WorldWideScience

Sample records for high capacity homogeneous

  1. Disruption of Pseudomonas putida by high pressure homogenization: a comparison of the predictive capacity of three process models for the efficient release of arginine deiminase.

    Science.gov (United States)

    Patil, Mahesh D; Patel, Gopal; Surywanshi, Balaji; Shaikh, Naeem; Garg, Prabha; Chisti, Yusuf; Banerjee, Uttam Chand

    2016-12-01

    Disruption of Pseudomonas putida KT2440 by high-pressure homogenization in a French press is discussed for the release of arginine deiminase (ADI). The enzyme release response of the disruption process was modelled for the experimental factors of biomass concentration in the broth being disrupted, the homogenization pressure and the number of passes of the cell slurry through the homogenizer. For the same data, the response surface method (RSM), the artificial neural network (ANN) and the support vector machine (SVM) models were compared for their ability to predict the performance parameters of the cell disruption. The ANN model proved to be best for predicting the ADI release. The fractional disruption of the cells was best modelled by the RSM. The fraction of the cells disrupted depended mainly on the operating pressure of the homogenizer. The concentration of the biomass in the slurry was the most influential factor in determining the total protein release. Nearly 27 U/mL of ADI was released within a single pass from slurry with a biomass concentration of 260 g/L at an operating pressure of 510 bar. Using a biomass concentration of 100 g/L, the ADI release by French press was 2.7-fold greater than in a conventional high-speed bead mill. In the French press, the total protein release was 5.8-fold more than in the bead mill. The statistical analysis of the completely unseen data exhibited ANN and SVM modelling as proficient alternatives to RSM for the prediction and generalization of the cell disruption process in French press.

  2. 超高压预处理对肌肉匀浆物凝胶保水特性的影响%Effects of High Pressure Treatment on Water Holding Capacity of Pork Homogenate Gelation

    Institute of Scientific and Technical Information of China (English)

    余小领; 王祎娟; 李学斌; 段虎; 马汉军; 刘萌

    2012-01-01

    Uniform experimental design was applied to study the effects of using high pressure and the treatment time on water holding capacity of pork homogenate gelation. The results showed that soluble protein concentration of homogenate and water holding capacity rate of gelation were increased while the pressure and the treatment time decreased. The trend of the dehydration rate of pork homogenate gelation was varied by different conditions. With longer high pressure treatment, the dehydration rate was increased along with the increasing of the pressure; but at the shorter treatment time, the result was inversed. If the pressure is fixed, the dehydration rate was increased first and then decreased along with treatment time.%采用均匀试验设计,研究不同压力和保压时间预处理对猪肉匀浆物凝胶保水特性的影响.结果表明:肌肉匀浆物中可溶性蛋白质浓度和凝胶的保水率均随着处理压力的降低和保压时间的缩短而逐渐升高;肌肉匀浆物凝胶的成胶脱水率变化趋势随处理条件的变化而不同,在保压时间较长时,随着压力的上升而增大;保压时间较短时,随着压力的升高而降低.相同压力下,凝胶的成胶脱水率随保压时间的延长呈先升后降的趋势.

  3. Homogenization of High-Contrast Brinkman Flows

    KAUST Repository

    Brown, Donald L.

    2015-04-16

    Modeling porous flow in complex media is a challenging problem. Not only is the problem inherently multiscale but, due to high contrast in permeability values, flow velocities may differ greatly throughout the medium. To avoid complicated interface conditions, the Brinkman model is often used for such flows [O. Iliev, R. Lazarov, and J. Willems, Multiscale Model. Simul., 9 (2011), pp. 1350--1372]. Instead of permeability variations and contrast being contained in the geometric media structure, this information is contained in a highly varying and high-contrast coefficient. In this work, we present two main contributions. First, we develop a novel homogenization procedure for the high-contrast Brinkman equations by constructing correctors and carefully estimating the residuals. Understanding the relationship between scales and contrast values is critical to obtaining useful estimates. Therefore, standard convergence-based homogenization techniques [G. A. Chechkin, A. L. Piatniski, and A. S. Shamev, Homogenization: Methods and Applications, Transl. Math. Monogr. 234, American Mathematical Society, Providence, RI, 2007, G. Allaire, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518], although a powerful tool, are not applicable here. Our second point is that the Brinkman equations, in certain scaling regimes, are invariant under homogenization. Unlike in the case of Stokes-to-Darcy homogenization [D. Brown, P. Popov, and Y. Efendiev, GEM Int. J. Geomath., 2 (2011), pp. 281--305, E. Marusic-Paloka and A. Mikelic, Boll. Un. Mat. Ital. A (7), 10 (1996), pp. 661--671], the results presented here under certain velocity regimes yield a Brinkman-to-Brinkman upscaling that allows using a single software platform to compute on both microscales and macroscales. In this paper, we discuss the homogenized Brinkman equations. We derive auxiliary cell problems to build correctors and calculate effective coefficients for certain velocity regimes. Due to the boundary effects, we construct

  4. Future High Capacity Backbone Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan

    This thesis - Future High Capacity Backbone Networks - deals with the energy efficiency problems associated with the development of future optical networks. In the first half of the thesis, novel approaches for using multiple/single alternative energy sources for improving energy efficiency...... the context of the integrated control plane structure. Results show improvements of energy efficiency over three types of traffic, while still keeping acceptable QoS levels for high priority traffic....

  5. High Information Capacity Quantum Imaging

    Science.gov (United States)

    2014-09-19

    the quantum nature of light), and detector reset time. Algorithmic : We provide a method for spatiotemporally-regularized estimation of intensity and...High Information Capacity Quantum Imaging This is the final report for the DARPA InPho program. In reality, we finished this program in early 2013...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Quantum Imaging, Photon Counting, LIDAR REPORT DOCUMENTATION PAGE 11

  6. High deposition rate nanocrystalline silicon with enhanced homogeneity

    NARCIS (Netherlands)

    Verkerk, A.; Rath, J.K.; Schropp, R.E.I.

    2010-01-01

    High rate growth of hydrogenated nanocrystalline silicon (nc-Si:H) brings additional challenges for the homogeneity in the growth direction, since the start-up effects affect a larger portion of the film, and the very high degree of depletion increases the influence of back diffusion from the inacti

  7. Preparation and characterization of paclitaxel nanosuspension using novel emulsification method by combining high speed homogenizer and high pressure homogenization.

    Science.gov (United States)

    Li, Yong; Zhao, Xiuhua; Zu, Yuangang; Zhang, Yin

    2015-07-25

    The aim of this study was to develop an alternative, more bio-available, better tolerated paclitaxel nanosuspension (PTXNS) for intravenous injection in comparison with commercially available Taxol(®) formulation. In this study, PTXNS was prepared by emulsification method through combination of high speed homogenizer and high pressure homogenization, followed by lyophilization process for intravenous administration. The main production parameters including volume ratio of organic phase in water and organic phase (Vo:Vw+o), concentration of PTX, content of PTX and emulsification time (Et), homogenization pressure (HP) and passes (Ps) for high pressure homogenization were optimized and their effects on mean particle size (MPS) and particle size distribution (PSD) of PTXNS were investigated. The characteristics of PTXNS, such as, surface morphology, physical status of paclitaxel (PTX) in PTXNS, redispersibility of PTXNS in purified water, in vitro dissolution study and bioavailability in vivo were all investigated. The PTXNS obtained under optimum conditions had an MPS of 186.8 nm and a zeta potential (ZP) of -6.87 mV. The PTX content in PTXNS was approximately 3.42%. Moreover, the residual amount of chloroform was lower than the International Conference on Harmonization limit (60 ppm) for solvents. The dissolution study indicated PTXNS had merits including effect to fast at the side of raw PTX and sustained-dissolution character compared with Taxol(®) formulation. Moreover, the bioavailability of PTXNS increased 14.38 and 3.51 times respectively compared with raw PTX and Taxol(®) formulation.

  8. High capacity carbon dioxide sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  9. High capacity immobilized amine sorbents

    Science.gov (United States)

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Filburn, Thomas

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  10. A kinematic wave model in Lagrangian coordinates incorporating capacity drop: Application to homogeneous road stretches and discontinuities

    Science.gov (United States)

    Yuan, Kai; Knoop, Victor L.; Hoogendoorn, Serge P.

    2017-01-01

    On freeways, congestion always leads to capacity drop. This means the queue discharge rate is lower than the pre-queue capacity. Our recent research findings indicate that the queue discharge rate increases with the speed in congestion, that is the capacity drop is strongly correlated with the congestion state. Incorporating this varying capacity drop into a kinematic wave model is essential for assessing consequences of control strategies. However, to the best of authors' knowledge, no such a model exists. This paper fills the research gap by presenting a Lagrangian kinematic wave model. "Lagrangian" denotes that the new model is solved in Lagrangian coordinates. The new model can give capacity drops accompanying both of stop-and-go waves (on homogeneous freeway section) and standing queues (at nodes) in a network. The new model can be applied in a network operation. In this Lagrangian kinematic wave model, the queue discharge rate (or the capacity drop) is a function of vehicular speed in traffic jams. Four case studies on links as well as at lane-drop and on-ramp nodes show that the Lagrangian kinematic wave model can give capacity drops well, consistent with empirical observations.

  11. High-temperature study of defects and homogeneity in glass

    Science.gov (United States)

    Yoon, Chang Hyun

    Glass frit has many useful applications in the glass and ceramic industries. Several attempts were made in this study to understand the origin of problems that generally occur when using glass frit. The effect of water/glass interactions on the rheology of glass suspension and the final properties of glass and glaze were studied. The dissolution of refractory inclusions and its influence on the bubble evolution, glass structure, and homogeneity of the resulting melt were also studied. The effects of long-term interaction of water with various frit suspensions were considered. The change in suspension rheology is associated with the ion concentration of the frit suspension, which strongly depends on the frit composition, additives, and solid content of frit suspension. Physical property and compositional variations resulted from dealkalization reactions between the frit particles and water. New investigative techniques for continuous monitoring and quantitative analysis of the dissolution of refractory inclusions in glass have been developed utilizing high-temperature microscopy with computer image analysis. The dissolution rates of refractory oxides in glass frit were measured utilizing hot-stage microscopy in the temperature range from 1050°C to 1400°C. The effects of dissolution on the structure of the final glass, were monitored by infrared spectroscopy. Homogenization of the resulting melts was studied using a Christiansen filter. It was found that melting temperature and time strongly influence the dissolution of refractory batch materials and subsequent homogenization rates, leading to large differences in final structures for glass melts and glazes which have not attained equilibrium.

  12. Homogenized Creep Behavior of CFRP Laminates at High Temperature

    Science.gov (United States)

    Fukuta, Y.; Matsuda, T.; Kawai, M.

    In this study, creep behavior of a CFRP laminate subjected to a constant stress is analyzed based on the time-dependent homogenization theory developed by the present authors. The laminate is a unidirectional carbon fiber/epoxy laminate T800H/#3631 manufactured by Toray Industries, Inc. Two kinds of creep analyses are performed. First, 45° off-axis creep deformation of the laminate at high temperature (100°C) is analyzed with three kinds of creep stress levels, respectively. It is shown that the present theory accurately predicts macroscopic creep behavior of the unidirectional CFRP laminate observed in experiments. Then, high temperature creep deformations at a constant creep stress are simulated with seven kinds of off-axis angles, i.e., θ = 0°, 10°, 30°, 45°, 60°, 75°, 90°. It is shown that the laminate has marked in-plane anisotropy with respect to the creep behavior.

  13. High deposition rate nanocrystalline silicon with enhanced homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Verkerk, Arjan; Rath, Jatindra K.; Schropp, Ruud [Section Nanophotonics-Physics of Devices, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands)

    2010-03-15

    High rate growth of hydrogenated nanocrystalline silicon (nc-Si:H) brings additional challenges for the homogeneity in the growth direction, since the start-up effects affect a larger portion of the film, and the very high degree of depletion increases the influence of back diffusion from the inactive region into the plasma zone. It was calculated that back diffusion plays a role in the regime for high deposition rate (4.5 nm/s) via the residence time for particles in the plasma and the corresponding diffusion length for silane from outside the plasma. The stabilization time for back diffusion was derived and found to be on the order of tens of seconds. Experiment showed that the incubation layer for nc-Si:H is very thick in films deposited at a high rate compared to films deposited in a regime of lower deposition rate. The use of a hydrogen plasma start greatly reduced this incubation layer. Further control of the crystalline fraction could be achieved via slight reduction of the degree of depletion via the silane flow. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. High-frequency homogenization for travelling waves in periodic media.

    Science.gov (United States)

    Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω2. We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω1=ω2 and [Formula: see text] where Λ=(λ1λ2…λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a⊙b is defined to be the vector (a1b1,a2b2,…,adbd ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  15. High-frequency homogenization for travelling waves in periodic media

    Science.gov (United States)

    Harutyunyan, Davit; Milton, Graeme W.; Craster, Richard V.

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector k and frequency ω1 plus a modulated Bloch carrier wave having crystal wavevector m and frequency ω2. We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω1=ω2 and (k -m )⊙Λ ∈2 π Zd, where Λ=(λ1λ2…λd) is the periodicity cell of the medium and for any two vectors a =(a1,a2,…,ad),b =(b1,b2,…,bd)∈Rd, the product a⊙b is defined to be the vector (a1b1,a2b2,…,adbd). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  16. Applications of high and ultra high pressure homogenization for food safety

    Directory of Open Access Journals (Sweden)

    Francesca Patrignani

    2016-08-01

    Full Text Available Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time (LTLT and high temperature short time (HTST treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure (HHP, pulsed electric field (PEF, ultrasound (US and high pressure homogenization (HPH. This last technique has been demonstrated to have a great potential to provide fresh-like products with prolonged shelf-life. Moreover, the recent developments in high-pressure-homogenization technology and the design of new homogenization valves able to withstand pressures up to 350-400 MPa have opened new opportunities to homogenization processing in the food industries and, consequently, permitted the development of new products differentiated from traditional ones by sensory and structural characteristics or functional properties. For this, this review deals with the principal mechanisms of action of high pressure homogenization against microorganisms of food concern in relation to the adopted homogenizer and process parameters. In addition, the effects of homogenization on foodborne pathogenic species inactivation in relation to the food matrix and food chemico-physical and process variables will be reviewed. Also the combined use of this alternative technology with other non-thermal technologies will be considered

  17. Rapid homogeneous endothelialization of high aspect ratio microvascular networks.

    Science.gov (United States)

    Naik, Nisarga; Hanjaya-Putra, Donny; Haller, Carolyn A; Allen, Mark G; Chaikof, Elliot L

    2015-08-01

    Microvascularization of an engineered tissue construct is necessary to ensure the nourishment and viability of the hosted cells. Microvascular constructs can be created by seeding the luminal surfaces of microfluidic channel arrays with endothelial cells. However, in a conventional flow-based system, the uniformity of endothelialization of such an engineered microvascular network is constrained by mass transfer of the cells through high length-to-diameter (L/D) aspect ratio microchannels. Moreover, given the inherent limitations of the initial seeding process to generate a uniform cell coating, the large surface-area-to-volume ratio of microfluidic systems demands long culture periods for the formation of confluent cellular microconduits. In this report, we describe the design of polydimethylsiloxane (PDMS) and poly(glycerol sebacate) (PGS) microvascular constructs with reentrant microchannels that facilitates rapid, spatially homogeneous endothelial cell seeding of a high L/D (2 cm/35 μm; > 550:1) aspect ratio microchannels. MEMS technology was employed for the fabrication of a monolithic, elastomeric, reentrant microvascular construct. Isotropic etching and PDMS micromolding yielded a near-cylindrical microvascular channel array. A 'stretch - seed - seal' operation was implemented for uniform incorporation of endothelial cells along the entire microvascular area of the construct yielding endothelialized microvascular networks in less than 24 h. The feasibility of this endothelialization strategy and the uniformity of cellularization were established using confocal microscope imaging.

  18. Applications of High and Ultra High Pressure Homogenization for Food Safety

    Science.gov (United States)

    Patrignani, Francesca; Lanciotti, Rosalba

    2016-01-01

    Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time and high temperature short time treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure, pulsed electric field, ultrasound (US), and high pressure homogenization (HPH). This last technique has been demonstrated to have a great potential to provide “fresh-like” products with prolonged shelf-life. Moreover, the recent developments in high-pressure-homogenization technology and the design of new homogenization valves able to withstand pressures up to 350–400 MPa have opened new opportunities to homogenization processing in the food industries and, consequently, permitted the development of new products differentiated from traditional ones by sensory and structural characteristics or functional properties. For this, this review deals with the principal mechanisms of action of HPH against microorganisms of food concern in relation to the adopted homogenizer and process parameters. In addition, the effects of homogenization on foodborne pathogenic species inactivation in relation to the food matrix and food chemico-physical and process variables will be reviewed. Also the combined use of this alternative technology with other non-thermal technologies will be considered. PMID:27536270

  19. Applications of High and Ultra High Pressure Homogenization for Food Safety.

    Science.gov (United States)

    Patrignani, Francesca; Lanciotti, Rosalba

    2016-01-01

    Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time and high temperature short time treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure, pulsed electric field, ultrasound (US), and high pressure homogenization (HPH). This last technique has been demonstrated to have a great potential to provide "fresh-like" products with prolonged shelf-life. Moreover, the recent developments in high-pressure-homogenization technology and the design of new homogenization valves able to withstand pressures up to 350-400 MPa have opened new opportunities to homogenization processing in the food industries and, consequently, permitted the development of new products differentiated from traditional ones by sensory and structural characteristics or functional properties. For this, this review deals with the principal mechanisms of action of HPH against microorganisms of food concern in relation to the adopted homogenizer and process parameters. In addition, the effects of homogenization on foodborne pathogenic species inactivation in relation to the food matrix and food chemico-physical and process variables will be reviewed. Also the combined use of this alternative technology with other non-thermal technologies will be considered.

  20. High capacity optical links for datacentre connectivity

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Usuga, Mario; Vegas Olmos, Juan José

    There is a timely and growing demand for high capacity optical data transport solutions to provide connectivity inside data centres and between data centres located at different geographical locations. The requirements for reach are in the order of 2 km for intra-datacentre and up to 100 km for i...

  1. A high capacity 3D steganography algorithm.

    Science.gov (United States)

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  2. Highly transparent films from carboxymethylated microfibrillated cellulose: The effect of multiple homogenization steps on key properties

    DEFF Research Database (Denmark)

    Siró, Istvan; Plackett, David; Hedenqvist, M.

    2011-01-01

    We produced microfibrillated cellulose by passing carboxymethylated sulfite-softwood-dissolving pulp with a relatively low hemicellulose content (4.5%) through a high-shear homogenizer. The resulting gel was subjected to as many as three additional homogenization steps and then used to prepare so...... of homogenization, whereas the mean tensile strength, modulus of elasticity, and strain at break were increased by two or three extra homogenization steps. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011...

  3. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    Energy Technology Data Exchange (ETDEWEB)

    Gravel, Roland [U.S. Department of Energy' s Vehicle Technologies Office, Washington, DC (United States); Maronde, Carl [National Energy Technology Lab. (NETL), Albany, OR (United States); Gehrke, Chris [Caterpillar, Inc., Peoria, IL (United States); Fiveland, Scott [Caterpillar, Inc., Peoria, IL (United States)

    2010-10-30

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well

  4. [Executive functions and high intellectual capacity].

    Science.gov (United States)

    Sastre-Riba, S; Viana-Saenz, L

    2016-01-01

    High intellectual capacity is a process in development in which the executive functions (inhibition, working memory and flexibility) play a role in the optimal manifestation of their potential. To explore the effectiveness of executive functioning among the profiles of high capacity giftedness and (convergent or divergent) talent. The study examines 78 children with high intellectual capacity aged 8-15 years with profiles of giftedness (n = 21), convergent talent (n = 39) or divergent talent (n = 18). A series of tests were administered including the Battery of Differential and General Aptitudes or the Differential Aptitude Test (depending on the age) and the Torrance Test of Creative Thinking, as well as the Wisconsin Card Sorting Test, the Corsi Test and the Go-No Go Test by means of the Psychology Experiment Building Language platform. A multivariate analysis of variance was performed to determine the relationship between executive function and intellectual profile. Significant differences are obtained between the profiles studied and the executive functions of flexibility and inhibition, but not in working memory. Working memory is similar across the profiles studied, but the complex profile of giftedness displays better executive functioning, with greater flexibility and inhibition than talent, especially of the convergent type.

  5. Dimensions of a class of high-dimensional homogeneous Moran sets and Moran classes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A class of high-dimensional homogeneous Moran sets and Moran classes are introduced and some dimensional properties are studied. The Hausdorff dimension, modified lower box-counting dimension, lower and upper box-counting dimension, and packing dimension of high-dimensional homogeneous and partial homogeneous Cantor sets are determined. Moreover, a kind of fractal E is obtained, which is not regular but with the property Dimw(Ed)=dDimw(E), where w denotes any of the dimensions mentioned above.

  6. High Capacity Radio over Fiber Transmission Links

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio

    . This achievement has satisfied the requirements on transmission robustness and high capacity of next generation hybrid optical fibre-wireless networks. One important contribution of this thesis is the novel concept of photonic downconversion with free-running pulsed laser source for phase modulated Radio...... confirmed that this configuration provides high linear end-to-end transmission links and is capable of transparent transport of high spectral efficient modulation formats. Furthermore, this thesis introduces a novel approach for the generation and detection of high speed wireless signals in mm...... of the writing of this thesis. In conclusion, the results presented in this thesis demonstrate the feasibility of photonic technologies for the generation, distribution and detection of high speed wireless signals. Furthermore, it opens the prospects for next generation hybrid wireless-wired access networks...

  7. Sewage sludge disintegration by high-pressure homogenization: A sludge disintegration model

    Institute of Scientific and Technical Information of China (English)

    Yuxuan Zhang; Panyue Zhang; Boqiang Ma; Hao Wu; Sheng Zhang; Xin Xu

    2012-01-01

    High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge.The effects of homogenization pressure,homogenization cycle number,and total solid content on sludge disintegration were investigated.The sludge disintegration degree (DDCOD),protein concentration,and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number,and decreased with the increase of sludge total solid (TS) content.The maximum DDCOD of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample.A HPH sludge disintegration model of DDcoo=kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters.The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively,showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N).The value of the rate constant k decreased with the increase of sludge total solid content.The specific energy consumption increased with the increment of sludge disintegration efficiency.Lower specific energy consumption was required for higher total solid content sludge.

  8. Educational Goals of Teachers in Heterogeneous and Homogeneous Classes in Elementary and Junior High Schools.

    Science.gov (United States)

    Rich, Yisrael

    1993-01-01

    Teachers of low-achieving homogeneous, high-achieving homogeneous, and academically heterogeneous classes in elementary and junior high schools in Israel were interviewed to determine their allegiance to academic, personal, and social goals for students. In contrast to results of U.S. research, academic goals dominated for teachers in all…

  9. (Ultra high pressure homogenization for continuous high pressure sterilization of pumpable foods - a review

    Directory of Open Access Journals (Sweden)

    Erika eGeorget

    2014-08-01

    Full Text Available Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for food industry which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to reduction of the organoleptic and nutritional properties of food and alternative are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra-high pressure homogenization (UHPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet and valve temperatures. This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work.

  10. Effect of high-pressure homogenization on different matrices of food supplements.

    Science.gov (United States)

    Martínez-Sánchez, Ascensión; Tarazona-Díaz, Martha Patricia; García-González, Antonio; Gómez, Perla A; Aguayo, Encarna

    2016-12-01

    There is a growing demand for food supplements containing high amounts of vitamins, phenolic compounds and mineral content that provide health benefits. Those functional compounds have different solubility properties, and the maintenance of their compounds and the guarantee of their homogenic properties need the application of novel technologies. The quality of different drinkable functional foods after thermal processing (0.1 MPa) or high-pressure homogenization under two different conditions (80 MPa, 33 ℃ and 120 MPa, 43 ℃) was studied. Physicochemical characteristics and sensory qualities were evaluated throughout the six months of accelerated storage at 40 ℃ and 75% relative humidity (RH). Aroma and color were better maintained in high-pressure homogenization-treated samples than the thermally treated ones, which contributed significantly to extending their shelf life. The small particle size obtained after high-pressure homogenization treatments caused differences in turbidity and viscosity with respect to heat-treated samples. The use of high-pressure homogenization, more specifically, 120 MPa, provided active ingredient homogeneity to ensure uniform content in functional food supplements. Although the effect of high-pressure homogenization can be affected by the food matrix, high-pressure homogenization can be implemented as an alternative to conventional heat treatments in a commercial setting within the functional food supplement or pharmaceutical industry.

  11. Homogenous BSCCO-2212 Round Wires for Very High Field Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Scott Campbell

    2012-06-30

    The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for {approx}18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50 T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb{sub 3}Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T{sub c} (HTS) counterparts, the HTS materials have

  12. SuPer-Homogenization (SPH) Corrected Cross Section Generation for High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramazan Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hummel, Andrew John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hiruta, Hikaru [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-03-01

    The deterministic full core simulators require homogenized group constants covering the operating and transient conditions over the entire lifetime. Traditionally, the homogenized group constants are generated using lattice physics code over an assembly or block in the case of prismatic high temperature reactors (HTR). For the case of strong absorbers that causes strong local depressions on the flux profile require special techniques during homogenization over a large volume. Fuel blocks with burnable poisons or control rod blocks are example of such cases. Over past several decades, there have been a tremendous number of studies performed for improving the accuracy of full-core calculations through the homogenization procedure. However, those studies were mostly performed for light water reactor (LWR) analyses, thus, may not be directly applicable to advanced thermal reactors such as HTRs. This report presents the application of SuPer-Homogenization correction method to a hypothetical HTR core.

  13. Building the UPPA high capacity tensiometer

    Directory of Open Access Journals (Sweden)

    Mendes Joao

    2016-01-01

    Full Text Available High capacity tensiometers (HCTs are sensors capable of directly measuring tensile pore water pressure (suction in soils. HCTs are typically composed of a casing that encapsulates a high air entry value ceramic filter, a water reservoir and a pressure sensing element. Since the creation of the first HCT by Ridley and Burland in 1993 at Imperial College London, HCTs have been almost exclusively built and used in academic research. The limited use in industrial applications can be explained by a lack of unsaturated soil mechanics knowledge among engineering practitioners but also by the technical difficulties associated to the direct measurement of tensile water pressures beyond the cavitation limit of -100kPa. In this paper, we present the recent design and manufacture of a new HCT at the Université de Pau et des Pays de l’Adour (UPPA in France. Different prototypes were tried by changing the main components of the device including the type of ceramic filter, pressure transducer and geometry of the external casing. In particular, two ceramic filters of distinct porosity, three pressure transducers with distinct materials/geometries and four casing designs were tested.

  14. Homogenous BSCCO-2212 Round Wires for Very High Field Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Scott Campbell

    2012-06-30

    The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for {approx}18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50 T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb{sub 3}Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T{sub c} (HTS) counterparts, the HTS materials have

  15. High-pressure homogenization lowers water vapor permeability of soybean protein isolate-beeswax films.

    Science.gov (United States)

    Zhang, Chao; Ma, Yue; Guo, Kuan; Zhao, Xiaoyan

    2012-03-07

    Soybean-protein isolate (SPI) has excellent film-forming capacity. However, the water vapor permeability of SPI film is high, which will cause the moisture lose of packaged products. The effect of high-pressure homogenization (HPH) on the water vapor permeability of SPI-beeswax films was evaluated. The HPH was effective at lowering the water vapor permeability of SPI-beeswax films to about 50% of the control. The HPH reduced the particle size of films and made their matrix more compact. The HPH improved the hydrophobicity of SPI-beeswax films. For the first time, we proved that the HPH improved the bound-beeswax content in SPI-beeswax films. The bound beeswax was effective at lowering the water vapor permeability of films rather than the free beeswax in the film matrix. In summary, the HPH lowered water vapor permeability of SPI-beeswax films by reducing their particle size and raising their hydrophobicity and bound-beeswax content.

  16. Interior Regularity Estimates in High Conductivity Homogenization and Application

    CERN Document Server

    Briane, Marc; Nguyen, Luc

    2011-01-01

    In this paper, uniform pointwise regularity estimates for the solutions of conductivity equations are obtained in a unit conductivity medium reinforced by a epsilon-periodic lattice of highly conducting thin rods. The estimates are derived only at a distance epsilon^{1+tau} (for some tau>0) away from the fibres. This distance constraint is rather sharp since the gradients of the solutions are shown to be unbounded locally in L^p as soon as p>2. One key ingredient is the derivation in dimension two of regularity estimates to the solutions of the equations deduced from a Fourier series expansion with respect to the fibres direction, and weighted by the high-contrast conductivity. The dependence on powers of epsilon of these two-dimensional estimates is shown to be sharp. The initial motivation for this work comes from imaging, and enhanced resolution phenomena observed experimentally in the presence of micro-structures. We use these regularity estimates to characterize the signature of low volume fraction heter...

  17. Interior Regularity Estimates in High Conductivity Homogenization and Application

    Science.gov (United States)

    Briane, Marc; Capdeboscq, Yves; Nguyen, Luc

    2013-01-01

    In this paper, uniform pointwise regularity estimates for the solutions of conductivity equations are obtained in a unit conductivity medium reinforced by an ɛ-periodic lattice of highly conducting thin rods. The estimates are derived only at a distance ɛ 1+ τ (for some τ > 0) away from the fibres. This distance constraint is rather sharp since the gradients of the solutions are shown to be unbounded locally in L p as soon as p > 2. One key ingredient is the derivation in dimension two of regularity estimates to the solutions of the equations deduced from a Fourier series expansion with respect to the fibres' direction, and weighted by the high-contrast conductivity. The dependence on powers of ɛ of these two-dimensional estimates is shown to be sharp. The initial motivation for this work comes from imaging, and enhanced resolution phenomena observed experimentally in the presence of micro-structures (L erosey et al., Science 315:1120-1124, 2007). We use these regularity estimates to characterize the signature of low volume fraction heterogeneities in the fibred reinforced medium, assuming that the heterogeneities stay at a distance ɛ 1+ τ away from the fibres.

  18. Towards green high capacity optical networks

    Science.gov (United States)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.

    2012-02-01

    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  19. Manufacture of acid gels from skim milk using high-pressure homogenization.

    Science.gov (United States)

    Hernández, A; Harte, F M

    2008-10-01

    The effect of high-pressure homogenization (HPH) alone or in combination with a thermal treatment (TT) was investigated for the manufacture of acid gels from skim milk. Raw skim milk was subjected to HPH (0 to 350 MPa) or a TT (90 degrees C, 5 min), or both, in the following processing combinations: 1) HPH, 2) HPH followed by TT, 3) TT followed by HPH, 4) TT, and 5) raw milk (control). After treatments, L* (lightness) values were measured, and then skim milk was acidified with 3% glucono-delta-lactone and rheological properties (G' and gelation time), and whey holding capacity was evaluated. Treatments in which HPH and TT were combined showed greater L* values than those in which just HPH was applied. In all treatments, the L* values decreased as the pressure was increased up to 300 MPa with little change afterward. Gelation times were lower when HPH was combined with TT compared with the acid skim milk gels that were just pressure treated. The final G' in gels obtained from skim milk subjected to the combined process (HPH and TT) was greater and pressure-dependent compared with all other gels. A maximum G' (~320 Pa) was observed with skim milk subjected to a combination of thermal processing before or after HPH at 350 MPa. Acid gels obtained from HPH milk at 350 MPa showed a linear decrease in whey holding capacity over time, retaining 20% more whey after centrifugation for 25 min compared with samples treated at lower pressures and all other treatments. Our results suggest that HPH in combination with TT can be used to improve the rheological properties and stability of yogurt, thus decreasing the need for additives.

  20. Highly Directional Small-Size Antenna Designed with Homogeneous Transformation Optics

    Directory of Open Access Journals (Sweden)

    Zuojia Wang

    2014-01-01

    Full Text Available Achieving high directivity antenna usually requires a large size antenna aperture in traditional antenna design. Previous work shows that, with the help of metamaterials and transformation optics, a small size antenna can perform as high directivity as a large size antenna, but the material parameters are inhomogeneous and difficult to realize. In this paper, we propose a linear homogeneous coordinate transformation to design the small size antenna. Distinguishing from inhomogeneous transformation, we construct a regular polygon in virtual space and then divide it into several triangle segments. By applying linear homogeneous coordinate transformation, the antenna devices can be greatly compressed without disturbing the radiation patterns by using homogeneous metamaterial substrates. The material parameters of the antenna designed from this method are homogeneous and easy to fabricate. Square and hexagonal antenna structures are numerically demonstrated to illustrate the validity of our methodology.

  1. Investigation of Ozone Yield of Air Fed Ozonizer by High Pressure Homogeneous Dielectric Barrier Discharge

    Science.gov (United States)

    2013-07-01

    field strength in the discharge. In order to clarify this phenomenon, further study on the gas analysis within the ozone gas by an FTIR spectrometer...31st ICPIG, July 14-19, 2013, Granada, Spain Investigation of ozone yield of air fed ozonizer by high pressure homogeneous dielectric barrier... ozonizer and found that the ozone yield is higher by the homogeneous discharge mode than by the conventional filamentary discharge mode in larger

  2. Lambda-Cyhalothrin Nanosuspension Prepared by the Melt Emulsification-High Pressure Homogenization Method

    OpenAIRE

    Zhenzhong Pan; Bo Cui; Zhanghua Zeng; Lei Feng; Guoqiang Liu; Haixin Cui; Hongyu Pan

    2015-01-01

    The nanosuspension of 5% lambda-cyhalothrin with 0.2% surfactants was prepared by the melt emulsification-high pressure homogenization method. The surfactants composition, content, and homogenization process were optimized. The anionic surfactant (1-dodecanesulfonic acid sodium salt) and polymeric surfactant (maleic rosin-polyoxypropylene-polyoxyethylene ether sulfonate) screened from 12 types of commercially common-used surfactants were used to prepare lambda-cyhalothrin nanosuspension with ...

  3. Effect of moderate inlet temperatures in ultra-high-pressure homogenization treatments on physicochemical and sensory characteristics of milk.

    Science.gov (United States)

    Amador-Espejo, G G; Suàrez-Berencia, A; Juan, B; Bárcenas, M E; Trujillo, A J

    2014-02-01

    The effect of ultra-high-pressure homogenization (UHPH) on raw whole milk (3.5% fat) was evaluated to obtain processing conditions for the sterilization of milk. Ultra-high-pressure homogenization treatments of 200 and 300 MPa at inlet temperatures (Ti) of 55, 65, 75, and 85 °C were compared with a UHT treatment (138 °C for 4s) in terms of microbial inactivation, particle size and microstructure, viscosity, color, buffering capacity, ethanol stability, propensity to proteolysis, and sensory evaluation. The UHPH-treated milks presented a high level of microbial reduction, under the detection limit, for treatments at 300 MPa with Ti of 55, 65, 75, and 85 °C, and at 200 MPa with Ti = 85 °C, and few survivors in milks treated at 200 MPa with Ti of 55, 65, and 75 °C. Furthermore, UHPH treatments performed at 300 MPa with Ti = 75 and 85 °C produced sterile milk after sample incubation (30 and 45 °C), obtaining similar or better characteristics than UHT milk in color, particle size, viscosity, buffer capacity, ethanol stability, propensity to protein hydrolysis, and lower scores in sensory evaluation for cooked flavor.

  4. Pricing Strategy in Online Retailing Marketplaces of Homogeneous Goods: Should High Reputation Seller Charge More?

    Science.gov (United States)

    Liu, Yuewen; Wei, Kwok Kee; Chen, Huaping

    There are two conflicting streams of research findings on pricing strategy: one is high reputation sellers should charge price premium, while the other is high reputation sellers should charge relatively low price. Motivated by this confliction, this study examines pricing strategy in online retailing marketplace of homogeneous goods. We conduct an empirical study using data collected from a dominant online retailing marketplace in China. Our research results indicate that, in online retailing marketplace of homogeneous goods, high reputation sellers should charge relatively low price, because the consumers of high reputation sellers are more price sensitive than the consumers of low reputation sellers.

  5. Physicochemical properties of lecithin-based nanoemulsions obtained by spontaneous emulsification or high-pressure homogenization

    Directory of Open Access Journals (Sweden)

    Roselena S. Schuh

    2014-01-01

    Full Text Available Nanoemulsions composed of a medium-chain triglyceride oil core stabilized by rapeseed or sunflower lecithins were prepared by spontaneous emulsification and high-pressure homogenization. These nanoemulsions are compared with formulations stabilized by egg lecithin. Nanoemulsions obtained by high-pressure homogenization display larger droplet size (230 to 440 nm compared with those obtained by spontaneous emulsification (190 to 310 nm. The zeta potentials of the emulsions were negative and below -25 mV. Zeta potential inversion occurred between pH 3.0 and 4.0. The results demonstrate the feasibility of preparing lipid emulsions comprising rapeseed or sunflower lecithins by spontaneous emulsification and high-pressure homogenization.

  6. Developing Leadership Capacity in Others: An Examination of High School Principals' Personal Capacities for Fostering Leadership

    Science.gov (United States)

    Huggins, Kristin Shawn; Klar, Hans W.; Hammonds, Hattie L.; Buskey, Frederick C.

    2017-01-01

    In this multisite case study, we examine the personal capacities of six high school principals who have developed the leadership capacities of other leaders in their respective schools. Participants were purposefully selected by two teams of researchers in two states of the United States, one on the east coast and one on the west coast, who…

  7. Microstructural evolution of high strength 7B04 ingot during homogenization treatment

    Institute of Scientific and Technical Information of China (English)

    LI Nian-kui; CUI Jian-zhong

    2008-01-01

    The evolution of the microstructure and phases of the direct chill semicontinuous casting ingot of 7B04 super-high strength aluminum alloy during homogenization treatment was studied with metallographic analysis, scanning electron microscopy(SEM), energy spectroscopy and differential scanning calorimetry(DSC). The results show that a considerable amount of non-equilibrium eutectics containing Al, Zn, Cu and Mg exist in the direct chill semicontinuous casting ingot of 7B04 super-high strength aluminum alloy, and their melting point is 478 ℃. During homogenization treatment at 470 ℃, these eutectics dissolve into the matrix partly, coarsen and also transform into Al2CuMg phase whose equilibrium melting point is 490 ℃ in the alloy. Moreover, the homogenization treatment at 470 ℃ for 72 h results in the disappearance of the non-equilibrium eutectics though Al2CuMg phase can not dissolve completely.

