WorldWideScience

Sample records for high capacity memory

  1. High visual working memory capacity in trait social anxiety.

    Science.gov (United States)

    Moriya, Jun; Sugiura, Yoshinori

    2012-01-01

    Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions.

  2. The Sensory Components of High-Capacity Iconic Memory and Visual Working Memory

    OpenAIRE

    Bradley, Claire; Pearson, Joel

    2012-01-01

    Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more “high-level” alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their...

  3. The sensory components of high-capacity iconic memory and visual working memory

    OpenAIRE

    Claire eBradley; Claire eBradley; Joel ePearson

    2012-01-01

    Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more high-level alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their c...

  4. The sensory components of high-capacity iconic memory and visual working memory.

    Science.gov (United States)

    Bradley, Claire; Pearson, Joel

    2012-01-01

    EARLY VISUAL MEMORY CAN BE SPLIT INTO TWO PRIMARY COMPONENTS: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more "high-level" alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful "lower-capacity" visual working memory.

  5. The sensory components of high-capacity iconic memory and visual working memory

    Directory of Open Access Journals (Sweden)

    Claire eBradley

    2012-09-01

    Full Text Available Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more high-level alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of 3 different visual features (colour, orientation and motion across a range of durations from 0 to 6 seconds. We found that the amount of information stored in iconic memory is smaller for motion than for colour or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ~2 seconds. Further experiments showed that performance for the 10 items at 1 second was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory and an effortful ‘lower-capacity’ visual working memory.

  6. High Working Memory Capacity Predicts Less Retrieval Induced Forgetting

    NARCIS (Netherlands)

    Mall, Jonathan T.; Morey, Candice C.

    2013-01-01

    Background : Working Memory Capacity (WMC) is thought to be related to executive control and focused memory search abilities. These two hypotheses make contrasting predictions regarding the effects of retrieval on forgetting. Executive control during memory retrieval is believed to lead to retrieval

  7. High capacity, high speed histogramming data acquisition memory

    International Nuclear Information System (INIS)

    Epstein, A.; Boulin, C.

    1996-01-01

    A double width CAMAC DRAM store module was developed for use as a histogramming memory in fast time-resolved synchrotron radiation applications to molecular biology. High speed direct memory modify (3 MHz) is accomplished by using a discrete DRAM controller and fast page mode access. The module can be configured using standard SIMMs to sizes of up to 64M-words. The word width is 16 bit and the module can handle overflows by storing the overflow addresses in a dedicated FIFO. Simultaneous front panel DMM/DMI access and CAMAC readout of the overflow addresses is supported

  8. How a high working memory capacity can increase proactive interference.

    Science.gov (United States)

    Steinwascher, Merle A; Meiser, Thorsten

    2016-08-01

    Previous findings suggested that a high working memory capacity (WMC) is potentially associated with a higher susceptibility to proactive interference (PI) if the latter is measured under high cognitive load. To explain such a finding, we propose to consider susceptibility to PI as a net effect of individual executive processes and the intrinsic potential for PI. With the latter, we refer to the amount of information that is activated at a given time and that has the potential to exert PI subsequently. In two studies deploying generalized linear mixed models, susceptibility to PI was modeled as the decline of performance over trials of a complex span task. The results revealed that a higher WMC was associated with a higher susceptibility to PI. Moreover, the number of stimuli recalled in one trial as a proxy variable for the intrinsic potential for PI negatively affected memory performance in the subsequent trial. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Beyond the magic number four: Remapping high-capacity, pre-attentive, fragile working memory

    NARCIS (Netherlands)

    Zerr, P.; Gayet, S.; Mulder, K.T.; Sligte, I.G.; Stigchel, S. van der

    2017-01-01

    Visual short term memory allows us to access visual information after termination of its retinal input. Generally, a distinction is made between a robust, capacity-limited form (working memory, WM) and high-capacity, pre-attentive, maskable forms (sensory memory, e.g. fragile memory, FM). Eye

  10. Remapping high-capacity, pre-attentive, fragile sensory memory.

    Science.gov (United States)

    Zerr, Paul; Gayet, Surya; Mulder, Kees; Pinto, Yaïr; Sligte, Ilja; Van der Stigchel, Stefan

    2017-11-21

    Humans typically make several saccades per second. This provides a challenge for the visual system as locations are largely coded in retinotopic (eye-centered) coordinates. Spatial remapping, the updating of retinotopic location coordinates of items in visuospatial memory, is typically assumed to be limited to robust, capacity-limited and attention-demanding working memory (WM). Are pre-attentive, maskable, sensory memory representations (e.g. fragile memory, FM) also remapped? We directly compared trans-saccadic WM (tWM) and trans-saccadic FM (tFM) in a retro-cue change-detection paradigm. Participants memorized oriented rectangles, made a saccade and reported whether they saw a change in a subsequent display. On some trials a retro-cue indicated the to-be-tested item prior to probe onset. This allowed sensory memory items to be included in the memory capacity estimate. The observed retro-cue benefit demonstrates a tFM capacity considerably above tWM. This provides evidence that some, if not all sensory memory was remapped to spatiotopic (world-centered, task-relevant) coordinates. In a second experiment, we show backward masks to be effective in retinotopic as well as spatiotopic coordinates, demonstrating that FM was indeed remapped to world-centered coordinates. Together this provides conclusive evidence that trans-saccadic spatial remapping is not limited to higher-level WM processes but also occurs for sensory memory representations.

  11. When High-Capacity Readers Slow Down and Low-Capacity Readers Speed Up: Working Memory and Locality Effects.

    Science.gov (United States)

    Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan

    2016-01-01

    We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.

  12. When high-capacity readers slow down and low-capacity readers speed up: Working memory and locality effects

    Directory of Open Access Journals (Sweden)

    Bruno eNicenboim

    2016-03-01

    Full Text Available We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German, while taking into account readers’ working memory capacity and controlling for expectation (Levy, 2008 and other factors. We predicted only locality effects, that is, a slow-down produced by increased dependency distance (Gibson, 2000; Lewis & Vasishth, 2005. Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.

  13. Remapping high-capacity, pre-Attentive, fragile sensory memory

    NARCIS (Netherlands)

    Zerr, Paul; Gayet, Surya; Mulder, Kees; Pinto, Yaïr; Sligte, Ilja; Van Der Stigchel, Stefan

    2017-01-01

    Humans typically make several saccades per second. This provides a challenge for the visual system as locations are largely coded in retinotopic (eye-centered) coordinates. Spatial remapping, the updating of retinotopic location coordinates of items in visuospatial memory, is typically assumed to be

  14. Remapping high-capacity, pre-attentive, fragile sensory memory

    NARCIS (Netherlands)

    Zerr, P.; Gayet, S.; Mulder, K.T.; Pinto, Y.; Sligte, I.G.; Stigchel, S. van der

    2017-01-01

    Humans typically make several saccades per second. This provides a challenge for the visual system as locations are largely coded in retinotopic (eye-centered) coordinates. Spatial remapping, the updating of retinotopic location coordinates of items in visuospatial memory, is typically assumed to be

  15. Does visual short-term memory have a high-capacity stage?

    Science.gov (United States)

    Matsukura, Michi; Hollingworth, Andrew

    2011-12-01

    Visual short-term memory (VSTM) has long been considered a durable, limited-capacity system for the brief retention of visual information. However, a recent work by Sligte et al. (Plos One 3:e1699, 2008) reported that, relatively early after the removal of a memory array, a cue allowed participants to access a fragile, high-capacity stage of VSTM that is distinct from iconic memory. In the present study, we examined whether this stage division is warranted by attempting to corroborate the existence of an early, high-capacity form of VSTM. The results of four experiments did not support Sligte et al.'s claim, since we did not obtain evidence for VSTM retention that exceeded traditional estimates of capacity. However, performance approaching that observed in Sligte et al. can be achieved through extensive practice, providing a clear explanation for their findings. Our evidence favors the standard view of VSTM as a limited-capacity system that maintains a few object representations in a relatively durable form.

  16. How high is visual short-term memory capacity for object layout?

    Science.gov (United States)

    Sanocki, Thomas; Sellers, Eric; Mittelstadt, Jeff; Sulman, Noah

    2010-05-01

    Previous research measuring visual short-term memory (VSTM) suggests that the capacity for representing the layout of objects is fairly high. In four experiments, we further explored the capacity of VSTM for layout of objects, using the change detection method. In Experiment 1, participants retained most of the elements in displays of 4 to 8 elements. In Experiments 2 and 3, with up to 20 elements, participants retained many of them, reaching a capacity of 13.4 stimulus elements. In Experiment 4, participants retained much of a complex naturalistic scene. In most cases, increasing display size caused only modest reductions in performance, consistent with the idea of configural, variable-resolution grouping. The results indicate that participants can retain a substantial amount of scene layout information (objects and locations) in short-term memory. We propose that this is a case of remote visual understanding, where observers' ability to integrate information from a scene is paramount.

  17. ERP markers of target selection discriminate children with high vs. low working memory capacity

    Directory of Open Access Journals (Sweden)

    Andria eShimi

    2015-11-01

    Full Text Available Selective attention enables enhancing a subset out of multiple competing items to maximize the capacity of our limited visual working memory (VWM system. Multiple behavioral and electrophysiological studies have revealed the cognitive and neural mechanisms supporting adults’ selective attention of visual percepts for encoding in VWM. However, research on children is more limited. What are the neural mechanisms involved in children’s selection of incoming percepts in service of VWM? Do these differ from the ones subserving adults’ selection? Ten-year-olds and adults used a spatial arrow cue to select a colored item for later recognition from an array of four colored items. The temporal dynamics of selection were investigated through EEG signals locked to the onset of the memory array. Both children and adults elicited significantly more negative activity over posterior scalp locations contralateral to the item to-be-selected for encoding (N2pc. However, this activity was elicited later and for longer in children compared to adults. Furthermore, although children as a group did not elicit a significant N2pc during the time-window in which N2pc was elicited in adults, the magnitude of N2pc during the adult time-window related to their behavioral performance during the later recognition phase of the task. This in turn highlights how children’s neural activity subserving attention during encoding relates to better subsequent VWM performance. Significant differences were observed when children were divided into groups of high vs. low VWM capacity as a function of cueing benefit. Children with large cue benefits in VWM capacity elicited an adult-like contralateral negativity following attentional selection of the to-be-encoded item, whereas children with low VWM capacity did not. These results corroborate the close coupling between selective attention and VWM from childhood and elucidate further the attentional mechanisms constraining VWM

  18. ERP markers of target selection discriminate children with high vs. low working memory capacity.

    Science.gov (United States)

    Shimi, Andria; Nobre, Anna Christina; Scerif, Gaia

    2015-01-01

    Selective attention enables enhancing a subset out of multiple competing items to maximize the capacity of our limited visual working memory (VWM) system. Multiple behavioral and electrophysiological studies have revealed the cognitive and neural mechanisms supporting adults' selective attention of visual percepts for encoding in VWM. However, research on children is more limited. What are the neural mechanisms involved in children's selection of incoming percepts in service of VWM? Do these differ from the ones subserving adults' selection? Ten-year-olds and adults used a spatial arrow cue to select a colored item for later recognition from an array of four colored items. The temporal dynamics of selection were investigated through EEG signals locked to the onset of the memory array. Both children and adults elicited significantly more negative activity over posterior scalp locations contralateral to the item to-be-selected for encoding (N2pc). However, this activity was elicited later and for longer in children compared to adults. Furthermore, although children as a group did not elicit a significant N2pc during the time-window in which N2pc was elicited in adults, the magnitude of N2pc during the "adult time-window" related to their behavioral performance during the later recognition phase of the task. This in turn highlights how children's neural activity subserving attention during encoding relates to better subsequent VWM performance. Significant differences were observed when children were divided into groups of high vs. low VWM capacity as a function of cueing benefit. Children with large cue benefits in VWM capacity elicited an adult-like contralateral negativity following attentional selection of the to-be-encoded item, whereas children with low VWM capacity did not. These results corroborate the close coupling between selective attention and VWM from childhood and elucidate further the attentional mechanisms constraining VWM performance in children.

  19. A randomised controlled trial investigating the benefits of adaptive working memory training for working memory capacity and attentional control in high worriers.

    Science.gov (United States)

    Hotton, Matthew; Derakshan, Nazanin; Fox, Elaine

    2018-01-01

    The process of worry has been associated with reductions in working memory capacity and availability of resources necessary for efficient attentional control. This, in turn, can lead to escalating worry. Recent investigations into working memory training have shown improvements in attentional control and cognitive performance in high trait-anxious individuals and individuals with sub-clinical depression. The current randomised controlled trial investigated the effects of 15 days of adaptive n-back working memory training, or an active control task, on working memory capacity, attentional control and worry in a sample of high worriers. Pre-training, post-training and one-month follow-up measures of working memory capacity were assessed using a Change Detection task, while a Flanker task was used to assess attentional control. A breathing focus task was used as a behavioural measure of worry in addition to a number of self-report assessments of worry and anxiety. Overall there was no difference between the active training and the active control condition with both groups demonstrating similar improvements in working memory capacity and worry, post-training and at follow-up. However, training-related improvements on the n-back task were associated with gains in working memory capacity and reductions in worry symptoms in the active training condition. These results highlight the need for further research investigating the role of individual differences in working memory training. Copyright © 2017. Published by Elsevier Ltd.

  20. When high working memory capacity is and is not beneficial for predicting nonlinear processes.

    Science.gov (United States)

    Fischer, Helen; Holt, Daniel V

    2017-04-01

    Predicting the development of dynamic processes is vital in many areas of life. Previous findings are inconclusive as to whether higher working memory capacity (WMC) is always associated with using more accurate prediction strategies, or whether higher WMC can also be associated with using overly complex strategies that do not improve accuracy. In this study, participants predicted a range of systematically varied nonlinear processes based on exponential functions where prediction accuracy could or could not be enhanced using well-calibrated rules. Results indicate that higher WMC participants seem to rely more on well-calibrated strategies, leading to more accurate predictions for processes with highly nonlinear trajectories in the prediction region. Predictions of lower WMC participants, in contrast, point toward an increased use of simple exemplar-based prediction strategies, which perform just as well as more complex strategies when the prediction region is approximately linear. These results imply that with respect to predicting dynamic processes, working memory capacity limits are not generally a strength or a weakness, but that this depends on the process to be predicted.

  1. Interference and memory capacity limitations.

    Science.gov (United States)

    Endress, Ansgar D; Szabó, Szilárd

    2017-10-01

    Working memory (WM) is thought to have a fixed and limited capacity. However, the origins of these capacity limitations are debated, and generally attributed to active, attentional processes. Here, we show that the existence of interference among items in memory mathematically guarantees fixed and limited capacity limits under very general conditions, irrespective of any processing assumptions. Assuming that interference (a) increases with the number of interfering items and (b) brings memory performance to chance levels for large numbers of interfering items, capacity limits are a simple function of the relative influence of memorization and interference. In contrast, we show that time-based memory limitations do not lead to fixed memory capacity limitations that are independent of the timing properties of an experiment. We show that interference can mimic both slot-like and continuous resource-like memory limitations, suggesting that these types of memory performance might not be as different as commonly believed. We speculate that slot-like WM limitations might arise from crowding-like phenomena in memory when participants have to retrieve items. Further, based on earlier research on parallel attention and enumeration, we suggest that crowding-like phenomena might be a common reason for the 3 major cognitive capacity limitations. As suggested by Miller (1956) and Cowan (2001), these capacity limitations might arise because of a common reason, even though they likely rely on distinct processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Large capacity temporary visual memory

    Science.gov (United States)

    Endress, Ansgar D.; Potter, Mary C.

    2014-01-01

    Visual working memory (WM) capacity is thought to be limited to three or four items. However, many cognitive activities seem to require larger temporary memory stores. Here, we provide evidence for a temporary memory store with much larger capacity than past WM capacity estimates. Further, based on previous WM research, we show that a single factor — proactive interference — is sufficient to bring capacity estimates down to the range of previous WM capacity estimates. Participants saw a rapid serial visual presentation (RSVP) of 5 to 21 pictures of familiar objects or words presented at rates of 4/s or 8/s, respectively, and thus too fast for strategies such as rehearsal. Recognition memory was tested with a single probe item. When new items were used on all trials, no fixed memory capacities were observed, with estimates of up to 9.1 retained pictures for 21-item lists, and up to 30.0 retained pictures for 100-item lists, and no clear upper bound to how many items could be retained. Further, memory items were not stored in a temporally stable form of memory, but decayed almost completely after a few minutes. In contrast, when, as in most WM experiments, a small set of items was reused across all trials, thus creating proactive interference among items, capacity remained in the range reported in previous WM experiments. These results show that humans have a large-capacity temporary memory store in the absence of proactive interference, and raise the question of whether temporary memory in everyday cognitive processing is severely limited as in WM experiments, or has the much larger capacity found in the present experiments. PMID:23937181

  3. The hard fall effect: high working memory capacity leads to a higher, but less robust short-term memory performance.

    Science.gov (United States)

    Thomassin, Noémylle; Gonthier, Corentin; Guerraz, Michel; Roulin, Jean-Luc

    2015-01-01

    Participants with a high working memory span tend to perform better than low spans in a variety of tasks. However, their performance is paradoxically more impaired when they have to perform two tasks at once, a phenomenon that could be labeled the "hard fall effect." The present study tested whether this effect exists in a short-term memory task, and investigated the proposal that the effect is due to high spans using efficient facilitative strategies under simple task conditions. Ninety-eight participants performed a spatial short-term memory task under simple and dual task conditions; stimuli presentation times either allowed for the use of complex facilitative strategies or not. High spans outperformed low spans only under simple task conditions when presentation times allowed for the use of facilitative strategies. These results indicate that the hard fall effect exists on a short-term memory task and may be caused by individual differences in strategy use.

  4. The Nature of Individual Differences in Working Memory Capacity: Active Maintenance in Primary Memory and Controlled Search from Secondary Memory

    Science.gov (United States)

    Unsworth, Nash; Engle, Randall W.

    2007-01-01

    Studies examining individual differences in working memory capacity have suggested that individuals with low working memory capacities demonstrate impaired performance on a variety of attention and memory tasks compared with individuals with high working memory capacities. This working memory limitation can be conceived of as arising from 2…

  5. High-capacity optical long data memory based on enhanced Young's modulus in nanoplasmonic hybrid glass composites.

    Science.gov (United States)

    Zhang, Qiming; Xia, Zhilin; Cheng, Yi-Bing; Gu, Min

    2018-03-22

    Emerging as an inevitable outcome of the big data era, long data are the massive amount of data that captures changes in the real world over a long period of time. In this context, recording and reading the data of a few terabytes in a single storage device repeatedly with a century-long unchanged baseline is in high demand. Here, we demonstrate the concept of optical long data memory with nanoplasmonic hybrid glass composites. Through the sintering-free incorporation of nanorods into the earth abundant hybrid glass composite, Young's modulus is enhanced by one to two orders of magnitude. This discovery, enabling reshaping control of plasmonic nanoparticles of multiple-length allows for continuous multi-level recording and reading with a capacity over 10 terabytes with no appreciable change of the baseline over 600 years, which opens new opportunities for long data memory that affects the past and future.

  6. Visual Working Memory Capacity and Proactive Interference

    OpenAIRE

    Hartshorne, Joshua

    2008-01-01

    BACKGROUND: Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. METHODOLOGY/P...

  7. Quantum capacity of Pauli channels with memory

    International Nuclear Information System (INIS)

    Huang Peng; He Guangqiang; Lu Yuan; Zeng Guihua

    2011-01-01

    The amount of coherent quantum information that can be reliably transmitted down the memory Pauli channels with Markovian correlated noise is investigated. Two methods for evaluating the quantum capacity of the memory Pauli channels are proposed to try to trace the memory effect on the transmissions of quantum information. We show that the evaluation of quantum capacity can be reduced to the calculation of the initial memory state of each successive transmission. Furthermore, we derive quantum capacities of the memory phase flip channel, bit flip channel and bit-phase flip channel. Also, a lower bound of the quantum capacity of the memory depolarizing channel is obtained. An increase of the degree of memory of the channels has a positive effect on the increase of their quantum capacities.

  8. Working memory capacity and controlled serial memory search.

    Science.gov (United States)

    Mızrak, Eda; Öztekin, Ilke

    2016-08-01

    The speed-accuracy trade-off (SAT) procedure was used to investigate the relationship between working memory capacity (WMC) and the dynamics of temporal order memory retrieval. High- and low-span participants (HSs, LSs) studied sequentially presented five-item lists, followed by two probes from the study list. Participants indicated the more recent probe. Overall, accuracy was higher for HSs compared to LSs. Crucially, in contrast to previous investigations that observed no impact of WMC on speed of access to item information in memory (e.g., Öztekin & McElree, 2010), recovery of temporal order memory was slower for LSs. While accessing an item's representation in memory can be direct, recovery of relational information such as temporal order information requires a more controlled serial memory search. Collectively, these data indicate that WMC effects are particularly prominent during high demands of cognitive control, such as serial search operations necessary to access temporal order information from memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. ASSERT: Augmentation Grant on Working Memory Capacity

    National Research Council Canada - National Science Library

    Engle, Randall

    2000-01-01

    .... That work has resulted in numerous publications and conference presentations demonstrating that individuals who score in the bottom quartile on measures of working memory capacity show more errors...

  10. Selection History Modulates Working Memory Capacity

    Directory of Open Access Journals (Sweden)

    Bo-Cheng Kuo

    2016-10-01

    Full Text Available Recent studies have shown that past selection history affects the allocation of attention on target selection. However, it is unclear whether context-driven selection history can modulate the efficacy of attention allocation on working memory (WM representations. This study tests the influences of selection history on WM capacity. A display of one item (low load or three/four items (high load was shown for the participants to hold in WM in a delayed response task. Participants then judged whether a probe item was in the memory display or not. Selection history was defined as the number of items attended across trials in the task context within a block, manipulated by the stimulus set-size in the contexts with fewer possible stimuli (4-item or 5-item context or more possible stimuli (8-item or 9-item context from which the memorized content was selected. The capacity measure (i.e. the K parameter was estimated to reflect the number of items that can be held in WM. Across four behavioral experiments, the results revealed that the capacity was significantly reduced in the context with more possible stimuli relative to the context with fewer possible stimuli. Moreover, the reduction in capacity was significant for high WM load and not observed when the focus was on only a single item. Together, these findings indicate that context-driven selection history and focused attention influence WM capacity.

  11. Massive Memory Revisited: Limitations on Storage Capacity for Object Details in Visual Long-Term Memory

    Science.gov (United States)

    Cunningham, Corbin A.; Yassa, Michael A.; Egeth, Howard E.

    2015-01-01

    Previous work suggests that visual long-term memory (VLTM) is highly detailed and has a massive capacity. However, memory performance is subject to the effects of the type of testing procedure used. The current study examines detail memory performance by probing the same memories within the same subjects, but using divergent probing methods. The…

  12. Modeling Coevolution between Language and Memory Capacity during Language Origin

    Science.gov (United States)

    Gong, Tao; Shuai, Lan

    2015-01-01

    Memory is essential to many cognitive tasks including language. Apart from empirical studies of memory effects on language acquisition and use, there lack sufficient evolutionary explorations on whether a high level of memory capacity is prerequisite for language and whether language origin could influence memory capacity. In line with evolutionary theories that natural selection refined language-related cognitive abilities, we advocated a coevolution scenario between language and memory capacity, which incorporated the genetic transmission of individual memory capacity, cultural transmission of idiolects, and natural and cultural selections on individual reproduction and language teaching. To illustrate the coevolution dynamics, we adopted a multi-agent computational model simulating the emergence of lexical items and simple syntax through iterated communications. Simulations showed that: along with the origin of a communal language, an initially-low memory capacity for acquired linguistic knowledge was boosted; and such coherent increase in linguistic understandability and memory capacities reflected a language-memory coevolution; and such coevolution stopped till memory capacities became sufficient for language communications. Statistical analyses revealed that the coevolution was realized mainly by natural selection based on individual communicative success in cultural transmissions. This work elaborated the biology-culture parallelism of language evolution, demonstrated the driving force of culturally-constituted factors for natural selection of individual cognitive abilities, and suggested that the degree difference in language-related cognitive abilities between humans and nonhuman animals could result from a coevolution with language. PMID:26544876

  13. Working Memory Capacity, Confidence and Scientific Thinking

    Science.gov (United States)

    Al-Ahmadi, Fatheya; Oraif, Fatima

    2009-01-01

    Working memory capacity is now well established as a rate determining factor in much learning and assessment, especially in the sciences. Most of the research has focussed on performance in tests and examinations in subject areas. This paper outlines some exploratory work in which other outcomes are related to working memory capacity. Confidence…

  14. Visual working memory capacity and proactive interference.

    Science.gov (United States)

    Hartshorne, Joshua K

    2008-07-23

    Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.

  15. Visual working memory capacity and proactive interference.

    Directory of Open Access Journals (Sweden)

    Joshua K Hartshorne

    Full Text Available BACKGROUND: Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. METHODOLOGY/PRINCIPAL FINDINGS: Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. CONCLUSIONS/SIGNIFICANCE: This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.

  16. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.

    Science.gov (United States)

    Shi, Zhan; Liu, Peiru

    2016-01-01

    Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.

  17. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.

    Directory of Open Access Journals (Sweden)

    Zhan Shi

    Full Text Available Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.

  18. Massive memory revisited: Limitations on storage capacity for object details in visual long-term memory

    OpenAIRE

    Cunningham, Corbin A.; Yassa, Michael A.; Egeth, Howard E.

    2015-01-01

    Previous work suggests that visual long-term memory (VLTM) is highly detailed and has a massive capacity. However, memory performance is subject to the effects of the type of testing procedure used. The current study examines detail memory performance by probing the same memories within the same subjects, but using divergent probing methods. The results reveal that while VLTM representations are typically sufficient to support performance when the procedure probes gist-based information, they...

  19. Synaptic Correlates of Working Memory Capacity.

    Science.gov (United States)

    Mi, Yuanyuan; Katkov, Mikhail; Tsodyks, Misha

    2017-01-18

    Psychological studies indicate that human ability to keep information in readily accessible working memory is limited to four items for most people. This extremely low capacity severely limits execution of many cognitive tasks, but its neuronal underpinnings remain unclear. Here we show that in the framework of synaptic theory of working memory, capacity can be analytically estimated to scale with characteristic time of short-term synaptic depression relative to synaptic current time constant. The number of items in working memory can be regulated by external excitation, enabling the system to be tuned to the desired load and to clear the working memory of currently held items to make room for new ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Striving for Excellence Sometimes Hinders High Achievers: Performance-Approach Goals Deplete Arithmetical Performance in Students with High Working Memory Capacity

    Science.gov (United States)

    Crouzevialle, Marie; Smeding, Annique; Butera, Fabrizio

    2015-01-01

    We tested whether the goal to attain normative superiority over other students, referred to as performance-approach goals, is particularly distractive for high-Working Memory Capacity (WMC) students—that is, those who are used to being high achievers. Indeed, WMC is positively related to high-order cognitive performance and academic success, a record of success that confers benefits on high-WMC as compared to low-WMC students. We tested whether such benefits may turn out to be a burden under performance-approach goal pursuit. Indeed, for high achievers, aiming to rise above others may represent an opportunity to reaffirm their positive status—a stake susceptible to trigger disruptive outcome concerns that interfere with task processing. Results revealed that with performance-approach goals—as compared to goals with no emphasis on social comparison—the higher the students’ WMC, the lower their performance at a complex arithmetic task (Experiment 1). Crucially, this pattern appeared to be driven by uncertainty regarding the chances to outclass others (Experiment 2). Moreover, an accessibility measure suggested the mediational role played by status-related concerns in the observed disruption of performance. We discuss why high-stake situations can paradoxically lead high-achievers to sub-optimally perform when high-order cognitive performance is at play. PMID:26407097

  1. A Latent Variable Analysis of Working Memory Capacity, Short-Term Memory Capacity, Processing Speed, and General Fluid Intelligence.

    Science.gov (United States)

    Conway, Andrew R. A.; Cowan, Nelsin; Bunting, Michael F.; Therriault, David J.; Minkoff, Scott R. B.

    2002-01-01

    Studied the interrelationships among general fluid intelligence, short-term memory capacity, working memory capacity, and processing speed in 120 young adults and used structural equation modeling to determine the best predictor of general fluid intelligence. Results suggest that working memory capacity, but not short-term memory capacity or…

  2. Interference and memory capacity effects in memristive systems

    Science.gov (United States)

    Hermiz, John; Chang, Ting; Du, Chao; Lu, Wei

    2013-02-01

    Short-term memory implies the existence of a capacity limit beyond which memory cannot be securely formed and retained. The underlying mechanisms are believed to be two primary factors: decay and interference. Here, we demonstrate through both simulation and experiment that the memory capacity effect can be implemented in a parallel memristor circuit, where decay and interference are achieved by the inherent ion diffusion in the device and the competition for current supply in the circuit, respectively. This study suggests it is possible to emulate high-level biological behaviors with memristor circuits and will stimulate continued studies on memristor-based neuromorphic circuits.

  3. Working memory training improves visual short-term memory capacity.

    Science.gov (United States)

    Schwarb, Hillary; Nail, Jayde; Schumacher, Eric H

    2016-01-01

    Since antiquity, philosophers, theologians, and scientists have been interested in human memory. However, researchers today are still working to understand the capabilities, boundaries, and architecture. While the storage capabilities of long-term memory are seemingly unlimited (Bahrick, J Exp Psychol 113:1-2, 1984), working memory, or the ability to maintain and manipulate information held in memory, seems to have stringent capacity limits (e.g., Cowan, Behav Brain Sci 24:87-185, 2001). Individual differences, however, do exist and these differences can often predict performance on a wide variety of tasks (cf. Engle What is working-memory capacity? 297-314, 2001). Recently, researchers have promoted the enticing possibility that simple behavioral training can expand the limits of working memory which indeed may also lead to improvements on other cognitive processes as well (cf. Morrison and Chein, Psychol Bull Rev 18:46-60 2011). However, initial investigations across a wide variety of cognitive functions have produced mixed results regarding the transferability of training-related improvements. Across two experiments, the present research focuses on the benefit of working memory training on visual short-term memory capacity-a cognitive process that has received little attention in the training literature. Data reveal training-related improvement of global measures of visual short-term memory as well as of measures of the independent sub-processes that contribute to capacity (Awh et al., Psychol Sci 18(7):622-628, 2007). These results suggest that the ability to inhibit irrelevant information within and between trials is enhanced via n-back training allowing for selective improvement on untrained tasks. Additionally, we highlight a potential limitation of the standard adaptive training procedure and propose a modified design to ensure variability in the training environment.

  4. Working memory capacity as a dynamic process

    Directory of Open Access Journals (Sweden)

    Vanessa R Simmering

    2013-01-01

    Full Text Available A well-known characteristic of working memory is its limited capacity. The source of such limitations, however, is a continued point of debate. Developmental research is positioned to address this debate by jointly identifying the source(s of limitations and the mechanism(s underlying capacity increases. Here we provide a cross-domain survey of studies and theories of working memory capacity development, which reveals a complex picture: dozens of studies from 50 papers show nearly universal increases in capacity estimates with age, but marked variation across studies, tasks, and domains. We argue that the full pattern of performance cannot be captured through traditional approaches emphasizing single causes, or even multiple separable causes, underlying capacity development. Rather, we consider working memory capacity as a dynamic process that emerges from a unified cognitive system flexibly adapting to the context and demands of each task. We conclude by enumerating specific challenges for researchers and theorists that will need to be met in order to move our understanding forward.

  5. Aging and verbal working memory capacity

    NARCIS (Netherlands)

    Noort, M.W.M.L. van den; Bosch, M.P.C.; Kralingen, R.B.A.S. van

    2008-01-01

    Objectives. The development of verbal working memory capacity over time was investigated. xxx Methods. Four different age groups were tested with the new standard computerized version of the reading span test (Van den Noort et al., 2006, 2008). xxx Results. Compared to the young adults, the old

  6. When Higher Working Memory Capacity Hinders Insight

    Science.gov (United States)

    DeCaro, Marci S.; Van Stockum, Charles A., Jr.; Wieth, Mareike B.

    2016-01-01

    Higher working memory capacity (WMC) improves performance on a range of cognitive and academic tasks. However, a greater ability to control attention sometimes leads individuals with higher WMC to persist in using complex, attention-demanding approaches that are suboptimal for a given task. We examined whether higher WMC would hinder insight…

  7. Foreign language proficiency and working memory capacity

    NARCIS (Netherlands)

    Noort, M.W.M.L. van den; Bosch, M.P.C.; Hugdahl, K.

    2006-01-01

    In this study, the hypothesis that working memory capacity interacts with (foreign) language proficiency was tested on multilinguals, who were native (L1) Dutch speakers, were fluent in their second (L2) language, German, and had recently started the acquisition of their third (L3) language,

  8. WORKING MEMORY CAPACITY TEST REVEALS SUBJECTS DIFFICULTIES MANAGING LIMITED CAPACITY

    Directory of Open Access Journals (Sweden)

    R V Ershova

    2016-12-01

    Full Text Available Free recall consists of two separate stages: the emptying of working memory and reactivation [5]. The Tarnow Unchunkable Test (TUT, [7] uses double integer items to separate out only the first stage by making it difficult to reactivate items due to the lack of intra-item relationships.193 Russian college students were tested via the internet version of the TUT. The average number of items remembered in the 3 item test was 2.54 items. In the 4 item test, the average number of items decreased to 2.38. This, and a number of other qualitative distribution differences between the 3 and 4 item tests, indicate that the average capacity limit of working memory has been reached at 3 items. This provides the first direct measurement of the unchunkable capacity limit of number items.Difficulties in managing working memory occurred as most subjects remembered less as the number of items increased beyond capacity and failed to remember a single item in at least one out of three 4 item trials. The Pearson correlation between the total recall of 3 and 4 items was a small 38%.

  9. Declarative and Procedural Working Memory: Common Principles, Common Capacity Limits?

    Directory of Open Access Journals (Sweden)

    Klus Oberauer

    2010-10-01

    Full Text Available Working memory is often described as a system for simultaneous storage and processing. Much research – and most measures of working-memory capacity – focus on the storage component only, that is, people's ability to recall or recognize items after short retention intervals. The mechanisms of processing information are studied in a separate research tradition, concerned with the selection and control of actions in simple choice situations, dual-task constellations, or task-switching setups. both research traditions investigate performance based on representations that are temporarily maintained in an active, highly accessible state, and constrained by capacity limits. In this article an integrated theoretical framework of declarative and procedural working memory is presented that relates the two domains of research to each other. Declarative working memory is proposed to hold representations available for processing (including recall and recognition, whereas procedural working memory holds representations that control processing (i. e., task sets, stimulus-response mappings, and executive control settings. The framework motivates two hypotheses: Declarative and procedural working memory have separate capacity limits, and they operate by analogous principles. The framework also suggests a new characterization of executive functions as the subset of processes governed by procedural working memory that has as its output a change in the conditions of operation of the working-memory system.

  10. Working Memory Capacity and Fluid Intelligence: Maintenance and Disengagement.

    Science.gov (United States)

    Shipstead, Zach; Harrison, Tyler L; Engle, Randall W

    2016-11-01

    Working memory capacity and fluid intelligence have been demonstrated to be strongly correlated traits. Typically, high working memory capacity is believed to facilitate reasoning through accurate maintenance of relevant information. In this article, we present a proposal reframing this issue, such that tests of working memory capacity and fluid intelligence are seen as measuring complementary processes that facilitate complex cognition. Respectively, these are the ability to maintain access to critical information and the ability to disengage from or block outdated information. In the realm of problem solving, high working memory capacity allows a person to represent and maintain a problem accurately and stably, so that hypothesis testing can be conducted. However, as hypotheses are disproven or become untenable, disengaging from outdated problem solving attempts becomes important so that new hypotheses can be generated and tested. From this perspective, the strong correlation between working memory capacity and fluid intelligence is due not to one ability having a causal influence on the other but to separate attention-demanding mental functions that can be contrary to one another but are organized around top-down processing goals. © The Author(s) 2016.

  11. Working memory capacity in generalized social phobia.

    Science.gov (United States)

    Amir, Nader; Bomyea, Jessica

    2011-05-01

    Research suggests that understanding complex social cues depends on the availability of cognitive resources (e.g., Phillips, Channon, Tunstall, Hedenstrom, & Lyons, 2008). In spite of evidence suggesting that executive control functioning may impact anxiety (e.g., Eysenck, Derakshan, Santos, & Calvo, 2007), relatively few studies have examined working memory in individuals with generalized social phobia. Moreover, few studies have examined the role of threat-relevant content in working memory performance in clinically anxious populations. To this end, the present study assessed working memory capacity (WMC) in individuals with generalized social phobia and nonanxious controls using an operation span task with threat-relevant and neutral stimuli. Results revealed that nonanxious individuals demonstrated better WMC than individuals with generalized social phobia for neutral words but not for social threat words. Individuals with generalized social phobia demonstrated better WMC performance for threat words relative to neutral words. These results suggest that individuals with generalized social phobia may have relatively enhanced working memory performance for salient, socially relevant information. This enhanced working memory capacity for threat-relevant information may be the result of practice with this information in generalized social phobia.

  12. Influence of Synaptic Depression on Memory Storage Capacity

    Science.gov (United States)

    Otsubo, Yosuke; Nagata, Kenji; Oizumi, Masafumi; Okada, Masato

    2011-08-01

    Synaptic efficacy between neurons is known to change within a short time scale dynamically. Neurophysiological experiments show that high-frequency presynaptic inputs decrease synaptic efficacy between neurons. This phenomenon is called synaptic depression, a short term synaptic plasticity. Many researchers have investigated how the synaptic depression affects the memory storage capacity. However, the noise has not been taken into consideration in their analysis. By introducing ``temperature'', which controls the level of the noise, into an update rule of neurons, we investigate the effects of synaptic depression on the memory storage capacity in the presence of the noise. We analytically compute the storage capacity by using a statistical mechanics technique called Self Consistent Signal to Noise Analysis (SCSNA). We find that the synaptic depression decreases the storage capacity in the case of finite temperature in contrast to the case of the low temperature limit, where the storage capacity does not change.

  13. Visual selective attention is equally functional for individuals with low and high working memory capacity: evidence from accuracy and eye movements.

    Science.gov (United States)

    Mall, Jonathan T; Morey, Candice C; Wolff, Michael J; Lehnert, Franziska

    2014-10-01

    Selective attention and working memory capacity (WMC) are related constructs, but debate about the manner in which they are related remains active. One elegant explanation of variance in WMC is that the efficiency of filtering irrelevant information is the crucial determining factor, rather than differences in capacity per se. We examined this hypothesis by relating WMC (as measured by complex span tasks) to accuracy and eye movements during visual change detection tasks with different degrees of attentional filtering and allocation requirements. Our results did not indicate strong filtering differences between high- and low-WMC groups, and where differences were observed, they were counter to those predicted by the strongest attentional filtering hypothesis. Bayes factors indicated evidence favoring positive or null relationships between WMC and correct responses to unemphasized information, as well as between WMC and the time spent looking at unemphasized information. These findings are consistent with the hypothesis that individual differences in storage capacity, not only filtering efficiency, underlie individual differences in working memory.

  14. Visual Working Memory Capacity for Emotional Facial Expressions

    Directory of Open Access Journals (Sweden)

    Domagoj Švegar

    2011-12-01

    Full Text Available The capacity of visual working memory is limited to no more than four items. At the same time, it is limited not only by the number of objects, but also by the total amount of information that needs to be memorized, and the relation between the information load per object and the number of objects that can be stored into visual working memory is inverse. The objective of the present experiment was to compute visual working memory capacity for emotional facial expressions, and in order to do so, change detection tasks were applied. Pictures of human emotional facial expressions were presented to 24 participants in 1008 experimental trials, each of which began with a presentation of a fixation mark, which was followed by a short simultaneous presentation of six emotional facial expressions. After that, a blank screen was presented, and after such inter-stimulus interval, one facial expression was presented at one of previously occupied locations. Participants had to answer if the facial expression presented at test is different or identical as the expression presented at that same location before the retention interval. Memory capacity was estimated through accuracy of responding, by the formula constructed by Pashler (1988, adopted from signal detection theory. It was found that visual working memory capacity for emotional facial expressions equals 3.07, which is high compared to capacity for facial identities and other visual stimuli. The obtained results were explained within the framework of evolutionary psychology.

  15. Working memory capacity and the spacing effect in cued recall.

    Science.gov (United States)

    Delaney, Peter F; Godbole, Namrata R; Holden, Latasha R; Chang, Yoojin

    2018-07-01

    Spacing repetitions typically improves memory (the spacing effect). In three cued recall experiments, we explored the relationship between working memory capacity and the spacing effect. People with higher working memory capacity are more accurate on memory tasks that require retrieval relative to people with lower working memory capacity. The experiments used different retention intervals and lags between repetitions, but were otherwise similar. Working memory capacity and spacing of repetitions both improved memory in most of conditions, but they did not interact, suggesting additive effects. The results are consistent with the ACT-R model's predictions, and with a study-phase recognition process underpinning the spacing effect in cued recall.

  16. Detection of charge storage on molecular thin films of tris(8-hydroxyquinoline) aluminum (Alq3) by Kelvin force microscopy: a candidate system for high storage capacity memory cells.

    Science.gov (United States)

    Paydavosi, Sarah; Aidala, Katherine E; Brown, Patrick R; Hashemi, Pouya; Supran, Geoffrey J; Osedach, Timothy P; Hoyt, Judy L; Bulović, Vladimir

    2012-03-14

    Retention and diffusion of charge in tris(8-hydroxyquinoline) aluminum (Alq(3)) molecular thin films are investigated by injecting electrons and holes via a biased conductive atomic force microscopy tip into the Alq(3) films. After the charge injection, Kelvin force microscopy measurements reveal minimal changes with time in the spatial extent of the trapped charge domains within Alq(3) films, even for high hole and electron densities of >10(12) cm(-2). We show that this finding is consistent with the very low mobility of charge carriers in Alq(3) thin films (<10(-7) cm(2)/(Vs)) and that it can benefit from the use of Alq(3) films as nanosegmented floating gates in flash memory cells. Memory capacitors using Alq(3) molecules as the floating gate are fabricated and measured, showing durability over more than 10(4) program/erase cycles and the hysteresis window of up to 7.8 V, corresponding to stored charge densities as high as 5.4 × 10(13) cm(-2). These results demonstrate the potential for use of molecular films in high storage capacity nonvolatile memory cells. © 2012 American Chemical Society

  17. Quantum capacity of dephasing channels with memory

    International Nuclear Information System (INIS)

    D'Arrigo, A; Benenti, G; Falci, G

    2007-01-01

    We show that the amount of coherent quantum information that can be reliably transmitted down a dephasing channel with memory is maximized by separable input states. In particular, we model the channel as a Markov chain or a multimode environment of oscillators. While in the first model, the maximization is achieved for the maximally mixed input state, in the latter it is convenient to exploit the presence of a decoherence-protected subspace generated by memory effects. We explicitly compute the quantum channel capacity for the first model while numerical simulations suggest a lower bound for the latter. In both cases memory effects enhance the coherent information. We present results valid for arbitrary input size

  18. Working Memory Capacity and Reading Skill Moderate the Effectiveness of Strategy Training in Learning from Hypertext

    Science.gov (United States)

    Naumann, Johannes; Richter, Tobias; Christmann, Ursula; Groeben, Norbert

    2008-01-01

    Cognitive and metacognitive strategies are particularly important for learning with hypertext. The effectiveness of strategy training, however, depends on available working memory resources. Thus, especially learners high on working memory capacity can profit from strategy training, while learners low on working memory capacity might easily be…

  19. Limited capacity for contour curvature in iconic memory.

    Science.gov (United States)

    Sakai, Koji

    2006-06-01

    We measured the difference threshold for contour curvature in iconic memory by using the cued discrimination method. The study stimulus consisting of 2 to 6 curved contours was briefly presented in the fovea, followed by two lines as cues. Subjects discriminated the curvature of two cued curves. The cue delays were 0 msec. and 300 msec. in Exps. 1 and 2, respectively, and 50 msec. before the study offset in Exp. 3. Analysis of data from Exps. 1 and 2 showed that the Weber fraction rose monotonically with the increase in set size. Clear set-size effects indicate that iconic memory has a limited capacity. Moreover, clear set-size effect in Exp. 3 indicates that perception itself has a limited capacity. Larger set-size effects in Exp. 1 than in Exp. 3 suggest that iconic memory after perceptual process has limited capacity. These properties of iconic memory at threshold level are contradictory to the traditional view that iconic memory has a high capacity both at suprathreshold and categorical levels.

  20. Working Memory Capacity as a Dynamic Process

    Science.gov (United States)

    Simmering, Vanessa R.; Perone, Sammy

    2013-01-01

    A well-known characteristic of working memory (WM) is its limited capacity. The source of such limitations, however, is a continued point of debate. Developmental research is positioned to address this debate by jointly identifying the source(s) of limitations and the mechanism(s) underlying capacity increases. Here we provide a cross-domain survey of studies and theories of WM capacity development, which reveals a complex picture: dozens of studies from 50 papers show nearly universal increases in capacity estimates with age, but marked variation across studies, tasks, and domains. We argue that the full pattern of performance cannot be captured through traditional approaches emphasizing single causes, or even multiple separable causes, underlying capacity development. Rather, we consider WM capacity as a dynamic process that emerges from a unified cognitive system flexibly adapting to the context and demands of each task. We conclude by enumerating specific challenges for researchers and theorists that will need to be met in order to move our understanding forward. PMID:23335902

  1. CSTI High Capacity Power

    International Nuclear Information System (INIS)

    Winter, J.M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed

  2. Working memory capacity and redundant information processing efficiency.

    Science.gov (United States)

    Endres, Michael J; Houpt, Joseph W; Donkin, Chris; Finn, Peter R

    2015-01-01

    Working memory capacity (WMC) is typically measured by the amount of task-relevant information an individual can keep in mind while resisting distraction or interference from task-irrelevant information. The current research investigated the extent to which differences in WMC were associated with performance on a novel redundant memory probes (RMP) task that systematically varied the amount of to-be-remembered (targets) and to-be-ignored (distractor) information. The RMP task was designed to both facilitate and inhibit working memory search processes, as evidenced by differences in accuracy, response time, and Linear Ballistic Accumulator (LBA) model estimates of information processing efficiency. Participants (N = 170) completed standard intelligence tests and dual-span WMC tasks, along with the RMP task. As expected, accuracy, response-time, and LBA model results indicated memory search and retrieval processes were facilitated under redundant-target conditions, but also inhibited under mixed target/distractor and redundant-distractor conditions. Repeated measures analyses also indicated that, while individuals classified as high (n = 85) and low (n = 85) WMC did not differ in the magnitude of redundancy effects, groups did differ in the efficiency of memory search and retrieval processes overall. Results suggest that redundant information reliably facilitates and inhibits the efficiency or speed of working memory search, and these effects are independent of more general limits and individual differences in the capacity or space of working memory.

  3. Working memory capacity and task goals modulate error-related ERPs.

    Science.gov (United States)

    Coleman, James R; Watson, Jason M; Strayer, David L

    2018-03-01

    The present study investigated individual differences in information processing following errant behavior. Participants were initially classified as high or as low working memory capacity using the Operation Span Task. In a subsequent session, they then performed a high congruency version of the flanker task under both speed and accuracy stress. We recorded ERPs and behavioral measures of accuracy and response time in the flanker task with a primary focus on processing following an error. The error-related negativity was larger for the high working memory capacity group than for the low working memory capacity group. The positivity following an error (Pe) was modulated to a greater extent by speed-accuracy instruction for the high working memory capacity group than for the low working memory capacity group. These data help to explicate the neural bases of individual differences in working memory capacity and cognitive control. © 2017 Society for Psychophysiological Research.

  4. The influence of lapses of attention on working memory capacity.

    Science.gov (United States)

    Unsworth, Nash; Robison, Matthew K

    2016-02-01

    In three experiments, the influence of lapses of attention on working memory (WM) capacity measures was examined. Participants performed various change detection tasks while also reporting whether they were focused on the current task or whether they were unfocused and mind-wandering. Participants reported that they were mind-wandering roughly 27% of the time, and when participants reported mind-wandering, their performance was worse compared to when they reported being on-task. Low WM capacity individuals reported more mind-wandering and lapses of attention than high WM capacity individuals, and mind-wandering and filtering abilities were shown to make independent contributions to capacity estimates. These results provide direct support for the notion that the ability to focus attention on-task and prevent lapses of attention is an important contributor to performance on measures of WM capacity.

  5. The Impact of Strategy Instruction and Timing of Estimates on Low and High Working-Memory Capacity Readers' Absolute Monitoring Accuracy

    Science.gov (United States)

    Linderholm, Tracy; Zhao, Qin

    2008-01-01

    Working-memory capacity, strategy instruction, and timing of estimates were investigated for their effects on absolute monitoring accuracy, which is the difference between estimated and actual reading comprehension test performance. Participants read two expository texts under one of two randomly assigned reading strategy instruction conditions…

  6. Differences in Low and High Working-Memory Capacity Readers' Cognitive and Metacognitive Processing Patterns as a Function of Reading for Different Purposes

    Science.gov (United States)

    Linderholm, Tracy; Cong, Xiaosi; Zhao, Qin

    2008-01-01

    Differences in cognitive and metacognitive processing patterns as a function of working-memory capacity and reading for different purposes were examined in college-aged readers by collecting reading times and calculating absolute monitoring accuracy, which is the difference between estimated and actual comprehension test performance. Readers read…

  7. Working Memory Capacity and Mobile Multimedia Learning Environments: Individual Differences in Learning While Mobile

    Science.gov (United States)

    Doolittle, Peter E.; Mariano, Gina J.

    2008-01-01

    The present study examined the effects of individual differences in working memory capacity (WMC) on learning from an historical inquiry multimedia tutorial in stationary versus mobile learning environments using a portable digital media player (i.e., iPod). Students with low (n = 44) and high (n = 40) working memory capacity, as measured by the…

  8. Can Planning Time Compensate for Individual Differences in Working Memory Capacity?

    Science.gov (United States)

    Nielson, Katharine B.

    2014-01-01

    Language learners with high working memory capacity have an advantage, all other factors being equal, during the second language acquisition (SLA) process; therefore, identifying a pedagogical intervention that can compensate for low working memory capacity would be advantageous to language learners and instructors. Extensive research on the…

  9. Multimedia Learning and Individual Differences: Mediating the Effects of Working Memory Capacity with Segmentation

    Science.gov (United States)

    Lusk, Danielle L.; Evans, Amber D.; Jeffrey, Thomas R.; Palmer, Keith R.; Wikstrom, Chris S.; Doolittle, Peter E.

    2009-01-01

    Research in multimedia learning lacks an emphasis on individual difference variables, such as working memory capacity (WMC). The effects of WMC and the segmentation of multimedia instruction were examined by assessing the recall and application of low (n = 66) and high (n = 67) working memory capacity students randomly assigned to either a…

  10. 1990s: High Capacity Backbones

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. 1990s: High Capacity Backbones. Backbone capacities increased from 2.5 Gb/s to 100s of Gb/s during the 1990's. Wavelength division multiplexing with 160 waves of 10 Gb/s was commercially available. Several high-capacity backbones built in the US and Europe.

  11. A one-stage, high-load capacity separation actuator using anti-friction rollers and redundant shape memory alloy wires.

    Science.gov (United States)

    Xiaojun, Yan; Dawei, Huang; Xiaoyong, Zhang; Ying, Liu; Qiaolong, Yang

    2015-12-01

    This paper proposes a SMA (shape memory alloy) wire-based separation actuator with high-load capacity and simple structure. The novel actuator is based on a one-stage locking mechanism, which means that the separation is directly driven by the SMA wire. To release a large preload, a group of anti-friction rollers are adopted to reduce the force for triggering. In addition, two SMA wires are used redundantly to ensure a high reliability. After separation, the actuator can be reset automatically without any auxiliary tool or manual operation. Three prototypes of the separation actuator are fabricated and tested. According to the performance test results, the actuator can release a maximum preload of 40 kN. The separation time tends to decrease as the operation current increases and it can be as short as 0.5 s under a 7.5 A (the voltage is 5.8 V) current. Lifetime test indicates that the actuator has a lifetime of more than 50 cycles. The environmental tests demonstrate that the actuator can endure the typical thermal and vibration environment tests without unexpected separation or structure damage, and separate normally after these environment tests.

  12. Goal-neglect links Stroop interference with working memory capacity

    NARCIS (Netherlands)

    Morey, C.C.; Elliott, E.M.; Wiggers, J.; Eaves, S.L.; Shelton, J.T.; Mall, Jonathan

    2012-01-01

    Relationships between Stroop interference and working memory capacity may reflect individual differences in resolving conflict, susceptibility to goal neglect, or both of these factors. We compared relationships between working memory capacity and three Stroop tasks: a classic, printed color-word

  13. Massive parallel optical pattern recognition and retrieval via a two-stage high-capacity multichannel holographic random access memory system

    International Nuclear Information System (INIS)

    Cai, Luzhong; Liu, Hua-Kuang

    2000-01-01

    The multistage holographic optical random access memory (HORAM) system reported recently by Liu et al. provides a new degree of freedom for improving storage capacity. We further present a theoretical and practical analysis of the HORAM system with experimental results. Our discussions include the system design and geometrical requirements, its applications for multichannel pattern recognition and associative memory, the 2-D and 3-D information storage capacity, and multichannel image storage and retrieval via VanderLugt correlator (VLC) filters and joint transform holograms. A series of experiments are performed to demonstrate the feasibility of the multichannel pattern recognition and image retrieval with both the VLC and joint transform correlator (JTC) architectures. The experimental results with as many as 2025 channels show good agreement with the theoretical analysis. (c) 2000 Society of Photo-Optical Instrumentation Engineers

  14. The reliability and stability of visual working memory capacity.

    Science.gov (United States)

    Xu, Z; Adam, K C S; Fang, X; Vogel, E K

    2018-04-01

    Because of the central role of working memory capacity in cognition, many studies have used short measures of working memory capacity to examine its relationship to other domains. Here, we measured the reliability and stability of visual working memory capacity, measured using a single-probe change detection task. In Experiment 1, the participants (N = 135) completed a large number of trials of a change detection task (540 in total, 180 each of set sizes 4, 6, and 8). With large numbers of both trials and participants, reliability estimates were high (α > .9). We then used an iterative down-sampling procedure to create a look-up table for expected reliability in experiments with small sample sizes. In Experiment 2, the participants (N = 79) completed 31 sessions of single-probe change detection. The first 30 sessions took place over 30 consecutive days, and the last session took place 30 days later. This unprecedented number of sessions allowed us to examine the effects of practice on stability and internal reliability. Even after much practice, individual differences were stable over time (average between-session r = .76).

