius hypophthalmus).

    Science.gov (United States)

    Rodríguez, María; Gutiérrez, Ángel J; Rodríguez, Natividad; Rubio, Carmen; Paz, Soraya; Martín, Verónica; Revert, Consuelo; Hardisson, Arturo

    2018-04-01

    Panga (Pangasius hypophthalmus), originating from Vietnam, is one of the most consumed fish because of its low cost, mild taste and presentation (fillets without skin and bones). Nevertheless, due to the high levels of contamination of the rivers where it lives, and to the fact that the panga is a predator, whereby it will accumulate a higher mercury concentration, the main objectives of the present study were to evaluate the toxic risk from mercury ingestion as a result of the consumption of this fish. A total of 80 frozen panga samples natural and marinade from different commercial establishments have been analyzed using cold vapour atomic absorption spectrophotometry (CV-AAS). The results obtained show a wide range of mercury concentrations between 0.10 and 0.69 mg/kg, with an average value of 0.22 mg/kg. In addition, it has been found that the average mercury concentration in the marinated presentation (0.18 mg/kg) is higher than that obtained in the natural panga (0.16 mg/kg). However, no significant differences were found between commercial establishments or in the presentation formats, with the conclusion that they did not influence the mercury content in the samples. Assuming a weekly consumption of 350 g of panga, the contribution rate to Tolerable Weekly Intake (TWI) of mercury (4 μg/kg bw/week) is 32% and 27.5% for women and men, respectively. Based on the results obtained in this study, an exhaustive control of the mercury content in this type of fish is necessary. In addition, a consumption restriction to children will be established. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The mixed waste focus area mercury working group: an integrated approach for mercury treatment and disposal

    International Nuclear Information System (INIS)

    Conley, T.B.; Morris, M.I.; Holmes-Burns, H.; Petersell, J.; Schwendiman, L.

    1997-01-01

    In May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG), which was established to address and resolve the issues associated with mercury- contaminated mixed wastes. Three of the first four technology deficiencies identified during the MWFA technical baseline development process were related to mercury amalgamation, stabilization, and separation/removal. The HgWG will assist the MWFA in soliciting, identifying, initiating, and managing all the efforts required to address these deficiencies. The focus of the HgWG is to better establish the mercury-related treatment needs at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. The team will initially focus on the sites with the most mercury-contaminated mixed wastes, whose representatives comprise the HgWG. However, the group will also work with the sites with less inventory to maximize the effectiveness of these efforts in addressing the mercury- related needs throughout the entire complex

  11. Atmospheric mercury footprints of nations.

    Science.gov (United States)

    Liang, Sai; Wang, Yafei; Cinnirella, Sergio; Pirrone, Nicola

    2015-03-17

    The Minamata Convention was established to protect humans and the natural environment from the adverse effects of mercury emissions. A cogent assessment of mercury emissions is required to help implement the Minamata Convention. Here, we use an environmentally extended multi-regional input-output model to calculate atmospheric mercury footprints of nations based on upstream production (meaning direct emissions from the production activities of a nation), downstream production (meaning both direct and indirect emissions caused by the production activities of a nation), and consumption (meaning both direct and indirect emissions caused by final consumption of goods and services in a nation). Results show that nations function differently within global supply chains. Developed nations usually have larger consumption-based emissions than up- and downstream production-based emissions. India, South Korea, and Taiwan have larger downstream production-based emissions than their upstream production- and consumption-based emissions. Developed nations (e.g., United States, Japan, and Germany) are in part responsible for mercury emissions of developing nations (e.g., China, India, and Indonesia). Our findings indicate that global mercury abatement should focus on multiple stages of global supply chains. We propose three initiatives for global mercury abatement, comprising the establishment of mercury control technologies of upstream producers, productivity improvement of downstream producers, and behavior optimization of final consumers.

  12. Does mercury vapor exposure increase urinary selenium excretion

    Energy Technology Data Exchange (ETDEWEB)

    Hongo, T; Suzuki, T; Himeno, S; Watanabe, C; Satoh, H; Shimada, Y

    1985-01-01

    It has been reported that an increase of urinary selenium excretion may occur as a result of mercury vapor exposure. However, experimental data regarding the interaction between mercury vapor and selenium have yielded ambiguous results about the retention and elimination of selenium due to mercury vapor exposure and the decrease of selenium excretion due to mercury in the form of mercuric mercury (Hg/sup 2 +/). In this study, the authors measured urinary mercury and selenium in workers with or without exposure to mercury vapor to determine whether or not urinary selenium excretion was increased as a result of mercury vapor exposure. Urine samples were collected from 141 workers, 71 men and 70 women, whose extent of exposure to mercury vapor varied according to their job sites. Workers were divided into five groups according to their urinary mercury levels. The mercury level in group I was less than 2.8 nmol/mmol creatinine which means that this group was mostly free from mercury exposure. The average age was almost identical among the groups. For both sexes, group V (with the highest urinary mercury level) had the lowest urinary selenium level, but one-way variance analysis (ANOVA) did not reveal any significant variations of urinary selenium with urinary mercury levels; however, a weak but significant negative correlation between mercury and selenium was found in men.