  8. Effective production of bioenergy from marine Chlorella sp. by high-pressure homogenization

    Directory of Open Access Journals (Sweden)

    Woon Yong Choi

    2016-01-01

    Full Text Available This study investigated the use of a high-pressure homogenization process for the production of high shear stress on Chlorella sp. cells in order to effectively degrade their cell walls. The high-pressure homogenization process was conducted by using various pressure conditions in the range of 68.94–275.78 MPa with different numbers of repeated cycles. The optimal high-pressure homogenization pretreatment conditions were found to be two cycles at a pressure of 206.84 MPa, which provided an extraction yield of 20.35% (w/w total cellular lipids. In addition, based on the confocal microscopic images of Chlorella sp. cells stained by using nile red, the walls of Chlorella sp. cells were disrupted more effectively using this process when compared with the disruption achieved by conventional lipid-extraction processes. By using the by-product of Chlorella sp., 47.3% ethanol was obtained from Saccharomyces cerevisiae cultures. These results showed that the high-pressure homogenization process efficiently hydrolysed this marine resource for subsequent bioethanol production by using only water.

  9. Capacity Bounds and High-SNR Capacity of MIMO Intensity-Modulation Optical Channels

    KAUST Repository

    Chaaban, Anas

    2017-06-01

    The capacity of the intensity modulation direct detection multiple-input multiple-output channel is studied. Therein, the nonnegativity constraint of the transmit signal limits the applicability of classical schemes, including precoding. Thus, new ways are required for deriving capacity lower and upper bounds for this channel. To this end, capacity lower bounds are developed by deriving the achievable rates of two precoding-free schemes: Channel inversion and QR decomposition. The achievable rate of a DC-offset SVD-based scheme is also derived as a benchmark. Then, capacity upper bounds are derived and compared against the lower bounds. As a result, the capacity at high signal-to-noise ratio (SNR) is characterized for the case where the number of transmit apertures is not larger than the number of receive apertures, and is shown to be achievable by the QR decomposition scheme. This is shown for a channel with average intensity or peak intensity constraints. For a channel with both constraints, the high-SNR capacity is approximated within a small gap. Extensions to a channel with more transmit apertures than receive apertures are discussed, and capacity bounds for this case are derived.

  10. Optimization of curcumin loaded lipid nanoparticles formulated using high shear homogenization (HSH) and ultrasonication (US) methods.

    Science.gov (United States)

    Puglia, Carmelo; Offerta, Alessia; Rizza, Luisa; Zingale, Giuseppe; Bonina, Francesco; Ronsisvalle, Simone

    2013-10-01

    Lipid nanoparticles (LN) are drug carriers possessing advantages with respect to stability, drug release profile, and biocompatibility. There are several production methods for lipid nanoparticles. Recently high shear homogenization (HSH) and ultrasound (US) techniques have been used to produce these systems in a cheaper and easier way. The objective of the present study was to evaluate the effect of same important instrumental parameters, such as homogenization time (HT) and ultrasonication time (UT), on particle size (MD) and polydispersity index (PDI) of LNs obtained by HSH-US techniques. Curcumin was used as a model drug to be incapsulated in the LNs. LN were prepared by HSH-US technique using tripalmitin (Dynasan 116) and poloxamer 188 (Lutrol F68) as solid lipid and surfactant, respectively. The preparations were characterized and then evaluated using a factorial design study. From the results obtained, LNs produced by HSH-US method were characterized by nanodimension, high homogeneity and encapsulation efficiency. US technology plays an important role in controlling the final dimension of LN dispersion, while longer times of HSH seem mainly to exert a positive effect on the final homogeneity of particle dispersion. Additional studies are in progress to evaluate drug release profile from LNs, for further in vitro/in vivo correlation studies.

  11. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    Science.gov (United States)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  12. High-frequency homogenization of zero frequency stop band photonic and phononic crystals

    CERN Document Server

    Antonakakis, Tryfon; Guenneau, Sebastien

    2013-01-01

    We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...

  13. The effect of high pressure homogenization on the activity of a commercial β-galactosidase.

    Science.gov (United States)

    Tribst, Alline A L; Augusto, Pedro E D; Cristianini, Marcelo

    2012-11-01

    High pressure homogenization (HPH) has been proposed as a promising method for changing the activity and stability of enzymes. Therefore, this research studied the activity of β-galactosidase before and after HPH. The enzyme solution at pH values of 6.4, 7.0, and 8.0 was processed at pressures of up to 150 MPa, and the effects of HPH were determined from the residual enzyme activity measured at 5, 30, and 45 °C immediately after homogenization and after 1 day of refrigerated storage. The results indicated that at neutral pH the enzyme remained active at 30 °C (optimum temperature) even after homogenization at pressures of up to 150 MPa. On the contrary, when the β-galactosidase was homogenized at pH 6.4 and 8.0, a gradual loss of activity was observed, reaching a minimum activity (around 30 %) after HPH at 150 MPa and pH 8.0. After storage, only β-galactosidase that underwent HPH at pH 7.0 retained similar activity to the native sample. Thus, HPH did not affect the activity and stability of β-galactosidase only when the process was carried out at neutral pH; for the other conditions, HPH resulted in partial inactivation of the enzyme. Considering the use of β-galactosidase to produce low lactose milk, it was concluded that HPH can be applied with no deleterious effects on enzyme activity.

  14. Photovoltaics for high capacity space power systems

    Science.gov (United States)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  15. High-pressure pulsed avalanche discharges: Formulas for required preionization density and rate for homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Brenning, N.; Axnaes, I.; Nilsson, J.O.; Eninger, J.E. [Royal Inst. of Tech., Stockholm (Sweden)

    1997-02-01

    The requirements on preionization for the formation of spatially homogeneous pulsed avalanche discharges are examined. The authors derive two formulas which apply in the case of a slowly rising electric field, one which gives the required preionization density at breakdown, and one which gives the required preionization rate. These quantities are expressed as functions of the electrochemical properties of the gas, the neutral density, and the electric field rise time. They also treat the statistical effect that the electrons tend to form groups, in contrast to being randomly distributed in space, during the prebreakdown phase. This process is found to increase the required preionization rate significantly, typically by a factor of five for a discharge at atmospheric pressure. Homogeneous high-pressure discharges have been used for laser excitation, and have also been proposed for chemical plasma processing (ozone production) because of their good scaling properties and high efficiency.

  16. Radiation Tolerant, High Capacity Non-Volatile Memory Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for reliable, high capacity, radiation tolerant nonvolatile memory exists in many Human space flight applications. Most projects rely on COTS hardware for a...

  17. High capacity anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  18. Interactions between high pressure homogenization and antimicrobial activity of lysozyme and lactoperoxidase.

    Science.gov (United States)

    Vannini, L; Lanciotti, R; Baldi, D; Guerzoni, M E

    2004-07-15

    It was the objective of this work to evaluate the effect of high pressure homogenization on the activity of antimicrobial enzymes such as lysozyme and lactoperoxidase against a selected group of Gram positive and Gram negative species inoculated in skim milk. Lactobacillus helveticus, Lactobacillus plantarum and Listeria monocytogenes were the most pressure resistant species while Bacillus subtilis, Pseudomonas putida, Salmonella typhimurium, Staphylococcus aureus, Proteus vulgaris and Salmonella enteritidis were found to be very sensitive to the hyperbaric treatment. The enzyme addition enhanced the instantaneous pressure efficacy on almost all the considered species as indicated by their instantaneous viability loss following the treatment. Moreover, the combination of the enzyme and high pressure homogenization significantly affected the recovery and growth dynamics of several of the considered species. Although L. monocytogenes was slightly sensitive to pressure, the combination of the two stress factors induced a significant viability loss within 3 h and an extension of lag phases in skim milk during incubation at 37 degrees C. The hypothesis formulated in this work is that the interaction of high pressure homogenization and lysozyme or lactoperoxidase is associated to conformational modifications of the two proteins with a consequent enhancement of their activity. This hypothesis is supported by the experimental results also regarding the increased antimicrobial activity against L. plantarum of the previously pressurised lysozyme with respect to that of the native enzyme.

  19. High visual working memory capacity in trait social anxiety.

    Directory of Open Access Journals (Sweden)

    Jun Moriya

    Full Text Available Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions.

  20. Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax

    Science.gov (United States)

    Asmawati, Mustapha, Wan Aida Wan; Yusop, Salma Mohamad; Maskat, Mohamad Yusof; Shamsuddin, Ahmad Fuad

    2014-09-01

    This work aims at determining the optimized parameter to prepare cinnamaldehyde nanoemulsion by using high pressure homogenizer (2 passes at 900 bar) and ultra turrax T25 (12000 rpm for 5 min). Thirteen formulation of cinnamaldehyde nanoemulsion obtained by Design Expert software were prepared at a range of oil and surfactant concentration between of 5% and 10% (v/v). Commercial cinnamaldehyde was blended with deionized water and Tween 80 (emulsifier). The responses used in obtaining the optimized condition were droplet size, polydispersity index (PDI) and emulsion stability (ζ-potential). Result showed that nanoemulsion prepared using 5% (v/v) cinnamaldehyde and 5% (v/v) Tween 80 and homogenized using high pressure homogenizer (APV, Germany) has the smallest size of droplet. The response surface plots for droplet size showed that droplet size (diameter, nm) decreased as the concentration of cinnamaldehyde oil and Tween 80 decreased. However ζ-potential value (mV) showed an increment as the cinnamaldehyde oil concentration decreased and Tween 80 increased. The optimum formulation as predicted by response surface methodology in order to produce a stable cinnamaldehyde nanoemulsion was at 5% cinnamaldehyde oil and 7.11% Tween 80. At this optimized conditions the droplet size and ζ-potential values were 56.56 nm and -4.32 mV, respectively.

  1. A universal homogeneous assay for high-throughput determination of binding kinetics.

    Science.gov (United States)

    Schiele, Felix; Ayaz, Pelin; Fernández-Montalván, Amaury

    2015-01-01

    There is an increasing demand for assay technologies that enable accurate, cost-effective, and high-throughput measurements of drug-target association and dissociation rates. Here we introduce a universal homogeneous kinetic probe competition assay (kPCA) that meets these requirements. The time-resolved fluorescence energy transfer (TR-FRET) procedure combines the versatility of radioligand binding assays with the advantages of homogeneous nonradioactive techniques while approaching the time resolution of surface plasmon resonance (SPR) and related biosensors. We show application of kPCA for three important target classes: enzymes, protein-protein interactions, and G protein-coupled receptors (GPCRs). This method is capable of supporting early stages of drug discovery with large amounts of kinetic information.

  2. Homogeneously embedded Pt nanoclusters on amorphous titania matrix as highly efficient visible light active photocatalyst material

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vipul; Kumar, Suneel; Krishnan, Venkata, E-mail: vkn@iitmandi.ac.in

    2016-08-15

    A novel and facile technique, based on colloidal synthesis route, has been utilized for the preparation of homogeneously embedded Pt nanoclusters on amorphous titania matrix. The material has been thoroughly characterized using high resolution transmission electron microscopy, energy dispersive x-ray analysis, powder x-ray diffraction, optical and Raman spectroscopic techniques to understand the morphology, structure and other physical characteristics. The photocatalytic activity of the material under visible light irradiation was demonstrated by investigations on the degradation of two organic dyes (methylene blue and rhodamine B). In comparison to other Pt−TiO{sub 2} based nanomaterials (core-shell, doped nanostructures, modified nanotubes, decorated nanospheres and binary nanocomposites), the embedded Pt nanoclusters on titania was found to be highly efficient for visible light active photocatalytic applications. The enhanced catalytic performance could be attributed to the efficient charge separation and decreased recombination of the photo generated electrons and holes at the Pt-titania interface and the availability of multiple metal-metal oxide interfaces due to homogeneous embedment of Pt nanoclusters on amorphous titania. In essence, this work illustrates that homogeneous embedment of noble metal nanoparticles/nanoclusters on semiconductor metal oxide matrices can lead to tuning of the photophysical properties of the final material and eventually enhance its photocatalytic activity. - Highlights: • Homogeneously embedded Pt nanoclusters on amorphous titania matrix has been prepared. • Facile low temperature colloidal synthesis technique has been used. • Enhanced catalytic performance could be observed. • Work can pave way for tuning photocatalytic activity of composite materials.

  3. High Methane Storage Capacity in Aluminum Metal–Organic Frameworks

    OpenAIRE

    Gándara, Felipe; Furukawa, Hiroyasu; Lee, Seungkyu; Yaghi, Omar M.

    2014-01-01

    The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and methane adsorption properties of two new aluminum metal–organic frameworks, MOF-519 and MOF-520. Both materials exhibit permanent porosity and high methane volumetric storage capacity: MOF-519 has a volumetric capacity of 200 and 279 cm3 cm–3 at 298 K and 35 and 80 bar, respectively, and MOF-520 has a volumetric capacity of 162 ...

  4. High-throughput method for optimum solubility screening for homogeneity and crystallization of proteins

    Science.gov (United States)

    Kim, Sung-Hou [Moraga, CA; Kim, Rosalind [Moraga, CA; Jancarik, Jamila [Walnut Creek, CA

    2012-01-31

    An optimum solubility screen in which a panel of buffers and many additives are provided in order to obtain the most homogeneous and monodisperse protein condition for protein crystallization. The present methods are useful for proteins that aggregate and cannot be concentrated prior to setting up crystallization screens. A high-throughput method using the hanging-drop method and vapor diffusion equilibrium and a panel of twenty-four buffers is further provided. Using the present methods, 14 poorly behaving proteins have been screened, resulting in 11 of the proteins having highly improved dynamic light scattering results allowing concentration of the proteins, and 9 were crystallized.

  5. Effects of ultra-high pressure homogenization on the cheese-making properties of milk.

    Science.gov (United States)

    Zamora, A; Ferragut, V; Jaramillo, P D; Guamis, B; Trujillo, A J

    2007-01-01

    The effects of single- or 2-stage ultra-high pressure homogenization (UHPH; 100 to 330 MPa) at an inlet temperature of 30 degrees C on the cheese-making properties of bovine milk were investigated. Effects were compared with those from raw, heat-pasteurized (72 degrees C for 15 s), and conventional homogenized-pasteurized (15 + 3 MPa, 72 degrees C for 15 s) treatments. Rennet coagulation time, rate of curd firming, curd firmness, wet yield, and moisture content of curds were assessed. Results of particle size and distribution of milk, whey composition, and gel microstructure observed by confocal laser scanning microscopy were analyzed to understand the effect of UHPH. Single-stage UHPH at 200 and 300 MPa enhanced rennet coagulation properties. However, these properties were negatively affected by the use of the UHPH secondary stage. Increasing the pressure led to higher yields and moisture content of curds. The improvement in the cheese-making properties of milk by UHPH could be explained by changes to the protein-fat structures due to the combined effect of heat and homogenization.

  6. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    Science.gov (United States)

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk.

  7. Holographic memory module with ultra-high capacity and throughput

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir A. Markov, Ph.D.

    2000-06-04

    High capacity, high transfer rate, random access memory systems are needed to archive and distribute the tremendous volume of digital information being generated, for example, the human genome mapping and online libraries. The development of multi-gigabit per second networks underscores the need for next-generation archival memory systems. During Phase I we conducted the theoretical analysis and accomplished experimental tests that validated the key aspects of the ultra-high density holographic data storage module with high transfer rate. We also inspected the secure nature of the encoding method and estimated the performance of full-scale system. Two basic architectures were considered, allowing for reversible compact solid-state configuration with limited capacity, and very large capacity write once read many memory system.

  8. Development of high capacity Stirling type pulse tube cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Imura, J. [College of Science and Technology, Nihon University, 7-24-1, Narashinodai, Funabashi-shi, Chiba 274-8501 (Japan)], E-mail: junnosuke_imura@yahoo.co.jp; Shinoki, S.; Sato, T.; Iwata, N.; Yamamoto, H.; Yasohama, K. [College of Science and Technology, Nihon University, 7-24-1, Narashinodai, Funabashi-shi, Chiba 274-8501 (Japan); Ohashi, Y.; Nomachi, H.; Okumura, N. [Aisin Seiki Co., Ltd., 2-1, Asahi-machi, Kariya, Aichi 448-8650 (Japan); Nagaya, S.; Tamada, T.; Hirano, N. [Chubu Electric Power Co., Inc., 1, Toshin-cho, Higashi-ku, Nagoya-shi, Aichi 261-8680 (Japan)

    2007-10-01

    We have been developing a Stirling type pulse tube cryocooler, aiming for a cooling capacity of 200 W at 80 K for a superconducting magnetic energy storage system. In this work, we adopted stainless steel meshes for the regenerator of the cryocooler, and studied the influences of the mesh number on the cooling capacity. The prepared mesh numbers were 150, 200, 250, 350 and 400. Using 250 mesh, and at a frequency of 45 Hz and power consumption of 3.1 kW, the achievable lowest temperature and cooling capacity at 80 K was 46.2 K and 123 W, respectively. Furthermore, in order to optimize the performance, some regenerators were made by stacking several kinds of meshes with different stacking orders. Using these regenerators, we have obtained a high cooling capacity of 169 W at 80 K with power consumption of 4 kW.

  9. Development of high capacity Stirling type pulse tube cryocooler

    Science.gov (United States)

    Imura, J.; Shinoki, S.; Sato, T.; Iwata, N.; Yamamoto, H.; Yasohama, K.; Ohashi, Y.; Nomachi, H.; Okumura, N.; Nagaya, S.; Tamada, T.; Hirano, N.

    2007-10-01

    We have been developing a Stirling type pulse tube cryocooler, aiming for a cooling capacity of 200 W at 80 K for a superconducting magnetic energy storage system. In this work, we adopted stainless steel meshes for the regenerator of the cryocooler, and studied the influences of the mesh number on the cooling capacity. The prepared mesh numbers were #150, 200, 250, 350 and 400. Using #250 mesh, and at a frequency of 45 Hz and power consumption of 3.1 kW, the achievable lowest temperature and cooling capacity at 80 K was 46.2 K and 123 W, respectively. Furthermore, in order to optimize the performance, some regenerators were made by stacking several kinds of meshes with different stacking orders. Using these regenerators, we have obtained a high cooling capacity of 169 W at 80 K with power consumption of 4 kW.

  10. High methane storage capacity in aluminum metal-organic frameworks.

    Science.gov (United States)

    Gándara, Felipe; Furukawa, Hiroyasu; Lee, Seungkyu; Yaghi, Omar M

    2014-04-09

    The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and methane adsorption properties of two new aluminum metal-organic frameworks, MOF-519 and MOF-520. Both materials exhibit permanent porosity and high methane volumetric storage capacity: MOF-519 has a volumetric capacity of 200 and 279 cm(3) cm(-3) at 298 K and 35 and 80 bar, respectively, and MOF-520 has a volumetric capacity of 162 and 231 cm(3) cm(-3) under the same conditions. Furthermore, MOF-519 exhibits an exceptional working capacity, being able to deliver a large amount of methane at pressures between 5 and 35 bar, 151 cm(3) cm(-3), and between 5 and 80 bar, 230 cm(3) cm(-3).

  11. High Methane Storage Capacity in Aluminum Metal–Organic Frameworks

    Science.gov (United States)

    2015-01-01

    The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and methane adsorption properties of two new aluminum metal–organic frameworks, MOF-519 and MOF-520. Both materials exhibit permanent porosity and high methane volumetric storage capacity: MOF-519 has a volumetric capacity of 200 and 279 cm3 cm–3 at 298 K and 35 and 80 bar, respectively, and MOF-520 has a volumetric capacity of 162 and 231 cm3 cm–3 under the same conditions. Furthermore, MOF-519 exhibits an exceptional working capacity, being able to deliver a large amount of methane at pressures between 5 and 35 bar, 151 cm3 cm–3, and between 5 and 80 bar, 230 cm3 cm–3. PMID:24661065

  12. Micro-machined high capacity silicon load cells

    NARCIS (Netherlands)

    Zwijze, A.F.

    2000-01-01

    The aim of the research presented in this thesis is to improve the performance of high capacity conventional load cells or force sensors by using silicon as the base material. Silicon is used because it offers the possibility of realising small, light, low cost and high performance mechanical sensor

  13. Children's exercise capacity at high altitude in Tibet.

    Science.gov (United States)

    Bianba; Andersen, Lars Bo; Stigum, Hein; Ouzhuluobu; Bjertness, Espen

    2014-11-01

    Maximal oxygen uptake (exercise capacity) is a vital parameter in the evaluation of adaptation to high altitude, providing an index of the integrated function of the oxygen transport system. Previous studies of maximal oxygen uptake in population at high altitude have mainly focused on adults and adolescents, though data on children are uncommon. Maximal oxygen uptake can be measured directly, using an oxygen analyser, or indirectly through the development of equations for estimation from the maximal power output (W(max)). Such estimations and studies of the physiological aspects of children's capacity to work and live at different altitudes in Tibet ancestry were not reported previously, although differences similar to those seen in adults may be expected to occur. The present paper summarized the findings of studies on exercise capacity among children living at high altitude in Tibet.

  14. Multiplexed homogeneous proximity ligation assays for high throughput protein biomarker research in serological material

    DEFF Research Database (Denmark)

    Lundberg, Martin; Thorsen, Stine Buch; Assarsson, Erika;

    2011-01-01

    A high throughput protein biomarker discovery tool has been developed based on multiplexed proximity ligation assays (PLA) in a homogeneous format in the sense of no washing steps. The platform consists of four 24-plex panels profiling 74 putative biomarkers with sub pM sensitivity each consuming...... only 1 micro Litre of human plasma sample. The system uses either matched monoclonal antibody pairs or the more readily available single batches of affinity purified polyclonal antibodies to generate the target specific reagents by covalently linking with unique nucleic acid sequences. These paired...

  15. Lambda-Cyhalothrin Nanosuspension Prepared by the Melt Emulsification-High Pressure Homogenization Method

    Directory of Open Access Journals (Sweden)

    Zhenzhong Pan

    2015-01-01

    Full Text Available The nanosuspension of 5% lambda-cyhalothrin with 0.2% surfactants was prepared by the melt emulsification-high pressure homogenization method. The surfactants composition, content, and homogenization process were optimized. The anionic surfactant (1-dodecanesulfonic acid sodium salt and polymeric surfactant (maleic rosin-polyoxypropylene-polyoxyethylene ether sulfonate screened from 12 types of commercially common-used surfactants were used to prepare lambda-cyhalothrin nanosuspension with high dispersity and stability. The mean particle size and polydispersity index of the nanosuspension were 16.01 ± 0.11 nm and 0.266 ± 0.002, respectively. The high zeta potential value of −41.7 ± 1.3 mV and stable crystalline state of the nanoparticles indicated the excellent physical and chemical stability. The method could be widely used for preparing nanosuspension of various pesticides with melting points below boiling point of water. This formulation may avoid the use of organic solvents and reduce surfactants and is perspective for improving bioavailability and reducing residual pollution of pesticide in agricultural products and environment.

  16. Sulfide capacity of high alumina blast furnace slags

    Science.gov (United States)

    Shankar, Amitabh; Görnerup, Märten; Seetharaman, S.; Lahiri, A. K.

    2006-12-01

    Sulfide capacities of high alumina blast furnace slags were experimentally determined using the gas-slag equilibration technique. Two different slag systems were considered for the current study, namely, CaO-SiO2-MgO-Al2O3 quaternary and CaO-SiO2-MgO-Al2O3-TiO2 quinary system. The liquid slag was equilibrated with the Ar-CO-CO2-SO2 gas mixture. Experiments were conducted in the temperature range of 1773 to 1873 K. The effects of temperature, basicity, and the MgO and TiO2 contents of slags on sulfide capacity were studied. As expected, sulfide capacity was found to increase with the increase in temperature and basicity. At the higher experimental temperature, titania decreases the sulfide capacity of slag. However, at the lower temperature, there was no significant effect of titania on the sulfide capacity of slag. Sulfide capacity increases with the increase in MgO content of slag if the MgO content is more than 5 pct.

  17. Heat capacity measurements on high T sub c superconductors

    CERN Document Server

    Oezcan, S

    1998-01-01

    temperature interval. The phase transition jump increases with the increasing of oxygen amount in the CuO sub 2 layers. The hight of the jump is varying from 1.5% to 3.5% of the total specific heat which is the nature of the bulk superconductivity. The small coherence length increases fluctuation effects and also causes the dependence of superconducting properties on structural defects. The fluctuation effects on the heat capacity of YBCO is investigated on the sample that shows clear superconducting properties. In this work, a heat capacity measurement system which has high sensitivity and reproducibility designed and constructed. The investigation of the effect of oxygen stoichiometry on the superconducting properties of high T sub c superconductors was aimed. For this purpose electrical resistivity, magnetic susceptibility and heat capacity experiment were performed. The constructed system is a computerized adiabatic calorimeter which has temperature resolution of about 0.1 mk and operates in the temperatu...

  18. High Capacity and Resistance to Additive Noise Audio Steganography Algorithm

    Directory of Open Access Journals (Sweden)

    Haider Ismael Shahadi

    2011-09-01

    Full Text Available Steganography is the art of message hiding in a cover signal without attracting attention. The requirements of the good steganography algorithm are security, capacity, robustness and imperceptibility, all them are contradictory, therefore, satisfying all together is not easy especially in audio cover signal because human auditory system (HAS has high sensitivity to audio modification. In this paper, we proposed a high capacity audio steganography algorithm with good resistance to additive noise. The proposed algorithm is based on wavelet packet transform and blocks matching. It has capacity above 35% of the input audio file size with acceptable signal to noise ratio. Also, it is resistance to additive Gaussian noise to about 25 db. Furthermore, the reconstruction of actual secret messages does not require the original cover audio signal.

  19. Statistical analysis of solid lipid nanoparticles produced by high-pressure homogenization: a practical prediction approach

    Energy Technology Data Exchange (ETDEWEB)

    Duran-Lobato, Matilde, E-mail: mduran@us.es [Universidad de Sevilla, Dpto. Farmacia y Tecnologia Farmaceutica, Facultad de Farmacia (Espana) (Spain); Enguix-Gonzalez, Alicia [Universidad de Sevilla, Dpto. Estadistica e Investigacion Operativa, Facultad de Matematicas (Espana) (Spain); Fernandez-Arevalo, Mercedes; Martin-Banderas, Lucia [Universidad de Sevilla, Dpto. Farmacia y Tecnologia Farmaceutica, Facultad de Farmacia (Espana) (Spain)

    2013-02-15

    Lipid nanoparticles (LNPs) are a promising carrier for all administration routes due to their safety, small size, and high loading of lipophilic compounds. Among the LNP production techniques, the easy scale-up, lack of organic solvents, and short production times of the high-pressure homogenization technique (HPH) make this method stand out. In this study, a statistical analysis was applied to the production of LNP by HPH. Spherical LNPs with mean size ranging from 65 nm to 11.623 {mu}m, negative zeta potential under -30 mV, and smooth surface were produced. Manageable equations based on commonly used parameters in the pharmaceutical field were obtained. The lipid to emulsifier ratio (R{sub L/S}) was proved to statistically explain the influence of oil phase and surfactant concentration on final nanoparticles size. Besides, the homogenization pressure was found to ultimately determine LNP size for a given R{sub L/S}, while the number of passes applied mainly determined polydispersion. {alpha}-Tocopherol was used as a model drug to illustrate release properties of LNP as a function of particle size, which was optimized by the regression models. This study is intended as a first step to optimize production conditions prior to LNP production at both laboratory and industrial scale from an eminently practical approach, based on parameters extensively used in formulation.

  20. Incommensurate Graphene Foam as a High Capacity Lithium Intercalation Anode

    Science.gov (United States)

    Paronyan, Tereza M.; Thapa, Arjun Kumar; Sherehiy, Andriy; Jasinski, Jacek B.; Jangam, John Samuel Dilip

    2017-01-01

    Graphite’s capacity of intercalating lithium in rechargeable batteries is limited (theoretically, 372 mAh g‑1) due to low diffusion within commensurately-stacked graphene layers. Graphene foam with highly enriched incommensurately-stacked layers was grown and applied as an active electrode in rechargeable batteries. A 93% incommensurate graphene foam demonstrated a reversible specific capacity of 1,540 mAh g‑1 with a 75% coulombic efficiency, and an 86% incommensurate sample achieves above 99% coulombic efficiency exhibiting 930 mAh g‑1 specific capacity. The structural and binding analysis of graphene show that lithium atoms highly intercalate within weakly interacting incommensurately-stacked graphene network, followed by a further flexible rearrangement of layers for a long-term stable cycling. We consider lithium intercalation model for multilayer graphene where capacity varies with N number of layers resulting LiN+1C2N stoichiometry. The effective capacity of commonly used carbon-based rechargeable batteries can be significantly improved using incommensurate graphene as an anode material.

  1. High-capacity nanocarbon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haitao; Sun, Xianzhong; Zhang, Xiong; Lin, He; Wang, Kai; Ma, Yanwei, E-mail: ywma@mail.iee.ac.cn

    2015-02-15

    Highlights: • The nanocarbon anodes in lithium-ion batteries deliver a high capacity of ∼1100 mA h g{sup −1}. • The nanocarbon anodes exhibit excellent cyclic stability. • A novel structure of carbon materials, hollow carbon nanoboxes, has potential application in lithium-ion batteries. - Abstract: High energy and power density of secondary cells like lithium-ion batteries become much more important in today’s society. However, lithium-ion battery anodes based on graphite material have theoretical capacity of 372 mA h g{sup −1} and low charging-discharging rate. Here, we report that nanocarbons including mesoporous graphene (MPG), carbon tubular nanostructures (CTN), and hollow carbon nanoboxes (HCB) are good candidate for lithium-ion battery anodes. The nanocarbon anodes have high capacity of ∼1100, ∼600, and ∼500 mA h g{sup −1} at 0.1 A g{sup −1} for MPG, CTN, and HCB, respectively. The capacity of 181, 141, and 139 mA h g{sup −1} at 4 A g{sup −1} for MPG, CTN, and HCB anodes is retained. Besides, nanocarbon anodes show high cycling stability during 1000 cycles, indicating formation of a passivating layer—solid electrolyte interphase, which support long-term cycling. Nanocarbons, constructed with graphene layers which fulfill lithiation/delithiation process, high ratio of graphite edge structure, and high surface area which facilitates capacitive behavior, deliver high capacity and improved rate-capability.

  2. Capacity of High-Speed Powerline Communication in Vehicles

    Directory of Open Access Journals (Sweden)

    Deny Hamdani

    2010-10-01

    Full Text Available Powerline Communication (PLC Systems intents to use the mains network in vehicles for high-speed data transmission. Carrier frequencies in the range of MHz are required to establish data rates of some megabits per second. In this paper, typical reference channels extracted from channel measurements are presented and computation results of their capacities according to Shannon's theorem are presented. Furthermore, the effect of limitations of frequency range and power spectral density of transmitted signal on achievable capacity is investigated. This paper outlines an assessment for theoretical channel capacity and achievable data rates of vehicular PLC transmission schemes. Finally, EMC (Electromagnetics Compatibility constraint according to CISPR 25 (Comite International Special des Perturbations Radioelectrique - The International Special Committee on Radio Interference is deeply considered.

  3. Effects of ultra-high pressure homogenization on microbial and physicochemical shelf life of milk.

    Science.gov (United States)

    Pereda, J; Ferragut, V; Quevedo, J M; Guamis, B; Trujillo, A J

    2007-03-01

    The effect of ultra-high pressure homogenization (UHPH) on microbial and physicochemical shelf life of milk during storage at 4 degrees C was studied and compared with a conventional heat preservation technology used in industry. Milk was standardized at 3.5% fat and was processed using a Stansted high-pressure homogenizer. High-pressure treatments applied were 100, 200, and 300 MPa (single stage) with a milk inlet temperature of 40 degrees C, and 200 and 300 MPa (single stage) with a milk inlet temperature of 30 degrees C. The UHPH-treated milks were compared with high-pasteurized milk (PA; 90 degrees C for 15 s). The microbiological quality was studied by enumerating total counts, psychrotropic bacteria, lactococci, lactobacilli, enterococci, coliforms, spores, and Pseudomonas. Physicochemical parameters assessed in milks were viscosity, color, pH, acidity, rate of creaming, particle size, and residual peroxidase and phosphatase activities. Immediately after treatment, UHPH was as efficient (99.99%) in reducing psychrotrophic, lactococci, and total bacteria as was the PA treatment, reaching reductions of 3.5 log cfu/mL. Coliforms, lactobacilli, and enterococci were eliminated. Microbial results of treated milks during storage at 4 degrees C showed that UHPH treatment produced milk with a microbial shelf life between 14 and 18 d, similar to that achieved for PA milk. The UHPH treatments reduced the L* value of treated milks and induced a reduction in viscosity values of milks treated at 200 MPa compared with PA milks; however, these differences would not be appreciated by consumers. In spite of the fat aggregates detected in milks treated at 300 MPa, no creaming was observed in any UHPH-treated milk. Hence, alternative methods such as UHPH may give new opportunities to develop fluid milk with an equivalent shelf life to that of PA milk in terms of microbial and physicochemical characteristics.

  4. Recycling rice husks for high-capacity lithium battery anodes.

    Science.gov (United States)

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-07-23

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes.

  5. Homogenization of a locally-periodic medium with areas of low and high diffusivity

    CERN Document Server

    van Noorden, T

    2010-01-01

    We aim at understanding transport in porous materials including regions with both high and low diffusivities. For such scenarios, the transport becomes structured (here: {\\em micro-macro}). The geometry we have in mind includes regions of low diffusivity arranged in a locally-periodic fashion. We choose a prototypical advection-diffusion system (of minimal size), discuss its formal homogenization (the heterogenous medium being now assumed to be made of zones with circular areas of low diffusivity of $x$-varying sizes), and prove the weak solvability of the limit two-scale reaction-diffusion model. A special feature of our analysis is that most of the basic estimates (positivity, $L^\\infty$-bounds, uniqueness, energy inequality) are obtained in $x$-dependent Bochner spaces.

  6. Ultra-high pressure homogenization-induced changes in skim milk: impact on acid coagulation properties.

    Science.gov (United States)

    Serra, Mar; Trujillo, Antonio J; Jaramillo, Pamela D; Guamis, Buenaventura; Ferragut, Victoria

    2008-02-01

    The effects of ultra-high pressure homogenization (UHPH) on skim milk yogurt making properties were investigated. UHPH-treated milk was compared with conventionally homogenised (15 MPa) heat-treated skim milk (90 degrees C for 90 s), and to skim milk treated under the same thermal conditions but fortified with 3% skim milk powder. Results of the present study showed that UHPH is capable of reducing skim milk particle size which leads to the formation of finer dispersions than those obtained by conventional homogenisation combined with heat treatment. In addition, results involving coagulation properties and yogurt characteristics reflected that, when increasing UHPH pressure conditions some parameters such as density of the gel, aggregation rate and water retention are improved.

  7. Ultra high pressure homogenization of almond milk: Physico-chemical and physiological effects.

    Science.gov (United States)

    Briviba, Karlis; Gräf, Volker; Walz, Elke; Guamis, Buenaventura; Butz, Peter

    2016-02-01

    Ultra high pressure homogenization (UHPH) of food is a processing technology to improve food safety and shelf life. However, despite very short treatment duration UHPH may lead to changes in chemical and physico-chemical properties including formation of submicro-/nano-particles. This may affect the physiological or toxicological properties of the treated food. Here, we treated raw almond milk (AMr) with UHPH at 350 MPa and 85 °C (AMuhph), known able to inactivate food relevant microorganisms. UHPH-treatment led to about a threefold increase of the mean particle size. There was a nearly complete loss of antigenicity investigated by ELISA for determination of traces of almond proteins. The content of vitamins B1 and B2 remained unchanged, while free exposed sulfhydryl groups decreased. Despite of observed modifications, UHPH-treatment of almond milk did not cause any changes in cyto- or genotoxic effects and antigenotoxic capability of protecting intestinal cells against iron induced DNA damage in vitro.

  8. Effect of High Pressure Homogenization and Dimethyl Dicarbonate (DMDC) on Microbial and Physicochemical Qualities of Mulberry Juice.

    Science.gov (United States)

    Yu, Yuanshan; Wu, Jijun; Xu, Yujuan; Xiao, Gengsheng; Zou, Bo

    2016-03-01

    In this study, the effect of high pressure homogenization (HPH) and dimethyl dicarbonate (DMDC) on microbial and nutrient qualities of mulberry juice was evaluated. Results showed that repeated HPH passes at 200 MPa or adding DMDC at 250 mg/L significantly inactivated the indigenous microorganisms in mulberry juice (P 0.05) in the population of microorganisms during subsequent storage at 4 °C. Moreover, no significant changes (P > 0.05) in the physical attributes, including pH, TSS ((o) Brix), L*, a*, and b* values were observed in the samples treated by the HPH-DMDC or by HT. Compared with HT, HPH-DMDC treatment resulted in a higher degree of retention in total phenolics, and α-glucosidase inhibitory activity, although the treatment led to higher losses in cyanidin 3-glucoside, cyanidin 3-rutinoside, and antioxidant capacity. Overall, HPH-DMDC treatment can be a useful alternative to conventional thermal pasteurization of mulberry juice, considering its ability to inactive, and inhibit indigenous microorganisms.

  9. Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure

    Science.gov (United States)

    Zito, Gianluigi; Rusciano, Giulia; Pesce, Giuseppe; Dochshanov, Alden; Sasso, Antonio

    2015-04-01

    Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self-assembled isotropic nanostructure with characteristics of homogeneity typical of the so-called near-hyperuniform disorder. The resulting highly dense, homogeneous and isotropic random pattern consists of clusters of silver nanoparticles with limited size dispersion. This nanostructure brings together several advantages: very large hot spot density (~104 μm-2), superior spatial reproducibility (SD cell membranes with confocal resolution. In particular, SERS imaging is here demonstrated on red blood cells in vitro in order to use the Raman-resonant heme of the cell as a contrast medium to prove spectroscopic detection of membrane molecules. Numerical simulations also clarify the SERS characteristics of the substrate in terms of electromagnetic enhancement and distance sensitivity range consistently with the experiments. The large SERS-active area is intended for multi-cellular imaging on the same substrate, which is important for spectroscopic comparative analysis of complex organisms like cells. This opens new routes for in situ quantitative surface analysis and dynamic probing of living cells exposed to membrane-targeting drugs.Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self

  10. Nanoliter homogenous ultra-high throughput screening microarray for lead discoveries and IC50 profiling.

    Science.gov (United States)

    Ma, Haiching; Horiuchi, Kurumi Y; Wang, Yuan; Kucharewicz, Stefan A; Diamond, Scott L

    2005-04-01

    Microfluidic technologies offer the potential for highly productive and low-cost ultra-high throughput screening and high throughput selectivity profiling. Such technologies need to provide the flexibility of plate-based assays as well as be less expensive to operate. Presented here is a unique microarray system (the Reaction Biology [Malvern, PA] DiscoveryDot), which runs over 6,000 homogeneous reactions per 1" x 3" microarray using chemical libraries or compound dilutions printed in 1-nl volumes. A simple and rapid piezo-activation method delivers from 30 to 300 pl of biochemical targets and detector chemistries to each reaction. The fluorescent signals are detected and analyzed with conventional microarray scanners and software. The DiscoveryDot platform is highly customizable, and reduces consumption of targets and reaction chemistries by >40-fold and the consumption of compounds by >10,000-fold, compared to 384-well plate assay. We demonstrate here that the DiscoveryDot platform is compatible with conventional large-volume well-based reactions, with a Z' factor of >0.6 for many enzymes, such as the caspase family enzymes, matrix metalloproteinase, serine proteases, kinases, and histone deacetylases. The platform is well equipped for 50% inhibitory concentration (IC50) profiling studies of enzyme inhibitors, with up to 10 dilution conditions of each test compound printed in duplicate, and each microarray chip can generate over 300 IC50 measurements against a given target.