  15. The influence of working memory capacity on experimental heat pain.

    Science.gov (United States)

    Nakae, Aya; Endo, Kaori; Adachi, Tomonori; Ikeda, Takashi; Hagihira, Satoshi; Mashimo, Takashi; Osaka, Mariko

    2013-10-01

    Pain processing and attention have a bidirectional interaction that depends upon one's relative ability to use limited-capacity resources. However, correlations between the size of limited-capacity resources and pain have not been evaluated. Working memory capacity, which is a cognitive resource, can be measured using the reading span task (RST). In this study, we hypothesized that an individual's potential working memory capacity and subjective pain intensity are related. To test this hypothesis, we evaluated 31 healthy participants' potential working memory capacity using the RST, and then applied continuous experimental heat stimulation using the listening span test (LST), which is a modified version of the RST. Subjective pain intensities were significantly lower during the challenging parts of the RST. The pain intensity under conditions where memorizing tasks were performed was compared with that under the control condition, and it showed a correlation with potential working memory capacity. These results indicate that working memory capacity reflects the ability to process information, including precise evaluations of changes in pain perception. In this work, we present data suggesting that changes in subjective pain intensity are related, depending upon individual potential working memory capacities. Individual working memory capacity may be a phenotype that reflects sensitivity to changes in pain perception. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  16. Working memory capacity as controlled attention in tactical decision making.

    Science.gov (United States)

    Furley, Philip A; Memmert, Daniel

    2012-06-01

    The controlled attention theory of working memory capacity (WMC, Engle 2002) suggests that WMC represents a domain free limitation in the ability to control attention and is predictive of an individual's capability of staying focused, avoiding distraction and impulsive errors. In the present paper we test the predictive power of WMC in computer-based sport decision-making tasks. Experiment 1 demonstrated that high-WMC athletes were better able at focusing their attention on tactical decision making while blocking out irrelevant auditory distraction. Experiment 2 showed that high-WMC athletes were more successful at adapting their tactical decision making according to the situation instead of relying on prepotent inappropriate decisions. The present results provide additional but also unique support for the controlled attention theory of WMC by demonstrating that WMC is predictive of controlling attention in complex settings among different modalities and highlight the importance of working memory in tactical decision making.

  17. Individual differences in working memory capacity predict visual attention allocation.

    Science.gov (United States)

    Bleckley, M Kathryn; Durso, Francis T; Crutchfield, Jerry M; Engle, Randall W; Khanna, Maya M

    2003-12-01

    To the extent that individual differences in working memory capacity (WMC) reflect differences in attention (Baddeley, 1993; Engle, Kane, & Tuholski, 1999), differences in WMC should predict performance on visual attention tasks. Individuals who scored in the upper and lower quartiles on the OSPAN working memory test performed a modification of Egly and Homa's (1984) selective attention task. In this task, the participants identified a central letter and localized a displaced letter flashed somewhere on one of three concentric rings. When the displaced letter occurred closer to fixation than the cue implied, high-WMC, but not low-WMC, individuals showed a cost in the letter localization task. This suggests that low-WMC participants allocated attention as a spotlight, whereas those with high WMC showed flexible allocation.

  18. Focusing on Attention: The Effects of Working Memory Capacity and Load on Selective Attention.

    OpenAIRE

    Ahmed, Lubna; de Fockert, Jan

    2012-01-01

    Background\\ud \\ud Working memory (WM) is imperative for effective selective attention. Distractibility is greater under conditions of high (vs. low) concurrent working memory load (WML), and in individuals with low (vs. high) working memory capacity (WMC). In the current experiments, we recorded the flanker task performance of individuals with high and low WMC during low and high WML, to investigate the combined effect of WML and WMC on selective attention.\\ud \\ud Methodology/Principal Findin...

  19. Brain oscillatory substrates of visual short-term memory capacity.

    Science.gov (United States)

    Sauseng, Paul; Klimesch, Wolfgang; Heise, Kirstin F; Gruber, Walter R; Holz, Elisa; Karim, Ahmed A; Glennon, Mark; Gerloff, Christian; Birbaumer, Niels; Hummel, Friedhelm C

    2009-11-17

    The amount of information that can be stored in visual short-term memory is strictly limited to about four items. Therefore, memory capacity relies not only on the successful retention of relevant information but also on efficient suppression of distracting information, visual attention, and executive functions. However, completely separable neural signatures for these memory capacity-limiting factors remain to be identified. Because of its functional diversity, oscillatory brain activity may offer a utile solution. In the present study, we show that capacity-determining mechanisms, namely retention of relevant information and suppression of distracting information, are based on neural substrates independent of each other: the successful maintenance of relevant material in short-term memory is associated with cross-frequency phase synchronization between theta (rhythmical neural activity around 5 Hz) and gamma (> 50 Hz) oscillations at posterior parietal recording sites. On the other hand, electroencephalographic alpha activity (around 10 Hz) predicts memory capacity based on efficient suppression of irrelevant information in short-term memory. Moreover, repetitive transcranial magnetic stimulation at alpha frequency can modulate short-term memory capacity by influencing the ability to suppress distracting information. Taken together, the current study provides evidence for a double dissociation of brain oscillatory correlates of visual short-term memory capacity.

  20. Visual working memory capacity and the medial temporal lobe.

    Science.gov (United States)

    Jeneson, Annette; Wixted, John T; Hopkins, Ramona O; Squire, Larry R

    2012-03-07

    Patients with medial temporal lobe (MTL) damage are sometimes impaired at remembering visual information across delays as short as a few seconds. Such impairments could reflect either impaired visual working memory capacity or impaired long-term memory (because attention has been diverted or because working memory capacity has been exceeded). Using a standard change-detection task, we asked whether visual working memory capacity is intact or impaired after MTL damage. Five patients with hippocampal lesions and one patient with large MTL lesions saw an array of 1, 2, 3, 4, or 6 colored squares, followed after 3, 4, or 8 s by a second array where one of the colored squares was cued. The task was to decide whether the cued square had the same color as the corresponding square in the first array or a different color. At the 1 s delay typically used to assess working memory capacity, patients performed as well as controls at all array sizes. At the longer delays, patients performed as well as controls at small array sizes, thought to be within the capacity limit, and worse than controls at large array sizes, thought to exceed the capacity limit. The findings suggest that visual working memory capacity in humans is intact after damage to the MTL structures and that damage to these structures impairs performance only when visual working memory is insufficient to support performance.

  1. The relationship between sustained inattentional blindness and working memory capacity.

    Science.gov (United States)

    Beanland, Vanessa; Chan, Esther Hiu Chung

    2016-04-01

    Inattentional blindness, whereby observers fail to detect unexpected stimuli, has been robustly demonstrated in a range of situations. Originally research focused primarily on how stimulus characteristics and task demands affect inattentional blindness, but increasingly studies are exploring the influence of observer characteristics on the detection of unexpected stimuli. It has been proposed that individual differences in working memory capacity predict inattentional blindness, on the assumption that higher working memory capacity confers greater attentional capacity for processing unexpected stimuli. Unfortunately, empirical investigations of the association between inattentional blindness and working memory capacity have produced conflicting findings. To help clarify this relationship, we examined the relationship between inattentional blindness and working memory capacity in two samples (Ns = 195, 147) of young adults. We used three common variants of sustained inattentional blindness tasks, systematically manipulating the salience of the unexpected stimulus and primary task practice. Working memory capacity, measured by automated operation span (both Experiments 1 & 2) and N-back (Experiment 1 only) tasks, did not predict detection of the unexpected stimulus in any of the inattentional blindness tasks tested. Together with previous research, this undermines claims that there is a robust relationship between inattentional blindness and working memory capacity. Rather, it appears that any relationship between inattentional blindness and working memory is either too small to have practical significance or is moderated by other factors and consequently varies with attributes such as the sample characteristics within a given study.

  2. The Development of Visual Working Memory Capacity during Early Childhood

    Science.gov (United States)

    Simmering, Vanessa R.

    2012-01-01

    The change detection task has been used in dozens of studies with adults to measure visual working memory capacity. Two studies have recently tested children in this task, suggesting a gradual increase in capacity from 5 years to adulthood. These results contrast with findings from an infant looking paradigm suggesting that capacity reaches…

  3. Attentional flexibility and memory capacity in conductors and pianists.

    Science.gov (United States)

    Wöllner, Clemens; Halpern, Andrea R

    2016-01-01

    Individuals with high working memory (WM) capacity also tend to have better selective and divided attention. Although both capacities are essential for skilled performance in many areas, evidence for potential training and expertise effects is scarce. We investigated the attentional flexibility of musical conductors by comparing them to equivalently trained pianists. Conductors must focus their attention both on individual instruments and on larger sections of different instruments. We studied students and professionals in both domains to assess the contributions of age and training to these skills. Participants completed WM span tests for auditory and visual (notated) pitches and timing durations, as well as long-term memory tests. In three dichotic attention tasks, they were asked to detect small pitch and timing deviations from two melodic streams presented in baseline (separate streams), selective-attention (concentrating on only one stream), and divided-attention (concentrating on targets in both streams simultaneously) conditions. Conductors were better than pianists in detecting timing deviations in divided attention, and experts detected more targets than students. We found no group differences for WM capacity or for pitch deviations in the attention tasks, even after controlling for the older age of the experts. Musicians' WM spans across multimodal conditions were positively related to selective and divided attention. High-WM participants also had shorter reaction times in selective attention. Taken together, conductors showed higher attentional flexibility in successfully switching between different foci of attention.

  4. Negative affect improves the quality of memories: trading capacity for precision in sensory and working memory.

    Science.gov (United States)

    Spachtholz, Philipp; Kuhbandner, Christof; Pekrun, Reinhard

    2014-08-01

    Research has shown that negative affect reduces working memory capacity. Commonly, this effect has been attributed to an allocation of resources to task-irrelevant thoughts, suggesting that negative affect has detrimental consequences for working memory performance. However, rather than simply being a detrimental effect, the affect-induced capacity reduction may reflect a trading of capacity for precision of stored representations. To test this hypothesis, we induced neutral or negative affect and concurrently measured the number and precision of representations stored in sensory and working memory. Compared with neutral affect, negative affect reduced the capacity of both sensory and working memory. However, in both memory systems, this decrease in capacity was accompanied by an increase in precision. These findings demonstrate that observers unintentionally trade capacity for precision as a function of affective state and indicate that negative affect can be beneficial for the quality of memories. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  5. Effective visual working memory capacity: an emergent effect from the neural dynamics in an attractor network.

    Directory of Open Access Journals (Sweden)

    Laura Dempere-Marco

    Full Text Available The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1 the presence of a visually salient item reduces the number of items that can be held in working memory, and 2 visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC in contrast to the maximal upper capacity limit only reached under ideal conditions.

  6. Effective visual working memory capacity: an emergent effect from the neural dynamics in an attractor network.

    Science.gov (United States)

    Dempere-Marco, Laura; Melcher, David P; Deco, Gustavo

    2012-01-01

    The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions.

  7. Effective Visual Working Memory Capacity: An Emergent Effect from the Neural Dynamics in an Attractor Network

    Science.gov (United States)

    Dempere-Marco, Laura; Melcher, David P.; Deco, Gustavo

    2012-01-01

    The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions. PMID:22952608

  8. Working memory training may increase working memory capacity but not fluid intelligence.

    Science.gov (United States)

    Harrison, Tyler L; Shipstead, Zach; Hicks, Kenny L; Hambrick, David Z; Redick, Thomas S; Engle, Randall W

    2013-12-01

    Working memory is a critical element of complex cognition, particularly under conditions of distraction and interference. Measures of working memory capacity correlate positively with many measures of real-world cognition, including fluid intelligence. There have been numerous attempts to use training procedures to increase working memory capacity and thereby performance on the real-world tasks that rely on working memory capacity. In the study reported here, we demonstrated that training on complex working memory span tasks leads to improvement on similar tasks with different materials but that such training does not generalize to measures of fluid intelligence.

  9. The storage capacity of Potts models for semantic memory retrieval

    Science.gov (United States)

    Kropff, Emilio; Treves, Alessandro

    2005-08-01

    We introduce and analyse a minimal network model of semantic memory in the human brain. The model is a global associative memory structured as a collection of N local modules, each coding a feature, which can take S possible values, with a global sparseness a (the average fraction of features describing a concept). We show that, under optimal conditions, the number cM of modules connected on average to a module can range widely between very sparse connectivity (high dilution, c_{M}/N\\to 0 ) and full connectivity (c_{M}\\to N ), maintaining a global network storage capacity (the maximum number pc of stored and retrievable concepts) that scales like pc~cMS2/a, with logarithmic corrections consistent with the constraint that each synapse may store up to a fraction of a bit.

  10. Individual Differences in Working Memory Capacity Predicts Responsiveness to Memory Rehabilitation After Traumatic Brain Injury.

    Science.gov (United States)

    Sandry, Joshua; Chiou, Kathy S; DeLuca, John; Chiaravalloti, Nancy D

    2016-06-01

    To explore how individual differences affect rehabilitation outcomes by specifically investigating whether working memory capacity (WMC) can be used as a cognitive marker to identify who will and will not improve from memory rehabilitation. Post hoc analysis of a randomized controlled clinical trial designed to treat learning and memory impairment after traumatic brain injury (TBI): 2 × 2 between-subjects quasiexperimental design (2 [group: treatment vs control] × 2 [WMC: high vs low]). Nonprofit medical rehabilitation research center. Participants (N=65) with moderate to severe TBI with pre- and posttreatment data. The treatment group completed 10 cognitive rehabilitation sessions in which subjects were taught a memory strategy focusing on learning to use context and imagery to remember information. The placebo control group engaged in active therapy sessions that did not involve learning the memory strategy. Long-term memory percent retention change scores for an unorganized list of words from the California Verbal Learning Test-II. Group and WMC interacted (P=.008, ηp(2)=.12). High WMC participants showed a benefit from treatment compared with low WMC participants. Individual differences in WMC accounted for 45% of the variance in whether participants with TBI in the treatment group benefited from applying the compensatory treatment strategy to learn unorganized information. Individuals with higher WMC showed a significantly greater rehabilitation benefit when applying the compensatory strategy to learn unorganized information. WMC is a useful cognitive marker for identifying participants with TBI who respond to memory rehabilitation with the modified Story Memory Technique. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Human short-term spatial memory: precision predicts capacity.

    Science.gov (United States)

    Banta Lavenex, Pamela; Boujon, Valérie; Ndarugendamwo, Angélique; Lavenex, Pierre

    2015-03-01

    Here, we aimed to determine the capacity of human short-term memory for allocentric spatial information in a real-world setting. Young adults were tested on their ability to learn, on a trial-unique basis, and remember over a 1-min interval the location(s) of 1, 3, 5, or 7 illuminating pads, among 23 pads distributed in a 4m×4m arena surrounded by curtains on three sides. Participants had to walk to and touch the pads with their foot to illuminate the goal locations. In contrast to the predictions from classical slot models of working memory capacity limited to a fixed number of items, i.e., Miller's magical number 7 or Cowan's magical number 4, we found that the number of visited locations to find the goals was consistently about 1.6 times the number of goals, whereas the number of correct choices before erring and the number of errorless trials varied with memory load even when memory load was below the hypothetical memory capacity. In contrast to resource models of visual working memory, we found no evidence that memory resources were evenly distributed among unlimited numbers of items to be remembered. Instead, we found that memory for even one individual location was imprecise, and that memory performance for one location could be used to predict memory performance for multiple locations. Our findings are consistent with a theoretical model suggesting that the precision of the memory for individual locations might determine the capacity of human short-term memory for spatial information. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. L2 Working Memory Capacity and L2 Reading Skill.

    Science.gov (United States)

    Harrington, Mike; Sawyer, Mark

    1992-01-01

    Examines the sensitivity of second-language (L2) working memory (ability to store and process information simultaneously) to differences in reading skills among advanced L2 learners. Subjects with larger L2 working memory capacities scored higher on measures of L2 reading skills, but no correlation was found between reading and passive short-term…

  13. Tone Series and the Nature of Working Memory Capacity Development

    Science.gov (United States)

    Clark, Katherine M.; Hardman, Kyle O.; Schachtman, Todd R.; Saults, J. Scott; Glass, Bret A.; Cowan, Nelson

    2018-01-01

    Recent advances in understanding visual working memory, the limited information held in mind for use in ongoing processing, are extended here to examine auditory working memory development. Research with arrays of visual objects has shown how to distinguish the capacity, in terms of the "number" of objects retained, from the…

  14. Socially anxious individuals with low working memory capacity could not inhibit the goal-irrelevant information.

    Science.gov (United States)

    Moriya, Jun; Sugiura, Yoshinori

    2013-01-01

    Socially anxious individuals are interfered by distractors. Recent work has suggested that low working memory capacity and inappropriate temporary goal induce attention to distractors. We investigated the effects of working memory capacity and temporary goal on attention to distractors in social anxiety. Participants viewed a rapid serial visual presentation, in which participants reported the identity of a single target letter drawn in red. Distractors appeared before the target was presented. When the color of distractors was red (i.e., goal-relevant stimuli), low-capacity individuals were strongly interfered by the distractors compared to high-capacity individuals regardless of social anxiety. When the color of distractors was goal-irrelevant, low-capacity and high socially anxious individuals were strongly interfered by the distractors. These results suggest that socially anxious individuals with low working memory capacity could not inhibit the goal-irrelevant information and direct attention to distractors.

  15. Socially Anxious Individuals with Low Working Memory Capacity Could Not Inhibit the Goal-Irrelevant Information

    Directory of Open Access Journals (Sweden)

    Jun eMoriya

    2013-12-01

    Full Text Available Socially anxious individuals are interfered by distractors. Recent work has suggested that low working memory capacity and inappropriate temporary goal induce attentional capture to distractors. We investigated the effects of working memory capacity and temporary goal on attentional capture to distractors in social anxiety. Participants viewed a rapid serial visual presentation, in which participants reported the identity of a single target letter drawn in red. Distractors appeared before the target was presented. When the color of distractors was red (i.e., goal-relevant stimuli, low-capacity individuals were strongly interfered by the distractors compared to high-capacity individuals regardless of social anxiety. When the color of distractors was goal-irrelevant, low-capacity and high socially anxious individuals were strongly interfered by the distractors. These results suggest that socially anxious individuals with low working memory capacity could not inhibit the goal-irrelevant information and direct attention to distractors.

  16. Effects of strategy on visual working memory capacity.

    Science.gov (United States)

    Bengson, Jesse J; Luck, Steven J

    2016-02-01

    Substantial evidence suggests that individual differences in estimates of working memory capacity reflect differences in how effectively people use their intrinsic storage capacity. This suggests that estimated capacity could be increased by instructions that encourage more effective encoding strategies. The present study tested this by giving different participants explicit strategy instructions in a change detection task. Compared to a condition in which participants were simply told to do their best, we found that estimated capacity was increased for participants who were instructed to remember the entire visual display, even at set sizes beyond their capacity. However, no increase in estimated capacity was found for a group that was told to focus on a subset of the items in supracapacity arrays. This finding confirms the hypothesis that encoding strategies may influence visual working memory performance, and it is contrary to the hypothesis that the optimal strategy is to filter out any items beyond the storage capacity.

  17. Effects of noise and working memory capacity on memory processing of speech for hearing-aid users.

    Science.gov (United States)

    Ng, Elaine Hoi Ning; Rudner, Mary; Lunner, Thomas; Pedersen, Michael Syskind; Rönnberg, Jerker

    2013-07-01

    It has been shown that noise reduction algorithms can reduce the negative effects of noise on memory processing in persons with normal hearing. The objective of the present study was to investigate whether a similar effect can be obtained for persons with hearing impairment and whether such an effect is dependent on individual differences in working memory capacity. A sentence-final word identification and recall (SWIR) test was conducted in two noise backgrounds with and without noise reduction as well as in quiet. Working memory capacity was measured using a reading span (RS) test. Twenty-six experienced hearing-aid users with moderate to moderately severe sensorineural hearing loss. Noise impaired recall performance. Competing speech disrupted memory performance more than speech-shaped noise. For late list items the disruptive effect of the competing speech background was virtually cancelled out by noise reduction for persons with high working memory capacity. Noise reduction can reduce the adverse effect of noise on memory for speech for persons with good working memory capacity. We argue that the mechanism behind this is faster word identification that enhances encoding into working memory.

  18. Knowledge Cannot Explain the Developmental Growth of Working Memory Capacity

    Science.gov (United States)

    Cowan, Nelson; Ricker, Timothy J.; Clark, Katherine M.; Hinrichs, Garrett A.; Glass, Bret A.

    2015-01-01

    According to some views of cognitive growth, the development of working memory capacity can account for increases in the complexity of cognition. It has been difficult to ascertain, though, that there actually is developmental growth in capacity that cannot be attributed to other developing factors. Here we assess the role of item familiarity. We…

  19. Word-Decoding Skill Interacts with Working Memory Capacity to Influence Inference Generation during Reading

    Science.gov (United States)

    Hamilton, Stephen; Freed, Erin; Long, Debra L.

    2016-01-01

    The aim of this study was to examine predictions derived from a proposal about the relation between word-decoding skill and working memory capacity, called verbal efficiency theory. The theory states that poor word representations and slow decoding processes consume resources in working memory that would otherwise be used to execute high-level…

  20. Differences in Attainment and Performance in a Foreign Language: The Role of Working Memory Capacity

    Science.gov (United States)

    Gilabert, Roger; Munoz, Carmen

    2010-01-01

    The goal of this study is to investigate the role of working memory capacity in L2 attainment and performance. The study uses an L1 reading span task to measure working memory of a group of 59 high-intermediate/advanced learners of English, and a film retelling task to measure their oral production. The analysis first showed a moderate to high…

  1. Working memory capacity predicts dopamine synthesis capacity in the human striatum.

    NARCIS (Netherlands)

    Cools, R.; Gibbs, S.E.; Miyakawa, A.; Jagust, W.; D'Esposito, M.

    2008-01-01

    Evidence from psychopharmacological research has revealed that dopamine receptor agents have opposite effects on cognitive function depending on baseline levels of working memory capacity. These contrasting effects have been interpreted to reflect differential baseline levels of dopamine. Here we

  2. Negative emotional experiences arouse rumination and affect working memory capacity.

    Science.gov (United States)

    Curci, Antonietta; Lanciano, Tiziana; Soleti, Emanuela; Rimé, Bernard

    2013-10-01

    Following an emotional experience, individuals are confronted with the persistence of ruminative thoughts that disturb the undertaking of other activities. In the present study, we experimentally tested the idea that experiencing a negative emotion triggers a ruminative process that drains working memory (WM) resources normally devoted to other tasks. Undergraduate participants of high versus low WM capacity were administered the operation-word memory span test (OSPAN) as a measure of availability of WM resources preceding and following the presentation of negative emotional versus neutral material. Rumination was assessed immediately after the second OSPAN session and at a 24-hr delay. Results showed that both the individual's WM capacity and the emotional valence of the material influenced WM performance and the persistence of ruminative thoughts. Following the experimental induction, rumination mediated the relationship between the negative emotional state and the concomitant WM performance. Based on these results, we argue that ruminative processes deplete WM resources, making them less available for concurrent tasks; in addition, rumination tends to persist over time. These findings have implications for the theoretical modeling of the long-term effects of emotions in both daily life and clinical contexts.

  3. Frequency-specific insight into short-term memory capacity

    OpenAIRE

    Feurra, Matteo; Galli, Giulia; Pavone, Enea Francesco; Rossi, Alessandro; Rossi, Simone

    2016-01-01

    We provided novel evidence of a frequency-specific effect by transcranial alternating current stimulation (tACS) of the left posterior parietal cortex on short-term memory, during a digit span task. the effect was prominent with stimulation at beta frequency for young and not for middle-aged adults and correlated with age. Our findings highlighted a short-term memory capacity improvement by tACS application.

  4. Capacity of oscillatory associative-memory networks with error-free retrieval

    International Nuclear Information System (INIS)

    Nishikawa, Takashi; Lai Yingcheng; Hoppensteadt, Frank C.

    2004-01-01

    Networks of coupled periodic oscillators (similar to the Kuramoto model) have been proposed as models of associative memory. However, error-free retrieval states of such oscillatory networks are typically unstable, resulting in a near zero capacity. This puts the networks at disadvantage as compared with the classical Hopfield network. Here we propose a simple remedy for this undesirable property and show rigorously that the error-free capacity of our oscillatory, associative-memory networks can be made as high as that of the Hopfield network. They can thus not only provide insights into the origin of biological memory, but can also be potentially useful for applications in information science and engineering

  5. Why is working memory capacity related to matrix reasoning tasks?

    Science.gov (United States)

    Harrison, Tyler L; Shipstead, Zach; Engle, Randall W

    2015-04-01

    One of the reasons why working memory capacity is so widely researched is its substantial relationship with fluid intelligence. Although this relationship has been found in numerous studies, researchers have been unable to provide a conclusive answer as to why the two constructs are related. In a recent study, researchers examined which attributes of Raven's Progressive Matrices were most strongly linked with working memory capacity (Wiley, Jarosz, Cushen, & Colflesh, Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 256-263, 2011). In that study, Raven's problems that required a novel combination of rules to solve were more strongly correlated with working memory capacity than were problems that did not. In the present study, we wanted to conceptually replicate the Wiley et al. results while controlling for a few potential confounds. Thus, we experimentally manipulated whether a problem required a novel combination of rules and found that repeated-rule-combination problems were more strongly related to working memory capacity than were novel-rule-combination problems. The relationship to other measures of fluid intelligence did not change based on whether the problem required a novel rule combination.

  6. Strategy use fully mediates the relationship between working memory capacity and performance on Raven's matrices.

    Science.gov (United States)

    Gonthier, Corentin; Thomassin, Noémylle

    2015-10-01

    Working memory capacity consistently correlates with fluid intelligence. It has been suggested that this relationship is partly attributable to strategy use: Participants with high working memory capacity would use more effective strategies, in turn leading to higher performance on fluid intelligence tasks. However, this idea has never been directly investigated. In 2 experiments, we tested this hypothesis by directly manipulating strategy use in a combined experimental-correlational approach (Experiment 1; N = 250) and by measuring strategy use with a self-report questionnaire (Experiment 2; N = 93). Inducing all participants to use an effective strategy in Raven's matrices decreased the correlation between working memory capacity and performance; the strategy use measure fully mediated the relationship between working memory capacity and performance on the matrices task. These findings indicate that individual differences in strategic behavior drive the predictive utility of working memory. We interpret the results within a theoretical framework integrating the multiple mediators of the relationship between working memory capacity and high-level cognition. (c) 2015 APA, all rights reserved).

  7. Working memory capacity predicts conflict-task performance.

    Science.gov (United States)

    Gulbinaite, Rasa; Johnson, Addie

    2014-01-01

    The relationship between the ability to maintain task goals and working memory capacity (WMC) is firmly established, but evidence for WMC-related differences in conflict processing is mixed. We investigated whether WMC (measured using two complex-span tasks) mediates differences in adjustments of cognitive control in response to conflict. Participants performed a Simon task in which congruent and incongruent trials were equiprobable, but in which the proportion of congruency repetitions (congruent trials followed by congruent trials or incongruent trials followed by incongruent trials) and thus the need for trial-by-trial adjustments in cognitive control varied by block. The overall Simon effect did not depend on WMC capacity. However, for the low-WMC participants the Simon effect decreased as the proportion of congruency repetitions decreased, whereas for the high- and average-WMC participants it was relatively constant across conditions. Distribution analysis of the Simon effect showed more evidence for the inhibition of stimulus location in the low- than in the high-WMC participants, especially when the proportion of congruency repetitions was low. We hypothesize that low-WMC individuals exhibit more interference from task-irrelevant information due to weaker preparatory control prior to stimulus presentation and, thus, stronger reliance on reactive recruitment of cognitive control.

  8. A Probabilistic Model of Visual Working Memory: Incorporating Higher Order Regularities into Working Memory Capacity Estimates

    Science.gov (United States)

    Brady, Timothy F.; Tenenbaum, Joshua B.

    2013-01-01

    When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…

  9. Variation in Working Memory Capacity and Temporal-Contextual Retrieval from Episodic Memory

    Science.gov (United States)

    Spillers, Gregory J.; Unsworth, Nash

    2011-01-01

    Unsworth and Engle (2007) recently proposed a model of working memory capacity characterized by, among other things, the ability to conduct a strategic, cue-dependent search of long-term memory. Although this ability has been found to mediate individual variation in a number of higher order cognitive tasks, the component processes involved remain…

  10. The Developmental Influence of Primary Memory Capacity on Working Memory and Academic Achievement

    Science.gov (United States)

    Hall, Debbora; Jarrold, Christopher; Towse, John N.; Zarandi, Amy L.

    2015-01-01

    In this study, we investigate the development of primary memory capacity among children. Children between the ages of 5 and 8 completed 3 novel tasks (split span, interleaved lists, and a modified free-recall task) that measured primary memory by estimating the number of items in the focus of attention that could be spontaneously recalled in…

  11. Neural mechanisms of interference control in working memory capacity.

    Science.gov (United States)

    Bomyea, Jessica; Taylor, Charles T; Spadoni, Andrea D; Simmons, Alan N

    2018-02-01

    The extent to which one can use cognitive resources to keep information in working memory is known to rely on (1) active maintenance of target representations and (2) downregulation of interference from irrelevant representations. Neurobiologically, the global capacity of working memory is thought to depend on the prefrontal and parietal cortices; however, the neural mechanisms involved in controlling interference specifically in working memory capacity tasks remain understudied. In this study, 22 healthy participants completed a modified complex working memory capacity task (Reading Span) with trials of varying levels of interference control demands while undergoing functional MRI. Neural activity associated with interference control demands was examined separately during encoding and recall phases of the task. Results suggested a widespread network of regions in the prefrontal, parietal, and occipital cortices, and the cingulate and cerebellum associated with encoding, and parietal and occipital regions associated with recall. Results align with prior findings emphasizing the importance of frontoparietal circuits for working memory performance, including the role of the inferior frontal gyrus, cingulate, occipital cortex, and cerebellum in regulation of interference demands. © 2017 Wiley Periodicals, Inc.

  12. Separate Capacities for Storing Different Features in Visual Working Memory

    Science.gov (United States)

    Wang, Benchi; Cao, Xiaohua; Theeuwes, Jan; Olivers, Christian N. L.; Wang, Zhiguo

    2017-01-01

    Recent empirical and theoretical work suggests that visual features such as color and orientation can be stored or retrieved independently in visual working memory (VWM), even in cases when they belong to the same object. Yet it remains unclear whether different feature dimensions have their own capacity limits, or whether they compete for shared…

  13. Exploring the Relationship between Modified Output and Working Memory Capacity

    Science.gov (United States)

    Mackey, Alison; Adams, Rebecca; Stafford, Catherine; Winke, Paula

    2010-01-01

    This study examines the relationship between learners' production of modified output and their working memory (WM) capacity. The task-based interactions of 42 college-level, native English-speaking learners of Spanish as a foreign language were examined. A relationship was found between learners' WM test scores and their tendency to modify output.…

  14. Bilingualism and Working Memory Capacity: A Comprehensive Meta-Analysis

    Science.gov (United States)

    Grundy, John G.; Timmer, Kalinka

    2017-01-01

    Bilinguals often outperform monolinguals on executive function tasks, including tasks that tap cognitive flexibility, conflict monitoring, and task-switching abilities. Some have suggested that bilinguals also have greater working memory capacity than comparable monolinguals, but evidence for this suggestion is mixed. We therefore conducted a…

  15. Working memory capacity predicts conflict-task performance

    NARCIS (Netherlands)

    Gulbinaite, Rasa; Johnson, Addie

    The relationship between the ability to maintain task goals and working memory capacity (WMC) is firmly established, but evidence for WMC-related differences in conflict processing is mixed. We investigated whether WMC (measured using two complex-span tasks) mediates differences in adjustments of

  16. Frequency-specific insight into short-term memory capacity.

    Science.gov (United States)

    Feurra, Matteo; Galli, Giulia; Pavone, Enea Francesco; Rossi, Alessandro; Rossi, Simone

    2016-07-01

    The digit span is one of the most widely used memory tests in clinical and experimental neuropsychology for reliably measuring short-term memory capacity. In the forward version, sequences of digits of increasing length have to be reproduced in the order in which they are presented, whereas in the backward version items must be reproduced in the reversed order. Here, we assessed whether transcranial alternating current stimulation (tACS) increases the memory span for digits of young and midlife adults. Imperceptibly weak electrical currents in the alpha (10 Hz), beta (20 Hz), theta (5 Hz), and gamma (40 Hz) range, as well as a sham stimulation, were delivered over the left posterior parietal cortex, a cortical region thought to sustain maintenance processes in short-term memory through oscillatory brain activity in the beta range. We showed a frequency-specific effect of beta-tACS that robustly increased the forward memory span of young, but not middle-aged, healthy individuals. The effect correlated with age: the younger the subjects, the greater the benefit arising from parietal beta stimulation. Our results provide evidence of a short-term memory capacity improvement in young adults by online frequency-specific tACS application. Copyright © 2016 the American Physiological Society.

  17. Maternal scaffolding in a disadvantaged global context: The influence of working memory and cognitive capacities.

    Science.gov (United States)

    Obradović, Jelena; Portilla, Ximena A; Tirado-Strayer, Nicole; Siyal, Saima; Rasheed, Muneera A; Yousafzai, Aisha K

    2017-03-01

    The current study focuses on maternal cognitive capacities as determinants of parenting in a highly disadvantaged global context, where children's experiences at home are often the 1st and only opportunity for learning and intellectual growth. In a large sample of 1,291 biological mothers of preschool-aged children in rural Pakistan, we examined the unique association of maternal working memory skills (independent of related cognitive capacities) with cognitively stimulating parenting behaviors. Path analysis revealed that directly assessed working memory, short-term memory, and verbal intelligence independently predicted greater levels of observed maternal scaffolding behaviors. Mothers from poorer families demonstrated lower levels of working memory, short-term memory, and verbal intelligence. However, mothers' participation in an early childhood parenting intervention that ended 2 years prior to this study contributed to greater levels of working memory skills and verbal intelligence. Further, all 3 domains of maternal cognitive capacity mediated the effect of family economic resources on maternal scaffolding, and verbal intelligence also mediated the effect of early parenting intervention exposure on maternal scaffolding. The study demonstrates the unique relevance of maternal working memory for scaffolding behaviors that required continuously monitoring the child's engagement, providing assistance, and minimizing external distractions. These results highlight the importance of directly targeting maternal cognitive capacities in poor women with little or no formal education, using a 2-generation intervention approach that includes activities known to promote parental executive functioning and literacy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. The Benefits of Working Memory Capacity on Attentional Control under Pressure

    OpenAIRE

    Xiaoxiao Luo; Liwei Zhang; Jin Wang

    2017-01-01

    The present study aimed to examine the effects of working memory capacity (WMC) and state anxiety (SA) on attentional control. WMC was manipulated by (a) dividing participants into low- and high-WMC groups (Experiment 1), and (b) using working memory training to improve WMC (Experiment 2). SA was manipulated by creating low- and high-SA conditions. Attentional control was evaluated by using antisaccade task. Results demonstrated that (a) higher WMC indicated better attentional control (Experi...

  19. Quantum entanglement enhances the capacity of bosonic channels with memory

    International Nuclear Information System (INIS)

    Cerf, Nicolas J.; Clavareau, Julien; Macchiavello, Chiara; Roland, Jeremie

    2005-01-01

    The bosonic quantum channels have recently attracted a growing interest, motivated by the hope that they open a tractable approach to the generally hard problem of evaluating quantum channel capacities. These studies, however, have always been restricted to memoryless channels. Here, it is shown that the classical capacity of a bosonic Gaussian channel with memory can be significantly enhanced if entangled symbols are used instead of product symbols. For example, the capacity of a photonic channel with 70%-correlated thermal noise of one-third the shot noise is enhanced by about 11% when using 3.8-dB entangled light with a modulation variance equal to the shot noise

  20. High-bandwidth memory interface

    CERN Document Server

    Kim, Chulwoo; Song, Junyoung

    2014-01-01

    This book provides an overview of recent advances in memory interface design at both the architecture and circuit levels. Coverage includes signal integrity and testing, TSV interface, high-speed serial interface including equalization, ODT, pre-emphasis, wide I/O interface including crosstalk, skew cancellation, and clock generation and distribution. Trends for further bandwidth enhancement are also covered.   • Enables readers with minimal background in memory design to understand the basics of high-bandwidth memory interface design; • Presents state-of-the-art techniques for memory interface design; • Covers memory interface design at both the circuit level and system architecture level.

  1. Effects of emotional content on working memory capacity.

    Science.gov (United States)

    Garrison, Katie E; Schmeichel, Brandon J

    2018-02-13

    Emotional events tend to be remembered better than neutral events, but emotional states and stimuli may also interfere with cognitive processes that underlie memory performance. The current study investigated the effects of emotional content on working memory capacity (WMC), which involves both short term storage and executive attention control. We tested competing hypotheses in a preregistered experiment (N = 297). The emotional enhancement hypothesis predicts that emotional stimuli attract attention and additional processing resources relative to neutral stimuli, thereby making it easier to encode and store emotional information in WMC. The emotional impairment hypothesis, by contrast, predicts that emotional stimuli interfere with attention control and the active maintenance of information in working memory. Participants completed a common measure of WMC (the operation span task; Turner, M. L., & Engle, R. W. [1989]. Is working memory capacity task dependent? Journal of Memory and Language, 28, 127-154) that included either emotional or neutral words. Results revealed that WMC was reduced for emotional words relative to neutral words, consistent with the emotional impairment hypothesis.

  2. Depressive thoughts limit working memory capacity in dysphoria.

    Science.gov (United States)

    Hubbard, Nicholas A; Hutchison, Joanna L; Turner, Monroe; Montroy, Janelle; Bowles, Ryan P; Rypma, Bart

    2016-01-01

    Dysphoria is associated with persistence of attention on mood-congruent information. Longer time attending to mood-congruent information for dysphoric individuals (DIs) detracts from goal-relevant information processing and should reduce working memory (WM) capacity. Study 1 showed that DIs and non-DIs have similar WM capacities. Study 2 embedded depressive information into a WM task. Compared to non-DIs, DIs showed significantly reduced WM capacity for goal-relevant information in this task. Study 3 replicated results from Studies 1 and 2, and further showed that DIs had a significantly greater association between processing speed and recall on the depressively modified WM task compared to non-DIs. The presence of inter-task depressive information leads to DI-related decreased WM capacity. Results suggest dysphoria-related WM capacity deficits when depressive thoughts are present. WM capacity deficits in the presence of depressive thoughts are a plausible mechanism to explain day-to-day memory and concentration difficulties associated with depressed mood.

  3. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    Science.gov (United States)

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Working memory capacity and addiction treatment outcomes in adolescents.

    Science.gov (United States)

    Houck, Jon M; Feldstein Ewing, Sarah W

    2018-01-01

    Brief addiction treatments including motivational interviewing (MI) have shown promise with adolescents, but the factors that influence treatment efficacy in this population remain unknown. One candidate is working memory, the ability to hold a fact or thought in mind. This is relevant, as in therapy, a client must maintain and manipulate ideas while working with a clinician. Working memory depends upon brain structures and functions that change markedly during neurodevelopment and that can be negatively impacted by substance use. In a secondary analysis of data from a clinical trial for adolescent substance use comparing alcohol/marijuana education and MI, we evaluated the relationship between working memory and three-month treatment-outcomes with the hypothesis that the relationship between intervention conditions and outcome would be moderated by working memory. With a diverse sample of adolescents currently using alcohol and/or marijuana (N = 153, 64.7% male, 70.6% Hispanic), we examined the relationship between baseline measures of working memory and alcohol and cannabis-related problem scores measured at the three-month follow-up. The results showed that lower working memory scores were associated with poorer treatment response only for alcohol use, and only within the education group. No relationship was found between working memory and treatment outcomes in the MI group. The results suggest that issues with working memory capacity may interfere with adolescents' ability to process and implement didactic alcohol and marijuana content in standard education interventions. These results also suggest that MI can be implemented equally effectively across the range of working memory functioning in youth.

  5. Functional neuroimaging and behavioral correlates of capacity decline in visual short-term memory after sleep deprivation.

    Science.gov (United States)

    Chee, Michael W L; Chuah, Y M Lisa

    2007-05-29

    Sleep deprivation (SD) impairs short-term memory, but it is unclear whether this is because of reduced storage capacity or processes contributing to appropriate information encoding. We evaluated 30 individuals twice, once after a night of normal sleep and again after 24 h of SD. In each session, we evaluated visual memory capacity by presenting arrays of one to eight colored squares. Additionally, we measured cortical responses to varying visual array sizes without engaging memory. The magnitude of intraparietal sulcus activation and memory capacity after normal sleep were highly correlated. SD elicited a pattern of activation in both tasks, indicating that deficits in visual processing and visual attention accompany and could account for loss of short-term memory capacity. Additionally, a comparison between better and poorer performers showed that preservation of precuneus and temporoparietal junction deactivation with increasing memory load corresponds to less performance decline when one is sleep-deprived.

  6. Eating habits modulate short term memory and epigenetical regulation of brain derived neurotrophic factor in hippocampus of low- and high running capacity rats.

    Science.gov (United States)

    Torma, Ferenc; Bori, Zoltan; Koltai, Erika; Felszeghy, Klara; Vacz, Gabriella; Koch, Lauren; Britton, Steven; Boldogh, Istvan; Radak, Zsolt

    2014-08-01

    Exercise capacity and dietary restriction (DR) are linked to improved quality of life, including enhanced brain function and neuro-protection. Brain derived neurotrophic factor (BDNF) is one of the key proteins involved in the beneficial effects of exercise on brain. Low capacity runner (LCR) and high capacity runner (HCR) rats were subjected to DR in order to investigate the regulation of BDNF. HCR-DR rats out-performed other groups in a passive avoidance test. BDNF content increased significantly in the hippocampus of HCR-DR groups compared to control groups (p<0.05). The acetylation of H3 increased significantly only in the LCR-DR group. However, chip-assay revealed that the specific binding between acetylated histone H3 and BNDF promoter was increased in both LCR-DR and HCR-DR groups. In spite of these increases in binding, at the transcriptional level only, the LCR-DR group showed an increase in BDNF mRNA content. Additionally, DR also induced the activity of cAMP response element-binding protein (CREB), while the content of SIRT1 was not altered. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) was elevated in HCR-DR groups. But, based on the levels of nuclear respiratory factor-1 and cytocrome c oxidase, it appears that DR did not cause mitochondrial biogenesis. The data suggest that DR-mediated induction of BDNF levels includes chromatin remodeling. Moreover, DR does not induce mitochondrial biogenesis in the hippocampus of LCR/HCR rats. DR results in different responses to a passive avoidance test, and BDNF regulation in LCR and HCR rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. On a Model of Associative Memory with Huge Storage Capacity

    Science.gov (United States)

    Demircigil, Mete; Heusel, Judith; Löwe, Matthias; Upgang, Sven; Vermet, Franck

    2017-07-01

    In Krotov et al. (in: Lee (eds) Advances in Neural Information Processing Systems, Curran Associates, Inc., Red Hook, 2016) Krotov and Hopfield suggest a generalized version of the well-known Hopfield model of associative memory. In their version they consider a polynomial interaction function and claim that this increases the storage capacity of the model. We prove this claim and take the "limit" as the degree of the polynomial becomes infinite, i.e. an exponential interaction function. With this interaction we prove that model has an exponential storage capacity in the number of neurons, yet the basins of attraction are almost as large as in the standard Hopfield model.

  8. Cognition-emotion interactions are modulated by working memory capacity in individuals with schizophrenia.

    Science.gov (United States)

    Strauss, Gregory P; Lee, Bern G; Waltz, James A; Robinson, Benjamin M; Brown, Jaime K; Gold, James M

    2012-11-01

    Prior research provides evidence for aberrant cognition-emotion interactions in schizophrenia. In the current study, we aimed to extend these findings by administering the "distractor devaluation" task to 40 individuals with schizophrenia and 32 demographically matched healthy controls. The task consisted of a simple visual search task for neutral faces, followed by an evaluative response made for one of the search items (or a novel item) to determine whether prior attentional selection results in a devaluation of a previously unattended stimulus. We also manipulated working memory demands by preceding the search array with a memory array that required subjects to hold 0, 1, or 2 items in working memory while performing the search array and devaluation task, to determine whether the normative process by which attentional states influence evaluative response is limited by working memory capacity. Results indicated that individuals with schizophrenia demonstrated the typical distractor devaluation effect at working memory load 0, suggesting intact evaluative response. However, the devaluation effect was absent at working memory loads of 1 and 2, suggesting that normal evaluative responses can be abolished in people with schizophrenia when working memory capacity is exceeded. Thus, findings provide further evidence for normal evaluative response in schizophrenia, but clarify that these normal experiences may not hold when working memory demands are too high. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. The contribution of attentional lapses to individual differences in visual working memory capacity.

    Science.gov (United States)

    Adam, Kirsten C S; Mance, Irida; Fukuda, Keisuke; Vogel, Edward K

    2015-08-01

    Attentional control and working memory capacity are important cognitive abilities that substantially vary between individuals. Although much is known about how attentional control and working memory capacity relate to each other and to constructs like fluid intelligence, little is known about how trial-by-trial fluctuations in attentional engagement impact trial-by-trial working memory performance. Here, we employ a novel whole-report memory task that allowed us to distinguish between varying levels of attentional engagement in humans performing a working memory task. By characterizing low-performance trials, we can distinguish between models in which working memory performance failures are caused by either (1) complete lapses of attention or (2) variations in attentional control. We found that performance failures increase with set-size and strongly predict working memory capacity. Performance variability was best modeled by an attentional control model of attention, not a lapse model. We examined neural signatures of performance failures by measuring EEG activity while participants performed the whole-report task. The number of items correctly recalled in the memory task was predicted by frontal theta power, with decreased frontal theta power associated with poor performance on the task. In addition, we found that poor performance was not explained by failures of sensory encoding; the P1/N1 response and ocular artifact rates were equivalent for high- and low-performance trials. In all, we propose that attentional lapses alone cannot explain individual differences in working memory performance. Instead, we find that graded fluctuations in attentional control better explain the trial-by-trial differences in working memory that we observe.

  10. Neural activity in the hippocampus predicts individual visual short-term memory capacity.

    Science.gov (United States)

    von Allmen, David Yoh; Wurmitzer, Karoline; Martin, Ernst; Klaver, Peter

    2013-07-01

    Although the hippocampus had been traditionally thought to be exclusively involved in long-term memory, recent studies raised controversial explanations why hippocampal activity emerged during short-term memory tasks. For example, it has been argued that long-term memory processes might contribute to performance within a short-term memory paradigm when memory capacity has been exceeded. It is still unclear, though, whether neural activity in the hippocampus predicts visual short-term memory (VSTM) performance. To investigate this question, we measured BOLD activity in 21 healthy adults (age range 19-27 yr, nine males) while they performed a match-to-sample task requiring processing of object-location associations (delay period  =  900 ms; set size conditions 1, 2, 4, and 6). Based on individual memory capacity (estimated by Cowan's K-formula), two performance groups were formed (high and low performers). Within whole brain analyses, we found a robust main effect of "set size" in the posterior parietal cortex (PPC). In line with a "set size × group" interaction in the hippocampus, a subsequent Finite Impulse Response (FIR) analysis revealed divergent hippocampal activation patterns between performance groups: Low performers (mean capacity  =  3.63) elicited increased neural activity at set size two, followed by a drop in activity at set sizes four and six, whereas high performers (mean capacity  =  5.19) showed an incremental activity increase with larger set size (maximal activation at set size six). Our data demonstrated that performance-related neural activity in the hippocampus emerged below capacity limit. In conclusion, we suggest that hippocampal activity reflected successful processing of object-location associations in VSTM. Neural activity in the PPC might have been involved in attentional updating. Copyright © 2013 Wiley Periodicals, Inc.

  11. Working memory capacity and the scope and control of attention.

    Science.gov (United States)

    Shipstead, Zach; Harrison, Tyler L; Engle, Randall W

    2015-08-01

    Complex span and visual arrays are two common measures of working memory capacity that are respectively treated as measures of attention control and storage capacity. A recent analysis of these tasks concluded that (1) complex span performance has a relatively stronger relationship to fluid intelligence and (2) this is due to the requirement that people engage control processes while performing this task. The present study examines the validity of these conclusions by examining two large data sets that include a more diverse set of visual arrays tasks and several measures of attention control. We conclude that complex span and visual arrays account for similar amounts of variance in fluid intelligence. The disparity relative to the earlier analysis is attributed to the present study involving a more complete measure of the latent ability underlying the performance of visual arrays. Moreover, we find that both types of working memory task have strong relationships to attention control. This indicates that the ability to engage attention in a controlled manner is a critical aspect of working memory capacity, regardless of the type of task that is used to measure this construct.

  12. Exploring Age Differences in Visual Working Memory Capacity: Is There a Contribution of Memory for Configuration?

    OpenAIRE

    Cowan, Nelson; Saults, J. Scott; Clark, Katherine M.

    2015-01-01

    Recent research has shown marked developmental increases in the apparent capacity of working memory. This recent research is based largely on performance on tasks in which a visual array is to be retained briefly for comparison with a subsequent probe display. Here we examine a possible theoretical alternative (or supplement) to a developmental increase in working memory, in which children could improve in the ability to combine items in an array to form a coherent configuration. Elementary s...

  13. The Benefit of Attention-to-Memory Depends on the Interplay of Memory Capacity and Memory Load

    Science.gov (United States)

    Lim, Sung-Joo; Wöstmann, Malte; Geweke, Frederik; Obleser, Jonas

    2018-01-01

    Humans can be cued to attend to an item in memory, which facilitates and enhances the perceptual precision in recalling this item. Here, we demonstrate that this facilitating effect of attention-to-memory hinges on the overall degree of memory load. The benefit an individual draws from attention-to-memory depends on her overall working memory performance, measured as sensitivity (d′) in a retroactive cue (retro-cue) pitch discrimination task. While listeners maintained 2, 4, or 6 auditory syllables in memory, we provided valid or neutral retro-cues to direct listeners’ attention to one, to-be-probed syllable in memory. Participants’ overall memory performance (i.e., perceptual sensitivity d′) was relatively unaffected by the presence of valid retro-cues across memory loads. However, a more fine-grained analysis using psychophysical modeling shows that valid retro-cues elicited faster pitch-change judgments and improved perceptual precision. Importantly, as memory load increased, listeners’ overall working memory performance correlated with inter-individual differences in the degree to which precision improved (r = 0.39, p = 0.029). Under high load, individuals with low working memory profited least from attention-to-memory. Our results demonstrate that retrospective attention enhances perceptual precision of attended items in memory but listeners’ optimal use of informative cues depends on their overall memory abilities. PMID:29520246

  14. The Benefit of Attention-to-Memory Depends on the Interplay of Memory Capacity and Memory Load

    Directory of Open Access Journals (Sweden)

    Sung-Joo Lim

    2018-02-01

    Full Text Available Humans can be cued to attend to an item in memory, which facilitates and enhances the perceptual precision in recalling this item. Here, we demonstrate that this facilitating effect of attention-to-memory hinges on the overall degree of memory load. The benefit an individual draws from attention-to-memory depends on her overall working memory performance, measured as sensitivity (d′ in a retroactive cue (retro-cue pitch discrimination task. While listeners maintained 2, 4, or 6 auditory syllables in memory, we provided valid or neutral retro-cues to direct listeners’ attention to one, to-be-probed syllable in memory. Participants’ overall memory performance (i.e., perceptual sensitivity d′ was relatively unaffected by the presence of valid retro-cues across memory loads. However, a more fine-grained analysis using psychophysical modeling shows that valid retro-cues elicited faster pitch-change judgments and improved perceptual precision. Importantly, as memory load increased, listeners’ overall working memory performance correlated with inter-individual differences in the degree to which precision improved (r = 0.39, p = 0.029. Under high load, individuals with low working memory profited least from attention-to-memory. Our results demonstrate that retrospective attention enhances perceptual precision of attended items in memory but listeners’ optimal use of informative cues depends on their overall memory abilities.

  15. Visual Working Memory Capacity Can Be Increased by Training on Distractor Filtering Efficiency.

    Science.gov (United States)

    Li, Cui-Hong; He, Xu; Wang, Yu-Juan; Hu, Zhe; Guo, Chun-Yan

    2017-01-01

    It is generally considered that working memory (WM) capacity is limited and that WM capacity affects cognitive processes. Distractor filtering efficiency has been suggested to be an important factor in determining the visual working memory (VWM) capacity of individuals. In the present study, we investigated whether training in visual filtering efficiency (FE) could improve VWM capacity, as measured by performance on the change detection task (CDT) and changes of contralateral delay activity (CDA) (contralateral delay activity) of different conditions, and evaluated the transfer effect of visual FE training on verbal WM and fluid intelligence, as indexed by performance on the verbal WM span task and Raven's Standard Progressive Matrices (RSPM) test, respectively. Participants were divided into high- and low-capacity groups based on their performance in a CDT designed to test VWM capacity, and then the low-capacity individuals received 20 days of FE training. The training significantly improved the group's performance in the CDT, and their CDA models of different conditions became more similar with high capacity group, and the effect generalized to improve verbal WM span. These gains were maintained at a 3-month follow-up test. Participants' RSPM scores were not changed by the training. These findings support the notion that WM capacity is determined, at least in part, by distractor FE and can be enhanced through training.