  13. How important is biomass burning in Canada to mercury contamination?

    Science.gov (United States)

    Fraser, Annemarie; Dastoor, Ashu; Ryjkov, Andrei

    2018-05-01

    total biomass burning Hg emissions to be highly variable from year to year and estimate average 2010-2015 total atmospheric biomass burning emissions of Hg in Canada to be between 6 and 14 t during the biomass burning season (i.e. from May to September), which is 3-7 times the mercury emission from anthropogenic sources in Canada for this period. On average, 65 % of the emissions occur in the provinces west of Ontario. We find that while emissions from biomass burning have a small impact on surface air concentrations of GEM averaged over individual provinces/territories, the impact at individual sites can be as high as 95 % during burning events. We estimate average annual mercury deposition from biomass burning in Canada to be between 0.3 and 2.8 t, compared to 0.14 t of mercury deposition from anthropogenic sources during the biomass burning season in Canada. Compared to the biomass burning emissions, the relative impact of fires on mercury deposition is shifted eastward, with on average 54 % percent of the deposition occurring in provinces west of Ontario. While the relative contribution of Canadian biomass burning to the total mercury deposition over each province/territory is no more than 9 % between 2010 and 2015, the local contribution in some locations (including areas downwind of biomass burning) can be as high as 80 % (e.g. northwest of Great Slave Lake in 2014) from May to September. We find that northern Alberta and Saskatchewan, central British Columbia, and the area around Great Slave Lake in the Northwest Territories are at greater risk of mercury contamination from biomass burning. GEM is considered to be the dominant mercury species emitted from biomass burning; however, there remains an uncertainty in the speciation of mercury released from biomass burning. We find that the impact of biomass burning emissions on mercury deposition is significantly affected by the uncertainty in speciation of emitted mercury because PBM is more readily deposited closer

  14. Two new sources of reactive gaseous mercury in the free troposphere

    Science.gov (United States)

    Timonen, H.; Ambrose, J. L.; Jaffe, D. A.

    2012-11-01

    Mercury (Hg) is a neurotoxin that bioaccumulates in the food chain. Mercury is emitted to the atmosphere primarily in its elemental form, which has a long lifetime allowing global transport. It is known that atmospheric oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystems. However, the primary GEM oxidants, and the sources and chemical composition of RGM are poorly known. Using speciated mercury measurements conducted at the Mt. Bachelor Observatory since 2005 we present two previously unidentified sources of RGM to the free troposphere (FT). Firstly, we observed elevated RGM concentrations, large RGM/GEM-ratios, and anti-correlation between RGM and GEM during Asian long-rang transport events, demonstrating that RGM is formed from GEM by in-situ oxidation in some anthropogenic pollution plumes in the FT. During the Asian pollution events the measured RGM/GEM-ratios reached peak values, up to ~0.20, which are significantly larger than ratios typically measured (RGM/GEM RGM levels - the highest reported in the FT - in clean air masses that were processed upwind of Mt. Bachelor Observatory over the Pacific Ocean. The high RGM concentrations (up to 700 pg m-3), high RGM/GEM-ratios (up to 1), and very low ozone levels during these events provide the first observational evidence indicating significant GEM oxidation in the lower FT. The identification of these processes changes our conceptual understanding of the formation and distribution of oxidized Hg in the global atmosphere.

  15. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. III. Concentration and genotoxicity of mercury in the industrial effluent and contaminated water of Rushikulya estuary, India.

    Science.gov (United States)

    Panda, K K; Lenka, M; Panda, B B

    1992-01-01

    Aquatic mercury pollution of the Rushikulya estuary in the vicinity of the chloralkali plant at Ganjam, India was monitored over a period from October 1987 to May 1989. The concentrations of aquatic mercury in the water samples taken from the effluent channel and from different sites along the course of the estuary covering a distance of 2 km were periodically recorded and ranged from 0 to 0.5 mg/l. The bioconcentration and genotoxicity of aquatic mercury in the samples were assessed by the Allium micronucleus (MNC) assay. The frequency of cells with MNC was highly correlated not only with bioconcentrated mercury (root mercury) but also with the levels of aquatic mercury. The threshold assessment values such as effective concentration fifty (EC50) for root growth, lowest effective concentration tested (LECT), and highest ineffective concentration tested (HICT) for induction of MNC in Allium MNC assay for the present aquatic industrial mercury were determined to be 0.14, 0.06 and 0.02 mg/l, respectively.

  16. Sexual differences in the distribution and retention of organic and inorganic mercury in methyl mercury-treated rats

    International Nuclear Information System (INIS)

    Thomas, D.J.; Fisher, H.L.; Sumler, M.R.; Marcus, A.H.; Mushak, P.; Hall, L.L.