  11. High capacity 30 K remote helium cooling loop

    Science.gov (United States)

    Trollier, T.; Tanchon, J.; Icart, Y.; Ravex, A.

    2014-01-01

    Absolut System has built several 50 K remote helium cooling loops used as high capacity and very low vibration cooling source into large wavelength IR detectors electro-optical characterization test benches. MgB2 based superconducting electro-technical equipment's under development require also distributed high cooling power in the 20-30 K temperature range. Absolut System has designed, manufactured and tested a high capacity 30 K remote helium cooling loop. The equipment consists of a CRYOMECH AL325 type cooler, a CP830 type compressor package used as room temperature circulator and an intermediate LN2 bath cooling used between two recuperator heat exchangers (300 K-77 K and 77 K-20 K). A cooling capacity of 30 W @ 20 K or 80 W @ 30 K has been demonstrated on the application heat exchanger, with a 4-meter remote distance ensured by a specifically designed gas circulation flexible line. The design and the performance will be reported in this paper.

  12. High-Temperature, High-Load-Capacity Radial Magnetic Bearing

    Science.gov (United States)

    Provenza, Andrew; Montague, Gerald; Kascak, Albert; Palazzolo, Alan; Jansen, Ralph; Jansen, Mark; Ebihara, Ben

    2005-01-01

    A radial heteropolar magnetic bearing capable of operating at a temperature as high as 1,000 F (=540 C) has been developed. This is a prototype of bearings for use in gas turbine engines operating at temperatures and speeds much higher than can be withstood by lubricated rolling-element bearings. It is possible to increase the maximum allowable operating temperatures and speeds of rolling-element bearings by use of cooling-air systems, sophisticated lubrication systems, and rotor-vibration- damping systems that are subsystems of the lubrication systems, but such systems and subsystems are troublesome. In contrast, a properly designed radial magnetic bearing can suspend a rotor without contact, and, hence, without need for lubrication or for cooling. Moreover, a magnetic bearing eliminates the need for a separate damping system, inasmuch as a damping function is typically an integral part of the design of the control system of a magnetic bearing. The present high-temperature radial heteropolar magnetic bearing has a unique combination of four features that contribute to its suitability for the intended application: 1. The wires in its electromagnet coils are covered with an insulating material that does not undergo dielectric breakdown at high temperature and is pliable enough to enable the winding of the wires to small radii. 2. The processes used in winding and potting of the coils yields a packing factor close to 0.7 . a relatively high value that helps in maximizing the magnetic fields generated by the coils for a given supplied current. These processes also make the coils structurally robust. 3. The electromagnets are of a modular C-core design that enables replacement of components and semiautomated winding of coils. 4. The stator is mounted in such a manner as to provide stable support under radial and axial thermal expansion and under a load as large as 1,000 lb (.4.4 kN).

  13. Homogeneous vertical ZnO nanorod arrays with high conductivity on an in situ Gd nanolayer

    KAUST Repository

    Flemban, Tahani H.

    2015-10-30

    We demonstrate a novel, one-step, catalyst-free method for the production of size-controlled vertical highly conductive ZnO nanorod (NR) arrays with highly desirable characteristics by pulsed laser deposition using a Gd-doped ZnO target. Our study shows that an in situ transparent and conductive Gd nanolayer (with a uniform thickness of ∼1 nm) at the interface between a lattice-matched (11-20) a-sapphire substrate and ZnO is formed during the deposition. This nanolayer significantly induces a relaxation mechanism that controls the dislocation distribution along the growth direction; which consequently improves the formation of homogeneous vertically aligned ZnO NRs. We demonstrate that both the lattice orientation of the substrate and the Gd characteristics are important in enhancing the NR synthesis, and we report precise control of the NR density by changing the oxygen partial pressure. We show that these NRs possess high optical and electrical quality, with a mobility of 177 cm2 (V s)-1, which is comparable to the best-reported mobility of ZnO NRs. Therefore, this new and simple method has significant potential for improving the performance of materials used in a wide range of electronic and optoelectronic applications.

  14. Microwave synthesis of homogeneous and highly luminescent BCNO nanoparticles for the light emitting polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Hideharu [Battery Materials Laboratory, Kurashiki Research Center, Kuraray Co., Ltd., 2045-1, Sakazu, Kurashiki, Okayama 710-0801 (Japan); Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima 739 8527 (Japan); Ogi, Takashi, E-mail: ogit@hiroshima-u.ac.jp [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima 739 8527 (Japan); Iskandar, Ferry [Department of Physics, Institute of Technology Bandung, Ganesha 10, Bandung 40132, West Java (Indonesia); Aishima, Kana; Okuyama, Kikuo [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima 739 8527 (Japan)

    2015-10-15

    Nano-sized boron carbon oxynitride (BCNO) phosphors around 50 nm containing no rare earth metal and free from color heterogeneity were synthesized from mixtures of boric acid, urea, and citric acid by microwave heating with substantially shorter reaction times and lower temperatures than in the conventional BCNO preparation method such as electric-furnace heating. The emission wavelength of the phosphors varied with the mixing ratio of raw materials and it was found that lowering the proportion of urea to boric acid or citric acid tended to increase the internal quantum yield and shorten the emission wavelength under excitation at 365 nm. It was also found for the first time that a light-emitting polymer could be synthesized from a mixture of the prepared BCNO nanoparticles and a polyvinyl alcohol. This polymer composite exhibited uniform dispersion and stabilization of the luminescence and had a high internal quantum yield of 54%, which was higher than that of the phosphor alone. - Highlights: • Nano-sized BCNO phosphor was synthesized via microwave heating. • BCNO nanophosphor has homogeneous and high luminescence. • Emission wavelength was tunable by changing the ratio of precursor components. • BCNO nanophosphor can be easily dispersed in a polyvinyl alcohol. • BCNO–polymer composite exhibited uniform high internal quantum yield.

  15. High-capacity hydrogen storage in Al-adsorbed graphene

    Science.gov (United States)

    Ao, Z. M.; Peeters, F. M.

    2010-05-01

    A high-capacity hydrogen storage medium—Al-adsorbed graphene—is proposed based on density-functional theory calculations. We find that a graphene layer with Al adsorbed on both sides can store hydrogen up to 13.79wt% with average adsorption energy -0.193eV/H2 . Its hydrogen storage capacity is in excess of 6wt% , surpassing U. S. Department of Energy (DOE’s) target. Based on the binding-energy criterion and molecular-dynamics calculations, we find that hydrogen storage can be recycled at near ambient conditions. This high-capacity hydrogen storage is due to the adsorbed Al atoms that act as bridges to link the electron clouds of the H2 molecules and the graphene layer. As a consequence, a two-layer arrangement of H2 molecules is formed on each side of the Al-adsorbed graphene layer. The H2 concentration in the hydrogen storage medium can be measured by the change in the conductivity of the graphene layer.

  16. High pressure homogenization versus heat treatment: effect on survival, growth, and metabolism of dairy Leuconostoc strains.

    Science.gov (United States)

    Guglielmotti, D M; Patrignani, F; Lanciotti, R; Guerzoni, M E; Reinheimer, J A; Quiberoni, A

    2012-09-01

    The effect of high pressure homogenization (HPH) with respect to a traditional heat treatment on the inactivation, growth at 8°C after treatments, and volatile profile of adventitious Leuconostoc strains isolated from Cremoso Argentino spoiled cheeses and ingredients used for their manufacture was evaluated. Most Leuconostoc strains revealed elevated resistance to HPH (eight passes, 100 MPa), especially when resuspended in skim milk. Heat treatment was more efficient than HPH in inactivating Leuconostoc cells at the three initial levels tested. The levels of alcohols and sulfur compounds increased during incubation at 8°C in HPH-treated samples, while the highest amounts of aldehydes and ketones characterized were in heated samples. Leuconostoc cells resuspended in skim milk and subjected to one single-pass HPH treatment using an industrial-scale machine showed remarkable reductions in viable cell counts only when 300 and 400 MPa were applied. However, the cell counts of treated samples rose rapidly after only 5 days of storage at 8°C. The Leuconostoc strains tested in this work were highly resistant to the inactivation treatments applied. Neither HPH nor heat treatment assured their total destruction, even though they were more sensitive to the thermal treatment. To enhance the inhibitory effect on Leuconostoc cells, HPH should be combined with a mild heat treatment, which in addition to efficient microbial inactivation, could allow maximal retention of the physicochemical properties of the product.

  17. Effect of ultra high pressure homogenization treatment on the bioactive compounds of soya milk.

    Science.gov (United States)

    Toro-Funes, N; Bosch-Fusté, J; Veciana-Nogués, M T; Vidal-Carou, M C

    2014-01-01

    Ultra high pressure homogenization (UHPH) is a useful novel technology to obtain safe and high-quality liquid foods. The effect of UHPH at 200 and 300 MPa in combination with different inlet temperatures (Tin) (55, 65 and 75 °C) on the bioactive compounds of soya milk was studied. Total phytosterols increased with the higher combination of pressure and temperature. The main phytosterol was β-sitosterol, followed by stigmasterol and campesterol. Total tocopherols in UHPH-treated soya milks decreased as the temperature and pressure increased. UHPH treatment also affected the different chemical forms of tocopherols. No biogenic amines were detected in any of the analyzed soya milks. Meanwhile, the polyamines SPD and SPM were found in all soya milks, being stable to the UHPH treatment. Total isoflavones increased with the higher combination of pressure and temperature. No differences in the isoflavone profile were found, with β-glucoside conjugates being the predominant form. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. High-performance bidiagonal reduction using tile algorithms on homogeneous multicore architectures

    KAUST Repository

    Ltaief, Hatem

    2013-04-01

    This article presents a new high-performance bidiagonal reduction (BRD) for homogeneous multicore architectures. This article is an extension of the high-performance tridiagonal reduction implemented by the same authors [Luszczek et al., IPDPS 2011] to the BRD case. The BRD is the first step toward computing the singular value decomposition of a matrix, which is one of the most important algorithms in numerical linear algebra due to its broad impact in computational science. The high performance of the BRD described in this article comes from the combination of four important features: (1) tile algorithms with tile data layout, which provide an efficient data representation in main memory; (2) a two-stage reduction approach that allows to cast most of the computation during the first stage (reduction to band form) into calls to Level 3 BLAS and reduces the memory traffic during the second stage (reduction from band to bidiagonal form) by using high-performance kernels optimized for cache reuse; (3) a data dependence translation layer that maps the general algorithm with column-major data layout into the tile data layout; and (4) a dynamic runtime system that efficiently schedules the newly implemented kernels across the processing units and ensures that the data dependencies are not violated. A detailed analysis is provided to understand the critical impact of the tile size on the total execution time, which also corresponds to the matrix bandwidth size after the reduction of the first stage. The performance results show a significant improvement over currently established alternatives. The new high-performance BRD achieves up to a 30-fold speedup on a 16-core Intel Xeon machine with a 12000×12000 matrix size against the state-of-the-art open source and commercial numerical software packages, namely LAPACK, compiled with optimized and multithreaded BLAS from MKL as well as Intel MKL version 10.2. © 2013 ACM.

  19. High critical current densities in industrial scale composites made from high homogeneity NB 46. 5 TI

    Energy Technology Data Exchange (ETDEWEB)

    Larbalestier, D.C.; Hemachalam, K.; Lee, P.; McDonald, W.K.; O' Larey, P.; Scanlan, R.; Starch, W.; Taylor, C.; Warnes, W.; West, A.W.; Zeitlin, B.

    1985-03-01

    Recent work in our group on the fabricationmicrostructure-superconducting properties of composites of Nb-Ti has produced much new information about the precipitate morphology and origins of high critical current density (J /SUB c/ ) in these materials./sup 1 -4/ Precipitation of Ti-rich phase is seen to commence as a grain boundary film 2 - 4 nm thick, the film then developing into approximately equiaxed particles of ..cap alpha..-Ti at the boundary triple points. The typical size of such precipitates is 50 - 100 nm. Controlled drawing of such a structure produces an array of locally ordered ribbon precipitates. These precipitates are typically 3 - 5 nm thick by 100 - 300 nm long (when observed in transverse section). Their length in longitudinal section appears to be several hundred nm, indicating great ductility in these small ..cap alpha..-Ti precipitates. The typical separation of the precipitates is 20 - 30 nm. Thus the dimensions of the precipitate array are quite comparable to that of the flux lattice since the fluxoid separation is 22 nm at 5 T and the fluxoid diameter of Nb 46.5 wt% Ti is approximately 10 nm. The flux pinning behavior of these precipitate structures is expected to be complex: /SUP 2.4/ the defect density is very high, the precipitate morphology has a very high aspect ratio and the extreme thinness of the precipitates must permit some superconductivity to be induced in them by the proximity effect./sup 5/

  20. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  1. Homogenization of seismic surface wave profiling in highly heterogeneous improved ground

    Science.gov (United States)

    Lin, C.; Chien, C.

    2012-12-01

    Seismic surface wave profiling is gaining popularity in engineering practice for determining shear-wave velocity profile since the two-station SASW (Spectral Analysis of Surface Wave) was introduced. Recent developments in the multi-station approach (Multi-station Analysis of Surface Wave, MASW) result in several convenient commercial tools. Unlike other geophysical tomography methods, the surface wave method is essentially a 1-D method assuming horizontally-layered medium. Nevertheless, MASW is increasingly used to map lateral variation of S-wave velocity by multiple surveys overlooking the effect of lateral heterogeneity. MASW typically requires long receiver spread in order to have enough depth coverage. The accuracy and lateral resolution of 2-D S-wave velocity imaging by surface wave is not clear. Many geotechnical applications involves lateral variation in a scale smaller than the geophone spread and wave length. For example, soft ground is often improved to increase strength and stiffness by methods such as jet grouting and stone column which result in heterogeneous ground with improved columns. Experimental methods (Standard Penetration Test, sampling and laboratory testing, etc.) used to assess such ground improvement are subjected to several limitations such as small sampling volume, time-consuming, and cost ineffectiveness. It's difficult to assess the average property of the improved ground and the actual replacement ratio of ground improvement. The use of seismic surface wave method for such a purpose seems to be a good alternative. But what MASW measures in such highly heterogeneous improved ground remains to be investigated. This study evaluated the feasibility of MASW in highly heterogeneous ground with improved columns and investigated the homogenization of shear wave velocity measured by MASW. Field experiments show that MASW testing in such a composite ground behaves similar to testing in horizontally layered medium. It seems to measure some sort

  2. High-capacity composite adsorbents for nucleic acids.

    Science.gov (United States)

    Tiainen, Peter; Rokebul Anower, M; Larsson, Per-Olof

    2011-08-05

    Cytopore™ is a bead-shaped, macroporous and easily compressible cellulose-based anion-exchange material intended for cultivation of anchor-dependent animal cells. Reticulated vitreous carbon (RVC) is a strong, non-compressible, high voidage (97%) matrix material that can be cut to desired geometrical shapes. Cytopore and RVC were combined to cylindrical composites (25 mm × 10 mm) fitted inside chromatography columns. The composite combined the advantageous properties of both its constituents, making it suitable for column chromatography. The composite could withstand very high flow rates without compaction of the bed (>25 column volumes/min; 4000 cm h(-1)). Chromatography runs with tracers showed a low HETP value (0.3mm), suggesting that pore flow was in operation. The dynamic binding capacities (10% breakthrough) per gram of dry weight Cytopore were determined for several compounds including DNA and RNA and were found to be 240-370 mg/g. The composite was used to isolate pUC 18-type plasmids from a cleared alkaline lysate in a good yield. Confocal microscopy studies showed that plasmids were bound not only to the surface of the Cytopore material but also within the matrix walls, thus offering an explanation to the very high binding capacities observed. The concept of using a composite prepared from a mechanically weak, high-binding material and a strong scaffold material may be applied to other systems as well.

  3. High-density carbon nanotube wet-laid buckypapers with enhanced strength and conductivity using a high-pressure homogenization process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun; Jang, Si Hoon; Park, No Hyung; Jeong, Won Young; Lim, Dae Young [Human and Culture Convergence Technology Group, Korea Institute of Industrial Technology (KITECH), Ansan (Korea, Republic of); Oh, Jun Young; Yang, Seung Jae [Dept. of Applied Organic Materials Engineering, Inha University, Incheon (Korea, Republic of)

    2017-04-15

    In this work, we prepared homogeneously dispersed carbon nanotubes in water using a high-pressure homogenizer, while high-density carbon nanotube buckypapers were prepared by wet-laid process. The strength and conductivity of the buckypaper were increased dramatically after the high-pressure homogenization because of the increased density and uniformity of the paper. In addition, the buckypapers containing various additives and treated with SOCl{sub 2} exhibited further increase of strength and conductivity resulting from the binding and the p-type doping effect. The buckypapers with high electrical conductivity exhibited superior electromagnetic interference shielding effectiveness that could be applied for structural shielding materials.

  4. Anthropogenic Matrices Favor Homogenization of Tree Reproductive Functions in a Highly Fragmented Landscape

    Science.gov (United States)

    2016-01-01

    Species homogenization or floristic differentiation are two possible consequences of the fragmentation process in plant communities. Despite the few studies, it seems clear that fragments with low forest cover inserted in anthropogenic matrices are more likely to experience floristic homogenization. However, the homogenization process has two other components, genetic and functional, which have not been investigated. The purpose of this study was to verify whether there was homogenization of tree reproductive functions in a fragmented landscape and, if found, to determine how the process was influenced by landscape composition. The study was conducted in eight fragments in southwest Brazil. The study was conducted in eight fragments in southwestern Brazil. In each fragment, all individual trees were sampled that had a diameter at breast height ≥3 cm, in ten plots (0.2 ha) and, classified within 26 reproductive functional types (RFTs). The process of functional homogenization was evaluated using additive partitioning of diversity. Additionally, the effect of landscape composition on functional diversity and on the number of individuals within each RFT was evaluated using a generalized linear mixed model. appeared to be in a process of functional homogenization (dominance of RFTs, alpha diversity lower than expected by chance and and low beta diversity). More than 50% of the RFTs and the functional diversity were affected by the landscape parameters. In general, the percentage of forest cover has a positive effect on RFTs while the percentage of coffee matrix has a negative one. The process of functional homogenization has serious consequences for biodiversity conservation because some functions may disappear that, in the long term, would threaten the fragments. This study contributes to a better understanding of how landscape changes affect the functional diversity, abundance of individuals in RFTs and the process of functional homogenization, as well as how to

  5. Fate of Staphylococcus aureus in cheese treated by ultrahigh pressure homogenization and high hydrostatic pressure.

    Science.gov (United States)

    López-Pedemonte, T; Brinez, W J; Roig-Sagués, A X; Guamis, B

    2006-12-01

    We evaluated the influence of ultrahigh pressure homogenization (UHPH) treatment applied to milk containing Staphylococcus aureus CECT 976 before cheese making, and the benefit of applying a further high hydrostatic pressure (HHP) treatment to cheese. The evolution of Staph. aureus counts during 30 d of storage at 8 degrees C and the formation of staphylococcal enterotoxins were also assessed. Milk containing approximately 7.3 log(10) cfu/mL of Staph. aureus was pressurized using a 2-valve UHPH machine, applying 330 and 30 MPa at the primary and the secondary homogenizing valves, respectively. Milk inlet temperatures (T(in)) of 6 and 20 degrees C were assayed. Milk was used to elaborate soft-curd cheeses (UHPH cheese), some of which were additionally submitted to 10-min HHP treatments of 400 MPa at 20 degrees C (UHPH+HHP cheese). Counts of Staph. aureus were measured on d 1 (24 h after manufacture or immediately after HHP treatment) and after 2, 15, and 30 d of ripening at 8 degrees C. Counts of control cheeses not pressure-treated were approximately 8.5 log(10) cfu/g showing no significant decreases during storage. In cheeses made from UHPH treated milk at T(in) of 6 degrees C, counts of Staph. aureus were 5.0 +/- 0.3 log(10) cfu/g at d 1; they decreased significantly to 2.8 +/- 0.2 log(10) cfu/g on d 15, and were below the detection limit (1 log(10) cfu/g) after 30 d of storage. The use of an additional HHP treatment had a synergistic effect, increasing reductions up to 7.0 +/- 0.3 log(10) cfu/g from d 1. However, for both UHPH and UHPH+HHP cheeses in the 6 degrees C T(in) samples, viable Staph. aureus cells were still recovered. For samples of the 20 degrees C T(in) group, complete inactivation of Staph. aureus was reached after 15 d of storage for both UHPH and UHPH+HHP cheese. Staphylococcal enterotoxins were found in controls but not in UHPH or UHPH+HHP treated samples. This study shows a new approach for significantly improving cheese safety by means of

  6. Characterization and Stability Evaluation of Thymoquinone Nanoemulsions Prepared by High-Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Zaki Tubesha

    2013-01-01

    Full Text Available Despite the pharmacological properties of thymoquinone (TQ, its administration in vivo remains problematic partly due to its poor water solubility, leading to low absorptivity and bioavailability. Hence, the objective of this study is to prepare, characterize, and evaluate the stability of TQ nanoemulsion (TQNE. Conventional emulsion from TQ (TQCE and empty nano- and conventional emulsions from Triolein (TRNE and TRCE are also produced for comparison purposes. The oil-in-water nanoemulsions of TQ and Triolein were produced by high-pressure homogenization. Emulsions were characterized physically by droplet size, polydispersity index, zeta potential, and refractive index. The changes of these parameters in TQNE samples stored for 6 months at 4 and 25°C were not statistically significant (P<0.05. In addition, the initial particle sizes of TQNE and TRNE were 119.6 and 119.5 nm, respectively. Stability studies were also performed for the period of 6 months. At the end of the experiment, the percent of remaining TQ in TQNE at 4, 25, and 40°C was 90.6, 89.1, and 87.4 % respectively. Slower degradation of TQ indicated the chemical stability of TQ in TQNE samples. These results indicated that TQNE is stable over a period of 6 months.

  7. Optimization of {beta}-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, Michael D., E-mail: triplettm@battelle.or [Battelle Memorial Institute, Health and Life Sciences Global Business (United States); Rathman, James F. [The Ohio State University, Department of Chemical and Biomolecular Engineering (United States)

    2009-04-15

    Using statistical experimental design methodologies, the solid lipid nanoparticle design space was found to be more robust than previously shown in literature. Formulation and high shear homogenization process effects on solid lipid nanoparticle size distribution, stability, drug loading, and drug release have been investigated. Experimentation indicated stearic acid as the optimal lipid, sodium taurocholate as the optimal cosurfactant, an optimum lecithin to sodium taurocholate ratio of 3:1, and an inverse relationship between mixing time and speed and nanoparticle size and polydispersity. Having defined the base solid lipid nanoparticle system, {beta}-carotene was incorporated into stearic acid nanoparticles to investigate the effects of introducing a drug into the base solid lipid nanoparticle system. The presence of {beta}-carotene produced a significant effect on the optimal formulation and process conditions, but the design space was found to be robust enough to accommodate the drug. {beta}-Carotene entrapment efficiency averaged 40%. {beta}-Carotene was retained in the nanoparticles for 1 month. As demonstrated herein, solid lipid nanoparticle technology can be sufficiently robust from a design standpoint to become commercially viable.

  8. Enhanced bioavailability of danazol nanosuspensions by wet milling and high-pressure homogenization

    Science.gov (United States)

    Kanthamneni, Naveen; Valiveti, Satyanarayana; Patel, Mita; Xia, Heather; Tseng, Yin-Chao

    2016-01-01

    Introduction: The majority of drugs obtained through synthesis and development show poor aqueous solubility and dissolution velocity, resulting in reduced bioavailability of drugs. Most of these problems arise from formulation-related performance issues, and an efficient way to overcome these obstacles and to increase dissolution velocity is to reduce the particle size of drug substances to form drug nanosuspensions. Materials and Methods: Danazol nanosuspensions were prepared by wet milling (WM) and high-pressure homogenization (HPH) methods. The nanosuspensions obtained using these fabrication methods were analyzed for their particle size, surface charge, and the crystallinity of the product was assessed by X-ray diffraction (XRD) and differential scanning calorimetry techniques. To determine in vitro and in vivo performances of the prepared nanosuspensions, dissolution velocity, and bioavailability studies were performed. Results: Particle size and zeta potential analysis showed the formation of nanosized particles with a negative charge on the surface. XRD depicted the nanocrystalline nature of danazol with low diffraction intensities. With increased surface area and saturation solubility, the nanosuspensions showed enhanced dissolution velocity and oral bioavailability in rats when compared to the bulk danazol suspension. Conclusions: The results suggest that the preparation of nanosuspensions by WM or HPH is a promising approach to formulate new drugs or to reformulate existing drugs with poorly water-soluble properties. PMID:28123991

  9. Extraction of Lipids from Chlorella saccharophila Using High-Pressure Homogenization Followed by Three Phase Partitioning.

    Science.gov (United States)

    Mulchandani, Ketan; Kar, Jayaranjan R; Singhal, Rekha S

    2015-07-01

    Commercial exploitation of microalgae for biofuel and food ingredients is hindered due to laborious extraction protocols and use of hazardous chemicals. Production of lipids in the microalga grown in modified BG11 medium was evaluated to arrive at the appropriate harvesting conditions. The use of three phase partitioning (TPP) as a green approach for extraction of lipids from Chlorella saccharophila was investigated. Cells disrupted by probe sonication were used for separation of lipids by TPP. The TPP-optimized conditions of 30 % ammonium sulfate, using slurry/t-butanol of 1:0.75 for 60 min at 25 to 35 °C, showed a lipid recovery of 69.05 ± 3.12 % (w/w) as against 100 % (w/w) by using chloroform-methanol extraction. Subsequently, parameters of high-pressure homogenization for cell disruption were optimized for maximum recovery of lipids by TPP. A final recovery of 89.91 ± 3.69 % (w/w) lipids was obtained along with ∼1.26 % w/w carotenoids of dry biomass in the t-butanol layer and protein content of ∼12 % w/w of dry biomass in the middle protein layer due to ammonium sulfate precipitation, after performing TPP under the optimized conditions.

  10. Feeding of liquid silicon for high performance multicrystalline silicon with increased ingot height and homogenized resistivity

    Science.gov (United States)

    Krenckel, Patricia; Riepe, Stephan; Schindler, Florian; Strauch, Theresa

    2017-04-01

    Feeding of liquid silicon during the directional solidification process is a promising opportunity for cost reduction by increased throughput and improved material homogeneity due to constant resistivity over ingot height. In this work, a liquid feeding apparatus was developed for an industrial type directional solidification furnace. One n-type G2 sized High Performance multicrystalline ingot with liquid feeding of additional 14 kg of undoped silicon feedstock was crystallized. The resistivity was kept within a range of ±0.1 Ω cm of the target resistivity during the feeding sequence. A smaller mean grain area growth was observed during feeding, whereas the area fraction of recombination active dislocation structures was as low as in a reference ingot. Increased interstitial oxygen and substitutional carbon concentrations were measured for the ingot with liquid feeding. The measured mean bulk lifetime of 190 μs for passivated wafers in the feeding sequence can probably be increased by further pre-melting crucible improvements. For this laboratory experiment, energy reductions of 2% per wafer and time savings of 16% per wafer were realized.

  11. Apple peel-based edible film development using a high-pressure homogenization.

    Science.gov (United States)

    Sablani, Shyam S; Dasse, Florian; Bastarrachea, Luis; Dhawan, Sumeet; Hendrix, Kathleen M; Min, Sea C

    2009-09-01

    Biopolymer films were developed from apple peels of apple process co-products and their physical properties were determined. Apple peel-based films with glycerol (23%, 33%, and 44%[w/w, dry basis]) were prepared using high-pressure homogenization (HPH) at different levels of pressure (138, 172, and 207 MPa). An evaluation of the rheological properties (elastic modulus [G'], viscous modulus [G''], and viscosity) of the film-forming solutions was performed. For the apple peel films, the water sorption isotherms, the kinetics of water absorption, the water vapor permeability (WVP), the oxygen permeability (OP), and the tensile properties were determined. The G' and viscosity of the film-forming solutions decreased significantly with increasing processing pressure (P 0.05). The viscosity decreased from 644 to 468 kPa.s as the pressure increased from 138 to 207 MPa at 90 degrees C. The monolayer water content of the apple peel films decreased with increasing content of glycerol from 23% to 33%. Further increase in glycerol content did not change the monolayer water content. The water diffusion coefficient of the films was highest at the intermediate level of glycerol content. The barrier properties (WVP and OP) of the films increased with increasing level of glycerol, while processing pressure did not influence the gas barrier properties. The films prepared at 207 MPa were less stiff and strong, but more stretchable than those prepared at 138 and 172 MPa.

  12. Association of triclosan to casein proteins through solvent-mediated high-pressure homogenization.

    Science.gov (United States)

    Roach, A; Dunlap, J; Harte, F

    2009-03-01

    The association of triclosan (TCS), a widely used hydrophobic compound, to the bovine casein micelle is investigated in this study. The use of high-pressure homogenization (HPH) at 0, 100, 200, and 300 MPa was introduced as a method for the dissociation of casein micelles in a skim milk/ethanol solution (1: 1, v/v) in the presence of TCS at 20, 80, and 160 mg/L where ethanol evaporation served as the final step for TCS association to caseins. The majority of TCS (over 80%) was associated with the caseins regardless of initial TCS concentration or applied pressure. TCS association to caseins was enhanced by 30% with continued pressurization to 300 MPa. Micellar dissociation and reassociation was found to be an irreversible process as evidenced by microscopy images. Pressurization to 300 MPa resulted in the formation of an integrated protein network of casein proteins and noncovalently linked whey proteins where the solubility of TCS was enhanced up to 40 times its reported water solubility at the highest initial TCS level of 160 mg/L. Reformed micelles exhibited Newtonian flow behavior at all pressure levels. This study provides evidence for the solubility enhancing quality of TCS through the solvent-mediated pressure/shear-induced dissociation of casein proteins.

  13. High Capacity Secure Image Steganography Based on Contourlet Transform

    Directory of Open Access Journals (Sweden)

    Kolsoom Shahryari

    2013-09-01

    Full Text Available In this paper we propose an image steganography technique which embeds secret data without making explicit modifications to the image. The proposed method simultaneously provides both imperceptibility and undetectability. We decompose image by contourlet transform and determine nonsmooth regions. Embedding data in these regions cause less degradation in image quality. Contourlet sub-bands are divided into 3×3 blocks. Central coefficient of each block is considered for embedding if they belong to edgy regions. Experiments show that this method can achieve high embedding capacity while remains undetectable by Farid's universal steganalysis technique.

  14. Cycloaddition in peptides for high-capacity optical storage

    DEFF Research Database (Denmark)

    Lohse, Brian; Berg, Rolf Henrik; Hvilsted, Søren

    2006-01-01

    Photodimerization of chromophores attached to a short peptide chain is investigated for high-capacity optical digital storage with UV lasers. The length and rigidity of the peptide chain assure an optimal distance and orientation of the chromophores for effective photodimerization. Using a theory...... developed by Tomlinson, the absorption cross section for the dimerization process in a uracil-ornithine-based hexamer is determined to be 9 x 10(-20) cm(2). A large change in the transmission due to irradiation in the UV area may make it possible to realize multilevel storage in a thin film of the peptides....

  15. Pore structure of SWNTs with high hydrogen storage capacity

    Institute of Scientific and Technical Information of China (English)

    杨全红; 刘畅; 刘敏; 樊彦贞; 成会明; 王茂章

    2002-01-01

    This paper reveals, by analyses of nitrogen cryo-adsorption isotherm, the energetic and structural heterogeneity of single-walled carbon nanotubes (SWNTs) which has a high hydrogen storage capacity. It was found that SWNTs had manifold pore structures and distributed surface energy. By comparison of the pore structures and energy distributions of SWNTs before and after hydrogen adsorption, it is preliminarily indicated that hydrogen adsorption occurred in micropores and mesopores with smaller diameter, and that the pores of different diameters determined different hydrogen adsorption processes and underwent different structure changes during hydrogen adsorption.

  16. Effects of Pressure and Number of Turns on Microstructural Homogeneity Developed in High-Pressure Double Torsion

    Science.gov (United States)

    Jahedi, Mohammad; Beyerlein, Irene J.; Paydar, Mohammad Hossein; Zheng, Shijian; Xiong, Ting; Knezevic, Marko

    2017-01-01

    With electron backscatter diffraction and transmission electron microscopy, we study the rate of grain refinement and the uniformity in the evolution of microstructure in commercial purity Cu samples during high-pressure double torsion (HPDT). We aim to identify the processing conditions that would produce a microstructure that is both refined and uniform across the sample in grain size, texture, and intra-granular misorientation with minimal energy input. Two processing variables, pressure and number of turns, are probed. To provide a reference for HPDT, the investigation is also carried out using the standard high-pressure torsion (HPT) technique. For both processes, grain sizes decrease with the number of turns and applied pressure. Under pressure of 600 MPa and 4 torsional turns, HPDT provided a more homogeneous grain structure than HPT. Likewise, we also demonstrate that for the same processing condition, HPDT again produces the more homogeneous grain structure. It is found that a more homogeneous grain structure is achieved after doubling number of turns than doubling the pressure amount to 1.2 GPa. However, the rate of grain refinement substantially increases with doubling the pressure. Considering these results, the HPDT process, compared to HPT, takes better advantage of the role that high pressure plays in shear strain-induced grain refinement and homogenizing the microstructure. Last, analysis of the applied work finds that the least amount of work required for achieving fine and homogeneous microstructure occurs when the applied pressure is maximized and number of turns is minimized.

  17. Supercapacitor electrode with a homogeneously Co3O4-coated multiwalled carbon nanotube for a high capacitance.

    Science.gov (United States)

    Tao, Li; Shengjun, Li; Bowen, Zhang; Bei, Wang; Dayong, Nie; Zeng, Chen; Ying, Yan; Ning, Wan; Weifeng, Zhang

    2015-01-01

    Cobalt oxide (Co3O4) was homogeneously coated on multiwalled carbon nanotube through a simple chemical deposition method and employed in supercapacitor electrodes. SEM image indicated the uniform distribution of Co3O4 nanoparticles on the surface of the multiwalled carbon nanotube. A maximum specific capacitance of 273 Fg(-1) was obtained at the charge-discharge current density of 0.5 Ag(-1). After 500 cycles of continuous charge-discharge process, about 88% of the initial capacity could be retained.

  18. Human norovirus surrogate reduction in milk and juice blends by high pressure homogenization.

    Science.gov (United States)

    Horm, Katie Marie; Harte, Federico Miguel; D'Souza, Doris Helen

    2012-11-01

    Novel processing technologies such as high pressure homogenization (HPH) for the inactivation of foodborne viruses in fluids that retain nutritional attributes are in high demand. The objectives of this research were (i) to determine the effects of HPH alone or with an emulsifier (lecithin) on human norovirus surrogates-murine norovirus (MNV-1) and feline calicivirus (FCV-F9)-in skim milk and orange juice, and (ii) to determine HPH effects on FCV-F9 and MNV-1 in orange and pomegranate juice blends. Experiments were conducted in duplicate at 0, 100, 200, 250, and 300 MPa for milk, FCV-F9 was reduced by ≥4 and ∼1.3 log PFU/ml at 300 and 250 MPa, respectively, and ≥4- and ∼1-log PFU/ml reductions were obtained in orange juice at 300 and 250 MPa, respectively. In orange juice or milk combined with lecithin, FCV-F9 was reduced to nondetectable levels at 300 MPa, and by 1.77 and 0.78 log PFU/ml at 250 MPa. MNV-1 in milk was reduced by ∼1.3 log PFU/ml only at 300 MPa, and by ∼0.8 and ∼0.4 log PFU/ml in orange juice at 300 and 250 MPa, respectively. MNV-1 in milk or orange juice containing lecithin at 300 MPa showed 1.32- and 2.5-log PFU/ml reductions, respectively. In the pomegranate-orange juice blend, FCV-F9 was completely reduced, and MNV-1 was reduced by 1.04 and 1.78 log PFU/ml at 250 and 300 MPa, respectively. These results show that HPH has potential for commercial use to inactivate foodborne virus surrogates in juices.

  19. High-capacity quantum Fibonacci coding for key distribution

    Science.gov (United States)

    Simon, David S.; Lawrence, Nate; Trevino, Jacob; Dal Negro, Luca; Sergienko, Alexander V.

    2013-03-01

    Quantum cryptography and quantum key distribution (QKD) have been the most successful applications of quantum information processing, highlighting the unique capability of quantum mechanics, through the no-cloning theorem, to securely share encryption keys between two parties. Here, we present an approach to high-capacity, high-efficiency QKD by exploiting cross-disciplinary ideas from quantum information theory and the theory of light scattering of aperiodic photonic media. We propose a unique type of entangled-photon source, as well as a physical mechanism for efficiently sharing keys. The key-sharing protocol combines entanglement with the mathematical properties of a recursive sequence to allow a realization of the physical conditions necessary for implementation of the no-cloning principle for QKD, while the source produces entangled photons whose orbital angular momenta (OAM) are in a superposition of Fibonacci numbers. The source is used to implement a particular physical realization of the protocol by randomly encoding the Fibonacci sequence onto entangled OAM states, allowing secure generation of long keys from few photons. Unlike in polarization-based protocols, reference frame alignment is unnecessary, while the required experimental setup is simpler than other OAM-based protocols capable of achieving the same capacity and its complexity grows less rapidly with increasing range of OAM used.