  16. The Limited Capacity of Sleep-Dependent Memory Consolidation

    Directory of Open Access Journals (Sweden)

    Gordon B Feld

    2016-09-01

    Full Text Available Sleep supports memory consolidation. However, the conceptually important influence of the amount of items encoded in a memory test on this effect has not been investigated. In two experiments, participants (n=101 learned lists of word-pairs varying in length (40, 160, 320 word-pairs in the evening before a night of sleep (sleep group or of sleep deprivation (wake group. After 36 h (including a night allowing recovery sleep retrieval was tested. Compared with wakefulness, post-learning sleep enhanced retention for the 160 word-pair condition (p < 0.01, importantly, this effect completely vanished for the 320 word-pair condition. This result indicates a limited capacity for sleep-dependent memory consolidation, which is consistent with an active system consolidation view on sleep’s role for memory, if it is complemented by processes of active forgetting and/or gist abstraction. Whereas the absolute benefit from sleep should have increased with increasing amounts of successfully encoded items, if sleep only passively protected memory from interference. Moreover, the finding that retention performance was significantly diminished for the 320 word-pair condition compared to the 160 word-pair condition in the sleep group, makes it tempting to speculate that with increasing loads of information encoded during wakefulness, sleep might favour processes of forgetting over consolidation.

  17. The Developmental Influence of Primary Memory Capacity on Working Memory and Academic Achievement

    Science.gov (United States)

    2015-01-01

    In this study, we investigate the development of primary memory capacity among children. Children between the ages of 5 and 8 completed 3 novel tasks (split span, interleaved lists, and a modified free-recall task) that measured primary memory by estimating the number of items in the focus of attention that could be spontaneously recalled in serial order. These tasks were calibrated against traditional measures of simple and complex span. Clear age-related changes in these primary memory estimates were observed. There were marked individual differences in primary memory capacity, but each novel measure was predictive of simple span performance. Among older children, each measure shared variance with reading and mathematics performance, whereas for younger children, the interleaved lists task was the strongest single predictor of academic ability. We argue that these novel tasks have considerable potential for the measurement of primary memory capacity and provide new, complementary ways of measuring the transient memory processes that predict academic performance. The interleaved lists task also shared features with interference control tasks, and our findings suggest that young children have a particular difficulty in resisting distraction and that variance in the ability to resist distraction is also shared with measures of educational attainment. PMID:26075630

  18. Working Memory and Fluid Intelligence: Capacity, Attention Control, and Secondary Memory Retrieval

    Science.gov (United States)

    Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K.

    2015-01-01

    Several theories have been put forth to explain the relation between working memory (WM) and gF. Unfortunately, no single factor has been shown to fully account for the relation between these two important constructs. In the current study we tested whether multiple factors (capacity, attention control, and secondary memory) would collectively account for the relation. A large number of participants performed multiple measures of each construct and latent variable analyses were used to examine the data. The results demonstrated that capacity, attention control, and secondary memory were uniquely related to WM storage, WM processing, and gF. Importantly, the three factors completely accounted for the relation between WM (both processing and storage) and gF. Thus, although storage and processing make independent contributions to gF, both of these contributions are accounted for by variation in capacity, attention control and secondary memory. These results are consistent with the multifaceted view of WM, suggesting that individual differences in capacity, attention control, and secondary memory jointly account for individual differences in WM and its relation with gF. PMID:24531497

  19. Working memory and fluid intelligence: capacity, attention control, and secondary memory retrieval.

    Science.gov (United States)

    Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K

    2014-06-01

    Several theories have been put forth to explain the relation between working memory (WM) and gF. Unfortunately, no single factor has been shown to fully account for the relation between these two important constructs. In the current study we tested whether multiple factors (capacity, attention control, and secondary memory) would collectively account for the relation. A large number of participants performed multiple measures of each construct and latent variable analyses were used to examine the data. The results demonstrated that capacity, attention control, and secondary memory were uniquely related to WM storage, WM processing, and gF. Importantly, the three factors completely accounted for the relation between WM (both processing and storage) and gF. Thus, although storage and processing make independent contributions to gF, both of these contributions are accounted for by variation in capacity, attention control and secondary memory. These results are consistent with the multifaceted view of WM, suggesting that individual differences in capacity, attention control, and secondary memory jointly account for individual differences in WM and its relation with gF. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Future High Capacity Backbone Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan

    are proposed. The work focuses on energy efficient routing algorithms in a dynamic optical core network environment, with Generalized MultiProtocol Label Switching (GMPLS) as the control plane. Energy ef- ficient routing algorithms for energy savings and CO2 savings are proposed, and their performance...... aiming for reducing the dynamic part of the energy consumption of the network may increase the fixed part of the energy consumption meanwhile. In the second half of the thesis, the conflict between energy efficiency and Quality of Service (QoS) is addressed by introducing a novel software defined......This thesis - Future High Capacity Backbone Networks - deals with the energy efficiency problems associated with the development of future optical networks. In the first half of the thesis, novel approaches for using multiple/single alternative energy sources for improving energy efficiency...

  1. High current capacity electrical connector

    International Nuclear Information System (INIS)

    Bettis, E.S.; Watts, H.L.

    1976-01-01

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a ''sandwiched'' configuration in which a conductor plate contacts the busses along major surfaces clamped between two stainless steel backing plates. The conductor plate is provided with contact buttons in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors

  2. Differences in brain morphology and working memory capacity across childhood.

    Science.gov (United States)

    Bathelt, Joe; Gathercole, Susan E; Johnson, Amy; Astle, Duncan E

    2018-05-01

    Working memory (WM) skills are closely associated with learning progress in key areas such as reading and mathematics across childhood. As yet, however, little is known about how the brain systems underpinning WM develop over this critical developmental period. The current study investigated whether and how structural brain correlates of components of the working memory system change over development. Verbal and visuospatial short-term and working memory were assessed in 153 children between 5.58 and 15.92 years, and latent components of the working memory system were derived. Fractional anisotropy and cortical thickness maps were derived from T1-weighted and diffusion-weighted MRI and processed using eigenanatomy decomposition. There was a greater involvement of the corpus callosum and posterior temporal white matter in younger children for performance associated with the executive part of the working memory system. For older children, this was more closely linked with the thickness of the occipitotemporal cortex. These findings suggest that increasing specialization leads to shifts in the contribution of neural substrates over childhood, moving from an early dependence on a distributed system supported by long-range connections to later reliance on specialized local circuitry. Our findings demonstrate that despite the component factor structure being stable across childhood, the underlying brain systems supporting working memory change. Taking the age of the child into account, and not just their overall score, is likely to be critical for understanding the nature of the limitations on their working memory capacity. © 2017 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  3. Goal Neglect and Working Memory Capacity in 4- to 6-Year-Old Children

    Science.gov (United States)

    Marcovitch, Stuart; Boseovski, Janet J.; Knapp, Robin J.; Kane, Michael J.

    2010-01-01

    Goal neglect is the phenomenon of failing to execute the momentary demands of a task despite understanding and being able to recall the task instructions. Successful goal maintenance is more likely to occur in adults with high working memory capacity (WMC) who can keep rules mentally accessible while performing the task. The current study…

  4. Impaired contingent attentional capture predicts reduced working memory capacity in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jutta S Mayer

    Full Text Available Although impairments in working memory (WM are well documented in schizophrenia, the specific factors that cause these deficits are poorly understood. In this study, we hypothesized that a heightened susceptibility to attentional capture at an early stage of visual processing would result in working memory encoding problems. 30 patients with schizophrenia and 28 demographically matched healthy participants were presented with a search array and asked to report the orientation of the target stimulus. In some of the trials, a flanker stimulus preceded the search array that either matched the color of the target (relevant-flanker capture or appeared in a different color (irrelevant-flanker capture. Working memory capacity was determined in each individual using the visual change detection paradigm. Patients needed considerably more time to find the target in the no-flanker condition. After adjusting the individual exposure time, both groups showed equivalent capture costs in the irrelevant-flanker condition. However, in the relevant-flanker condition, capture costs were increased in patients compared to controls when the stimulus onset asynchrony between the flanker and the search array was high. Moreover, the increase in relevant capture costs correlated negatively with working memory capacity. This study demonstrates preserved stimulus-driven attentional capture but impaired contingent attentional capture associated with low working memory capacity in schizophrenia. These findings suggest a selective impairment of top-down attentional control in schizophrenia, which may impair working memory encoding.

  5. Impaired contingent attentional capture predicts reduced working memory capacity in schizophrenia.

    Science.gov (United States)

    Mayer, Jutta S; Fukuda, Keisuke; Vogel, Edward K; Park, Sohee

    2012-01-01

    Although impairments in working memory (WM) are well documented in schizophrenia, the specific factors that cause these deficits are poorly understood. In this study, we hypothesized that a heightened susceptibility to attentional capture at an early stage of visual processing would result in working memory encoding problems. 30 patients with schizophrenia and 28 demographically matched healthy participants were presented with a search array and asked to report the orientation of the target stimulus. In some of the trials, a flanker stimulus preceded the search array that either matched the color of the target (relevant-flanker capture) or appeared in a different color (irrelevant-flanker capture). Working memory capacity was determined in each individual using the visual change detection paradigm. Patients needed considerably more time to find the target in the no-flanker condition. After adjusting the individual exposure time, both groups showed equivalent capture costs in the irrelevant-flanker condition. However, in the relevant-flanker condition, capture costs were increased in patients compared to controls when the stimulus onset asynchrony between the flanker and the search array was high. Moreover, the increase in relevant capture costs correlated negatively with working memory capacity. This study demonstrates preserved stimulus-driven attentional capture but impaired contingent attentional capture associated with low working memory capacity in schizophrenia. These findings suggest a selective impairment of top-down attentional control in schizophrenia, which may impair working memory encoding.

  6. Affective bias in visual working memory is associated with capacity.

    Science.gov (United States)

    Xie, Weizhen; Li, Huanhuan; Ying, Xiangyu; Zhu, Shiyou; Fu, Rong; Zou, Yingmin; Cui, Yanyan

    2017-11-01

    How does the affective nature of task stimuli modulate working memory (WM)? This study investigates whether WM maintains emotional information in a biased manner to meet the motivational principle of approaching positivity and avoiding negativity by retaining more approach-related positive content over avoidance-related negative content. This bias may exist regardless of individual differences in WM functionality, as indexed by WM capacity (overall bias hypothesis). Alternatively, this bias may be contingent on WM capacity (capacity-based hypothesis), in which a better WM system may be more likely to reveal an adaptive bias. In two experiments, participants performed change localisation tasks with emotional and non-emotional stimuli to estimate the number of items that they could retain for each of those stimuli. Although participants did not seem to remember one type of emotional content (e.g. happy faces) better than the other type of emotional content (e.g. sad faces), there was a significant correlation between WM capacity and affective bias. Specifically, participants with higher WM capacity for non-emotional stimuli (colours or line-drawing symbols) tended to maintain more happy faces over sad faces. These findings demonstrated the presence of a "built-in" affective bias in WM as a function of its systematic limitations, favouring the capacity-based hypothesis.

  7. Low working memory capacity is only spuriously related to poor reading comprehension.

    Science.gov (United States)

    Van Dyke, Julie A; Johns, Clinton L; Kukona, Anuenue

    2014-06-01

    Accounts of comprehension failure, whether in the case of readers with poor skill or when syntactic complexity is high, have overwhelmingly implicated working memory capacity as the key causal factor. However, extant research suggests that this position is not well supported by evidence on the span of active memory during online sentence processing, nor is it well motivated by models that make explicit claims about the memory mechanisms that support language processing. The current study suggests that sensitivity to interference from similar items in memory may provide a better explanation of comprehension failure. Through administration of a comprehensive skill battery, we found that the previously observed association of working memory with comprehension is likely due to the collinearity of working memory with many other reading-related skills, especially IQ. In analyses which removed variance shared with IQ, we found that receptive vocabulary knowledge was the only significant predictor of comprehension performance in our task out of a battery of 24 skill measures. In addition, receptive vocabulary and non-verbal memory for serial order-but not simple verbal memory or working memory-were the only predictors of reading times in the region where interference had its primary affect. We interpret these results in light of a model that emphasizes retrieval interference and the quality of lexical representations as key determinants of successful comprehension. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. I. WORKING MEMORY CAPACITY IN CONTEXT: MODELING DYNAMIC PROCESSES OF BEHAVIOR, MEMORY, AND DEVELOPMENT.

    Science.gov (United States)

    Simmering, Vanessa R

    2016-09-01

    Working memory is a vital cognitive skill that underlies a broad range of behaviors. Higher cognitive functions are reliably predicted by working memory measures from two domains: children's performance on complex span tasks, and infants' performance in looking paradigms. Despite the similar predictive power across these research areas, theories of working memory development have not connected these different task types and developmental periods. The current project takes a first step toward bridging this gap by presenting a process-oriented theory, focusing on two tasks designed to assess visual working memory capacity in infants (the change-preference task) versus children and adults (the change detection task). Previous studies have shown inconsistent results, with capacity estimates increasing from one to four items during infancy, but only two to three items during early childhood. A probable source of this discrepancy is the different task structures used with each age group, but prior theories were not sufficiently specific to explain how performance relates across tasks. The current theory focuses on cognitive dynamics, that is, how memory representations are formed, maintained, and used within specific task contexts over development. This theory was formalized in a computational model to generate three predictions: 1) capacity estimates in the change-preference task should continue to increase beyond infancy; 2) capacity estimates should be higher in the change-preference versus change detection task when tested within individuals; and 3) performance should correlate across tasks because both rely on the same underlying memory system. I also tested a fourth prediction, that development across tasks could be explained through increasing real-time stability, realized computationally as strengthening connectivity within the model. Results confirmed these predictions, supporting the cognitive dynamics account of performance and developmental changes in real

  9. Effects of working memory capacity on metacognitive monitoring: A study of group differences using a listening span test

    Directory of Open Access Journals (Sweden)

    Mie eKomori

    2016-03-01

    Full Text Available Monitoring is an executive function of working memory that serves to update novel information, focusing attention on task-relevant targets, and eliminating task-irrelevant noise. The present research used a verbal working memory task to examine how working memory capacity limits affect monitoring. Participants performed a Japanese listening span test that included maintenance of target words and listening comprehension. On each trial, participants responded to the target word and then immediately estimated confidence in recall performance for that word (metacognitive judgment. The results confirmed significant differences in monitoring accuracy between high and low capacity groups in a multi-task situation. That is, confidence judgments were superior in high versus low capacity participants in terms of absolute accuracy and discrimination. The present research further investigated how memory load and interference affect underestimation of successful recall. The results indicated that the level of memory load that reduced word recall performance and led to an underconfidence bias varied according to participants’ memory capacity. In addition, irreverent information associated with incorrect true/ false decisions (secondary task and word recall within the current trial impaired monitoring accuracy in both participant groups. These findings suggest that inference from unsuccessful decisions only influences low, but not high, capacity participants. Therefore, monitoring accuracy, which requires high working memory capacity, improves metacognitive abilities by inhibiting task-irrelevant noise and focusing attention on detecting task-relevant targets or useful retrieval cues, which could improve actual cognitive performance.

  10. Effects of Working Memory Capacity on Metacognitive Monitoring: A Study of Group Differences Using a Listening Span Test.

    Science.gov (United States)

    Komori, Mie

    2016-01-01

    Monitoring is an executive function of working memory that serves to update novel information, focusing attention on task-relevant targets, and eliminating task-irrelevant noise. The present research used a verbal working memory task to examine how working memory capacity limits affect monitoring. Participants performed a Japanese listening span test that included maintenance of target words and listening comprehension. On each trial, participants responded to the target word and then immediately estimated confidence in recall performance for that word (metacognitive judgment). The results confirmed significant differences in monitoring accuracy between high and low capacity groups in a multi-task situation. That is, confidence judgments were superior in high vs. low capacity participants in terms of absolute accuracy and discrimination. The present research further investigated how memory load and interference affect underestimation of successful recall. The results indicated that the level of memory load that reduced word recall performance and led to an underconfidence bias varied according to participants' memory capacity. In addition, irrelevant information associated with incorrect true/ false decisions (secondary task) and word recall within the current trial impaired monitoring accuracy in both participant groups. These findings suggest that interference from unsuccessful decisions only influences low, but not high, capacity participants. Therefore, monitoring accuracy, which requires high working memory capacity, improves metacognitive abilities by inhibiting task-irrelevant noise and focusing attention on detecting task-relevant targets or useful retrieval cues, which could improve actual cognitive performance.

  11. Working Memory Capacity Limits Motor Learning When Implementing Multiple Instructions

    Directory of Open Access Journals (Sweden)

    Tim Buszard

    2017-08-01

    Full Text Available Although it is generally accepted that certain practice conditions can place large demands on working memory (WM when performing and learning a motor skill, the influence that WM capacity has on the acquisition of motor skills remains unsubstantiated. This study examined the role of WM capacity in a motor skill practice context that promoted WM involvement through the provision of explicit instructions. A cohort of 90 children aged 8 to 10 years were assessed on measures of WM capacity and attention. Children who scored in the lowest and highest thirds on the WM tasks were allocated to lower WM capacity (n = 24 and higher WM capacity (n = 24 groups, respectively. The remaining 42 participants did not participate in the motor task. The motor task required children to practice basketball shooting for 240 trials in blocks of 20 shots, with pre- and post-tests occurring before and after the intervention. A retention test was administered 1 week after the post-test. Prior to every practice block, children were provided with five explicit instructions that were specific to the technique of shooting a basketball. Results revealed that the higher WM capacity group displayed consistent improvements from pre- to post-test and through to the retention test, while the opposite effect occurred in the lower WM capacity group. This implies that the explicit instructions had a negative influence on learning by the lower WM capacity children. Results are discussed in relation to strategy selection for dealing with instructions and the role of attention control.

  12. A high capacity FASTBUS multiple event buffer

    International Nuclear Information System (INIS)

    Appel, J.A.; Farr, W.D.; Kaplan, D.M.; Levit, L.B.; Napier, T.M.

    1985-01-01

    We have developed a front-end data acquisition and event buffering memory. This single-width FASTBUS module has a capacity of 256K X 32 bits plus parity. The module is dual ported, and its front panel ECLport accepts data at up to 20 MB/sec. It may also be written to and read from as a standard FASTBUS Slave. The module records events as variable length records. Each record is accepted or rejected via front panel control signal. Circuitry to automate FASTBUS record readout and record skip is provided. In its ''linear'' mode, the module may be used as a single pass list. Alternatively, in the ''circular'' mode, the module's internal read pointer can follow its write pointer continuously around the memory. Circular mode is well suited to handling of a continuous data stream. Modules may be linked for larger memory capacity

  13. Working memory capacity of biological movements predicts empathy traits.

    Science.gov (United States)

    Gao, Zaifeng; Ye, Tian; Shen, Mowei; Perry, Anat

    2016-04-01

    Working memory (WM) and empathy are core issues in cognitive and social science, respectively. However, no study so far has explored the relationship between these two constructs. Considering that empathy takes place based on the others' observed experiences, which requires extracting the observed dynamic scene into WM and forming a coherent representation, we hypothesized that a sub-type of WM capacity, i.e., WM for biological movements (BM), should predict one's empathy level. Therefore, WM capacity was measured for three distinct types of stimuli in a change detection task: BM of human beings (BM; Experiment 1), movements of rectangles (Experiment 2), and static colors (Experiment 3). The first two stimuli were dynamic and shared one WM buffer which differed from the WM buffer for colors; yet only the BM conveyed social information. We found that BM-WM capacity was positively correlated with both cognitive and emotional empathy, with no such correlations for WM capacity of movements of rectangles or of colors. Thus, the current study is the first to provide evidence linking a specific buffer of WM and empathy, and highlights the necessity for considering different WM capacities in future social and clinical research.

  14. Investigation of the influence of emotions on working memory capacity using ERP and ERSP.

    Science.gov (United States)

    Zhang, Yuanyuan; Zhang, Gaoyan; Liu, Baolin

    2017-08-15

    Recent studies have reported that there are individual differences in working memory (WM), and that WM may be affected by emotions. To date, it remains controversial whether emotions impair or facilitate WM and whether there are individual differences in their effect on WM. In this study, three emotions (negative, neutral, and positive) were induced by a video database that was established according to the emotional stimuli habit of Chinese people. A change detection paradigm was used to examine the effect of emotions on the visual WM. Participants were divided into high- and low-capacity groups according to their WM capacity. The behavioral results revealed that both negative and positive emotions may enhance WM capacity in the high-capacity group compared with the neutral emotion. In contrast, an opposite effect was observed in the low-capacity group. Analysis of the contralateral delay activity and P300 components demonstrated significantly higher amplitudes in the high-capacity group following positive and negative emotions; the effects were opposite in the low-capacity group. The event-related spectral perturbation results demonstrated a more powerful event-related synchronization in the alpha-band (300-400ms) in the low-capacity group in positive and negative emotions; opposite results were observed in the high-capacity group. The consistence of the behavioral and electrophysiological results suggests interindividual differences in the impact of emotions on the WM capacity. Moreover, both positive and negative emotions can facilitate WM capacity in the high-capacity group, while they impair WM capacity in the low-capacity group. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Olfactory memory capacity of the cricket Gryllus bimaculatus.

    Science.gov (United States)

    Matsumoto, Yukihisa; Mizunami, Makoto

    2006-12-22

    Olfactory learning in insects is a useful model for studying neural mechanisms underlying learning and memory, but memory storage capacity for olfactory learning in insects has not been studied. We investigate whether crickets are capable of simultaneously memorizing seven odour pairs. Fourteen odours were grouped into seven A/B pairs, and crickets in one group were trained to associate A odours with water reward and B odours with saline punishment for all the seven pairs. Crickets in another group were trained with the opposite stimulus arrangement. Crickets in all the groups exhibited significantly greater preference for the odours associated with water reward for all the seven odour pairs. We conclude that crickets are capable of memorizing seven odour pairs at the same time.

  16. Capacity and precision in an animal model of visual short-term memory.

    Science.gov (United States)

    Lara, Antonio H; Wallis, Jonathan D

    2012-03-14

    Temporary storage of information in visual short-term memory (VSTM) is a key component of many complex cognitive abilities. However, it is highly limited in capacity. Understanding the neurophysiological nature of this capacity limit will require a valid animal model of VSTM. We used a multiple-item color change detection task to measure macaque monkeys' VSTM capacity. Subjects' performance deteriorated and reaction times increased as a function of the number of items in memory. Additionally, we measured the precision of the memory representations by varying the distance between sample and test colors. In trials with similar sample and test colors, subjects made more errors compared to trials with highly discriminable colors. We modeled the error distribution as a Gaussian function and used this to estimate the precision of VSTM representations. We found that as the number of items in memory increases the precision of the representations decreases dramatically. Additionally, we found that focusing attention on one of the objects increases the precision with which that object is stored and degrades the precision of the remaining. These results are in line with recent findings in human psychophysics and provide a solid foundation for understanding the neurophysiological nature of the capacity limit of VSTM.

  17. Low working memory capacity is only spuriously related to poor reading comprehension

    Science.gov (United States)

    Van Dyke, Julie A.; Johns, Clinton L.; Kukona, Anuenue

    2014-01-01

    Accounts of comprehension failure, whether in the case of readers with poor skill or when syntactic complexity is high, have overwhelmingly implicated working memory capacity as the key causal factor. However, extant research suggests that this position is not well supported by evidence on the span of active memory during online sentence processing, nor is it well motivated by models that make explicit claims about the memory mechanisms that support language processing. The current study suggests that sensitivity to interference from similar items in memory may provide a better explanation of comprehension failure. Through administration of a comprehensive skill battery, we found that the previously observed association of working memory with comprehension is likely due to the collinearity of working memory with many other reading-related skills, especially IQ. In analyses which removed variance shared with IQ, we found that receptive vocabulary knowledge was the only significant predictor of comprehension performance in our task out of a battery of 24 skill measures. In addition, receptive vocabulary and non-verbal memory for serial order—but not simple verbal memory or working memory—were the only predictors of reading times in the region where interference had its primary affect. We interpret these results in light of a model that emphasizes retrieval interference and the quality of lexical representations as key determinants of successful comprehension. PMID:24657820

  18. Different Roles of Direct and Indirect Frontoparietal Pathways for Individual Working Memory Capacity.

    Science.gov (United States)

    Ekman, Matthias; Fiebach, Christian J; Melzer, Corina; Tittgemeyer, Marc; Derrfuss, Jan

    2016-03-09

    The ability to temporarily store and manipulate information in working memory is a hallmark of human intelligence and differs considerably across individuals, but the structural brain correlates underlying these differences in working memory capacity (WMC) are only poorly understood. In two separate studies, diffusion MRI data and WMC scores were collected for 70 and 109 healthy individuals. Using a combination of probabilistic tractography and network analysis of the white matter tracts, we examined whether structural brain network properties were predictive of individual WMC. Converging evidence from both studies showed that lateral prefrontal cortex and posterior parietal cortex of high-capacity individuals are more densely connected compared with low-capacity individuals. Importantly, our network approach was further able to dissociate putative functional roles associated with two different pathways connecting frontal and parietal regions: a corticocortical pathway and a subcortical pathway. In Study 1, where participants were required to maintain and update working memory items, the connectivity of the direct and indirect pathway was predictive of WMC. In contrast, in Study 2, where participants were required to maintain working memory items without updating, only the connectivity of the direct pathway was predictive of individual WMC. Our results suggest an important dissociation in the circuitry connecting frontal and parietal regions, where direct frontoparietal connections might support storage and maintenance, whereas subcortically mediated connections support the flexible updating of working memory content. Copyright © 2016 the authors 0270-6474/16/362894-10$15.00/0.

  19. HIV-Infected Children Have Elevated Levels of PD-1+ Memory CD4 T Cells With Low Proliferative Capacity and High Inflammatory Cytokine Effector Functions.

    Science.gov (United States)

    Foldi, Julia; Kozhaya, Lina; McCarty, Bret; Mwamzuka, Mussa; Marshed, Fatma; Ilmet, Tiina; Kilberg, Max; Kravietz, Adam; Ahmed, Aabid; Borkowsky, William; Unutmaz, Derya; Khaitan, Alka

    2017-09-15

    During human immunodeficiency virus (HIV) disease, chronic immune activation leads to T-cell exhaustion. PD-1 identifies "exhausted" CD8 T cells with impaired HIV-specific effector functions, but its role on CD4 T cells and in HIV-infected children is poorly understood. In a Kenyan cohort of vertically HIV-infected children, we measured PD-1+ CD4 T-cell frequencies and phenotype by flow cytometry and their correlation with HIV disease progression and immune activation. Second, in vitro CD4 T-cell proliferative and cytokine responses to HIV-specific and -nonspecific stimuli were assessed with and without PD-1 blockade. HIV-infected children have increased frequencies of PD-1+ memory CD4 T cells that fail to normalize with antiretroviral treatment. These cells are comprised of central and effector memory subsets and correlate with HIV disease progression, measured by viral load, CD4 percentage, CD4:CD8 T-cell ratio, and immune activation. Last, PD-1+ CD4 T cells predict impaired proliferative potential yet preferentially secrete the Th1 and Th17 cytokines interferon-γ and interleukin 17A, and are unresponsive to in vitro PD-1 blockade. This study highlights differences in PD-1+ CD4 T-cell memory phenotype and response to blockade between HIV-infected children and adults, with implications for potential immune checkpoint therapies. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  20. Response-Inhibition Capacity and Short-Term Memory are Robust to the Effects of High Fat Diet (HFD) during Pre and Periadolescence

    OpenAIRE

    Watterso, Elizabeth; Sanabria, Federico; Zavala, Arturo R; Privitera, Gregory J

    2014-01-01

    Se tiene evidencia que la exposición a una dieta alta en grasa puede ser perjudicial para la cognición a lo largo de la vida. Hemos demostrado previamente que el aprendizaje contexto-estímulo es sensible a los efectos de una dieta alta en grasas durante la adolescencia, pero no la edad adulta. En el presente estudio se determinó si la exposición a una dieta alta en grasa en la pre y peri adolescencia interfiere con la capacidad de respuesta de inhibición, el aprendizaje de reglas, y la memori...

  1. An information capacity limitation of visual short-term memory.

    Science.gov (United States)

    Sewell, David K; Lilburn, Simon D; Smith, Philip L

    2014-12-01

    Research suggests that visual short-term memory (VSTM) has both an item capacity, of around 4 items, and an information capacity. We characterize the information capacity limits of VSTM using a task in which observers discriminated the orientation of a single probed item in displays consisting of 1, 2, 3, or 4 orthogonally oriented Gabor patch stimuli that were presented in noise for 50 ms, 100 ms, 150 ms, or 200 ms. The observed capacity limitations are well described by a sample-size model, which predicts invariance of ∑(i)(d'(i))² for displays of different sizes and linearity of (d'(i))² for displays of different durations. Performance was the same for simultaneous and sequentially presented displays, which implicates VSTM as the locus of the observed invariance and rules out explanations that ascribe it to divided attention or stimulus encoding. The invariance of ∑(i)(d'(i))² is predicted by the competitive interaction theory of Smith and Sewell (2013), which attributes it to the normalization of VSTM traces strengths arising from competition among stimuli entering VSTM. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  2. Visual Short-Term Memory Capacity for Simple and Complex Objects

    Science.gov (United States)

    Luria, Roy; Sessa, Paola; Gotler, Alex; Jolicoeur, Pierre; Dell'Acqua, Roberto

    2010-01-01

    Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not…

  3. Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli.

    Science.gov (United States)

    Brady, Timothy F; Störmer, Viola S; Alvarez, George A

    2016-07-05

    Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli-colors and orientations-is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up," revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge.

  4. Dissociable mechanisms underlying individual differences in visual working memory capacity

    NARCIS (Netherlands)

    Gulbinaite, Rasa; Johnson, Addie; de Jong, Ritske; Morey, Candice C.; van Rijn, Hedderik

    2014-01-01

    Individuals scoring relatively high on measures of working memory tend to be more proficient at controlling attention to minimize the effect of distracting information. It is currently unknown whether such superior attention control abilities are mediated by stronger suppression of irrelevant

  5. Letter and Colour Matching Tasks: Parametric Measures of Developmental Working Memory Capacity

    OpenAIRE

    Powell, Tamara L.; Arsalidou, Marie; Vogan, Vanessa M.; Taylor, Margot J.

    2014-01-01

    We investigated the mediating role of interference in developmental assessments of working memory (WM) capacity across childhood, adolescence, and young adulthood. One hundred and forty-two participants completed two versions of visuospatial (colour matching task, CMT) and verbal (letter matching task, LMT) WM tasks, which systematically varied cognitive load in a high and low interference condition. Results showed similar developmental trajectories across high interference contexts (CMT- and...

  6. A Bayesian hierarchical model for the measurement of working memory capacity

    NARCIS (Netherlands)

    Morey, Richard D.

    Working memory is the memory system that allows for conscious storage and manipulation of information. The capacity of working memory is extremely limited. Measurements of this limit, and what affects it, are critical to understanding working memory. Cowan (2001) and Pashler (1988) suggested

  7. High capacity carbon dioxide sorbent

    Science.gov (United States)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  8. Working Memory Capacity: Attention Control, Secondary Memory, or Both? A Direct Test of the Dual-Component Model

    Science.gov (United States)

    Unsworth, Nash; Spillers, Gregory J.

    2010-01-01

    The current study examined the extent to which attention control abilities, secondary memory abilities, or both accounted for variation in working memory capacity (WMC) and its relation to fluid intelligence. Participants performed various attention control, secondary memory, WMC, and fluid intelligence measures. Confirmatory factor analyses…

  9. The Contributions of Primary and Secondary Memory to Working Memory Capacity: An Individual Differences Analysis of Immediate Free Recall

    Science.gov (United States)

    Unsworth, Nash; Spillers, Gregory J.; Brewer, Gene A.

    2010-01-01

    The present study tested the dual-component model of working memory capacity (WMC) by examining estimates of primary memory and secondary memory from an immediate free recall task. Participants completed multiple measures of WMC and general intellectual ability as well as multiple trials of an immediate free recall task. It was demonstrated that…

  10. Happiness increases verbal and spatial working memory capacity where sadness does not: Emotion, working memory and executive control.

    Science.gov (United States)

    Storbeck, Justin; Maswood, Raeya

    2016-08-01

    The effects of emotion on working memory and executive control are often studied in isolation. Positive mood enhances verbal and impairs spatial working memory, whereas negative mood enhances spatial and impairs verbal working memory. Moreover, positive mood enhances executive control, whereas negative mood has little influence. We examined how emotion influences verbal and spatial working memory capacity, which requires executive control to coordinate between holding information in working memory and completing a secondary task. We predicted that positive mood would improve both verbal and spatial working memory capacity because of its influence on executive control. Positive, negative and neutral moods were induced followed by completing a verbal (Experiment 1) or spatial (Experiment 2) working memory operation span task to assess working memory capacity. Positive mood enhanced working memory capacity irrespective of the working memory domain, whereas negative mood had no influence on performance. Thus, positive mood was more successful holding information in working memory while processing task-irrelevant information, suggesting that the influence mood has on executive control supersedes the independent effects mood has on domain-specific working memory.

  11. The Contribution of Attentional Lapses to Individual Differences in Visual Working Memory Capacity

    OpenAIRE

    Adam, Kirsten C. S.; Mance, Irida; Fukuda, Keisuke; Vogel, Edward K.

    2015-01-01

    Attentional control and working memory capacity are important cognitive abilities that substantially vary between individuals. Although much is known about how attentional control and working memory capacity relate to each other and to constructs like fluid intelligence, little is known about how trial-by-trial fluctuations in attentional engagement impact trial-by-trial working memory performance. Here, we employ a novel whole-report memory task that allowed us to distinguish between varying...

  12. Visual long-term memory has a massive storage capacity for object details.

    Science.gov (United States)

    Brady, Timothy F; Konkle, Talia; Alvarez, George A; Oliva, Aude

    2008-09-23

    One of the major lessons of memory research has been that human memory is fallible, imprecise, and subject to interference. Thus, although observers can remember thousands of images, it is widely assumed that these memories lack detail. Contrary to this assumption, here we show that long-term memory is capable of storing a massive number of objects with details from the image. Participants viewed pictures of 2,500 objects over the course of 5.5 h. Afterward, they were shown pairs of images and indicated which of the two they had seen. The previously viewed item could be paired with either an object from a novel category, an object of the same basic-level category, or the same object in a different state or pose. Performance in each of these conditions was remarkably high (92%, 88%, and 87%, respectively), suggesting that participants successfully maintained detailed representations of thousands of images. These results have implications for cognitive models, in which capacity limitations impose a primary computational constraint (e.g., models of object recognition), and pose a challenge to neural models of memory storage and retrieval, which must be able to account for such a large and detailed storage capacity.

  13. Working memory capacity predicts the beneficial effect of selective memory retrieval.

    Science.gov (United States)

    Schlichting, Andreas; Aslan, Alp; Holterman, Christoph; Bäuml, Karl-Heinz T

    2015-01-01

    Selective retrieval of some studied items can both impair and improve recall of the other items. This study examined the role of working memory capacity (WMC) for the two effects of memory retrieval. Participants studied an item list consisting of predefined target and nontarget items. After study of the list, half of the participants performed an imagination task supposed to induce a change in mental context, whereas the other half performed a counting task which does not induce such context change. Following presentation of a second list, memory for the original list's target items was tested, either with or without preceding retrieval of the list's nontarget items. Consistent with previous work, preceding nontarget retrieval impaired target recall in the absence of the context change, but improved target recall in its presence. In particular, there was a positive relationship between WMC and the beneficial, but not the detrimental effect of memory retrieval. On the basis of the view that the beneficial effect of memory retrieval reflects context-reactivation processes, the results indicate that individuals with higher WMC are better able to capitalise on retrieval-induced context reactivation than individuals with lower WMC.

  14. A review of visual memory capacity: Beyond individual items and towards structured representations

    Science.gov (United States)

    Brady, Timothy F.; Konkle, Talia; Alvarez, George A.

    2012-01-01

    Traditional memory research has focused on identifying separate memory systems and exploring different stages of memory processing. This approach has been valuable for establishing a taxonomy of memory systems and characterizing their function, but has been less informative about the nature of stored memory representations. Recent research on visual memory has shifted towards a representation-based emphasis, focusing on the contents of memory, and attempting to determine the format and structure of remembered information. The main thesis of this review will be that one cannot fully understand memory systems or memory processes without also determining the nature of memory representations. Nowhere is this connection more obvious than in research that attempts to measure the capacity of visual memory. We will review research on the capacity of visual working memory and visual long-term memory, highlighting recent work that emphasizes the contents of memory. This focus impacts not only how we estimate the capacity of the system - going beyond quantifying how many items can be remembered, and moving towards structured representations - but how we model memory systems and memory processes. PMID:21617025

  15. Process optimization mental capacity and memory in schoolchildren

    Directory of Open Access Journals (Sweden)

    Kaminska T.M.

    2016-03-01

    Full Text Available Purpose — increase the processes of mental capacity, antioxidant and detoxication effects in the schoolchildren of different regions of residence the use of succinic acid. Patients and methods. Studies conducted in 3 groups of 30 children 7–10 years who took the drug succinic acid for 1 month 1 — villages Irpen region; 2 — industrial city; 3 — c. Kyiv. Results. Prior preparation course that includes succinic acid, the number of missed days at school on acute and recurrent respiratory infections during the month rehabilitation was: in group 1 — 7.4±1.5 days; in group 2 — 8.8±1.9 days; in group 3 — 5.6±0.7 days. After taking the drug significantly decreased frequency of morbidity and amounted to: in group 1 (1.4±0.2 days; in group 2 — 1.8±0.2 days; 3 group — 1.2±0.1 days. The drug was well tolerated by children, side effects were not observed. There was a rapid improvement in visual memory and RAM memory content in all groups of children. Under the influence of the drug significantly reduced glutathione system performance decreases level of superoxide dismutase, increases antioxidant activity, detected reduction of level glutathione-S-transferase in serum indicates increasing detoxification function of the liver. Conclusions. Severe detoxification effect of succinic acid and its ability to activate the functional processes and mental efficiency allows to recommen the reception of preparation by annually improvement of progress at school, memory and disability rates.

  16. Random access dynamic memory device with capacity of 4Kx16 bytes

    International Nuclear Information System (INIS)

    Damatov, Ya.M.; Nikityuk, N.M.; Nomokonova, A.I.

    1980-01-01

    Random access dynamic memory devjce with capacity of 4Kx16 bytes is described. A block diagram, time diagrams and a general view of a unit are presented. Regimes os unit operation and ways of data regeneration are described. The analyser regime and a possibility of recording data from ''R'' buses of CAMAC dataway permit to use the unit efficiency in spectrometrical channels with a high intensity of experimental events arrival. The unit is developed on the basis of using large integral circuits

  17. Exploring age differences in visual working memory capacity: is there a contribution of memory for configuration?

    Science.gov (United States)

    Cowan, Nelson; Saults, J Scott; Clark, Katherine M

    2015-07-01

    Recent research has shown marked developmental increases in the apparent capacity of working memory. This recent research is based largely on performance on tasks in which a visual array is to be retained briefly for comparison with a subsequent probe display. Here we examined a possible theoretical alternative (or supplement) to a developmental increase in working memory in which children could improve in the ability to combine items in an array to form a coherent configuration. Elementary school children and adults received, on each trial, an array of colored spots to be remembered. On some trials, we provided structure in the probe display to facilitate the formation of a mental representation in which a coherent configuration is encoded. This stimulus structure in the probe display helped younger children, and thus reduced the developmental trend, but only on trials in which the participants were held responsible for the locations of items in the array. We conclude that, in addition to the development of the ability to form precise spatial configurations from items, the evidence is consistent with the existence of an actual developmental increase in working memory capacity for objects in an array. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effects of Age and Working Memory Capacity on Speech Recognition Performance in Noise Among Listeners With Normal Hearing.

    Science.gov (United States)

    Gordon-Salant, Sandra; Cole, Stacey Samuels

    2016-01-01

    This study aimed to determine if younger and older listeners with normal hearing who differ on working memory span perform differently on speech recognition tests in noise. Older adults typically exhibit poorer speech recognition scores in noise than younger adults, which is attributed primarily to poorer hearing sensitivity and more limited working memory capacity in older than younger adults. Previous studies typically tested older listeners with poorer hearing sensitivity and shorter working memory spans than younger listeners, making it difficult to discern the importance of working memory capacity on speech recognition. This investigation controlled for hearing sensitivity and compared speech recognition performance in noise by younger and older listeners who were subdivided into high and low working memory groups. Performance patterns were compared for different speech materials to assess whether or not the effect of working memory capacity varies with the demands of the specific speech test. The authors hypothesized that (1) normal-hearing listeners with low working memory span would exhibit poorer speech recognition performance in noise than those with high working memory span; (2) older listeners with normal hearing would show poorer speech recognition scores than younger listeners with normal hearing, when the two age groups were matched for working memory span; and (3) an interaction between age and working memory would be observed for speech materials that provide contextual cues. Twenty-eight older (61 to 75 years) and 25 younger (18 to 25 years) normal-hearing listeners were assigned to groups based on age and working memory status. Northwestern University Auditory Test No. 6 words and Institute of Electrical and Electronics Engineers sentences were presented in noise using an adaptive procedure to measure the signal-to-noise ratio corresponding to 50% correct performance. Cognitive ability was evaluated with two tests of working memory (Listening

  19. The sensory strength of voluntary visual imagery predicts visual working memory capacity.

    Science.gov (United States)

    Keogh, Rebecca; Pearson, Joel

    2014-10-09

    How much we can actively hold in mind is severely limited and differs greatly from one person to the next. Why some individuals have greater capacities than others is largely unknown. Here, we investigated why such large variations in visual working memory (VWM) capacity might occur, by examining the relationship between visual working memory and visual mental imagery. To assess visual working memory capacity participants were required to remember the orientation of a number of Gabor patches and make subsequent judgments about relative changes in orientation. The sensory strength of voluntary imagery was measured using a previously documented binocular rivalry paradigm. Participants with greater imagery strength also had greater visual working memory capacity. However, they were no better on a verbal number working memory task. Introducing a uniform luminous background during the retention interval of the visual working memory task reduced memory capacity, but only for those with strong imagery. Likewise, for the good imagers increasing background luminance during imagery generation reduced its effect on subsequent binocular rivalry. Luminance increases did not affect any of the subgroups on the verbal number working memory task. Together, these results suggest that luminance was disrupting sensory mechanisms common to both visual working memory and imagery, and not a general working memory system. The disruptive selectivity of background luminance suggests that good imagers, unlike moderate or poor imagers, may use imagery as a mnemonic strategy to perform the visual working memory task. © 2014 ARVO.

  20. Processing Depth, Elaboration of Encoding, Memory Stores, and Expended Processing Capacity.

    Science.gov (United States)

    Eysenck, Michael W.; Eysenck, M. Christine

    1979-01-01

    The effects of several factors on expended processing capacity were measured. Expended processing capacity was greater when information was retrieved from secondary memory than from primary memory, when processing was of a deep, semantic nature than when it was shallow and physical, and when processing was more elaborate. (Author/GDC)

  1. Mental Capacity and Working Memory in Chemistry: Algorithmic "versus" Open-Ended Problem Solving

    Science.gov (United States)

    St Clair-Thompson, Helen; Overton, Tina; Bugler, Myfanwy

    2012-01-01

    Previous research has revealed that problem solving and attainment in chemistry are constrained by mental capacity and working memory. However, the terms mental capacity and working memory come from different theories of cognitive resources, and are assessed using different tasks. The current study examined the relationships between mental…

  2. Short-Term Memory Limitations in Children: Capacity or Processing Deficits?

    Science.gov (United States)

    Chi, Michelene T. H.

    1976-01-01

    Evaluates the assertion that short-term memory (STM) capacity increases with age and concludes that the STM capacity limitation in children is due to the deficits in the processing strategies and speeds, which presumably improve with age through cumulative learning. (JM) Available from: Memory and Cognition, Psychonomic Society, 1018 West 34…

  3. How to measure working memory capacity in the change detection paradigm

    NARCIS (Netherlands)

    Rouder, Jeffrey N.; Morey, Richard D.; Morey, Candice C.; Cowan, Nelson

    Although the measurement of working memory capacity is crucial to understanding working memory and its interaction with other cognitive faculties, there are inconsistencies in the literature on how to measure capacity. We address the measurement in the change detection paradigm, popularized by Luck

  4. Models of Verbal Working Memory Capacity: What Does It Take to Make Them Work?

    Science.gov (United States)

    Cowan, Nelson; Rouder, Jeffrey N.; Blume, Christopher L.; Saults, J. Scott

    2012-01-01

    Theories of working memory (WM) capacity limits will be more useful when we know what aspects of performance are governed by the limits and what aspects are governed by other memory mechanisms. Whereas considerable progress has been made on models of WM capacity limits for visual arrays of separate objects, less progress has been made in…

  5. The Contribution of Working Memory to Fluid Reasoning: Capacity, Control, or Both?

    Science.gov (United States)

    Chuderski, Adam; Necka, Edward

    2012-01-01

    Fluid reasoning shares a large part of its variance with working memory capacity (WMC). The literature on working memory (WM) suggests that the capacity of the focus of attention responsible for simultaneous maintenance and integration of information within WM, as well as the effectiveness of executive control exerted over WM, determines…

  6. Visual Working Memory Capacity for Objects from Different Categories: A Face-Specific Maintenance Effect

    Science.gov (United States)

    Wong, Jason H.; Peterson, Matthew S.; Thompson, James C.

    2008-01-01

    The capacity of visual working memory was examined when complex objects from different categories were remembered. Previous studies have not examined how visual similarity affects object memory, though it has long been known that similar-sounding phonological information interferes with rehearsal in auditory working memory. Here, experiments…

  7. Distinct Transfer Effects of Training Different Facets of Working Memory Capacity

    Science.gov (United States)

    von Bastian, Claudia C.; Oberauer, Klaus

    2013-01-01

    The impact of working memory training on a broad set of transfer tasks was examined. Each of three groups of participants trained one specific functional category of working memory capacity: storage and processing, relational integration, and supervision. A battery comprising tests to measure working memory, task shifting, inhibition, and…

  8. The generalizability of working-memory capacity in the sport domain.

    Science.gov (United States)

    Buszard, Tim; Masters, Rich Sw; Farrow, Damian

    2017-08-01

    Working-memory capacity has been implicated as an influential variable when performing and learning sport-related skills. In this review, we critically evaluate evidence linking working-memory capacity with performing under pressure, tactical decision making, motor skill acquisition, and sport expertise. Laboratory experiments link low working-memory capacity with poorer performance under pressure and poorer decision making when required to inhibit distractions or resolve conflict. However, the generalizability of these findings remains unknown. While working-memory capacity is associated with the acquisition of simple motor skills, there is no such evidence from the available data for complex motor skills. Likewise, currently there is no evidence to suggest that a larger working-memory capacity facilitates the attainment of sport expertise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Planning Decrements in Healthy Aging: Mediation Effects of Fluid Reasoning and Working Memory Capacity.

    Science.gov (United States)

    Köstering, Lena; Leonhart, Rainer; Stahl, Christoph; Weiller, Cornelius; Kaller, Christoph P

    2016-03-01

    Although age-related differences in planning ability are well known, their cognitive foundations remain a matter of contention. To elucidate the specific processes underlying planning decrements in older age, the relative contributions of fluid reasoning, working memory (WM) capacity, and processing speed to accuracy on the Tower of London (TOL) planning task were investigated. Mediation analyses were used to relate overall and search depth-related TOL accuracy from older (N = 106; 60-89 years) and younger adults (N = 69; 18-54 years) to age and measures of fluid reasoning, WM capacity, and speed. For overall planning, fluid abilities mediated the effects of age, WM capacity, and speed in older adults. By contrast, fluid abilities and WM capacity mediated each other in younger adults. For planning accuracy under low demands on the depth of search, WM capacity was specifically important in older age, whereas younger adults recruited both WM capacity and fluid reasoning. Under high search-depth-demands, fluid abilities underlay the cognitive operations critical for resolving move interdependencies in both age groups. Fluid abilities and WM capacity undergo significant changes from younger to older age in their unique contribution to planning, which might represent a mechanism whereby planning decrements in older age are brought about. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Working memory capacity and fluid abilities: The more difficult the item, the more more is better

    OpenAIRE

    Daniel R Little; Stephan eLewandowsky; Stephan eLewandowsky; Stewart eCraig

    2014-01-01

    The relationship between fluid intelligence and working memory is of fundamental importance to understanding how capacity-limited structures such as working memory interact with inference abilities to determine intelligent behaviour. Recent evidence has suggested that the relationship between a fluid abilities test, Raven's Progressive Matrices, and working memory capacity (WMC) may be invariant across difficulty levels of the Raven's items. We show that this invariance can only be observed i...

  11. The role of working memory capacity in autobiographical retrieval: individual differences in strategic search.

    Science.gov (United States)

    Unsworth, Nash; Spillers, Gregory J; Brewer, Gene A

    2012-01-01

    Remembering previous experiences from one's personal past is a principal component of psychological well-being, personality, sense of self, decision making, and planning for the future. In the current study the ability to search for autobiographical information in memory was examined by having college students recall their Facebook friends. Individual differences in working memory capacity manifested itself in the search of autobiographical memory by way of the total number of friends remembered, the number of clusters of friends, size of clusters, and the speed with which participants could output their friends' names. Although working memory capacity was related to the ability to search autobiographical memory, participants did not differ in the manner in which they approached the search and used contextual cues to help query their memories. These results corroborate recent theorising, which suggests that working memory is a necessary component of self-generating contextual cues to strategically search memory for autobiographical information.

  12. Expertise for upright faces improves the precision but not the capacity of visual working memory.

    Science.gov (United States)

    Lorenc, Elizabeth S; Pratte, Michael S; Angeloni, Christopher F; Tong, Frank

    2014-10-01

    Considerable research has focused on how basic visual features are maintained in working memory, but little is currently known about the precision or capacity of visual working memory for complex objects. How precisely can an object be remembered, and to what extent might familiarity or perceptual expertise contribute to working memory performance? To address these questions, we developed a set of computer-generated face stimuli that varied continuously along the dimensions of age and gender, and we probed participants' memories using a method-of-adjustment reporting procedure. This paradigm allowed us to separately estimate the precision and capacity of working memory for individual faces, on the basis of the assumptions of a discrete capacity model, and to assess the impact of face inversion on memory performance. We found that observers could maintain up to four to five items on average, with equally good memory capacity for upright and upside-down faces. In contrast, memory precision was significantly impaired by face inversion at every set size tested. Our results demonstrate that the precision of visual working memory for a complex stimulus is not strictly fixed but, instead, can be modified by learning and experience. We find that perceptual expertise for upright faces leads to significant improvements in visual precision, without modifying the capacity of working memory.

  13. False memories in highly superior autobiographical memory individuals

    Science.gov (United States)

    Patihis, Lawrence; Frenda, Steven J.; LePort, Aurora K. R.; Petersen, Nicole; Nichols, Rebecca M.; Stark, Craig E. L.; McGaugh, James L.; Loftus, Elizabeth F.

    2013-01-01

    The recent identification of highly superior autobiographical memory (HSAM) raised the possibility that there may be individuals who are immune to memory distortions. We measured HSAM participants’ and age- and sex-matched controls’ susceptibility to false memories using several research paradigms. HSAM participants and controls were both susceptible to false recognition of nonpresented critical lure words in an associative word-list task. In a misinformation task, HSAM participants showed higher overall false memory compared with that of controls for details in a photographic slideshow. HSAM participants were equally as likely as controls to mistakenly report they had seen nonexistent footage of a plane crash. Finding false memories in a superior-memory group suggests that malleable reconstructive mechanisms may be fundamental to episodic remembering. Paradoxically, HSAM individuals may retrieve abundant and accurate autobiographical memories using fallible reconstructive processes. PMID:24248358

  14. Episodic Long-Term Memory of Spoken Discourse Masked by Speech: What Is the Role for Working Memory Capacity?

    Science.gov (United States)

    Sorqvist, Patrik; Ronnberg, Jerker

    2012-01-01

    Purpose: To investigate whether working memory capacity (WMC) modulates the effects of to-be-ignored speech on the memory of materials conveyed by to-be-attended speech. Method: Two tasks (reading span, Daneman & Carpenter, 1980; Ronnberg et al., 2008; and size-comparison span, Sorqvist, Ljungberg, & Ljung, 2010) were used to measure individual…

  15. Age-related decline in verbal learning is moderated by demographic factors, working memory capacity, and presence of amnestic mild cognitive impairment.

    Science.gov (United States)

    Constantinidou, Fofi; Zaganas, Ioannis; Papastefanakis, Emmanouil; Kasselimis, Dimitrios; Nidos, Andreas; Simos, Panagiotis G

    2014-09-01

    Age-related memory changes are highly varied and heterogeneous. The study examined the rate of decline in verbal episodic memory as a function of education level, auditory attention span and verbal working memory capacity, and diagnosis of amnestic mild cognitive impairment (a-MCI). Data were available on a community sample of 653 adults aged 17-86 years and 70 patients with a-MCI recruited from eight broad geographic areas in Greece and Cyprus. Measures of auditory attention span and working memory capacity (digits forward and backward) and verbal episodic memory (Auditory Verbal Learning Test [AVLT]) were used. Moderated mediation regressions on data from the community sample did not reveal significant effects of education level on the rate of age-related decline in AVLT indices. The presence of a-MCI was a significant moderator of the direct effect of Age on both immediate and delayed episodic memory indices. The rate of age-related decline in verbal episodic memory is normally mediated by working memory capacity. Moreover, in persons who display poor episodic memory capacity (a-MCI group), age-related memory decline is expected to advance more rapidly for those who also display relatively poor verbal working memory capacity.