    1986-01-01

    At 56 days of age, male and female Long-Evans rats received 1 μmole of 203 Hg-labeled mercuric chloride per kilogram sc and total, organic, and inorganic mercury contents and concentrations in tissues were determined for up to 98 days postdosing. When expressed on a concentration basis, the only significant sexual difference was in the higher average concentration of organic mercury in the kidneys of females. When expressed on a tissue content basis, significant male-female differences in the kinetics (sex x time interactions) of organic mercury retention were found in kidney, brain, skeletal muscle, pelt, and whole body. Significant sex x time interactions in the concentrations of organic mercury were found in kidney, skeletal muscle, and whole body. Kinetics of retention and concentration of inorganic Hg in the pelt differed significantly for males and females. Discordance of degree of statistical significance of differences in mercury contents and concentrations reflected in part differences in relative body composition of males and females. Differences in integrated exposure were estimated by the female-to-male ratio of areas under retention curves. Reconstruction of whole body organic and inorganic mercury burdens from constituent tissues indicated that integrated exposures of males and females to inorganic mercury were equal but females had a lower integrated exposure to organic mercury. Integrated exposure of liver to either form of mercury was about equal in males and females. However, the integrated exposure of the brain of females to inorganic mercury was 2.19 times that of males suggest'ing a sexual difference in accumulation or retention of inorganic mercury in the nervous system

  17. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    Directory of Open Access Journals (Sweden)

    ZIANE, M.

    2007-11-01

    Full Text Available The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on "channel" approximation of the high pressure mercury (HPM gas-discharge lamp, is developed to determine the physical and electric magnitudes, which characterize the dynamic behavior of the couple "lamp-electrical power system". The evolution of the lamp properties when principal parameters of the discharge (pressure of mercury, voltage supply, frequency are varying were studied and analyzed. We show the concordance between simulation, calculations and measurements for electric, energetic or irradiative characteristics. The model reproduces well the evolution of properties of the supply when principal parameters of the discharge vary.

  18. Quantitative evaluation of environmental factors influencing the dynamics of mercury in the aquatic systems

    International Nuclear Information System (INIS)

    Akagi, H.; Sakamoto, M.

    2001-01-01

    A highly sensitive radiochemical technique for evaluating the transformation and distribution of mercury has been developed to facilitate studies on the kinetics of mercury in the aquatic systems. Sediment, water, or biota, previously spiked with 203-mercuric compounds and incubated for a few or several weeks, are extracted with 0.1% dithizone-benzene(Dz-Bz) after an appropriate pretreatment to dissolve the incorporated mercury compounds. The quantitative separation of inorganic mercury and methylmercury in the Dz-Bz extract is done by thin-layer chromatography, before the mercury species are analyzed radiometrically using a gamma counter. The technique is applicable to a wide range of environmental materials contaminated with mercury down to very low background concentrations. (author)

  19. Lake variability: Key factors controlling mercury concentrations in New York State fish

    International Nuclear Information System (INIS)

    Simonin, Howard A.; Loukmas, Jefferey J.; Skinner, Lawrence C.; Roy, Karen M.

    2008-01-01

    A 4 year study surveyed 131 lakes across New York State beginning in 2003 to improve our understanding of mercury and gather information from previously untested waters. Our study focused on largemouth and smallmouth bass, walleye and yellow perch, common piscivorous fish shown to accumulate high mercury concentrations and species important to local fisheries. Fish from Adirondack and Catskill Forest Preserve lakes generally had higher mercury concentrations than those from lakes in other areas of the state. Variability between nearby individual lakes was observed, and could be due to differences in water chemistry, lake productivity or the abundance of wetlands in the watershed. We found the following factors impact mercury bioaccumulation: fish length, lake pH, specific conductivity, chlorophyll a, mercury concentration in the water, presence of an outlet dam and amount of contiguous wetlands. - Lake water chemistry variables, dams, and wetlands play major roles in determining fish mercury concentrations

  20. Mercury levels of yellowfin tuna (Thunnus albacares) are associated with capture location.

    Science.gov (United States)

    Nicklisch, Sascha C T; Bonito, Lindsay T; Sandin, Stuart; Hamdoun, Amro

    2017-10-01

    Mercury is a toxic compound to which humans are exposed by consumption of fish. Current fish consumption advisories focus on minimizing the risk posed by the species that are most likely to have high levels of mercury. Less accounted for is the variation within species, and the potential role of the geographic origin of a fish in determining its mercury level. Here we surveyed the mercury levels in 117 yellowfin tuna caught from 12 different locations worldwide. Our results indicated significant variation in yellowfin tuna methylmercury load, with levels that ranged from 0.03 to 0.82 μg/g wet weight across individual fish. Mean mercury levels were only weakly associated with fish size (R 2  mercury load, and argue for better traceability of fish to improve the accuracy of exposure risk predictions. Copyright © 2017 Elsevier Ltd. All rights reserved.