  20. When high-capacity readers slow down and low-capacity readers speed up: Working memory and locality effects

    Directory of Open Access Journals (Sweden)

    Bruno eNicenboim

    2016-03-01

    Full Text Available We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German, while taking into account readers’ working memory capacity and controlling for expectation (Levy, 2008 and other factors. We predicted only locality effects, that is, a slow-down produced by increased dependency distance (Gibson, 2000; Lewis & Vasishth, 2005. Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.

  1. Capacity analysis for high-speed terahertz wireless communications

    DEFF Research Database (Denmark)

    Dogadaev, Anton Konstantinovich; Lavrinenko, Andrei; Tafur Monroy, Idelfonso

    2012-01-01

    We report on the analytical capacity analysis of terahertz wireless communications supporting 275–325 GHz frequency band. Our goal in this paper is to provide design guidelines for close proximity links with transmission capacity beyond 100 Gbit/s.......We report on the analytical capacity analysis of terahertz wireless communications supporting 275–325 GHz frequency band. Our goal in this paper is to provide design guidelines for close proximity links with transmission capacity beyond 100 Gbit/s....

  2. Multilocus spacer analysis revealed highly homogeneous genetic background of Asian type of Borrelia miyamotoi.

    Science.gov (United States)

    Mukhacheva, Tatyana A; Salikhova, Irina I; Kovalev, Sergey Y

    2015-04-01

    Borrelia miyamotoi, a member of the relapsing fever group borreliae, was first isolated in Japan and subsequently found in Ixodes ticks in North America, Europe and Russia. Currently, there are three types of B. miyamotoi: Asian or Siberian (transmitted mainly by Ixodes persulcatus), European (Ixodesricinus) and American (Ixodesscapularis and Ixodespacificus). Despite the great genetic distances between B. miyamotoi types, isolates within a type are characterised by an extremely low genetic variability. In particular, strains of B. miyamotoi of Asian type, isolated in Russia from the Baltic sea to the Far East, have been shown to be identical based on the analysis of several conventional genetic markers, such as 16S rRNA, flagellin, outer membrane protein p66 and glpQ genes. Thus, protein or rRNA - coding genes were shown not to be informative enough in studying genetic diversity of B. miyamotoi within a type. In the present paper, we have attempted to design a new multilocus technique based on eight non-coding intergenic spacers (3686bp in total) and have applied it to the analysis of intra-type genetic variability of В. miyamotoi detected in different regions of Russia and from two tick species, I. persulcatus and Ixodespavlovskyi. However, even though potentially the most variable loci were selected, no genetic variability between studied DNA samples was found, except for one nucleotide substitution in two of them. The sequences obtained were identical to those of the reference strain FR64b. Analysis of the data obtained with the GenBank sequences indicates a highly homogeneous genetic background of B. miyamotoi from the Baltic Sea to the Japanese Islands. In this paper, a hypothesis of clonal expansion of B. miyamotoi is discussed, as well as possible mechanisms for the rapid dissemination of one B. miyamotoi clone over large distances.

  3. Fat content increases the lethality of ultra-high-pressure homogenization on Listeria monocytogenes in milk.

    Science.gov (United States)

    Roig-Sagués, A X; Velázquez, R M; Montealegre-Agramont, P; López-Pedemonte, T J; Briñez-Zambrano, W J; Guamis-López, B; Hernandez-Herrero, M M

    2009-11-01

    Listeria monocytogenes CCUG 15526 was inoculated at a concentration of approximately 7.0 log(10) cfu/mL in milk samples with 0.3, 3.6, 10, and 15% fat contents. Milk samples with 0.3 and 3.6% fat content were also inoculated with a lower load of approximately 3.0 log(10) cfu/mL. Inoculated milk samples were subjected to a single cycle of ultra-high-pressure homogenization (UHPH) treatment at 200, 300, and 400 MPa. Microbiological analyses were performed 2 h after the UHPH treatments and after 5, 8, and 15 d of storage at 4 degrees C. Maximum lethality values were observed in samples treated at 400 MPa with 15 and 10% fat (7.95 and 7.46 log(10) cfu/mL), respectively. However, in skimmed and 3.6% fat milk samples, complete inactivation was not achieved and, during the subsequent 15 d of storage at 4 degrees C, L. monocytogenes was able to recover and replicate until achieving initial counts. In milk samples with 10 and 15% fat, L. monocytogenes recovered to the level of initial counts only in the milk samples treated at 200 MPa but not in the milk samples treated at 300 and 400 MPa. When the load of L. monocytogenes was approximately 3.0 log(10) cfu/mL in milk samples with 0.3 and 3.6% fat, complete inactivation was not achieved and L. monocytogenes was able to recover and grow during the subsequent cold storage. Fat content increased the maximum temperature reached during UHPH treatment; this could have contributed to the lethal effect achieved, but the amount of fat of the milk had a stronger effect than the temperature on obtaining a higher death rate of L. monocytogenes.

  4. Probiotic Crescenza cheese containing Lactobacillus casei and Lactobacillus acidophilus manufactured with high-pressure homogenized milk.

    Science.gov (United States)

    Burns, P; Patrignani, F; Serrazanetti, D; Vinderola, G C; Reinheimer, J A; Lanciotti, R; Guerzoni, M E

    2008-02-01

    High-pressure homogenization (HPH) is one of the most promising alternatives to traditional thermal treatment of food preservation and diversification. Its effectiveness on the deactivation of pathogenic and spoilage microorganisms in model systems and real food is well documented. To evaluate the potential of milk treated by HPH for the production of Crescenza cheese with commercial probiotic lactobacilli added, 4 types of cheeses were made: HPH (from HPH-treated milk), P (from pasteurized milk), HPH-P (HPH-treated milk plus probiotics), and P-P (pasteurized milk plus probiotics) cheeses. A strain of Streptococcus thermophilus was used as starter culture for cheese production. Compositional, microbiological, physicochemical, and organoleptic analyses were carried out at 1, 5, 8, and 12 d of refrigerated storage (4 degrees C). According to results obtained, no significant differences among the 4 cheese types were observed for gross composition (protein, fat, moisture) and pH. Differently, the HPH treatment of milk increased the cheese yield about 1% and positively affected the viability during the refrigerated storage of the probiotic bacteria. In fact, after 12 d of storage, the Lactobacillus paracasei A13 cell loads were 8 log cfu/ g, whereas Lactobacillus acidophilus H5 exhibited, in P-P cheese, a cell load decrease of about 1 log cfu/g with respect to the HPH-P cheese. The hyperbaric treatment had a significant positive effect on free fatty acids release and cheese proteolysis. Also, probiotic cultures affected proteolytic and lipolytic cheese patterns. No significant differences were found for the sensory descriptors salty and creamy among HPH and P cheeses as well as for acid, piquant, sweet, milky, salty, creamy, and overall acceptance among HPH, HPH-P, and P-P Crescenza cheeses.

  5. High Capacity data hiding using LSB Steganography and Encryption

    Directory of Open Access Journals (Sweden)

    Shamim Ahmed Laskar

    2013-01-01

    Full Text Available The network provides a method of communication to distribute information to the masses. With the growthof data communication over computer network, the security of information has become a major issue.Steganography and cryptography are two different data hiding techniques. Steganography hides messagesinside some other digital media. Cryptography, on the other hand obscures the content of the message. Wepropose a high capacity data embedding approach by the combination of Steganography andcryptography. In the process a message is first encrypted using transposition cipher method and then theencrypted message is embedded inside an image using LSB insertion method. The combination of these twomethods will enhance the security of the data embedded. This combinational methodology will satisfy therequirements such as capacity, security and robustness for secure data transmission over an open channel.A comparative analysis is made to demonstrate the effectiveness of the proposed method by computingMean square error (MSE and Peak Signal to Noise Ratio (PSNR. We analyzed the data hiding techniqueusing the image performance parameters like Entropy, Mean and Standard Deviation. The stego imagesare tested by transmitting them and the embedded data are successfully extracted by the receiver. The mainobjective in this paper is to provide resistance against visual and statistical attacks as well as highcapacity.

  6. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  7. Mesoporous Silicon-Based Anodes for High Capacity, High Performance Li-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new high capacity anode composite based on mesoporous silicon is proposed. By virtue of a structure that resembles a pseudo one-dimensional phase, the active...

  8. Mesoporous Silicon-Based Anodes for High Capacity, High Performance Li-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new high capacity anode composite based on mesoporous silicon is proposed. By virtue of a structure that resembles a pseudo one-dimensional phase, the active anode...

  9. Peptide Binding to HLA Class I Molecules: Homogenous, High-Throughput Screening, and Affinity Assays

    DEFF Research Database (Denmark)

    Harndahl, Mikkel; Justesen, Sune Frederik Lamdahl; Lamberth, Kasper;

    2009-01-01

    present a homogenous, proximity-based assay for detection of peptide binding to HLA class I molecules. It uses a conformation-dependent anti-HLA class I antibody, W6/32, as one tag and a biotinylated recombinant HLA class I molecule as the other tag, and a proximity-based signal is generated through...

  10. Molecular recognition in homogeneous transition metal catalysis: a biomimetic strategy for high selectivity.

    Science.gov (United States)

    Das, Siddartha; Brudvig, Gary W; Crabtree, Robert H

    2008-01-28

    Traditional methods for selectivity control in homogeneous transition metal catalysis either employ steric effects in a binding pocket or chelate control. In a supramolecular strategy, encapsulation of the substrate can provide useful shape and size selectivity. A fully developed molecular recognition strategy involving hydrogen bonding or solvophobic forces has given almost completely regioselective functionalization of remote, unactivated C-H bonds.

  11. Hydrophilic carbon clusters as therapeutic, high capacity antioxidants

    Science.gov (United States)

    Samuel, Errol L. G.; Duong, MyLinh T.; Bitner, Brittany R.; Marcano, Daniela C.; Tour, James M.; Kent, Thomas A.

    2014-01-01

    Oxidative stress reflects an excessive accumulation of reactive oxygen species (ROS) and is a hallmark of several acute and chronic human pathologies. While many antioxidants have been investigated, the majority have demonstrated poor efficacy in clinical trials. Here, we discuss limitations of current antioxidants and describe a new class of nanoparticle antioxidants, poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs). PEG-HCCs show high capacity to annihilate ROS such as superoxide and hydroxyl radicals, show no reactivity toward nitric oxide, and can be functionalized with targeting moieties without loss of activity. Given these properties, we propose that PEG-HCCs offer an exciting new area of study for treatment of numerous ROS-induced human pathologies. PMID:25175886

  12. The Effect of Chemical and High-Pressure Homogenization Treatment Conditions on the Morphology of Cellulose Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suxia Ren

    2014-01-01

    Full Text Available Cellulose nanoparticles were fabricated from microcrystalline cellulose (MCC through combined acid hydrolysis with sulfuric and hydrochloric acids and high-pressure homogenization. The effect of acid type, acid-to-MCC ratio, reaction time, and numbers of high-pressure homogenization passes on morphology and thermal stability of the nanoparticles was studied. An aggressive acid hydrolysis was shown to lead to rod-like cellulose nanocrystals with diameter about 10 nm and lengths in the range of 50–200 nm. Increased acid-to-MCC ratio and number of homogenization treatments reduced the dimension of the nanocrystals produced. Weak acid hydrolysis treatment led to a network of cellulose nanofiber bundles having diameters in the range of 20–100 nm and lengths of a few thousands of nanometers. The high-pressure homogenization treatment helped separate the nanofiber bundles. The thermal degradation behaviors characterized by thermogravimetric analysis at nitrogen atmosphere indicated that the degradation of cellulose nanocrystals from sulfuric acid hydrolysis started at a lower temperature and had two remarkable pyrolysis processes. The thermal stability of cellulose nanofibers produced from hydrochloric acid hydrolysis improved significantly.

  13. [High intellectual capacity, problem-solving and creativity].

    Science.gov (United States)

    Sastre-Riba, Sylvia; Pascual-Sufrate, M Teresa

    2013-02-22

    The aim of the study is focused on the characteristics and components of creativity as a multidimensional construct in the context of intelligence, divergent thinking and problem solving, and their incorporation into the definition and explanation of intellectual functioning of giftedness and talent. It shows the progress of the investigation from the initial postulates of Guilford about the nature and cognitive processes involved in the creative act, its features and components, development and differential expression in the high intellectual ability, and the neurological correlates neuropsychological research is beginning to show. We present the results obtained with 41 participants with high intellectual capacity profiles of giftedness or talent of 6 to 14 years. We measure their cognitive skills through BADyG or DAT tests, and creative skills by the Torrance Test of Creative Thinking (TTCT), in two measuring points. Analyses show comparatively among high ability profiles: 1) the creative measurement stability between the two time points, 2) statistically significant differences between the creative components of fluency, flexibility and originality, related to the profiles of giftedness or talent (convergent or divergent), 3) the statistically significant changes among the scores of the creative components, at all ages studied.

  14. Effects of high magnetic field on the evolutions of constituent phases in 7085 aluminum alloy during homogenization

    Energy Technology Data Exchange (ETDEWEB)

    He, Lizi, E-mail: helizi@epm.neu.edu.cn [Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Li, Xiehua [Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Chalco Ruimin Corporation, Limited, Fuzhou 350015 (China); Zhu, Pei; Cao, Yiheng; Guo, Yaping; Cui, Jianzhong [Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China)

    2012-09-15

    The evolutions of coarse constituent phases in homogenized 7085 aluminum alloy at different conditions with or without the application of 12 T high magnetic field were examined by using differential scanning calorimetry, scanning electronic microscope, energy dispersive spectroscopy and X-ray diffraction. It is found that the main constituent phases including quaternary phase T(AlZnMgCu), Al{sub 7}Cu{sub 2}Fe, and AlTiCuFeSi are present in as-cast 7085 alloy. During homogenization, {alpha} + T eutectics become discontinuous and spheroidized, and Al{sub 2}CuMg phase nucleates and grows along {alpha} + T eutectics. High magnetic field significantly accelerates the melting of quaternary phase T and Al{sub 2}CuMg phase. When the alloy homogenized at 460 Degree-Sign C/10 h + 480 Degree-Sign C/8 h with 12 T magnetic field, the least amount of constituent phases is obtained. - Highlights: Black-Right-Pointing-Pointer Most of published reports of magnetic field are focused on ferrous alloys. Black-Right-Pointing-Pointer Effect of magnetic field on microstructure of 7085 during homogenization is studied. Black-Right-Pointing-Pointer Magnetic field accelerates the melting of AlZnMgCu and S phase.

  15. Optimal Capacity Conversion for Product Transitions Under High Service Requirements

    OpenAIRE

    Li, Hongmin; Graves, Stephen C.; Huh, Woonghee Tim

    2012-01-01

    We consider the capacity planning problem during a product transition in which demand for a new-generation product gradually replaces that for the old product. Capacity for the new product can be acquired both by purchasing new production lines and by converting existing production lines for the old product. Furthermore, in either case, the new product capacity is “retrofitted” to be flexible, i.e., to be able to also produce the old product. This capacity planning problem arises regularly at...

  16. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    Science.gov (United States)

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.

  17. High efficient generation of replication-defective adenoviruses containing thymidine kinase by homogeneous recombination in bacteria

    Institute of Scientific and Technical Information of China (English)

    CONG Tie-chuan; LU Zhe-ming; LI Yong; ZHENG Li; QIN Yong

    2007-01-01

    Background Suicide gene therapy is a widely used molecular treatment for head and neck cancer. In this study, we try to use the method of homogenous recombination in bacteria to clone thymidine kinase gene (tk)-a kind of suicide gene to adenovirus backbone vectors for the construction of replication-defective adenoviruses.Methods pAdTrack-CMV/tk was constructed through subclone of a restriction endonuclease fragment including thymidine kinase gene from plasmid pCMV-tk to another plasmid pAdTrack-CMV, and then co-transfected with supercoiled pAdEasy-1, which was an adenoviral backbone vector except for deletions of E1 and E3, to competent E.coli BJ5183 for homogenous recombination using electroporation procedure. With the same method, pAdTrack-CMV was also co-transformed with pAdEasy-1 for homogenous recombination in BJ5183. Identified with restriction endonuclease Pacl and polymerase chain reaction (PCR), plasmids pAd-GFP/tk and pAd-GFP were successfully constructed. Each of them was digested with Pacl and sequently transfected into human embryo kidney 293 cells (HEK293) using Lipofectamine 2000.Results Comet-like adenovirus-producing foci of Ad-GFP/tk and Ad-GFP were observed after 5 to 7 days of cell culture.After twelve days of packaging, the replication-defective adenoviruses were collected. Identified with PCR, thymidine kinase gene was successfully constructed into Ad-GFP/tk.Conclusion The replication-defective adenoviruses containing thymidine kinase can be constructed more easily by homogenous recombination in bacteria than conventional techniques.

  18. Highly Efficient High-Pressure Homogenization Approach for Scalable Production of High-Quality Graphene Sheets and Sandwich-Structured α-Fe2O3/Graphene Hybrids for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Qi, Xin; Zhang, Hao-Bin; Xu, Jiantie; Wu, Xinyu; Yang, Dongzhi; Qu, Jin; Yu, Zhong-Zhen

    2017-03-29

    A highly efficient and continuous high-pressure homogenization (HPH) approach is developed for scalable production of graphene sheets and sandwich-structured α-Fe2O3/graphene hybrids by liquid-phase exfoliation of stage-1 FeCl3-based graphite intercalation compounds (GICs). The enlarged interlayer spacing of FeCl3-GICs facilitates their efficient exfoliation to produce high-quality graphene sheets. Moreover, sandwich-structured α-Fe2O3/few-layer graphene (FLG) hybrids are readily fabricated by thermally annealing the FeCl3 intercalated FLG sheets. As an anode material of Li-ion battery, α-Fe2O3/FLG hybrid shows a satisfactory long-term cycling performance with an excellent specific capacity of 1100.5 mA h g(-1) after 350 cycles at 200 mA g(-1). A high reversible capacity of 658.5 mA h g(-1) is achieved after 200 cycles at 1 A g(-1) and maintained without notable decay. The satisfactory cycling stability and the outstanding capability of α-Fe2O3/FLG hybrid are attributed to its unique sandwiched structure consisting of highly conducting FLG sheets and covalently anchored α-Fe2O3 particles. Therefore, the highly efficient and scalable preparation of high-quality graphene sheets along with the excellent electrochemical properties of α-Fe2O3/FLG hybrids makes the HPH approach promising for producing high-performance graphene-based energy storage materials.

  19. A Novel TiNi/AlSi Composite with High Strength and High Damping Capacity

    Institute of Scientific and Technical Information of China (English)

    Shuwei LIU; Xiuyan LI; Desheng YAN; Haichang JIANG; Lijian RONG

    2008-01-01

    A novel TiNi/AlSi composite with high compressive strength and high damping capacity was obtained by infiltrating Al-12%Si alloy into porous TiNi alloy.It had been found that the high compressive strength (440 MPa) of TiNi/AlSi composite is due to the increase of effective carrying area after infiltrating Al-12%Si alloy,while the high damping capacity is contributed to TiNi carcass,Al-12%Si filling material and micro-slipping at the interface.

  20. One-loop omega-potential of charged massive fields in a constant homogeneous magnetic field at high temperatures

    CERN Document Server

    Kalinichenko, I S

    2016-01-01

    The explicit expressions for the high-temperature expansions of the one-loop corrections to the omega-potential coming from the charged scalar and Dirac particles and, separately, from antiparticles in a constant homogeneous magnetic field are derived. The explicit expressions for the non-perturbative corrections to the effective action at finite temperature and density are obtained. The thermodynamic properties of a gas of charged scalars in a constant homogeneous magnetic field are analyzed in the one-loop approximation. It turns out that, in this approximation, the system suffers the first order phase transition from the diamagnetic to the superconducting state at sufficiently high densities. The improvement of the one-loop result by summing the ring diagrams is investigated. This improvement leads to a drastic change of the thermodynamic properties of the system. The gas of charged scalars passes to the ferromagnetic state in place of the superconducting one at high densities and sufficiently low temperat...

  1. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    Science.gov (United States)

    Manthiram, Arumugam (Inventor); Wu, Yan (Inventor)

    2010-01-01

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  2. Tracking inhomogeneity in high-capacity lithium iron phosphate batteries

    Science.gov (United States)

    Paxton, William A.; Zhong, Zhong; Tsakalakos, Thomas

    2015-02-01

    Energy-dispersive x-ray diffraction (EDXRD) is one of the few techniques that can internally probe a sealed battery under operating conditions. In this paper, we use EDXRD with ultrahigh energy synchrotron radiation to track inhomogeneity in a cycled high-capacity lithium iron phosphate cell under in-situ and operando conditions. A sequence of depth-profile x-ray diffraction spectra are collected with 40 μm resolution as the cell is discharged. Additionally, nine different locations of the cell are tracked independently throughout a second discharge process. In each case, a two-peak reference intensity ratio analysis (RIR) was used on the LiFePO4 311 and the FePO4 020 reflections to estimate the relative phase abundance of the lithiated and non-lithiated phases. The data provide a first-time look at the dynamics of electrochemical inhomogeneity in a real-world battery. We observe a strong correlation between inhomogeneity and overpotential in the galvanic response of the cell. Additionally, the data closely follow the behavior that is predicted by the resistive-reactant model originally proposed by Thomas-Alyea. Despite a non-linear response in the independently measured locations, the behavior of the ensemble is strikingly linear. This suggests that effects of inhomogeneity can be elusive and highlights the power of the EDXRD technique.

  3. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M.; Mullender, B.; Druart, J. [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W.; Beddows, A. [ESTEC-The (Netherlands)

    1996-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  4. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    OpenAIRE

    Dong, Peng; Erika S. Georget; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~106 CFU/mL were subjecte...

  5. Design of high-capacity fiber-optic transport systems

    Science.gov (United States)

    Liao, Zhi Ming

    2001-08-01

    We study the design of fiber-optic transport systems and the behavior of fiber amplifiers/lasers with the aim of achieving higher capacities with larger amplifier spacing. Solitons are natural candidates for transmitting short pulses for high-capacity fiber-optic networks because of its innate ability to use two of fiber's main defects, fiber dispersion and fiber nonlinearity to balance each other. In order for solitons to retain its dynamic nature, amplifiers must be placed periodically to restore powers to compensate for fiber loss. Variational analysis is used to study the long-term stability of a periodical- amplifier system. A new regime of operation is identified which allows the use of a much longer amplifier spacing. If optical fibers are the blood vessels of an optical communication system, then the optical amplifier based on erbium-doped fiber is the heart. Optical communication systems can avoid the use of costly electrical regenerators to maintain system performance by being able to optically amplify the weakened signals. The length of amplifier spacing is largely determined by the gain excursion experienced by the solitons. We propose, model, and demonstrate a distributed erbium-doped fiber amplifier which can drastically reduce the amount of gain excursion experienced by the solitons, therefore allowing a much longer amplifier spacing and superior stability. Dispersion management techniques have become extremely valuable tools in the design of fiber-optic communication systems. We have studied in depth the advantage of different arnplification schemes (lumped and distributed) for various dispersion compensation techniques. We measure the system performance through the Q factor to evaluate the added advantage of effective noise figure and smaller gain excursion. An erbium-doped fiber laser has been constructed and characterized in an effort to develop a test bed to study transmission systems. The presence of mode-partition noise in an erbium

  6. Homogeneous catalysts

    CERN Document Server

    Chadwick, John C; Freixa, Zoraida; van Leeuwen, Piet W N M

    2011-01-01

    This first book to illuminate this important aspect of chemical synthesis improves the lifetime of catalysts, thus reducing material and saving energy, costs and waste.The international panel of expert authors describes the studies that have been conducted concerning the way homogeneous catalysts decompose, and the differences between homogeneous and heterogeneous catalysts. The result is a ready reference for organic, catalytic, polymer and complex chemists, as well as those working in industry and with/on organometallics.

  7. High Pressure Homogenization Of Porcine Pepsin Protease: Effects On Enzyme Activity, Stability, Milk Coagulation Profile And Gel Development.

    OpenAIRE

    Bruno Ricardo de Castro Leite Júnior; Alline Artigiani Lima Tribst; Marcelo Cristianini

    2015-01-01

    This study investigated the effect of high pressure homogenization (HPH) (up to 190 MPa) on porcine pepsin (proteolytic and milk-clotting activities), and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure). Although the proteolytic activity (PA) was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained w...

  8. Dynamics of a Highly Viscous Circular Blob in Homogeneous Porous Media

    Directory of Open Access Journals (Sweden)

    Vandita Sharma

    2017-06-01

    Full Text Available Viscous fingering is ubiquitous in miscible displacements in porous media, in particular, oil recovery, contaminant transport in aquifers, chromatography separation, and geological CO2 sequestration. The viscosity contrasts between heavy oil and water is several orders of magnitude larger than typical viscosity contrasts considered in the majority of the literature. We use the finite element method (FEM-based COMSOL Multiphysics simulator to simulate miscible displacements in homogeneous porous media with very large viscosity contrasts. Our numerical model is suitable for a wide range of viscosity contrasts covering chromatographic separation as well as heavy oil recovery. We have successfully captured some interesting and previously unexplored dynamics of miscible blobs with very large viscosity contrasts in homogeneous porous media. We study the effect of viscosity contrast on the spreading and the degree of mixing of the blob. Spreading (variance of transversely averaged concentration follows the power law t 3 . 34 for the blobs with viscosity ∼ O ( 10 2 and higher, while degree of mixing is found to vary non-monotonically with log-mobility ratio. Moreover, in the limit of very large viscosity contrast, the circular blob behaves like an erodible solid body and the degree of mixing approaches the viscosity-matched case.

  9. Superior electrochemical performance of sulfur/graphene nanocomposite material for high-capacity lithium-sulfur batteries.

    Science.gov (United States)

    Wang, Bei; Li, Kefei; Su, Dawei; Ahn, Hyojun; Wang, Guoxiu

    2012-06-01

    Sulfur/graphene nanocomposite material has been prepared by incorporating sulfur into the graphene frameworks through a melting process. Field-emission scanning electron microscope analysis shows a homogeneous distribution of sulfur in the graphene nanosheet matrix. The sulfur/graphene nanocomposite exhibits a super-high lithium-storage capacity of 1580 mA h g(-1) and a satisfactory cycling performance in lithium-sulfur cells. The enhancement of the reversible capacity and cycle life could be attributed to the flexible graphene nanosheet matrix, which acts as a conducting medium and a physical buffer to cushion the volume change of sulfur during the lithiation and delithiation process. Graphene-based nanocomposites can significantly improve the electrochemical performance of lithium-sulfur batteries.

  10. Formation and stability of D-limonene organogel-based nanoemulsion prepared by a high-pressure homogenizer.

    Science.gov (United States)

    Zahi, Mohamed Reda; Wan, Pingyu; Liang, Hao; Yuan, Qipeng

    2014-12-31

    D-limonene organogel-based nanoemulsion was prepared by high-pressure homogenization technology. The organogelator type had a major role on the formation of the formulations, in which stearic acid has given nanoemulsions with the smallest droplet size. The surfactant type and concentration also had an appreciable effect on droplet formation, with Tween 80 giving a mean droplet diameter (d ≈ 112 nm) among a range of non-ionic surfactants (Tween 20, 40, 60, 80, and 85). In addition, high-pressure homogenization conditions played a key role in the nanoemulsion preparation. The stability of d-limonene organogel-based nanoemulsion was also investigated under two different temperatures (4 and 28 °C) through 2 weeks of storage. Results showed a good stability of the formulations, which is maybe due to the incorporation of D-limonene into the organogel prior to homogenization. This study may have a valuable contribution for the design and use of organogel-based nanoemulsion as a delivery system in food.

  11. Homogeneous heating of a sample space by a modified heating assembly in a belt-type high-pressure apparatus.

    Science.gov (United States)

    Miyakawa, M; Taniguchi, T

    2015-02-01

    To create homogeneous heating in the sample space in a belt-type high-pressure apparatus, modified heating assemblies under pressure of 2.5 GPa and temperature up to 1700 °C were examined. Counterbores (with several diameters) were made at both ends of a cylindrical graphite heater to suppress the temperature gradient along the cylindrical axis of the heater. Temperature distributions within the heaters were measured by thermocouples and geothermometers. Both sets of measurements revealed that the temperature distribution in the sample space (6.9 mm outside diameter/12 mm length) was homogenized (i.e., variation of less than 10 °C under heating at 1700 °C) by optimizing the heater shape.

  12. Optical signal processing for enabling high-speed, highly spectrally efficient and high capacity optical systems

    Science.gov (United States)

    Fazal, Muhammad Irfan

    The unabated demand for more capacity due to the ever-increasing internet traffic dictates that the boundaries of the state of the art maybe pushed to send more data through the network. Traditionally, this need has been satisfied by multiple wavelengths (wavelength division multiplexing), higher order modulation formats and coherent communication (either individually or combined together). WDM has the ability to reduce cost by using multiple channels within the same physical fiber, and with EDFA amplifiers, the need for O-E-O regenerators is eliminated. Moreover the availability of multiple colors allows for wavelength-based routing and network planning. Higher order modulation formats increases the capacity of the link by their ability to encode data in both the phase and amplitude of light, thereby increasing the bits/sec/Hz as compared to simple on-off keyed format. Coherent communications has also emerged as a primary means of transmitting and receiving optical data due to its support of formats that utilize both phase and amplitude to further increase the spectral efficiency of the optical channel, including quadrature amplitude modulation (QAM) and quadrature phase shift keying (QPSK). Polarization multiplexing of channels can double capacity by allowing two channels to share the same wavelength by propagating on orthogonal polarization axis and is easily supported in coherent systems where the polarization tracking can be performed in the digital domain. Furthermore, the forthcoming IEEE 100 Gbit/s Ethernet Standard, 802.3ba, provides greater bandwidth, higher data rates, and supports a mixture of modulation formats. In particular, Pol-MUX QPSK is increasingly becoming the industry's format of choice as the high spectral efficiency allows for 100 Gbit/s transmission while still occupying the current 50 GHz/channel allocation of current 10 Gbit/s OOK fiber systems. In this manner, 100 Gbit/s transfer speeds using current fiber links, amplifiers, and filters

  13. Development of a molecular-dynamics-based cluster-heat-capacity model for study of homogeneous condensation in supersonic water-vapor expansions.

    Science.gov (United States)

    Borner, Arnaud; Li, Zheng; Levin, Deborah A

    2013-02-14

    Supersonic expansions to vacuum produce clusters of sufficiently small size that properties such as heat capacities and latent heat of evaporation cannot be described by bulk vapor thermodynamic values. In this work the Monte-Carlo Canonical-Ensemble (MCCE) method was used to provide potential energies and constant-volume heat capacities for small water clusters. The cluster structures obtained using the well-known simple point charge model were found to agree well with earlier simulations using more rigorous potentials. The MCCE results were used as the starting point for molecular dynamics simulations of the evaporation rate as a function of cluster temperature and size which were found to agree with unimolecular dissociation theory and classical nucleation theory. The heat capacities and latent heat obtained from the MCCE simulations were used in direct-simulation Monte-Carlo of two experiments that measured Rayleigh scattering and terminal dimer mole fraction of supersonic water-jet expansions. Water-cluster temperature and size were found to be influenced by the use of kinetic rather than thermodynamic heat-capacity and latent-heat values as well as the nucleation model.

  14. Free-space optical communications with peak and average constraints: High SNR capacity approximation

    KAUST Repository

    Chaaban, Anas

    2015-09-07

    The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel with both average and peak intensity constraints is studied. A new capacity lower bound is derived by using a truncated-Gaussian input distribution. Numerical evaluation shows that this capacity lower bound is nearly tight at high signal-to-noise ratio (SNR), while it is shown analytically that the gap to capacity upper bounds is a small constant at high SNR. In particular, the gap to the high-SNR asymptotic capacity of the channel under either a peak or an average constraint is small. This leads to a simple approximation of the high SNR capacity. Additionally, a new capacity upper bound is derived using sphere-packing arguments. This bound is tight at high SNR for a channel with a dominant peak constraint.

  15. High-powered conveyor systems: long distance, downhill, open-pit, and high capacity conveyors

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, H.K.

    1978-01-01

    Paper indicates the conditions under which belt conveyors are superior to other forms of transport, the limitations of these conveyors. Long distance, downhill, open-pit and high capacity conveyor installations are described, including a 60-mile long conveyor in the Sahara.

  16. High Working Memory Capacity Predicts Less Retrieval Induced Forgetting

    NARCIS (Netherlands)

    Mall, Jonathan T.; Morey, Candice C.

    2013-01-01

    Background : Working Memory Capacity (WMC) is thought to be related to executive control and focused memory search abilities. These two hypotheses make contrasting predictions regarding the effects of retrieval on forgetting. Executive control during memory retrieval is believed to lead to retrieval

  17. High interpopulation homogeneity in Central Argentina as assessed by Ancestry Informative Markers (AIMs)

    Science.gov (United States)

    García, Angelina; Dermarchi, Darío A.; Tovo-Rodrigues, Luciana; Pauro, Maia; Callegari-Jacques, Sidia M.; Salzano, Francisco M.; Hutz, Mara H.

    2015-01-01

    The population of Argentina has already been studied with regard to several genetic markers, but much more data are needed for the appropriate definition of its genetic profile. This study aimed at investigating the admixture patterns and genetic structure in Central Argentina, using biparental markers and comparing the results with those previously obtained by us with mitochondrial DNA (mtDNA) in the same samples. A total of 521 healthy unrelated individuals living in 13 villages of the Córdoba and San Luis provinces were tested. The individuals were genotyped for ten autosomal ancestry informative markers (AIMs). Allele frequencies were compared with those of African, European and Native American populations, chosen to represent parental contributions. The AIM estimates indicated a greater influence of the Native American ancestry as compared to previous studies in the same or other Argentinean regions, but smaller than that observed with the mtDNA tests. These differences can be explained, respectively, by different genetic contributions between rural and urban areas, and asymmetric gene flow occurred in the past. But a most unexpected finding was the marked interpopulation genetic homogeneity found in villages located in diverse geographic environments across a wide territory, suggesting considerable gene flow. PMID:26500436

  18. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect

    Directory of Open Access Journals (Sweden)

    Dongxu Ren

    2016-04-01

    Full Text Available A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method’s theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.

  19. Fabrication of Homogeneous High-Density Antibody Microarrays for Cytokine Detection

    Directory of Open Access Journals (Sweden)

    Ingeborg Hospach

    2014-12-01

    Full Text Available Cytokine proteins are known as biomarker molecules, characteristic of a disease or specific body condition. Monitoring of the cytokine pattern in body fluids can contribute to the diagnosis of diseases. Here we report on the development of an array comprised of different anti-cytokine antibodies on an activated solid support coupled with a fluorescence readout mechanism. Optimization of the array preparation was done in regard of spot homogeneity and spot size. The proinflammatory cytokines Tumor Necrosis Factor alpha (TNFα and Interleukin 6 (IL-6 were chosen as the first targets of interest. First, the solid support for covalent antibody immobilization and an adequate fluorescent label were selected. Three differently functionalized glass substrates for spotting were compared: amine and epoxy, both having a two-dimensional structure, and the NHS functionalized hydrogel (NHS-3D. The NHS-hydrogel functionalization of the substrate was best suited to antibody immobilization. Then, the optimization of plotting parameters and geometry as well as buffer media were investigated, considering the ambient analyte theory of Roger Ekins. As a first step towards real sample studies, a proof of principle of cytokine detection has been established.

  20. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect.

    Science.gov (United States)

    Ren, Dongxu; Zhao, Huiying; Zhang, Chupeng; Yuan, Daocheng; Xi, Jianpu; Zhu, Xueliang; Ban, Xinxing; Dong, Longchao; Gu, Yawen; Jiang, Chunye

    2016-04-14

    A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method's theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.

  1. High interpopulation homogeneity in Central Argentina as assessed by Ancestry Informative Markers (AIMs

    Directory of Open Access Journals (Sweden)

    Angelina García

    2015-09-01

    Full Text Available The population of Argentina has already been studied with regard to several genetic markers, but much more data are needed for the appropriate definition of its genetic profile. This study aimed at investigating the admixture patterns and genetic structure in Central Argentina, using biparental markers and comparing the results with those previously obtained by us with mitochondrial DNA (mtDNA in the same samples. A total of 521 healthy unrelated individuals living in 13 villages of the Córdoba and San Luis provinces were tested. The individuals were genotyped for ten autosomal ancestry informative markers (AIMs. Allele frequencies were compared with those of African, European and Native American populations, chosen to represent parental contributions. The AIM estimates indicated a greater influence of the Native American ancestry as compared to previous studies in the same or other Argentinean regions, but smaller than that observed with the mtDNA tests. These differences can be explained, respectively, by different genetic contributions between rural and urban areas, and asymmetric gene flow occurred in the past. But a most unexpected finding was the marked interpopulation genetic homogeneity found in villages located in diverse geographic environments across a wide territory, suggesting considerable gene flow.

  2. On the High Altitude Platform (HAP W-CDMA System Capacity

    Directory of Open Access Journals (Sweden)

    L. de Haro-Ariet

    2004-06-01

    Full Text Available The performance of a downlink power control model, based on a n-thpower distance law, is evaluated for high altitude platform station(HAPS W-CDMA systems. The downlink capacity using this model iscompared with the uplink capacity. It is shown that the uplink capacityis higher than the downlink capacity.

  3. Multiresidue analysis of pesticides in vegetables and fruits using a high capacity absorbent polymer for water.

    Science.gov (United States)

    Obana, H; Akutsu, K; Okihashi, M; Kakimoto, S; Hori, S

    1999-08-01

    A single extraction and a single clean-up procedure was developed for multi-residue analysis of pesticides in non-fatty vegetables and fruits. The method involves the use of a high capacity absorbent polymer for water as a drying agent in extraction from wet food samples and of a graphitized carbon column for clean-up. A homogeneously chopped food sample (20 g) and polymer (3 g) were mixed to absorb water from the sample and then 10 min later the mixture was vigorously extracted with ethyl acetate (100 ml). The extract (50 ml), separated by filtration, was loaded on a graphitized carbon column without concentration. Additional ethyl acetate (50 ml) was also eluted and both eluates were concentrated to 5 ml for analysis. The procedure for sample preparation was completed within 2 h. In a recovery test, 107 pesticides were spiked and average recoveries were more than 80% from asparagus, orange, potato and strawberry. Most pesticides were recovered in the range 70-120% with usually less than a 10% RSD for six experiments. The results indicated that a single extraction with ethyl acetate in the presence of polymer can be applied to the monitoring of pesticide residues in foods.