  16. Frontoparietal tDCS Benefits Visual Working Memory in Older Adults With Low Working Memory Capacity.

    Science.gov (United States)

    Arciniega, Hector; Gözenman, Filiz; Jones, Kevin T; Stephens, Jaclyn A; Berryhill, Marian E

    2018-01-01

    Working memory (WM) permits maintenance of information over brief delays and is an essential executive function. Unfortunately, WM is subject to age-related decline. Some evidence supports the use of transcranial direct current stimulation (tDCS) to improve visual WM. A gap in knowledge is an understanding of the mechanism characterizing these tDCS linked effects. To address this gap, we compared the effects of two tDCS montages designed on visual working memory (VWM) performance. The bifrontal montage was designed to stimulate the heightened bilateral frontal activity observed in aging adults. The unilateral frontoparietal montage was designed to stimulate activation patterns observed in young adults. Participants completed three sessions (bilateral frontal, right frontoparietal, sham) of anodal tDCS (20 min, 2 mA). During stimulation, participants performed a visual long-term memory (LTM) control task and a visual WM task. There was no effect of tDCS on the LTM task. Participants receiving right unilateral tDCS showed a WM benefit. This pattern was most robust in older adults with low WM capacity. To address the concern that the key difference between the two tDCS montages could be tDCS over the posterior parietal cortex (PPC), we included new analyses from a previous study applying tDCS targeting the PPC paired with a recognition VWM task. No significant main effects were found. A subsequent experiment in young adults found no significant effect of either tDCS montage on either task. These data indicate that tDCS montage, age and WM capacity should be considered when designing tDCS protocols. We interpret these findings as suggestive that protocols designed to restore more youthful patterns of brain activity are superior to those that compensate for age-related changes.

  17. Frontal theta and beta synchronizations for monetary reward increase visual working memory capacity.

    Science.gov (United States)

    Kawasaki, Masahiro; Yamaguchi, Yoko

    2013-06-01

    Visual working memory (VWM) capacity is affected by motivational influences; however, little is known about how reward-related brain activities facilitate the VWM systems. To investigate the dynamic relationship between VWM- and reward-related brain activities, we conducted time-frequency analyses using electroencephalograph (EEG) data obtained during a monetary-incentive delayed-response task that required participants to memorize the position of colored disks. In case of a correct answer, participants received a monetary reward (0, 10 or 50 Japanese yen) announced at the beginning of each trial. Behavioral results showed that VWM capacity under high-reward condition significantly increased compared with that under low- or no-reward condition. EEG results showed that frontal theta (6 Hz) amplitudes enhanced during delay periods and positively correlated with VWM capacity, indicating involvement of theta local synchronizations in VWM. Moreover, frontal beta activities (24 Hz) were identified as reward-related activities, because delay-period amplitudes correlated with increases in VWM capacity between high-reward and no-reward conditions. Interestingly, cross-frequency couplings between frontal theta and beta phases were observed only under high-reward conditions. These findings suggest that the functional dynamic linking between VWM-related theta and reward-related beta activities on the frontal regions plays an integral role in facilitating increases in VWM capacity.

  18. Letter and Colour Matching Tasks: Parametric Measures of Developmental Working Memory Capacity

    Directory of Open Access Journals (Sweden)

    Tamara L. Powell

    2014-01-01

    Full Text Available We investigated the mediating role of interference in developmental assessments of working memory (WM capacity across childhood, adolescence, and young adulthood. One hundred and forty-two participants completed two versions of visuospatial (colour matching task, CMT and verbal (letter matching task, LMT WM tasks, which systematically varied cognitive load in a high and low interference condition. Results showed similar developmental trajectories across high interference contexts (CMT- and LMT-Complex and divergent developmental growth patterns across low interference contexts (CMT- and LMT-Simple. Performance on tasks requiring greater cognitive control was in closer agreement with developmental predictions relative to simple recall guided tasks that rely solely on the storage components of WM. These findings suggest that developmental WM capacity, as measured by the CMT and LMT paradigms, can be better quantified using high interference contexts, in both content domains, and demonstrate steady increases in WM through to mid-adolescence.

  19. Individual differences in explicit and implicit visuomotor learning and working memory capacity.

    Science.gov (United States)

    Christou, Antonios I; Miall, R Chris; McNab, Fiona; Galea, Joseph M

    2016-11-08

    The theoretical basis for the association between high working memory capacity (WMC) and enhanced visuomotor adaptation is unknown. Visuomotor adaptation involves interplay between explicit and implicit systems. We examined whether the positive association between adaptation and WMC is specific to the explicit component of adaptation. Experiment 1 replicated the positive correlation between WMC and adaptation, but revealed this was specific to the explicit component of adaptation, and apparently driven by a sub-group of participants who did not show any explicit adaptation in the correct direction. A negative correlation was observed between WMC and implicit learning. Experiments 2 and 3 showed that when the task restricted the development of an explicit strategy, high WMC was no longer associated with enhanced adaptation. This work reveals that the benefit of high WMC is specifically linked to an individual's capacity to use an explicit strategy. It also reveals an important contribution of individual differences in determining how adaptation is performed.

  20. False memories in highly superior autobiographical memory individuals

    OpenAIRE

    Patihis, Lawrence; Frenda, Steven J.; LePort, Aurora K. R.; Petersen, Nicole; Nichols, Rebecca M.; Stark, Craig E. L.; McGaugh, James L.; Loftus, Elizabeth F.

    2013-01-01

    The recent identification of highly superior autobiographical memory (HSAM) raised the possibility that there may be individuals who are immune to memory distortions. We measured HSAM participants' and age- and sex-matched controls' susceptibility to false memories using several research paradigms. HSAM participants and controls were both susceptible to false recognition of nonpresented critical lure words in an associative word-list task. In a misinformation task, HSAM participants showed hi...

  1. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder

    Directory of Open Access Journals (Sweden)

    Yones Lotfi

    2016-03-01

    Full Text Available Background: This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD. Methods: The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9–11 years according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. Results: The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth and lower negative correlations in the most lateral reference location (60° azimuth in the children with APD. Conclusion: The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  2. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder.

    Science.gov (United States)

    Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed

    2016-03-01

    This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9-11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  3. Computer Simulations of Developmental Change: The Contributions of Working Memory Capacity and Long-Term Knowledge

    Science.gov (United States)

    Jones, Gary; Gobet, Fernand; Pine, Julian M.

    2008-01-01

    Increasing working memory (WM) capacity is often cited as a major influence on children's development and yet WM capacity is difficult to examine independently of long-term knowledge. A computational model of children's nonword repetition (NWR) performance is presented that independently manipulates long-term knowledge and WM capacity to determine…

  4. The Benefits of Working Memory Capacity on Attentional Control under Pressure.

    Science.gov (United States)

    Luo, Xiaoxiao; Zhang, Liwei; Wang, Jin

    2017-01-01

    The present study aimed to examine the effects of working memory capacity (WMC) and state anxiety (SA) on attentional control. WMC was manipulated by (a) dividing participants into low- and high-WMC groups (Experiment 1), and (b) using working memory training to improve WMC (Experiment 2). SA was manipulated by creating low- and high-SA conditions. Attentional control was evaluated by using antisaccade task. Results demonstrated that (a) higher WMC indicated better attentional control (Experiments 1 and 2); (b) the effects of SA on attentional control were inconsistent because SA impaired attentional control in Experiment 1, but favored attentional control in Experiment 2; and (c) the interaction of SA and WMC was not significant (Experiments 1 and 2). This study directly manipulated WMC by working memory training, which provided more reliable evidence for controlled attention view of WMC and new supportive evidence for working memory training (i.e., far transfer effect on attentional control). And the refinement of the relationship between anxiety and attentional control proposed by Attentional Control Theory was also discussed.

  5. The Benefits of Working Memory Capacity on Attentional Control under Pressure

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Luo

    2017-07-01

    Full Text Available The present study aimed to examine the effects of working memory capacity (WMC and state anxiety (SA on attentional control. WMC was manipulated by (a dividing participants into low- and high-WMC groups (Experiment 1, and (b using working memory training to improve WMC (Experiment 2. SA was manipulated by creating low- and high-SA conditions. Attentional control was evaluated by using antisaccade task. Results demonstrated that (a higher WMC indicated better attentional control (Experiments 1 and 2; (b the effects of SA on attentional control were inconsistent because SA impaired attentional control in Experiment 1, but favored attentional control in Experiment 2; and (c the interaction of SA and WMC was not significant (Experiments 1 and 2. This study directly manipulated WMC by working memory training, which provided more reliable evidence for controlled attention view of WMC and new supportive evidence for working memory training (i.e., far transfer effect on attentional control. And the refinement of the relationship between anxiety and attentional control proposed by Attentional Control Theory was also discussed.

  6. A Study of the Effects of Daily Physical Activity on Memory and Attention Capacities in College Students

    Directory of Open Access Journals (Sweden)

    Dinh-Van Phan

    2018-01-01

    Full Text Available This study evaluated the relationship between daily physical activity (DPA and memory capacity, as well as the association between daily activity and attention capacity, in college students in Taiwan. Participants (mean age = 20.79 wore wearable trackers for 106 days in order to collect DPA. These data were analyzed in association with their memory and attention capacities, as assessed using the spatial span test (SST and the trail making test (TMT. The study showed significant negative correlations between memory capacity, time spent on the attention test (TSAT, calories burnt, and very active time duration (VATD on the day before testing (r=−0.272, r=−0.176, r=0.289, r=0.254, resp. and during the week prior to testing (r=−0.364, r=−0.395, r=0.268, r=0.241, resp.. The calories burnt and the VATD per day thresholds, which at best discriminated between normal-to-good and low attention capacity, were ≥2283 calories day−1, ≥20 minutes day−1 of very high activity (VHA on the day before testing, or ≥13,640 calories week−1, ≥76 minutes week−1 of VHA during the week prior to testing. Findings indicated the short-term effects that VATD and calories burnt on the day before or during the week before testing significantly and negatively associated with memory and attention capacities of college students.

  7. Temporal context memory in high-functioning autism.

    Science.gov (United States)

    Gras-Vincendon, Agnès; Mottron, Laurent; Salamé, Pierre; Bursztejn, Claude; Danion, Jean-Marie

    2007-11-01

    Episodic memory, i.e. memory for specific episodes situated in space and time, seems impaired in individuals with autism. According to weak central coherence theory, individuals with autism have general difficulty connecting contextual and item information which then impairs their capacity to memorize information in context. This study investigated temporal context memory for visual information in individuals with autism. Eighteen adolescents and adults with high-functioning autism (HFA) or Asperger syndrome (AS) and age- and IQ-matched typically developing participants were tested using a recency judgement task. The performance of the autistic group did not differ from that of the control group, nor did the performance between the AS and HFA groups. We conclude that autism in high-functioning individuals does not impair temporal context memory as assessed on this task. We suggest that individuals with autism are as efficient on this task as typically developing subjects because contextual memory performance here involves more automatic than organizational processing.

  8. High capacity photonic integrated switching circuits

    NARCIS (Netherlands)

    Albores Mejia, A.

    2011-01-01

    As the demand for high-capacity data transfer keeps increasing in high performance computing and in a broader range of system area networking environments; reconfiguring the strained networks at ever faster speeds with larger volumes of traffic has become a huge challenge. Formidable bottlenecks

  9. Working memory capacity predicts listwise directed forgetting in adults and children.

    Science.gov (United States)

    Aslan, Alp; Zellner, Martina; Bäuml, Karl-Heinz T

    2010-05-01

    In listwise directed forgetting, participants are cued to forget previously studied material and to learn new material instead. Such cueing typically leads to forgetting of the first set of material and to memory enhancement of the second. The present study examined the role of working memory capacity in adults' and children's listwise directed forgetting. Working memory capacity was assessed with complex span tasks. In Experiment 1 working memory capacity predicted young adults' directed-forgetting performance, demonstrating a positive relationship between working memory capacity and each of the two directed-forgetting effects. In Experiment 2 we replicated the finding with a sample of first and a sample of fourth-grade children, and additionally showed that working memory capacity can account for age-related increases in directed-forgetting efficiency between the two age groups. Following the view that directed forgetting is mediated by inhibition of the first encoded list, the results support the proposal of a close link between working memory capacity and inhibitory function.

  10. Creativity and working memory capacity in sports: working memory capacity is not a limiting factor in creative decision making amongst skilled performers.

    Science.gov (United States)

    Furley, Philip; Memmert, Daniel

    2015-01-01

    The goal of the study was to investigate the relationship between domain-general working memory capacity and domain-specific creativity amongst experienced soccer players. We administered the automated operation span task in combination with a domain-specific soccer creativity task to a group of 61 experienced soccer players to address the question whether an athlete's domain-specific creativity is restricted by their domain-general cognitive abilities (i.e., working memory capacity). Given that previous studies have either found a positive correlation, a negative correlation, or no correlation between working memory capacity and creativity, we analyzed the data in an exploratory manner by following recent recommendations to report effect-size estimations and their precision in form of 95% confidence intervals. The pattern of results provided evidence that domain-general working memory capacity is not associated with creativity in a soccer-specific creativity task. This pattern of results suggests that future research and theorizing on the role of working memory in everyday creative performance needs to distinguish between different types of creative performance while also taking the role of domain-specific experience into account.

  11. Spatial Working Memory Capacity Predicts Bias in Estimates of Location

    Science.gov (United States)

    Crawford, L. Elizabeth; Landy, David; Salthouse, Timothy A.

    2016-01-01

    Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intraindividual stability and interindividual variation in these patterns of bias. In the current work, we align recent empirical and theoretical work on…

  12. Working Memory Capacity and Categorization: Individual Differences and Modeling

    Science.gov (United States)

    Lewandowsky, Stephan

    2011-01-01

    Working memory is crucial for many higher-level cognitive functions, ranging from mental arithmetic to reasoning and problem solving. Likewise, the ability to learn and categorize novel concepts forms an indispensable part of human cognition. However, very little is known about the relationship between working memory and categorization, and…

  13. Capacity of a quantum memory channel correlated by matrix product states

    Science.gov (United States)

    Mulherkar, Jaideep; Sunitha, V.

    2018-04-01

    We study the capacity of a quantum channel where channel acts like controlled phase gate with the control being provided by a one-dimensional quantum spin chain environment. Due to the correlations in the spin chain, we get a quantum channel with memory. We derive formulas for the quantum capacity of this channel when the spin state is a matrix product state. Particularly, we derive exact formulas for the capacity of the quantum memory channel when the environment state is the ground state of the AKLT model and the Majumdar-Ghosh model. We find that the behavior of the capacity for the range of the parameters is analytic.

  14. Effects of Children's Working Memory Capacity and Processing Speed on Their Sentence Imitation Performance

    Science.gov (United States)

    Poll, Gerard H.; Miller, Carol A.; Mainela-Arnold, Elina; Adams, Katharine Donnelly; Misra, Maya; Park, Ji Sook

    2013-01-01

    Background: More limited working memory capacity and slower processing for language and cognitive tasks are characteristics of many children with language difficulties. Individual differences in processing speed have not

  15. Structural maturation and brain activity predict future working memory capacity during childhood development.

    Science.gov (United States)

    Ullman, Henrik; Almeida, Rita; Klingberg, Torkel

    2014-01-29

    Human working memory capacity develops during childhood and is a strong predictor of future academic performance, in particular, achievements in mathematics and reading. Predicting working memory development is important for the early identification of children at risk for poor cognitive and academic development. Here we show that structural and functional magnetic resonance imaging data explain variance in children's working memory capacity 2 years later, which was unique variance in addition to that predicted using cognitive tests. While current working memory capacity correlated with frontoparietal cortical activity, the future capacity could be inferred from structure and activity in basal ganglia and thalamus. This gives a novel insight into the neural mechanisms of childhood development and supports the idea that neuroimaging can have a unique role in predicting children's cognitive development.

  16. Searching while loaded: Visual working memory does not interfere with hybrid search efficiency but hybrid search uses working memory capacity.

    Science.gov (United States)

    Drew, Trafton; Boettcher, Sage E P; Wolfe, Jeremy M

    2016-02-01

    In "hybrid search" tasks, such as finding items on a grocery list, one must search the scene for targets while also searching the list in memory. How is the representation of a visual item compared with the representations of items in the memory set? Predominant theories would propose a role for visual working memory (VWM) either as the site of the comparison or as a conduit between visual and memory systems. In seven experiments, we loaded VWM in different ways and found little or no effect on hybrid search performance. However, the presence of a hybrid search task did reduce the measured capacity of VWM by a constant amount regardless of the size of the memory or visual sets. These data are broadly consistent with an account in which VWM must dedicate a fixed amount of its capacity to passing visual representations to long-term memory for comparison to the items in the memory set. The data cast doubt on models in which the search template resides in VWM or where memory set item representations are moved from LTM through VWM to earlier areas for comparison to visual items.

  17. Motivation enhances visual working memory capacity through the modulation of central cognitive processes.

    Science.gov (United States)

    Sanada, Motoyuki; Ikeda, Koki; Kimura, Kenta; Hasegawa, Toshikazu

    2013-09-01

    Motivation is well known to enhance working memory (WM) capacity, but the mechanism underlying this effect remains unclear. The WM process can be divided into encoding, maintenance, and retrieval, and in a change detection visual WM paradigm, the encoding and retrieval processes can be subdivided into perceptual and central processing. To clarify which of these segments are most influenced by motivation, we measured ERPs in a change detection task with differential monetary rewards. The results showed that the enhancement of WM capacity under high motivation was accompanied by modulations of late central components but not those reflecting attentional control on perceptual inputs across all stages of WM. We conclude that the "state-dependent" shift of motivation impacted the central, rather than the perceptual functions in order to achieve better behavioral performances. Copyright © 2013 Society for Psychophysiological Research.

  18. The development of working memory capacity and fluid intelligence in children

    OpenAIRE

    Engel de Abreu, Pascale; Gathercole, S; Conway, A

    2010-01-01

    A longitudinal study was conducted to investigate the relationship between working memory capacity and fluid intelligence and how this relationship develops in early childhood. The major aim was to determine which aspect of the working memory system – short-term storage or executive attention – drives the relationship with fluid intelligence. A sample of 119 children was followed from kindergarten to second grade and completed multiple assessments of short-term memory, wor...

  19. Category Specific Knowledge Modulate Capacity Limitations of Visual Short-Term Memory

    DEFF Research Database (Denmark)

    Dall, Jonas Olsen; Watanabe, Katsumi; Sørensen, Thomas Alrik

    2016-01-01

    We explore whether expertise can modulate the capacity of visual short-term memory, as some seem to argue that training affects capacity of short-term memory [13] while others are not able to find this modulation [12]. We extend on a previous study [3] demonstrating expertise effects by investiga...... are in line with the theoretical interpretation that visual short-term memory reflects the sum of the reverberating feedback loops to representations in long-term memory.......We explore whether expertise can modulate the capacity of visual short-term memory, as some seem to argue that training affects capacity of short-term memory [13] while others are not able to find this modulation [12]. We extend on a previous study [3] demonstrating expertise effects......), and expert observers (Japanese university students). For both the picture and the letter condition we find no performance difference in memory capacity, however, in the critical hiragana condition we demonstrate a systematic difference relating expertise differences between the groups. These results...

  20. Relation between working memory and self-control capacity in participants with mild intellectual disability

    Directory of Open Access Journals (Sweden)

    Dučić Bojan

    2017-01-01

    Full Text Available Working memory is activated in situations which require active control of directing attention, processing information and making it available for a short time. Its content is limited in capacity and changes with regard to the context of a performed activity. Self-control is the capacity of a voluntary conscious effort to persist in achieving a previously set goal. The aim of this research was to determine the relation of verbal and visuospatial aspects of working memory with self-control skills in persons with mild intellectual disability (ID. The sample included 40 participants 8-12 years of age (M=10.65, SD=1.19. Memorizing a Maze task, adapted for participants with ID, was used to determine the capacity of visuospatial aspect of working memory. Memorizing Animals task was used to assess verbal aspect of working memory, and Self-Control Rating Scale was used to determine the acquisition level of self-control skills. It was determined that verbal aspects of working memory were significantly related to the acquired level of self-control skills (p=0.002. There was no significant relation between the results of tasks assessing the capacity of visuospatial working memory and the success on the scale assessing self-control capacity (p=0.089. The relation between self-control and verbal aspect of working memory may be explained by close links between using speech and applying self-regulation strategies.

  1. Working Memory Capacity and Fluid Abilities: Examining the Correlation between Operation Span and Raven

    Science.gov (United States)

    Unsworth, N.; Engle, R.W.

    2005-01-01

    The correlation between a measure of working memory capacity (WMC) (Operation Span) and a measure of fluid abilities (Raven Advanced Progressive Matrices) was examined. Specifically, performance on Raven problems was decomposed by difficulty, memory load, and rule type. The results suggest that the relation between Operation Span and Raven is…

  2. Non Temporal Determinants of Bilingual Memory Capacity: The Role of Long-Term Representations and Fluency.

    Science.gov (United States)

    Chincotta, Dino; Underwood, Geoffrey

    1998-01-01

    Examined the view that the variation in bilingual short-term memory capacity is determined by differential rates of subvocal rehearsal between the languages. Auditory memory span and articulation time were measured for three bilingual groups who spoke Finnish at home and Swedish at school, and either Finnish of Swedish in both the home and the…

  3. Working Memory Capacity and Focused and Sustained Attention

    National Research Council Canada - National Science Library

    Engle, Randall

    2003-01-01

    .... We see WM as a system consisting of those long-term memory traces active above threshold, the procedures and skills necessary to achieve and maintain that activation and, what we call executive...

  4. Probing the early development of visual working memory capacity with functional near-infrared spectroscopy.

    Science.gov (United States)

    Buss, Aaron T; Fox, Nicholas; Boas, David A; Spencer, John P

    2014-01-15

    Visual working memory (VWM) is a core cognitive system with a highly limited capacity. The present study is the first to examine VWM capacity limits in early development using functional neuroimaging. We recorded optical neuroimaging data while 3- and 4-year-olds completed a change detection task where they detected changes in the shapes of objects after a brief delay. Near-infrared sources and detectors were placed over the following 10-20 positions: F3 and F5 in left frontal cortex, F4 and F6 in right frontal cortex, P3 and P5 in left parietal cortex, and P4 and P6 in right parietal cortex. The first question was whether we would see robust task-specific activation of the frontal-parietal network identified in the adult fMRI literature. This was indeed the case: three left frontal channels and 11 of 12 parietal channels showed a statistically robust difference between the concentration of oxygenated and deoxygenated hemoglobin following the presentation of the sample array. Moreover, four channels in the left hemisphere near P3, P5, and F5 showed a robust increase as the working memory load increased from 1 to 3 items. Notably, the hemodynamic response did not asymptote at 1-2 items as expected from previous fMRI studies with adults. Finally, 4-year-olds showed a more robust parietal response relative to 3-year-olds, and an increasing sensitivity to the memory load manipulation. These results demonstrate that fNIRS is an effective tool to study the neural processes that underlie the early development of VWM capacity. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Alcohol-related memory associations in positive and negative affect situations: drinking motives, working memory capacity, and prospective drinking.

    Science.gov (United States)

    Salemink, Elske; Wiers, Reinout W

    2014-03-01

    Although studies on explicit alcohol cognitions have identified positive and negative reinforcing drinking motives that are differentially related to drinking indices, such a distinction has received less attention in studies on implicit cognitions. An alcohol-related Word-Sentence Association Task was used to assess implicit alcohol-related memory associations in positive and negative affect situations in 92 participants. Results revealed that enhancement motives were specifically associated with the endorsement of alcohol words in positive affect situations and coping motives were associated with the endorsement of alcohol words in negative affect situations. Furthermore, alcohol associations in positive affect situations predicted prospective alcohol use and number of binges, depending on levels of working memory capacity. The current findings shed more light on the underpinnings of alcohol use and suggest that implicit memory processes and working memory capacity might be important targets for intervention.

  6. High capacity getter pump for UHV operation

    International Nuclear Information System (INIS)

    Manini, P.; Marino, M.; Belloni, F.; Porro, M.

    1993-01-01

    UHV pumps based on non-evaporable getter coated strips find widespread use in particle accelerators, synchrotron radiation machines and nuclear fusion experimental devices. Depending on the geometric constraints, pressure operation conditions and the foreseen gas loads, optimized getter structures, such as modules and cartridges, can be designed and assembled into a high-efficiency pump. In the present paper, the design and performance of a newly conceived High Capacity Getter Pump (HCGP) based on sintered getter bodies, in the shape of blades instead of strips, is illustrated. The porosity and the specific surface area of the blades and their arrangement in the cartridge have been optimized to significantly increase sorption capacity at a given speed. These pumps are well suited for those applications where a very high gas load is expected during the machine operation. The sintered getter bodies increase surface area and capacity, requiring less frequent reactivation and facilitating greater overall life of the pump. A discussion of the experimental results in terms of sorption speed and capacity for various gases is presented

  7. Working memory capacity in social anxiety disorder: Revisiting prior conclusions.

    Science.gov (United States)

    Waechter, Stephanie; Moscovitch, David A; Vidovic, Vanja; Bielak, Tatiana; Rowa, Karen; McCabe, Randi E

    2018-04-01

    In one of the few studies examining working memory processes in social anxiety disorder (SAD), Amir and Bomyea (2011) recruited participants with and without SAD to complete a working memory span task with neutral and social threat words. Those with SAD showed better working memory performance for social threat words compared to neutral words, suggesting an enhancement in processing efficiency for socially threatening information in SAD. The current study sought to replicate and extend these findings. In this study, 25 participants with a principal diagnosis of SAD, 24 anxious control (AC) participants with anxiety disorders other than SAD, and 27 healthy control (HC) participants with no anxiety disorder completed a working memory task with social threat, general threat, and neutral stimuli. The groups in the current study demonstrated similar working memory performance within each of the word type conditions, thus failing to replicate the principal findings of Amir and Bomyea (2011). Post hoc analyses revealed a significant association between higher levels of anxiety symptomatology and poorer overall WM performance. These results inform our understanding of working memory in the anxiety disorders and support the importance of replication in psychological research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. Effects of noise and working memory capacity on memory processing of speech for hearing-aid users

    OpenAIRE

    Ng, Hoi Ning, Elaine; Rudner, Mary; Lunner, Thomas; Syskind Perdersen, Michael; Rönnberg, Jerker

    2013-01-01

    Objectives: It has been shown that noise reduction algorithms can reduce the negative effects of noise on memory processing in persons with normal hearing. The objective of the present study was to investigate whether a similar effect can be obtained for persons with hearing impairment and whether such an effect is dependent on individual differences in working memory capacity. Design: A sentence-final word identification and recall (SWIR) test was conducted in two noise backgrounds with and ...

  9. Focusing on attention: the effects of working memory capacity and load on selective attention.

    Science.gov (United States)

    Ahmed, Lubna; de Fockert, Jan W

    2012-01-01

    Working memory (WM) is imperative for effective selective attention. Distractibility is greater under conditions of high (vs. low) concurrent working memory load (WML), and in individuals with low (vs. high) working memory capacity (WMC). In the current experiments, we recorded the flanker task performance of individuals with high and low WMC during low and high WML, to investigate the combined effect of WML and WMC on selective attention. In Experiment 1, distractibility from a distractor at a fixed distance from the target was greater when either WML was high or WMC was low, but surprisingly smaller when both WML was high and WMC low. Thus we observed an inverted-U relationship between reductions in WM resources and distractibility. In Experiment 2, we mapped the distribution of spatial attention as a function of WMC and WML, by recording distractibility across several target-to-distractor distances. The pattern of distractor effects across the target-to-distractor distances demonstrated that the distribution of the attentional window becomes dispersed as WM resources are limited. The attentional window was more spread out under high compared to low WML, and for low compared to high WMC individuals, and even more so when the two factors co-occurred (i.e., under high WML in low WMC individuals). The inverted-U pattern of distractibility effects in Experiment 1, replicated in Experiment 2, can thus be explained by differences in the spread of the attentional window as a function of WM resource availability. The current findings show that limitations in WM resources, due to either WML or individual differences in WMC, affect the spatial distribution of attention. The difference in attentional constraining between high and low WMC individuals demonstrated in the current experiments helps characterise the nature of previously established associations between WMC and controlled attention.

  10. Focusing on attention: the effects of working memory capacity and load on selective attention.

    Directory of Open Access Journals (Sweden)

    Lubna Ahmed

    Full Text Available BACKGROUND: Working memory (WM is imperative for effective selective attention. Distractibility is greater under conditions of high (vs. low concurrent working memory load (WML, and in individuals with low (vs. high working memory capacity (WMC. In the current experiments, we recorded the flanker task performance of individuals with high and low WMC during low and high WML, to investigate the combined effect of WML and WMC on selective attention. METHODOLOGY/PRINCIPAL FINDINGS: In Experiment 1, distractibility from a distractor at a fixed distance from the target was greater when either WML was high or WMC was low, but surprisingly smaller when both WML was high and WMC low. Thus we observed an inverted-U relationship between reductions in WM resources and distractibility. In Experiment 2, we mapped the distribution of spatial attention as a function of WMC and WML, by recording distractibility across several target-to-distractor distances. The pattern of distractor effects across the target-to-distractor distances demonstrated that the distribution of the attentional window becomes dispersed as WM resources are limited. The attentional window was more spread out under high compared to low WML, and for low compared to high WMC individuals, and even more so when the two factors co-occurred (i.e., under high WML in low WMC individuals. The inverted-U pattern of distractibility effects in Experiment 1, replicated in Experiment 2, can thus be explained by differences in the spread of the attentional window as a function of WM resource availability. CONCLUSIONS/SIGNIFICANCE: The current findings show that limitations in WM resources, due to either WML or individual differences in WMC, affect the spatial distribution of attention. The difference in attentional constraining between high and low WMC individuals demonstrated in the current experiments helps characterise the nature of previously established associations between WMC and controlled

  11. Visuospatial Working Memory Capacity Predicts Physiological Arousal in a Narrative Task.

    Science.gov (United States)

    Smithson, Lisa; Nicoladis, Elena

    2016-06-01

    Physiological arousal that occurs during narrative production is thought to reflect emotional processing and cognitive effort (Bar-Haim et al. in Dev Psychobiol 44:238-249, 2004). The purpose of this study was to determine whether individual differences in visuospatial working memory and/or verbal working memory capacity predict physiological arousal in a narrative task. Visuospatial working memory was a significant predictor of skin conductance level (SCL); verbal working memory was not. When visuospatial working memory interference was imposed, visuospatial working memory was no longer a significant predictor of SCL. Visuospatial interference also resulted in a significant reduction in SCL. Furthermore, listener ratings of narrative quality were contingent upon the visuospatial working memory resources of the narrator. Potential implications for educators and clinical practitioners are discussed.

  12. Examining variation in working memory capacity and retrieval in cued recall.

    Science.gov (United States)

    Unsworth, Nash

    2009-05-01

    Two experiments examined the notion that individual differences in working memory capacity (WMC) are partially due to differences in search set size in cued recall. High and low WMC individuals performed variants of a cued recall task with either unrelated cue words (Experiment 1) or specific cue phrases (Experiment 2). Across both experiments low WMC individuals recalled fewer items, made more errors, and had longer correct recall latencies than high WMC individuals. Cross-experimental analyses suggested that providing participants with more specific cues decreased the size of the search set, leading to better recall overall. However, these effects were equivalent for high and low WMC. It is argued that these results are consistent with a search model framework in which low WMC individuals search through a larger set of items than high WMC individuals.

  13. Models Provide Specificity: Testing a Proposed Mechanism of Visual Working Memory Capacity Development

    Science.gov (United States)

    Simmering, Vanessa R.; Patterson, Rebecca

    2012-01-01

    Numerous studies have established that visual working memory has a limited capacity that increases during childhood. However, debate continues over the source of capacity limits and its developmental increase. Simmering (2008) adapted a computational model of spatial cognitive development, the Dynamic Field Theory, to explain not only the source…

  14. Working memory capacity and overgeneral autobiographical memory in young and older adults.

    Science.gov (United States)

    Ros, Laura; Latorre, José Miguel; Serrano, Juan Pedro

    2010-01-01

    The objectives of this study are to compare the Autobiographical Memory Test (AMT) performance of two healthy samples of younger and older adults and to analyse the relationship between overgeneral memory (OGM) and working memory executive processes (WMEP) using a structural equation modelling with latent variables. The AMT and sustained attention, short-term memory and working memory tasks were administered to a group of young adults (N = 50) and a group of older adults (N = 46). On the AMT, the older adults recalled a greater number of categorical memories (p = .000) and fewer specific memories (p = .000) than the young adults, confirming that OGM occurs in the normal population and increases with age. WMEP was measured by reading span and a working memory with sustained attention load task. Structural equation modelling reflects that WMEP shows a strong relationship with OGM: lower scores on WMEP reflect an OGM phenomenon characterized by higher categorical and lower specific memories.

  15. Functional connectivity among multi-channel EEGs when working memory load reaches the capacity.

    Science.gov (United States)

    Zhang, Dan; Zhao, Huipo; Bai, Wenwen; Tian, Xin

    2016-01-15

    Evidence from behavioral studies has suggested a capacity existed in working memory. As the concept of functional connectivity has been introduced into neuroscience research in the recent years, the aim of this study is to investigate the functional connectivity in the brain when working memory load reaches the capacity. 32-channel electroencephalographs (EEGs) were recorded for 16 healthy subjects, while they performed a visual working memory task with load 1-6. Individual working memory capacity was calculated according to behavioral results. Short-time Fourier transform was used to determine the principal frequency band (theta band) related to working memory. The functional connectivity among EEGs was measured by the directed transform function (DTF) via spectral Granger causal analysis. The capacity was 4 calculated from the behavioral results. The power was focused in the frontal midline region. The strongest connectivity strengths of EEG theta components from load 1 to 6 distributed in the frontal midline region. The curve of DTF values vs load numbers showed that DTF increased from load 1 to 4, peaked at load 4, then decreased after load 4. This study finds that the functional connectivity between EEGs, described quantitatively by DTF, became less strong when working memory load exceeded the capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effects of Working Memory Capacity and Domain Knowledge on Recall for Grocery Prices.

    Science.gov (United States)

    Bermingham, Douglas; Gardner, Michael K; Woltz, Dan J

    2016-01-01

    Hambrick and Engle (2002) proposed 3 models of how domain knowledge and working memory capacity may work together to influence episodic memory: a "rich-get-richer" model, a "building blocks" model, and a "compensatory" model. Their results supported the rich-get-richer model, although later work by Hambrick and Oswald (2005) found support for a building blocks model. We investigated the effects of domain knowledge and working memory on recall of studied grocery prices. Working memory was measured with 3 simple span tasks. A contrast of realistic versus fictitious foods in the episodic memory task served as our manipulation of domain knowledge, because participants could not have domain knowledge of fictitious food prices. There was a strong effect for domain knowledge (realistic food-price pairs were easier to remember) and a moderate effect for working memory capacity (higher working memory capacity produced better recall). Furthermore, the interaction between domain knowledge and working memory produced a small but significant interaction in 1 measure of price recall. This supported the compensatory model and stands in contrast to previous research.

  17. Evolutionary games played by multi-agent system with different memory capacity

    Science.gov (United States)

    Zhang, Jianlei; Zhang, Chunyan

    2015-06-01

    The evolution of cooperation is still an enigma. Resolution of cooperative dilemma is a hot topic as a perplexing interdisciplinary project, and has captured wide attention of researchers from many disciplines as a multidisciplinary field. Our main concern is the design of a networked evolutionary game model in which players show difference in memory capability. The idea of different memory capacities has its origin on the pervasive individual heterogeneity of real agents in nature. It is concluded that this proposed multiple memory capacity stimulates cooperation in lattice-structured populations. The networking effect is also investigated via a scale free network which is associated with the heterogeneous populations structure. Interestingly, results suggest that the effectiveness of a heterogeneous network at fostering cooperation is reduced in the presence of individual memory here. A thorough inquiry in the coevolutionary dynamics of individual memory and spatial structure in evolutionary games is planned for the immediate future.

  18. Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity

    DEFF Research Database (Denmark)

    Horwitz, Anna; Mortensen, Erik L.; Osler, Merete

    2017-01-01

    -task sensory steady-state stimulation. We investigated 40 healthy males born in 1953 who were part of a Danish birth cohort study. Coherence was measured in the gamma range in response to a single-sensory visual stimulation (36 Hz) and a double-sensory combined audiovisual stimulation (auditive: 40 Hz; visual...... found that the difference in anterior coherence (ΔCA ) is a better predictor of memory than power in multivariate models. The sensitivity of ΔCA for detecting low memory capacity is 92%. Finally, ΔCA was also associated with other types of memory: verbal learning, visual recognition, and spatial memory...

  19. The Nature of the Capacity Limitations in Visual Short-Term Memory

    DEFF Research Database (Denmark)

    Sørensen, Thomas Alrik; Kyllingsbæk, Søren

    Several studies have explored the nature and in particular the limitations of human visual short-term memory (VSTM) (e.g. Luck & Vogel, 1997). A VSTM capacity limit of about 3 to 4 objects has been found, thus confirming results from earlier studies (e.g. Sperling, 1960). However, Alvarez...... either Arabic or Japanese. Our results indicate that VSTM capacity for familiar items - compared to unfamiliar - is larger, irrespective of their visual complexity, hereby suggesting that visual long-term memory representation and training play an important role in regard to the capacity limitations...

  20. Effects of Skill Training on Working Memory Capacity

    Science.gov (United States)

    Lee, Yuh-shiow; Lu, Min-ju; Ko, Hsiu-ping

    2007-01-01

    In this study we examined the effects of skill training, in particular mental abacus and music training, on working memory. Two groups of participants--children who had received mental abacus training and their controls--participated in Experiment 1. All participants performed the following span tasks: forward digit span, backward digit span,…

  1. Dynamical Origin of the Effective Storage Capacity in the Brain's Working Memory

    Science.gov (United States)

    Bick, Christian; Rabinovich, Mikhail I.

    2009-11-01

    The capacity of working memory (WM), a short-term buffer for information in the brain, is limited. We suggest a model for sequential WM that is based upon winnerless competition amongst representations of available informational items. Analytical results for the underlying mathematical model relate WM capacity and relative lateral inhibition in the corresponding neural network. This implies an upper bound for WM capacity, which is, under reasonable neurobiological assumptions, close to the “magical number seven.”

  2. High Capacity cylinder roller bearing; High Capacity Zylinderrollenlager. Ein vollrolliges Lager mit Kaefig

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, J.; Baum, J. [SKF, Schweinfurt (Germany)

    2007-07-15

    The high capacity cylinder roller bearing is an example for continuous development of SKF products and does an effective contribution to increase operational safety and offers the possibility to reduce weight and compact design. (GL)

  3. The magical number 4 in short-term memory: a reconsideration of mental storage capacity.

    Science.gov (United States)

    Cowan, N

    2001-02-01

    Miller (1956) summarized evidence that people can remember about seven chunks in short-term memory (STM) tasks. However, that number was meant more as a rough estimate and a rhetorical device than as a real capacity limit. Others have since suggested that there is a more precise capacity limit, but that it is only three to five chunks. The present target article brings together a wide variety of data on capacity limits suggesting that the smaller capacity limit is real. Capacity limits will be useful in analyses of information processing only if the boundary conditions for observing them can be carefully described. Four basic conditions in which chunks can be identified and capacity limits can accordingly be observed are: (1) when information overload limits chunks to individual stimulus items, (2) when other steps are taken specifically to block the recording of stimulus items into larger chunks, (3) in performance discontinuities caused by the capacity limit, and (4) in various indirect effects of the capacity limit. Under these conditions, rehearsal and long-term memory cannot be used to combine stimulus items into chunks of an unknown size; nor can storage mechanisms that are not capacity-limited, such as sensory memory, allow the capacity-limited storage mechanism to be refilled during recall. A single, central capacity limit averaging about four chunks is implicated along with other, noncapacity-limited sources. The pure STM capacity limit expressed in chunks is distinguished from compound STM limits obtained when the number of separately held chunks is unclear. Reasons why pure capacity estimates fall within a narrow range are discussed and a capacity limit for the focus of attention is proposed.

  4. Visual working memory capacity for color is independent of representation resolution.

    Science.gov (United States)

    Ye, Chaoxiong; Zhang, Lingcong; Liu, Taosheng; Li, Hong; Liu, Qiang

    2014-01-01

    The relationship between visual working memory (VWM) capacity and resolution of representation have been extensively investigated. Several recent ERP studies using orientation (or arrow) stimuli suggest that there is an inverse relationship between VWM capacity and representation resolution. However, different results have been obtained in studies using color stimuli. This could be due to important differences in the experimental paradigms used in previous studies. We examined whether the same relationship between capacity and resolution holds for color information. Participants performed a color change detection task while their electroencephalography was recorded. We manipulated representation resolution by asking participants to detect either a salient change (low-resolution) or a subtle change (high-resolution) in color. We used an ERP component known as contralateral delay activity (CDA) to index the amount of information maintained in VWM. The result demonstrated the same pattern for both low- and high-resolution conditions, with no difference between conditions. This result suggests that VWM always represents a fixed number of approximately 3-4 colors regardless of the resolution of representation.

  5. The frontal eye fields limit the capacity of visual short-term memory in rhesus monkeys.

    Science.gov (United States)

    Lee, Kyoung-Min; Ahn, Kyung-Ha

    2013-01-01

    The frontal eye fields (FEF) in rhesus monkeys have been implicated in visual short-term memory (VSTM) as well as control of visual attention. Here we examined the importance of the area in the VSTM capacity and the relationship between VSTM and attention, using the chemical inactivation technique and multi-target saccade tasks with or without the need of target-location memory. During FEF inactivation, serial saccades to targets defined by color contrast were unaffected, but saccades relying on short-term memory were impaired when the target count was at the capacity limit of VSTM. The memory impairment was specific to the FEF-coded retinotopic locations, and subject to competition among targets distributed across visual fields. These results together suggest that the FEF plays a crucial role during the entry of information into VSTM, by enabling attention deployment on targets to be remembered. In this view, the memory capacity results from the limited availability of attentional resources provided by FEF: The FEF can concurrently maintain only a limited number of activations to register the targets into memory. When lesions render part of the area unavailable for activation, the number would decrease, further reducing the capacity of VSTM.

  6. The frontal eye fields limit the capacity of visual short-term memory in rhesus monkeys.

    Directory of Open Access Journals (Sweden)

    Kyoung-Min Lee

    Full Text Available The frontal eye fields (FEF in rhesus monkeys have been implicated in visual short-term memory (VSTM as well as control of visual attention. Here we examined the importance of the area in the VSTM capacity and the relationship between VSTM and attention, using the chemical inactivation technique and multi-target saccade tasks with or without the need of target-location memory. During FEF inactivation, serial saccades to targets defined by color contrast were unaffected, but saccades relying on short-term memory were impaired when the target count was at the capacity limit of VSTM. The memory impairment was specific to the FEF-coded retinotopic locations, and subject to competition among targets distributed across visual fields. These results together suggest that the FEF plays a crucial role during the entry of information into VSTM, by enabling attention deployment on targets to be remembered. In this view, the memory capacity results from the limited availability of attentional resources provided by FEF: The FEF can concurrently maintain only a limited number of activations to register the targets into memory. When lesions render part of the area unavailable for activation, the number would decrease, further reducing the capacity of VSTM.

  7. A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing.

    Energy Technology Data Exchange (ETDEWEB)

    Vineyard, Craig Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Verzi, Stephen Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    As high performance computing architectures pursue more computational power there is a need for increased memory capacity and bandwidth as well. A multi-level memory (MLM) architecture addresses this need by combining multiple memory types with different characteristics as varying levels of the same architecture. How to efficiently utilize this memory infrastructure is an unknown challenge, and in this research we sought to investigate whether neural inspired approaches can meaningfully help with memory management. In particular we explored neurogenesis inspired re- source allocation, and were able to show a neural inspired mixed controller policy can beneficially impact how MLM architectures utilize memory.

  8. Cortical potentials in an auditory oddball task reflect individual differences in working memory capacity.

    Science.gov (United States)

    Yurgil, Kate A; Golob, Edward J

    2013-12-01

    This study determined whether auditory cortical responses associated with mechanisms of attention vary with individual differences in working memory capacity (WMC) and perceptual load. The operation span test defined subjects with low versus high WMC, who then discriminated target/nontarget tones while EEG was recorded. Infrequent white noise distracters were presented at midline or ±90° locations, and perceptual load was manipulated by varying nontarget frequency. Amplitude of the N100 to distracters was negatively correlated with WMC. Relative to targets, only high WMC subjects showed attenuated N100 amplitudes to nontargets. In the higher WMC group, increased perceptual load was associated with decreased P3a amplitudes to distracters and longer-lasting negative slow wave to nontargets. Results show that auditory cortical processing is associated with multiple facets of attention related to WMC and possibly higher-level cognition. Copyright © 2013 Society for Psychophysiological Research.

  9. Retest effects in working memory capacity tests: A meta-analysis.

    Science.gov (United States)

    Scharfen, Jana; Jansen, Katrin; Holling, Heinz

    2018-06-15

    The repeated administration of working memory capacity tests is common in clinical and research settings. For cognitive ability tests and different neuropsychological tests, meta-analyses have shown that they are prone to retest effects, which have to be accounted for when interpreting retest scores. Using a multilevel approach, this meta-analysis aims at showing the reproducibility of retest effects in working memory capacity tests for up to seven test administrations, and examines the impact of the length of the test-retest interval, test modality, equivalence of test forms and participant age on the size of retest effects. Furthermore, it is assessed whether the size of retest effects depends on the test paradigm. An extensive literature search revealed 234 effect sizes from 95 samples and 68 studies, in which healthy participants between 12 and 70 years repeatedly performed a working memory capacity test. Results yield a weighted average of g = 0.28 for retest effects from the first to the second test administration, and a significant increase in effect sizes was observed up to the fourth test administration. The length of the test-retest interval and publication year were found to moderate the size of retest effects. Retest effects differed between the paradigms of working memory capacity tests. These findings call for the development and use of appropriate experimental or statistical methods to address retest effects in working memory capacity tests.

  10. Differences in Attainment and Performance in a Foreign Language: The Role of Working Memory Capacity

    Directory of Open Access Journals (Sweden)

    Roger Gilabert

    2010-06-01

    Full Text Available The goal of this study is to investigate the role of working memory capacity in L2 attainment and performance. The study uses an L1 reading span task to measure working memory of a group of 59 high- intermediate/advanced learners of English, and a film retelling task to measure their oral production. The analysis first showed a moderate to high correlation between proficiency measured by a general proficiency test and learners’ fluency, lexical complexity, and accuracy but not structural complexity on the retelling task. Secondly, no correlation was found between overall proficiency and working memory. Thirdly, a weak correlation was found between fluency and lexical complexity, and working memory. When the group was split into top and bottom levels of proficiency, moderate correlations were found between lexical complexity and working memory only for the high-proficiency group. The results are discussed in the light of previous research.El objetivo de este estudio es investigar el rol de la capacidad de memoria operativa en la proficiencia y la producción en una L2. El estudio utiliza una tarea de reading span en la L1 para medir la memoria operativa de un grupo de 59 estudiantes de inglés de nivel intermedio alto/avanzado, y una tarea narrativa para medir su producción oral. Los análisis muestran correlaciones significativas entre la proficiencia medida por un test de proficiencia general y la fluidez, complejidad léxica, y corrección, aunque no con la complejidad estructural. Las correlaciones también son positivas y significativas entre la memoria operativa y la fluidez y complejidad léxica, pero no se observa una correlación significativa entre la proficiencia general y la memoria operativa. Cuando se divide el grupo entre los niveles más altos y más bajos se encuentran correlaciones moderadas entre la complejidad léxica y la memoria operativa sólo para el grupo de proficiencia alta. Los resultados se analizan en base a los

  11. High Capacity Radio over Fiber Transmission Links

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio

    . This achievement has satisfied the requirements on transmission robustness and high capacity of next generation hybrid optical fibre-wireless networks. One important contribution of this thesis is the novel concept of photonic downconversion with free-running pulsed laser source for phase modulated Radio-over-Fiber......This thesis expands the state-of-the-art on the detection of high speed wireless signals using optics. Signal detection at speeds over 1 Gbps at carrier Radio Frequency (RF) ranging from 5 GHz to 100 GHz have been achieved by applying novel concepts on optical digital coherent receivers......-wave frequencies at carrier frequencies exceeding 60 GHz, using photonic baseband technologies. For signal generation, high spectral-efficient optical modulation technologies are used together with optical heterodyning. In the detection side, the mm-wave signal is modulated in the optical domain and received using...

  12. Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity.

    Science.gov (United States)

    Horwitz, Anna; Mortensen, Erik L; Osler, Merete; Fagerlund, Birgitte; Lauritzen, Martin; Benedek, Krisztina

    2017-01-01

    HIGHLIGHTS Memory correlates with the difference between single and double-sensory evoked steady-state coherence in the gamma range (Δ C ).The correlation is most pronounced for the anterior brain region (Δ C A ).The correlation is not driven by birth size, education, speed of processing, or intelligence.The sensitivity of Δ C A for detecting low memory capacity is 90%. Cerebral rhythmic activity and oscillations are important pathways of communication between cortical cell assemblies and may be key factors in memory. We asked whether memory performance is related to gamma coherence in a non-task sensory steady-state stimulation. We investigated 40 healthy males born in 1953 who were part of a Danish birth cohort study. Coherence was measured in the gamma range in response to a single-sensory visual stimulation (36 Hz) and a double-sensory combined audiovisual stimulation (auditive: 40 Hz; visual: 36 Hz). The individual difference in coherence (Δ C ) between the bimodal and monomodal stimulation was calculated for each subject and used as the main explanatory variable. Δ C in total brain were significantly negatively correlated with long-term verbal recall. This correlation was pronounced for the anterior region. In addition, the correlation between Δ C and long-term memory was robust when controlling for working memory, as well as a wide range of potentially confounding factors, including intelligence, length of education, speed of processing, visual attention and executive function. Moreover, we found that the difference in anterior coherence (Δ C A ) is a better predictor of memory than power in multivariate models. The sensitivity of Δ C A for detecting low memory capacity is 92%. Finally, Δ C A was also associated with other types of memory: verbal learning, visual recognition, and spatial memory, and these additional correlations were also robust enough to control for a range of potentially confounding factors. Thus, the Δ C is a predictor of memory

  13. The contribution of short-term memory capacity to reading ability in adolescents with cochlear implants.

    Science.gov (United States)

    Edwards, Lindsey; Aitkenhead, Lynne; Langdon, Dawn

    2016-11-01

    This study aimed to establish the relationship between short-term memory capacity and reading skills in adolescents with cochlear implants. A between-groups design compared a group of young people with cochlear implants with a group of hearing peers on measures of reading, and auditory and visual short-term memory capacity. The groups were matched for non-verbal IQ and age. The adolescents with cochlear implants were recruited from the Cochlear Implant Programme at a specialist children's hospital. The hearing participants were recruited from the same schools as those attended by the implanted adolescents. Participants were 18 cochlear implant users and 14 hearing controls, aged between 12 and 18 years. All used English as their main language and had no significant learning disability or neuro-developmental disorder. Short-term memory capacity was assessed in the auditory modality using Forward and Reverse Digit Span from the WISC IV UK, and visually using Forward and Reverse Memory from the Leiter-R. Individual word reading, reading comprehension and pseudoword decoding were assessed using the WIAT II UK. A series of ANOVAs revealed that the adolescents with cochlear implants had significantly poorer auditory short-term memory capacity and reading skills (on all measures) compared with their hearing peers. However, when Forward Digit Span was entered into the analyses as a covariate, none of the differences remained statistically significant. Deficits in immediate auditory memory persist into adolescence in deaf children with cochlear implants. Short-term auditory memory capacity is an important neurocognitive process in the development of reading skills after cochlear implantation in childhood that remains evident in later adolescence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity

    OpenAIRE

    Horwitz, Anna; Mortensen, Erik L.; Osler, Merete; Fagerlund, Birgitte; Lauritzen, Martin; Benedek, Krisztina

    2017-01-01

    HIGHLIGHTS Memory correlates with the difference between single and double-sensory evoked steady-state coherence in the gamma range (ΔC). The correlation is most pronounced for the anterior brain region (ΔC A ). The correlation is not driven by birth size, education, speed of processing, or intelligence. The sensitivity of ΔC A for detecting low memory capacity is 90%. Cerebral rhythmic activity and oscillations are important pathways of communication between cortical cell assemblies and may ...

  15. Effects of domain knowledge, working memory capacity, and age on cognitive performance: an investigation of the knowledge-is-power hypothesis.

    Science.gov (United States)

    Hambrick, David Z; Engle, Randall W

    2002-06-01

    Domain knowledge facilitates performance in many cognitive tasks. However, very little is known about the interplay between domain knowledge and factors that are believed to reflect general, and relatively stable, characteristics of the individual. The primary goal of this study was to investigate the interplay between domain knowledge and one such factor: working memory capacity. Adults from wide ranges of working memory capacity, age, and knowledge about the game of baseball listened to, and then answered questions about, simulated radio broadcasts of baseball games. There was a strong facilitative effect of preexisting knowledge of baseball on memory performance, particularly for information judged to be directly relevant to the baseball games. However, there was a positive effect of working memory capacity on memory performance as well, and there was no indication that domain knowledge attenuated this effect. That is, working memory capacity contributed to memory performance even at high levels of domain knowledge. Similarly, there was no evidence that domain knowledge attenuated age-related differences (favoring young adults) in memory performance. We discuss implications of the results for understanding proficiency in cognitive domains from an individual-differences perspective. Copyright 2001 Elsevier Science (USA).