  4. Hepatoma SK Hep-1 cells exhibit characteristics of oncogenic mesenchymal stem cells with highly metastatic capacity.

    Directory of Open Access Journals (Sweden)

    Jong Ryeol Eun

    Full Text Available BACKGROUND: SK Hep-1 cells (SK cells derived from a patient with liver adenocarcinoma have been considered a human hepatoma cell line with mesenchymal origin characteristics, however, SK cells do not express liver genes and exhibit liver function, thus, we hypothesized whether mesenchymal cells might contribute to human liver primary cancers. Here, we characterized SK cells and its tumourigenicity. METHODS AND PRINCIPAL FINDINGS: We found that classical mesenchymal stem cell (MSC markers were presented on SK cells, but endothelial marker CD31, hematopoietic markers CD34 and CD45 were negative. SK cells are capable of differentiate into adipocytes and osteoblasts as adipose-derived MSC (Ad-MSC and bone marrow-derived MSC (BM-MSC do. Importantly, a single SK cell exhibited a substantial tumourigenicity and metastatic capacity in immunodefficient mice. Metastasis not only occurred in circulating organs such as lung, liver, and kidneys, but also in muscle, outer abdomen, and skin. SK cells presented greater in vitro invasive capacity than those of Ad-MSC and BM-MSC. The xenograft cells from subcutaneous and metastatic tumors exhibited a similar tumourigenicity and metastatic capacity, and showed the same relatively homogenous population with MSC characteristics when compared to parental SK cells. SK cells could unlimitedly expand in vitro without losing MSC characteristics, its tumuorigenicity and metastatic capacity, indicating that SK cells are oncogenic MSC with enhanced self-renewal capacity. We believe that this is the first report that human MSC appear to be transformed into cancer stem cells (CSC, and that their derivatives also function as CSCs. CONCLUSION: Our findings demonstrate that SK cells represent a transformation mechanism of normal MSC into an enhanced self-renewal CSC with metastasis capacity, SK cells and their xenografts represent a same relative homogeneity of CSC with substantial metastatic capacity. Thus, it represents a

  5. Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes

    KAUST Repository

    Cui, Li-Feng

    2009-01-14

    Silicon is an attractive alloy-type anode material for lithium ion batteries because of its highest known capacity (4200 mAh/g). However silicon\\'s large volume change upon lithium insertion and extraction, which causes pulverization and capacity fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large volume changes. In this letter, we introduce a core-shell design of silicon nanowires for highpower and long-life lithium battery electrodes. Silicon crystalline- amorphous core-shell nanowires were grown directly on stainless steel current collectors by a simple one-step synthesis. Amorphous Si shells instead of crystalline Si cores can be selected to be electrochemically active due to the difference of their lithiation potentials. Therefore, crystalline Si cores function as a stable mechanical support and an efficient electrical conducting pathway while amorphous shells store Li ions. We demonstrate here that these core-shell nanowires have high charge storage capacity (̃1000 mAh/g, 3 times of carbon) with ̃90% capacity retention over 100 cycles. They also show excellent electrochemical performance at high rate charging and discharging (6.8 A/g, ̃20 times of carbon at 1 h rate). © 2009 American Chemical Society.

  6. Temporal Processing Capacity in High-Level Visual Cortex Is Domain Specific.

    Science.gov (United States)

    Stigliani, Anthony; Weiner, Kevin S; Grill-Spector, Kalanit

    2015-09-09

    Prevailing hierarchical models propose that temporal processing capacity--the amount of information that a brain region processes in a unit time--decreases at higher stages in the ventral stream regardless of domain. However, it is unknown if temporal processing capacities are domain general or domain specific in human high-level visual cortex. Using a novel fMRI paradigm, we measured temporal capacities of functional regions in high-level visual cortex. Contrary to hierarchical models, our data reveal domain-specific processing capacities as follows: (1) regions processing information from different domains have differential temporal capacities within each stage of the visual hierarchy and (2) domain-specific regions display the same temporal capacity regardless of their position in the processing hierarchy. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. Notably, domain-specific temporal processing capacities are not apparent in V1 and have perceptual implications. Behavioral testing revealed that the encoding capacity of body images is higher than that of characters, faces, and places, and there is a correspondence between peak encoding rates and cortical capacities for characters and bodies. The present evidence supports a model in which the natural statistics of temporal information in the visual world may affect domain-specific temporal processing and encoding capacities. These findings suggest that the functional organization of high-level visual cortex may be constrained by temporal characteristics of stimuli in the natural world, and this temporal capacity is a characteristic of domain-specific networks in high-level visual cortex. Significance statement: Visual stimuli bombard us at different rates every day. For example, words and scenes are typically stationary and vary at slow rates. In contrast, bodies are dynamic

  7. Reflector homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail: richard.sanchez@cea.fr

    2004-07-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)

  8. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    Directory of Open Access Journals (Sweden)

    Sira Maria Karvinen

    2016-07-01

    Full Text Available The production of heat , i.e. thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect body temperature. Here we use rat models that differ for maximal running capacity (Low capacity runners, LCR and High capacity Runners, HCR to study the connection between PA and body temperature. Ten HCR and ten LCR female rats were studied between 9 and 21 months of age. Rectal temperature of HCR and LCR rats was measured before and after one year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs 21 months of age. HCRs had on average 1.3C higher body temperature than LCRs (p < 0.001. Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a marked impact on the body temperature of HCRs (p < 0.001 allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c and OXPHOS contents in the skeletal muscle (p < 0.050. These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050, but not that of HCRs. In conclusion, rats born with high intrinsic aerobic capacity and better health have higher body temperature compared to rats born with low aerobic

  9. Measuring Upper Limb Capacity in Poststroke Patients : Development, Fit of the Monotone Homogeneity Model, Unidimensionality, Fit of the Double Monotonicity Model, Differential Item Functioning, Internal Consistency, and Feasibility of the Stroke Upper Limb Capacity Scale, SULCS

    NARCIS (Netherlands)

    Roorda, Leo D.; Houwink, Annemieke; Smits, Wendy; Molenaar, Ivo W.; Geurts, Alexander C.

    2011-01-01

    Objectives: To develop an easy-to-use scale that measures upper limb capacity, according to the International Classification of Functioning, Disability and Health definition, in patients after stroke, and to investigate certain psychometric properties of this scale. Design: Cohort study. Setting: In

  10. Fabrications of High-Capacity Alpha-Ni(OH2

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2017-03-01

    Full Text Available Three different methods were used to produce α-Ni(OH2 with higher discharge capacities than the conventional β-Ni(OH2, specifically a batch process of co-precipitation, a continuous process of co-precipitation with a phase transformation step (initial cycling, and an overcharge at low temperature. All three methods can produce α-Ni(OH2 or α/β mixed-Ni(OH2 with capacities higher than that of conventional β-Ni(OH2 and a stable cycle performance. The second method produces a special core–shell β-Ni(OH2/α-Ni(OH2 structure with an excellent cycle stability in the flooded half-cell configuration, is innovative and also already mass-production ready. The core–shell structure has been investigated by both scanning and transmission electron microscopies. The shell portion of the particle is composed of α-Ni(OH2 nano-crystals embedded in a β-Ni(OH2 matrix, which helps to reduce the stress originating from the lattice expansion in the β-α transformation. A review on the research regarding α-Ni(OH2 is also included in the paper.

  11. High homogeneity B(1) 30.2 MHz Nuclear Magnetic Resonance Probe for off-resonance relaxation times measurements.

    Science.gov (United States)

    Baranowski, M; Woźniak-Braszak, A; Jurga, K

    2011-01-01

    This paper reports on design and construction of a double coil high-homogeneity ensuring Nuclear Magnetic Resonance Probe for off-resonance relaxation time measurements. NMR off-resonance experiments pose unique technical problems. Long irradiation can overheat the sample, dephase the spins because of B(1) field inhomogeneity and degrade the signal received by requiring the receiver bandwidth to be broader than that needed for normal experiment. The probe proposed solves these problems by introducing a separate off-resonance irradiation coil which is larger than the receiver coil and is wound up on the dewar tube that separates it from the receiver coil thus also thermally protects the sample from overheating. Large size of the irradiation coil also improves the field homogeneity because as a ratio of the sample diameter to the magnet (coil) diameter increases, the field inhomogeneity also increases (Blümich et al., 2008) [1]. The small receiver coil offers maximization of the filling factor and a high signal to the noise ratio. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Highly stereospecific polymerization of isoprene with homogeneous binary Ziegler-Natta catalysts based on NCN-pincer neodymium precursor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The aryldiimine NCN-pincer stabilized neodymium dichloride combined with aluminum alkyls established a new type of homogeneous binary neutral Ziegler-Natta catalyst system.This system exhibited high activity and high cis-1,4 selectivity for the polymerization of isoprene (Tp=20 °C,98.2%;Tp=-20 °C,> 99%).Such catalytic performances remained under a broad range of polymerization temperatures and monomer-to-neodymium ratios (from 500 to 8000),reaching high number-average molecular weight (Mn=1582 kg/mol) and relatively narrow molecular weight distribution (PDI=1.68),which was,however,influenced by the amount and bulkiness of aluminum alkyls.Dynamic investigation of the polymerization was performed,which showed the number-average molecular weight of the resultant polyisoprene had an almost linear correlation with the conversion,suggesting,in some degree,the polymerization with this catalytic system was controllable.

  13. Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer.

    Science.gov (United States)

    Lim, Jong-Min; Swami, Archana; Gilson, Laura M; Chopra, Sunandini; Choi, Sungyoung; Wu, Jun; Langer, Robert; Karnik, Rohit; Farokhzad, Omid C

    2014-06-24

    High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production.

  14. On the heat capacity of liquids at high temperatures

    CERN Document Server

    Stishov, S M

    2016-01-01

    Making use of a simple approximation for the evolution of the radial distribution function, we calculate the temperature dependence of the heat capacity $C_v$ of Ar at constant density. $C_v$ decreases with temperature roughly according to the law $\\sim T^{-1/4}$, slowly approaching the hard sphere asymptotic value $C_v=\\frac{3}{2}R$. However, the asymptotic value of $C_v$ is not reachable at reasonable temperatures , but stays close to 1.7--1.8 $R$ over a wide range of temperatures after passing a " magic " $2R$ value at about 2000 K. Nevertheless these values has nothing to do with loss of vibrational degrees of freedom, but arises as a result of a temperature variation of the collision diameter $\\sigma$. \\end{abstract}

  15. Economic viability of transmission capacity expansion at high wind penetrations

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    With growing wind power penetrations in many countries, grid and system integration becomes more and more important issues. This is particularly the case in countries or regions with good wind resources as well as substantial installed wind power capacity as found in e.g. Northern Europe. At 20......% penetration in Western Denmark, the issue is pertinent here in relation to future plans of further expansion which is planned in accordance with the Danish Government’s climate change mitigation initiatives. This paper analyses the potential economic benefit of selling excess electricity production...... investments and analyses of the Nord Pool price variations. The analyses are done for varying degrees of wind power penetrations ranging from 20% of the West Danish electricity demand up to 100% of the demand. The analyses demonstrate, that while there is an economic potential for some expansion in some years...

  16. High capacity adsorption media and method of producing

    Science.gov (United States)

    Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.

    2010-10-05

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  17. Elpipes for the High Capacity Backbone of an Asian Grid

    Institute of Scientific and Technical Information of China (English)

    Roger Faulkner

    2011-01-01

    Elpipes are polymer-insulated underground HVDC electric pipelines based on metallic conductors. Etpipes use relatively rigid extruded conductors designed for higher capacity and efficiency that are practical for overhead pow- er lines. Rigid insulation may be used. In this paper, we discuss the technical trade-offs for etpipes, and application of elpipes linking load centers to remote dispatchable hydro power, energy storage sites, and large dispatchable loads, to achieve load leveling through nonqocal storage and dispatchable loads, via the HVDC grid. Elpipes with voltage source converters (VSC) enable placing many AC/DC power taps on a single HVDC loop. It is advantageous to build up a continental scale HVDC grid from local loops that tie together 10-20 taps.

  18. Hierarchical Cellular Structures in High-Capacity Cellular Communication Systems

    CERN Document Server

    Jain, R K; Agrawal, N K

    2011-01-01

    In the prevailing cellular environment, it is important to provide the resources for the fluctuating traffic demand exactly in the place and at the time where and when they are needed. In this paper, we explored the ability of hierarchical cellular structures with inter layer reuse to increase the capacity of mobile communication network by applying total frequency hopping (T-FH) and adaptive frequency allocation (AFA) as a strategy to reuse the macro and micro cell resources without frequency planning in indoor pico cells [11]. The practical aspects for designing macro- micro cellular overlays in the existing big urban areas are also explained [4]. Femto cells are inducted in macro / micro / pico cells hierarchical structure to achieve the required QoS cost effectively.

  19. MIMO Intensity-Modulation Channels: Capacity Bounds and High SNR Characterization

    KAUST Repository

    Chaaban, Anas

    2016-10-01

    The capacity of MIMO intensity modulation channels is studied. The nonnegativity of the transmit signal (intensity) poses a challenge on the precoding of the transmit signal, which limits the applicability of classical schemes in this type of channels. To resolve this issue, capacity lower bounds are developed by using precoding-free schemes. This is achieved by channel inversion or QR decomposition to convert the MIMO channel to a set of parallel channels. The achievable rate of a DC-offset SVD based scheme is also derived as a benchmark. Then, a capacity upper bound is derived and is shown to coincide with the achievable rate of the QR decomposition based scheme at high SNR, consequently characterizing the high-SNR capacity of the channel. The high-SNR gap between capacity and the achievable rates of the channel inversion and the DC-offset SVD based schemes is also characterized. Finally, the ergodic capacity of the channel is also briefly discussed.

  20. High reversible capacity of SnO{sub 2}/graphene nanocomposite as an anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lian Peichao [School of Chemistry and Chemical Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640 (China); Zhu Xuefeng [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Liang Shuzhao; Li Zhong [School of Chemistry and Chemical Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640 (China); Yang Weishen [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Wang Haihui, E-mail: hhwang@scut.edu.c [School of Chemistry and Chemical Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640 (China)

    2011-04-30

    Highlights: {yields} Gas-liquid interfacial reaction was used to prepare SnO{sub 2}/graphene nanocomposite. {yields} SnO{sub 2}/graphene nanocomposite as an anode for lithium-ion batteries. {yields} It exhibited high reversible specific capacity and excellent cycle capability. {yields} Graphene sheets can improve the cycling performance and reverible capacity of SnO{sub 2}. - Abstract: A gas-liquid interfacial synthesis approach has been developed to prepare SnO{sub 2}/graphene nanocomposite. The as-prepared nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller measurements. Field emission scanning electron microscopy and transmission electron microscopy observation revealed the homogeneous distribution of SnO{sub 2} nanoparticles (2-6 nm in size) on graphene matrix. The electrochemical performances were evaluated by using coin-type cells versus metallic lithium. The SnO{sub 2}/graphene nanocomposite prepared by the gas-liquid interface reaction exhibits a high reversible specific capacity of 1304 mAh g{sup -1} at a current density of 100 mA g{sup -1} and excellent rate capability, even at a high current density of 1000 mA g{sup -1}, the reversible capacity was still as high as 748 mAh g{sup -1}. The electrochemical test results show that the SnO{sub 2}/graphene nanocomposite prepared by the gas-liquid interfacial synthesis approach is a promising anode material for lithium-ion batteries.

  1. Effects of ultra-high-pressure homogenization treatment on the lipolysis and lipid oxidation of milk during refrigerated storage.

    Science.gov (United States)

    Pereda, Julieta; Ferragut, Victoria; Quevedo, Joan Miquel; Guamis, Buenaventura; Trujillo, Antonio J

    2008-08-27

    Free fatty acid (FFA) release and quantification and lipid oxidation extent of ultra-high-pressure homogenized (UHPH) milk samples were evaluated to assess the effect of UHPH on the susceptibility of milk lipids to lipolysis and oxidation. Milk was UHPH-treated at 200 and 300 MPa with inlet temperatures of 30 and 40 degrees C. UHPH-treated samples were compared to high-pasteurized milk (PA; 90 degrees C, 15 s). Results showed that all FFA increased significantly during storage only in 200 MPa samples. Lipid oxidation was measured as an accumulation of lipid hydroperoxides as the primary oxidation product and malondialdehyde and hexanal as the secondary oxidation products. Samples treated at 300 MPa presented higher malondialdehyde and hexanal content compared to 200 MPa treated-samples and to PA milk.

  2. Generation and stabilization of whey-based monodisperse naoemulsions using ultra-high pressure homogenization and small amphipathic co-emulsifier combinations

    Science.gov (United States)

    Ultra-high-pressure homogenization (UHPH) was used to generate monodisperse stable peanut oil nanoemulsions within a desired nanosize range (whey protein concentrate (WPC), sodium dodecyl sulfate, Triton X-100 (X100), and zwitterionic sulfobetaine-base...

  3. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.

    1999-01-05

    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  4. High-pressure homogenization of raw and pasteurized milk modifies the yield, composition, and texture of queso fresco cheese.

    Science.gov (United States)

    Escobar, D; Clark, S; Ganesan, V; Repiso, L; Waller, J; Harte, F

    2011-03-01

    High-pressure homogenization (HPH) of milk was studied as an alternative processing operation in the manufacturing of queso fresco cheese. Raw and pasteurized (65°C for 30 min) milks were subjected to HPH at 0, 100, 200, and 300 MPa and then used to manufacture queso fresco. The cheeses were evaluated for yield, moisture content, titratable acidity, nitrogen content, whey protein content, yield force, yield strain, and tactile texture by instrumental or trained panel analyses. The combination of HPH and thermal processing of milk resulted in cheeses with increased yield and moisture content. The net amount of protein transferred to the cheese per kilogram of milk remained constant for all treatments except raw milk processed at 300 MPa. The highest cheese yield, moisture content, and crumbliness were obtained for thermally processed milk subjected to HPH at 300 MPa. The principal component analysis of all measured variables showed that the variables yield, moisture content, and crumbliness were strongly correlated to each other and negatively correlated to the variables yield strain, protein content (wet basis), and sensory cohesiveness. It is suggested that the combination of thermal processing and HPH promotes thermally induced denaturation of whey protein, together with homogenization-induced dissociation of casein micelles. The combined effect results in queso fresco containing a thin casein-whey matrix that is able to better retain sweet whey. These results indicate that HPH has a strong potential for the manufacture of queso fresco with excellent yield and textural properties.

  5. High pressure homogenization and two-phased anaerobic digestion for enhanced biogas conversion from municipal waste sludge.

    Science.gov (United States)

    Wahidunnabi, Abdullahil K; Eskicioglu, Cigdem

    2014-12-01

    This study compared advanced anaerobic digestion combining two-phased anaerobic digestion (2PAD) with high pressure homogenization (HPH) pretreatment to conventional anaerobic digestion of municipal sludge at laboratory scale. The study began with examination of thickened waste activated sludge (TWAS) solubilization due to HPH pretreatment at different pressure (0-12,000 psi) and chemical dose (0.009-0.036 g NaOH/g total solids). Homogenizing pressure was found as the most significant factor (p-value production (0.61-1.32 L CH4/Ldigester-d) and VS removals (43-64%). Thermophilic control, 2PAD and HPH + 2PAD systems resulted in significant pathogen removals meeting Class A biosolids requirements according to Organic Matter Recycling Regulations (OMRR) of British Columbia (BC) at 20 d SRT. Energy analysis indicated that all the digestion scenarios attained positive energy balance with 2PAD system operated at 20 d SRT producing the maximum net energy of 4.76 GJ/tonne CODadded.

  6. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.

    Science.gov (United States)

    Lam, Man Kee; Lee, Keat Teong; Mohamed, Abdul Rahman

    2010-01-01

    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.

  7. Effect of high-pressure homogenization on the physical and antioxidant properties of Quercus resinosa infusions encapsulated by spray-drying.

    Science.gov (United States)

    Rocha-Guzmán, Nuria Elizabeth; Gallegos-Infante, José Alberto; González-Laredo, Rubén Francisco; Harte, Federico; Medina-Torres, Luis; Ochoa-Martínez, Luz Araceli; Soto-García, Marcela

    2010-06-01

    Quercus resinosa leaves are used in northern Mexico as a refreshing beverage rich in polyphenolic compounds. These leaves show astringency and hence need taste masking for incorporating in a food product. They also interact with many other food components and are not very stable to food processing environments, thus it is important to protect them and a common way is by encapsulation. In the present study the use of encapsulation by spray-drying of Quercus resinosa leaves infusions was evaluated. Q. resinosa leaves were collected, air dried, and milled prior to infusion preparation. Lactose-sodium caseinate blends at 3 different proportions (11 : 4%, 9 : 6%, and 7 : 8%) were dispersed with a constant amount of lyophilized infusion (0.075%) and processed under high-pressure homogenization (0, 100, 200, 300 MPa). Total phenolic content, DPPH kinetic analysis, deoxy-D-ribose oxidation inhibition, rheological evaluation, and particle size analysis were performed to evaluate the obtained capsules. High antioxidant activity was shown by capsules despite their very low concentration when inhibiting deoxy-D-ribose oxidation. Chain breaking rate was related to polyphenolic concentration in capsules. Using lactose-caseinate blends produces capsules of submicron to nanometer size that retain the good antioxidant capacities of original infusions.

  8. Highly porous organic polymers bearing tertiary amine group and their exceptionally high CO2 uptake capacities

    Science.gov (United States)

    Gomes, Ruth; Bhaumik, Asim

    2015-02-01

    We report a very simple and unique strategy for synthesis of a tertiary amine functionalized high surface area porous organic polymer (POP) PDVTA-1 through the co-polymerization of monomers divinylbenzene (DVB) and triallylamine (TAA) under solvothermal reaction conditions. Two different PDVTA-1 samples have been synthesized by varying the molar ratio of the monomers. The porous polymeric materials have been thoroughly characterized by solid state 13C CP MAS-NMR, FT-IR and UV-vis spectroscopy, N2 sorption, HR TEM and FE SEM to understand its chemical environment, nanostructure, bonding, morphology and related surface properties. PDVTA-1 with higher amine content (DVB/TAA=4.0) showed exceptionally high CO2 uptake capacity of 85.8 wt% (19.5 mmol g-1) at 273 K and 43.69 wt% (9.93 mmol g-1) at 298 K under 3 bar pressure, whereas relatively low amine loaded material (DVB/TAA=7.0) shows uptake capacity of 59.2 wt% (13.45 mmol g-1) at 273 K and 34.36 wt% (7.81 mmol g-1) at 298 K. Highly porous nanostructure together with very high surface area and basicity at the surface due to the presence of abundant basic tertiary amine N-sites in the framework of PDVTA-1 could be responsible for very high CO2 adsorption.

  9. Highly concentrated phenolic wastewater treatment by heterogeneous and homogeneous photocatalysis: mechanism study by FTIR-ATR.

    Science.gov (United States)

    Araña, J; Tello-Rendón, E; Doña-Rodríguez, J M; Campo, C V; Herrera-Melidán, J A; González-Díaz; Pérez-Peña, J

    2001-01-01

    The degradation of high phenol concentrations (1 g/L) in water solutions by TiO2 photocatalysis and the photo-Fenton reaction has been studied. From the obtained data it may be suggested that degradation of phenol by TiO2-UV takes place onto the catalyst surface by means of peroxo-compounds formation. At low phenol concentrations other mechanism, the insertion of OH. radicals, may be favored. On the other hand, highly concentrated phenol aqueous solutions treatment by the photo-Fenton reaction gives rise to the formation of polyphenolic polymers. These seem to reduce the process rate. Degradation intermediates have been identified by HPLC and FTIR. The FTIR study of the catalyst surface has shown infrared bands attributable to different chemisorbed peroxo-compounds, formates, ortho-formates and carboxylates that can inactivate the catalyst.

  10. Highly accessible Pt nanodots homogeneously decorated on Au nanorods surface for sensing

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun [College of Chemistry, Jilin University, Changchun 130012 (China); Li, Xin [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Shi, Hongyan; Huang, Hao [College of Chemistry, Jilin University, Changchun 130012 (China); Wu, Xiaochun [CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190 (China); Song, Wenbo, E-mail: wbsong@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2014-12-10

    Highlights: • Seed-growth of highly-dispersed catalytic Pt nanodot on Au nanorod (PtND@AuNR). • Good accessibility of catalytic sites was evidenced by its peroxidase-like activity. • Excellent assay performances of H{sub 2}O{sub 2} at PtND@AuNR-based sensor. - Abstract: Some nanostructures are reported to possess enzyme-mimetic activities similar to those of natural enzymes. Herein, highly-dispersed Pt nanodots on Au nanorods (HD- PtNDs@AuNRs) with mimetic peroxidase activity were designed as an active electrode modifier for fabrication of a hydrogen peroxide (H{sub 2}O{sub 2}) electrochemical sensor. The HD-PtNDs@AuNRs were synthesized by a seed-mediated growth approach and confirmed by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and UV–vis spectroscopy. The electrochemical and catalytical performances of HD-PtNDs@AuNRs towards H{sub 2}O{sub 2} reduction were investigated in detail by cyclic voltammetry and amperometry. The HD-PtNDs@AuNRs modified electrode displayed a high catalytic activity to H{sub 2}O{sub 2} at −0.10 V (versus SCE), a rapid response within 5 s, a wide linear range of 2.0–3800.0 μM, a detection limit of 1.2 μM (S/N = 3), and a high sensitivity of 181 μA mM{sup −1} cm{sup −2}. These results suggested a promising potential of fabricating H{sub 2}O{sub 2} electrochemical sensor using HD- PtNDs@AuNRs.

  11. Experiences and challenges running CERN's high capacity tape archive

    CERN Document Server

    Cancio, Germ; Kruse, Daniele Francesco; Leduc, Julien; Cano, Eric; Murray, Steven

    2015-01-01

    CERN's tape-based archive system has collected over 70 Petabytes of data during the first run of the LHC. The Long Shutdown is being used for migrating the complete 100 Petabytes data archive to higher-density tape media. During LHC Run 2, the archive will have to cope with yearly growth rates of up to 40-50 Petabytes. In this contribution, we describe the scalable setup for coping with the storage and long-term archival of such massive data amounts. We also review the challenges resulting and mechanisms devised for measuring and enhancing availability and reliability, as well as ensuring the long-term integrity and bit-level preservation of the complete data repository. The procedures and tools for the proactive and efficient operation of the tape infrastructure are described, including the features developed for automated problem detection, identification and notification. Finally, we present an outlook in terms of future capacity requirements growth and how it matches the expected tape technology evolution...

  12. Ultra High Pressure Homogenization of Soy Milk: Effect on Quality Attributes during Storage

    Directory of Open Access Journals (Sweden)

    Jaideep S. Sidhu

    2016-06-01

    Full Text Available The present work analyzed soy milk prepared from whole dehulled soybeans. The traditional method of soy milk preparation leads to wastage of about 35% of soybean solids in the form of okara, which gets filtered out. In the current study, soy milk was prepared with practically 100% recovery of soybean solids and treated with continuous flow high pressure processing (207 and 276 MPa pressure, 121 and 145 °C exit temperatures, and 0.75 and 1.25 L/min flow rates, and the changes in the physical, chemical, microbial, and sensory properties during 28 days of storage at 4 °C were analyzed. The treated soy milk remained stable for 28 days. There was a significant reduction in the particle size of soybean solids which did not change during storage. The pH of the treated soy milk was significantly lower than the untreated soy milk and it reduced further upon storage. The soy milk was pasteurized with high pressure processing coupled with preheating. No lipoxygenase activity was detected. Compared to commercial samples, there was no significant difference in the astringency, bitterness, or chalkiness of soy milk prepared in the study.

  13. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  14. Silicon oxide based high capacity anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  15. Adoption of a High-Impact Innovation in a Homogeneous Population

    Science.gov (United States)

    Weiss, Curtis H.; Poncela-Casasnovas, Julia; Glaser, Joshua I.; Pah, Adam R.; Persell, Stephen D.; Baker, David W.; Wunderink, Richard G.; Nunes Amaral, Luís A.

    2014-10-01

    Adoption of innovations, whether new ideas, technologies, or products, is crucially important to knowledge societies. The landmark studies of adoption dealt with innovations having great societal impact (such as antibiotics or hybrid crops) but where determining the utility of the innovation was straightforward (such as fewer side effects or greater yield). Recent large-scale studies of adoption were conducted within heterogeneous populations and focused on products with little societal impact. Here, we focus on a case with great practical significance: adoption by small groups of highly trained individuals of innovations with large societal impact but for which it is impractical to determine the true utility of the innovation. Specifically, we study experimentally the adoption by critical care physicians of a diagnostic assay that complements current protocols for the diagnosis of life-threatening bacterial infections and for which a physician cannot estimate the true accuracy of the assay based on personal experience. We show through computational modeling of the experiment that infection-spreading models—which have been formalized as generalized contagion processes—are not consistent with the experimental data, while a model inspired by opinion models is able to reproduce the empirical data. Our modeling approach enables us to investigate the efficacy of different intervention schemes on the rate and robustness of innovation adoption in the real world. While our study is focused on critical care physicians, our findings have implications for other settings in education, research, and business, where small groups of highly qualified peers make decisions about the adoption of innovations whose utility is difficult if not impossible to gauge.

  16. OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros

    This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra......-fast optical packet switching, with the constraint that there must be potential energy savings, which is also evaluated. A survey of the current trends in data centers is given and state-of-the-art research approaches are mentioned. Optical time-division multiplexing is proposed and demonstrated to generate...

  17. High throughput assay for evaluation of reactive carbonyl scavenging capacity

    Directory of Open Access Journals (Sweden)

    N. Vidal

    2014-01-01

    Full Text Available Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  18. Development of a high capacity longwall conveyor. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, C

    1982-05-01

    The objectives of this program were to develop, fabricate, and demonstrate a longwall conveying system capable of transporting coal at a rate of 9000 tons/day (1000 tons/hr) and capable of accommodating a surge rate of 20 tons/min. The equipment was required to have the structural durability to perform with an operating availability of 90%. A review of available literature and discussions with longwall operators identified the problem areas of conveyor design that required attention. The conveyor under this contract was designed and fabricated with special attention given to these areas, and also to be easily maintainable. The design utilized twin 300 hp drives and twin inboard 26-mm chain at 270 ft/min; predictions of capacity and reliability based on the design indicating that it would satisfy the program requirements. Conveyor components were critically tested and the complete conveyor was surface-tested, the results verifying the design specifications. In addition, an instrumentation system was developed with analysis by computer techniques to monitor the performance of the conveyor. The conveyor was installed at a selected mine site, and it was the intention to monitor its performance over the entire longwall panel. Monitoring of the conveyor performance was conducted over approximately one-third of the longwall panel, at which point further effort was suspended. However, during the monitored period, data collected from various sources showed the conveyor to have exhibited its capability of transporting coal at the desired rate, and also to have conformed to the program requirements of reliability and availability.

  19. Development of a high capacity longwall conveyor. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, C

    1982-05-01

    The objectives of this program were to develop, fabricate, and demonstrate a longwall conveying system capable of transporting coal at a rate of 9000 tons/day (1000 tons/hr) and capable of accommodating a surge rate of 20 tons/min. The equipment was required to have the structural durability to perform with an operating availability of 90%. A review of available literature and discussions with longwall operators identified the problem areas of conveyor design that required attention. The conveyor under this contract was designed and fabricated with special attention given to these areas, and also to be easily maintainable. The design utilized twin 300 hp drives and twin inboard 26-mm chain at 270 ft/min; predictions of capacity and reliability based on the design indicating that it would satisfy the program requirements. Conveyor components were critically tested and the complete conveyor was surface-tested, the results verifying the design specifications. In addition, an instrumentation system was developed with analysis by computer techniques to monitor the performance of the conveyor. The conveyor was installed at a selected mine site, and it was the intention to monitor its performance over the entire longwall panel. Monitoring of the conveyor performance was conducted over approximately one-third of the longwall panel, at which point further effort was suspended. However, during the monitored period, data collected from various sources showed the conveyor to have exhibited its capability of transporting coal at the desired rate, and also to have conformed to the program requirements of reliability and availability.

  20. Effect of fat content and homogenization under conventional or ultra-high-pressure conditions on interactions between proteins in rennet curds.

    Science.gov (United States)

    Zamora, A; Trujillo, A J; Armaforte, E; Waldron, D S; Kelly, A L

    2012-09-01

    The objective of this study was to investigate the influence of conventional and ultra-high-pressure homogenization on interactions between proteins within drained rennet curds. The effect of fat content of milk (0.0, 1.8, or 3.6%) and homogenization treatment on dissociation of proteins by different chemical agents was thus studied. Increasing the fat content of raw milk increased levels of unbound whey proteins and calcium-bonded caseins in curds; in contrast, hydrophobic interactions and hydrogen bonds were inhibited. Both homogenization treatments triggered the incorporation of unbound whey proteins in the curd, and of caseins through ionic bonds involving calcium salts. Conventional homogenization-pasteurization enhanced interactions between caseins through hydrogen bonds and hydrophobic interactions. In contrast, ultra-high-pressure homogenization impaired hydrogen bonding, led to the incorporation of both whey proteins and caseins through hydrophobic interactions and increased the amount of unbound caseins. Thus, both homogenization treatments provoked changes in the protein interactions within rennet curds; however, the nature of the changes depended on the homogenization conditions.

  1. 纳米氢氧化铜的均匀沉淀法制备及低温热容%Preparation of Cu (OH)2 nanometric powders by homogeneous precipitation and their low temperature heat capacity

    Institute of Scientific and Technical Information of China (English)

    吴新明; 易求实; 吴金平; 谭志诚; 屈松生

    2001-01-01

    使用氨水溶解硫酸铜,加入氢氧化钡沉淀分离硫酸根,所得铜氨清液加热蒸氨得氢氧化铜超细沉淀.沉淀分别用氨水和无水乙醇洗涤,60℃干燥,放置干燥器中至恒重.XRD、TEM、IcP测定表明,其平均粒径尺寸为45 nm,粒度分布范围窄,纯度高.用高精密全自动量热仪在78~370 K温区测定了热容,拟合出热容随温度变化的多项式方程,并对此氨浸新工艺--均匀沉淀法和有关的热力学性质进行了讨论.%The Cu(OH) 2 nanometric powders were prepared by a new method of homogeneous precipitation.The CuSO4 was dissolved in ammonia and the SO42- was removed by adding Ba(OH)2. The filtrate was heatedto remove ammonia and the Cu(OH) 2 was homogeneously deposited. The deposition was washed by ammoniaand ethanol, and the product was dried at 60 ℃, and then put in a desiccator to keep constant weight. Thegained powders were examined by XRD, TEM and ICP techniques and the results show that the grain size ofCu(OH) 2 nanometric powders is 45 nm in average within a narrow distribution range, and the powders arehighly purified. The heat capacity of the powders was measured in the temperature range of 78 ~ 370 K, andthe polynomial equations expressing the change of heat capacity with temperature was fitted. The ammonialeach techniques and thermodynamic properties were discussed.

  2. Extraction and determination of hormones in cosmetics by homogeneous ionic liquid microextraction high-performance liquid chromatography.

    Science.gov (United States)

    Kang, Mingqin; Sun, Shuo; Li, Na; Zhang, Daihui; Chen, Mingyan; Zhang, Hanqi

    2012-08-01

    The homogeneous ionic liquid microextraction was applied to the extraction of hormones from cosmetics and the hormones were determined by high-performance liquid chromatography. 1-Hexyl-3-methylimidazolium tetrafluoroborate was used as extraction solvent. Ammonium hexafluorophosphate as used as ion-pairing agent. Several experimental parameters, including the volume of 1-hexyl-3-methylimidazolium tetrafluoroborate, amount of ammonium hexafluorophosphate and sodium chloride, extraction and centrifuge time, and the pH value, were optimized. The limits of detection and quantification for the analytes ranged from 0.03 to 0.24 ng/mL and from 0.10 to 0.79 ng/mL, respectively. The precision for determining the hormones was lower than 5.2%. The proposed method was successfully developed for the determination of hormones in real cosmetic samples.

  3. Determination of Four Pesticides in Soil by Homogeneous Ionic Liquid-based Microextraction Coupled with High-performance Liquid Chromatography

    Institute of Scientific and Technical Information of China (English)

    YAN Rui; SHAO Ming-yuan; LIANG Zhen-fen; ZHANG Han-qi; YU Ai-min

    2013-01-01

    Homogeneous ionic liquid microextraction was developed for the simultaneceus extraction of dimethomorph,mefenacet,isoprothiolane and oxadiazon from soil.1-Butyl-3-methylimidazolium tetrafluoroborate was used as extraction solvent,and ammonium hexafluorophosphate was used as ion-pairing agent.High-performance liquid chromatography(HPLC) was employed for separation and determination of the analytes.The calibration curves show good linear relationship(r>0.9988).The recoveries are between 74.2% and 97.9% with relative standard deviations(RSDs) lower than 5.97%.The present method is free of volatile organic solvents,and expenditures of sample,extraction time and solvent are lower,compared with ultrasonic and Soxhlet extraction.There was no obvious difference in the extraction recoveries of pesticides obtained by the three extraction methods.

  4. An improved model of homogeneous nucleation for high supersaturation conditions: aluminum vapor.

    Science.gov (United States)

    Savel'ev, A M; Starik, A M

    2016-12-21

    A novel model of stationary nucleation, treating the thermodynamic functions of small clusters, has been built. The model is validated against the experimental data on the nucleation rate of water vapor obtained in a broad range of supersaturation values (S = 10-120), and, at high supersaturation values, it reproduces the experimental data much better than the traditional classical nucleation model. A comprehensive analysis of the nucleation of aluminum vapor with the usage of developed stationary and non-stationary nucleation models has been performed. It has been shown that, at some value of supersaturation, there exists a double potential nucleation barrier. It has been revealed that the existence of this barrier notably delayed the establishment of a stationary distribution of subcritical clusters. It has also been demonstrated that the non-stationary model of the present work and the model of liquid-droplet approximation predict different values of nucleation delay time, τs. In doing so, the liquid-droplet model can underestimate notably (by more than an order of magnitude) the value of τs.

  5. Modelling stock order flows with non-homogeneous intensities from high-frequency data

    Science.gov (United States)

    Gorshenin, Andrey K.; Korolev, Victor Yu.; Zeifman, Alexander I.; Shorgin, Sergey Ya.; Chertok, Andrey V.; Evstafyev, Artem I.; Korchagin, Alexander Yu.

    2013-10-01

    A micro-scale model is proposed for the evolution of such information system as the limit order book in financial markets. Within this model, the flows of orders (claims) are described by doubly stochastic Poisson processes taking account of the stochastic character of intensities of buy and sell orders that determine the price discovery mechanism. The proposed multiplicative model of stochastic intensities makes it possible to analyze the characteristics of the order flows as well as the instantaneous proportion of the forces of buyers and sellers, that is, the imbalance process, without modelling the external information background. The proposed model gives the opportunity to link the micro-scale (high-frequency) dynamics of the limit order book with the macro-scale models of stock price processes of the form of subordinated Wiener processes by means of limit theorems of probability theory and hence, to use the normal variance-mean mixture models of the corresponding heavy-tailed distributions. The approach can be useful in different areas with similar properties (e.g., in plasma physics).

  6. High-Capacity Short-Range Optical Communication Links

    DEFF Research Database (Denmark)

    Tatarczak, Anna

    Over the last decade, we have observed a tremendous spread of end-user mobile devices. The user base of a mobile application can grow or shrink by millions per day. This situation creates a pressing need for highly scalable server infrastructure; a need nowadays satisfied through cloud computing...... offered by data centers. As the popularity of cloud computing soars, the demand for high-speed, short-range data center links grows. Vertical cavity surface emitting lasers (VCSEL) and multimode fibers (MMF) prove especially well-suited for such scenarios. VCSELs have high modulation bandwidths...

  7. Homogenization of two-phase flow: high contrast of phase permeability; Homogeneisation d'ecoulement diphasique: grand contraste de permeabilite d'une phase

    Energy Technology Data Exchange (ETDEWEB)

    Panasenko, G.P. [Saint-Etienne Universite, Equipe d' Analyse Numerique, UPRES EA 3058, 42 (France); Universite Pierre et Marie Curie, Lab. de Modelisation en Numerique, CNRS UMR 7607, 75 - Paris (France); Virnovsky, G. [R.F. - Rogaland Research, Stavanger (Norway)

    2003-01-01

    The steady-state two-phase flow non-linear equation is considered in the case when one of phases has low effective permeability in some periodic set, while on the complementary set it is high; the second phase has no contrast of permeabilities in different zones. A homogenization procedure gives the homogenized model with macroscopic effective permeability of the second phase depending on the gradient and on the second order derivatives of the macroscopic pressure of the first phase. This effect cannot be obtained by classical (one small parameter) homogenization. (author)

  8. Development of a homogeneous calcium mobilization assay for high throughput screening of mas-related gene receptor agonists

    Institute of Scientific and Technical Information of China (English)

    Rui ZHANG; Pang-ke YAN; Cai-hong ZHOU; Jia-yu LIAO; Ming-wei WANG

    2007-01-01

    Aim: To develop homogeneous calcium mobilization assay for high-throughput screening (HTS) of mas-related gene (Mrg) receptor agonists. Methods: CHO-K1 cells stably expressing the full-length MrgD receptor and a calcium-sensitive dye were used to develop an HTS assay based on intracellular calcium influx. This method was applied to large-scale screening of a library containing 8000 synthetic compounds and natural product extracts, cAMP measurements were camed out to verify the bioactivities of the hits found by the calcium mobilization assay. Similar approaches were also employed in the identification of the MrgA1 recep-tor agonists following HTS of 16 000 samples. Results: EC50 values of the positive control compounds (β-alanine for MrgD receptor and dynorphin A for MrgA1 receptor) determined by the calcium mobilization assay were consistent with those reported in the literature, and the Z' factors were 0.65 and 0.50 for MrgD and MrgA1 receptor assay, respectively. About 31 compounds for the MrgD receptor and 48 compounds for the MrgA1 receptor showing ≥20% of the maximal agonist activities found in the controls were initially identified as hits. Secondary screen- ing confirmed that 2 compounds for each receptor possessed specific agonist activities. Intracellular cAMP level measurements indicated that the 2 confirmed hits displayed the functionality of the MrgD receptor agonists. Conclusion: A series of validation studies demonstrated that the homogeneous calcium mobili-zation assay developed was highly efficient, amenable to automation and a robust tool to screen potential MrgD and MrgA1 receptor agonists. Its application may be expanded to other G-protein coupled receptors that mobilize calcium influx upon activation.

  9. A homogeneous, high-throughput assay for phosphatidylinositol 5-phosphate 4-kinase with a novel, rapid substrate preparation.

    Directory of Open Access Journals (Sweden)

    Mindy I Davis

    Full Text Available Phosphoinositide kinases regulate diverse cellular functions and are important targets for therapeutic development for diseases, such as diabetes and cancer. Preparation of the lipid substrate is crucial for the development of a robust and miniaturizable lipid kinase assay. Enzymatic assays for phosphoinositide kinases often use lipid substrates prepared from lyophilized lipid preparations by sonication, which result in variability in the liposome size from preparation to preparation. Herein, we report a homogeneous 1536-well luciferase-coupled bioluminescence assay for PI5P4Kα. The substrate preparation is novel and allows the rapid production of a DMSO-containing substrate solution without the need for lengthy liposome preparation protocols, thus enabling the scale-up of this traditionally difficult type of assay. The Z'-factor value was greater than 0.7 for the PI5P4Kα assay, indicating its suitability for high-throughput screening applications. Tyrphostin AG-82 had been identified as an inhibitor of PI5P4Kα by assessing the degree of phospho transfer of γ-(32P-ATP to PI5P; its inhibitory activity against PI5P4Kα was confirmed in the present miniaturized assay. From a pilot screen of a library of bioactive compounds, another tyrphostin, I-OMe tyrphostin AG-538 (I-OMe-AG-538, was identified as an ATP-competitive inhibitor of PI5P4Kα with an IC(50 of 1 µM, affirming the suitability of the assay for inhibitor discovery campaigns. This homogeneous assay may apply to other lipid kinases and should help in the identification of leads for this class of enzymes by enabling high-throughput screening efforts.

  10. α-Glucosyl hesperidin induced an improvement in the bioavailability of pranlukast hemihydrate using high-pressure homogenization.

    Science.gov (United States)

    Uchiyama, Hiromasa; Tozuka, Yuichi; Asamoto, Fusatoshi; Takeuchi, Hirofumi

    2011-05-30

    The α-glucosyl hesperidin (Hsp-G)-induced improvement of both the dissolution and absorption properties of pranlukast hemihydrate (PLH) was achieved by means of a high-pressure homogenization (HPH) processing. The average particle size in the HPH-processed suspension was decreased significantly after 50 cycles of processing and reached a constant size of ca. 300 nm. The amount of dissolved PLH gradually increased with the pass number of HPH processing, and was extremely higher than the PLH solubility (0.8 μg/mL at 37°C) after the HPH processing. On a dissolution study of the freeze-dried sample of HPH-processed PLH/Hsp-G (1/10), the apparent solubility of PLH was at least 2.5-fold more than that of untreated PLH crystals. The transport study showed that the amount of PLH that had permeated through the Caco-2 cell monolayers was improved in the case of HPH-processed PLH/Hsp-G (1/10). The bioavailability of PLH from HPH-processed PLH/Hsp-G (1/10) showed a 3.9- and 2.2-fold improvement over the PLH crystal in terms of C(max) and AUC values, respectively. Hsp-G formed an associated structure in aqueous media. High-pressure homogenization provides a good opportunity for molecular-level interaction of PLH and the associated structure of Hsp-G to occur. The use of Hsp-G under HPH processing was a promising way to enhance the dissolution and absorption of PLH without using an organic solvent.

  11. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

    Science.gov (United States)

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M.; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M.

    2016-06-01

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging.

  12. Fast High Capacity Annular Gas Puff Valve Design Concept

    Science.gov (United States)

    Ruden, Edward

    2000-10-01

    A fast opening gas valve design concept is presented that can theoretically inject a few grams of D2 gas radially outward into a coaxial annular vacuum region with a radius of about 10 cm in less that 100 μ s. The concept employs a single turn 20-30 T pulsed magnetic field coil that axially accelerates an Mg alloy ring, which seals a gas plenum, to high velocity, releasing the gas. Both coil and ring are profiled to minimize stress in the ring. Such a device could be used to supply the initial gas load for a proposed 5 MJ Dense Plasma Focus driven by AFRL's Shiva Star Capacitor bank. The intent here is keep the vacuum current feed insulator under high vacuum during the discharge to avoid surface breakdown. Alternatively, a high energy rep ratable plasma flow opening switch could be supplied with such a valve. This work is funded by the USAF.

  13. Protein profiling reveals inter-individual protein homogeneity of arachnoid cyst fluid and high qualitative similarity to cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Berle Magnus

    2011-05-01

    the majority of abundant proteins in AC fluid also can be found in CSF. Compared to plasma, as many as 104 proteins in AC were not found in the list of 3017 plasma proteins. Conclusions Based on the protein content of AC fluid, our data indicate that temporal AC is a homogenous condition, pointing towards a similar AC filling mechanism for the 14 patients examined. Most of the proteins identified in AC fluid have been identified in CSF, indicating high similarity in the qualitative protein content of AC to CSF, whereas this was not the case between AC and plasma. This indicates that AC is filled with a liquid similar to CSF. As far as we know, this is the first proteomics study that explores the AC fluid proteome.

  14. 30 CFR 75.1107-10 - High expansion foam devices; minimum capacity.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High expansion foam devices; minimum capacity. 75.1107-10 Section 75.1107-10 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... foam devices; minimum capacity. (a) On unattended underground equipment the amount of water...

  15. Pretreatment of bamboo by ultra-high pressure explosion with a high-pressure homogenizer for enzymatic hydrolysis and ethanol fermentation.

    Science.gov (United States)

    Jiang, Zehui; Fei, Benhua; Li, Zhiqiang

    2016-08-01

    Bamboo shoots, 2- and 5-year-old bamboo were treated by using a homogenizer in a constant suspended state, a process termed as ultra-high pressure explosion (UHPE). The bamboo powder was heated in 2% NaOH solution at 121°C, and then 100MPa UHPE-treated through a homogenizer. The results verified that UHPE changed the suspension solution of powder into a stick fluid. The contents of lignin were decreased significantly. The bamboo shoots and 2-year-old bamboo were completely hydrolyzed to glucose within 48h by enzymes loading of 15 FPU of cellulase and 30IU of β-glucosidase per gram glucan. Fermentation of enzymatic hydrolyzates with Saccharomyces cerevisiae resulted in about 89.7-95.1% of the theoretical ethanol yield after 24h. Therefore, NaOH+UHPE is argued to be a potential alternative technology for pretreatment of bamboo.

  16. Capacity Payments in Restructured Markets under Low and High Penetration Levels of Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-11

    remain in implementing capacity markets that provide both adequate operational and investment incentives, particularly under high-VRE scenarios with greater need for flexible capacity.

  17. Characterization of Whey Protein Oil-In-Water Emulsions with Different Oil Concentrations Stabilized by Ultra-High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Essam Hebishy

    2017-02-01

    Full Text Available In this study, the effect of ultra-high-pressure homogenization (UHPH: 100 or 200 MPa at 25 °C, in comparison to colloid mill (CM: 5000 rpm at 20 °C and conventional homogenization (CH: 15 MPa at 60 °C, on the stability of oil-in-water emulsions with different oil concentrations (10, 30 or 50 g/100 g emulsified by whey protein isolate (4 g/100 g was investigated. Emulsions were characterized for their microstructure, rheological properties, surface protein concentration (SPC, stability to creaming and oxidative stability under light (2000 lux/m2. UHPH produced emulsions containing lipid droplets in the sub-micron range (100–200 nm and with low protein concentrations on droplet surfaces. Droplet size (d3.2, µm was increased in CH and UHPH emulsions by increasing the oil concentration. CM emulsions exhibited Newtonian flow behaviour at all oil concentrations studied; however, the rheological behaviour of CH and UHPH emulsions varied from Newtonian flow (n ≈ 1 to shear-thinning (n ˂ 1 and thixotropic behaviour in emulsions containing 50% oil. This was confirmed by the non-significant differences in the d4.3 (µm value between the top and bottom of emulsions in tubes left at room temperature for nine days and also by a low migration velocity measured with a Turbiscan LAB instrument. UHPH emulsions showed significantly lower oxidation rates during 10 days storage in comparison to CM and CH emulsions as confirmed by hydroperoxides and thiobarbituric acid-reactive substances (TBARS. UHPH emulsions treated at 100 MPa were less oxidized than those treated at 200 MPa. The results from this study suggest that UHPH treatment generates emulsions that have a higher stability to creaming and lipid oxidation compared to colloid mill and conventional treatments.

  18. Frequency Assignment for Joint Aerial Layer Network High-Capacity Backbone

    Science.gov (United States)

    2017-08-11

    ARL-TR-8093•AUG 2017 US Army Research Laboratory Frequency Assignment for Joint Aerial Layer Network High-Capacity Backbone by Peng Wang and Brian...2017 US Army Research Laboratory Frequency Assignment for Joint Aerial Layer Network High-Capacity Backbone by Peng Wang and Brian Henz Computational...Rev. 8/98)    Prescribed by ANSI Std. Z39.18 August 2017 Technical Report Frequency Assignment for Joint Aerial Layer Network High-Capacity Backbone

  19. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [Electronic Materials Research Laboratory, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Baohong; Zhou, Jinxiong [State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics and School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Suo, Zhigang, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [School of Engineering and Applied Sciences, Kavli Institute of Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  20. Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries

    Science.gov (United States)

    Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.

    2016-05-01

    Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.

  1. Capacity fade study of lithium-ion batteries cycled at high discharge rates

    Science.gov (United States)

    Ning, Gang; Haran, Bala; Popov, Branko N.

    Capacity fade of Sony US 18650 Li-ion batteries cycled using different discharge rates was studied at ambient temperature. The capacity losses were estimated after 300 cycles at 2 C and 3 C discharge rates and were found to be 13.2 and 16.9% of the initial capacity, respectively. At 1 C discharge rate the capacity lost was only 9.5%. The cell cycled at high discharge rate (3 C) showed the largest internal resistance increase of 27.7% relative to the resistance of the fresh cells. The rate capability losses were proportional with the increase of discharge rates. Half-cell study and material and charge balances were used to quantify the capacity fade due to the losses of primary active material (Li +), the secondary active material (LiCoO 2/C)) and rate capability losses. It was found that carbon with 10.6% capacity loss after 300 cycles dominates the capacity fade of the whole cell at high discharge rates (3 C). A mechanism is proposed which explains the capacity fade at high discharge rates.

  2. High-capacity thick cathode with a porous aluminum current collector for lithium secondary batteries

    Science.gov (United States)

    Abe, Hidetoshi; Kubota, Masaaki; Nemoto, Miyu; Masuda, Yosuke; Tanaka, Yuichi; Munakata, Hirokazu; Kanamura, Kiyoshi

    2016-12-01

    A high-capacity thick cathode has been studied as one of ways to improve the energy density of lithium secondary batteries. In this study, the LiFePO4 cathode with a capacity per unit area of 8.4 m Ah cm-2 corresponding to four times the capacity of conventional cathodes has been developed using a three-dimensional porous aluminum current collector called "FUSPOROUS". This unique current collector enables the smooth transfer of electrons and Li+-ions through the thick cathode, resulting in a good rate capability (discharge capacity ratio of 1.0 C/0.2 C = 0.980) and a high charge-discharge cycle performance (80% of the initial capacity at 2000th cycle) even though the electrode thickness is 400 μm. To take practical advantage of the developed thick cathode, conceptual designs for a 10-Ah class cell were also carried out using graphite and lithium-metal anodes.

  3. High compositional homogeneity of CdTexSe1−x crystals grown by the Bridgman method

    Directory of Open Access Journals (Sweden)

    U. N. Roy

    2015-02-01

    Full Text Available We obtained high-quality CdTexSe1−x (CdTeSe crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ∼1.0. This high uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing higher efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional CdxZn1−xTe (CdZnTe or CZT.

  4. Composition and (in)homogeneity of carotenoid crystals in carrot cells revealed by high resolution Raman imaging

    Science.gov (United States)

    Roman, Maciej; Marzec, Katarzyna M.; Grzebelus, Ewa; Simon, Philipp W.; Baranska, Malgorzata; Baranski, Rafal

    2015-02-01

    Three categories of roots differing in both β/α-carotene ratio and in total carotenoid content were selected based on HPLC measurements: high α- and β-carotene (HαHβ), low α- and high β-carotene (LαHβ), and low α- and low β-carotene (LαLβ). Single carotenoid crystals present in the root cells were directly measured using high resolution Raman imaging technique with 532 nm and 488 nm lasers without compound extraction. Crystals of the HαHβ root had complex composition and consisted of β-carotene accompanied by α-carotene. In the LαHβ and LαLβ roots, measurements using 532 nm laser indicated the presence of β-carotene only, but measurements using 488 nm laser confirmed co-occurrence of xanthophylls, presumably lutein. Thus the results show that independently on carotenoid composition in the root, carotenoid crystals are composed of more than one compound. Individual spectra extracted from Raman maps every 0.2-1.0 μm had similar shapes in the 1500-1550 cm-1 region indicating that different carotenoid molecules were homogeneously distributed in the whole crystal volume. Additionally, amorphous carotenoids were identified and determined as composed of β-carotene molecules but they had a shifted the ν1 band probably due to the effect of bonding of other plant constituents like proteins or lipids.

  5. Evaluating the Ultra-High Pressure Homogenization (UHPH and Pasteurization effects on the quality and shelf life of donkey milk

    Directory of Open Access Journals (Sweden)

    Cephas Nii Akwei Addo

    2015-04-01

    Full Text Available Donkey milk has functional properties of great interest to human nutrition. The effects of ultra-high pressure homogenization (UHPH at 100 MPa, 200 MPa and 300 MPa in comparison with different pasteurization treatments of 70 °C for 1 min and 85 °C for 1 min on the physicochemical quality and shelf-life of treated and raw (untreated donkey milk were studied. Gross composition and pH, total mesophilic counts, lysozyme activity and physical stability were studied during storage at 4 °C for 28 days. The compositional profile showed resemblance to that of human milk characterized by high lactose, low fat and low protein content and was least affected by the treatments. UHPH treatments at 200 MPa, 300 MPa and 85 °C were able to maintain steady pH during storage whereas the low intensity treatments showed a significant decrease. The observed lysozyme activity in the samples was generally high and appeared to have been enhanced by the applied UHPH and pasteurization treatments with no significant change during storage. Although the raw milk showed good initial microbial quality, extensive growth of mesophilic microorganisms occurred after 7 days of storage, unlike the treated samples which were able to maintain significantly low counts throughout the storage period. The physical stability of milk was negatively influenced by the higher UHPH treatments of 200 MPa and 300 MPa which exhibited sedimentation phenomenon, while creaming was insignificant.

  6. Evaluating the Ultra-High Pressure Homogenization (UHPH and Pasteurization effects on the quality and shelf life of donkey milk

    Directory of Open Access Journals (Sweden)

    Cephas Nii Akwei Addo

    2015-04-01

    Full Text Available Donkey milk has functional properties of great interest to human nutrition. The effects of ultra-high pressure homogenization (UHPH at 100 MPa, 200 MPa and 300 MPa in comparison with different pasteurization treatments of 70 °C for 1 min and 85 °C for 1 min on the physicochemical quality and shelf-life of treated and raw (untreated donkey milk were studied. Gross composition and pH, total mesophilic counts, lysozyme activity and physical stability were studied during storage at 4 °C for 28 days. The compositional profile showed resemblance to that of human milk characterized by high lactose, low fat and low protein content and was least affected by the treatments. UHPH treatments at 200 MPa, 300 MPa and 85 °C were able to maintain steady pH during storage whereas the low intensity treatments showed a significant decrease. The observed lysozyme activity in the samples was generally high and appeared to have been enhanced by the applied UHPH and pasteurization treatments with no significant change during storage. Although the raw milk showed good initial microbial quality, extensive growth of mesophilic microorganisms occurred after 7 days of storage, unlike the treated samples which were able to maintain significantly low counts throughout the storage period. The physical stability of milk was negatively influenced by the higher UHPH treatments of 200 MPa and 300 MPa which exhibited sedimentation phenomenon, while creaming was insignificant.

  7. High Aerobic Capacity Mitigates Changes in the Plasma Metabolomic Profile Associated with Aging.

    Science.gov (United States)

    Falegan, Oluyemi S; Vogel, Hans J; Hittel, Dustin S; Koch, Lauren G; Britton, Steven L; Hepple, Russ T; Shearer, Jane

    2017-02-03

    Advancing age is associated with declines in maximal oxygen consumption. Declines in aerobic capacity not only contribute to the aging process but also are an independent risk factor for morbidity, cardiovascular disease, and all-cause mortality. Although statistically convincing, the relationships between aerobic capacity, aging, and disease risk remain largely unresolved. To this end, we employed sensitive, system-based metabolomics approach to determine whether enhanced aerobic capacity could mitigate some of the changes seen in the plasma metabolomic profile associated with aging. Metabolomic profiles of plasma samples obtained from young (13 month) and old (26 month) rats bred for low (LCR) or high (HCR) running capacity using proton nuclear magnetic resonance spectroscopy ((1)H NMR) were examined. Results demonstrated strong profile separation in old and low aerobic capacity rats, whereas young and high aerobic capacity rat models were less predictive. Significantly differential metabolites between the groups include taurine, acetone, valine, and trimethylamine-N-oxide among other metabolites, specifically citrate, succinate, isovalerate, and proline, were differentially increased in older HCR animals compared with their younger counterparts. When interactions between age and aerobic capacity were examined, results demonstrated that enhanced aerobic capacity could mitigate some but not all age-associated alterations in the metabolomic profile.

  8. Multi-core Fibers in Submarine Networks for High-Capacity Undersea Transmission Systems

    DEFF Research Database (Denmark)

    Nooruzzaman, Md; Morioka, Toshio

    2017-01-01

    Application of multi-core fibers in undersea networks for high-capacity submarine transmission systems is studied. It is demonstrated how different architectures of submerged branching unit affect network component counts in long-haul undersea transmission systems......Application of multi-core fibers in undersea networks for high-capacity submarine transmission systems is studied. It is demonstrated how different architectures of submerged branching unit affect network component counts in long-haul undersea transmission systems...

  9. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound.

    Science.gov (United States)

    Silva, A C; González-Mira, E; García, M L; Egea, M A; Fonseca, J; Silva, R; Santos, D; Souto, E B; Ferreira, D

    2011-08-01

    The suitability of solid lipid nanoparticles (SLN) for the encapsulation of risperidone (RISP), an antipsychotic lipophilic drug, was assessed for oral administration. The hot high pressure homogenization (HPH) and the ultrasound (US) technique were used as production methods for SLN. All the studies on the SLN formulations were done in parallel, in order to compare the results and conclude about the advantages and limitations of both techniques. The particle sizes were in the nanometer range for all prepared SLN formulations and the zeta potential absolute values were high, predicting good long-term stability. Optical analyses demonstrated the achievement of stable colloidal dispersions. Physicochemical characterization of dispersions and bulk lipids, performed by differential scanning calorimetry (DSC) and X-ray assays, support prediction of occurrence of drug incorporation in the SLN and good long term stability of the systems. The toxicity of SLN with Caco-2 cells and the existence of contaminations derived from the production equipments were assessed by the (4,5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide (MTT) assay. The results showed 90% of cell viability after SLN exposure, with no significant differences within all prepared formulations (p > 0.05). From this study, we conclude that SLN can be considered as efficient carriers for RISP encapsulation. Moreover, HPH and US revealed to be both effective methods for SLN production.

  10. Preparation of cotton linter nanowhiskers by high-pressure homogenization process and its application in thermoplastic starch

    Science.gov (United States)

    Savadekar, N. R.; Karande, V. S.; Vigneshwaran, N.; Kadam, P. G.; Mhaske, S. T.

    2015-03-01

    The present work deals with the preparation of cotton linter nanowhiskers (CLNW) by acid hydrolysis and subsequent processing in a high-pressure homogenizer. Prepared CLNW were then used as a reinforcing material in thermoplastic starch (TPS), with an aim to improve its performance properties. Concentration of CLNW was varied as 0, 1, 2, 3, 4 and 5 wt% in TPS. TPS/CLNW nanocomposite films were prepared by solution-casting process. The nanocomposite films were characterized by tensile, differential scanning calorimetry, scanning electron microscopy (SEM), water vapor permeability (WVP), oxygen permeability (OP), X-ray diffraction and light transmittance properties. 3 wt% CLNW-loaded TPS nanocomposite films demonstrated 88 % improvement in the tensile strength as compared to the pristine TPS polymer film; whereas, WVP and OP decreased by 90 and 92 %, respectively, which is highly appreciable compared to the quantity of CLNW added. DSC thermograms of nanocomposite films did not show any significant effect on melting temperature as compared to the pristine TPS. Light transmittance ( T r) value of TPS decreased with increased content of CLNW. Better interaction between CLNW and TPS, caused due to the hydrophilic nature of both the materials, and uniform distribution of CLNW in TPS were the prime reason for the improvement in properties observed at 3 wt% loading of CLNW in TPS. However, CLNW was seen to have formed agglomerates at higher concentration as determined from SEM analysis. These nanocomposite films can have potential use in food and pharmaceutical packaging applications.

  11. Fabrication of single cylindrical Au-coated nanopores with non-homogeneous fixed charge distribution exhibiting high current rectifications.

    Science.gov (United States)

    Nasir, Saima; Ali, Mubarak; Ramirez, Patricio; Gómez, Vicente; Oschmann, Bernd; Muench, Falk; Tahir, Muhammad Nawaz; Zentel, Rudolf; Mafe, Salvador; Ensinger, Wolfgang

    2014-08-13

    We designed and characterized a cylindrical nanopore that exhibits high electrochemical current rectification ratios at low and intermediate electrolyte concentrations. For this purpose, the track-etched single cylindrical nanopore in polymer membrane was coated with a gold (Au) layer via electroless plating technique. Then, a non-homogeneous fixed charge distribution inside the Au-coated nanopore was obtained by incorporating thiol-terminated uncharged poly(N-isopropylacrylamide) chains in series to poly(4-vinylpyridine) chains, which were positively charged at acidic pH values. The functionalization reaction was checked by measuring the current-voltage curves prior to and after the chemisorption of polymer chains. The experimental nanopore characterization included the effects of temperature, adsorption of chloride ions, electrolyte concentration, and pH of the external solutions. The results obtained are further explained in terms of a theoretical continuous model. The combination of well-established chemical procedures (thiol and self-assembled monolayer formation chemistry, electroless plating, ion track etching) and physical models (two-region pore and Nernst-Planck equations) permits the obtainment of a new nanopore with high current rectification ratios. The single pore could be scaled up to multipore membranes of potential interest for pH sensing and chemical actuators.

  12. Suitability of high pressure-homogenized milk for the production of probiotic fermented milk containing Lactobacillus paracasei and Lactobacillus acidophilus.

    Science.gov (United States)

    Patrignani, Francesca; Burns, Patricia; Serrazanetti, Diana; Vinderola, Gabriel; Reinheimer, Jorge; Lanciotti, Rosalba; Guerzoni, M Elisabetta

    2009-02-01

    High pressure homogenization (HPH) is one of the most promising alternatives to traditional thermal treatment for food preservation and diversification. In order to evaluate its potential for the production of fermented milks carrying probiotic bacteria, four types of fermented milks were manufactured from HPH treated and heat treated (HT) milk with and without added probiotics. Microbiological, physicochemical and organoleptic analyses were carried out during the refrigerated period (35 d at 4 degrees C). HPH application to milk did not modify the viability of the probiotic cultures but did increase the cell loads of the starter cultures (ca. 1 log order) compared with traditional products. The coagula from HPH-milk was significantly more compacted (Pmilk, and it had the highest values of consistency, cohesiveness and viscosity indexes compared with fermented milks produced without HPH treatment. All the samples received high sensory analysis scores for each descriptor considered. HPH treatment of milk can potentially diversify the market for probiotic fermented milks, especially in terms of texture parameters.

  13. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  14. One-step synthesis of a highly homogeneous SBA-NHC hybrid material: en route to single-site NHC-metal heterogeneous catalysts with high loadings.

    Science.gov (United States)

    Rocquin, Mansuy; Henrion, Mickaël; Willinger, Marc-Georg; Bertani, Philippe; Chetcuti, Michael J; Louis, Benoît; Ritleng, Vincent

    2014-03-01

    The one-step synthesis of a mesoporous silica of SBA type, functionalized with a 1-(2,6-diisopropylphenyl)-3-propyl-imidazolium (iPr2Ar-NHC-propyl) cation located in the pore channels, is described. This material was obtained by the direct hydrolysis and co-condensation of tetraethylorthosilicate (TEOS) and 1-(2,6-diisopropylphenyl)-3-[3-(triethoxysilyl)propyl]-imidazolium iodide in the presence of Pluronic P123 as a non-ionic structure-directing agent and aqueous HCl (37%) as an acid catalyst. Small-angle X-ray diffraction measurements, scanning and transmission electron microscopies, as well as dinitrogen sorption analyses revealed that the synthesized material is highly mesoporous with a 2D hexagonal arrangement of the porous network. (13)C and (29)Si CP-MAS NMR spectroscopy confirmed that the material contains intact iPr2Ar-NHC-propyl cations, which are covalently anchored via silicon atoms fused into the silica matrix. Moreover, comparison of the latter data with those of an analogous post-synthetic grafted SBA-NHC material allowed us to establish that, as expected, (i) it is most probably more homogeneous and (ii) it shows a more robust anchoring of the organic units. Finally, elemental mapping by energy dispersive X-ray spectroscopy in the scanning electron microscope demonstrated a very homogeneous distribution of the imidazolium units within the one-pot material, moreover with a high content. This study thus demonstrates that a relatively bulky and hydrophilic imidazolium unit can be directly co-condensed with TEOS in the presence of a structure-directing agent to provide in a single step a highly ordered and homogeneous mesoporous hybrid SBA-NHC material, possessing a significant number of cationic NHC sites.

  15. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    Science.gov (United States)

    Dong, Peng; Georget, Erika S.; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation. PMID:26236296

  16. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk.

    Science.gov (United States)

    Dong, Peng; Georget, Erika S; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~10(6) CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation.

  17. Effect of high-pressure homogenization preparation on mean globule size and large-diameter tail of oil-in-water injectable emulsions

    Directory of Open Access Journals (Sweden)

    Jie Peng

    2015-12-01

    Full Text Available The effect of different high pressure homogenization energy input parameters on mean diameter droplet size (MDS and droplets with > 5 μm of lipid injectable emulsions were evaluated. All emulsions were prepared at different water bath temperatures or at different rotation speeds and rotor-stator system times, and using different homogenization pressures and numbers of high-pressure system recirculations. The MDS and polydispersity index (PI value of the emulsions were determined using the dynamic light scattering (DLS method, and large-diameter tail assessments were performed using the light-obscuration/single particle optical sensing (LO/SPOS method. Using 1000 bar homogenization pressure and seven recirculations, the energy input parameters related to the rotor-stator system will not have an effect on the final particle size results. When rotor-stator system energy input parameters are fixed, homogenization pressure and recirculation will affect mean particle size and large diameter droplet. Particle size will decrease with increasing homogenization pressure from 400 bar to 1300 bar when homogenization recirculation is fixed; when the homogenization pressure is fixed at 1000 bar, the particle size of both MDS and percent of fat droplets exceeding 5 μm (PFAT5 will decrease with increasing homogenization recirculations, MDS dropped to 173 nm after five cycles and maintained this level, volume-weighted PFAT5 will drop to 0.038% after three cycles, so the “plateau” of MDS will come up later than that of PFAT5, and the optimal particle size is produced when both of them remained at plateau. Excess homogenization recirculation such as nine times under the 1000 bar may lead to PFAT5 increase to 0.060% rather than a decrease; therefore, the high-pressure homogenization procedure is the key factor affecting the particle size distribution of emulsions. Varying storage conditions (4–25°C also influenced particle size, especially the PFAT

  18. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.

    Science.gov (United States)

    Nayak, Prasant Kumar; Levi, Elena; Grinblat, Judith; Levi, Mikhael; Markovsky, Boris; Munichandraiah, N; Sun, Yang Kook; Aurbach, Doron

    2016-09-08

    Li and Mn-rich layered oxides with the general structure x Li2 MnO3 ⋅(1-x) LiMO2 (M=Ni, Mn, Co) are promising cathode materials for Li-ion batteries because of their high specific capacity, which may be greater than 250 mA h g(-1) . However, these materials suffer from high first-cycle irreversible capacity, gradual capacity fading, limited rate capability and discharge voltage decay upon cycling, which prevent their commercialization. The decrease in average discharge voltage is a major issue, which is ascribed to a structural layered-to-spinel transformation upon cycling of these oxide cathodes in wide potential ranges with an upper limit higher than 4.5 V and a lower limit below 3 V versus Li. By using four elements systems (Li, Mn, Ni, O) with appropriate stoichiometry, it is possible to prepare high capacity composite cathode materials that contain LiMn1.5 Ni0.5 O4 and Lix Mny Niz O2 components. The Li and Mn-rich layered-spinel cathode materials studied herein exhibit a high specific capacity (≥200 mA h g(-1) ) with good capacity retention upon cycling in a wide potential domain (2.4-4.9 V). The effect of constituent phases on their electrochemical performance, such as specific capacity, cycling stability, average discharge voltage, and rate capability, are explored here. This family of materials can provide high specific capacity, high rate capability, and promising cycle life. Using Co-free cathode materials is also an obvious advantage of these systems.

  19. Rheological properties and physical stability of ecological emulsions stabilized by a surfactant derived from cocoa oil and high pressure homogenization

    Directory of Open Access Journals (Sweden)

    Trujillo-Cayado, L. A.

    2015-09-01

    Full Text Available The goal of this work was to investigate the influence of the emulsification method on the rheological properties, droplet size distribution and physical stability of O/W green emulsions formulated with an eco-friendly surfactant derived from cocoa oil. The methodology used can be applied to other emulsions. Polyoxyethylene glycerol esters are non-ionic surfactants obtained from a renewable source which fulfill the environmental and toxicological requirements to be used as eco-friendly emulsifying agents. In the same way, N,NDimethyloctanamide and α-Pinene (solvents used as oil phase could be considered green solvents. Emulsions with submicron mean diameters and slight shear thinning behavior were obtained regardless of the homogenizer, pressure or number of passes used. All emulsions exhibited destabilization by creaming and a further coalescence process which was applied to the coarse emulsion prepared with a rotor-stator homogenizer. The emulsion obtained with high pressure at 15000 psi and 1-pass was the most stable.El objetivo de este trabajo fue estudiar la influencia del método de emulsificación sobre las propiedades reológicas, la distribución de tamaños de gota y la estabilidad física de emulsiones verdes O/W formuladas con un tensioactivo derivado del aceite de coco respetuoso con el medioambiente. La metodología empleada puede ser aplicada a cualquier otro tipo de emulsiones. Los ésteres polietoxilados de glicerina son tensioactivos no iónicos obtenidos de fuentes renovables que cumplen requisitos medioambientales y toxicológicos para ser usados como agentes emulsionantes ecológicos. Del mismo modo, la N,N-dimetil octanamida y el α-Pineno (disolventes usados como fase oleosa pueden ser considerados como disolventes verdes. Se han obtenido emulsiones con diámetros medio submicrónicos y comportamiento ligeramente pseudoplástico independientemente del equipo, la presión o el número de pasadas empleados. Todas las

  20. An Alternative Approach for High Speed Railway Carrying Capacity Calculation Based on Multiagent Simulation

    Directory of Open Access Journals (Sweden)

    Mo Gao

    2016-01-01

    Full Text Available It is a multiobjective mixed integer programming problem that calculates the carrying capacity of high speed railway based on mathematical programming method. The model is complex and difficult to solve, and it is difficult to comprehensively consider the various influencing factors on the train operation. The multiagent theory is employed to calculate high speed railway carrying capacity. In accordance with real operations of high speed railway, a three-layer agent model is developed to simulate the operating process of high speed railway. In the proposed model, railway network agent, line agent, station agent, and train agent are designed, respectively. To validate the proposed model, a case study is performed for Beijing–Shanghai high speed railway by using NetLogo software. The results are consistent with the actual data, which implies that the proposed multiagent method is feasible to calculate the carrying capacity of high speed railway.

  1. High temperature oxidation resistance of magnetron-sputtered homogeneous CrAlON coatings on 430 steel

    Science.gov (United States)

    Garratt, E.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; AlFaify, S.; Gao, X.; Kayani, A.; Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E.

    2009-11-01

    The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800 oC. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). Surface characterization was carried out using Atomic Force Microscopy (AFM) and surfaces of the coatings were found smooth on submicron scale. From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

  2. High Temperature Thermal Stability and Oxidation Resistance of Magnetron-sputtered Homogeneous CrAlON Coatings on 430 Steel

    Science.gov (United States)

    Kayani, A.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; Garratt, E.; AlFaify, S.; Gao, X.; Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E.; Gorokhovsky, V. I.

    2009-03-01

    The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800° C. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

  3. High Pressure Homogenization of Porcine Pepsin Protease: Effects on Enzyme Activity, Stability, Milk Coagulation Profile and Gel Development.

    Directory of Open Access Journals (Sweden)

    Bruno Ricardo de Castro Leite Júnior

    Full Text Available This study investigated the effect of high pressure homogenization (HPH (up to 190 MPa on porcine pepsin (proteolytic and milk-clotting activities, and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure. Although the proteolytic activity (PA was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained with the enzyme processed at 50, 100 and 150 MPa. HPH increased the milk-clotting activity (MCA of the enzyme processed at 150 MPa, being 15% higher than the MCA of non-processed samples after 60 days of storage. The enzyme processed at 150 MPa produced faster aggregation and a more consistent milk gel (G' value 92% higher after 90 minutes when compared with the non-processed enzyme. In addition, the gels produced with the enzyme processed at 150 MPa showed greater syneresis after 40 minutes of coagulation (forming a more compact protein network and lower porosity (evidenced by confocal microscopy. These effects on the milk gel can be associated with the increment in MCA and reduction in PA caused by the effects of HPH on pepsin during storage. According to the results, HPH stands out as a process capable of changing the proteolytic characteristics of porcine pepsin, with improvements on the milk coagulation step and gel characteristics. Therefore, the porcine pepsin submitted to HPH process can be a suitable alternative for the production of cheese.

  4. Computation of radiation pressure force exerted on arbitrary shaped homogeneous particles by high-order Bessel vortex beams using MLFMA.

    Science.gov (United States)

    Yang, Minglin; Wu, Yueqian; Ren, Kuan Fang; Sheng, Xinqing

    2016-11-28

    Due to special characteristics of nondiffraction and self reconstruction, the Bessel beams have attracted wide attention in optical trapping and appear to be a dramatic alternative to Gaussian beams. We present in this paper an efficient approach based on the surface integral equations (SIE) to compute the radiation pressure force (RPF) exerted on arbitrary shaped homogeneous particles by high-order Bessel vortex beam (HOBVB). The incident beam is described by vector expressions perfectly satisfy Maxwell's equations. The problem is formulated with the combined tangential formulation (CTF) and solved iteratively with the aid of the multilevel fast multipole algorithm (MLFMA). Then RPF is computed by vector flux of the Maxwell's stress tensor over a spherical surface tightly enclosing the particle and analytical expression for electromagnetic fields of incident beam in near region are used. The numerical predictions are compared with the results of the rigorous method for spherical particle to validate the accuracy of the approach. Some numerical results on relative large particles of complex shape, such as biconcave cell-like particles with different geometry parameters are given, showing powerful capability of our approach. These results are expected to provide useful insights into the RPF exerted on complex shaped particles by HOBVB.