  16. The Influence of Attention Set, Working Memory Capacity, and Expectations on Inattentional Blindness.

    Science.gov (United States)

    Kreitz, Carina; Furley, Philip; Memmert, Daniel; Simons, Daniel J

    2016-04-01

    The probability of inattentional blindness, the failure to notice an unexpected object when attention is engaged on some primary task, is influenced by contextual factors like task demands, features of the unexpected object, and the observer's attention set. However, predicting who will notice an unexpected object and who will remain inattentionally blind has proven difficult, and the evidence that individual differences in cognition affect noticing remains ambiguous. We hypothesized that greater working memory capacity might modulate the effect of attention sets on noticing because working memory is associated with the ability to focus attention selectively. People with greater working memory capacity might be better able to attend selectively to target items, thereby increasing the chances of noticing unexpected objects that were similar to the attended items while decreasing the odds of noticing unexpected objects that differed from the attended items. Our study (N = 120 participants) replicated evidence that task-induced attention sets modulate noticing but found no link between noticing and working memory capacity. Our results are largely consistent with the idea that individual differences in working memory capacity do not predict noticing of unexpected objects in an inattentional blindness task. © The Author(s) 2015.

  17. High-capacity neutron activation analysis facility

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1979-01-01

    A high-capacity neutron activation analysis facility, the Reactor Activation Facility, was designed and built and has been in operation for about a year at one of the Savannah River Plant's production reactors. The facility determines uranium and about 19 other trace elements in hydrogeochemical samples collected in the National Uranium Resource Evaluation program. The facility has a demonstrated average analysis rate of over 10,000 samples per month, and a peak rate of over 16,000 samples per month. Uranium is determined by cyclic activation and delayed neutron counting of the U-235 fission products; other elements are determined from gamma-ray spectra recorded in subsequent irradiation, decay, and counting steps. The method relies on the absolute activation technique and is highly automated for round-the-clock unattended operation

  18. Moisture buffering capacity of highly absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Cerolini, S.; D' Orazio, M.; Stazi, A. [Department of Architecture, Construction and Structures (DACS), Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy); Di Perna, C. [Department of Energetics, Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy)

    2009-02-15

    This research investigates the possibility to use highly absorbing materials to dampen indoor RH% variations. The practical MBV of sodium polyacrylate, cellulose-based material, perlite and gypsum is evaluated for a daily cyclic exposure that alternates high (75%) and low (33%) RH% levels for 8 h and 16 h, respectively. The adjustment velocity to RH% variations and the presence of hysteretic phenomena are also presented. The cellulose-based material proves to be the most suitable for moisture buffering applications. Starting from this material's properties, the effect of thickness, vapour resistance factor ({mu}) and mass surface exchange coefficient (Z{sub v}) on sorption capacity is evaluated by the use of a numerical model. (author)

  19. High-capacity neutron activation analysis facility

    International Nuclear Information System (INIS)

    Hochel, R.C.; Bowman, W.W.; Zeh, C.W.

    1980-01-01

    A high-capacity neutron activation analysis facility, the Reactor Activation Facility, was designed and built and has been in operation for about a year at one of the Savannah River Plant's production reactors. The facility determines uranium and about 19 other elements in hydrogeochemical samples collected in the National Uranium Resource Evaluation program, which is sponsored and funded by the United States Department of Energy, Grand Junction Office. The facility has a demonstrated average analysis rate of over 10,000 samples per month, and a peak rate of over 16,000 samples per month. Uranium is determined by cyclic activation and delayed neutron counting of the U-235 fission products; other elements are determined from gamma-ray spectra recorded in subsequent irradiation, decay, and counting steps. The method relies on the absolute activation technique and is highly automated for round-the-clock unattended operation

  20. The NASA CSTI High Capacity Power Project

    International Nuclear Information System (INIS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Schmitz, P.; Vandersande, J.

    1992-01-01

    This paper describes the elements of NASA's CSTI High Capacity Power Project which include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timeliness recently developed

  1. Isolating Age-Group Differences in Working Memory Load-Related Neural Activity: Assessing the Contribution of Working Memory Capacity Using a Partial-Trial fMRI Method

    Science.gov (United States)

    Bennett, Ilana J.; Rivera, Hannah G.; Rypma, Bart

    2013-01-01

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. PMID:23357076

  2. Isolating age-group differences in working memory load-related neural activity: assessing the contribution of working memory capacity using a partial-trial fMRI method.

    Science.gov (United States)

    Bennett, Ilana J; Rivera, Hannah G; Rypma, Bart

    2013-05-15

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Individual Differences in Working Memory Capacity Predict Sleep-Dependent Memory Consolidation

    Science.gov (United States)

    Fenn, Kimberly M.; Hambrick, David Z.

    2012-01-01

    Decades of research have established that "online" cognitive processes, which operate during conscious encoding and retrieval of information, contribute substantially to individual differences in memory. Furthermore, it is widely accepted that "offline" processes during sleep also contribute to memory performance. However, the question of whether…

  4. Using ECC DRAM to Adaptively Increase Memory Capacity

    OpenAIRE

    Luo, Yixin; Ghose, Saugata; Li, Tianshi; Govindan, Sriram; Sharma, Bikash; Kelly, Bryan; Boroumand, Amirali; Mutlu, Onur

    2017-01-01

    Modern DRAM modules are often equipped with hardware error correction capabilities, especially for DRAM deployed in large-scale data centers, as process technology scaling has increased the susceptibility of these devices to errors. To provide fast error detection and correction, error-correcting codes (ECC) are placed on an additional DRAM chip in a DRAM module. This additional chip expands the raw capacity of a DRAM module by 12.5%, but the applications are unable to use any of this extra c...

  5. The NASA CSTI High Capacity Power Program

    International Nuclear Information System (INIS)

    Winter, J.M.

    1991-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems: Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability, and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operations as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed

  6. Development of high-capacity antimatter storage

    International Nuclear Information System (INIS)

    Howe, Steven D.; Smith, Gerald A.

    2000-01-01

    Space is vast. Over the next few decades, humanity will strive to send probes farther and farther into space to establish long baselines for interferometry, to visit the Kuiper Belt, to identify the heliopause, or to map the Oort cloud. In order to solve many of the mysteries of the universe or to explore the solar system and beyond, one single technology must be developed--high performance propulsion. In essence, future missions to deep space will require specific impulses between 50,000 and 200,000 seconds and energy densities greater than 10 14 j/kg in order to accomplish the mission within the career lifetime of an individual, 40 years. Only two technologies available to mankind offer such performance--fusion and antimatter. Currently envisioned fusion systems are too massive. Alternatively, because of the high energy density, antimatter powered systems may be relatively compact. The single key technology that is required to enable the revolutionary concept of antimatter propulsion is safe, reliable, high-density storage. Under a grant from the NASA Institute of Advanced Concepts, we have identified two potential mechanisms that may enable high capacity antimatter storage systems to be built. We will describe planned experiments to verify the concepts. Development of a system capable of storing megajoules per gram will allow highly instrumented platforms to make fast missions to great distances. Such a development will open the universe to humanity

  7. Models of verbal working memory capacity: what does it take to make them work?

    Science.gov (United States)

    Cowan, Nelson; Rouder, Jeffrey N; Blume, Christopher L; Saults, J Scott

    2012-07-01

    Theories of working memory (WM) capacity limits will be more useful when we know what aspects of performance are governed by the limits and what aspects are governed by other memory mechanisms. Whereas considerable progress has been made on models of WM capacity limits for visual arrays of separate objects, less progress has been made in understanding verbal materials, especially when words are mentally combined to form multiword units or chunks. Toward a more comprehensive theory of capacity limits, we examined models of forced-choice recognition of words within printed lists, using materials designed to produce multiword chunks in memory (e.g., leather brief case). Several simple models were tested against data from a variety of list lengths and potential chunk sizes, with test conditions that only imperfectly elicited the interword associations. According to the most successful model, participants retained about 3 chunks on average in a capacity-limited region of WM, with some chunks being only subsets of the presented associative information (e.g., leather brief case retained with leather as one chunk and brief case as another). The addition to the model of an activated long-term memory component unlimited in capacity was needed. A fixed-capacity limit appears critical to account for immediate verbal recognition and other forms of WM. We advance a model-based approach that allows capacity to be assessed despite other important processing contributions. Starting with a psychological-process model of WM capacity developed to understand visual arrays, we arrive at a more unified and complete model. Copyright 2012 APA, all rights reserved.

  8. Development of Spatial and Verbal Working Memory Capacity in the Human Brain

    Science.gov (United States)

    Thomason, Moriah E.; Race, Elizabeth; Burrows, Brittany; Whitfield-Gabrieli, Susan; Glover, Gary H.; Gabrieli, John D. E.

    2009-01-01

    A core aspect of working memory (WM) is the capacity to maintain goal-relevant information in mind, but little is known about how this capacity develops in the human brain. We compared brain activation, via fMRI, between children (ages 7-12 years) and adults (ages 20-29 years) performing tests of verbal and spatial WM with varying amounts (loads)…

  9. Parallel effects of memory set activation and searchon timing and working memory capacity

    Directory of Open Access Journals (Sweden)

    Richard eSchweickert

    2014-07-01

    Full Text Available Accurately estimating a time interval is required in everyday activities such as driving or cooking. Estimating time is relatively easy, provided a person attends to it. But a brief shift of attention to another task usually interferes with timing. Most processes carried out concurrently with timing interfere with it. Curiously, some do not. Literature on a few processes suggests a general proposition, the Timing and Complex-Span Hypothesis: A process interferes with concurrent timing if and only if process performance is related to complex span. Complex-span is the number of items correctly recalled in order, when each item presented for study is followed by a brief activity. Literature on task switching, visual search, memory search, word generation and mental time travel supports the hypothesis. Previous work found that another process, activation of a memory set in long term memory, is not related to complex-span. If the Timing and Complex-Span Hypothesis is true, activation should not interfere with concurrent timing in dual-task conditions. We tested such activation in single-task memory search task conditions and in dual-task conditions where memory search was executed with concurrent timing. In Experiment 1, activating a memory set increased reaction time, with no significant effect on time production. In Experiment 2, set size and memory set activation were manipulated. Activation and set size had a puzzling interaction for time productions, perhaps due to difficult conditions, leading us to use a related but easier task in Experiment 3. In Experiment 3 increasing set size lengthened time production, but memory activation had no significant effect. Results here and in previous literature on the whole support the Timing and Complex-Span Hypotheses. Results also support a sequential organization of activation and search of memory. This organization predicts activation and set size have additive effects on reaction time and multiplicative

  10. Parallel effects of memory set activation and search on timing and working memory capacity.

    Science.gov (United States)

    Schweickert, Richard; Fortin, Claudette; Xi, Zhuangzhuang; Viau-Quesnel, Charles

    2014-01-01

    Accurately estimating a time interval is required in everyday activities such as driving or cooking. Estimating time is relatively easy, provided a person attends to it. But a brief shift of attention to another task usually interferes with timing. Most processes carried out concurrently with timing interfere with it. Curiously, some do not. Literature on a few processes suggests a general proposition, the Timing and Complex-Span Hypothesis: A process interferes with concurrent timing if and only if process performance is related to complex span. Complex-span is the number of items correctly recalled in order, when each item presented for study is followed by a brief activity. Literature on task switching, visual search, memory search, word generation and mental time travel supports the hypothesis. Previous work found that another process, activation of a memory set in long term memory, is not related to complex-span. If the Timing and Complex-Span Hypothesis is true, activation should not interfere with concurrent timing in dual-task conditions. We tested such activation in single-task memory search task conditions and in dual-task conditions where memory search was executed with concurrent timing. In Experiment 1, activating a memory set increased reaction time, with no significant effect on time production. In Experiment 2, set size and memory set activation were manipulated. Activation and set size had a puzzling interaction for time productions, perhaps due to difficult conditions, leading us to use a related but easier task in Experiment 3. In Experiment 3 increasing set size lengthened time production, but memory activation had no significant effect. Results here and in previous literature on the whole support the Timing and Complex-Span Hypotheses. Results also support a sequential organization of activation and search of memory. This organization predicts activation and set size have additive effects on reaction time and multiplicative effects on percent

  11. High Capacity Hydrogen Storage on Nanoporous Biocarbon

    Science.gov (United States)

    Burress, Jacob; Wood, Mikael; Gordon, Michael; Parilla, Phillip; Benham, Michael; Wexler, Carlos; Hawthorne, Fred; Pfeifer, Peter

    2008-03-01

    The Alliance for Collaborative Research in Alternative Fuel Technology (http://all-craft.missouri.edu) has been optimizing nanoporous biocarbon for high capacity hydrogen storage. The hydrogen storage was measured gravimetrically and volumetrically (Sievert's apparatus). These measurements have been validated by NREL and Hiden Isochema. Sample S-33/k, our current best performer, stores 73-91 g H2/kg carbon at 77 K and 47 bar, and 1.0-1.6 g H2/kg carbon at 293 K and 47 bar. Hydrogen isotherms run by Hiden Isochema have given experimental binding energies of 8.8 kJ/mol compared to the binding energy of graphite of 5 kJ/mol. Results from a novel boron doping technique will also be presented. The benefits and validity of using boron-doping on carbon will also be discussed.

  12. Nonverbal auditory working memory: Can music indicate the capacity?

    Science.gov (United States)

    Jeong, Eunju; Ryu, Hokyoung

    2016-06-01

    Different working memory (WM) mechanisms that underlie words, tones, and timbres have been proposed in previous studies. In this regard, the present study developed a WM test with nonverbal sounds and compared it to the conventional verbal WM test. A total of twenty-five, non-music major, right-handed college students were presented with four different types of sounds (words, syllables, pitches, timbres) that varied from two to eight digits in length. Both accuracy and oxygenated hemoglobin (oxyHb) were measured. The results showed significant effects of number of targets on accuracy and sound type on oxyHb. A further analysis showed prefrontal asymmetry with pitch being processed by the right hemisphere (RH) and timbre by the left hemisphere (LH). These findings suggest a potential for employing musical sounds (i.e., pitch and timbre) as a complementary stimuli for conventional nonverbal WM tests, which can additionally examine its asymmetrical roles in the prefrontal regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Working memory capacity and visual-verbal cognitive load modulate auditory-sensory gating in the brainstem: toward a unified view of attention.

    Science.gov (United States)

    Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker

    2012-11-01

    Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.

  14. The development of a short domain-general measure of working memory capacity.

    Science.gov (United States)

    Oswald, Frederick L; McAbee, Samuel T; Redick, Thomas S; Hambrick, David Z

    2015-12-01

    Working memory capacity is one of the most frequently measured individual difference constructs in cognitive psychology and related fields. However, implementation of complex span and other working memory measures is generally time-consuming for administrators and examinees alike. Because researchers often must manage the tension between limited testing time and measuring numerous constructs reliably, a short and effective measure of working memory capacity would often be a major practical benefit in future research efforts. The current study developed a shortened computerized domain-general measure of working memory capacity by representatively sampling items from three existing complex working memory span tasks: operation span, reading span, and symmetry span. Using a large archival data set (Study 1, N = 4,845), we developed and applied a principled strategy for developing the reduced measure, based on testing a series of confirmatory factor analysis models. Adequate fit indices from these models lent support to this strategy. The resulting shortened measure was then administered to a second independent sample (Study 2, N = 172), demonstrating that the new measure saves roughly 15 min (30%) of testing time on average, and even up to 25 min depending on the test-taker. On the basis of these initial promising findings, several directions for future research are discussed.

  15. New Rule Use Drives the Relation between Working Memory Capacity and Raven's Advanced Progressive Matrices

    Science.gov (United States)

    Wiley, Jennifer; Jarosz, Andrew F.; Cushen, Patrick J.; Colflesh, Gregory J. H.

    2011-01-01

    The correlation between individual differences in working memory capacity and performance on the Raven's Advanced Progressive Matrices (RAPM) is well documented yet poorly understood. The present work proposes a new explanation: that the need to use a new combination of rules on RAPM problems drives the relation between performance and working…

  16. Visual Short-Term Memory: Is Capacity Dependent on Complexity or Familiarity?

    DEFF Research Database (Denmark)

    Sørensen, Thomas Alrik; Granlund, Rabia Line; Wiechmann, Maria

    Several recent studies have explored the nature and limits of visual short-term memory (VSTM) (e.g. Luck & Vogel, 1997). A general VSTM capacity limit of about 3 to 4 objects has been found, confirming results from earlier studies (e.g. Cattell, 1885; Sperling, 1960). However, Alvarez and Cavanagh...

  17. Individual Differences in Working Memory Capacity and Attention, and Their Relationship with Students' Approaches to Learning

    Science.gov (United States)

    Kyndt, Eva; Cascallar, Eduardo; Dochy, Filip

    2012-01-01

    Past research has shown that working memory capacity, attention and students' approaches to learning are all important predictors for educational achievement. In this study the interrelations between these three variables are investigated. Participants were 128 university students. Results show a negative relationship between attention and deep…

  18. Effects of Stress and Working Memory Capacity on Foreign Language Readers' Inferential Processing during Comprehension

    Science.gov (United States)

    Rai, Manpreet K.; Loschky, Lester C.; Harris, Richard Jackson; Peck, Nicole R.; Cook, Lindsay G.

    2011-01-01

    Although stress is frequently claimed to impede foreign language (FL) reading comprehension, it is usually not explained how. We investigated the effects of stress, working memory (WM) capacity, and inferential complexity on Spanish FL readers' inferential processing during comprehension. Inferences, although necessary for reading comprehension,…

  19. Semantic and functional relationships among objects increase the capacity of visual working memory.

    Science.gov (United States)

    O'Donnell, Ryan E; Clement, Andrew; Brockmole, James R

    2018-04-12

    Visual working memory (VWM) has a limited capacity of approximately 3-4 visual objects. Current theories of VWM propose that a limited pool of resources can be flexibly allocated to objects, allowing them to be represented at varying levels of precision. Factors that influence the allocation of these resources, such as the complexity and perceptual grouping of objects, can thus affect the capacity of VWM. We sought to identify whether semantic and functional relationships between objects could influence the grouping of objects, thereby increasing the functional capacity of VWM. Observers viewed arrays of 8 to-be-remembered objects arranged into 4 pairs. We manipulated both the semantic association and functional interaction between the objects, then probed participants' memory for the arrays. When objects were semantically related, participants' memory for the arrays improved. Participants' memory further improved when semantically related objects were positioned to interact with each other. However, when we increased the spacing between the objects in each pair, the benefits of functional but not semantic relatedness were eliminated. These findings suggest that action-relevant properties of objects can increase the functional capacity of VWM, but only when objects are positioned to directly interact with each other. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Effects of capacity limits, memory loss, and sound type in change deafness.

    Science.gov (United States)

    Gregg, Melissa K; Irsik, Vanessa C; Snyder, Joel S

    2017-11-01

    Change deafness, the inability to notice changes to auditory scenes, has the potential to provide insights about sound perception in busy situations typical of everyday life. We determined the extent to which change deafness to sounds is due to the capacity of processing multiple sounds and the loss of memory for sounds over time. We also determined whether these processing limitations work differently for varying types of sounds within a scene. Auditory scenes composed of naturalistic sounds, spectrally dynamic unrecognizable sounds, tones, and noise rhythms were presented in a change-detection task. On each trial, two scenes were presented that were same or different. We manipulated the number of sounds within each scene to measure memory capacity and the silent interval between scenes to measure memory loss. For all sounds, change detection was worse as scene size increased, demonstrating the importance of capacity limits. Change detection to the natural sounds did not deteriorate much as the interval between scenes increased up to 2,000 ms, but it did deteriorate substantially with longer intervals. For artificial sounds, in contrast, change-detection performance suffered even for very short intervals. The results suggest that change detection is generally limited by capacity, regardless of sound type, but that auditory memory is more enduring for sounds with naturalistic acoustic structures.

  1. One Size Fits All? Learning Conditions and Working Memory Capacity in "Ab Initio" Language Development

    Science.gov (United States)

    Sanz, Cristina; Lin, Hui-Ju; Lado, Beatriz; Stafford, Catherine A.; Bowden, Harriet W.

    2016-01-01

    The article summarizes results from two experimental studies (N = 23, N = 21) investigating the extent to which working memory capacity (WMC) intervenes in "ab initio" language development under two pedagogical conditions [± grammar lesson + input-based practice + explicit feedback]. The linguistic target is the use of morphosyntax to…

  2. Working Memory Capacity and L2 University Students' Comprehension of Linear Texts and Hypertexts

    Science.gov (United States)

    Fontanini, Ingrid; Tomitch, Leda Maria Braga

    2009-01-01

    The aim of this study was to investigate the relationship between working memory capacity and L2 reading comprehension of both linear texts and hypertexts. Three different instruments were used to measure comprehension (recall, comprehension questions and perception of contradictions) and the Reading Span Test (Daneman & Carpenter, 1980) was…

  3. When Feedback Is Cognitively-Demanding: The Importance of Working Memory Capacity

    Science.gov (United States)

    Fyfe, Emily R.; DeCaro, Marci S.; Rittle-Johnson, Bethany

    2015-01-01

    Feedback is generally considered a beneficial learning tool, and providing feedback is a recommended instructional practice. However, there are a variety of feedback types with little guidance on how to choose the most effective one. We examined individual differences in working memory capacity as a potential moderator of feedback type. Second-…

  4. Low Working Memory Capacity Impedes both Efficiency and Learning of Number Transcoding in Children

    Science.gov (United States)

    Camos, Valerie

    2008-01-01

    This study aimed to evaluate the impact of individual differences in working memory capacity on number transcoding. A recently proposed model, ADAPT (a developmental asemantic procedural transcoding model), accounts for the development of number transcoding from verbal form to Arabic form by two mechanisms: the learning of new production rules…

  5. Signed Language Working Memory Capacity of Signed Language Interpreters and Deaf Signers

    Science.gov (United States)

    Wang, Jihong; Napier, Jemina

    2013-01-01

    This study investigated the effects of hearing status and age of signed language acquisition on signed language working memory capacity. Professional Auslan (Australian sign language)/English interpreters (hearing native signers and hearing nonnative signers) and deaf Auslan signers (deaf native signers and deaf nonnative signers) completed an…

  6. More Is Generally Better: Higher Working Memory Capacity Does Not Impair Perceptual Category Learning

    Science.gov (United States)

    Kalish, Michael L.; Newell, Ben R.; Dunn, John C.

    2017-01-01

    It is sometimes supposed that category learning involves competing explicit and procedural systems, with only the former reliant on working memory capacity (WMC). In 2 experiments participants were trained for 3 blocks on both filtering (often said to be learned explicitly) and condensation (often said to be learned procedurally) category…

  7. Visual working memory capacity and stimulus categories: a behavioral and electrophysiological investigation

    NARCIS (Netherlands)

    Diamantopoulou, Sofia; Poom, Leo; Klaver, Peter; Talsma, D.

    2011-01-01

    It has recently been suggested that visual working memory capacity may vary depending on the type of material that has to be memorized. Here, we use a delayed match-to-sample paradigm and event-related potentials (ERP) to investigate the neural correlates that are linked to these changes in

  8. Assessment of Working Memory Capacity in Preschool Children Using the Missing Scan Task

    Science.gov (United States)

    Roman, Adrienne S.; Pisoni, David B.; Kronenberger, William G.

    2014-01-01

    The purpose of this study was to investigate the feasibility and validity of a modified version of Buschke's missing scan methodology, the Missing Scan Task (MST), to assess working memory capacity (WMC) and cognitive control processes in preschool children 3-6?years in age. Forty typically developing monolingual English-speaking children between…

  9. Working Memory Capacity and Stroop Interference: Global versus Local Indices of Executive Control

    Science.gov (United States)

    Meier, Matt E.; Kane, Michael J.

    2013-01-01

    Two experiments examined the relations among working memory capacity (WMC), congruency-sequence effects, proportion-congruency effects, and the color-word Stroop effect to test whether congruency-sequence effects might inform theoretical claims regarding WMC's prediction of Stroop interference. In Experiment 1, subjects completed either a…

  10. A central capacity limit to the simultaneous storage of visual and auditory arrays in working memory.

    Science.gov (United States)

    Saults, J Scott; Cowan, Nelson

    2007-11-01

    If working memory is limited by central capacity (e.g., the focus of attention; N. Cowan, 2001), then storage limits for information in a single modality should apply also to the simultaneous storage of information from different modalities. The authors investigated this by combining a visual-array comparison task with a novel auditory-array comparison task in 5 experiments. Participants were to remember only the visual, only the auditory (unimodal memory conditions), or both arrays (bimodal memory conditions). Experiments 1 and 2 showed significant dual-task tradeoffs for visual but not for auditory capacity. In Experiments 3-5, the authors eliminated modality-specific memory by using postperceptual masks. Dual-task costs occurred for both modalities, and the number of auditory and visual items remembered together was no more than the higher of the unimodal capacities (visual: 3-4 items). The findings suggest a central capacity supplemented by modality- or code-specific storage and point to avenues for further research on the role of processing in central storage. 2007 APA

  11. A Central Capacity Limit to the Simultaneous Storage of Visual and Auditory Arrays in Working Memory

    Science.gov (United States)

    Saults, J. Scott; Cowan, Nelson

    2007-01-01

    If working memory is limited by central capacity (e.g., the focus of attention; N. Cowan, 2001), then storage limits for information in a single modality should apply also to the simultaneous storage of information from different modalities. The authors investigated this by combining a visual-array comparison task with a novel auditory-array…

  12. Benefits from retrieval practice are greater for students with lower working memory capacity.

    Science.gov (United States)

    Agarwal, Pooja K; Finley, Jason R; Rose, Nathan S; Roediger, Henry L

    2017-07-01

    We examined the effects of retrieval practice for students who varied in working memory capacity as a function of the lag between study of material and its initial test, whether or not feedback was given after the test, and the retention interval of the final test. We sought to determine whether a blend of these conditions exists that maximises benefits from retrieval practice for lower and higher working memory capacity students. College students learned general knowledge facts and then restudied the facts or were tested on them (with or without feedback) at lags of 0-9 intervening items. Final cued recall performance was better for tested items than for restudied items after both 10 minutes and 2 days, particularly for longer study-test lags. Furthermore, on the 2-day delayed test the benefits from retrieval practice with feedback were significantly greater for students with lower working memory capacity than for students with higher working memory capacity (r = -.42). Retrieval practice may be an especially effective learning strategy for lower ability students.

  13. [Learning and Memory Capacity and NMDA Receptor Expression in Shen Deficiency Constitution Rats].

    Science.gov (United States)

    Sun, Yu-ru; Sun, Yao-guang; Zhang, Qi; Wang, Xiao-di; Wang, Xing; Sun, Li-jun

    2016-05-01

    To explore material bases and neurobiological mechanisms of "Shen storing will" by observing learning and memory capacities and N-methyl-D-aspartic acid (NMDA) receptor expressions in Shen deficiency constitution (SDC) rats. Totally 40 SD rats were randomly divided into the model group, the Zuogui Pill (ZP) group, the Yougui Pill (YP) group, the blank control group (consisting of normal pregnant rats), 10 in each group. SDC young rat model (inherent deficiency and postnatal malnutrition) was prepared by the classic way of "cat scaring rat". Medication started when they were scared by cat. Rats in the ZP group and the YP group were administered by gastrogavage with ZP suspension 0.1875 g/mL and YP suspension 0.0938 g/mL respectively. Equal volume of normal saline was administered to rats in the blank control group and the model group by gastrogavage. All medication was given once per day, 5 days in a week for 2 consecutive months. Learning and memory capacities were detected by Morris water maze test. Expressions of NMDA receptor subunits NR2A and NR2B in hippocamus were detected by immunohistochemical method. Compared with the blank control group, the latency period, total distance in Morris water maze test were longer in the model group (P learning and memory capacities and lowered NMDA receptor expressions. ZP and YP could up-regulate learning and memory capacities and NMDA receptor expressions, thereby improving deterioration of brain functions in SDC rats.

  14. Spectrotemporal dynamics of the EEG during working memory encoding and maintenance predicts individual behavioral capacity.

    Science.gov (United States)

    Bashivan, Pouya; Bidelman, Gavin M; Yeasin, Mohammed

    2014-12-01

    We investigated the effect of memory load on encoding and maintenance of information in working memory. Electroencephalography (EEG) signals were recorded while participants performed a modified Sternberg visual memory task. Independent component analysis (ICA) was used to factorise the EEG signals into distinct temporal activations to perform spectrotemporal analysis and localisation of source activities. We found 'encoding' and 'maintenance' operations were correlated with negative and positive changes in α-band power, respectively. Transient activities were observed during encoding of information in the bilateral cuneus, precuneus, inferior parietal gyrus and fusiform gyrus, and a sustained activity in the inferior frontal gyrus. Strong correlations were also observed between changes in α-power and behavioral performance during both encoding and maintenance. Furthermore, it was also found that individuals with higher working memory capacity experienced stronger neural oscillatory responses during the encoding of visual objects into working memory. Our results suggest an interplay between two distinct neural pathways and different spatiotemporal operations during the encoding and maintenance of information which predict individual differences in working memory capacity observed at the behavioral level. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. The scope and control of attention: Sources of variance in working memory capacity.

    Science.gov (United States)

    Chow, Michael; Conway, Andrew R A

    2015-04-01

    Working memory capacity is a strong positive predictor of many cognitive abilities, across various domains. The pattern of positive correlations across domains has been interpreted as evidence for a unitary source of inter-individual differences in behavior. However, recent work suggests that there are multiple sources of variance contributing to working memory capacity. The current study (N = 71) investigates individual differences in the scope and control of attention, in addition to the number and resolution of items maintained in working memory. Latent variable analyses indicate that the scope and control of attention reflect independent sources of variance and each account for unique variance in general intelligence. Also, estimates of the number of items maintained in working memory are consistent across tasks and related to general intelligence whereas estimates of resolution are task-dependent and not predictive of intelligence. These results provide insight into the structure of working memory, as well as intelligence, and raise new questions about the distinction between number and resolution in visual short-term memory.

  16. Capacity of a bosonic memory channel with Gauss-Markov noise

    International Nuclear Information System (INIS)

    Schaefer, Joachim; Daems, David; Karpov, Evgueni; Cerf, Nicolas J.

    2009-01-01

    We address the classical capacity of a quantum bosonic memory channel with additive noise, subject to an input energy constraint. The memory is modeled by correlated noise emerging from a Gauss-Markov process. Under reasonable assumptions, we show that the optimal modulation results from a 'quantum water-filling' solution above a certain input energy threshold, similar to the optimal modulation for parallel classical Gaussian channels. We also derive analytically the optimal multimode input state above this threshold, which enables us to compute the capacity of this memory channel in the limit of an infinite number of modes. The method can also be applied to a more general noise environment which is constructed by a stationary Gauss process. The extension of our results to the case of broadband bosonic channels with colored Gaussian noise should also be straightforward.

  17. Learners’ processes during pre-task planning and Working Memory Capacity

    Directory of Open Access Journals (Sweden)

    Maria da Gloria Tavares

    2016-01-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2016v69n1p79 The present study is part of a larger scale research (Guará-Tavares, 2011, 2013 that investigates the relationship among working memory capacity, pre-task planning, and L2 speech performance. The aim of the study was to analyze 1 what processes learners engage during pre-task planning, and 2 whether higher and lower working memory spans engage in different processes during pre-task planning. Learners’ processes were accessed by means of think aloud protocols and a retrospective interview. Working memory capacity was measured by the Speaking Span Test. Results show that learners engage mainly in organization of ideas, rehearsal, lexical searches, and monitoring.. Moreover, higher spans employ significantly more metacognitive strategies during planning when compared to lower spans.

  18. The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency.

    Directory of Open Access Journals (Sweden)

    Sean P A Drummond

    Full Text Available Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1 in a well-rested condition (following 6 nights of 9 hours in bed/night; and 2 following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency. Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care

  19. The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency.

    Science.gov (United States)

    Drummond, Sean P A; Anderson, Dane E; Straus, Laura D; Vogel, Edward K; Perez, Veronica B

    2012-01-01

    Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night) on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1) in a well-rested condition (following 6 nights of 9 hours in bed/night); and 2) following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency). Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care providers).

  20. Building the UPPA high capacity tensiometer

    Directory of Open Access Journals (Sweden)

    Mendes Joao

    2016-01-01

    Full Text Available High capacity tensiometers (HCTs are sensors capable of directly measuring tensile pore water pressure (suction in soils. HCTs are typically composed of a casing that encapsulates a high air entry value ceramic filter, a water reservoir and a pressure sensing element. Since the creation of the first HCT by Ridley and Burland in 1993 at Imperial College London, HCTs have been almost exclusively built and used in academic research. The limited use in industrial applications can be explained by a lack of unsaturated soil mechanics knowledge among engineering practitioners but also by the technical difficulties associated to the direct measurement of tensile water pressures beyond the cavitation limit of -100kPa. In this paper, we present the recent design and manufacture of a new HCT at the Université de Pau et des Pays de l’Adour (UPPA in France. Different prototypes were tried by changing the main components of the device including the type of ceramic filter, pressure transducer and geometry of the external casing. In particular, two ceramic filters of distinct porosity, three pressure transducers with distinct materials/geometries and four casing designs were tested.

  1. What is Working Memory Capacity, and how can we Measure It?

    Directory of Open Access Journals (Sweden)

    Oliver eWilhelm

    2013-07-01

    Full Text Available A latent variable study examined whether different classes of working-memory tasks measure the same general construct of working-memory capacity (WMC. Data from 270 subjects were used to examine the relationship between Binding, Updating, Recall-N-back, and Complex Span tasks, and the relations of WMC with secondary memory measures, indicators of cognitive control from two response-conflict paradigms (Simon task and Eriksen flanker task, and fluid intelligence. Confirmatory factor analyses support the concept of a general WMC factor. Results from structural-equation modeling show negligible relations of WMC with response-conflict resolution, and very strong relations of WMC with secondary memory and fluid intelligence. The findings support the hypothesis that individual differences in WMC reflect the ability to build, maintain and update arbitrary bindings.

  2. Retrieval-practice task affects relationship between working memory capacity and retrieval-induced forgetting.

    Science.gov (United States)

    Storm, Benjamin C; Bui, Dung C

    2016-11-01

    Retrieving a subset of items from memory can cause forgetting of other items in memory, a phenomenon referred to as retrieval-induced forgetting (RIF). Individuals who exhibit greater amounts of RIF have been shown to also exhibit superior working memory capacity (WMC) and faster stop-signal reaction times (SSRTs), results which have been interpreted as suggesting that RIF reflects an inhibitory process that is mediated by the processes of executive control. Across four experiments, we sought to further elucidate this issue by manipulating the way in which participants retrieved items during retrieval practice and examining how the resulting effects of forgetting correlated with WMC (Experiments 1-3) and SSRT (Experiment 4). Significant correlations were observed when participants retrieved items from an earlier study phase (within-list retrieval practice), but not when participants generated items from semantic memory (extra-list retrieval practice). These results provide important new insight into the role of executive-control processes in RIF.

  3. Effects of Working Memory Capacity and Content Familiarity on Literal and Inferential Comprehension in L2 Reading

    Science.gov (United States)

    Alptekin, Cem; Ercetin, Gulcan

    2011-01-01

    This study examines the effects of working memory capacity and content familiarity on literal and inferential comprehension in second language (L2) reading. Participants were 62 Turkish university students with an advanced English proficiency level. Working memory capacity was measured through a computerized version of a reading span test, whereas…

  4. Shared filtering processes link attentional and visual short-term memory capacity limits.

    Science.gov (United States)

    Bettencourt, Katherine C; Michalka, Samantha W; Somers, David C

    2011-09-30

    Both visual attention and visual short-term memory (VSTM) have been shown to have capacity limits of 4 ± 1 objects, driving the hypothesis that they share a visual processing buffer. However, these capacity limitations also show strong individual differences, making the degree to which these capacities are related unclear. Moreover, other research has suggested a distinction between attention and VSTM buffers. To explore the degree to which capacity limitations reflect the use of a shared visual processing buffer, we compared individual subject's capacities on attentional and VSTM tasks completed in the same testing session. We used a multiple object tracking (MOT) and a VSTM change detection task, with varying levels of distractors, to measure capacity. Significant correlations in capacity were not observed between the MOT and VSTM tasks when distractor filtering demands differed between the tasks. Instead, significant correlations were seen when the tasks shared spatial filtering demands. Moreover, these filtering demands impacted capacity similarly in both attention and VSTM tasks. These observations fail to support the view that visual attention and VSTM capacity limits result from a shared buffer but instead highlight the role of the resource demands of underlying processes in limiting capacity.

  5. High estradiol levels improve false memory rates and meta-memory in highly schizotypal women.

    Science.gov (United States)

    Hodgetts, Sophie; Hausmann, Markus; Weis, Susanne

    2015-10-30

    Overconfidence in false memories is often found in patients with schizophrenia and healthy participants with high levels of schizotypy, indicating an impairment of meta-cognition within the memory domain. In general, cognitive control is suggested to be modulated by natural fluctuations in oestrogen. However, whether oestrogen exerts beneficial effects on meta-memory has not yet been investigated. The present study sought to provide evidence that high levels of schizotypy are associated with increased false memory rates and overconfidence in false memories, and that these processes may be modulated by natural differences in estradiol levels. Using the Deese-Roediger-McDermott paradigm, it was found that highly schizotypal participants with high estradiol produced significantly fewer false memories than those with low estradiol. No such difference was found within the low schizotypy participants. Highly schizotypal participants with high estradiol were also less confident in their false memories than those with low estradiol; low schizotypy participants with high estradiol were more confident. However, these differences only approached significance. These findings suggest that the beneficial effect of estradiol on memory and meta-memory observed in healthy participants is specific to highly schizotypal individuals and might be related to individual differences in baseline dopaminergic activity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Limitless capacity: A dynamic object-oriented approach to short-term memory

    Directory of Open Access Journals (Sweden)

    Bill eMacken

    2015-03-01

    Full Text Available The notion of capacity-limited processing systems is a core element of cognitive accounts of limited and variable performance, enshrined within the short-term memory construct. We begin with a detailed critical analysis of the conceptual bases of this view and argue that there are fundamental problems – ones that go to the heart of cognitivism more generally – that render it untenable. In place of limited capacity systems, we propose a framework for explaining performance that focuses on the dynamic interplay of three aspects of any given setting: the particular task that must be accomplished, the nature and form of the material upon which the task must be performed, and the repertoire of skills and perceptual-motor functions possessed by the participant. We provide empirical examples of the applications of this framework in areas of performance typically accounted for by reference to capacity-limited short-term memory processes.

  7. Limitless capacity: a dynamic object-oriented approach to short-term memory.

    Science.gov (United States)

    Macken, Bill; Taylor, John; Jones, Dylan

    2015-01-01

    The notion of capacity-limited processing systems is a core element of cognitive accounts of limited and variable performance, enshrined within the short-term memory construct. We begin with a detailed critical analysis of the conceptual bases of this view and argue that there are fundamental problems - ones that go to the heart of cognitivism more generally - that render it untenable. In place of limited capacity systems, we propose a framework for explaining performance that focuses on the dynamic interplay of three aspects of any given setting: the particular task that must be accomplished, the nature and form of the material upon which the task must be performed, and the repertoire of skills and perceptual-motor functions possessed by the participant. We provide empirical examples of the applications of this framework in areas of performance typically accounted for by reference to capacity-limited short-term memory processes.

  8. Gaussian capacity of the quantum bosonic memory channel with additive correlated Gaussian noise

    International Nuclear Information System (INIS)

    Schaefer, Joachim; Karpov, Evgueni; Cerf, Nicolas J.

    2011-01-01

    We present an algorithm for calculation of the Gaussian classical capacity of a quantum bosonic memory channel with additive Gaussian noise. The algorithm, restricted to Gaussian input states, is applicable to all channels with noise correlations obeying certain conditions and works in the full input energy domain, beyond previous treatments of this problem. As an illustration, we study the optimal input states and capacity of a quantum memory channel with Gauss-Markov noise [J. Schaefer, Phys. Rev. A 80, 062313 (2009)]. We evaluate the enhancement of the transmission rate when using these optimal entangled input states by comparison with a product coherent-state encoding and find out that such a simple coherent-state encoding achieves not less than 90% of the capacity.

  9. As Working Memory Grows: A Developmental Account of Neural Bases of Working Memory Capacity in 5- to 8-Year Old Children and Adults.

    Science.gov (United States)

    Kharitonova, Maria; Winter, Warren; Sheridan, Margaret A

    2015-09-01

    Working memory develops slowly: Even by age 8, children are able to maintain only half the number of items that adults can remember. Neural substrates that support performance on working memory tasks also have a slow developmental trajectory and typically activate to a lesser extent in children, relative to adults. Little is known about why younger participants elicit less neural activation. This may be due to maturational differences, differences in behavioral performance, or both. Here we investigate the neural correlates of working memory capacity in children (ages 5-8) and adults using a visual working memory task with parametrically increasing loads (from one to four items) using fMRI. This task allowed us to estimate working memory capacity limit for each group. We found that both age groups increased the activation of frontoparietal networks with increasing working memory loads, until working memory capacity was reached. Because children's working memory capacity limit was half of that for adults, the plateau occurred at lower loads for children. Had a parametric increase in load not been used, this would have given an impression of less activation overall and less load-dependent activation for children relative to adults. Our findings suggest that young children and adults recruit similar frontoparietal networks at working memory loads that do not exceed capacity and highlight the need to consider behavioral performance differences when interpreting developmental differences in neural activation.

  10. Color relations increase the capacity of visual short-term memory.

    Science.gov (United States)

    Sanocki, Thomas; Sulman, Noah

    2011-01-01

    Do color relations such as similarity or harmony influence the ease with which colored patterns can be perceived and held in mind? We tested the influence of a relation supported in research on color harmony--similarity of hue--on the capacity of visual short-term memory (VSTM) for colors in patterns. Palettes of 4 similar-hue colors were rated as more pleasant (harmonious) than dissimilar-color palettes. The palettes were used in a VSTM color task. Patterns of 9 to 15 colored squares were presented, and accuracy of color change detection was measured. Memory performance was higher overall for similar-color palettes than for dissimilar-color palettes (experiments 1 and 3). Is this due to color similarity per se, or due to the harmony between colors in similar palettes? A final experiment provided strong support for the importance of color similarity as opposed to harmony. Overall, the advantages for color similarity, in terms of number of color squares held in memory (memory capacity) were 26% to 45% over dissimilar colors. The results indicate that color relations can have a strong impact on the capacity for perceiving and retaining color patterns.

  11. Anxiety and working memory capacity: A meta-analysis and narrative review.

    Science.gov (United States)

    Moran, Tim P

    2016-08-01

    Cognitive deficits are now widely recognized to be an important component of anxiety. In particular, anxiety is thought to restrict the capacity of working memory by competing with task-relevant processes. The evidence for this claim, however, has been mixed. Although some studies have found restricted working memory in anxiety, others have not. Within studies that have found impairments, there is little agreement regarding the boundary conditions of the anxiety/WMC association. The aim of this review is to critically evaluate the evidence for anxiety-related deficits in working memory capacity. First, a meta-analysis of 177 samples (N = 22,061 individuals) demonstrated that self-reported measures of anxiety are reliably related to poorer performance on measures of working memory capacity (g = -.334, p < 10-29). This finding was consistent across complex span (e.g., OSPAN; g = -.342, k = 30, N = 3,196, p = .000001), simple span (e.g., digit span; g = -.318, k = 127, N = 17,547, p < 10-17), and dynamic span tasks (e.g., N-Back; g = -.437, k = 20, N = 1,318, p = .000003). Second, a narrative review of the literature revealed that anxiety, whether self-reported or experimentally induced, is related to poorer performance across a wide variety of tasks. Finally, the review identified a number of methodological limitations common in the literature as well as avenues for future research. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. The Effects of Maltreatment in Childhood on Working Memory Capacity in Adulthood.

    Science.gov (United States)

    Dodaj, Arta; Krajina, Marijana; Sesar, Kristina; Šimić, Nataša

    2017-11-01

    The aim of this study was to research the relation between exposure to maltreatment in childhood and working memory capacity in adulthood. A survey among 376 females in the age between 16 and 67 was administered. Exposure to maltreatment in childhood (sexual, physical and psychological abuse, neglect and witnessing family violence) was assessed retrospectively using the Child Maltreatment Questionnaire (Karlović, Buljan-Flander, & Vranić, 2001), whilst the Working Memory Questionnaire (Vallat-Azouvi, Pradat-Diehl, & Azouvi, 2012) was used to assess working memory capacity (recalling verbal information, numerical information, attention ability and executive functioning). The results suggest a significantly greater prevalence of physical abuse and witnessing family violence in comparison to other forms of maltreatment in childhood. Psychological abuse and witnessing family violence have shown themselves to be statistically significant predictors for deficits in total working memory capacity, verbal recall and attention ability. The results suggest that traumatic experiences during childhood, such as abuse, may trigger particular cognitive changes which may be reflected in adulthood. It is, therefore, exceedingly important to conduct further research in order to contribute to the understanding of the correlation between cognitive difficulties and maltreatment in childhood.

  13. Towards green high capacity optical networks

    Science.gov (United States)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.

    2011-09-01

    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  14. Effect of a single dose of dextromethorphan on psychomotor performance and working memory capacity.

    Science.gov (United States)

    Al-Kuraishy, Hayder M; Al-Gareeb, Ali I; Ashor, Ammar Waham

    2012-04-01

    Previous studies show that the prolonged use of dextromethorphan produces cognitive deterioration in humans. The aim of this study was to investigate the effect of a single dose of dextroemthrophan on psychomotor performance and working memory capacity. This is a randomized, double-blind, controlled, and prospective study. Thirty-six (17 women, 19 men) medical students enrolled in the study; half of them (7 women, 11 men) were given placebo, while the other half (10 women, 8 men) received dextromethorphan. The choice reaction time, critical flicker fusion threshold, and N-back working memory task were measured before and after 2 h of taking the drugs. Dextromethorphan showed a significant deterioration in the 3-back working memory task (P0.05). On the other hand, placebo showed no significant changes as regards the choice reaction time, critical flicker fusion threshold, and N-back working memory task (P>0.05). A single dose of dextromethorphan has no effect on attention and arousal but may significantly impair the working memory capacity.

  15. Encyclopedic Memory: Long-Term Memory Capacity for Knowledge Vocabulary in Middle School

    Science.gov (United States)

    Lieury, Alain; Lorant, Sonia

    2013-01-01

    This article is a synthesis of unpublished and published experiments showing that elementary memory scores (words and pictures immediate recall; delayed recall, recognition), which are very sensitive to aging and in pharmacological protocols, have little or no correlation with school achievement. The alternative assumption developed is that school…

  16. Integrated analysis of hematopoietic differentiation outcomes and molecular characterization reveals unbiased differentiation capacity and minor transcriptional memory in HPC/HSC-iPSCs.

    Science.gov (United States)

    Gao, Shuai; Hou, Xinfeng; Jiang, Yonghua; Xu, Zijian; Cai, Tao; Chen, Jiajie; Chang, Gang

    2017-01-23

    Transcription factor-mediated reprogramming can reset the epigenetics of somatic cells into a pluripotency compatible state. Recent studies show that induced pluripotent stem cells (iPSCs) always inherit starting cell-specific characteristics, called epigenetic memory, which may be advantageous, as directed differentiation into specific cell types is still challenging; however, it also may be unpredictable when uncontrollable differentiation occurs. In consideration of biosafety in disease modeling and personalized medicine, the availability of high-quality iPSCs which lack a biased differentiation capacity and somatic memory could be indispensable. Herein, we evaluate the hematopoietic differentiation capacity and somatic memory state of hematopoietic progenitor and stem cell (HPC/HSC)-derived-iPSCs (HPC/HSC-iPSCs) using a previously established sequential reprogramming system. We found that HPC/HSCs are amenable to being reprogrammed into iPSCs with unbiased differentiation capacity to hematopoietic progenitors and mature hematopoietic cells. Genome-wide analyses revealed that no global epigenetic memory was detectable in HPC/HSC-iPSCs, but only a minor transcriptional memory of HPC/HSCs existed in a specific tetraploid complementation (4 N)-incompetent HPC/HSC-iPSC line. However, the observed minor transcriptional memory had no influence on the hematopoietic differentiation capacity, indicating the reprogramming of the HPC/HSCs was nearly complete. Further analysis revealed the correlation of minor transcriptional memory with the aberrant distribution of H3K27me3. This work provides a comprehensive framework for obtaining high-quality iPSCs from HPC/HSCs with unbiased hematopoietic differentiation capacity and minor transcriptional memory.

  17. The Relationship Between Digital Technology Experience, Daily Media Exposure and Working Memory Capacity

    Directory of Open Access Journals (Sweden)

    Muhterem DİNDAR

    2016-06-01

    Full Text Available Today’s youngsters interact with digital technologies to a great extent which leads scholars to question the influence of this exposure on human cognitive structure. Through resorting to digital nativity assumptions, it is presumed that cognitive architecture of the youth may change in accordance with digital technology use. In this regard, the current study investigated the relationship between digital technology experience, daily media exposure and working memory capacity of so-called digital native participants. A total of 572 undergraduate students responded to self-report measures, which addressed years of experience for 7 different digital devices and the daily time spent for 14 different digital activities. Participants’ working memory capacity was measured through the Computation Span and the Dot Matrix Test. While the former was used to measure the phonological loop capacity, the latter was used to address the visuo-spatial sketchpad capacity. Correlational analyses revealed that neither the phonological loop capacity nor the visuo-spatial sketchpad capacity was related to digital technology experience and daily media exposure. Thus, the transformative contribution of digital technology experience to human cognitive architecture could not be observed through the current measures

  18. A locus coeruleus-norepinephrine account of individual differences in working memory capacity and attention control.

    Science.gov (United States)

    Unsworth, Nash; Robison, Matthew K

    2017-08-01

    Studies examining individual differences in working memory capacity (WMC) have suggested that low WMC individuals have particular deficits in attention control processes compared to high WMC individuals. In the current article we suggest that part of the WMC-attention control relation is due to variation in the functioning of the locus coeruleus-norepinephrine system (LC-NE). Specifically, we suggest that because of dysregulation of LC-NE functioning, the fronto-parietal control network for low WMC individuals is only weakly activated, resulting in greater default-mode network activity (and greater mind-wandering) for low WMC individuals compared to high WMC individuals. This results in disrupted attention control and overall more erratic performance (more lapses of attention) for low WMC individuals than for high WMC individuals. This framework is used to examine previous studies of individual differences in WMC and attention control, and new evidence is examined on the basis of predictions of the framework to pupillary responses as an indirect marker of LC-NE functioning.

  19. Working memory capacity and Stroop interference: global versus local indices of executive control.

    Science.gov (United States)

    Meier, Matt E; Kane, Michael J

    2013-05-01

    Two experiments examined the relations among working memory capacity (WMC), congruency-sequence effects, proportion-congruency effects, and the color-word Stroop effect to test whether congruency-sequence effects might inform theoretical claims regarding WMC's prediction of Stroop interference. In Experiment 1, subjects completed either a high-congruency or low-congruency Stroop task that restricted trial-to-trial repetitions of stimulus dimensions to examine WMC's relation to congruency-sequence effects while minimizing bottom-up, stimulus-driven contributions. Congruency-sequence effects and congruency-proportion effects were significant but did not interact. WMC predicted global Stroop interference under low-congruency conditions but neither local congruency-sequence effects nor global Stroop interference under high-congruency conditions, contrary to previous studies (e.g., Kane & Engle, 2003). A high-congruency Stroop task in Experiment 2 removed the Experiment 1 task constraints, and, here, we obtained the typical, global association between WMC and Stroop interference but still no relation between WMC and congruency-sequence effects. We thus examined the methodological differences between Experiments 1 and 2 to determine whether any of these were locally responsible for the global WMC-related differences. They were not, suggesting that the changes between Experiments 1 and 2 created a general task context that engaged (or disengaged) the executive processes associated with WMC.

  20. EFL Speech Production: Exploring the relationship between working memory capacity and proficiency level

    Directory of Open Access Journals (Sweden)

    Gicele Vergine Vieira PREBIANCA

    2013-12-01

    Full Text Available The present study explores the relationship between working memory capacity (WMC and proficiency level in EFL1 speech production. Forty-one participants performed two WMC tests – the Speaking Span Test in L1 and in L2. The statistical analysis indicated both a variation on WMC scores in L2 as a function of proficiency as well as a difference between WMC scores in L1 and in L2. Findings are explained mainly in respect to the interplay between automatic and controlled processes on memory retrieval and on the development of L2 proficiency.