  5. Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R.; Shpotyuk, O.; Mccloy, J. S.; Riley, B. J.; Windisch, C. F.; Sundaram, S. K.; Kovalskiy, A.; Jain, H.

    2010-11-28

    The structure of homogeneous bulk As x S100- x (25 ≤ x ≤ 42) glasses, prepared by the conventional rocking–melting–quenching method, was investigated using high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It is shown that the main building blocks of their glass networks are regular AsS3/2 pyramids and sulfur chains. In the S-rich domain, the existence of quasi-tetrahedral (QT) S = As(S1/2)3 units is deduced from XPS data, but with a concentration not exceeding ~3–5% of total atomic sites. Therefore, QT units do not appear as primary building blocks of the glass backbone in these materials, and an optimally-constrained network may not be an appropriate description for glasses when x < 40. Finally, it is shown that, in contrast to Se-based glasses, the ‘chain-crossing’ model is only partially applicable to sulfide glasses.

  6. High Pressure Homogenization of Porcine Pepsin Protease: Effects on Enzyme Activity, Stability, Milk Coagulation Profile and Gel Development.

    Science.gov (United States)

    Leite Júnior, Bruno Ricardo de Castro; Tribst, Alline Artigiani Lima; Cristianini, Marcelo

    2015-01-01

    This study investigated the effect of high pressure homogenization (HPH) (up to 190 MPa) on porcine pepsin (proteolytic and milk-clotting activities), and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure). Although the proteolytic activity (PA) was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained with the enzyme processed at 50, 100 and 150 MPa. HPH increased the milk-clotting activity (MCA) of the enzyme processed at 150 MPa, being 15% higher than the MCA of non-processed samples after 60 days of storage. The enzyme processed at 150 MPa produced faster aggregation and a more consistent milk gel (G' value 92% higher after 90 minutes) when compared with the non-processed enzyme. In addition, the gels produced with the enzyme processed at 150 MPa showed greater syneresis after 40 minutes of coagulation (forming a more compact protein network) and lower porosity (evidenced by confocal microscopy). These effects on the milk gel can be associated with the increment in MCA and reduction in PA caused by the effects of HPH on pepsin during storage. According to the results, HPH stands out as a process capable of changing the proteolytic characteristics of porcine pepsin, with improvements on the milk coagulation step and gel characteristics. Therefore, the porcine pepsin submitted to HPH process can be a suitable alternative for the production of cheese.

  7. Preparation of activated carbon with high surface area for high-capacity methane storage

    Institute of Scientific and Technical Information of China (English)

    Bingsi Liua; Wenshuo Wanga; Na Wanga; Peter Chak Tong Aub

    2014-01-01

    Activated carbon (AC) was fabricated from corncob, which is cheap and abundant. Experimental parameters such as particle size of corncob, KOH/char weight ratio, and activation temperature and time were optimized to generate AC, which shows high methane sorption capacity. AC has high specific surface area (3227 m2/g), with pore volume and pore size distribution equal to 1.829 cm3/g and ca. 1.7-2.2 nm, respectively. Under the condition of 2◦C and less than 7.8 MPa, methane sorption in the presence of water (Rw=1.4) was as high as 43.7 wt%methane per unit mass of dry AC. The result is significantly higher than those of coconut-derived AC (32 wt%) and ordered mesoporous carbon (41.2 wt%, Rw=4.07) under the same condition. The physical properties and amorphous chaotic structure of AC were characterized by N2 adsorption isotherms, XRD, SEM and HRTEM. Hence, the corncob-derived AC can be considered as a competitive methane-storage material for vehicles, which are run by natural gas.

  8. High capacity image steganography method based on framelet and compressive sensing

    Science.gov (United States)

    Xiao, Moyan; He, Zhibiao

    2015-12-01

    To improve the capacity and imperceptibility of image steganography, a novel high capacity and imperceptibility image steganography method based on a combination of framelet and compressive sensing (CS) is put forward. Firstly, SVD (Singular Value Decomposition) transform to measurement values obtained by compressive sensing technique to the secret data. Then the singular values in turn embed into the low frequency coarse subbands of framelet transform to the blocks of the cover image which is divided into non-overlapping blocks. Finally, use inverse framelet transforms and combine to obtain the stego image. The experimental results show that the proposed steganography method has a good performance in hiding capacity, security and imperceptibility.

  9. A Novel Sandwich-type Dinuclear Complex for High-capacity Hydrogen Storage%A Novel Sandwich-type Dinuclear Complex for High-capacity Hydrogen Storage

    Institute of Scientific and Technical Information of China (English)

    朱海燕; 陈元振; 李赛; 曹秀贞; 柳永宁

    2012-01-01

    From density functional theory (DFT) calculations, we predicted that the sandwich-type dinuclear organometallic compounds Cpffi2 and Cp2Sc2 can adsorb up to eight hydrogen molecules respectively, corresponding to a high gravimetric storage capacity of 6.7% and 6.8% (w), respectively. These sandwich-type organometallocenes proposed in this work are favorable for reversible adsorption and desorption of hydrogen at ambient conditions.

  10. Mono-layer BC2 a high capacity anode material for Li-ion batteries

    Science.gov (United States)

    Hardikar, Rahul; Samanta, Atanu; Han, Sang Soo; Lee, Kwang-Ryeol; Singh, Abhishek

    2015-04-01

    Mono-layer of graphene with high surface area compared to the bulk graphite phase, shows less Li uptake. The Li activity or kinetics can be modified via defects and/or substitutional doping. Boron and Nitrogen are the best known dopants for carbonaceous anode materials. In particular, boron doped graphene shows higher capacity and better Li adsorption compared to Nitrogen doped graphene. Here, using first principles density functional theory calculations, we study the spectrum of boron carbide (BCx) mono-layer phases in order to estimate the maximum gravimetric capacity that can be achieved by substitutional doping in graphene. Our results show that uniformly boron doped BC2 phase shows a high capacity of? 1400 mAh/g, much higher than previously reported capacity of BC3. Supported by Korea Institute of Science and Technology.

  11. Research on influence of high-voltage cable un-homogeneities on process of short waves distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tirsu, M.; Berzan, V.; Rimschi, V. [Power Engineering Institute of Academy of Sciences of Moldova, 5 Academy Street, Kishinev (Moldova); Postolache, P. [University ' ' Politechnics' ' of Bucharest, Street Splaiul Independentei 313, Bucharest (Romania)

    2008-12-15

    The partial discharges (PDs) inside of high-voltage cable insulation negatively influence cable service lifespan. Therefore timely detection and localization of affected areas with the weakened electric insulation is a vital question, in particular - according to measured values of PD parameters before they reach the dangerous stage of their development. Electrical cable is a circuit with the distributed parameters for current and voltage waves, initiated by local PD which changes their starting values with time. These changes can be taken as informative parameters for solving problems of localization of the defect and evaluation of dangers to cable's performance. Clear and detailed understanding of PD pulse distribution features in power cables is the basis for correctly solving cable diagnostics tasks with non-destructive approaches. This article uses the mathematical model of a power cable on the premises of cable equations. The model allows for modeling of wave processes in a non-uniform electric circuit (at sudden change of longitudinal parameters) in view of repeated reflection of PD waves from the ends and un-homogeneities of an electric cable. Results of mathematical modeling were compared to the data received from physical model of 110 kV XLPE electric cable. The cable physical model is realized with the help of the chained circuit consisting of 15 quad-poles. This document shows results of measurements and modeling of wave process caused by PD. Also, details of the wave process as dependent on time and frequency, and practical use of measurements of PD for cable insulation control, are discussed. Practical measurements show high degree of accuracy with regards to the data generated by theoretical model analysis. (author)

  12. High-Efficiency, High-Capacity, Low-NOx Aluminum Melting Using Oxygen-Enhanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    D' Agostini, M.D.

    2000-06-02

    This report describes the development and application of a novel oxygen enhanced combustion system with an integrated vacuum swing adsorption (VSA) oxygen supply providing efficient, low NOx melting in secondary aluminum furnaces. The mainstay of the combustion system is a novel air-oxy-natural gas burner that achieves high productivity and energy efficiency with low NOx emissions through advanced mixing concepts and the use of separate high- and low-purity oxidizer streams. The technology was installed on a reverberatory, secondary aluminum melting plant at the Wabash Aluminum Alloy's Syracuse, N.Y. plant, where it is currently in operation. Field testing gave evidence that the new burner technology meets the stringent NOx emissions target of 0.323 lb NO2/ton aluminum, thus complying with regulations promulgated by Southern California's South Coast Air Quality Management District (SCAQMD). Test results also indicated that the burner technology exceeded fuel efficiency and melting capacity goals. Economic modeling showed that the novel air-oxy-fuel (ADF) combustion technology provides a substantial increase in furnace profitability relative to air-fuel operation. Model results also suggest favorable economics for the air-oxy-fuel technology relative to a full oxy-fuel conversion of the furnace.

  13. Current Trends of High capacity Optical Interconnection Data Link in High Performance Optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2013-02-01

    Full Text Available Optical technologies are ubiquitous in telecommunications networks and systems, providing multiple wavelength channels of transport at 2.5 Gbit/sec to 40 Gbit/sec data rates over single fiber optic cables. Market pressures continue to drive the number of wavelength channels per fiber and the data rate per channel. This trend will continue for many years to come as electronic commerce grows and enterprises demand higher and reliable bandwidth over long distances. Electronic commerce, in turn, is driving the growth curves for single processor and multiprocessor performance in data base transaction and Web based servers. Ironically, the insatiable taste for enterprise network bandwidth, which has driven up the volume and pushed down the price of optical components for telecommunications, is simultaneously stressing computer system bandwidth increasing the need for new interconnection schemes and providing for the first time commercial opportunities for optical components in computer systems. The evolution of integrated circuit technology is causing system designs to move towards communication based architectures. We have presented the current tends of high performance system capacity of optical interconnection data transmission link in high performance optical communication and computing systems over wide range of the affecting parameters.

  14. Generation Capacity Investments and High Levels of Renewables. The Impact of a German Capacity Market on Northwest Europe. Discussion paper

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, O.; De Joode, J.; Koutstaal, P.R.; Van Hout, M. [ECN Policy Studies, Amsterdam (Netherlands)

    2013-05-15

    Presently, Northwest European centralised electricity markets are designed as 'energy-only' markets. In an energy-only market, the price received for electricity produced is set by the marginal generation unit. Potentially, the designs of these markets could leave the owners of these units with 'missing money': i.e. money that is required to recover investment cost. Further, increasing penetration of renewables could exacerbate this problem. Of all the different options available to tackle the 'missing money' problem, capacity mechanisms have attracted most of the attention in recent policy debates in Europe. This paper contributes to ongoing policy discussions by providing a quantitative analysis of the phenomena of 'missing money' and capacity mechanisms in Northwest Europe. Our analysis shows that in the case of energy-only markets with a much higher penetration of intermittent electricity sources such as wind and solar PV, the 'missing money' problem may be aggravated, because operating hours for peak and mid-merit order capacity will be considerably reduced. Furthermore, unilateral introduction of capacity mechanisms in integrated electricity markets can have considerable impacts on cross-border electricity flows and investment decisions. Stand-alone introduction of a capacity market in Germany will likely result in higher investments in Germany at the expense of lower investments outside Germany and an increase in net exports from Germany. A possible advantage of a unilateral capacity mechanism in Germany may be a reduction in super-peak prices in the larger market area. Thus, neighbouring countries may have the possibility to free ride on the increase in flexible capacity in Germany. However, this advantage is conditional and depends on sufficient availability of interconnection capacity necessary to be able to use this reserve capacity. Otherwise, security of supply might be more at risk if the German

  15. Palaeoproterozoic high-pressure granulite overprint of the Archaean continental crust: evidence for homogeneous crustal thickening (Man Rise, Ivory Coast)

    Science.gov (United States)

    Pitra, Pavel; Kouamelan, Alain N.; Ballèvre, Michel; Peucat, Jean-Jacques

    2010-05-01

    The character of mountain building processes in the Palaeoproterozoic times is subject to much debate. The local observation of Barrovian-type assemblages and high-pressure granulite relics in the Man Rise (Côte d'Ivoire), led some authors to argue that Eburnean (Palaeoproterozoic) reworking of the Archaean basement was achieved by modern-style thrust-dominated tectonics (e.g., Feybesse & Milési, 1994). However, it has been suggested that crustal thickening and subsequent exhumation of high-pressure crustal rocks can be achieved by virtue of homogeneous, fold-dominated deformation of hot crustal domains even in Phanerozoic orogenic belts (e.g., Schulmann et al., 2002; 2008). We describe a mafic granulite of the Kouibli area (Archaean part of the Man Rise, western Ivory Coast) that displays a primary assemblage (M1) containing garnet, diopsidic clinopyroxene, red-brown pargasitic amphibole, plagioclase (andesine), rutile, ilmenite and quartz. This assemblage is associated with a subvertical regional foliation. Symplectites that develop at the expense of the M1 assemblage contain orthopyroxene, clinopyroxene, plagioclase (bytownite), green pargasitic amphibole, ilmenite and magnetite (M2). Multiequilibrium thermobarometric calculations and P-T pseudosections calculated with THERMOCALC suggest granulite-facies conditions of ca. 13 kbar, 850°C and <7 kbar, 700-800°C for M1 and M2, respectively. In agreement with the qualitative information obtained from reaction textures and chemical zoning of minerals, this suggests an evolution dominated by decompression accompanied by moderate cooling. A Sm-Nd garnet - whole-rock age of 2.03 Ga determined on this sample indicates that this evolution occurred during the Palaeoproterozoic. We argue that from the geodynamic point of view the observed features are best explained by homogeneous thickening of the margin of the Archaean craton, re-heated and softened due to the accretion of hot, juvenile Palaeoproterozoic crust, as

  16. Thiol-ethylene bridged PMO: A high capacity regenerable mercury adsorbent via intrapore mercury thiolate crystal formation.

    Science.gov (United States)

    Esquivel, Dolores; Ouwehand, Judith; Meledina, Maria; Turner, Stuart; Tendeloo, Gustaaf Van; Romero-Salguero, Francisco J; Clercq, Jeriffa De; Voort, Pascal Van Der

    2017-10-05

    Highly ordered thiol-ethylene bridged Periodic Mesoporous Organosilicas were synthesized directly from a homemade thiol-functionalized bis-silane precursor. These high surface area materials contain up to 4.3mmol/g sulfur functions in the walls and can adsorb up to 1183mg/g mercury ions. Raman spectroscopy reveals the existence of thiol and disulfide moieties. These groups have been evaluated by a combination of Raman spectroscopy, Ellman's reagent and elemental analysis. The adsorption of mercury ions was evidenced by different techniques, including Raman, XPS and porosimetry, which indicate that thiol groups are highly accessible to mercury. Scanning transmission electron microscopy combined with EDX showed an even homogenous distribution of the sulfur atoms throughout the structure, and have revealed for the first time that a fraction of the adsorbed mercury is forming thiolate nanocrystals in the pores. The adsorbent is highly selective for mercury and can be regenerated and reused multiple times, maintaining its structure and functionalities and showing only a marginal loss of adsorption capacity after several runs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of high fluoride intake on child mental work capacity: preliminary investigation into the mechanisms involved

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Li, X.J.; Wei, S.Q. [Child & Adolescent Hygiene Teaching Research Station, Chengdu (China)

    2008-10-15

    A study was carried out on 157 children, age 12-13, from a coal-burning fluorosis endemic area together with an experiment looking into the effect of high fluoride intake in animals. The results showed that early, prolonged high fluoride intake causes a decrease in a child's mental work capacity and that prolonged high uptake of fluoride causes a child's levels of hair zinc to drop. A multifactoral correlative analysis demonstrated a direct correlation between hair zinc and mental work capacity. The decrease of 5-hydroxyindoleacetic acid and the increase of norepinephrine in animal brains exposed to high levels of fluoride suggest a possible mechanism for mental work capacity deficits in children. However, further research is necessary.

  18. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  19. Genotype-phenotype correlations in a mountain population community with high prevalence of Wilson's disease: genetic and clinical homogeneity.

    Directory of Open Access Journals (Sweden)

    Relu Cocoş

    Full Text Available Wilson's disease is an autosomal recessive disorder caused by more than 500 mutations in ATP7B gene presenting considerably clinical manifestations heterogeneity even in patients with a particular mutation. Previous findings suggested a potential role of additional genetic modifiers and environment factors on phenotypic expression among the affected patients. We conducted clinical and genetic investigations to perform genotype-phenotype correlation in two large families living in a socio-culturally isolated community with the highest prevalence of Wilson's disease ever reported of 1 ∶ 1130. Sequencing of ATP7B gene in seven affected individuals and 43 family members identified a common compound heterozygous genotype, H1069Q/M769H-fs, in five symptomatic and two asymptomatic patients and detected the presence of two out of seven identified single nucleotide polymorphisms in all affected patients. Symptomatic patients had similar clinical phenotype and age at onset (18 ± 1 years showing dysarthria and dysphagia as common clinical features at the time of diagnosis. Moreover, all symptomatic patients presented Kayser-Fleischer rings and lack of dystonia accompanied by unfavourable clinical outcomes. Our findings add value for understanding of genotype-phenotype correlations in Wilson's disease based on a multifamily study in an isolated population with high extent of genetic and environmental homogeneity as opposed to majority of reports. We observed an equal influence of presumed other genetic modifiers and environmental factors on clinical presentation and age at onset of Wilson's disease in patients with a particular genotype. These data provide valuable inferences that could be applied for predicting clinical management in asymptomatic patients in such communities.

  20. Effect of High Pressure Homogenization on the Physicochemical Properties of Natural Plant-based Model Emulsion Applicable for Dairy Products

    Science.gov (United States)

    Park, Sung Hee; Min, Sang-Gi; Jo, Yeon-Ji; Chun, Ji-Yeon

    2015-01-01

    In the dairy industry, natural plant-based powders are widely used to develop flavor and functionality. However, most of these ingredients are water-insoluble; therefore, emulsification is essential. In this study, the efficacy of high pressure homogenization (HPH) on natural plant (chocolate or vanilla)-based model emulsions was investigated. The particle size, electrical conductivity, Brix, pH, and color were analyzed after HPH. HPH significantly decreased the particle size of chocolate-based emulsions as a function of elevated pressures (20-100 MPa). HPH decreased the mean particle size of chocolate-based emulsions from 29.01 μm to 5.12 μm, and that of vanilla-based emulsions from 4.18 μm to 2.44 μm. Electrical conductivity increased as a function of the elevated pressures after HPH, for both chocolate- and vanilla-based model emulsions. HPH at 100 MPa increased the electrical conductivity of chocolate-based model emulsions from 0.570 S/m to 0.680 S/m, and that of vanilla-based model emulsions from 0.573 S/m to 0.601 S/m. Increased electrical conductivity would be attributed to colloidal phase modification and dispersion of oil globules. Brix of both chocolate- and vanilla-based model emulsions gradually increased as a function of the HPH pressure. Thus, HPH increased the solubility of plant-based powders by decreasing the particle size. This study demonstrated the potential use of HPH for enhancing the emulsification process and stability of the natural plant powders for applications with dairy products. PMID:26761891

  1. High-throughput salting-out-assisted homogeneous liquid-liquid extraction with acetonitrile for determination of baicalin in rat plasma with high-performance liquid chromatography.

    Science.gov (United States)

    Li, Tingting; Zhang, Lei; Tong, Ling; Liao, Qiongfeng

    2014-05-01

    Baicalin is the main indicator for qualitative and quantitative analysis of Scutellaria baicalensis Georgi and its prescription in vivo and in vitro. Owing to its insolubility and instability, the analysis of baicalin in biological samples is analytically challenging. Although there have been many pharmacokinetic or metabolism studies on baicalin, the current reported sample pretreatment methods are not the optimal choice with regard to absolute recovery and operation procedure. Here we report a high-throughput salting-out-assisted homogeneous liquid-liquid extraction method with acetonitrile and ammonium sulfate. Eight kinds of commonly used salts, preferred salt concentration and auxiliary solvents were investigated. The extraction efficiency in the presence of ammonium salt and auxiliary solvent (methanol) in comparison to that from the salt-free aqueous increased to above 90%. The performance of the developed pretreatment method was further evaluated through testing specificity, linearity, precision, accuracy, extraction recovery and stability. In particular, the stability investigation results proved that the operation at low temperature would no longer necessary be for salting-out-assisted homogeneous liquid-liquid extraction compared with protein precipitation, and the pretreatment method would be valuable if the compounds were unstable within matrices.

  2. Crack-resistant polyimide coating for high-capacity battery anodes

    Science.gov (United States)

    Li, Yingshun; Wang, Shuo; Lee, Pui-Kit; He, Jieqing; Yu, Denis Y. W.

    2017-10-01

    Electrode cracking is a serious problem that hinders the application of many next-generation high-capacity anode materials for lithium-ion batteries. Even though nano-sizing the material can reduce fracturing of individual particles, capacity fading is still observed due to large volume change and loss of contact in the electrode during lithium insertion and extraction. In this study, we design a crack-resistant high-modulus polyimide coating with high compressive strength which can hold multiple particles together during charge and discharge to maintain contact. The effectiveness of the coating is demonstrated on tin dioxide, a high-capacity large-volume-change material that undergoes both alloy and conversion reactions. The polyimide coating improves capacity retention of SnO2 from 80% to 100% after 80 cycles at 250 mA g-1. Stable capacity of 585 mAh g-1 can be obtained even at 500 mA g-1 after 300 cycles. Scanning electron microscopy and in-situ dilatometry confirm that electrode cracking is suppressed and thickness change is reduced with the coating. In addition, the chemically-stable polyimide film can separate the surface from direct contact with electrolyte, improving coulombic efficiency to ∼100%. We expect the novel strategy of suppressing electrode degradation with a crack-resistant coating can also be used for other alloy and conversion-based anodes.

  3. X-chromosome SNP analyses in 11 human Mediterranean populations show a high overall genetic homogeneity except in North-west Africans (Moroccans)

    DEFF Research Database (Denmark)

    Tomas Mas, Carmen; Sanchez Sanchez, Juan Jose; Barbaro, Anna;

    2008-01-01

    and Cosenza. CONCLUSION: Our results support both the hypothesis of (1) a reduced impact of the Neolithic Wave and more recent migration movements in NW-Africa, and (2) the importance of the Strait of Gibraltar as a geographic barrier. In contrast, the high genetic homogeneity observed in the Mediterranean...

  4. Ideological Homogeneity, School Leadership, and Political Intolerance in Secondary Education: A Study of Three High Schools during the 2008 Presidential Election

    Science.gov (United States)

    Journell, Wayne

    2012-01-01

    This study reports findings from a qualitative case study of three high schools during the 2008 presidential election. The schools appeared to promote the political ideologies of their corresponding populations, and in the two predominately ideologically homogenous schools, political intolerance often appeared to affect teachers' instruction and…

  5. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects

    Indian Academy of Sciences (India)

    Jagjit Nanda; Surendra K Martha; Ramki Kalyanaraman

    2015-06-01

    This review summarizes the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application. We discuss the role of nanoscale effects on the electrochemical performance of high-capacity battery electrode materials. Decrease in the particle size of the primary electrode materials from micron to nanometre size improves the ionic and electronic diffusion rates significantly. Nanometre-thick solid electrolyte (such as lithium phosphorous oxynitride) and oxides (such as Al2O3, ZnO, TiO2 etc.) material coatings also improve the interfacial stability and rate capability of a number of battery chemistries. We elucidate these effects in terms of different high-capacity battery chemistries based on intercalation and conversion mechanism.

  6. Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    Science.gov (United States)

    Katz, Randy H.; Anderson, Thomas E.; Ousterhout, John K.; Patterson, David A.

    1991-01-01

    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications.

  7. Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage

    Science.gov (United States)

    Chen, Jizhang; Yang, Li; Rousidan, Saibihai; Fang, Shaohua; Zhang, Zhengxi; Hirano, Shin-Ichi

    2013-10-01

    Si has the second highest theoretical capacity among all the known anode materials for lithium ion batteries, whereas it is vulnerable to pulverization and crumbling upon lithiation/delithiation. Herein, Si mesoporous nanowires prepared by a scalable and cost-effective procedure are reported for the first time. Such nanowire morphology and mesoporous structure can effectively buffer the huge lithiation-induced volume expansion of Si, therefore contributing to excellent cycling stability and high-rate capability. Reversible capacities of 1826.8 and 737.4 mA h g-1 can be obtained at 500 mA g-1 and a very high current density of 10 A g-1, respectively. After 1000 cycles at 2500 mA g-1, this product still maintains a high capacity of 643.5 mA h g-1.Si has the second highest theoretical capacity among all the known anode materials for lithium ion batteries, whereas it is vulnerable to pulverization and crumbling upon lithiation/delithiation. Herein, Si mesoporous nanowires prepared by a scalable and cost-effective procedure are reported for the first time. Such nanowire morphology and mesoporous structure can effectively buffer the huge lithiation-induced volume expansion of Si, therefore contributing to excellent cycling stability and high-rate capability. Reversible capacities of 1826.8 and 737.4 mA h g-1 can be obtained at 500 mA g-1 and a very high current density of 10 A g-1, respectively. After 1000 cycles at 2500 mA g-1, this product still maintains a high capacity of 643.5 mA h g-1. Electronic supplementary information (ESI) available: SEM images; N2 adsorption/desorption isotherm; long-term cycling performance at 500 mA g-1 comparison with other literature. See DOI: 10.1039/c3nr03955b

  8. Reassembling and testing of a high-precision heat capacity drop calorimeter. Heat capacity of some polyphenyls at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luis M.N.B.F., E-mail: lbsantos@fc.up.pt [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Rocha, Marisa A.A.; Rodrigues, Ana S.M.C. [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Stejfa, Vojtech; Fulem, Michal [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, CZ-166 28 Prague 6 (Czech Republic); Bastos, Margarida [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2011-12-15

    Graphical abstract: Highlights: > We present the reassembling, improvement and testing of a high-precision C{sub p} drop calorimeter. > The apparatus was tested, using benzoic acid and hexafluorobenzene. > The high sensitivity of the apparatus is comparable to the one obtained in adiabatic calorimetry. > Heat capacities at T = 298.15 K of some polyphenyls were measured. > Subtle heat capacity differences among position isomers (ortho, meta, para) were detected. - Abstract: The description of the reassembling and testing of a twin heat conduction, high-precision, drop microcalorimeter for the measurement of heat capacities of small samples are presented. The apparatus, originally developed and used at the Thermochemistry Laboratory, Lund, Sweden, has now been reassembled and modernized, with changes being made as regarding temperature sensors, electronics and data acquisition system. The apparatus was thereafter thoroughly tested, using benzoic acid and hexafluorobenzene as test substances. The accuracy of the C{sub p,m}{sup 0} (298.15 K) data obtained with this apparatus is comparable to that achieved by high-precision adiabatic calorimetry. Here we also present the results of heat capacity measurements on of some polyphenyls (1,2,3-triphenylbenzene, 1,3,5-triphenylbenzene, p-terphenyl, m-terphenyl, o-terphenyl, p-quaterphenyl) at T = 298.15 K, measured with the renewed high precision heat capacity drop calorimeter system. The high resolution and accuracy of the obtained heat capacity data enabled differentiation among the ortho-, meta-, and para-phenyl isomers.

  9. Probing Cu(I) in homogeneous catalysis using high-energy-resolution fluorescence-detected X-ray absorption spectroscopy.

    Science.gov (United States)

    Walroth, Richard C; Uebler, Jacob W H; Lancaster, Kyle M

    2015-06-18

    Metal-to-ligand charge transfer excitations in Cu(I) X-ray absorption spectra are introduced as spectroscopic handles for the characterization of species in homogeneous catalytic reaction mixtures. Analysis is supported by correlation of a spectral library to calculations and to complementary spectroscopic parameters.

  10. Shear Capacity and Failure Behavior of Steel-Reinforced High Ductile Concrete Beams

    Directory of Open Access Journals (Sweden)

    Mingke Deng

    2015-01-01

    Full Text Available The shear behavior of six high ductile fiber reinforced concrete (HDC beams is studied to investigate the influence of shear-span ratio and HDC mechanical property on the improvement of the shear failure mode and shear capacity of short beams. Four steel-reinforced high ductile concrete beams (SHDC beams with different shear span ratios are tested under concentrated load at midspan. To study the effect of stirrups and steel on the shear capacity of short beams, two additional specimens without steel but one including stirrups are investigated. The main aspects of SHDC beams are discussed in detail, such as failure mode, deformability, and shear capacity. Test results show that the SHDC short beams keep high residual bearing capacity and great integrity when suffering from large deformation. It is revealed that HDC increased the shear ductility and improved the shear failure mode of short beams. A comparison with the shear equations of Chinese YB9082-2006 shows that the Chinese Code equation provides conservative estimation for HDC beams. This study proposes modifications to the equation for predicting the shear capacity of HDC beams.

  11. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  12. High-Capacity Photorefractive Neural Network Implementing a Kohonen Topological Map

    Science.gov (United States)

    Frauel, Yann; Pauliat, Gilles; Villing, André; Roosen, Gérald

    2001-10-01

    We designed and built a high-capacity neural network based on volume holographic interconnections in a photorefractive crystal. We used this system to implement a Kohonen topological map. We describe and justify our optical setup and present some experimental results of self-organization in the learning database.

  13. The Capacity of Finite-State Channels in the High-Noise Regime

    CERN Document Server

    Pfister, Henry D

    2010-01-01

    This paper considers the derivative of the entropy rate of a hidden Markov process with respect to the observation probabilities. The main result is a compact formula for the derivative that can be evaluated easily using Monte Carlo methods. It is applied to the problem of computing the capacity of a finite-state channel (FSC) and, in the high-noise regime, the formula has a simple closed-form expression that enables series expansion of the capacity of a FSC. This expansion is evaluated for a binary-symmetric channel under a (0,1) run-length limited constraint and an intersymbol-interference channel with Gaussian noise.

  14. Computational Design of Metal-Organic Frameworks with High Methane Deliverable Capacity

    Science.gov (United States)

    Bao, Yi; Martin, Richard; Simon, Cory; Haranczyk, Maciej; Smit, Berend; Deem, Michael; Deem Team; Haranczyk Team; Smit Team

    Metal-organic frameworks (MOFs) are a rapidly emerging class of nanoporous materials with largely tunable chemistry and diverse applications in gas storage, gas purification, catalysis, etc. Intensive efforts are being made to develop new MOFs with desirable properties both experimentally and computationally in the past decades. To guide experimental synthesis with limited throughput, we develop a computational methodology to explore MOFs with high methane deliverable capacity. This de novo design procedure applies known chemical reactions, considers synthesizability and geometric requirements of organic linkers, and evolves a population of MOFs with desirable property efficiently. We identify about 500 MOFs with higher deliverable capacity than MOF-5 in 10 networks. We also investigate the relationship between deliverable capacity and internal surface area of MOFs. This methodology can be extended to MOFs with multiple types of linkers and multiple SBUs. DE-FG02- 12ER16362.

  15. In Silico Discovery of High Deliverable Capacity Metal-Organic Frameworks

    Science.gov (United States)

    Bao, Yi; Martin, Richard; Simon, Cory; Haranczyk, Maciej; Smit, Berend; Deem, Michael; Michael W. Deem Team; Maciej Haranczyk Team; Berend Smit Team

    2015-03-01

    Metal organic frameworks (MOFs) are actively being explored as potential adsorbed natural gas storage materials for small vehicles. Experimental exploration of potential materials is limited by the throughput of synthetic chemistry. We here describe a computational methodology to complement and guide these experimental efforts. The method uses known chemical transformations in silico to identify MOFs with high methane deliverable capacity. The procedure explicitly considers synthesizability with geometric requirements on organic linkers. We efficiently search the composition and conformation space of organic linkers for nine MOF networks, finding 48 materials with higher predicted deliverable capacity (at 65 bar storage, 5.8 bar depletion, and 298 K) than MOF-5 in four of the nine networks. The best material has a predicted deliverable capacity 8% higher than that of MOF-5. US Department of Energy.

  16. How high is visual short-term memory capacity for object layout?

    Science.gov (United States)

    Sanocki, Thomas; Sellers, Eric; Mittelstadt, Jeff; Sulman, Noah

    2010-05-01

    Previous research measuring visual short-term memory (VSTM) suggests that the capacity for representing the layout of objects is fairly high. In four experiments, we further explored the capacity of VSTM for layout of objects, using the change detection method. In Experiment 1, participants retained most of the elements in displays of 4 to 8 elements. In Experiments 2 and 3, with up to 20 elements, participants retained many of them, reaching a capacity of 13.4 stimulus elements. In Experiment 4, participants retained much of a complex naturalistic scene. In most cases, increasing display size caused only modest reductions in performance, consistent with the idea of configural, variable-resolution grouping. The results indicate that participants can retain a substantial amount of scene layout information (objects and locations) in short-term memory. We propose that this is a case of remote visual understanding, where observers' ability to integrate information from a scene is paramount.

  17. Label-Free and Enzyme-Free Homogeneous Electrochemical Biosensing Strategy Based on Hybridization Chain Reaction: A Facile, Sensitive, and Highly Specific MicroRNA Assay.

    Science.gov (United States)

    Hou, Ting; Li, Wei; Liu, Xiaojuan; Li, Feng

    2015-11-17

    Homogenous electrochemical biosensing strategies have attracted substantial attention, because of their advantages of being immobilization-free and having rapid response and improved recognition efficiency, compared to heterogeneous biosensors; however, the high cost of labeling and the strict reaction conditions of tool enzymes associated with current homogeneous electrochemical methods limit their potential applications. To address these issues, herein we reported, for the first time, a simple label-free and enzyme-free homogeneous electrochemical strategy based on hybridization chain reaction (HCR) for sensitive and highly specific detection of microRNA (miRNA). The target miRNA triggers the HCR of two species of metastable DNA hairpin probes, resulting in the formation of multiple G-quadruplex-incorporated long duplex DNA chains. Thus, with the electrochemical indicator Methylene Blue (MB) selectively intercalated into the duplex DNA chain and the multiple G-quadruplexes, a significant electrochemical signal drop is observed, which is dependent on the concentration of the target miRNA. Thus, using this "signal-off" mode, a simple, label-free and enzyme-free homogeneous electrochemical strategy for sensitive miRNA assay is readily realized. This strategy also exhibits excellent selectivity to distinguish even single-base mismatched miRNA. Furthermore, this method also exhibits additional advantages of simplicity and low cost, since both expensive labeling and sophisticated probe immobilization processes are avoided. Therefore, the as-proposed label-free and enzyme-free homogeneous electrochemical strategy may become an alternative method for simple, sensitive, and selective miRNA detection, and it has great potential to be applied in miRNA-related clinical diagnostics and biochemical research.

  18. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    Science.gov (United States)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  19. High-Capacity and Photoregenerable Composite Material for Efficient Adsorption and Degradation of Phenanthrene in Water.

    Science.gov (United States)

    Liu, Wen; Cai, Zhengqing; Zhao, Xiao; Wang, Ting; Li, Fan; Zhao, Dongye

    2016-10-18

    We report a novel composite material, referred to as activated charcoal supported titanate nanotubes (TNTs@AC), for highly efficient adsorption and photodegradation of a representative polycyclic aromatic hydrocarbon (PAH), phenanthrene. TNTs@AC was prepared through a one-step hydrothermal method, and is composed of an activated charcoal core and a shell of carbon-coated titanate nanotubes. TNTs@AC offered a maximum Langmuir adsorption capacity of 12.1 mg/g for phenanthrene (a model PAH), which is ∼11 times higher than the parent activated charcoal. Phenanthrene was rapidly concentrated onto TNTs@AC, and subsequently completely photodegraded under UV light within 2 h. The photoregenerated TNTs@AC can then be reused for another adsorption-photodegradation cycle without significant capacity or activity loss. TNTs@AC performed well over a wide range of pH, ionic strength, and dissolved organic matter. Mechanistically, the enhanced adsorption capacity is attributed to the formation of carbon-coated ink-bottle pores of the titanate nanotubes, which are conducive to capillary condensation; in addition, the modified microcarbon facilitates transfer of excited electrons, thereby inhibiting recombination of the electron-hole pairs, resulting in high photocatalytic activity. The combined high adsorption capacity, photocatalytic activity, and regenerability/reusability merit TNTs@AC a very attractive material for concentrating and degrading a host of micropollutants in the environment.

  20. Curtailment in a Highly Renewable Power System and Its Effect on Capacity Factors

    Directory of Open Access Journals (Sweden)

    Alexander Kies

    2016-06-01

    Full Text Available The capacity factor of a power plant is the ratio of generation over its potential generation. It is an important measure to describe wind and solar resources. However, the fluctuating nature of renewable power generation makes it difficult to integrate all generation at times. Whenever generation exceeds the load, curtailment or storage of energy is required. With increasing renewable shares in the power system, the level of curtailment will further increase. In this work, the influence of the curtailment on the capacity factors for a highly renewable German power system is studied. An effective capacity factor is introduced, and the implications for the distribution of renewable power plants are discussed. Three years of highly-resolved weather data were used to model wind and solar power generation. Together with historical load data and a transmission model, a possible future German power system was simulated. It is shown that effective capacity factors for unlimited transmission are strongly reduced by up to 60% (wind and 70% (photovoltaics and therefore of limited value in a highly renewable power system. Furthermore, the results demonstrate that wind power benefits more strongly from a reinforced transmission grid than photovoltaics (PV does.

  1. Changes in apolipoprotein E-containing high-density lipoprotein (HDL) have little impact on HDL-cholesterol measurements using homogeneous assays in normolipidemic and dyslipidemic subjects.