  1. The development and application of high-capacity thickening techniques

    International Nuclear Information System (INIS)

    Ji Zhenwan; Song Yuejie

    1995-01-01

    On the basis of sedimentation theory and comparison between the high-capacity and conventional thickening techniques, the authors analyse the ways to increase capacity and to improve technological parameters of thickeners, describes the construction features, development, application, automatic control and test installations of high-capacity thickeners at home and abroad

  2. Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity

    Directory of Open Access Journals (Sweden)

    Anna Horwitz

    2017-12-01

    Full Text Available HIGHLIGHTSMemory correlates with the difference between single and double-sensory evoked steady-state coherence in the gamma range (ΔC.The correlation is most pronounced for the anterior brain region (ΔCA.The correlation is not driven by birth size, education, speed of processing, or intelligence.The sensitivity of ΔCA for detecting low memory capacity is 90%.Cerebral rhythmic activity and oscillations are important pathways of communication between cortical cell assemblies and may be key factors in memory. We asked whether memory performance is related to gamma coherence in a non-task sensory steady-state stimulation. We investigated 40 healthy males born in 1953 who were part of a Danish birth cohort study. Coherence was measured in the gamma range in response to a single-sensory visual stimulation (36 Hz and a double-sensory combined audiovisual stimulation (auditive: 40 Hz; visual: 36 Hz. The individual difference in coherence (ΔC between the bimodal and monomodal stimulation was calculated for each subject and used as the main explanatory variable. ΔC in total brain were significantly negatively correlated with long-term verbal recall. This correlation was pronounced for the anterior region. In addition, the correlation between ΔC and long-term memory was robust when controlling for working memory, as well as a wide range of potentially confounding factors, including intelligence, length of education, speed of processing, visual attention and executive function. Moreover, we found that the difference in anterior coherence (ΔCA is a better predictor of memory than power in multivariate models. The sensitivity of ΔCA for detecting low memory capacity is 92%. Finally, ΔCA was also associated with other types of memory: verbal learning, visual recognition, and spatial memory, and these additional correlations were also robust enough to control for a range of potentially confounding factors. Thus, the ΔC is a predictor of memory

  3. Impaired working memory capacity is not caused by failures of selective attention in schizophrenia.

    Science.gov (United States)

    Erickson, Molly A; Hahn, Britta; Leonard, Carly J; Robinson, Benjamin; Gray, Brad; Luck, Steven J; Gold, James

    2015-03-01

    The cognitive impairments associated with schizophrenia have long been known to involve deficits in working memory (WM) capacity. To date, however, the causes of WM capacity deficits remain unknown. The present study examined selective attention impairments as a putative contributor to observed capacity deficits in this population. To test this hypothesis, we used an experimental paradigm that assesses the role of selective attention in WM encoding and has been shown to involve the prefrontal cortex and the basal ganglia. In experiment 1, participants were required to remember the locations of 3 or 5 target items (red circles). In another condition, 3-target items were accompanied by 2 distractor items (yellow circles), which participants were instructed to ignore. People with schizophrenia (PSZ) exhibited significant impairment in memory for the locations of target items, consistent with reduced WM capacity, but PSZ and healthy control subjects did not differ in their ability to filter the distractors. This pattern was replicated in experiment 2 for distractors that were more salient. Taken together, these results demonstrate that reduced WM capacity in PSZ is not attributable to a failure of filtering irrelevant distractors. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Temporal precision and the capacity of auditory-verbal short-term memory.

    Science.gov (United States)

    Gilbert, Rebecca A; Hitch, Graham J; Hartley, Tom

    2017-12-01

    The capacity of serially ordered auditory-verbal short-term memory (AVSTM) is sensitive to the timing of the material to be stored, and both temporal processing and AVSTM capacity are implicated in the development of language. We developed a novel "rehearsal-probe" task to investigate the relationship between temporal precision and the capacity to remember serial order. Participants listened to a sub-span sequence of spoken digits and silently rehearsed the items and their timing during an unfilled retention interval. After an unpredictable delay, a tone prompted report of the item being rehearsed at that moment. An initial experiment showed cyclic distributions of item responses over time, with peaks preserving serial order and broad, overlapping tails. The spread of the response distributions increased with additional memory load and correlated negatively with participants' auditory digit spans. A second study replicated the negative correlation and demonstrated its specificity to AVSTM by controlling for differences in visuo-spatial STM and nonverbal IQ. The results are consistent with the idea that a common resource underpins both the temporal precision and capacity of AVSTM. The rehearsal-probe task may provide a valuable tool for investigating links between temporal processing and AVSTM capacity in the context of speech and language abilities.

  5. Short-term memory capacity in networks via the restricted isometry property.

    Science.gov (United States)

    Charles, Adam S; Yap, Han Lun; Rozell, Christopher J

    2014-06-01

    Cortical networks are hypothesized to rely on transient network activity to support short-term memory (STM). In this letter, we study the capacity of randomly connected recurrent linear networks for performing STM when the input signals are approximately sparse in some basis. We leverage results from compressed sensing to provide rigorous nonasymptotic recovery guarantees, quantifying the impact of the input sparsity level, the input sparsity basis, and the network characteristics on the system capacity. Our analysis demonstrates that network memory capacities can scale superlinearly with the number of nodes and in some situations can achieve STM capacities that are much larger than the network size. We provide perfect recovery guarantees for finite sequences and recovery bounds for infinite sequences. The latter analysis predicts that network STM systems may have an optimal recovery length that balances errors due to omission and recall mistakes. Furthermore, we show that the conditions yielding optimal STM capacity can be embodied in several network topologies, including networks with sparse or dense connectivities.

  6. Mind wandering during attention performance: Effects of ADHD-inattention symptomatology, negative mood, ruminative response style and working memory capacity.

    Science.gov (United States)

    Jonkman, Lisa M; Markus, C Rob; Franklin, Michael S; van Dalfsen, Jens H

    2017-01-01

    In adulthood, depressive mood is often comorbid with ADHD, but its role in ADHD-inattentiveness and especially relations with mind wandering remains to be elucidated. This study investigated the effects of laboratory-induced dysphoric mood on task-unrelated mind wandering and its consequences on cognitive task performance in college students with high (n = 46) or low (n = 44) ADHD-Inattention symptomatology and Hyperactivity/Impulsivity symptoms in the normal range. These non-clinical high/low ADHD-Inattention symptom groups underwent negative or positive mood induction after which mind wandering frequency was measured in a sustained attention (SART), and a reading task. Effects of ruminative response style and working memory capacity on mind wandering frequency were also investigated. Significantly higher frequencies of self -reported mind wandering in daily life, in the SART and reading task were reported in the ADHD-Inattention symptom group, with detrimental effects on text comprehension in the reading task. Induced dysphoric mood did specifically enhance the frequency of mind wandering in the ADHD-Inattention symptom group only during the SART, and was related to their higher self-reported intrusive ruminative response styles. Working memory capacity did not differ between high/low attention groups and did not influence any of the reported effects. These combined results suggest that in a non-clinical sample with high ADHD-inattention symptoms, dysphoric mood and a ruminative response style seem to be more important determinants of dysfunctional mind wandering than a failure in working memory capacity/executive control, and perhaps need other ways of remediation, like cognitive behavioral therapy or mindfulness training.

  7. Mind wandering during attention performance: Effects of ADHD-inattention symptomatology, negative mood, ruminative response style and working memory capacity.

    Directory of Open Access Journals (Sweden)

    Lisa M Jonkman

    Full Text Available In adulthood, depressive mood is often comorbid with ADHD, but its role in ADHD-inattentiveness and especially relations with mind wandering remains to be elucidated. This study investigated the effects of laboratory-induced dysphoric mood on task-unrelated mind wandering and its consequences on cognitive task performance in college students with high (n = 46 or low (n = 44 ADHD-Inattention symptomatology and Hyperactivity/Impulsivity symptoms in the normal range.These non-clinical high/low ADHD-Inattention symptom groups underwent negative or positive mood induction after which mind wandering frequency was measured in a sustained attention (SART, and a reading task. Effects of ruminative response style and working memory capacity on mind wandering frequency were also investigated.Significantly higher frequencies of self -reported mind wandering in daily life, in the SART and reading task were reported in the ADHD-Inattention symptom group, with detrimental effects on text comprehension in the reading task. Induced dysphoric mood did specifically enhance the frequency of mind wandering in the ADHD-Inattention symptom group only during the SART, and was related to their higher self-reported intrusive ruminative response styles. Working memory capacity did not differ between high/low attention groups and did not influence any of the reported effects.These combined results suggest that in a non-clinical sample with high ADHD-inattention symptoms, dysphoric mood and a ruminative response style seem to be more important determinants of dysfunctional mind wandering than a failure in working memory capacity/executive control, and perhaps need other ways of remediation, like cognitive behavioral therapy or mindfulness training.

  8. Effect of a Single Dose of Dextromethorphan on Psychomotor Performance and Working Memory Capacity

    OpenAIRE

    Al-Kuraishy, Hayder M.; Al-Gareeb, Ali I.; Ashor, Ammar Waham

    2012-01-01

    Background: Previous studies show that the prolonged use of dextromethorphan produces cognitive deterioration in humans. Aim: The aim of this study was to investigate the effect of a single dose of dextroemthrophan on psychomotor performance and working memory capacity. Materials and Methods: This is a randomized, double-blind, controlled, and prospective study. Thirty-six (17 women, 19 men) medical students enrolled in the study; half of them (7 women, 11 men) were given placebo, while the o...

  9. Battery designs with high capacity anode materials and cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.

    2017-10-03

    Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.

  10. Does high memory load kick task-irrelevant information out of visual working memory?

    Science.gov (United States)

    Yin, Jun; Zhou, Jifan; Xu, Haokui; Liang, Junying; Gao, Zaifeng; Shen, Mowei

    2012-04-01

    The limited capacity of visual working memory (VWM) requires the existence of an efficient information selection mechanism. While it has been shown that under low VWM load, an irrelevant simple feature can be processed, its fate under high load (e.g., six objects) remains unclear. We explored this issue by probing the "irrelevant-change distracting effect," in which the change of a stored irrelevant feature affects performance. Simple colored shapes were used as stimuli, with color as the target. Using a whole-probe method (presenting six objects in both the memory and test arrays), in Experiment 1 we found that a change to one of the six shapes led to a significant distracting effect. Using a partial-probe method (presenting the probe either at the screen center or at a location selected from the memory array), in Experiment 2 we showed the distracting effect again. These results suggest that irrelevant simple features can be stored into VWM, regardless of memory load.

  11. Fronto-parietal network oscillations reveal relationship between working memory capacity and cognitive control

    Directory of Open Access Journals (Sweden)

    Rasa eGulbinaite

    2014-09-01

    Full Text Available Executive-attention theory proposes a close relationship between working memory capacity (WMC and cognitive control abilities. However, conflicting results are documented in the literature, with some studies reporting that individual variations in WMC predict differences in cognitive control and trial-to-trial control adjustments (operationalized as the size of the congruency effect and congruency sequence effects, respectively, while others report no WMC-related differences. We hypothesized that brain network dynamics might be a more sensitive measure of WMC-related differences in cognitive control abilities. Thus, in the present study, we measured human EEG during the Simon task to characterize WMC-related differences in the neural dynamics of conflict processing and adaptation to conflict. Although high- and low-WMC individuals did not differ behaviorally, there were substantial WMC-related differences in theta (4-8 Hz and delta (1-3 Hz connectivity in fronto-parietal networks. Group differences in local theta and delta power were relatively less pronounced. These results suggest that the relationship between WMC and cognitive control abilities is more strongly reflected in large-scale oscillatory network dynamics than in spatially localized activity or in behavioral task performance.

  12. Mental Objects in Working Memory: Development of Basic Capacity or of Cognitive Completion?

    Science.gov (United States)

    Cowan, Nelson

    2018-01-01

    Working memory is the small amount of information that we hold in mind and use to carry out cognitive processes such as language comprehension and production, problem-solving, and decision-making. In order to understand cognitive development, it would be helpful to know whether working memory increases in capacity with development and, if so, how and why. I will focus on two major stumbling blocks toward understanding working memory development, namely that (1) many potentially relevant aspects of the mind change in parallel during development, obscuring the role of any one change; and (2) one cannot use the same test procedure from infancy to adulthood, complicating comparisons across age groups. With regard to the first stumbling block, the parallel development of different aspects of the mind, we discuss research in which attempts were made to hold constant some factors (knowledge, strategies, direction of attention) to investigate whether developmental differences remain. With regard to the second stumbling block, procedural differences in tests at different age groups, I suggest ways in which the results might be reconciled across procedures. I highlight the value of pursuing research that could distinguish between two different key hypotheses that emerge: that there is a developmental increase in the number of working memory slots (or in a basic resource that holds items in working memory), and that there is a developmental increase in the amount of detail that each of these slots can hold. PMID:28215289

  13. Mental Objects in Working Memory: Development of Basic Capacity or of Cognitive Completion?

    Science.gov (United States)

    Cowan, N

    2017-01-01

    Working memory is the small amount of information that we hold in mind and use to carry out cognitive processes such as language comprehension and production, problem solving, and decision making. In order to understand cognitive development, it would be helpful to know whether working memory increases in capacity with development and, if so, how and why. I will focus on two major stumbling blocks toward understanding working memory development, namely that (1) many potentially relevant aspects of the mind change in parallel during development, obscuring the role of any one change; and (2) one cannot use the same test procedure from infancy to adulthood, complicating comparisons across age groups. With regard to the first stumbling block, the parallel development of different aspects of the mind, we discuss research in which attempts were made to hold constant some factors (knowledge, strategies, direction of attention) to investigate whether developmental differences remain. With regard to the second stumbling block, procedural differences in tests for different age groups, I suggest ways in which the results might be reconciled across procedures. I highlight the value of pursuing research that could distinguish between two different key hypotheses that emerge: that there is a developmental increase in the number of working memory slots (or in a basic resource that holds items in working memory), and that there is a developmental increase in the amount of detail that each of these slots can hold. © 2017 Elsevier Inc. All rights reserved.

  14. No Evidence for a Fixed Object Limit in Working Memory: Spatial Ensemble Representations Inflate Estimates of Working Memory Capacity for Complex Objects

    Science.gov (United States)

    Brady, Timothy F.; Alvarez, George A.

    2015-01-01

    A central question for models of visual working memory is whether the number of objects people can remember depends on object complexity. Some influential "slot" models of working memory capacity suggest that people always represent 3-4 objects and that only the fidelity with which these objects are represented is affected by object…

  15. Working Memory Capacity and Recall from Long-Term Memory: Examining the Influences of Encoding Strategies, Study Time Allocation, Search Efficiency, and Monitoring Abilities

    Science.gov (United States)

    Unsworth, Nash

    2016-01-01

    The relation between working memory capacity (WMC) and recall from long-term memory (LTM) was examined in the current study. Participants performed multiple measures of delayed free recall varying in presentation duration and self-reported their strategy usage after each task. Participants also performed multiple measures of WMC. The results…

  16. Earliest Memories and Recent Memories of Highly Salient Events--Are They Similar?

    Science.gov (United States)

    Peterson, Carole; Fowler, Tania; Brandeau, Katherine M.

    2015-01-01

    Four- to 11-year-old children were interviewed about 2 different sorts of memories in the same home visit: recent memories of highly salient and stressful events--namely, injuries serious enough to require hospital emergency room treatment--and their earliest memories. Injury memories were scored for amount of unique information, completeness…

  17. High transparent shape memory gel

    Science.gov (United States)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  18. Speed and capacity of working memory and executive function in schizophrenia compared to unipolar depression

    Directory of Open Access Journals (Sweden)

    Wolfgang Trapp

    2017-12-01

    Full Text Available Schizophrenia is associated with deficits in working memory (WM and executive functioning (EF that are present from prodrome to chronic stages of the disease and are related to social and occupational functioning. Recent empirical findings suggest that schizophrenia patients might suffer from a specific speed deficit regarding WM operations that also affects EF. To test this hypothesis, executive functioning (EF and working memory (WM performance of 20 schizophrenia (SC patients, 20 patients suffering from Major Depressive Disorder (MDD and 40 healthy control (HC subjects were compared. While schizophrenia patients performed worse in the measure of EF, no difference between the SC and the MDD patients was found regarding WM capacity. However, the SC group was shown to have an impaired speed in encoding, retrieval and manipulation of WM contents compared to the HC group whereas the MDD group showed no such deficit. Furthermore, while in the MDD group only WM capacity was linked to EF performance, in the SC group EF was determined by both WM capacity and WM speed. Hence, increasing the speed of WM operations might be a fruitful target for future therapeutic interventions, and assessing not only the capacity but also the speed of WM might be helpful in identifying candidates for endophenotypic cognitive markers of SC.

  19. Statistical modelling of networked human-automation performance using working memory capacity.

    Science.gov (United States)

    Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja

    2014-01-01

    This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.

  20. Methylphenidate Improves Working Memory and Set-Shifting in AD/HD: Relationships to Baseline Memory Capacity

    Science.gov (United States)

    Mehta, Mitul A.; Goodyer, Ian M.; Sahakian, Barbara J.

    2004-01-01

    Objective: Catecholamine stimulant drugs are highly efficacious treatments for attention deficit/hyperactivity disorders (AD/HD). Catecholamine modulation in humans influences performance of numerous cognitive tasks, including tests of attention and working memory (WM). Clear delineation of the effects of methylphenidate upon such cognitive…

  1. Developing Leadership Capacity in Others: An Examination of High School Principals' Personal Capacities for Fostering Leadership

    Science.gov (United States)

    Huggins, Kristin Shawn; Klar, Hans W.; Hammonds, Hattie L.; Buskey, Frederick C.

    2017-01-01

    In this multisite case study, we examine the personal capacities of six high school principals who have developed the leadership capacities of other leaders in their respective schools. Participants were purposefully selected by two teams of researchers in two states of the United States, one on the east coast and one on the west coast, who…

  2. The Influence of Cognitive Reasoning Level, Cognitive Restructuring Ability, Disembedding Ability, Working Memory Capacity, and Prior Knowledge On Students' Performance On Balancing Equations by Inspection.

    Science.gov (United States)

    Staver, John R.; Jacks, Tom

    1988-01-01

    Investigates the influence of five cognitive variables on high school students' performance on balancing chemical equations by inspection. Reports that reasoning, restructuring, and disembedding variables could be a single variable, and that working memory capacity does not influence overall performance. Results of hierarchical regression analysis…

  3. Does working memory capacity predict cross-modally induced failures of awareness?

    Science.gov (United States)

    Kreitz, Carina; Furley, Philip; Simons, Daniel J; Memmert, Daniel

    2016-01-01

    People often fail to notice unexpected stimuli when they are focusing attention on another task. Most studies of this phenomenon address visual failures induced by visual attention tasks (inattentional blindness). Yet, such failures also occur within audition (inattentional deafness), and people can even miss unexpected events in one sensory modality when focusing attention on tasks in another modality. Such cross-modal failures are revealing because they suggest the existence of a common, central resource limitation. And, such central limits might be predicted from individual differences in cognitive capacity. We replicated earlier evidence, establishing substantial rates of inattentional deafness during a visual task and inattentional blindness during an auditory task. However, neither individual working memory capacity nor the ability to perform the primary task predicted noticing in either modality. Thus, individual differences in cognitive capacity did not predict failures of awareness even though the failures presumably resulted from central resource limitations. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Understanding age-related reductions in visual working memory capacity: examining the stages of change detection.

    Science.gov (United States)

    Ko, Philip C; Duda, Bryant; Hussey, Erin; Mason, Emily; Molitor, Robert J; Woodman, Geoffrey F; Ally, Brandon A

    2014-10-01

    Visual working memory (VWM) capacity is reduced in older adults. Research has shown age-related impairments to VWM encoding, but aging is likely to affect multiple stages of VWM. In the present study, we recorded the event-related potentials (ERPs) of younger and older adults during VWM maintenance and retrieval. We measured encoding-stage processing with the P1 component, maintenance-stage processing with the contralateral delay activity (CDA), and retrieval-stage processing by comparing the activity for old and new items (old-new effect). Older adults showed lower behavioral capacity estimates (K) than did younger adults, but surprisingly, their P1 components and CDAs were comparable to those of younger adults. This remarkable dissociation between neural activity and behavior in the older adults indicated that the P1 and CDA did not accurately assess their VWM capacity. However, the neural activity evoked during VWM retrieval yielded results that helped clarify the age-related differences. During retrieval, younger adults showed early old-new effects in frontal and occipital areas and a late central-parietal old-new effect, whereas older adults showed a late right-lateralized parietal old-new effect. The younger adults' early old-new effects strongly resembled an index of perceptual fluency, suggesting that perceptual implicit memory was activated. The activation of implicit memory could have facilitated the younger adults' behavior, and the lack of these early effects in older adults may suggest that they have much lower-resolution memory than do younger adults. From these data, we speculated that younger and older adults store the same number of items in VWM, but that younger adults store a higher-resolution representation than do older adults.

  5. Feature-Based Change Detection Reveals Inconsistent Individual Differences in Visual Working Memory Capacity.

    Science.gov (United States)

    Ambrose, Joseph P; Wijeakumar, Sobanawartiny; Buss, Aaron T; Spencer, John P

    2016-01-01

    Visual working memory (VWM) is a key cognitive system that enables people to hold visual information in mind after a stimulus has been removed and compare past and present to detect changes that have occurred. VWM is severely capacity limited to around 3-4 items, although there are robust individual differences in this limit. Importantly, these individual differences are evident in neural measures of VWM capacity. Here, we capitalized on recent work showing that capacity is lower for more complex stimulus dimension. In particular, we asked whether individual differences in capacity remain consistent if capacity is shifted by a more demanding task, and, further, whether the correspondence between behavioral and neural measures holds across a shift in VWM capacity. Participants completed a change detection (CD) task with simple colors and complex shapes in an fMRI experiment. As expected, capacity was significantly lower for the shape dimension. Moreover, there were robust individual differences in behavioral estimates of VWM capacity across dimensions. Similarly, participants with a stronger BOLD response for color also showed a strong neural response for shape within the lateral occipital cortex, intraparietal sulcus (IPS), and superior IPS. Although there were robust individual differences in the behavioral and neural measures, we found little evidence of systematic brain-behavior correlations across feature dimensions. This suggests that behavioral and neural measures of capacity provide different views onto the processes that underlie VWM and CD. Recent theoretical approaches that attempt to bridge between behavioral and neural measures are well positioned to address these findings in future work.

  6. Re-evaluating the relationships among filtering activity, unnecessary storage, and visual working memory capacity.

    Science.gov (United States)

    Emrich, Stephen M; Busseri, Michael A

    2015-09-01

    The amount of task-irrelevant information encoded in visual working memory (VWM), referred to as unnecessary storage, has been proposed as a potential mechanism underlying individual differences in VWM capacity. In addition, a number of studies have provided evidence for additional activity that initiates the filtering process originating in the frontal cortex and basal ganglia, and is therefore a crucial step in the link between unnecessary storage and VWM capacity. Here, we re-examine data from two prominent studies that identified unnecessary storage activity as a predictor of VWM capacity by directly testing the implied path model linking filtering-related activity, unnecessary storage, and VWM capacity. Across both studies, we found that unnecessary storage was not a significant predictor of individual differences in VWM capacity once activity associated with filtering was accounted for; instead, activity associated with filtering better explained variation in VWM capacity. These findings suggest that unnecessary storage is not a limiting factor in VWM performance, whereas neural activity associated with filtering may play a more central role in determining VWM performance that goes beyond preventing unnecessary storage.

  7. Command vector memory systems: high performance at low cost

    OpenAIRE

    Corbal San Adrián, Jesús; Espasa Sans, Roger; Valero Cortés, Mateo

    1998-01-01

    The focus of this paper is on designing both a low cost and high performance, high bandwidth vector memory system that takes advantage of modern commodity SDRAM memory chips. To successfully extract the full bandwidth from SDRAM parts, we propose a new memory system organization based on sending commands to the memory system as opposed to sending individual addresses. A command specifies, in a few bytes, a request for multiple independent memory words. A command is similar to a burst found in...

  8. Working memory capacity and fluid abilities: the more difficult the item, the more more is better.

    Science.gov (United States)

    Little, Daniel R; Lewandowsky, Stephan; Craig, Stewart

    2014-01-01

    The relationship between fluid intelligence and working memory is of fundamental importance to understanding how capacity-limited structures such as working memory interact with inference abilities to determine intelligent behavior. Recent evidence has suggested that the relationship between a fluid abilities test, Raven's Progressive Matrices, and working memory capacity (WMC) may be invariant across difficulty levels of the Raven's items. We show that this invariance can only be observed if the overall correlation between Raven's and WMC is low. Simulations of Raven's performance revealed that as the overall correlation between Raven's and WMC increases, the item-wise point bi-serial correlations involving WMC are no longer constant but increase considerably with item difficulty. The simulation results were confirmed by two studies that used a composite measure of WMC, which yielded a higher correlation between WMC and Raven's than reported in previous studies. As expected, with the higher overall correlation, there was a significant positive relationship between Raven's item difficulty and the extent of the item-wise correlation with WMC.

  9. Working memory capacity and fluid abilities: The more difficult the item, the more more is better

    Directory of Open Access Journals (Sweden)

    Daniel R Little

    2014-03-01

    Full Text Available The relationship between fluid intelligence and working memory is of fundamental importance to understanding how capacity-limited structures such as working memory interact with inference abilities to determine intelligent behaviour. Recent evidence has suggested that the relationship between a fluid abilities test, Raven's Progressive Matrices, and working memory capacity (WMC may be invariant across difficulty levels of the Raven's items. We show that this invariance can only be observed if the overall correlation between Raven's and WMC is low. Simulations of Raven's performance revealed that as the overall correlation between Raven's and WMC increases, the item-wise point bi-serial correlations involving WMC are no longer constant but increase considerably with item difficulty. The simulation results were confirmed by two studies that used a composite measure of WMC, which yielded a higher correlation between WMC and Raven's than reported in previous studies. As expected, with the higher overall correlation, there was a signifi□cant positive relationship between Raven's item difficulty and the extent of the item-wise correlation with WMC.

  10. Working Memory Capacity and Its Relation to Stroop Interference and Facilitation Effects in Individuals with Mild Cognitive Impairment

    Science.gov (United States)

    Sung, Jee Eun; Kim, Jin Hee; Jeong, Jee Hyang; Kang, Heejin

    2012-01-01

    Purpose: The purposes of the study were to investigate (a) the task-specific differences in short-term memory (STM) and working memory capacity (WMC) in individuals with mild cognitive impairment (MCI) and normal elderly adults (NEAs), (b) the Stroop interference and facilitation effects, and (c) the relationship of STM and WMC to the Stroop…

  11. Working Memory Capacity in a Go/No-Go Task: Age Differences in Interference, Processing Speed, and Attentional Control

    Science.gov (United States)

    Rodríguez-Villagra, Odir Antonio; Göthe, Katrin; Oberauer, Klaus; Kliegl, Reinhold

    2013-01-01

    We tested the limits of working-memory capacity (WMC) of young adults, old adults, and children with a memory-updating task. The task consisted of mentally shifting spatial positions within a grid according to arrows, their color signaling either only go (control) or go/no-go conditions. The interference model (IM) of Oberauer and Kliegl (2006)…

  12. Proactive interference does not meaningfully distort visual working memory capacity estimates in the canonical change detection task

    Directory of Open Access Journals (Sweden)

    Po-Han eLin

    2012-02-01

    Full Text Available The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task—in which the to-be-remembered information consists of simple, briefly presented features—is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference.

  13. Proactive interference does not meaningfully distort visual working memory capacity estimates in the canonical change detection task.

    Science.gov (United States)

    Lin, Po-Han; Luck, Steven J

    2012-01-01

    The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task - in which the to-be-remembered information consists of simple, briefly presented features - is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference.

  14. Predicting change in symptoms of depression during the transition to university: the roles of BDNF and working memory capacity.

    Science.gov (United States)

    LeMoult, Joelle; Carver, Charles S; Johnson, Sheri L; Joormann, Jutta

    2015-03-01

    Studies on depression risk emphasize the importance of both cognitive and genetic vulnerability factors. The present study has provided the first examination of whether working memory capacity, the BDNF Val66Met polymorphism, and their interaction predict changes in symptoms of depression during the transition to university. Early in the semester, students completed a self-report measure of depressive symptoms and a modified version of the reading span task to assess working memory capacity in the presence of both neutral and negative distractors. Whole blood was genotyped for the BDNF Val66Met polymorphism. Students returned at the end of the semester to complete additional self-report questionnaires. Neither working memory capacity nor the BDNF Val66Met polymorphism predicted change in depressive symptoms either independently or in interaction with self-reported semester difficulty. The BDNF Val66Met polymorphism, however, moderated the association between working memory capacity and symptom change. Among met carriers, lower working memory capacity in the presence of negative-but not neutral-distractors was associated with increased symptoms of depression over the semester. For the val/val group, working memory capacity did not predict symptom change. These findings contribute directly to biological and cognitive models of depression and highlight the importance of examining Gene × Cognition interactions when investigating risk for depression.

  15. Evaluation of the attentional capacities and working memory of early and late blind persons.

    Science.gov (United States)

    Pigeon, Caroline; Marin-Lamellet, Claude

    2015-02-01

    Although attentional processes and working memory seem to be significantly involved in the daily activities (particularly during navigating) of persons who are blind and who use these abilities to compensate for their lack of vision, few studies have investigated these mechanisms in this population. The aim of this study is to evaluate the selective, sustained and divided attention, attentional inhibition and switching and working memory of blind persons. Early blind, late blind and sighted participants completed neuropsychological tests that were designed or adapted to be achievable in the absence of vision. The results revealed that the early blind participants outperformed the sighted ones in selective, sustained and divided attention and working memory tests, and the late blind participants outperformed the sighted participants in selective, sustained and divided attention. However, no differences were found between the blind groups and the sighted group in the attentional inhibition and switching tests. Furthermore, no differences were found between the early and late blind participants in this set of tests. These results suggest that early and late blind persons can compensate for the lack of vision by an enhancement of the attentional and working memory capacities. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Developmental improvements in the resolution and capacity of visual working memory share a common source

    Science.gov (United States)

    Simmering, Vanessa R.; Miller, Hilary E.

    2016-01-01

    The nature of visual working memory (VWM) representations is currently a source of debate between characterizations as slot-like versus a flexibly-divided pool of resources. Recently, a dynamic neural field model has been proposed as an alternative account that focuses more on the processes by which VWM representations are formed, maintained, and used in service of behavior. This dynamic model has explained developmental increases in VWM capacity and resolution through strengthening excitatory and inhibitory connections. Simulations of developmental improvements in VWM resolution suggest that one important change is the accuracy of comparisons between items held in memory and new inputs. Thus, the ability to detect changes is a critical component of developmental improvements in VWM performance across tasks, leading to the prediction that capacity and resolution should correlate during childhood. Comparing 5- to 8-year-old children’s performance across color discrimination and change detection tasks revealed the predicted correlation between estimates of VWM capacity and resolution, supporting the hypothesis that increasing connectivity underlies improvements in VWM during childhood. These results demonstrate the importance of formalizing the processes that support the use of VWM, rather than focusing solely on the nature of representations. We conclude by considering our results in the broader context of VWM development. PMID:27329264

  17. Working through the pain: working memory capacity and differences in processing and storage under pain.

    Science.gov (United States)

    Sanchez, Christopher A

    2011-02-01

    It has been suggested that pain perception and attention are closely linked at both a neural and a behavioural level. If pain and attention are so linked, it is reasonable to speculate that those who vary in working memory capacity (WMC) should be affected by pain differently. This study compares the performance of individuals who differ in WMC as they perform processing and memory span tasks while under mild pain and not. While processing performance under mild pain does not interact with WMC, the ability to store information for later recall does. This suggests that pain operates much like an additional processing burden, and that the ability to overcome this physical sensation is related to differences in WMC. © 2011 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business

  18. Load carrying capacity of RCC beams by replacing steel reinforcement bars with shape memory alloy bars

    Science.gov (United States)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2016-04-01

    In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under two point loading system has been numerically studied, using Finite Element Method. The material used in this study is Super-elastic Shape Memory Alloys (SE SMAs) which contains nickel and titanium. In this study, different quantities of steel and SMA rebars have been used for reinforcement and the behavior of these models under two point bending loading system is studied. A comparison of load carrying capacity for the model between steel reinforced concrete beam and the beam reinforced with S.M.A and steel are performed. The results show that RC beams reinforced with combination of shape memory alloy and steel show better performance.

  19. Impaired verbal short-term memory in Down syndrome reflects a capacity limitation rather than atypically rapid forgetting.

    Science.gov (United States)

    M Purser, Harry R; Jarrold, Christopher

    2005-05-01

    Individuals with Down syndrome suffer from relatively poor verbal short-term memory. Recent work has indicated that this deficit is not caused by problems of audition, speech, or articulatory rehearsal within the phonological loop component of Baddeley and Hitch's working memory model. Given this, two experiments were conducted to investigate whether abnormally rapid decay underlies the deficit. In a first experiment, we attempted to vary the time available for decay using a modified serial recall procedure that had both verbal and visuospatial conditions. No evidence was found to suggest that forgetting is abnormally rapid in phonological memory in Down syndrome, but a selective phonological memory deficit was indicated. A second experiment further investigated possible problems of decay in phonological memory, restricted to item information. The results indicated that individuals with Down syndrome do not show atypically rapid item forgetting from phonological memory but may have a limited-capacity verbal short-term memory system.

  20. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models. [Sparse, Distributed Memory

    Science.gov (United States)

    Keeler, James D.

    1988-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used here, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  1. Maternal immune activation during pregnancy in rats impairs working memory capacity of the offspring.

    Science.gov (United States)

    Murray, Brendan G; Davies, Don A; Molder, Joel J; Howland, John G

    2017-05-01

    Maternal immune activation during pregnancy is an environmental risk factor for psychiatric illnesses such as schizophrenia in the offspring. Patients with schizophrenia display an array of cognitive symptoms, including impaired working memory capacity. Rodent models have been developed to understand the relationship between maternal immune activation and the cognitive symptoms of schizophrenia. The present experiment was designed to test whether maternal immune activation with the viral mimetic polyinosinic:polycytidylic acid (polyI:C) during pregnancy affects working memory capacity of the offspring. Pregnant Long Evans rats were treated with either saline or polyI:C (4mg/kg; i.v.) on gestational day 15. Male offspring of the litters (2-3months of age) were subsequently trained on a nonmatching-to-sample task with odors. After a criterion was met, the rats were tested on the odor span task, which requires rats to remember an increasing span of different odors to receive food reward. Rats were tested using delays of approximately 40s during the acquisition of the task. Importantly, polyI:C- and saline-treated offspring did not differ in performance of the nonmatching-to-sample task suggesting that both groups could perform a relatively simple working memory task. In contrast, polyI:C-treated offspring had reduced span capacity in the middle and late phases of odor span task acquisition. After task acquisition, the rats were tested using the 40s delay and a 10min delay. Both groups showed a delay-dependent decrease in span, although the polyI:C-treated offspring had significantly lower spans regardless of delay. Our results support the validity of the maternal immune activation model for studying the cognitive symptoms of neurodevelopmental disorders such as schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Large capacity, high-speed multiparameter multichannel analysis system

    International Nuclear Information System (INIS)

    Hendricks, R.W.; Seeger, P.A.; Scheer, J.W.; Suehiro, S.

    1980-01-01

    A data acquisition system for recording multiparameter digital data into a large memory array at over 2.5 MHz is described. The system consists of a MOSTEK MK8600 2048K x 24-bit memory system, I/O ports to various external devices including the CAMAC dataway, a memory incrementer/adder and a daisy-chain of experiment-specific modules which calculate the memory address which is to be incremented. The design of the daisy-chain permits multiple modules and provides for easy modification as experimental needs change. The system has been designed for use in multiparameter, multichannel analysis of high-speed data gathered by position-sensitive detectors at conventional and synchrotron x-ray sources as well as for fixed energy and time-of-flight diffraction at continuous and pulsed neutron sources

  3. A sub-process view of working memory capacity: evidence from effects of speech on prose memory.

    Science.gov (United States)

    Sörqvist, Patrik; Ljungberg, Jessica K; Ljung, Robert

    2010-04-01

    In this article we outline a "sub-process view" of working memory capacity (WMC). This view suggests that any relationship between WMC and another construct (e.g., reading comprehension) is actually a relationship with a specific part of the WMC construct. The parts, called sub-processes, are functionally distinct and can be measured by intrusion errors in WMC tasks. Since the sub-processes are functionally distinct, some sub-process may be related to a certain phenomenon, whereas another sub-process is related to other phenomena. In two experiments we show that a sub-process (measured by immediate/current-list intrusions) is related to the effects of speech on prose memory (semantic auditory distraction), whereas another sub-process (measured by delayed/prior-list intrusions), known for its contribution to reading comprehension, is not. In Experiment 2 we developed a new WMC task called "size-comparison span" and found that the relationship between WMC and semantic auditory distraction is actually a relationship with a sub-process measured by current-list intrusions in our new task.

  4. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    Science.gov (United States)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  5. Capacity Bounds and High-SNR Capacity of MIMO Intensity-Modulation Optical Channels

    KAUST Repository

    Chaaban, Anas

    2018-02-19

    The capacity of the intensity modulation direct detection multiple-input multiple-output channel is studied. Therein, the nonnegativity constraint of the transmit signal limits the applicability of classical schemes, including precoding. Thus, new ways are required for deriving capacity bounds for this channel. To this end, capacity lower bounds are developed in this paper by deriving the achievable rates of two precodingfree schemes: Channel inversion and QR decomposition. The achievable rate of a DC-offset SVD-based scheme is also derived as a benchmark. Then, capacity upper bounds are derived and compared against the lower bounds. As a result, the capacity at high signal-to-noise ratio (SNR) is characterized for the case where the number of transmit apertures is not larger than the number of receive apertures, and is shown to be achievable by the QR decomposition scheme. This is shown for a channel with average intensity or peak intensity constraints. Under both constraints, the high-SNR capacity is approximated within a small gap. Extensions to a channel with more transmit apertures than receive apertures are discussed, and capacity bounds for this case are derived.

  6. Capacity Bounds and High-SNR Capacity of MIMO Intensity-Modulation Optical Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2018-01-01

    The capacity of the intensity modulation direct detection multiple-input multiple-output channel is studied. Therein, the nonnegativity constraint of the transmit signal limits the applicability of classical schemes, including precoding. Thus, new ways are required for deriving capacity bounds for this channel. To this end, capacity lower bounds are developed in this paper by deriving the achievable rates of two precodingfree schemes: Channel inversion and QR decomposition. The achievable rate of a DC-offset SVD-based scheme is also derived as a benchmark. Then, capacity upper bounds are derived and compared against the lower bounds. As a result, the capacity at high signal-to-noise ratio (SNR) is characterized for the case where the number of transmit apertures is not larger than the number of receive apertures, and is shown to be achievable by the QR decomposition scheme. This is shown for a channel with average intensity or peak intensity constraints. Under both constraints, the high-SNR capacity is approximated within a small gap. Extensions to a channel with more transmit apertures than receive apertures are discussed, and capacity bounds for this case are derived.

  7. Sentence Processing as a Function of Syntax, Short Term Memory Capacity, the Meaningfulness of the Stimulus and Age

    Science.gov (United States)

    Gamlin, Peter J.

    1971-01-01

    Examines the effects of short term memory (STM) capacity, meaningfulness of stimuli, and age upon listeners' structuring of sentences. Results show that the interaction between STM capacity and meaningfulness (1) approached significance when data were collapsed over both age levels, and (2) was significant for one age level. Tables and references.…

  8. Gesturing during mental problem solving reduces eye movements, especially for individuals with lower visual working memory capacity

    NARCIS (Netherlands)

    W.T.J.L. Pouw (Wim); M.-F. Mavilidi (Myrto-Foteini); T.A.J.M. van Gog (Tamara); G.W.C. Paas (Fred)

    2016-01-01

    textabstractNon-communicative hand gestures have been found to benefit problem-solving performance. These gestures seem to compensate for limited internal cognitive capacities, such as visual working memory capacity. Yet, it is not clear how gestures might perform this cognitive function. One

  9. Gesturing during mental problem solving reduces eye movements, especially for individuals with lower visual working memory capacity

    NARCIS (Netherlands)

    Pouw, Wim T J L; Mavilidi, Myrto Foteini; van Gog, Tamara; Paas, Fred

    2016-01-01

    Non-communicative hand gestures have been found to benefit problem-solving performance. These gestures seem to compensate for limited internal cognitive capacities, such as visual working memory capacity. Yet, it is not clear how gestures might perform this cognitive function. One hypothesis is that

  10. Reduced short-term memory capacity in Alzheimer's disease: the role of phonological, lexical, and semantic processing.

    Science.gov (United States)

    Caza, Nicole; Belleville, Sylvie

    2008-05-01

    Individuals with Alzheimer's disease (AD) are often reported to have reduced verbal short-term memory capacity, typically attributed to their attention/executive deficits. However, these individuals also tend to show progressive impairment of semantic, lexical, and phonological processing which may underlie their low short-term memory capacity. The goals of this study were to assess the contribution of each level of representation (phonological, lexical, and semantic) to immediate serial recall performance in 18 individuals with AD, and to examine how these linguistic effects on short-term memory were modulated by their reduced capacity to manipulate information in short-term memory associated with executive dysfunction. Results showed that individuals with AD had difficulty recalling items that relied on phonological representations, which led to increased lexicality effects relative to the control group. This finding suggests that patients have a greater reliance on lexical/semantic information than controls, possibly to make up for deficits in retention and processing of phonological material. This lexical/semantic effect was not found to be significantly correlated with patients' capacity to manipulate verbal material in short-term memory, indicating that language processing and executive deficits may independently contribute to reducing verbal short-term memory capacity in AD.

  11. A shared, flexible neural map architecture reflects capacity limits in both visual short-term memory and enumeration.

    Science.gov (United States)

    Knops, André; Piazza, Manuela; Sengupta, Rakesh; Eger, Evelyn; Melcher, David

    2014-07-23

    Human cognition is characterized by severe capacity limits: we can accurately track, enumerate, or hold in mind only a small number of items at a time. It remains debated whether capacity limitations across tasks are determined by a common system. Here we measure brain activation of adult subjects performing either a visual short-term memory (vSTM) task consisting of holding in mind precise information about the orientation and position of a variable number of items, or an enumeration task consisting of assessing the number of items in those sets. We show that task-specific capacity limits (three to four items in enumeration and two to three in vSTM) are neurally reflected in the activity of the posterior parietal cortex (PPC): an identical set of voxels in this region, commonly activated during the two tasks, changed its overall response profile reflecting task-specific capacity limitations. These results, replicated in a second experiment, were further supported by multivariate pattern analysis in which we could decode the number of items presented over a larger range during enumeration than during vSTM. Finally, we simulated our results with a computational model of PPC using a saliency map architecture in which the level of mutual inhibition between nodes gives rise to capacity limitations and reflects the task-dependent precision with which objects need to be encoded (high precision for vSTM, lower precision for enumeration). Together, our work supports the existence of a common, flexible system underlying capacity limits across tasks in PPC that may take the form of a saliency map. Copyright © 2014 the authors 0270-6474/14/349857-10$15.00/0.

  12. Individual visual working memory capacities and related brain oscillatory activities are modulated by color preferences.

    Science.gov (United States)

    Kawasaki, Masahiro; Yamaguchi, Yoko

    2012-01-01

    Subjective preferences affect many processes, including motivation, along with individual differences. Although incentive motivations are proposed to increase our limited visual working memory (VWM) capacity, much less is known about the effects of subjective preferences on VWM-related brain systems, such as the prefrontal and parietal cortices. Here, we investigate the differences in VWM capacities and brain activities during presentation of preferred and non-preferred colors. To this end, we used time-frequency (TF) analyses of electroencephalograph (EEG) data recorded during a delayed-response task. Behavioral results showed that the individual VWM capacities of preferred colors were significantly higher than those of non-preferred colors. The EEG results showed that the frontal theta and beta amplitudes for maintenance of preferred colors were higher than those of non-preferred colors. Interestingly, the frontal beta amplitudes were consistent with recent EEG recordings of the effects of reward on VWM systems, in that they were strongly and individually correlated with increasing VWM capacities from non-preferred to preferred colors. These results suggest that subjective preferences affect VWM systems in a similar manner to reward-incentive motivations.

  13. TMS over the right precuneus reduces the bilateral field advantage in visual short term memory capacity.

    Science.gov (United States)

    Kraft, Antje; Dyrholm, Mads; Kehrer, Stefanie; Kaufmann, Christian; Bruening, Jovita; Kathmann, Norbert; Bundesen, Claus; Irlbacher, Kerstin; Brandt, Stephan A

    2015-01-01

    Several studies have demonstrated a bilateral field advantage (BFA) in early visual attentional processing, that is, enhanced visual processing when stimuli are spread across both visual hemifields. The results are reminiscent of a hemispheric resource model of parallel visual attentional processing, suggesting more attentional resources on an early level of visual processing for bilateral displays [e.g. Sereno AB, Kosslyn SM. Discrimination within and between hemifields: a new constraint on theories of attention. Neuropsychologia 1991;29(7):659-75.]. Several studies have shown that the BFA extends beyond early stages of visual attentional processing, demonstrating that visual short term memory (VSTM) capacity is higher when stimuli are distributed bilaterally rather than unilaterally. Here we examine whether hemisphere-specific resources are also evident on later stages of visual attentional processing. Based on the Theory of Visual Attention (TVA) [Bundesen C. A theory of visual attention. Psychol Rev 1990;97(4):523-47.] we used a whole report paradigm that allows investigating visual attention capacity variability in unilateral and bilateral displays during navigated repetitive transcranial magnetic stimulation (rTMS) of the precuneus region. A robust BFA in VSTM storage capacity was apparent after rTMS over the left precuneus and in the control condition without rTMS. In contrast, the BFA diminished with rTMS over the right precuneus. This finding indicates that the right precuneus plays a causal role in VSTM capacity, particularly in bilateral visual displays. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Hippocampal and posterior parietal contributions to developmental increases in visual short-term memory capacity.

    Science.gov (United States)

    von Allmen, David Yoh; Wurmitzer, Karoline; Klaver, Peter

    2014-10-01

    Developmental increases in visual short-term memory (VSTM) capacity have been associated with changes in attention processing limitations and changes in neural activity within neural networks including the posterior parietal cortex (PPC). A growing body of evidence suggests that the hippocampus plays a role in VSTM, but it is unknown whether the hippocampus contributes to the capacity increase across development. We investigated the functional development of the hippocampus and PPC in 57 children, adolescents and adults (age 8-27 years) who performed a visuo-spatial change detection task. A negative relationship between age and VSTM related activity was found in the right posterior hippocampus that was paralleled by a positive age-activity relationship in the right PPC. In the posterior hippocampus, VSTM related activity predicted individual capacity in children, whereas neural activity in the right anterior hippocampus predicted individual capacity in adults. The findings provide first evidence that VSTM development is supported by an integrated neural network that involves hippocampal and posterior parietal regions.

  15. Individual differences in rate of encoding predict estimates of visual short-term memory capacity (K).

    Science.gov (United States)

    Jannati, Ali; McDonald, John J; Di Lollo, Vincent

    2015-06-01

    The capacity of visual short-term memory (VSTM) is commonly estimated by K scores obtained with a change-detection task. Contrary to common belief, K may be influenced not only by capacity but also by the rate at which stimuli are encoded into VSTM. Experiment 1 showed that, contrary to earlier conclusions, estimates of VSTM capacity obtained with a change-detection task are constrained by temporal limitations. In Experiment 2, we used change-detection and backward-masking tasks to obtain separate within-subject estimates of K and of rate of encoding, respectively. A median split based on rate of encoding revealed significantly higher K estimates for fast encoders. Moreover, a significant correlation was found between K and the estimated rate of encoding. The present findings raise the prospect that the reported relationships between K and such cognitive concepts as fluid intelligence may be mediated not only by VSTM capacity but also by rate of encoding. (c) 2015 APA, all rights reserved).

  16. Individual visual working memory capacities and related brain oscillatory activities are modulated by color preferences

    Directory of Open Access Journals (Sweden)

    Masahiro eKawasaki

    2012-11-01

    Full Text Available Subjective preferences affect many processes, including motivation, along with individual differences. Although incentive motivations are proposed to increase our limited visual working memory (VWM capacity, much less is known about the effects of subjective preferences on VWM-related brain systems, such as the prefrontal and parietal cortices. Here, we investigate the differences in VWM capacities and brain activities during presentation of preferred and non-preferred colors. To this end, we used time-frequency analyses of electroencephalograph (EEG data recorded during a delayed-response task. Behavioral results showed that the individual VWM capacities of preferred colors were significantly higher than those of non-preferred colors. The EEG results showed that the frontal theta and beta amplitudes for maintenance of preferred colors were higher than those of non-preferred colors. Interestingly, the frontal beta amplitudes were consistent with recent EEG recordings of the effects of reward on VWM systems, in that they were strongly and individually correlated with increasing VWM capacities from non-preferred to preferred colors. These results suggest that subjective preferences affect VWM systems in a similar manner to reward-incentive motivations.

  17. Early Auditory Evoked Potential Is Modulated by Selective Attention and Related to Individual Differences in Visual Working Memory Capacity

    OpenAIRE

    Giuliano, Ryan J.; Karns, Christina M.; Neville, Helen J.; Hillyard, Steven A.

    2014-01-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and...

  18. Aerobic endurance capacity affects spatial memory and SIRT1 is a potent modulator of 8-oxoguanine repair.

    Science.gov (United States)

    Sarga, L; Hart, N; Koch, L G; Britton, S L; Hajas, G; Boldogh, I; Ba, X; Radak, Z

    2013-11-12

    Regular exercise promotes brain function via a wide range of adaptive responses, including the increased expression of antioxidant and oxidative DNA damage-repairing systems. Accumulation of oxidized DNA base lesions and strand breaks is etiologically linked to for example aging processes and age-associated diseases. Here we tested whether exercise training has an impact on brain function, extent of neurogenesis, and expression of 8-oxoguanine DNA glycosylase-1 (Ogg1) and SIRT1 (silent mating-type information regulation 2 homolog). To do so, we utilized strains of rats with low- and high-running capacity (LCR and HCR) and examined learning and memory, DNA synthesis, expression, and post-translational modification of Ogg1 hippocampal cells. Our results showed that rats with higher aerobic/running capacity had better spatial memory, and expressed less Ogg1, when compared to LCR rats. Furthermore, exercise increased SIRT1 expression and decreased acetylated Ogg1 (AcOgg1) levels, a post-translational modification important for efficient repair of 8-oxo-7,8-dihydroguanine (8-oxoG). Our data on cell cultures revealed that nicotinamide, a SIRT1-specific inhibitor, caused the greatest increase in the acetylation of Ogg1, a finding further supported by our other observations that silencing SIRT1 also markedly increased the levels of AcOgg1. These findings imply that high-running capacity is associated with increased hippocampal function, and SIRT1 level/activity and inversely correlates with AcOgg1 levels and thereby the repair of genomic 8-oxoG. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. A psychometric measure of working memory capacity for configured body movement.

    Directory of Open Access Journals (Sweden)

    Ying Choon Wu

    Full Text Available Working memory (WM models have traditionally assumed at least two domain-specific storage systems for verbal and visuo-spatial information. We review data that suggest the existence of an additional slave system devoted to the temporary storage of body movements, and present a novel instrument for its assessment: the movement span task. The movement span task assesses individuals' ability to remember and reproduce meaningless configurations of the body. During the encoding phase of a trial, participants watch short videos of meaningless movements presented in sets varying in size from one to five items. Immediately after encoding, they are prompted to reenact as many items as possible. The movement span task was administered to 90 participants along with standard tests of verbal WM, visuo-spatial WM, and a gesture classification test in which participants judged whether a speaker's gestures were congruent or incongruent with his accompanying speech. Performance on the gesture classification task was not related to standard measures of verbal or visuo-spatial working memory capacity, but was predicted by scores on the movement span task. Results suggest the movement span task can serve as an assessment of individual differences in WM capacity for body-centric information.

  20. Individual differences in working memory capacity predict learned control over attentional capture.

    Science.gov (United States)

    Robison, Matthew K; Unsworth, Nash

    2017-11-01

    Although individual differences in working memory capacity (WMC) typically predict susceptibility to attentional capture in various paradigms (e.g., Stroop, antisaccade, flankers), it sometimes fails to correlate with the magnitude of attentional capture effects in visual search (e.g., Stokes, 2016), which is 1 of the most frequently studied tasks to study capture (Theeuwes, 2010). But some studies have shown that search modes can mitigate the effects of attentional capture (Leber & Egeth, 2006). Therefore, the present study examined whether or not the relationship between WMC and attentional capture changes as a function of the search modes available. In Experiment 1, WMC was unrelated to attentional capture, but only 1 search mode (singleton-detection) could be employed. In Experiment 2, greater WMC predicted smaller attentional capture effects, but only when multiple search modes (feature-search and singleton-detection) could be employed. Importantly this relationship was entirely independent of variation in attention control, which suggests that this effect is driven by WMC-related long-term memory differences (Cosman & Vecera, 2013a, 2013b). The present set of findings help to further our understanding of the nuanced ways in which memory and attention interact. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. High-calorie food-cues impair working memory performance in high and low food cravers.

    Science.gov (United States)

    Meule, Adrian; Skirde, Ann Kathrin; Freund, Rebecca; Vögele, Claus; Kübler, Andrea

    2012-10-01

    The experience of food craving can lead to cognitive impairments. Experimentally induced chocolate craving exhausts cognitive resources and, therefore, impacts working memory, particularly in trait chocolate cravers. In the current study, we investigated the effects of exposure to food-cues on working memory task performance in a group with frequent and intense (high cravers, n=28) and less pronounced food cravings (low cravers, n=28). Participants performed an n-back task that contained either pictures of high-calorie sweets, high-calorie savory foods, or neutral objects. Current subjective food craving was assessed before and after the task. All participants showed slower reaction times and made more omission errors in response to food-cues, particularly savory foods. There were no differences in task performance between groups. State cravings did not differ between groups before the task, but increased more in high cravers compared to low cravers during the task. Results support findings about food cravings impairing visuo-spatial working memory performance independent of trait cravings. They further show that this influence is not restricted to chocolate, but also applies to high-calorie savory foods. Limiting working memory capacity may be especially crucial in persons who are more prone to high-calorie food-cues and experience such cravings habitually. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. High capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  3. Working memory span capacity improved by a D2 but not D1 receptor family agonist.

    Science.gov (United States)

    Tarantino, Isadore S; Sharp, Richard F; Geyer, Mark A; Meves, Jessica M; Young, Jared W

    2011-06-01

    Patients with schizophrenia exhibit poor working memory (WM). Although several subcomponents of WM can be measured, evidence suggests the primary subcomponent affected in schizophrenia is span capacity (WMC). Indeed, the NIMH-funded MATRICS initiative recommended assaying the WMC when assessing the efficacy of a putative therapeutic for FDA approval. Although dopamine D1 receptor agonists improve delay-dependent memory in animals, evidence for improvements in WMC due to dopamine D1 receptor activation is limited. In contrast, the dopamine D2-family agonist bromocriptine improves WMC in humans. The radial arm maze (RAM) can be used to assess WMC, although complications due to ceiling effects or strategy confounds have limited its use. We describe a 12-arm RAM protocol designed to assess whether the dopamine D1-family agonist SKF 38393 (0, 1, 3, and 10 mg/kg) or bromocriptine (0, 1, 3, and 10 mg/kg) could improve WMC in C57BL/6N mice (n=12) in cross-over designs. WMC increased and strategy usage decreased with training. The dopamine D1 agonist SKF 38393 had no effect on WMC or long-term memory. Bromocriptine decreased WMC errors, without affecting long-term memory, consistent with human studies. These data confirm that WMC can be measured in mice and reveal drug effects that are consistent with reported effects in humans. Future research is warranted to identify the subtype of the D2-family of receptors responsible for the observed improvement in WMC. Finally, this RAM procedure may prove useful in developing animal models of deficient WMC to further assess putative treatments for the cognitive deficits in schizophrenia. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Focused attention improves working memory: implications for flexible-resource and discrete-capacity models.

    Science.gov (United States)

    Souza, Alessandra S; Rerko, Laura; Lin, Hsuan-Yu; Oberauer, Klaus

    2014-10-01

    Performance in working memory (WM) tasks depends on the capacity for storing objects and on the allocation of attention to these objects. Here, we explored how capacity models need to be augmented to account for the benefit of focusing attention on the target of recall. Participants encoded six colored disks (Experiment 1) or a set of one to eight colored disks (Experiment 2) and were cued to recall the color of a target on a color wheel. In the no-delay condition, the recall-cue was presented after a 1,000-ms retention interval, and participants could report the retrieved color immediately. In the delay condition, the recall-cue was presented at the same time as in the no-delay condition, but the opportunity to report the color was delayed. During this delay, participants could focus attention exclusively on the target. Responses deviated less from the target's color in the delay than in the no-delay condition. Mixture modeling assigned this benefit to a reduction in guessing (Experiments 1 and 2) and transposition errors (Experiment 2). We tested several computational models implementing flexible or discrete capacity allocation, aiming to explain both the effect of set size, reflecting the limited capacity of WM, and the effect of delay, reflecting the role of attention to WM representations. Both models fit the data better when a spatially graded source of transposition error is added to its assumptions. The benefits of focusing attention could be explained by allocating to this object a higher proportion of the capacity to represent color.

  5. Magnetic memory effects in high temperature superconductors

    International Nuclear Information System (INIS)

    Rockenbauer, A.

    1989-01-01

    Microwave absorption of high temperature oxide superconductors MBa 2 Cu 3 O 7 (M = Y, Er, Dy, Ho, Lu, Tm, Gd) at 77 K have been studied by ESR. In granular samples diamagnetic zero-field resonance and strong ESR baseline hysteresis have been observed: for increasing field sweep - a high, for decreasing one - a low, while in constant field the baseline approaches the middle position with kinetics typical of spin-glasses. The hysteresis amplitude, i.e. the deviation of high and low baselines, possesses maximum at zero field if the sample is cooled down in zero field. In case of field cooling both the diamagnetic resonance and hysteresis maximum are shifted as a function of relative direction of the fields where the samples are cooled and measured, respectively. The shift is caused by the remanent diamagnetism of trapped fluxons. The hysteresis critically depends on the modulation amplitude of magnetic field, and no hysteresis can be observed if the microwave absorption is detected without field modulation. By applying saw-tooth sweep the spin-glass can be driven between two extreme hysteresis states, and the ESR response is rectangular for large saw-tooth amplitude and linear - for small one, while for intermediate amplitudes the recording shows characteristic memory effects. The hysteresis memory is explained in terms of loop distribution of fluxons. In the single crystal the fluxon absorptions are also detected and the separation of fluxon lines can be related to the hysteresis in granular samples. (author)

  6. Task-evoked pupillometry provides a window into the development of short-term memory capacity

    Science.gov (United States)

    Johnson, Elizabeth L.; Miller Singley, Alison T.; Peckham, Andrew D.; Johnson, Sheri L.; Bunge, Silvia A.

    2014-01-01

    The capacity to keep multiple items in short-term memory (STM) improves over childhood and provides the foundation for the development of multiple cognitive abilities. The goal of this study was to measure the extent to which age differences in STM capacity are related to differences in task engagement during encoding. Children (n = 69, mean age = 10.6 years) and adults (n = 54, mean age = 27.5 years) performed two STM tasks: the forward digit span test from the Wechsler Intelligence Scale for Children (WISC) and a novel eyetracking digit span task designed to overload STM capacity. Building on prior research showing that task-evoked pupil dilation can be used as a real-time index of task engagement, we measured changes in pupil dilation while participants encoded long sequences of digits for subsequent recall. As expected, adults outperformed children on both STM tasks. We found similar patterns of pupil dilation while children and adults listened to the first six digits on our STM overload task, after which the adults' pupils continued to dilate and the children's began to constrict, suggesting that the children had reached their cognitive limits and that they had begun to disengage from the task. Indeed, the point at which pupil dilation peaked at encoding was a significant predictor of WISC forward span, and this relationship held even after partialing out recall performance on the STM overload task. These findings indicate that sustained task engagement at encoding is an important component of the development of STM. PMID:24659980

  7. Task-evoked pupillometry provides a window into the development of short-term memory capacity.

    Science.gov (United States)

    Johnson, Elizabeth L; Miller Singley, Alison T; Peckham, Andrew D; Johnson, Sheri L; Bunge, Silvia A

    2014-01-01

    The capacity to keep multiple items in short-term memory (STM) improves over childhood and provides the foundation for the development of multiple cognitive abilities. The goal of this study was to measure the extent to which age differences in STM capacity are related to differences in task engagement during encoding. Children (n = 69, mean age = 10.6 years) and adults (n = 54, mean age = 27.5 years) performed two STM tasks: the forward digit span test from the Wechsler Intelligence Scale for Children (WISC) and a novel eyetracking digit span task designed to overload STM capacity. Building on prior research showing that task-evoked pupil dilation can be used as a real-time index of task engagement, we measured changes in pupil dilation while participants encoded long sequences of digits for subsequent recall. As expected, adults outperformed children on both STM tasks. We found similar patterns of pupil dilation while children and adults listened to the first six digits on our STM overload task, after which the adults' pupils continued to dilate and the children's began to constrict, suggesting that the children had reached their cognitive limits and that they had begun to disengage from the task. Indeed, the point at which pupil dilation peaked at encoding was a significant predictor of WISC forward span, and this relationship held even after partialing out recall performance on the STM overload task. These findings indicate that sustained task engagement at encoding is an important component of the development of STM.

  8. Many-body physics and the capacity of quantum channels with memory

    International Nuclear Information System (INIS)

    Plenio, M B; Virmani, S

    2008-01-01

    In most studies of the capacity of quantum channels, it is assumed that the errors in the use of each channel are independent. However, recent work has begun to investigate the effects of memory or correlations in the error, and has led to suggestions that there can be interesting non-analytic behaviour in the capacity of such channels. In a previous paper, we pursued this issue by connecting the study of channel capacities under correlated error to the study of critical behaviour in many-body physics. This connection enables the use of techniques from many-body physics to either completely solve or understand qualitatively a number of interesting models of correlated error with analogous behaviour to associated many-body systems. However, in order for this approach to work rigorously, there are a number of technical properties that need to be established for the lattice systems being considered. In this paper, we discuss these properties in detail, and establish them for some classes of many-body system

  9. Social exclusion weakens storage capacity and attentional filtering ability in visual working memory.

    Science.gov (United States)

    Xu, Mengsi; Qiao, Lei; Qi, Senqing; Li, Zhiai; Diao, Liuting; Fan, Lingxia; Zhang, Lijie; Yang, Dong

    2018-01-01

    Social exclusion has been found to impair visual working memory (WM), while the underlying neural processes are currently unclear. Using two experiments, we tested whether the poor WM performance caused by exclusion was due to reduced storage capacity, impaired attentional filtering ability or both. The Cyberball game was used to manipulate social exclusion. Seventy-four female participants performed WM tasks while event-related potentials were recorded. In Experiment 1, participants were made to remember the orientations of red rectangles while ignoring salient green rectangles. Results showed that exclusion impaired the ability to filter out irrelevant items from WM, as reflected by the similar contralateral delay activity (CDA) amplitudes for one-target-one-distractor condition and two-targets condition, as well as the similar CDA amplitudes for two-targets-two-distractors condition and four-targets condition in excluded individuals. In Experiment 2, participants were asked to remember 1-5 colored squares. Results showed that exclusion reduced storage capacity, as the CDA amplitudes reached asymptote at loads of two items for exclusion group and at loads of three items for inclusion group. Together, these two experiments provided complementary evidence that WM deficits caused by social exclusion were due to reduced storage capacity and impaired attentional filtering ability. © The Author (2017). Published by Oxford University Press.

  10. Neurophysiological capacity in a working memory task differentiates dependent from nondependent heavy drinkers and controls.

    Science.gov (United States)

    Wesley, Michael J; Lile, Joshua A; Fillmore, Mark T; Porrino, Linda J

    2017-06-01

    Determining the neurobehavioral profiles that differentiate heavy drinkers who are and are not alcohol dependent will inform treatment efforts. Working memory is linked to substance use disorders and can serve as a representation of the demand placed on the neurophysiology associated with cognitive control. Behavior and brain activity (via fMRI) were recorded during an N-Back working memory task in controls (CTRL), nondependent heavy drinkers (A-ND) and dependent heavy drinkers (A-D). Typical and novel step-wise analyses examined profiles of working memory load and increasing task demand, respectively. Performance was significantly decreased in A-D during high working memory load (2-Back), compared to CTRL and A-ND. Analysis of brain activity during high load (0-Back vs. 2- Back) showed greater responses in the dorsal lateral and medial prefrontal cortices of A-D than CTRL, suggesting increased but failed compensation. The step-wise analysis revealed that the transition to Low Demand (0-Back to 1-Back) was associated with robust increases and decreases in cognitive control and default-mode brain regions, respectively, in A-D and A-ND but not CTRL. The transition to High Demand (1-Back to 2-Back) resulted in additional engagement of these networks in A-ND and CTRL, but not A-D. Heavy drinkers engaged working memory neural networks at lower demand than controls. As demand increased, nondependent heavy drinkers maintained control performance but relied on additional neurophysiological resources, and dependent heavy drinkers did not display further resource engagement and had poorer performance. These results support targeting these brain areas for treatment interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A review of visual memory capacity: Beyond individual items and towards structured representations

    OpenAIRE

    Brady, Timothy F.; Konkle, Talia; Alvarez, George A.

    2011-01-01

    Traditional memory research has focused on identifying separate memory systems and exploring different stages of memory processing. This approach has been valuable for establishing a taxonomy of memory systems and characterizing their function, but has been less informative about the nature of stored memory representations. Recent research on visual memory has shifted towards a representation-based emphasis, focusing on the contents of memory, and attempting to determine the format and struct...

  12. High-capacity nanocarbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Haitao; Sun, Xianzhong; Zhang, Xiong; Lin, He; Wang, Kai; Ma, Yanwei

    2015-01-01

    Highlights: • The nanocarbon anodes in lithium-ion batteries deliver a high capacity of ∼1100 mA h g −1 . • The nanocarbon anodes exhibit excellent cyclic stability. • A novel structure of carbon materials, hollow carbon nanoboxes, has potential application in lithium-ion batteries. - Abstract: High energy and power density of secondary cells like lithium-ion batteries become much more important in today’s society. However, lithium-ion battery anodes based on graphite material have theoretical capacity of 372 mA h g −1 and low charging-discharging rate. Here, we report that nanocarbons including mesoporous graphene (MPG), carbon tubular nanostructures (CTN), and hollow carbon nanoboxes (HCB) are good candidate for lithium-ion battery anodes. The nanocarbon anodes have high capacity of ∼1100, ∼600, and ∼500 mA h g −1 at 0.1 A g −1 for MPG, CTN, and HCB, respectively. The capacity of 181, 141, and 139 mA h g −1 at 4 A g −1 for MPG, CTN, and HCB anodes is retained. Besides, nanocarbon anodes show high cycling stability during 1000 cycles, indicating formation of a passivating layer—solid electrolyte interphase, which support long-term cycling. Nanocarbons, constructed with graphene layers which fulfill lithiation/delithiation process, high ratio of graphite edge structure, and high surface area which facilitates capacitive behavior, deliver high capacity and improved rate-capability

  13. Individual working memory capacity is uniquely correlated with feature-based attention when combined with spatial attention

    OpenAIRE

    Bengson, Jesse J.; Mangun, George R.

    2011-01-01

    A growing literature suggests that working memory and attention are closely related constructs. Both involve the selection of task-relevant information, and both are characterized by capacity limits. Furthermore, studies using a variety of methodological approaches have demonstrated convergent working memory and attention-related processing at the individual, neural and behavioral level. Given the varieties of both constructs, the specific kinds of attention and WM must be considered. We find...

  14. Foraging in a complex naturalistic environment: capacity of spatial working memory in flower bats.

    Science.gov (United States)

    Winter, York; Stich, Kai Petra

    2005-02-01

    Memory systems have evolved under selection pressures, such as the need to remember the locations of resources or past events within spatiotemporally dynamic natural environments. The full repertoire of complex behaviours exhibited by animals in dynamic surroundings are, however, difficult to elicit within simply structured laboratory environments. We have developed a computer-controlled naturalistic environment with 64 feeders for simulating dynamic patterns of water or food resource availability (depletion and replenishment) within the laboratory. The combination of feeder and cage remote control permits the automated transfer of animals between cage and test arena and, therefore, high experimental throughput and minimal disturbance to the animals (bats and mice). In the present study, we investigated spatial working memory in nectar-feeding bats (Glossophaga soricina, Phyllostomidae) collecting food from a 64-feeder array. Feeders gave only single rewards within trials so that efficient foraging required bats to avoid depleted locations. Initially, bats tended to revisit feeders (win-stay), but within three trials changed towards a win-shift strategy. The significant avoidance of revisits could not be explained by algorithmic search guiding movement through the array nor by scent cues left by the bats themselves and, thus, the data suggest that bats remembered spatial locations depleted of food. An examination of the recency effect on spatial working memory after bats shifted to a win-shift strategy indicated that bats held more than 40 behaviour actions (feeder visits) in working memory without indication of decay. This result surpasses previous findings for other taxa.

  15. Dynamic relation between working memory capacity and speech recognition in noise during the first 6 months of hearing aid use.

    Science.gov (United States)

    Ng, Elaine H N; Classon, Elisabet; Larsby, Birgitta; Arlinger, Stig; Lunner, Thomas; Rudner, Mary; Rönnberg, Jerker

    2014-11-23

    The present study aimed to investigate the changing relationship between aided speech recognition and cognitive function during the first 6 months of hearing aid use. Twenty-seven first-time hearing aid users with symmetrical mild to moderate sensorineural hearing loss were recruited. Aided speech recognition thresholds in noise were obtained in the hearing aid fitting session as well as at 3 and 6 months postfitting. Cognitive abilities were assessed using a reading span test, which is a measure of working memory capacity, and a cognitive test battery. Results showed a significant correlation between reading span and speech reception threshold during the hearing aid fitting session. This relation was significantly weakened over the first 6 months of hearing aid use. Multiple regression analysis showed that reading span was the main predictor of speech recognition thresholds in noise when hearing aids were first fitted, but that the pure-tone average hearing threshold was the main predictor 6 months later. One way of explaining the results is that working memory capacity plays a more important role in speech recognition in noise initially rather than after 6 months of use. We propose that new hearing aid users engage working memory capacity to recognize unfamiliar processed speech signals because the phonological form of these signals cannot be automatically matched to phonological representations in long-term memory. As familiarization proceeds, the mismatch effect is alleviated, and the engagement of working memory capacity is reduced. © The Author(s) 2014.

  16. A large capacity, high-speed multiparameter multichannel analysis system

    International Nuclear Information System (INIS)

    Hendricks, R.W.; Suehiro, S.; Seeger, P.A.; Scheer, J.W.

    1982-01-01

    A data acquisition system for recording multiparameter digital data into a large memory array at over 2.5 MHz is described. The system consists of a MOSTEK MK 8600 2048 K x 24-bit memory system, I/O ports to various external devices including the CAMAC dataway, a memory incrementer/adder and a daisy-chain of experiment-specific modules which calculate the memory address which is to be incremented. The design of the daisy-chain permits multiple modules and provides for easy modification as experimental needs change. The system has been designed for use in multiparameter, multichannel analysis of high-speed data gathered by position-sensitive detectors at conventional and synchrotron X-ray sources as well as for fixed energy and time-of-flight diffraction at continuous and pulsed neutron sources. Modules which have been developed to date include a buffer for two-dimensional position-sensitive detectors, a mapper for high-speed coordinate transformations, a buffered time-of-flight clock, a time-correlator for synchronized diffraction experiments, and a display unit for data bus diagnostics. (orig.)

  17. Aging, working memory capacity and the proactive control of recollection: An event-related potential study

    Science.gov (United States)

    Keating, Jessica; Affleck-Brodie, Caitlin; Wiegand, Ronny

    2017-01-01

    The present study investigated the role of working memory capacity (WMC) in the control of recollection in young and older adults. We used electroencephalographic event-related potentials (ERPs) to examine the effects of age and of individual differences in WMC on the ability to prioritize recollection according to current goals. Targets in a recognition exclusion task were words encoded using two alternative decisions. The left parietal ERP old/new effect was used as an electrophysiological index of recollection, and the selectivity of recollection measured in terms of the difference in its magnitude according to whether recognized items were targets or non-targets. Young adults with higher WMC showed greater recollection selectivity than those with lower WMC, while older adults showed nonselective recollection which did not vary with WMC. The data suggest that aging impairs the ability to engage cognitive control effectively to prioritize what will be recollected. PMID:28727792

  18. The capacity for ethical decisions: the relationship between working memory and ethical decision making.

    Science.gov (United States)

    Martin, April; Bagdasarov, Zhanna; Connelly, Shane

    2015-04-01

    Although various models of ethical decision making (EDM) have implicitly called upon constructs governed by working memory capacity (WMC), a study examining this relationship specifically has not been conducted. Using a sense making framework of EDM, we examined the relationship between WMC and various sensemaking processes contributing to EDM. Participants completed an online assessment comprised of a demographic survey, intelligence test, various EDM measures, and the Automated Operation Span task to determine WMC. Results indicated that WMC accounted for unique variance above and beyond ethics education, exposure to ethical issues, and intelligence in several sensemaking processes. Additionally, a marginally significant effect of WMC was also found with reference to EDM. Individual differences in WMC appear likely to play an important role in the ethical decision-making process, and future researchers may wish to consider their potential influences.

  19. Aging, working memory capacity and the proactive control of recollection: An event-related potential study.

    Directory of Open Access Journals (Sweden)

    Jessica Keating

    Full Text Available The present study investigated the role of working memory capacity (WMC in the control of recollection in young and older adults. We used electroencephalographic event-related potentials (ERPs to examine the effects of age and of individual differences in WMC on the ability to prioritize recollection according to current goals. Targets in a recognition exclusion task were words encoded using two alternative decisions. The left parietal ERP old/new effect was used as an electrophysiological index of recollection, and the selectivity of recollection measured in terms of the difference in its magnitude according to whether recognized items were targets or non-targets. Young adults with higher WMC showed greater recollection selectivity than those with lower WMC, while older adults showed nonselective recollection which did not vary with WMC. The data suggest that aging impairs the ability to engage cognitive control effectively to prioritize what will be recollected.

  20. Increased distractibility in schizotypy: Independent of individual differences in working memory capacity?

    Science.gov (United States)

    Marsh, John E; Vachon, François; Sörqvist, Patrik

    2017-03-01

    Individuals with schizophrenia typically show increased levels of distractibility. This has been attributed to impaired working memory capacity (WMC), since lower WMC is typically associated with higher distractibility, and schizophrenia is typically associated with impoverished WMC. Here, participants performed verbal and spatial serial recall tasks that were accompanied by to-be-ignored speech tokens. For the few trials wherein one speech token was replaced with a different token, impairment was produced to task scores (a deviation effect). Participants subsequently completed a schizotypy questionnaire and a WMC measure. Higher schizotypy scores were associated with lower WMC (as measured with operation span, OSPAN), but WMC and schizotypy scores explained unique variance in relation to the mean magnitude of the deviation effect. These results suggest that schizotypy is associated with heightened domain-general distractibility, but that this is independent of its relationship with WMC.

  1. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models

    Science.gov (United States)

    Keeler, James D.

    1987-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  2. Is inattentional blindness related to individual differences in visual working memory capacity or executive control functioning?

    Science.gov (United States)

    Hannon, Emily M; Richards, Anne

    2010-01-01

    Inattentional blindness (IB) research deals with situations where, under focused attention tasks, salient stimuli that are irrelevant to that task do not reach conscious awareness. Although such research has captured popular imagination, to date very little research has been conducted on whether some are more likely to experience this phenomenon than others. Here we provide evidence that working memory capacity (WMC) contributed to this experience, with lower WMC being predictive of IB. We also investigated whether IB could be more readily explained in terms of domain-specific visual WMC. No group differences in visual WMC were found, nor any differences in the ability to perform the primary IB task. These findings suggest that differences in higher-order executive control of attention contributes to the experience of IB.

  3. Working Memory Capacity and Surgical Performance While Exposed to Mild Hypoxic Hypoxemia.

    Science.gov (United States)

    Parker, Paul J; Manley, Andrew J; Shand, Ross; O'Hara, John P; Mellor, Adrian

    2017-10-01

    Medical Emergency Response Team (MERT) helicopters fly at altitudes of 3000 m in Afghanistan (9843 ft). Civilian hospitals and disaster-relief surgical teams may have to operate at such altitudes or even higher. Mild hypoxia has been seen to affect the performance of novel tasks at flight levels as low as 5000 ft. Aeromedical teams frequently work in unpressurized environments; it is important to understand the implications of this mild hypoxia and investigate whether supplementary oxygen systems are required for some or all of the team members. Ten UK orthopedic surgeons were recruited and in a double blind randomized experimental protocol, were acutely exposed for 45 min to normobaric hypoxia [fraction of inspired oxygen (FIo2) ∼14.1%, equivalent to 3000 m (10,000 ft)] or normobaric normoxia (sea-level). Basic physiological parameters were recorded. Subjects completed validated tests of verbal working memory capacity (VWMC) and also applied an orthopedic external fixator (Hoffmann® 3, Stryker, UK) to a plastic tibia under test conditions. Significant hypoxia was induced with the reduction of FIo2 to ∼14.1% (Spo2 87% vs. 98%). No effect of hypoxia on VWMC was observed. The pin-divergence score (a measure of frame asymmetry) was significantly greater in hypoxic conditions (4.6 mm) compared to sea level (3.0 mm); there was no significant difference in the penetrance depth (16.9 vs. 17.2 mm). One hypoxic frame would have failed early. We believe that surgery at an altitude of 3000 m, when unacclimated individuals are acutely exposed to atmospheric hypoxia for 45 min, can likely take place without supplemental oxygen use but further work is required.Parker PJ, Manley AJ, Shand R, O'Hara JP, Mellor A. Working memory capacity and surgical performance while exposed to mild hypoxic hypoxemia. Aerosp Med Hum Perform. 2017; 88(10):918-923.

  4. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  5. No Clear Association between Impaired Short-Term or Working Memory Storage and Time Reproduction Capacity in Adult ADHD Patients.

    Science.gov (United States)

    Mette, Christian; Grabemann, Marco; Zimmermann, Marco; Strunz, Laura; Scherbaum, Norbert; Wiltfang, Jens; Kis, Bernhard

    2015-01-01

    Altered time reproduction is exhibited by patients with adult attention deficit hyperactivity disorder (ADHD). It remains unclear whether memory capacity influences the ability of adults with ADHD to reproduce time intervals. We conducted a behavioral study on 30 ADHD patients who were medicated with methylphenidate, 29 unmedicated adult ADHD patients and 32 healthy controls (HCs). We assessed time reproduction using six time intervals (1 s, 4 s, 6 s, 10 s, 24 s and 60 s) and assessed memory performance using the Wechsler memory scale. The patients with ADHD exhibited lower memory performance scores than the HCs. No significant differences in the raw scores for any of the time intervals (p > .05), with the exception of the variability at the short time intervals (1 s, 4 s and 6 s) (p memory performance (p > .05). We detected no findings indicating that working memory might influence time reproduction in adult patients with ADHD. Therefore, further studies concerning time reproduction and memory capacity among adult patients with ADHD must be performed to verify and replicate the present findings.

  6. Visual working memory capacity increases between ages 3 and 8 years, controlling for gains in attention, perception, and executive control.

    Science.gov (United States)

    Pailian, Hrag; Libertus, Melissa E; Feigenson, Lisa; Halberda, Justin

    2016-08-01

    Research in adults has aimed to characterize constraints on the capacity of Visual Working Memory (VWM), in part because of the system's broader impacts throughout cognition. However, less is known about how VWM develops in childhood. Existing work has reached conflicting conclusions as to whether VWM storage capacity increases after infancy, and if so, when and by how much. One challenge is that previous studies did not control for developmental changes in attention and executive processing, which also may undergo improvement. We investigated the development of VWM storage capacity in children from 3 to 8 years of age, and in adults, while controlling for developmental change in exogenous and endogenous attention and executive control. Our results reveal that, when controlling for improvements in these abilities, VWM storage capacity increases across development and approaches adult-like levels between ages 6 and 8 years. More generally, this work highlights the value of estimating working memory, attention, perception, and decision-making components together.

  7. Carrying the past to the future: Distinct brain networks underlie individual differences in human spatial working memory capacity.

    Science.gov (United States)

    Liu, Siwei; Poh, Jia-Hou; Koh, Hui Li; Ng, Kwun Kei; Loke, Yng Miin; Lim, Joseph Kai Wei; Chong, Joanna Su Xian; Zhou, Juan

    2018-08-01

    Spatial working memory (SWM) relies on the interplay of anatomically separated and interconnected large-scale brain networks. EEG studies often observe load-associated sustained negative activity during SWM retention. Yet, whether and how such sustained negative activity in retention relates to network-specific functional activation/deactivation and relates to individual differences in SWM capacity remain to be elucidated. To cover these gaps, we recorded concurrent EEG-fMRI data in 70 healthy young adults during the Sternberg delayed-match-to-sample SWM task with three memory load levels. To a subset of participants (N = 28) that performed the task properly and had artefact-free fMRI and EEG data, we employed a novel temporo-spatial principal component analysis to derive load-dependent negative slow wave (NSW) from retention-related event-related potentials. The associations between NSW responses with SWM capacity were divergent in the higher (N = 14) and lower (N = 14) SWM capacity groups. Specifically, larger load-related increase in NSW amplitude was associated with greater SWM capacity for the higher capacity group but lower SWM capacity for the lower capacity group. Furthermore, for the higher capacity group, larger NSW amplitude was related to greater activation in bilateral parietal areas of the fronto-parietal network (FPN) and greater deactivation in medial frontal gyrus and posterior mid-cingulate cortex of the default mode network (DMN) during retention. In contrast, the lower capacity group did not show similar pattern. Instead, greater NSW was linked to higher deactivation in right posterior middle temporal gyrus. Our findings shed light on the possible differential EEG-informed neural network mechanism during memory maintenance underlying individual differences in SWM capacity. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. A severe capacity limit in the consolidation of orientation information into visual short-term memory.

    Science.gov (United States)

    Becker, Mark W; Miller, James R; Liu, Taosheng

    2013-04-01

    Previous research has suggested that two color patches can be consolidated into visual short-term memory (VSTM) via an unlimited parallel process. Here we examined whether the same unlimited-capacity parallel process occurs for two oriented grating patches. Participants viewed two gratings that were presented briefly and masked. In blocks of trials, the gratings were presented either simultaneously or sequentially. In Experiments 1 and 2, the presentation of the stimuli was followed by a location cue that indicated the grating on which to base one's response. In Experiment 1, participants responded whether the target grating was oriented clockwise or counterclockwise with respect to vertical. In Experiment 2, participants indicated whether the target grating was oriented along one of the cardinal directions (vertical or horizontal) or was obliquely oriented. Finally, in Experiment 3, the location cue was replaced with a third grating that appeared at fixation, and participants indicated whether either of the two test gratings matched this probe. Despite the fact that these responses required fairly coarse coding of the orientation information, across all methods of responding we found superior performance for sequential over simultaneous presentations. These findings suggest that the consolidation of oriented gratings into VSTM is severely limited in capacity and differs from the consolidation of color information.

  9. Age-related Decline in Case-Marker Processing and its Relation to Working Memory Capacity.

    Science.gov (United States)

    Sung, Jee Eun

    2017-09-01

    Purposes of the current study were to investigate whether age-related decline emerged in a case-marker assignment task (CMAT) and to explore the relationship between working-memory (WM) capacity and case-marker processing. A total of 121 individuals participated in the study with 62 younger adults and 59 elderly adults. All were administered a CMAT that consisted of active and passive constructions with canonical and noncanonical word-order conditions. A composite measure of WM tasks served as an index of participants' WM capacity. The older group performed worse than the younger group, and the noncanonical word order elicited worse performance than the canonical condition. The older group demonstrated greater difficulty in case-marker processing under the canonical condition and passive construction. Regression results revealed that age, education, and sentence type were the best predictors to account for performance on the CMAT. The canonicity of word order and passive construction were critical factors related to decline in abilities in a case-marker assignment. The combination of age, education, and sentence type factors accounted for overall performance on case-marker processing. Results indicated the crucial necessity to find a cognitively and linguistically demanding condition that elicits aging effects most efficiently, considering language-specific syntactic features. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Task-evoked pupillometry provides a window into the development of short-term memory capacity

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Johnson

    2014-03-01

    Full Text Available The capacity to keep multiple items in short-term memory (STM improves over childhood and provides the foundation for the development of multiple cognitive abilities. The goal of this study was to measure the extent to which age differences in STM capacity are related to differences in task engagement during encoding. Children (n = 69, mean age = 10.5 years and adults (n = 54, mean age = 27.5 years performed two STM tasks: the forward digit span test from the Wechsler Intelligence Scale for Children (WISC and a novel eyetracking digit span task designed to overload STM capacity. Building on prior research showing that task-evoked pupil dilation can be used as a real-time index of task engagement, we measured changes in pupil dilation while participants encoded long sequences of digits for subsequent recall. As expected, adults outperformed children on both STM tasks. We found similar patterns of pupil dilation while children and adults listened to the first six digits on our STM Overload task, after which the adults’ pupils continued to dilate and the children’s began to constrict, suggesting that the children had reached their cognitive limits and that they had begun to disengage attention from the task. Indeed, the point at which pupil dilation peaked at encoding was a significant predictor of WISC forward span, and this relationship held even after partialing out recall performance on the STM Overload task. These findings indicate that sustained task engagement at encoding is an important component of the development of STM.

  11. The temporal evolution of electromagnetic markers sensitive to the capacity limits of visual short-term memory.

    Science.gov (United States)

    Mitchell, Daniel J; Cusack, Rhodri

    2011-01-01

    An electroencephalographic (EEG) marker of the limited contents of human visual short-term memory (VSTM) has previously been described. Termed contralateral delay activity, this consists of a sustained, posterior, negative potential that correlates with memory load and is greatest contralateral to the remembered hemifield. The current investigation replicates this finding and uses magnetoencephalography (MEG) to characterize its magnetic counterparts and their neural generators as they evolve throughout the memory delay. A parametric manipulation of memory load, within and beyond capacity limits, allows separation of signals that asymptote with behavioral VSTM performance from additional responses that contribute to a linear increase with set-size. Both EEG and MEG yielded bilateral signals that track the number of objects held in memory, and contralateral signals that are independent of memory load. In MEG, unlike EEG, the contralateral interaction between hemisphere and item load is much weaker, suggesting that bilateral and contralateral markers of memory load reflect distinct sources to which EEG and MEG are differentially sensitive. Nonetheless, source estimation allowed both the bilateral and the weaker contralateral capacity-limited responses to be localized, along with a load-independent contralateral signal. Sources of global and hemisphere-specific signals all localized to the posterior intraparietal sulcus during the early delay. However the bilateral load response peaked earlier and its generators shifted later in the delay. Therefore the hemifield-specific response may be more closely tied to memory maintenance while the global load response may be involved in initial processing of a limited number of attended objects, such as their individuation or consolidation into memory.

  12. The temporal evolution of electromagnetic markers sensitive to the capacity limits of visual short-term memory

    Directory of Open Access Journals (Sweden)

    Daniel James Mitchell

    2011-02-01

    Full Text Available An electroencephalographic (EEG marker of the limited contents of human visual short-term memory (VSTM has previously been described. Termed contralateral delay activity (CDA, this consists of a sustained, posterior, negative potential that correlates with memory load and is greatest contralateral to the remembered hemifield. The current investigation replicates this finding and uses magnetoencephalography (MEG to characterise its magnetic counterparts and their neural generators as they evolve throughout the memory delay. A parametric manipulation of memory load, within and beyond capacity limits, allows separation of signals that asymptote with behavioural VSTM performance from additional responses that contribute to a linear increase with set-size. Both EEG and MEG yielded bilateral signals that track the number of objects held in memory, and contralateral signals that are independent of memory load. In MEG, unlike EEG, the contralateral interaction between hemisphere and item load is much weaker, suggesting that bilateral and contralateral markers of memory load reflect distinct sources to which EEG and MEG are differentially sensitive. Nonetheless, source estimation allowed both the bilateral and the weaker contralateral capacity-limited responses to be localised, along with a load-independent contralateral signal. Sources of global and hemisphere-specific signals all localised to the posterior intraparietal sulcus during the early delay. However the bilateral load response peaked earlier and its generators shifted later in the delay. Therefore the hemifield-specific response may be more closely tied to memory maintenance while the global load response may be involved in initial processing of a limited number of attended objects, such as their individuation or consolidation into memory.

  13. Technology breakthroughs in high performance metal-oxide-semiconductor devices for ultra-high density, low power non-volatile memory applications

    Science.gov (United States)

    Hong, Augustin Jinwoo

    Non-volatile memory devices have attracted much attention because data can be retained without power consumption more than a decade. Therefore, non-volatile memory devices are essential to mobile electronic applications. Among state of the art non-volatile memory devices, NAND flash memory has earned the highest attention because of its ultra-high scalability and therefore its ultra-high storage capacity. However, human desire as well as market competition requires not only larger storage capacity but also lower power consumption for longer battery life time. One way to meet this human desire and extend the benefits of NAND flash memory is finding out new materials for storage layer inside the flash memory, which is called floating gate in the state of the art flash memory device. In this dissertation, we study new materials for the floating gate that can lower down the power consumption and increase the storage capacity at the same time. To this end, we employ various materials such as metal nanodot, metal thin film and graphene incorporating complementary-metal-oxide-semiconductor (CMOS) compatible processes. Experimental results show excellent memory effects at relatively low operating voltages. Detailed physics and analysis on experimental results are discussed. These new materials for data storage can be promising candidates for future non-volatile memory application beyond the state of the art flash technologies.

  14. Mind Wandering and Reading Comprehension: Examining the Roles of Working Memory Capacity, Interest, Motivation, and Topic Experience

    Science.gov (United States)

    Unsworth, Nash; McMillan, Brittany D.

    2013-01-01

    Individual differences in mind wandering and reading comprehension were examined in the current study. In particular, individual differences in mind wandering, working memory capacity, interest in the current topic, motivation to do well on the task, and topic experience and their relations with reading comprehension were examined in the current…

  15. The Importance of Arousal for Variation in Working Memory Capacity and Attention Control: A Latent Variable Pupillometry Study

    Science.gov (United States)

    Unsworth, Nash; Robison, Matthew K.

    2017-01-01

    A great deal of prior research has examined the relation between working memory capacity (WMC) and attention control. The current study explored the role of arousal in individual differences in WMC and attention control. Participants performed multiple WMC and attention control tasks. During the attention control tasks participants were…

  16. Carving Executive Control at Its Joints: Working Memory Capacity Predicts Stimulus-Stimulus, but Not Stimulus-Response, Conflict

    Science.gov (United States)

    Meier, Matt E.; Kane, Michael J.

    2015-01-01

    Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict),…

  17. What Limits Working Memory Capacity? Evidence for Modality-Specific Sources to the Simultaneous Storage of Visual and Auditory Arrays

    Science.gov (United States)

    Fougnie, Daryl; Marois, Rene

    2011-01-01

    There is considerable debate on whether working memory (WM) storage is mediated by distinct subsystems for auditory and visual stimuli (Baddeley, 1986) or whether it is constrained by a single, central capacity-limited system (Cowan, 2006). Recent studies have addressed this issue by measuring the dual-task cost during the concurrent storage of…

  18. Conducting the Train of Thought: Working Memory Capacity, Goal Neglect, and Mind Wandering in an Executive-Control Task

    Science.gov (United States)

    McVay, Jennifer C.; Kane, Michael J.

    2009-01-01

    On the basis of the executive-attention theory of working memory capacity (WMC; e.g., M. J. Kane, A. R. A. Conway, D. Z. Hambrick, & R. W. Engle, 2007), the authors tested the relations among WMC, mind wandering, and goal neglect in a sustained attention to response task (SART; a go/no-go task). In 3 SART versions, making conceptual versus…

  19. The Relationship between Working Memory Capacity and L2 Oral Performance under Task-Based Careful Online Planning Condition

    Science.gov (United States)

    Ahmadian, Mohammad Javad

    2012-01-01

    The study reported in this article aimed to investigate the way working memory capacity (WMC) interacts with careful online planning--a task-based implementation variable--to affect second language (L2) speech production. This issue is important to teachers, because it delves into one of the possible task-based implementation variables and thus…

  20. Validity of the MicroDYN Approach: Complex Problem Solving Predicts School Grades beyond Working Memory Capacity

    Science.gov (United States)

    Schweizer, Fabian; Wustenberg, Sascha; Greiff, Samuel

    2013-01-01

    This study examines the validity of the complex problem solving (CPS) test MicroDYN by investigating a) the relation between its dimensions--rule identification (exploration strategy), rule knowledge (acquired knowledge), rule application (control performance)--and working memory capacity (WMC), and b) whether CPS predicts school grades in…

  1. Working Memory Capacity and the Antisaccade Task: A Microanalytic-Macroanalytic Investigation of Individual Differences in Goal Activation and Maintenance

    Science.gov (United States)

    Meier, Matt E.; Smeekens, Bridget A.; Silvia, Paul J.; Kwapil, Thomas R.; Kane, Michael J.

    2018-01-01

    The association between working memory capacity (WMC) and the antisaccade task, which requires subjects to move their eyes and attention away from a strong visual cue, supports the claim that WMC is partially an attentional construct (Kane, Bleckley, Conway, & Engle, 2001; Unsworth, Schrock, & Engle, 2004). Specifically, the…

  2. Effects of Working Memory Capacity in Processing Wh-Extractions: Eye-Movement Evidence from Chinese-English Bilinguals

    Science.gov (United States)

    Zhou, Huixia; Rossi, Sonja; Li, Juan; Liu, Huanhuan; Chen, Ran; Chen, Baoguo

    2017-01-01

    By using the eye-tracking method, the present study explores whether working memory capacity assessed via the second language (L2) reading span (L2WMC) as well as the operational span task (OSPAN) affects the processing of subject-extraction and object-extraction in Chinese-English bilinguals. Results showed that L2WMC has no effects on the…

  3. Does Cognitive Strategy Training on Word Problems Compensate for Working Memory Capacity in Children with Math Difficulties?

    Science.gov (United States)

    Swanson, H. Lee

    2014-01-01

    Cognitive strategies are important tools for children with math difficulties (MD) in learning to solve word problems. The effectiveness of strategy training, however, depends on working memory capacity (WMC). Thus, children with MD but with relatively higher WMC are more likely to benefit from strategy training, whereas children with lower WMC may…

  4. "One Task Fits All"? The Roles of Task Complexity, Modality, and Working Memory Capacity in L2 Performance

    Science.gov (United States)

    Zalbidea, Janire

    2017-01-01

    The present study explores the independent and interactive effects of task complexity and task modality on linguistic dimensions of second language (L2) performance and investigates how these effects are modulated by individual differences in working memory capacity. Thirty-two intermediate learners of L2 Spanish completed less and more complex…

  5. Why Does Working Memory Capacity Predict Variation in Reading Comprehension? On the Influence of Mind Wandering and Executive Attention

    Science.gov (United States)

    McVay, Jennifer C.; Kane, Michael J.

    2012-01-01

    Some people are better readers than others, and this variation in comprehension ability is predicted by measures of working memory capacity (WMC). The primary goal of this study was to investigate the mediating role of mind-wandering experiences in the association between WMC and normal individual differences in reading comprehension, as predicted…

  6. Working Memory Capacity and the Top-Down Control of Visual Search: Exploring the Boundaries of "Executive Attention"

    Science.gov (United States)

    Kane, Michael J.; Poole, Bradley J.; Tuholski, Stephen W.; Engle, Randall W.

    2006-01-01

    The executive attention theory of working memory capacity (WMC) proposes that measures of WMC broadly predict higher order cognitive abilities because they tap important and general attention capabilities (R. W. Engle & M. J. Kane, 2004). Previous research demonstrated WMC-related differences in attention tasks that required restraint of habitual…

  7. Childhood Poverty, Chronic Stress, and Young Adult Working Memory: The Protective Role of Self-Regulatory Capacity

    Science.gov (United States)

    Evans, Gary W.; Fuller-Rowell, Thomas E.

    2013-01-01

    Prior research shows that childhood poverty as well as chronic stress can damage children's executive functioning (EF) capacities, including working memory. However, it is also clear that not all children suffer the same degree of adverse consequences from risk exposure. We show that chronic stress early in life (ages 9-13) links childhood…

  8. Reduced Capacity in a Dichotic Memory Test for Adult Patients with ADHD

    Science.gov (United States)

    Dige, Niels; Maahr, Eija; Backenroth-Ohsako, Gunnel

    2010-01-01

    Objective: To evaluate whether a dichotic memory test would reveal deficits in short-term working-memory recall and long-term memory recall in a group of adult patients with ADHD. Methods: A dichotic memory test with ipsilateral backward speech distraction in an adult ADHD group (n = 69) and a control group (n = 66) is used to compare performance…

  9. Estimated capacity of object files in visual short-term memory is not improved by retrieval cueing.

    Science.gov (United States)

    Saiki, Jun; Miyatsuji, Hirofumi

    2009-03-23

    Visual short-term memory (VSTM) has been claimed to maintain three to five feature-bound object representations. Some results showing smaller capacity estimates for feature binding memory have been interpreted as the effects of interference in memory retrieval. However, change-detection tasks may not properly evaluate complex feature-bound representations such as triple conjunctions in VSTM. To understand the general type of feature-bound object representation, evaluation of triple conjunctions is critical. To test whether interference occurs in memory retrieval for complete object file representations in a VSTM task, we cued retrieval in novel paradigms that directly evaluate the memory for triple conjunctions, in comparison with a simple change-detection task. In our multiple object permanence tracking displays, observers monitored for a switch in feature combination between objects during an occlusion period, and we found that a retrieval cue provided no benefit with the triple conjunction tasks, but significant facilitation with the change-detection task, suggesting that low capacity estimates of object file memory in VSTM reflect a limit on maintenance, not retrieval.

  10. No Clear Association between Impaired Short-Term or Working Memory Storage and Time Reproduction Capacity in Adult ADHD Patients.

    Directory of Open Access Journals (Sweden)

    Christian Mette

    Full Text Available Altered time reproduction is exhibited by patients with adult attention deficit hyperactivity disorder (ADHD. It remains unclear whether memory capacity influences the ability of adults with ADHD to reproduce time intervals.We conducted a behavioral study on 30 ADHD patients who were medicated with methylphenidate, 29 unmedicated adult ADHD patients and 32 healthy controls (HCs. We assessed time reproduction using six time intervals (1 s, 4 s, 6 s, 10 s, 24 s and 60 s and assessed memory performance using the Wechsler memory scale.The patients with ADHD exhibited lower memory performance scores than the HCs. No significant differences in the raw scores for any of the time intervals (p > .05, with the exception of the variability at the short time intervals (1 s, 4 s and 6 s (p .05.We detected no findings indicating that working memory might influence time reproduction in adult patients with ADHD. Therefore, further studies concerning time reproduction and memory capacity among adult patients with ADHD must be performed to verify and replicate the present findings.

  11. Aerobic Capacities of Early College High School Students

    Science.gov (United States)

    Loflin, Jerry W.

    2014-01-01

    The Early College High School Initiative (ECHSI) was introduced in 2002. Since 2002, limited data, especially student physical activity data, have been published pertaining to the ECHSI. The purpose of this study was to examine the aerobic capacities of early college students and compare them to state and national averages. Early college students…

  12. How do we learn to "kill" in volleyball?: The role of working memory capacity and expertise in volleyball motor learning.

    Science.gov (United States)

    Bisagno, Elisa; Morra, Sergio

    2018-03-01

    This study examines young volleyball players' learning of increasingly complex attack gestures. The main purpose of the study was to examine the predictive role of a cognitive variable, working memory capacity (or "M capacity"), in the acquisition and development of motor skills in a structured sport. Pascual-Leone's theory of constructive operators (TCO) was used as a framework; it defines working memory capacity as the maximum number of schemes that can be simultaneously activated by attentional resources. The role of expertise in motor learning was also considered. The expertise of each athlete was assessed in terms of years of practice and number of training sessions per week. The participants were 120 volleyball players, aged between 6 and 26 years, who performed both working memory tests and practical tests of volleyball involving the execution of the "third touch" by means of technical gestures of varying difficulty. We proposed a task analysis of these different gestures framed within the TCO. The results pointed to a very clear dissociation. On the one hand, M capacity was the best predictor of correct motor performance, and a specific capacity threshold was found for learning each attack gesture. On the other hand, experience was the key for the precision of the athletic gestures. This evidence could underline the existence of two different cognitive mechanisms in motor learning. The first one, relying on attentional resources, is required to learn a gesture. The second one, based on repeated experience, leads to its automatization. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Role of Mathematical Homework and Prior Knowledge on the Relationship between Students' Mathematical Performance, Cognitive Style and Working Memory Capacity

    Science.gov (United States)

    Mousavi, Shima; Radmehr, Farzad; Alamolhodaei, Hasan

    2012-01-01

    Introduction: The main objective of this study is (a) to investigate whether cognitive styles and working memory capacity could predict mathematical performance and which variable is relatively most important in predicting mathematical performance and b) to explore whether cognitive styles and working memory capacity could predict mathematical…

  14. High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Biffi, C. A.; Tuissi, A.

    2014-10-01

    In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.

  15. Memory, Cognition and the Endogenous Evoked Potentials of the Brain: the Estimation of the Disturbance of Cognitive Functions and Capacity of Working Memory Without the Psychological Testing.

    Science.gov (United States)

    Gnezditskiy, V V; Korepina, O S; Chatskaya, A V; Klochkova, O I

    2017-01-01

    Cognition, cognitive and memory impairments is widely discussed in the literature, especially in the psycho physiological and the neurologic. In essence, this literature is dedicated to the psycho physiological tests, different scales. However, instrument neurophysiologic methods not so widely are used for these purposes. This review is dedicated to the instrument methods of neurophysiology, in particular to the endogenous evoked potentials method Р 300 (by characteristic latency 300 ms), in the estimation of cognitive functions and memory, to their special features dependent on age and to special features to their changes with the pathology. Method cognitive EP - Р 300 is the response of the brain, recorded under the conditions of the identification of the significant distinguishing stimulus, it facilitates the inspection of cognitive functions and memory in the healthy persons and patients with different manifestation of cognitive impairments. In the review it is shown on the basis of literature and our own data, that working (operative) memory and the capacity of the working memory it can be evaluated with the aid of the indices Р 300 within the normal subject and with the pathology. Testing with the estimation of working memory according to latent period of the peak Р 300 can be carried out and when conducting psychological testing is not possible for any reasons. Together with these cognitive EP are used for evidence pharmacotherapy of many neurotropic drugs.

  16. Holographic memory for high-density data storage and high-speed pattern recognition

    Science.gov (United States)

    Gu, Claire

    2002-09-01

    As computers and the internet become faster and faster, more and more information is transmitted, received, and stored everyday. The demand for high density and fast access time data storage is pushing scientists and engineers to explore all possible approaches including magnetic, mechanical, optical, etc. Optical data storage has already demonstrated its potential in the competition against other storage technologies. CD and DVD are showing their advantages in the computer and entertainment market. What motivated the use of optical waves to store and access information is the same as the motivation for optical communication. Light or an optical wave has an enormous capacity (or bandwidth) to carry information because of its short wavelength and parallel nature. In optical storage, there are two types of mechanism, namely localized and holographic memories. What gives the holographic data storage an advantage over localized bit storage is the natural ability to read the stored information in parallel, therefore, meeting the demand for fast access. Another unique feature that makes the holographic data storage attractive is that it is capable of performing associative recall at an incomparable speed. Therefore, volume holographic memory is particularly suitable for high-density data storage and high-speed pattern recognition. In this paper, we review previous works on volume holographic memories and discuss the challenges for this technology to become a reality.

  17. Recycling rice husks for high-capacity lithium battery anodes.

    Science.gov (United States)

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-07-23

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes.

  18. Working memory capacity and the functional connectome - insights from resting-state fMRI and voxelwise centrality mapping.

    Science.gov (United States)

    Markett, Sebastian; Reuter, Martin; Heeren, Behrend; Lachmann, Bernd; Weber, Bernd; Montag, Christian

    2018-02-01

    The functional connectome represents a comprehensive network map of functional connectivity throughout the human brain. To date, the relationship between the organization of functional connectivity and cognitive performance measures is still poorly understood. In the present study we use resting-state functional magnetic resonance imaging (fMRI) data to explore the link between the functional connectome and working memory capacity in an individual differences design. Working memory capacity, which refers to the maximum amount of context information that an individual can retain in the absence of external stimulation, was assessed outside the MRI scanner and estimated based on behavioral data from a change detection task. Resting-state time series were analyzed by means of voxelwise degree and eigenvector centrality mapping, which are data-driven network analytic approaches for the characterization of functional connectivity. We found working memory capacity to be inversely correlated with both centrality in the right intraparietal sulcus. Exploratory analyses revealed that this relationship was putatively driven by an increase in negative connectivity strength of the structure. This resting-state connectivity finding fits previous task based activation studies that have shown that this area responds to manipulations of working memory load.

  19. Intrinsic brain indices of verbal working memory capacity in children and adolescents

    Directory of Open Access Journals (Sweden)

    Zhen Yang

    2015-10-01

    Full Text Available Working memory (WM is central to the acquisition of knowledge and skills throughout childhood and adolescence. While numerous behavioral and task-based functional magnetic resonance imaging (fMRI studies have examined WM development, few have used resting-state fMRI (R-fMRI. Here, we present a systematic R-fMRI examination of age-related differences in the neural indices of verbal WM performance in a cross-sectional pediatric sample (ages: 7–17; n = 68, using data-driven approaches. Verbal WM capacity was measured with the digit span task, a commonly used educational and clinical assessment. We found distinct neural indices of digit span forward (DSF and backward (DSB performance, reflecting their unique neuropsychological demands. Regardless of age, DSB performance was related to intrinsic properties of brain areas previously implicated in attention and cognitive control, while DSF performance was related to areas less commonly implicated in verbal WM storage (precuneus, lateral visual areas. From a developmental perspective, DSF exhibited more robust age-related differences in brain–behavior relationships than DSB, and implicated a broader range of networks (ventral attention, default, somatomotor, limbic networks – including a number of regions not commonly associated with verbal WM (angular gyrus, subcallosum. These results highlight the importance of examining the neurodevelopment of verbal WM and of considering regions beyond the “usual suspects”.

  20. Neural correlates of reappraisal considering working memory capacity and cognitive flexibility.

    Science.gov (United States)

    Zaehringer, Jenny; Falquez, Rosalux; Schubert, Anna-Lena; Nees, Frauke; Barnow, Sven

    2018-01-09

    Cognitive reappraisal of emotion is strongly related to long-term mental health. Therefore, the exploration of underlying cognitive and neural mechanisms has become an essential focus of research. Considering that reappraisal and executive functions rely on a similar brain network, the question arises whether behavioral differences in executive functions modulate neural activity during reappraisal. Using functional neuroimaging, the present study aimed to analyze the role of working memory capacity (WMC) and cognitive flexibility in brain activity during down-regulation of negative emotions by reappraisal in N = 20 healthy participants. Results suggests that WMC and cognitive flexibility were negatively correlated with prefrontal activity during reappraisal condition. Here, results also revealed a negative correlation between cognitive flexibility and amygdala activation. These findings provide first hints that (1) individuals with lower WMC and lower cognitive flexibility might need more higher-order cognitive neural resources in order to down-regulate negative emotions and (2) cognitive flexibility relates to emotional reactivity during reappraisal.

  1. Discrete capacity limits and neuroanatomical correlates of visual short-term memory for objects and spatial locations.

    Science.gov (United States)

    Konstantinou, Nikos; Constantinidou, Fofi; Kanai, Ryota

    2017-02-01

    Working memory is responsible for keeping information in mind when it is no longer in view, linking perception with higher cognitive functions. Despite such crucial role, short-term maintenance of visual information is severely limited. Research suggests that capacity limits in visual short-term memory (VSTM) are correlated with sustained activity in distinct brain areas. Here, we investigated whether variability in the structure of the brain is reflected in individual differences of behavioral capacity estimates for spatial and object VSTM. Behavioral capacity estimates were calculated separately for spatial and object information using a novel adaptive staircase procedure and were found to be unrelated, supporting domain-specific VSTM capacity limits. Voxel-based morphometry (VBM) analyses revealed dissociable neuroanatomical correlates of spatial versus object VSTM. Interindividual variability in spatial VSTM was reflected in the gray matter density of the inferior parietal lobule. In contrast, object VSTM was reflected in the gray matter density of the left insula. These dissociable findings highlight the importance of considering domain-specific estimates of VSTM capacity and point to the crucial brain regions that limit VSTM capacity for different types of visual information. Hum Brain Mapp 38:767-778, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Memory reflected in our decisions

    Directory of Open Access Journals (Sweden)

    Todd McElroy

    2010-04-01

    Full Text Available The current study looks at the role working memory plays in risky-choice framing. Eighty-six participants took the Automatic OSPAN, a measurement of working memory; this was followed by a risky-choice framing task. Participants with high working memory capacities demonstrated well pronounced framing effects, while those with low working memory capacities did not. This pattern suggests that, in a typical risky-choice decision task, elaborative encoding of task information by those with high working memory capacity may lead them to a more biased decision compared to those with low working memory.

  3. Indicators of implicit and explicit social anxiety influence threat-related interpretive bias as a function of working memory capacity

    Directory of Open Access Journals (Sweden)

    Elske eSalemink

    2013-05-01

    Full Text Available Interpretive biases play a crucial role in anxiety disorders. The aim of the current study was to examine factors that determine the relative strength of threat-related interpretive biases that are characteristic of individuals high in social anxiety. Different (dual process models argue that both implicit and explicit processes determine information processing biases and behaviour, and that their impact is moderated by the availability of executive resources such as working memory capacity (WMC. Based on these models, we expected indicators of implicit social anxiety to predict threat-related interpretive bias in individuals low, but not high in WMC. Indicators of explicit social anxiety should predict threat-related interpretive bias in individuals high, but not low in WMC. As expected, WMC moderated the impact of implicit social anxiety on threat-related interpretive bias, although the simple slope for individuals low in WMC was not statistically significant. The hypotheses regarding explicit social anxiety (with fear of negative evaluation used as an indicator were fully supported. The clinical implications of these findings are discussed.

  4. Gesturing during mental problem solving reduces eye movements, especially for individuals with lower visual working memory capacity.

    Science.gov (United States)

    Pouw, Wim T J L; Mavilidi, Myrto-Foteini; van Gog, Tamara; Paas, Fred

    2016-08-01

    Non-communicative hand gestures have been found to benefit problem-solving performance. These gestures seem to compensate for limited internal cognitive capacities, such as visual working memory capacity. Yet, it is not clear how gestures might perform this cognitive function. One hypothesis is that gesturing is a means to spatially index mental simulations, thereby reducing the need for visually projecting the mental simulation onto the visual presentation of the task. If that hypothesis is correct, less eye movements should be made when participants gesture during problem solving than when they do not gesture. We therefore used mobile eye tracking to investigate the effect of co-thought gesturing and visual working memory capacity on eye movements during mental solving of the Tower of Hanoi problem. Results revealed that gesturing indeed reduced the number of eye movements (lower saccade counts), especially for participants with a relatively lower visual working memory capacity. Subsequent problem-solving performance was not affected by having (not) gestured during the mental solving phase. The current findings suggest that our understanding of gestures in problem solving could be improved by taking into account eye movements during gesturing.

  5. Limited capacity of working memory in unihemispheric random walks implies conceivable slow dispersal.

    Science.gov (United States)

    Wei, Kun; Zhong, Suchuan

    2017-08-01

    Phenomenologically inspired by dolphins' unihemispheric sleep, we introduce a minimal model for random walks with physiological memory. The physiological memory consists of long-term memory which includes unconscious implicit memory and conscious explicit memory, and working memory which serves as a multi-component system for integrating, manipulating and managing short-term storage. The model assumes that the sleeping state allows retrievals of episodic objects merely from the episodic buffer where these memory objects are invoked corresponding to the ambient objects and are thus object-oriented, together with intermittent but increasing use of implicit memory in which decisions are unconsciously picked up from historical time series. The process of memory decay and forgetting is constructed in the episodic buffer. The walker's risk attitude, as a product of physiological heuristics according to the performance of objected-oriented decisions, is imposed on implicit memory. The analytical results of unihemispheric random walks with the mixture of object-oriented and time-oriented memory, as well as the long-time behavior which tends to the use of implicit memory, are provided, indicating the common sense that a conservative risk attitude is inclinable to slow movement.

  6. A memory and organizational aid improves Alzheimer disease research consent capacity: results of a randomized, controlled trial.

    Science.gov (United States)

    Rubright, Jonathan; Sankar, Pamela; Casarett, David J; Gur, Ruben; Xie, Sharon X; Karlawish, Jason

    2010-12-01

    Early and progressive cognitive impairments of patients with Alzheimer disease (AD) hinder their capacity to provide informed consent. Unfortunately, the limited research on techniques to improve capacity has shown mixed results. Therefore, the authors tested whether a memory and organizational aid improves the performance of patients with AD on measures of capacity and competency to give informed consent. Patients with AD randomly assigned to standard consent or standard plus a memory and organizational aid. Memory and organizational aid summarized the content of information mandated under the informed consent disclosure requirements of the Common Rule at a sixth grade reading level. Three psychiatrists without access to patient data independently reviewed MacArthur Competence Assessment Tool for Clinical Research (MacCAT-CR) interview transcripts to judge whether the patient was capable of providing informed consent. The agreement of at least two of the three experts defined a participant as capable of providing informed consent. Secondary outcomes are MacCAT-CR measures of understanding, appreciation and reasoning, and comparison with cognitively normal older adult norms. AD intervention and control groups were similar in terms of age, education, and cognitive status. The intervention group was more likely to be judged competent than control group and had higher scores on MacCAT-CR measure of understanding. The intervention had no effect on the measures of appreciation or reasoning. A consent process that addresses the deficits in memory and attention of a patient with AD can improve capacity to give informed consent for early phase AD research. The results also validate the MacCAT-CR as an instrument to measure capacity, especially the understanding subscale. ClinicalTrials.Gov#NCT00105612, http://clinicaltrials.gov/show/NCT00105612.

  7. High temperature heat capacities and electrical conductivities of boron carbides

    International Nuclear Information System (INIS)

    Matsui, Tsuneo; Arita, Yuri; Naito, Keiji; Imai, Hisashi

    1991-01-01

    The heat capacities and the electrical conductivities of B x C(x=3, 4, 5) were measured by means of direct heating pulse calorimetry in the temperature range from 300 to 1500 K. The heat capacities of B x C increased with increasing x value. This increase in the heat capacity is probably related to the change of the lattice vibration mode originated from the reduction of the stiffness of the intericosahedral chain accompanied with a change from C-B-C to C-B-B chains. A linear relationship between the logarithm of σT (σ is the electrical conductivity and T is the absolute temperature) of B x C and the reciprocal temperature was observed, indicating the presence of small polaron hopping as the predominant conduction mechanism. The electrical conductivity of B x C also increased with increasing x value (from 4 to 5) due to an increase of the polaron hopping of holes between carbon atoms at geometrically nonequivalent sites, since these nonequivalent sites of carbon atoms were considered to increase in either B 11 C icosahedra or in icosahedral chains with increasing x. The electrical conductivity of B 3 C was higher than that of B 4 C, which is probably due to the precipitation of high-conducting carbon. The thermal conductivity and the thermodynamic quantities of B 4 C were also determined precisely from the heat capacity value. (orig.)

  8. Memory

    OpenAIRE

    Wager, Nadia

    2017-01-01

    This chapter will explore a response to traumatic victimisation which has divided the opinions of psychologists at an exponential rate. We will be examining amnesia for memories of childhood sexual abuse and the potential to recover these memories in adulthood. Whilst this phenomenon is generally accepted in clinical circles, it is seen as highly contentious amongst research psychologists, particularly experimental cognitive psychologists. The chapter will begin with a real case study of a wo...

  9. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency

    Science.gov (United States)

    Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A.; Chen, Ying-Cheng

    2018-05-01

    Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

  10. A bootstrap invariance principle for highly nonstationary long memory processes

    OpenAIRE

    Kapetanios, George

    2004-01-01

    This paper presents an invariance principle for highly nonstationary long memory processes, defined as processes with long memory parameter lying in (1, 1.5). This principle provides the tools for showing asymptotic validity of the bootstrap in the context of such processes.

  11. Early auditory evoked potential is modulated by selective attention and related to individual differences in visual working memory capacity.

    Science.gov (United States)

    Giuliano, Ryan J; Karns, Christina M; Neville, Helen J; Hillyard, Steven A

    2014-12-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual's capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70-90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals.

  12. Early Auditory Evoked Potential Is Modulated by Selective Attention and Related to Individual Differences in Visual Working Memory Capacity

    Science.gov (United States)

    Giuliano, Ryan J.; Karns, Christina M.; Neville, Helen J.; Hillyard, Steven A.

    2015-01-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual’s capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70–90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals. PMID:25000526

  13. The effect of background music on episodic memory and autonomic responses: listening to emotionally touching music enhances facial memory capacity

    Science.gov (United States)

    Mado Proverbio, C.A. Alice; Lozano Nasi, Valentina; Alessandra Arcari, Laura; De Benedetto, Francesco; Guardamagna, Matteo; Gazzola, Martina; Zani, Alberto

    2015-01-01

    The aim of this study was to investigate how background auditory processing can affect other perceptual and cognitive processes as a function of stimulus content, style and emotional nature. Previous studies have offered contrasting evidence, and it has been recently shown that listening to music negatively affected concurrent mental processing in the elderly but not in young adults. To further investigate this matter, the effect of listening to music vs. listening to the sound of rain or silence was examined by administering an old/new face memory task (involving 448 unknown faces) to a group of 54 non-musician university students. Heart rate and diastolic and systolic blood pressure were measured during an explicit face study session that was followed by a memory test. The results indicated that more efficient and faster recall of faces occurred under conditions of silence or when participants were listening to emotionally touching music. Whereas auditory background (e.g., rain or joyful music) interfered with memory encoding, listening to emotionally touching music improved memory and significantly increased heart rate. It is hypothesized that touching music is able to modify the visual perception of faces by binding facial properties with auditory and emotionally charged information (music), which may therefore result in deeper memory encoding. PMID:26469712

  14. The effect of background music on episodic memory and autonomic responses: listening to emotionally touching music enhances facial memory capacity.

    Science.gov (United States)

    Proverbio, Alice Mado; Mado Proverbio, C A Alice; Lozano Nasi, Valentina; Alessandra Arcari, Laura; De Benedetto, Francesco; Guardamagna, Matteo; Gazzola, Martina; Zani, Alberto

    2015-10-15

    The aim of this study was to investigate how background auditory processing can affect other perceptual and cognitive processes as a function of stimulus content, style and emotional nature. Previous studies have offered contrasting evidence, and it has been recently shown that listening to music negatively affected concurrent mental processing in the elderly but not in young adults. To further investigate this matter, the effect of listening to music vs. listening to the sound of rain or silence was examined by administering an old/new face memory task (involving 448 unknown faces) to a group of 54 non-musician university students. Heart rate and diastolic and systolic blood pressure were measured during an explicit face study session that was followed by a memory test. The results indicated that more efficient and faster recall of faces occurred under conditions of silence or when participants were listening to emotionally touching music. Whereas auditory background (e.g., rain or joyful music) interfered with memory encoding, listening to emotionally touching music improved memory and significantly increased heart rate. It is hypothesized that touching music is able to modify the visual perception of faces by binding facial properties with auditory and emotionally charged information (music), which may therefore result in deeper memory encoding.

  15. A Reduction in Delay Discounting by Using Episodic Future Imagination and the Association with Episodic Memory Capacity.

    Science.gov (United States)

    Hu, Xiaochen; Kleinschmidt, Helena; Martin, Jason A; Han, Ying; Thelen, Manuela; Meiberth, Dix; Jessen, Frank; Weber, Bernd

    2016-01-01

    Delay discounting (DD) refers to the phenomenon that individuals discount future consequences. Previous studies showed that future imagination reduces DD, which was mediated by functional connectivity between medial prefrontal valuation areas and a key region for episodic memory (hippocampus). Future imagination involves an initial period of construction and a later period of elaboration, with the more elaborative latter period recruiting more cortical regions. This study examined whether elaborative future imagination modulated DD, and if so, what are the underlying neural substrates. It was assumed that cortical areas contribute to the modulation effect during the later period of imagination. Since future imagination is supported by episodic memory capacity, we additionally hypothesize that the neural network underlying the modulation effect is related to individual episodic memory capacity. Twenty-two subjects received an extensive interview on personal future events, followed by an fMRI DD experiment with and without the need to perform elaborative future imagination simultaneously. Subjects' episodic memory capacity was also assessed. Behavioral results replicate previous findings of a reduced discount rate in the DD plus imagination condition compared to the DD only condition. The behavioral effect positively correlated with: (i) subjective value signal changes in midline brain structures during the initial imagination period; and (ii) signal changes in left prefrontoparietal areas during the later imagination period. Generalized psychophysiological interaction (gPPI) analyses reveal positive correlations between the behavioral effect and functional connectivity among the following areas: right anterior cingulate cortex (ACC) and left hippocampus; left inferior parietal cortex (IPC) and left hippocampus; and left IPC and bilateral occipital cortices. These changes in functional connectivity are also associated with episodic memory capacity. A hierarchical

  16. Linking DMN connectivity to episodic memory capacity: What can we learn from patients with medial temporal lobe damage?

    Directory of Open Access Journals (Sweden)

    Cornelia McCormick

    2014-01-01

    Full Text Available Computational models predict that focal damage to the Default Mode Network (DMN causes widespread decreases and increases of functional DMN connectivity. How such alterations impact functioning in a specific cognitive domain such as episodic memory remains relatively unexplored. Here, we show in patients with unilateral medial temporal lobe epilepsy (mTLE that focal structural damage leads indeed to specific patterns of DMN functional connectivity alterations, specifically decreased connectivity between both medial temporal lobes (MTLs and the posterior part of the DMN and increased intrahemispheric anterior–posterior connectivity. Importantly, these patterns were associated with better and worse episodic memory capacity, respectively. These distinct patterns, shown here for the first time, suggest that a close dialogue between both MTLs and the posterior components of the DMN is required to fully express the extensive repertoire of episodic memory abilities.

  17. The impact of depressed mood, working memory capacity, and priming on delay discounting.

    Science.gov (United States)

    Szuhany, Kristin L; MacKenzie, Danny; Otto, Michael W

    2018-09-01

    The impaired ability to delay rewards, delay discounting (DD), is associated with several problematic conditions in which impulsive decision-making derails long-term goals. Working memory (WM), the ability to actively store and manipulate information, is associated with DD. The purpose of this study was to examine the effect of cognitive priming on DD and to identify moderation of this effect dependent on degree of WM capacity (WMC) and depressed mood. A WM task (n-back) was used as a cognitive prime before assessment of DD (Monetary Choice Questionnaire) and was compared to a similar prime from an inhibition task in a factorial design in 183 community participants. All participants completed a DD task and assessment of depressive symptoms (Beck Depression Inventory-II). Priming effects were evaluated relative to WMC of participants. Higher WMC and lower depression scores were associated with greater relative preference for larger, delayed rewards. The effects of a WM prime were moderated by WMC; benefits of the prime were only evident for individuals with lower WMC. No effects were found for an alternative inhibition task. Limitations included depression scores mainly in subclinical range, use of hypothetical instead of real rewards in the DD task, and no examination of the time course of effects. This study provides support for the effectiveness of a brief WM prime in enhancing ability to delay rewards. Priming may be a useful adjunctive intervention for individuals with WM dysfunction or conditions in which impulsive decision-making may derail long-term goals. Copyright © 2018. Published by Elsevier Ltd.

  18. Clock-frequency and temperature margins of a high-temperature superconductor delay-line memory

    International Nuclear Information System (INIS)

    Hattori, W.; Tahara, S.

    1999-01-01

    We have developed a 10 GHz 32-bit delay-line memory, using a semiconductor crossbar switch and a YBa 2 Cu 3 O 7-δ coplanar delay line. For use in the high-speed (≥10 GHz) cell-buffer storage of large-throughput (≥1 Tbit/s) asynchronous transfer mode (ATM) switching systems, this memory must be fairly reliable. To evaluate the reliability of the operation, therefore, we measured the clock-frequency and temperature margins and the temperature dependence of the bit-error rate. At 64 K, this memory has a capacity of 32 bits with a clock frequency of 9.89±0.11 GHz. In general, clock frequencies of communication systems are strictly managed so that the margins are less than 10 -6 . Therefore, the frequency margin of this memory (∼2x10 -2 )) is wide enough for use in communication systems. The temperature margin was 71.5±4.3 K at 10 GHz and 33 bits. This memory offered error-free operation (BER -13 ) at 71.5 ±3.5 K. These temperature margins are wide enough to be controlled by a cryocooler. These results show that the memory offers reliability and that it can be applied to high-speed ATM cell-buffer storage. (author)

  19. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  20. Colloidal silica films for high-capacity DNA arrays

    Science.gov (United States)

    Glazer, Marc Irving

    The human genome project has greatly expanded the amount of genetic information available to researchers, but before this vast new source of data can be fully utilized, techniques for rapid, large-scale analysis of DNA and RNA must continue to develop. DNA arrays have emerged as a powerful new technology for analyzing genomic samples in a highly parallel format. The detection sensitivity of these arrays is dependent on the quantity and density of immobilized probe molecules. We have investigated substrates with a porous, "three-dimensional" surface layer as a means of increasing the surface area available for the synthesis of oligonucleotide probes, thereby increasing the number of available probes and the amount of detectable bound target. Porous colloidal silica films were created by two techniques. In the first approach, films were deposited by spin-coating silica colloid suspensions onto flat glass substrates, with the pores being formed by the natural voids between the solid particles (typically 23nm pores, 35% porosity). In the second approach, latex particles were co-deposited with the silica and then pyrolyzed, creating films with larger pores (36 nm), higher porosity (65%), and higher surface area. For 0.3 mum films, enhancements of eight to ten-fold and 12- to 14-fold were achieved with the pure silica films and the films "templated" with polymer latex, respectively. In gene expression assays for up to 7,000 genes using complex biological samples, the high-capacity films provided enhanced signals and performed equivalently or better than planar glass on all other functional measures, confirming that colloidal silica films are a promising platform for high-capacity DNA arrays. We have also investigated the kinetics of hybridization on planar glass and high-capacity substrates. Adsorption on planar arrays is similar to ideal Langmuir-type adsorption, although with an "overshoot" at high solution concentration. Hybridization on high-capacity films is

  1. FPGA Flash Memory High Speed Data Acquisition

    Science.gov (United States)

    Gonzalez, April

    2013-01-01

    The purpose of this research is to design and implement a VHDL ONFI Controller module for a Modular Instrumentation System. The goal of the Modular Instrumentation System will be to have a low power device that will store data and send the data at a low speed to a processor. The benefit of such a system will give an advantage over other purchased binary IP due to the capability of allowing NASA to re-use and modify the memory controller module. To accomplish the performance criteria of a low power system, an in house auxiliary board (Flash/ADC board), FPGA development kit, debug board, and modular instrumentation board will be jointly used for the data acquisition. The Flash/ADC board contains four, 1 MSPS, input channel signals and an Open NAND Flash memory module with an analog to digital converter. The ADC, data bits, and control line signals from the board are sent to an Microsemi/Actel FPGA development kit for VHDL programming of the flash memory WRITE, READ, READ STATUS, ERASE, and RESET operation waveforms using Libero software. The debug board will be used for verification of the analog input signal and be able to communicate via serial interface with the module instrumentation. The scope of the new controller module was to find and develop an ONFI controller with the debug board layout designed and completed for manufacture. Successful flash memory operation waveform test routines were completed, simulated, and tested to work on the FPGA board. Through connection of the Flash/ADC board with the FPGA, it was found that the device specifications were not being meet with Vdd reaching half of its voltage. Further testing showed that it was the manufactured Flash/ADC board that contained a misalignment with the ONFI memory module traces. The errors proved to be too great to fix in the time limit set for the project.

  2. Visual long-term memory has a massive storage capacity for object details

    OpenAIRE

    Brady, Timothy F.; Konkle, Talia; Alvarez, George A.; Oliva, Aude

    2008-01-01

    One of the major lessons of memory research has been that human memory is fallible, imprecise, and subject to interference. Thus, although observers can remember thousands of images, it is widely assumed that these memories lack detail. Contrary to this assumption, here we show that long-term memory is capable of storing a massive number of objects with details from the image. Participants viewed pictures of 2,500 objects over the course of 5.5 h. Afterward, they were shown pairs of images an...

  3. High-capacity aqueous zinc batteries using sustainable quinone electrodes

    Science.gov (United States)

    Zhao, Qing; Huang, Weiwei; Luo, Zhiqiang; Liu, Luojia; Lu, Yong; Li, Yixin; Li, Lin; Hu, Jinyan; Ma, Hua; Chen, Jun

    2018-01-01

    Quinones, which are ubiquitous in nature, can act as sustainable and green electrode materials but face dissolution in organic electrolytes, resulting in fast fading of capacity and short cycle life. We report that quinone electrodes, especially calix[4]quinone (C4Q) in rechargeable metal zinc batteries coupled with a cation-selective membrane using an aqueous electrolyte, exhibit a high capacity of 335 mA h g−1 with an energy efficiency of 93% at 20 mA g−1 and a long life of 1000 cycles with a capacity retention of 87% at 500 mA g−1. The pouch zinc batteries with a respective depth of discharge of 89% (C4Q) and 49% (zinc anode) can deliver an energy density of 220 Wh kg−1 by mass of both a C4Q cathode and a theoretical Zn anode. We also develop an electrostatic potential computing method to demonstrate that carbonyl groups are active centers of electrochemistry. Moreover, the structural evolution and dissolution behavior of active materials during discharge and charge processes are investigated by operando spectral techniques such as IR, Raman, and ultraviolet-visible spectroscopies. Our results show that batteries using quinone cathodes and metal anodes in aqueous electrolyte are reliable approaches for mass energy storage. PMID:29511734

  4. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation.

    Science.gov (United States)

    Vosskuhl, Johannes; Huster, René J; Herrmann, Christoph S

    2015-01-01

    Working memory (WM) and short-term memory (STM) supposedly rely on the phase-amplitude coupling (PAC) of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual's memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS). To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N = 33) were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG) was measured before stimulation and analyzed with regard to the properties of PAC between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity.

  5. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation

    Directory of Open Access Journals (Sweden)

    Johannes eVosskuhl

    2015-05-01

    Full Text Available Working memory (WM and short-term memory (STM supposedly rely on the phase-amplitude coupling of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual’s memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS. To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N=33 were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG was measured before stimulation and analyzed with regard to the properties of phase-amplitude coupling between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity.

  6. High-capacity composite adsorbents for nucleic acids.

    Science.gov (United States)

    Tiainen, Peter; Rokebul Anower, M; Larsson, Per-Olof

    2011-08-05

    Cytopore™ is a bead-shaped, macroporous and easily compressible cellulose-based anion-exchange material intended for cultivation of anchor-dependent animal cells. Reticulated vitreous carbon (RVC) is a strong, non-compressible, high voidage (97%) matrix material that can be cut to desired geometrical shapes. Cytopore and RVC were combined to cylindrical composites (25 mm × 10 mm) fitted inside chromatography columns. The composite combined the advantageous properties of both its constituents, making it suitable for column chromatography. The composite could withstand very high flow rates without compaction of the bed (>25 column volumes/min; 4000 cm h(-1)). Chromatography runs with tracers showed a low HETP value (0.3mm), suggesting that pore flow was in operation. The dynamic binding capacities (10% breakthrough) per gram of dry weight Cytopore were determined for several compounds including DNA and RNA and were found to be 240-370 mg/g. The composite was used to isolate pUC 18-type plasmids from a cleared alkaline lysate in a good yield. Confocal microscopy studies showed that plasmids were bound not only to the surface of the Cytopore material but also within the matrix walls, thus offering an explanation to the very high binding capacities observed. The concept of using a composite prepared from a mechanically weak, high-binding material and a strong scaffold material may be applied to other systems as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Implicit and explicit measures of spider fear and avoidance behavior: Examination of the moderating role of working memory capacity.

    Science.gov (United States)

    Effting, Marieke; Salemink, Elske; Verschuere, Bruno; Beckers, Tom

    2016-03-01

    Avoidance behavior is central to several anxiety disorders. The current study tested whether avoidance behavior for spiders depends on a dynamic interplay between implicit and explicit processes, moderated by the availability to exert control through working memory capacity (WMC). A total of 63 participants completed an approach-avoidance task, an implicit association test, a spider fear questionnaire and a behavioral avoidance test that included an assessment of approach distance as well as approach speed. WMC was measured by a complex operation span task. It was hypothesized that in individuals with low WMC, implicit avoidance tendencies and implicit negative associations predict avoidance behavior for a spider better than the explicit measure, whereas in high WMC individuals, the explicit measure should better predict avoidance behavior than the implicit measures. Results revealed that WMC moderated the influence of implicit negative associations, but not implicit avoidance tendencies, on spider approach distance but not the speed of approaching. Although explicit spider fear directly influenced avoidance behavior, its impact was not modulated by WMC. Participants in our study were from a non-clinical sample, which limits the generalizability of our findings. These findings suggest that implicit processes might become more pertinent for fear behavior as the ability to control such processes wanes, which may be particularly relevant for anxiety disorders given their association with lowered executive control functioning. As such, training procedures that specifically target implicit processes or control abilities might improve treatment outcomes for anxiety disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Modeling Mental Speed: Decomposing Response Time Distributions in Elementary Cognitive Tasks and Correlations with Working Memory Capacity and Fluid Intelligence

    Directory of Open Access Journals (Sweden)

    Florian Schmitz

    2016-10-01

    Full Text Available Previous research has shown an inverse relation between response times in elementary cognitive tasks and intelligence, but findings are inconsistent as to which is the most informative score. We conducted a study (N = 200 using a battery of elementary cognitive tasks, working memory capacity (WMC paradigms, and a test of fluid intelligence (gf. Frequently used candidate scores and model parameters derived from the response time (RT distribution were tested. Results confirmed a clear correlation of mean RT with WMC and to a lesser degree with gf. Highly comparable correlations were obtained for alternative location measures with or without extreme value treatment. Moderate correlations were found as well for scores of RT variability, but they were not as strong as for mean RT. Additionally, there was a trend towards higher correlations for slow RT bands, as compared to faster RT bands. Clearer evidence was obtained in an ex-Gaussian decomposition of the response times: the exponential component was selectively related to WMC and gf in easy tasks, while mean response time was additionally predictive in the most complex tasks. The diffusion model parsimoniously accounted for these effects in terms of individual differences in drift rate. Finally, correlations of model parameters as trait-like dispositions were investigated across different tasks, by correlating parameters of the diffusion and the ex-Gaussian model with conventional RT and accuracy scores.

  9. Towards realising high-speed large-bandwidth quantum memory

    Institute of Scientific and Technical Information of China (English)

    SHI BaoSen; DING DongSheng

    2016-01-01

    Indispensable for quantum communication and quantum computation,quantum memory executes on demand storage and retrieval of quantum states such as those of a single photon,an entangled pair or squeezed states.Among the various forms of quantum memory,Raman quantum memory has advantages forits broadband and high-speed characteristics,which results in a huge potential for applications in quantum networks and quantum computation.However,realising Raman quantum memory with true single photons and photonic entanglementis challenging.In this review,after briefly introducing the main benchmarks in the development of quantum memory and describing the state of the art,we focus on our recent experimental progress inquantum memorystorage of quantum states using the Raman scheme.

  10. Cycloaddition in peptides for high-capacity optical storage

    DEFF Research Database (Denmark)

    Lohse, Brian; Berg, Rolf Henrik; Hvilsted, Søren

    2006-01-01

    Photodimerization of chromophores attached to a short peptide chain is investigated for high-capacity optical digital storage with UV lasers. The length and rigidity of the peptide chain assure an optimal distance and orientation of the chromophores for effective photodimerization. Using a theory...... developed by Tomlinson, the absorption cross section for the dimerization process in a uracil-ornithine-based hexamer is determined to be 9 x 10(-20) cm(2). A large change in the transmission due to irradiation in the UV area may make it possible to realize multilevel storage in a thin film of the peptides....

  11. Verbal Working Memory in Older Adults: The Roles of Phonological Capacities and Processing Speed

    Science.gov (United States)

    Nittrouer, Susan; Lowenstein, Joanna H.; Wucinich, Taylor; Moberly, Aaron C.

    2016-01-01

    Purpose: This study examined the potential roles of phonological sensitivity and processing speed in age-related declines of verbal working memory. Method: Twenty younger and 25 older adults with age-normal hearing participated. Two measures of verbal working memory were collected: digit span and serial recall of words. Processing speed was…

  12. Working Memory Capacity and Language Processes in Children with Specific Language Impairment

    Science.gov (United States)

    Marton, Klara; Schwartz, Richard G.

    2003-01-01

    This study examined the interaction between working memory and language comprehension in children with specific language impairment (SLI), focusing on the function of the central executive component and its interaction with the phonological loop (A. D. Baddeley, 1986) in complex working memory tasks. Thirteen children with SLI and 13 age-matched…

  13. WoMMBAT : A user interface for hierarchical Bayesian estimation of working memory capacity

    NARCIS (Netherlands)

    Morey, Richard D.; Morey, Candice C.

    2011-01-01

    The change detection paradigm has become an important tool for researchers studying working memory. Change detection is especially useful for studying visual working memory, because recall paradigms are difficult to employ in the visual modality. Pashler (Perception & Psychophysics, 44, 369-378,

  14. Children's Use of Semantic Organizational Strategies Is Mediated by Working Memory Capacity

    Science.gov (United States)

    Schleepen, Tamara M. J.; Jonkman, Lisa M.

    2012-01-01

    In adults, the ability to apply semantic grouping strategies has been found to depend on working memory. To investigate this relation in children, two sort-recall tasks (one without and one with a grouping instruction) were administered to 6-12-year-olds. The role of working memory was examined by means of mediation analyses and by assessing…

  15. EEG markers of reduced visual short-term memory capacity in adult attention deficit/hyperactivity disorder

    DEFF Research Database (Denmark)

    Wiegand, Iris Michaela; Kilian, Beate; Hennig-Fast, Kristina

    2015-01-01

    Attention deficit hyperactivity disorder (ADHD) persists frequently into adulthood. The disease is associated with difficulties in many cognitive tasks, which are assumed to be caused by neurobiologically-based basal dysfunctions. A reduction in visual working memory storage capacity has recently...... been claimed a testable endophenotype of ADHD. This study aimed at identifying brain abnormalities underlying this deficit by combining parameter-based assessment with electrophysiology. We compared unmedicated adult ADHD patients and demographically matched, healthy controls. We found reduced storage...... capacity in the patient group and delineated neural correlates of the deficit by analyzing ERP amplitudes according to (1) differences between patients and controls and (2) individual’s performance level of storage capacity K: First, the contralateral delay activity (CDA) was higher for individuals...

  16. Development of High Capacity Split Stirling Cryocooler for HTS

    Science.gov (United States)

    Yumoto, Kenta; Nakano, Kyosuke; Hiratsuka, Yoshikatsu

    Sumitomo Heavy Industries, Ltd. (SHI) developed a high-power Stirling-type pulse tube cryocooler for cooling high-temperature superconductor (HTS) devices, such as superconductor motors, superconducting magnetic energy storage (SMES), and fault current limiters. The experimental results of a prototype pulse tube cryocooler were reported in September 2013. For a U-type expander, the cooling capacity was 151 W at 70 K with a compressor input power of 4 kW. Correspondingly, the coefficient of performance (COP) was about 0.038. However, the efficiency of the cryocooler is required to be COP > 0.1 and it was found that, theoretically, it is difficult to further improve the efficiency of a pulse tube cryocooler because the workflow generated at the hot end of the pulse tube cannot be recovered. Therefore, it was decided to change the expander to a free-piston type from a pulse tube type. A prototype was developed and preliminary experiments were conducted. A cooling capacity of 120 W at 70 K with a compressor input power of 2.15 kW with corresponding COP of 0.056, was obtained. The detailed results are reported in this paper.

  17. Acceptance of background noise, working memory capacity, and auditory evoked potentials in subjects with normal hearing.

    Science.gov (United States)

    Brännström, K Jonas; Zunic, Edita; Borovac, Aida; Ibertsson, Tina

    2012-01-01

    The acceptable noise level (ANL) test is a method for quantifying the amount of background noise that subjects accept when listening to speech. Large variations in ANL have been seen between normal-hearing subjects and between studies of normal-hearing subjects, but few explanatory variables have been identified. To explore a possible relationship between a Swedish version of the ANL test, working memory capacity (WMC), and auditory evoked potentials (AEPs). ANL, WMC, and AEP were tested in a counterbalanced order across subjects. Twenty-one normal-hearing subjects participated in the study (14 females and 7 males; aged 20-39 yr with an average of 25.7 yr). Reported data consists of age, pure-tone average (PTA), most comfortable level (MCL), background noise level (BNL), ANL (i.e., MCL - BNL), AEP latencies, AEP amplitudes, and WMC. Spearman's rank correlation coefficient was calculated between the collected variables to investigate associations. A principal component analysis (PCA) with Varimax rotation was conducted on the collected variables to explore underlying factors and estimate interactions between the tested variables. Subjects were also pooled into two groups depending on their results on the WMC test, one group with a score lower than the average and one with a score higher than the average. Comparisons between these two groups were made using the Mann-Whitney U-test with Bonferroni correction for multiple comparisons. A negative association was found between ANL and WMC but not between AEP and ANL or WMC. Furthermore, ANL is derived from MCL and BNL, and a significant positive association was found between BNL and WMC. However, no significant associations were seen between AEP latencies and amplitudes and the demographic variables, MCL, and BNL. The PCA identified two underlying factors: One that contained MCL, BNL, ANL, and WMC and another that contained latency for wave Na and amplitudes for waves V and Na-Pa. Using the variables in the first factor

  18. Progress in development of high capacity magnetic HTS bearings

    International Nuclear Information System (INIS)

    Kummeth, P.; Nick, W.; Neumueller, H.-W.

    2005-01-01

    HTS magnetic bearings are inherently stable without an active feedback system. They provide low frictional losses, no wear and allow operation at high rotational speed without lubrication. So they are very promising for use in motors, generators and turbines. We designed and constructed an HTS radial bearing for use with a 400 kW HTS motor. It consists of alternating axially magnetized permanent magnet rings on the rotor and a segmented YBCO stator. Stator cooling is performed by liquid nitrogen, the temperature of the stator can be adjusted by varying the pressure in the cryogenic vessel. At 68 K maximum radial forces of more than 3.7 kN were found. These results range within the highest radial bearing capacities reported worldwide. The encouraging results lead us to develop a large heavy load HTS radial bearing. Currently a high magnetic gradient HTS bearing for a 4 MVA synchronous HTS generator is under construction

  19. [Asperger syndrome with highly exceptional calendar memory: a case report].

    Science.gov (United States)

    Sevik, Ali Emre; Cengel Kültür, Ebru; Demirel, Hilal; Karlı Oğuz, Kader; Akça, Onur; Lay Ergün, Eser; Demir, Başaran

    2010-01-01

    Some patients with pervasive developmental disorders develop unusual talents, which are characterized as savant syndrome. Herein we present neuropsychological examination and brain imaging (fMRI and brain SPECT) findings of an 18-year-old male with Asperger syndrome and highly unusual calendar memory. Neuropsychological evaluation of the case indicated mild attention, memory, and problem solving deficits, and severe executive function deficits that included conceptualization, category formation, and abstraction. Functional MRI findings showed activation above the baseline level (Psavant syndrome.

  20. Capacity Decline and Characteristics Changes of Lithium-ion Cells with Large Capacity during Trickle Charge at High Temperature

    Science.gov (United States)

    Matsushima, Toshio

    Large-scale 40-Ah Li-ion cells have been developed for use in industrial applications. To contribute to techniques for ascertaining the state of these cells and detecting deterioration during actual use, we produce a cell whose capacity is reduced by trickle charging at high temperature, and we determine the relationship between the cell's properties such as its capacity and charging/discharging characteristics when the capacity is reduced. When the capacity of a Li-ion cell is reduced, the discharge voltage also decreases. We show that the residual capacity is well correlated to the discharge voltage and to the duration of continuous discharge before reaching a fixed end-voltage. We also show that the constant-current constant-voltage charging characteristics are maintained even when the capacity is degraded, and that the constant-current charging time and discharge voltage are closely related to the residual capacity. We confirm that the reaction coefficient of the capacity degradation formula can be calculated from the capacity change characteristics at multiple temperatures, and that an 8°C change in temperature causes the lifetime to decrease by half.

  1. What limits working memory capacity? Evidence for modality-specific sources to the simultaneous storage of visual and auditory arrays.

    Science.gov (United States)

    Fougnie, Daryl; Marois, René

    2011-11-01

    There is considerable debate on whether working memory (WM) storage is mediated by distinct subsystems for auditory and visual stimuli (Baddeley, 1986) or whether it is constrained by a single, central capacity-limited system (Cowan, 2006). Recent studies have addressed this issue by measuring the dual-task cost during the concurrent storage of auditory and visual arrays (e.g., Cocchini, Logie, Della Sala, MacPherson, & Baddeley, 2002; Fougnie & Marois, 2006; Saults & Cowan, 2007). However, studies have yielded widely different dual-task costs, which have been taken to support both modality-specific and central capacity-limit accounts of WM storage. Here, we demonstrate that the controversies regarding such costs mostly stem from how these costs are measured. Measures that compare combined dual-task capacity with the higher single-task capacity support a single, central WM store when there is a large disparity between the single-task capacities (Experiment 1) but not when the single-task capacities are well equated (Experiment 2). In contrast, measures of the dual-task cost that normalize for differences in single-task capacity reveal evidence for modality-specific stores, regardless of single-task performance. Moreover, these normalized measures indicate that dual-task cost is much smaller if the tasks do not involve maintaining bound feature representations in WM (Experiment 3). Taken together, these experiments not only resolve a discrepancy in the field and clarify how to assess the dual-task cost but also indicate that WM capacity can be constrained both by modality-specific and modality-independent sources of information processing.

  2. An investigation on the effects of organizational memory and human capital on innovation and absorptive capacity

    Directory of Open Access Journals (Sweden)

    Zahra Mansouri

    2014-06-01

    Full Text Available Innovation is considered as an enabling tool for creating value and sustainable competitive advantage for organizations in dynamic environment of our times along with its ever-increasing complexities. Until innovation in developing countries needs more capital and talent, human capital (HC is a key factor in innovative performance. People are the most important factor of exploitation of foreign knowledge; and knowledge focus in business environment is highly dependent on external information sources in order to develop innovation and improve performance of the company. Studies have shown that although importance level of knowledge is increased, but only 30 percent of existing knowledge is being used in organizations. Expensive but evitable mistakes take place due to information blockage; and the risk of losing knowledge is exceptionally higher when people leave the organization. This study is among the field research. The population includes large manufacturing firms across Khuzestan Province having been active throughout 2013. The data collection tool was a structured questionnaire and sampling is convenience method. The research questionnaire was distributed among a sample of 331 R&D and Human resources Experts selected using simple random sampling. The collected data were analyzed using SPSS and Amos statistical programs. The results indicate that organizational memory had significant impact on ACAP and innovation. Results also showed a significant positive effect of HC on ACAP, but did not support the effect of HC on innovation.

  3. High-strength shape memory steels alloyed with nitrogen

    International Nuclear Information System (INIS)

    Ullakko, K.; Jakovenko, P.T.; Gavriljuk, V.G.

    1996-01-01

    Since shape memory effect in Fe-Mn-Si systems was observed, increasing attention has been paid to iron based shape memory alloys due to their great technological potential. Properties of Fe-Mn-Si shape memory alloys have been improved by alloying with Cr, Ni, Co and C. A significant improvement on shape memory, mechanical and corrosion properties is attained by introducing nitrogen in Fe-Mn-Si based systems. By increasing the nitrogen content, strength of the matrix increases and the stacking fault energy decreases, which promote the formation of stress induced martensite and decrease permanent slip. The present authors have shown that nitrogen alloyed shape memory steels exhibit recoverable strains of 2.5--4.2% and recovery stresses of 330 MPa. In some cases, stresses over 700 MPa were attained at room temperature after cooling a constrained sample. Yield strengths of these steels can be as high as 1,100 MPa and tensile strengths over 1,500 MPa with elongations of 30%. In the present study, effect of nitrogen alloying on shape memory and mechanical properties of Fe-Mn-Si, Fe-Mn-Si-Cr-Ni and Fe-Mn-Cr-Ni-V alloys is studied. Nitrogen alloying is shown to exhibit a beneficial effect on shape memory properties and strength of these steels

  4. High-speed noise-free optical quantum memory

    Science.gov (United States)

    Kaczmarek, K. T.; Ledingham, P. M.; Brecht, B.; Thomas, S. E.; Thekkadath, G. S.; Lazo-Arjona, O.; Munns, J. H. D.; Poem, E.; Feizpour, A.; Saunders, D. J.; Nunn, J.; Walmsley, I. A.

    2018-04-01

    Optical quantum memories are devices that store and recall quantum light and are vital to the realization of future photonic quantum networks. To date, much effort has been put into improving storage times and efficiencies of such devices to enable long-distance communications. However, less attention has been devoted to building quantum memories which add zero noise to the output. Even small additional noise can render the memory classical by destroying the fragile quantum signatures of the stored light. Therefore, noise performance is a critical parameter for all quantum memories. Here we introduce an intrinsically noise-free quantum memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We demonstrate successful storage of GHz-bandwidth heralded single photons in a warm atomic vapor with no added noise, confirmed by the unaltered photon-number statistics upon recall. Our ORCA memory meets the stringent noise requirements for quantum memories while combining high-speed and room-temperature operation with technical simplicity, and therefore is immediately applicable to low-latency quantum networks.

  5. Mesoporous Silicon-Based Anodes for High Capacity, High Performance Li-ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new high capacity anode composite based on mesoporous silicon is proposed. By virtue of a structure that resembles a pseudo one-dimensional phase, the active anode...

  6. The Influence of Background Music on Learning in the Light of Different Theoretical Perspectives and the Role of Working Memory Capacity.

    Science.gov (United States)

    Lehmann, Janina A M; Seufert, Tina

    2017-01-01

    This study investigates how background music influences learning with respect to three different theoretical approaches. Both the Mozart effect as well as the arousal-mood-hypothesis indicate that background music can potentially benefit learning outcomes. While the Mozart effect assumes a direct influence of background music on cognitive abilities, the arousal-mood-hypothesis assumes a mediation effect over arousal and mood. However, the seductive detail effect indicates that seductive details such as background music worsen learning. Moreover, as working memory capacity has a crucial influence on learning with seductive details, we also included the learner's working memory capacity as a factor in our study. We tested 81 college students using a between-subject design with half of the sample listening to two pop songs while learning a visual text and the other half learning in silence. We included working memory capacity in the design as a continuous organism variable. Arousal and mood scores before and after learning were collected as potential mediating variables. To measure learning outcomes we tested recall and comprehension. We did not find a mediation effect between background music and arousal or mood on learning outcomes. In addition, for recall performance there were no main effects of background music or working memory capacity, nor an interaction effect of these factors. However, when considering comprehension we did find an interaction between background music and working memory capacity: the higher the learners' working memory capacity, the better they learned with background music. This is in line with the seductive detail assumption.

  7. Evaluation of the attentional capacities and working memory of early and late blind persons

    OpenAIRE

    PIGEON, Caroline; MARIN-LAMELLET, Claude

    2015-01-01

    Although attentional processes and working memory seem to be significantly involved in the daily activities (particularly during navigating) of persons who are blind and who use these abilities to compensate for their lack of vision, few studies have investigated these mechanisms in this population. The aim of this study is to evaluate the selective, sustained and divided attention, attentional inhibition and switching and working memory of blind persons. Early blind, late blind and sighted p...

  8. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  9. Large Capacity of Conscious Access for Incidental Memories in Natural Scenes.

    Science.gov (United States)

    Kaunitz, Lisandro N; Rowe, Elise G; Tsuchiya, Naotsugu

    2016-09-01

    When searching a crowd, people can detect a target face only by direct fixation and attention. Once the target is found, it is consciously experienced and remembered, but what is the perceptual fate of the fixated nontarget faces? Whereas introspection suggests that one may remember nontargets, previous studies have proposed that almost no memory should be retained. Using a gaze-contingent paradigm, we asked subjects to visually search for a target face within a crowded natural scene and then tested their memory for nontarget faces, as well as their confidence in those memories. Subjects remembered up to seven fixated, nontarget faces with more than 70% accuracy. Memory accuracy was correlated with trial-by-trial confidence ratings, which implies that the memory was consciously maintained and accessed. When the search scene was inverted, no more than three nontarget faces were remembered. These findings imply that incidental memory for faces, such as those recalled by eyewitnesses, is more reliable than is usually assumed. © The Author(s) 2016.

  10. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    International Nuclear Information System (INIS)

    Xue, Dezhen; Zhou, Yumei; Ding, Xiangdong; Otsuka, Kazuhiro; Lookman, Turab; Sun, Jun; Ren, Xiaobing

    2015-01-01

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti 50 (Pd 50−x D x ) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q −1 ~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q −1 ~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges

  11. Attention-deficit/hyperactivity disorder: the impact of methylphenidate on working memory, inhibition capacity and mental flexibility.

    Science.gov (United States)

    Bolfer, Cristiana; Pacheco, Sandra Pasquali; Tsunemi, Miriam Harumi; Carreira, Walter Souza; Casella, Beatriz Borba; Casella, Erasmo Barbante

    2017-04-01

    To compare children with attention-deficit/hyperactivity disorder (ADHD), before and after the use of methylphenidate, and a control group, using tests of working memory, inhibition capacity and mental flexibility. Neuropsychological tests were administrated to 53 boys, 9-12 years old: the WISC-III digit span backward, and arithmetic; Stroop Color; and Trail Making Tests. The case group included 23 boys with ADHD, who were combined type, treatment-naive, and with normal intelligence without comorbidities. The control group (n = 30) were age and gender matched. After three months on methylphenidate, the ADHD children were retested. The control group was also retested after three months. Before treatment, ADHD children had lower scores than the control group on the tests (p ≤ 0.001) and after methylphenidate had fewer test errors than before (p ≤ 0.001). Methylphenidate treatment improves the working memory, inhibitory control and mental flexibility of ADHD boys.

  12. Memory controllers for high-performance and real-time MPSoCs : requirements, architectures, and future trends

    NARCIS (Netherlands)

    Akesson, K.B.; Huang, Po-Chun; Clermidy, F.; Dutoit, D.; Goossens, K.G.W.; Chang, Yuan-Hao; Kuo, Tei-Wei; Vivet, P.; Wingard, D.

    2011-01-01

    Designing memory controllers for complex real-time and high-performance multi-processor systems-on-chip is challenging, since sufficient capacity and (real-time) performance must be provided in a reliable manner at low cost and with low power consumption. This special session contains four

  13. A cognitive assessment of highly superior autobiographical memory.

    Science.gov (United States)

    LePort, Aurora K R; Stark, Shauna M; McGaugh, James L; Stark, Craig E L

    2017-02-01

    Highly Superior Autobiographical Memory (HSAM) is characterised as the ability to accurately recall an exceptional number of experiences and their associated dates from events occurring throughout much of one's lifetime. The source of this ability has only begun to be explored. The present study explores whether other enhanced cognitive processes may be critical influences underlying HSAM abilities. We investigated whether enhanced abilities in the domains of verbal fluency, attention/inhibition, executive functioning, mnemonic discrimination, perception, visual working memory, or the processing of and memory for emotional details might contribute critically to HSAM. The results suggest that superior cognitive functioning is an unlikely basis of HSAM, as only modest advantages were found in only a few tests. In addition, we examined HSAM subjects' memory of the testing episodes. Interestingly, HSAM participants recalled details of their own experiences far better than those experiences that the experimenter shared with them. These findings provide additional evidence that HSAM involves, relatively selectively, recollection of personal, autobiographical material.

  14. High density submicron magnetoresistive random access memory (invited)

    Science.gov (United States)

    Tehrani, S.; Chen, E.; Durlam, M.; DeHerrera, M.; Slaughter, J. M.; Shi, J.; Kerszykowski, G.

    1999-04-01

    Various giant magnetoresistance material structures were patterned and studied for their potential as memory elements. The preferred memory element, based on pseudo-spin valve structures, was designed with two magnetic stacks (NiFeCo/CoFe) of different thickness with Cu as an interlayer. The difference in thickness results in dissimilar switching fields due to the shape anisotropy at deep submicron dimensions. It was found that a lower switching current can be achieved when the bits have a word line that wraps around the bit 1.5 times. Submicron memory elements integrated with complementary metal-oxide-semiconductor (CMOS) transistors maintained their characteristics and no degradation to the CMOS devices was observed. Selectivity between memory elements in high-density arrays was demonstrated.

  15. Highly Stretchable Non-volatile Nylon Thread Memory

    Science.gov (United States)

    Kang, Ting-Kuo

    2016-04-01

    Integration of electronic elements into textiles, to afford e-textiles, can provide an ideal platform for the development of lightweight, thin, flexible, and stretchable e-textiles. This approach will enable us to meet the demands of the rapidly growing market of wearable-electronics on arbitrary non-conventional substrates. However the actual integration of the e-textiles that undergo mechanical deformations during both assembly and daily wear or satisfy the requirements of the low-end applications, remains a challenge. Resistive memory elements can also be fabricated onto a nylon thread (NT) for e-textile applications. In this study, a simple dip-and-dry process using graphene-PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) ink is proposed for the fabrication of a highly stretchable non-volatile NT memory. The NT memory appears to have typical write-once-read-many-times characteristics. The results show that an ON/OFF ratio of approximately 103 is maintained for a retention time of 106 s. Furthermore, a highly stretchable strain and a long-term digital-storage capability of the ON-OFF-ON states are demonstrated in the NT memory. The actual integration of the knitted NT memories into textiles will enable new design possibilities for low-cost and large-area e-textile memory applications.

  16. Working memory capacity differentially influences responses to tDCS and HD-tDCS in a retro-cue task.

    Science.gov (United States)

    Gözenman, Filiz; Berryhill, Marian E

    2016-08-26

    There is growing interest in non-invasive brain stimulation techniques. A drawback is that the relationship between stimulation and cognitive outcomes for various tasks are unknown. Transcranial direct current stimulation (tDCS) provides diffuse current spread, whereas high-definition tDCS (HD-tDCS) provides more targeted current. The direction of behavioral effects after tDCS can be difficult to predict in cognitive realms such as attention and working memory (WM). Previously, we showed that in low and high WM capacity groups tDCS modulates performance in nearly equal and opposite directions on a change detection task, with improvement for the high capacity participants alone. Here, we used the retro-cue paradigm to test attentional shifting among items in WM to investigate whether WM capacity (WMC) predicted different behavioral consequences during anodal tDCS or HD-tDCS to posterior parietal cortex (PPC). In two experiments, with 24 participants each, we used different stimulus categories (colored circles, letters) and stimulation sites (right, left PPC). The results showed a significant (Experiment 1) or trending (Experiment 2) WMC x stimulation interaction. Compared to tDCS, after HD-tDCS the retro-cueing benefit was significantly greater for the low WMC group but numerically worse for the high WMC group. These data highlight the importance of considering group differences when using non-invasive neurostimulation techniques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Visual Short-Term Memory: is Capacity Dependent on Stimulus Complexity?

    DEFF Research Database (Denmark)

    Sørensen, Thomas Alrik

    complexity - which is dependent on the familiarity of a given stimulus - plays a more important role than the objective visual complexity of the objects stored. In several studies, we explored how familiarity influences the capacity of VSTM and our results indicate that VSTM capacity for familiar items...

  18. High oil prices: A non-OPEC capacity game

    International Nuclear Information System (INIS)

    Osmundsen, Petter; Asche, Frank; Misund, Baard; Mohn, Klaus

    2005-08-01

    The current high oil price is partly due to low investments in the oil industry the last decade. According to economic theory, exploration and development of new oil and gas fields should respond positively to increasing petroleum prices. But since the late 1990s, financial analysts have focused strongly on short-term accounting return measures, like RoACE, for benchmarking and valuation of international oil and gas companies. Consequently, the demand for strict capital discipline among oil and gas companies may have reduced their willingness to invest for future reserves and production growth. Thus, we have experienced an unusual combination of high oil prices and low investment levels in exploration and development. In many ways, the oil companies' focus on RoACE, at the expense of reserve replacement, resembles an implicit co-ordination on low capacity among non-OPEC petroleum producers. This is a partial explanation of the current high oil prices. By examining actual parameters used by the financial markets in pricing of oil companies, we address the issue of whether the low investment outcome could represent a long-term equilibrium. This is hardly likely, as oil companies are made aware that stronger emphasis is put on reserve replacement. (Author)

  19. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    Science.gov (United States)

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs. PMID:27504097

  20. An integrative view of storage of low- and high-level visual dimensions in visual short-term memory.

    Science.gov (United States)

    Magen, Hagit

    2017-03-01

    Efficient performance in an environment filled with complex objects is often achieved through the temporal maintenance of conjunctions of features from multiple dimensions. The most striking finding in the study of binding in visual short-term memory (VSTM) is equal memory performance for single features and for integrated multi-feature objects, a finding that has been central to several theories of VSTM. Nevertheless, research on binding in VSTM focused almost exclusively on low-level features, and little is known about how items from low- and high-level visual dimensions (e.g., colored manmade objects) are maintained simultaneously in VSTM. The present study tested memory for combinations of low-level features and high-level representations. In agreement with previous findings, Experiments 1 and 2 showed decrements in memory performance when non-integrated low- and high-level stimuli were maintained simultaneously compared to maintaining each dimension in isolation. However, contrary to previous findings the results of Experiments 3 and 4 showed decrements in memory performance even when integrated objects of low- and high-level stimuli were maintained in memory, compared to maintaining single-dimension objects. Overall, the results demonstrate that low- and high-level visual dimensions compete for the same limited memory capacity, and offer a more comprehensive view of VSTM.