    Science.gov (United States)

    Sasamoto, Kenta; Hirayama, Satoshi; Kon, Mika; Seino, Utako; Ueno, Tsuyoshi; Nagao, Yuki; Hirayama, Akiko; Isshiki, Miwa; Idei, Mayumi; Yano, Kouji; Miida, Takashi

    2017-07-01

    High-density lipoprotein-cholesterol (HDL-C) is generally measured using several homogeneous assays. We aimed to clarify whether apolipoprotein E-containing HDL (apoE-HDL) subfractions are altered during storage, and if so, whether such changes affect the HDL-C concentration measured using homogeneous assays. We stored serum from normolipidemic (n=32) and dyslipidemic (n=17) subjects at 4°C for up to 7days. ApoE-HDL subfractions were analyzed using native 2-dimensional gel (native 2D-gel) electrophoresis. HDL-C concentrations were determined using 2 precipitation and 4homogeneous assays. Native 2D-gel electrophoresis revealed variously sized apoE-HDL subfractions. After 4h incubation at 37°C, subfractions of smaller particles were converted into larger particles by lecithin:cholesterol acyltransferase (LCAT) activity. After 7days storage at 4°C, the smaller subfractions were decreased in the normolipidemic group, accompanying increases in larger subfractions, whereas changes in the respective subfractions varied among individuals in the dyslipidemic group. HDL-C concentrations were significantly lower after storage at 4°C in all assays, except that using Sekisui Medical's reagent. Therefore, changes in HDL-C concentration and apoE-HDL subfractions were independent of each other. ApoE-HDL subfractions change during storage, but these changes are not linked to those in HDL-C concentration measured using homogeneous assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Energy Efficiency and Capacity Tradeoff in Cloud Radio Access Network of High-Speed Railways

    OpenAIRE

    Shichao Li; Gang Zhu; Siyu Lin; Qian Gao; Lei Xiong; Weiliang Xie; Xiaoyu Qiao

    2017-01-01

    To meet the increasing demand of high-data-rate services of high-speed railway (HSR) passengers, cloud radio access network (C-RAN) is proposed. This paper investigates the tradeoff between energy efficiency (EE) performance and capacity in C-RAN of HSR. Considering that the train location can be predicted, we propose a predictable path loss based time domain power allocation method (PPTPA) to improve EE performance of HSR communication system. First, we consider that the communication system...

  3. High capacity and high rate capability of nanostructured CuFeO 2 anode materials for lithium-ion batteries

    Science.gov (United States)

    Lu, Lin; Wang, Jia-Zhao; Zhu, Xue-Bin; Gao, Xuan-Wen; Liu, Hua-Kun

    Non-toxic, cheap, nanostructured ternary transition metal oxide CuFeO 2 was synthesised using a simple sol-gel method at different temperatures. The effects of the processing temperature on the particle size and electrochemical performance of the nanostructured CuFeO 2 were investigated. The electrochemical results show that the sample synthesised at 650 °C shows the best cycling performance, retaining a specific capacity of 475 mAh g -1 beyond 100 cycles, with a capacity fading of less than 0.33% per cycle. The electrode also exhibits good rate capability in the range of 0.5 C-4 C. At the high rate of 4 C, the reversible capacity of CuFeO 2 is around 170 mAh g -1. It is believed that the ternary transition metal oxide CuFeO 2 is quite acceptable compared with other high performance nanostructured anode materials.

  4. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment.

    Science.gov (United States)

    Alonso-Mora, Javier; Samaranayake, Samitha; Wallar, Alex; Frazzoli, Emilio; Rus, Daniela

    2017-01-17

    Ride-sharing services are transforming urban mobility by providing timely and convenient transportation to anybody, anywhere, and anytime. These services present enormous potential for positive societal impacts with respect to pollution, energy consumption, congestion, etc. Current mathematical models, however, do not fully address the potential of ride-sharing. Recently, a large-scale study highlighted some of the benefits of car pooling but was limited to static routes with two riders per vehicle (optimally) or three (with heuristics). We present a more general mathematical model for real-time high-capacity ride-sharing that (i) scales to large numbers of passengers and trips and (ii) dynamically generates optimal routes with respect to online demand and vehicle locations. The algorithm starts from a greedy assignment and improves it through a constrained optimization, quickly returning solutions of good quality and converging to the optimal assignment over time. We quantify experimentally the tradeoff between fleet size, capacity, waiting time, travel delay, and operational costs for low- to medium-capacity vehicles, such as taxis and van shuttles. The algorithm is validated with ∼3 million rides extracted from the New York City taxicab public dataset. Our experimental study considers ride-sharing with rider capacity of up to 10 simultaneous passengers per vehicle. The algorithm applies to fleets of autonomous vehicles and also incorporates rebalancing of idling vehicles to areas of high demand. This framework is general and can be used for many real-time multivehicle, multitask assignment problems.

  5. A high-capacity steganography scheme for JPEG2000 baseline system.

    Science.gov (United States)

    Zhang, Liang; Wang, Haili; Wu, Renbiao

    2009-08-01

    Hiding capacity is very important for efficient covert communications. For JPEG2000 compressed images, it is necessary to enlarge the hiding capacity because the available redundancy is very limited. In addition, the bitstream truncation makes it difficult to hide information. In this paper, a high-capacity steganography scheme is proposed for the JPEG2000 baseline system, which uses bit-plane encoding procedure twice to solve the problem due to bitstream truncation. Moreover, embedding points and their intensity are determined in a well defined quantitative manner via redundancy evaluation to increase hiding capacity. The redundancy is measured by bit, which is different from conventional methods which adjust the embedding intensity by multiplying a visual masking factor. High volumetric data is embedded into bit-planes as low as possible to keep message integrality, but at the cost of an extra bit-plane encoding procedure and slightly changed compression ratio. The proposed method can be easily integrated into the JPEG2000 image coder, and the produced stego-bitstream can be decoded normally. Simulation shows that the proposed method is feasible, effective, and secure.

  6. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment

    Science.gov (United States)

    Alonso-Mora, Javier; Samaranayake, Samitha; Wallar, Alex; Frazzoli, Emilio; Rus, Daniela

    2017-01-01

    Ride-sharing services are transforming urban mobility by providing timely and convenient transportation to anybody, anywhere, and anytime. These services present enormous potential for positive societal impacts with respect to pollution, energy consumption, congestion, etc. Current mathematical models, however, do not fully address the potential of ride-sharing. Recently, a large-scale study highlighted some of the benefits of car pooling but was limited to static routes with two riders per vehicle (optimally) or three (with heuristics). We present a more general mathematical model for real-time high-capacity ride-sharing that (i) scales to large numbers of passengers and trips and (ii) dynamically generates optimal routes with respect to online demand and vehicle locations. The algorithm starts from a greedy assignment and improves it through a constrained optimization, quickly returning solutions of good quality and converging to the optimal assignment over time. We quantify experimentally the tradeoff between fleet size, capacity, waiting time, travel delay, and operational costs for low- to medium-capacity vehicles, such as taxis and van shuttles. The algorithm is validated with ∼3 million rides extracted from the New York City taxicab public dataset. Our experimental study considers ride-sharing with rider capacity of up to 10 simultaneous passengers per vehicle. The algorithm applies to fleets of autonomous vehicles and also incorporates rebalancing of idling vehicles to areas of high demand. This framework is general and can be used for many real-time multivehicle, multitask assignment problems. PMID:28049820

  7. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Cole, Wesley

    2016-11-14

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERC region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  8. Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer.

    Science.gov (United States)

    Joshi, Saurabh; Gogate, Parag R; Moreira, Paulo F; Giudici, Reinaldo

    2017-11-01

    In the present work, high speed homogenizer has been used for the intensification of biodiesel synthesis from soybean oil and waste cooking oil (WCO) used as a sustainable feedstock. High acid value waste cooking oil (27mg of KOH/g of oil) was first esterified with methanol using sulphuric acid as catalyst in two stages to bring the acid value to desired value of 1.5mg of KOH/g of oil. Transesterification of soybean oil (directly due to lower acid value) and esterified waste cooking oil was performed in the presence of heterogeneous catalyst (CaO) for the production of biodiesel. Various experiments were performed for understanding the effect of operating parameters viz. molar ratio, catalyst loading, reaction temperature and speed of rotation of the homogenizer. For soybean oil, the maximum biodiesel yield as 84% was obtained with catalyst loading of 3wt% and molar ratio of oil to methanol of 1:10 at 50°C with 12,000rpm as the speed of rotation in 30min. Similarly biodiesel yield of 88% was obtained from waste cooking oil under identical operating conditions except for the catalyst loading which was 1wt%. Significant increase in the rate of biodiesel production with yields from soybean oil as 84% (in 30min) and from WCO as 88% (30min) was established due to the use of high speed homogenizer as compared to the conventional stirring method (requiring 2-3h for obtaining similar biodiesel yield). The observed intensification was attributed to the turbulence caused at microscale and generation of fine emulsions due to the cavitational effects. Overall it can be concluded from this study that high speed homogenizer can be used as an alternate cavitating device to efficiently produce biodiesel in the presence of heterogeneous catalysts. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Homogeneous crystal nucleation in polymers.

    Science.gov (United States)

    Schick, Christoph; Androsch, R; Schmelzer, Juern W P

    2017-07-14

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 106 K s-1, allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation. © 2017 IOP Publishing Ltd.

  10. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries.

    Science.gov (United States)

    Zou, Feng; Hu, Xianluo; Qie, Long; Jiang, Yan; Xiong, Xiaoqin; Qiao, Yun; Huang, Yunhui

    2014-01-21

    Traditional metal anode materials in lithium-ion batteries are plagued by instability upon discharge-charge cycling. We report that a unique sandwiched Zn2GeO4-graphene oxide nanocomposite has been synthesized on a large scale through a simple ion-exchange reaction, whereby Zn2GeO4 nanorods with lengths of 600 nm and widths of 40 nm are homogeneously sandwiched into the graphene oxide matrix. Compared with bare Zn2GeO4 nanorods, a dramatic improvement in the electrochemical performance of the resulting nanocomposite has been achieved. In the voltage window of 0.001-3 V, the electrode of the Zn2GeO4-graphene oxide nanocomposite delivers a specific capacity as high as 1150 mA h g(-1) at 200 mA g(-1) after 100 discharge-charge cycles. Even at a high current density of 3.2 A g(-1), a capacity of 522 mA h g(-1) can be retained. The unusual electrochemical performance including highly reversible capacity and excellent rate capability arise from synergetic chemical coupling effects between Zn2GeO4 and graphene oxide.

  11. Temperature dependence of electronic heat capacity in Holstein model

    CERN Document Server

    Fialko, N S; Lakhno, V D

    2015-01-01

    The dynamics of charge migration was modeled to calculate temperature dependencies of its thermodynamic equilibrium values such as energy and electronic heat capacity in homogeneous adenine fragments. The energy varies from nearly polaron one at T~0 to midpoint of the conductivity band at high temperatures. The peak on the graph of electronic heat capacity is observed at the polaron decay temperature.

  12. Overview of space power electronic's technology under the CSTI High Capacity Power Program

    Science.gov (United States)

    Schwarze, Gene E.

    The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.

  13. Overview of space power electronic's technology under the CSTI High Capacity Power Program

    Science.gov (United States)

    Schwarze, Gene E.

    1994-01-01

    The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.

  14. Efficient removal and highly selective adsorption of Hg2+ by polydopamine nanospheres with total recycle capacity

    Science.gov (United States)

    Zhang, Xiulan; Jia, Xin; Zhang, Guoxiang; Hu, Jiamei; Sheng, Wenbo; Ma, Zhiyuan; Lu, Jianjiang; Liu, Zhiyong

    2014-09-01

    This study reported a new method for efficient removal of Hg2+ from contaminated water using highly selective adsorptive polydopamine (PDA) nanospheres, which were uniform and had a small diameter (150-200 nm). The adsorption isotherms, kinetics, thermodynamics were investigated. Also, the effects of ionic strength, co-existing ions on removing ability of PDA nanospheres for Hg2+ were studied. Adsorption of Hg2+ was very fast and efficient as adsorption equilibrium was completed within 4 h and the maximum adsorption capacities were 1861.72 mg/g, 2037.22 mg/g, and 2076.81 mg/g at 298 K, 313 K, and 328 K respectively, increasing with increasing of temperature. The PDA nanospheres exhibited highly selective adsorption of Hg2+ and had a total desorption capacity of 100% in hydrochloric acid solution, pH 1. The results showed that the structure of PDA nanospheres remained almost unchanged after recycling five times. Furthermore, X-ray photoelectron spectroscopy (XPS) was employed to determine the elements of PDA nanospheres before and after Hg2+ adsorption. Considering their efficient and highly Hg2+ selective adsorption, total recycle capacity, and high stability, PDA nanospheres will be feasible in a number of practical applications.

  15. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng

    2009-09-09

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of ∼2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO2 cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of ∼4 mAh/cm2, which is comparable to commercial battery values. © 2009 American Chemical Society.

  16. Mn-Ce oxide as a high-capacity adsorbent for fluoride removal from water.

    Science.gov (United States)

    Deng, Shubo; Liu, Han; Zhou, Wei; Huang, Jun; Yu, Gang

    2011-02-28

    A novel Mn-Ce oxide adsorbent with high sorption capacity for fluoride was prepared via co-precipitation method in this study, and the granular adsorbent was successfully prepared by calcining the mixture of the Mn-Ce powder and pseudo-boehmite. High-resolution transmission electron microscopy (TEM) image showed that the Mn-Ce adsorbent consisted of about 4.5 nm crystals, and X-ray diffraction (XRD) analysis indicated the formation of solid solution by Mn species entering CeO(2) lattices. The surface hydroxyl group density on the Mn-Ce adsorbent was determined to be as high as 15.3 mmol g(-1), mainly responsible for its high sorption capacity for fluoride. Sorption isotherms showed that the sorption capacities of fluoride on the powdered and granular adsorbent were 79.5 and 45.5 mg g(-1) respectively at the equilibrium fluoride concentration of 1 mg L(-1), much higher than all reported adsorbents. Additionally, the adsorption was fast within the initial 1 h. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis revealed that the hydroxyl groups on the adsorbent surface were involved in the sorption of fluoride. Both anion exchange and electrostatic interaction were involved in the sorption of fluoride on the Mn-Ce oxide adsorbent. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Final Report: DE- FC36-05GO15063, Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Craig [Univ. of Hawaii, Honolulu, HI (United States); McGrady, Sean [Univ. of New Brunswick, Fredericton NB (Canada); Severa, Godwin [Univ. of Hawaii, Honolulu, HI (United States); Eliseo, Jennifer [Univ. of Hawaii, Honolulu, HI (United States); Chong, Marina [Univ. of Hawaii, Honolulu, HI (United States)

    2013-05-31

    The project was component of the US DOE, Metal Hydride Center of Excellence (MHCoE). The Sandia National Laboratory led center was established to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE/FreedomCAR 2010 and 2015 system targets for hydrogen storage materials. Our approach entailed a wide variety of activities ranging from synthesis, characterization, and evaluation of new candidate hydrogen storage materials; screening of catalysts for high capacity materials requiring kinetics enhancement; development of low temperature methods for nano-confinement of hydrides and determining its effects on the kinetics and thermodynamics of hydrides; and development of novel processes for the direct re-hydrogenation of materials. These efforts have resulted in several advancements the development of hydrogen storage materials. We have greatly extended the fundamental knowledge about the highly promising hydrogen storage carrier, alane (AlH3), by carrying out the first crystal structure determinations and the first determination of the heats of dehydrogenation of β–AlH3 and γ-AlD3. A low-temperature homogenous organometallic approach to incorporation of Al and Mg based hydrides into carbon aerogels has been developed that that allows high loadings without degradation of the nano-porous scaffold. Nano-confinement was found to significantly improve the dehydrogenation kinetics but not effect the enthalpy of dehydrogenation. We conceived, characterized, and synthesized a novel class of potential hydrogen storage materials, bimetallic borohydrides. These novel compounds were found to have many favorable properties including release of significant amounts of hydrogen at moderate temperatures (75-190 º C). However, in situ IR studies in tandem with thermal gravimetric analysis have shown that about 0.5 equivalents of diborane are released during the

  18. Final Report: DE- FC36-05GO15063, Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Craig [University of Hawaii; McGrady, Sean [University of New Brunswick; Severa, Godwin [University of Hawaii; Eliseo, Jennifer [University of Hawaii; Chong, Marina [University of Hawaii

    2015-02-08

    The project was component of the US DOE, Metal Hydride Center of Excellence (MHCoE). The Sandia National Laboratory led center was established to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE/FreedomCAR 2010 and 2015 system targets for hydrogen storage materials. Our approach entailed a wide variety of activities ranging from synthesis, characterization, and evaluation of new candidate hydrogen storage materials; screening of catalysts for high capacity materials requiring kinetics enhancement; development of low temperature methods for nano-confinement of hydrides and determining its effects on the kinetics and thermodynamics of hydrides; and development of novel processes for the direct re-hydrogenation of materials. These efforts have resulted in several advancements the development of hydrogen storage materials. We have greatly extended the fundamental knowledge about the highly promising hydrogen storage carrier, alane (AlH₃), by carrying out the first crystal structure determinations and the first determination of the heats of dehydrogenation of β–AlH₃ and γ-AlD₃. A low-temperature homogenous organometallic approach to incorporation of Al and Mg based hydrides into carbon aerogels has been developed that that allows high loadings without degradation of the nano-porous scaffold. Nano-confinement was found to significantly improve the dehydrogenation kinetics but not effect the enthalpy of dehydrogenation. We conceived, characterized, and synthesized a novel class of potential hydrogen storage materials, bimetallic borohydrides. These novel compounds were found to have many favorable properties including release of significant amounts of hydrogen at moderate temperatures (75-190ºC). However, in situ IR studies in tandem with thermal gravimetric analysis have shown that about 0.5 equivalents of diborane are released during the dehydrogenation making re

  19. Estimation of Parameters Obtained by Electrochemical Impedance Spectroscopy on Systems Containing High Capacities

    Directory of Open Access Journals (Sweden)

    Mirjana Rajčić Vujasinović

    2009-09-01

    Full Text Available Electrochemical systems with high capacities demand devices for electrochemical impedance spectroscopy (EIS with ultra-low frequencies (in order of mHz, that are almost impossible to accomplish with analogue techniques, but this becomes possible by using a computer technique and accompanying digital equipment. Recently, an original software and hardware for electrochemical measurements, intended for electrochemical systems exhibiting high capacities, such as supercapacitors, has been developed. One of the included methods is EIS. In this paper, the method of calculation of circuit parameters from an EIS curve is described. The results of testing on a physical model of an electrochemical system, constructed of known elements (including a 1.6 F capacitor in a defined arrangement, proved the validity of the system and the method.

  20. High-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding

    Science.gov (United States)

    Lai, Hong; Orgun, Mehmet A.; Pieprzyk, Josef; Li, Jing; Luo, Mingxing; Xiao, Jinghua; Xiao, Fuyuan

    2016-08-01

    We propose an approach that achieves high-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding. In particular, we encode a key with the Chebyshev-map values corresponding to Lucas numbers and then use k-Chebyshev maps to achieve consecutive and flexible key expansion and apply the pre-shared classical information between Alice and Bob and fountain codes for privacy amplification to solve the security of the exchange of classical information via the classical channel. Consequently, our high-capacity protocol does not have the limitations imposed by orbital angular momentum and down-conversion bandwidths, and it meets the requirements for longer distances and lower error rates simultaneously.

  1. A micro-structured Si-based electrodes for high capacity electrical double layer capacitors

    Science.gov (United States)

    Krikscikas, Valdas; Oguchi, Hiroyuki; Yanazawa, Hiroshi; Hara, Motoaki; Kuwano, Hiroki

    2014-11-01

    We challenged to make basis for Si electrodes of electric double layer capacitors (EDLC) used as a power source of micro-sensor nodes. Mcroelectromechanical systems (MEMS) processes were successfully introduced to fabricate micro-structured Si-based electrodes to obtain high surface area which leads to high capacity of EDLCs. Study of fundamental properties revealed that the microstructured electrodes benefit from good wettability to electrolytes, but suffer from electric resistance. We found that this problem can be solved by metal-coating of the electrode surface. Finally we build an EDLC consisting of Au-coated micro-structured Si electrodes. This EDLC showed capacity of 14.3 mF/cm2, which is about 530 times larger than that of an EDLC consisting of flat Au electrodes.

  2. High-Capacity Hydrogen-Based Green-Energy Storage Solutions For The Grid Balancing

    Science.gov (United States)

    D'Errico, F.; Screnci, A.

    One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.

  3. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors.

    Science.gov (United States)

    Yang, Lei; Cheng, Shuang; Ding, Yong; Zhu, Xingbao; Wang, Zhong Lin; Liu, Meilin

    2012-01-11

    We present a high-capacity pseudocapacitor based on a hierarchical network architecture consisting of Co(3)O(4) nanowire network (nanonet) coated on a carbon fiber paper. With this tailored architecture, the electrode shows ideal capacitive behavior (rectangular shape of cyclic voltammograms) and large specific capacitance (1124 F/g) at high charge/discharge rate (25.34 A/g), still retaining ~94% of the capacitance at a much lower rate of 0.25 A/g. The much-improved capacity, rate capability, and cycling stability may be attributed to the unique hierarchical network structures, which improves electron/ion transport, enhances the kinetics of redox reactions, and facilitates facile stress relaxation during cycling.

  4. High-capacity three-party quantum secret sharing with superdense coding

    Institute of Scientific and Technical Information of China (English)

    Gu Bin; Li Chuan-Qi; Xu Fei; Chen Yu-Lin

    2009-01-01

    This paper presents a scheme for high-capacity three-party quantum secret sharing with quantum superdense coding, following some ideas in the work by Liu et al (2002 Phys. Rev. A 65 022304) and the quantum secret sharing scheme by Deng et al (2008 Phys. Left. A 372 1957). Instead of using two sets of nonorthogonal states, the boss Alice needs only to prepare a sequence of Einstein-Podolsky-Rosen pairs in d-dimension. The two agents Bob and Charlie encode their information with dense coding unitary operations, and security is checked by inserting decoy photons. The scheme has a high capacity and intrinsic efficiency as each pair can carry 21bd bits of information, and almost all the pairs can be used for carrying useful information.

  5. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas

    2016-09-15

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  6. Materials Research Advances towards High-Capacity Battery/Fuel Cell Devices (Invited paper)

    Institute of Scientific and Technical Information of China (English)

    Wei-Dong He; Lu-Han Ye; Ke-Chun Wen; Ya-Chun Liang; Wei-Qiang Lv; Gao-Long Zhu; Kelvin H. L. Zhang

    2016-01-01

    The world has entered an era featured with fast transportations, instant communications, and prompt technological revolutions, the further advancement of which all relies fundamentally, yet, on the development of cost-effective energy resources allowing for durable and high-rate energy supply. Current battery and fuel cell systems are challenged by a few issues characterized either by insufficient energy capacity or by operation instability and, thus, are not ideal for such highly-demanded applications as electrical vehicles and portable electronic devices. In this mini-review, we present, from materials perspectives, a few selected important breakthroughs in energy resources employed in these applications. Prospectives are then given to look towards future research activities for seeking viable materials solutions for addressing the capacity, durability, and cost shortcomings associated with current battery/fuel cell devices.

  7. High-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding

    Science.gov (United States)

    Lai, Hong; Orgun, Mehmet A.; Pieprzyk, Josef; Li, Jing; Luo, Mingxing; Xiao, Jinghua; Xiao, Fuyuan

    2016-11-01

    We propose an approach that achieves high-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding. In particular, we encode a key with the Chebyshev-map values corresponding to Lucas numbers and then use k-Chebyshev maps to achieve consecutive and flexible key expansion and apply the pre-shared classical information between Alice and Bob and fountain codes for privacy amplification to solve the security of the exchange of classical information via the classical channel. Consequently, our high-capacity protocol does not have the limitations imposed by orbital angular momentum and down-conversion bandwidths, and it meets the requirements for longer distances and lower error rates simultaneously.

  8. Load Carrying Capacity of Keyed Joints Reinforced with High Strength Wire Rope Loops

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Hoang, Linh Cao

    Vertical shear connections between precast concrete wall elements are usually made as keyed joints reinforced with overlapping U-bars. The overlapping U-bars form a cylindrical core in which the locking bar is placed and the connection is subsequently grouted with mortar. A more construction...... friendly shear connection can be obtained by replacing the U-bars with high strength looped wire ropes. The wire ropes have the advantage of being flexible (they have virtually no bending stiffness) which makes installation of wall elements much easier. The looped wire ropes are usually pre-installed in so...... the shear capacity of wire loop connections. Tests have shown that the shear capacity of such joints – due to the relatively high tensile strength of the wire ropes - is more prone to be governed by fracture of the joint mortar in combination with yielding of the locking bar. To model this type of failure...

  9. Estimation of parameters obtained by electrochemical impedance spectroscopy on systems containing high capacities.

    Science.gov (United States)

    Stević, Zoran; Vujasinović, Mirjana Rajčić; Radunović, Milan

    2009-01-01

    Electrochemical systems with high capacities demand devices for electrochemical impedance spectroscopy (EIS) with ultra-low frequencies (in order of mHz), that are almost impossible to accomplish with analogue techniques, but this becomes possible by using a computer technique and accompanying digital equipment. Recently, an original software and hardware for electrochemical measurements, intended for electrochemical systems exhibiting high capacities, such as supercapacitors, has been developed. One of the included methods is EIS. In this paper, the method of calculation of circuit parameters from an EIS curve is described. The results of testing on a physical model of an electrochemical system, constructed of known elements (including a 1.6 F capacitor) in a defined arrangement, proved the validity of the system and the method.

  10. Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage.

    Science.gov (United States)

    Gu, Yan; Xu, Yi; Wang, Yong

    2013-02-01

    Graphene-wrapped CoS nanoparticles are synthesized by a solvothermal approach. The product is significantly different from porous CoS microspheres prepared in the absence of graphene under similar preparation conditions. The CoS microspheres and CoS/graphene composite are fabricated as anode materials for lithium-ion batteries. The CoS/graphene composite is found to be better suitable as an anode in terms of higher capacity and better cycling performances. The nanocomposite exhibits an unprecedented high reversible capacity of 1056 mA h/g among all cobalt sulfide-based anode materials. Good cycling performances are also observed at both small and high current rates.

  11. Estimation of Parameters Obtained by Electrochemical Impedance Spectroscopy on Systems Containing High Capacities

    Science.gov (United States)

    Stević, Zoran; Vujasinović, Mirjana Rajčić; Radunović, Milan

    2009-01-01

    Electrochemical systems with high capacities demand devices for electrochemical impedance spectroscopy (EIS) with ultra-low frequencies (in order of mHz), that are almost impossible to accomplish with analogue techniques, but this becomes possible by using a computer technique and accompanying digital equipment. Recently, an original software and hardware for electrochemical measurements, intended for electrochemical systems exhibiting high capacities, such as supercapacitors, has been developed. One of the included methods is EIS. In this paper, the method of calculation of circuit parameters from an EIS curve is described. The results of testing on a physical model of an electrochemical system, constructed of known elements (including a 1.6 F capacitor) in a defined arrangement, proved the validity of the system and the method. PMID:22400000

  12. An asymmetric Zn//Ag doped polyaniline microparticle suspension flow battery with high discharge capacity

    Science.gov (United States)

    Wu, Sen; Zhao, Yongfu; Li, Degeng; Xia, Yang; Si, Shihui

    2015-02-01

    In this study, the effect of oxygen on the potential of reduced polyaniline (PANI) was investigated. In order to enhance the air oxidation of reduced PANI, several composites of PANI doped with co-catalysts were prepared, and a reasonable flow Zn//PANI suspension cell system was designed to investigate the discharge capacity of obtained PANI composite microparticle suspension cathodes. Compared with PANI doped with Cu2+, La+, Mn2+ and zinc protoporphyrin, Ag doped PANI composite at 0.90 weight percent doping of Ag gave the highest value of discharge capacity for the half-cell potential from the initial value to -0.20 V (vs. SCE). A comparison study on the electrochemical properties of both PANI and Ag doped PANI microparticle suspension was done by using cyclic voltammetry, AC Impedance. Due to partial utilization of Zn//air fuel cell, the discharge capacity for Ag doped PANI reached 470 mA h g-1 at the current density of 20 mA cm-2. At 15 mA cm-2, the discharge capacity even reached up to 1650 mA h g-1 after 220 h constant current discharge at the final discharge voltage of 0.65 V. This work demonstrates an effective and feasible approach toward obtaining high energy and power densities by a Zn//Ag-doped PANI suspension flow battery system combined with Zn//air fuel cell.

  13. High-intensity ultrasonication as a way to prepare graphene/amorphous iron oxyhydroxide hybrid electrode with high capacity in lithium battery.

    Science.gov (United States)

    González, José R; Menéndez, Rosa; Alcántara, Ricardo; Nacimiento, Francisco; Tirado, José L; Zhecheva, Ekaterina; Stoyanova, Radostina

    2015-05-01

    The preparation of graphene/iron oxyhydroxide hybrid electrode material with very homogeneous distribution and close contact of graphene and amorphous iron oxyhydroxide nanoparticles has been achieved by using high-intensity ultrasonication. Due to the negative charge of the graphene surface, iron ions are attracted toward the surface of dispersed graphene, according to the zeta potential measurements. The anchoring of the FeO(OH) particles to the graphene layers has been revealed by using mainly TEM, XPS and EPR. TEM observations show that the size of the iron oxide particles is about 4 nm. The ultrasonication treatment is the key parameter to achieve small particle size in these graphene/iron oxyhydroxide hybrid materials. The electrochemical behavior of composite graphene/amorphous iron oxyhydroxide prepared by using high-intensity ultrasonication is outstanding in terms of gravimetric capacity and cycling stability, particularly when metallic foam is used as both the substrate and current collector. The XRD-amorphous character of iron oxyhydroxide in the hybrid electrode material and the small particle size contribute to achieve the improved electrochemical performance.

  14. Achievable capacity design for irregular and clustered high performance mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2012-11-01

    Full Text Available and locations of terminal users [10]. Moreover, typical rural based wireless networks can be described by (i) long single hop links, (ii) limited and unreliable energy sources, and (iii) clustered distribution of Internet users [11]. The main problem... constitutes the need to increase capacity of community owned existing wireless broadband networks so that multimedia services can be delivered to remote and rural areas without losing connectivity [2]. Fig. 1: High Performance Node (HPN) TM [10] Fig. 2...

  15. Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels

    Directory of Open Access Journals (Sweden)

    Barleon Bernhard

    2010-07-01

    Full Text Available Abstract Background Postnatal endothelial progenitor cells (EPCs have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. Results In an attempt to isolate differentiated mature endothelial cells from mouse lung we found that the lung contains EPCs with a high vasculogenic capacity and capability of de novo vasculogenesis for blood and lymph vessels. Mouse lung microvascular endothelial cells (MLMVECs were isolated by selection of CD31+ cells. Whereas the majority of the CD31+ cells did not divide, some scattered cells started to proliferate giving rise to large colonies (> 3000 cells/colony. These highly dividing cells possess the capacity to integrate into various types of vessels including blood and lymph vessels unveiling the existence of local microvascular endothelial progenitor cells (LMEPCs in adult mouse lung. EPCs could be amplified > passage 30 and still expressed panendothelial markers as well as the progenitor cell antigens, but not antigens for immune cells and hematopoietic stem cells. A high percentage of these cells are also positive for Lyve1, Prox1, podoplanin and VEGFR-3 indicating that a considerabe fraction of the cells are committed to develop lymphatic endothelium. Clonogenic highly proliferating cells from limiting dilution assays were also bipotent. Combined in vitro and in vivo spheroid and matrigel assays revealed that these EPCs exhibit vasculogenic capacity by forming functional blood and lymph vessels. Conclusion The lung contains large numbers of EPCs that display commitment for both types of vessels, suggesting that lung blood and lymphatic endothelial cells are derived from a single progenitor cell.

  16. Topology Management Algorithms for Large Scale Aerial High Capacity Directional Networks

    Science.gov (United States)

    2016-11-01

    Introduction of classes of topology management algo- rithms and example implementations of each • Performance evaluation of the algorithms in 2 example relevant...Topology Management Algorithms for Large-Scale Aerial High Capacity Directional Networks Joy Wang, Thomas Shake, Patricia Deutsch, Andrea Coyle, Bow...airborne backbone network is large- scale topology management of directional links in a dynamic environment. In this paper, we present several

  17. Methods for determining the CO2 sorption capacity of coal: Experimental and theoretical high pressure isotherms

    Science.gov (United States)

    Weishauptová, Zuzana; Přibyl, Oldřich

    2016-04-01

    One way to reduce CO2 emissions discharged into the atmosphere is by trapping it and storing it in suitable repositories, including coal-bearing strata. The history of coal mining in the Czech Republic is very rich but most of the mines have been closed down in recent years. However, the unmined coal seams are interesting for the purposes of CO2 storage, especially due the opportunities they offer for recovering coal-bed methane. Mine structures of this kind can be found in large parts of the Upper Silesian Basin, where the total storage capacity has been estimated at about 380 Mt CO2. This is an interesting storage potential. In order to identify a suitable high-capacity locality for CO2 storage within a coal seam, it is necessary to study not only the geological conditions within the seam, but also the textural properties of the coal, which control the mechanism and the extent of the storage. The major storage mechanism is by sorption processes that take place in the coal porous system (adsorption in micropores and on the surface of meso/macropores, and absorption in the macromolecular structure). The CO2 sorption capacity is generally indirectly determined in a laboratory by measuring the amount of carbon dioxide captured in a coal sample at a pressure and temperature corresponding to the in situ conditions, using high pressure sorption techniques. The low pressure sorption technique can be used, by setting the partial volumes of CO2 according to its binding and storage mode. The sorption capacity is determined by extrapolation to the saturation pressure as the sum of the individual partially sorbed volumes. The aim of the study was to determine the partial volumes of CO2 bound by different mechanisms in the individual parts of the porous system of the coal, and to compare the sum with the results obtained by the high pressure isotherm. The study was carried out with 3 samples from a borehole survey in the Czech part of the Upper Silesian Basin. A high pressure

  18. Multiple-pass high-pressure homogenization of milk for the development of pasteurization-like processing conditions.

    Science.gov (United States)

    Ruiz-Espinosa, H; Amador-Espejo, G G; Barcenas-Pozos, M E; Angulo-Guerrero, J O; Garcia, H S; Welti-Chanes, J

    2013-02-01

    Multiple-pass ultrahigh pressure homogenization (UHPH) was used for reducing microbial population of both indigenous spoilage microflora in whole raw milk and a baroresistant pathogen (Staphylococcus aureus) inoculated in whole sterile milk to define pasteurization-like processing conditions. Response surface methodology was followed and multiple response optimization of UHPH operating pressure (OP) (100, 175, 250 MPa) and number of passes (N) (1-5) was conducted through overlaid contour plot analysis. Increasing OP and N had a significant effect (P milk. Optimized UHPH processes (five 202-MPa passes; four 232-MPa passes) defined a region where a 5-log(10) reduction of total bacterial count of milk and a baroresistant pathogen are attainable, as a requisite parameter for establishing an alternative method of pasteurization. Multiple-pass UHPH optimized conditions might help in producing safe milk without the detrimental effects associated with thermal pasteurization.

  19. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.

    Science.gov (United States)

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-11-01

    Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials.

  20. Flexible textile electrode with high areal capacity from hierarchical V2O5 nanosheet arrays

    Science.gov (United States)

    Ma, Kun; Liu, Xue; Cheng, Qilin; Saha, Petr; Jiang, Hao; Li, Chunzhong

    2017-07-01

    The search for an appropriate flexible cathode is pivotal to expediting the development of flexible and foldable lithium-ion batteries (LIBs). Herein, we demonstrate a simple and scalable synthesis of hierarchical V2O5 nanosheet arrays on polydopamine (PDA)-decorated carbon cloth with strong combination between them, which then directly applied as flexible cathode for LIBs. We found this flexible cathode with a loading mass of 2.1 mg cm-2 can deliver a high specific capacity of 120 mAh g-1 even at 15C (1C = 300 mA g-1) and maintain a long-term cycling stability, i.e. simply 0.30% capacity loss per cycle at 2C for 100 cycles without morphology change. More importantly, the corresponding areal capacity can reach as high as 560 μAh cm-2 at 210 μA cm-2, favorably comparing with the-state-of-art flexible cathode reported to date. Additionally, a flexible LIBs full cell has been assembled, exhibiting high mechanical strength and superior electrochemical performances.

  1. A high-throughput homogeneous immunoassay based on Förster resonance energy transfer between quantum dots and gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Jing [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); School of Chemistry and Chemical Engineering, Jiangsu University, Zhengjiang 212013 (China); Wang, Chengquan [Changzhou College of Information Technology, Changzhou 213164 (China); Pan, Xiaohu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Liu, Songqin, E-mail: liusq@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China)

    2013-02-06

    Graphical abstract: A Förster resonance energy transfer system by using polyclonal goat anti-CEA antibody labeled luminescent CdTe quantum dots (QDs) as donor and monoclonal goat anti-CEA antibody labeled gold nanoparticles (AuNPs) as acceptor for sensitive detection of tumor marker was proposed. Highlights: ► A homogeneous immunosensing strategy based on FRET for detection of tumor marker was proposed. ► Close of QDs and AuNPs allow the occurrence of quenching the photoluminescence of nano-bio-probes. ► Signal quenching was monitored by a self-developed image analyzer. ► The fluorometric assay format is attractive for widespread carcinoma screening and even field use. -- Abstract: A novel homogeneous immunoassay based on Förster resonance energy transfer for sensitive detection of tumor, e.g., marker with carcinoembryonic antigen (CEA), was proposed. The assay was consisted of polyclonal goat anti-CEA antibody labeled luminescent CdTe quantum dots (QDs) as donor and monoclonal goat anti-CEA antibody labeled gold nanoparticles (AuNPs) as acceptor. In presence of CEA, the bio-affinity between antigen and antibody made the QDs and AuNPs close enough, thus the photoluminescence (PL) quenching of CdTe QDs occurred. The PL properties could be transformed into the fluorometric variation, corresponding to the target antigen concentration, and could be easily monitored and analyzed with the home-made image analysis software. The fluorometric results indicated a linear detection range of 1–110 ng mL{sup −1} for CEA, with a detection limit of 0.3 ng mL{sup −1}. The proposed assay configuration was attractive for carcinoma screening or single sample in point-of-care testing, and even field use. In spite of the limit of available model analyte, this approach could be easily extended to detection of a wide range of biomarkers.

  2. Binders and Hosts for High-Capacity Lithium-ion Battery Anodes

    Science.gov (United States)

    Dufficy, Martin Kyle

    Lithium-ion batteries (LIBs) are universal electrochemical energy storage devices that have revolutionized our mobile society. Nonetheless, societal and technological advances drive consumer demand for LIBs with enhanced electrochemical performance, such as higher charge capacity and longer life, compared to conventional LIBs. One method to enhance LIB performance is to replace graphite, the industry standard anode since commercialization of LIBs in 1991, with high-charge capacity materials. Implementing high-capacity anode materials such as tin, silicon, and manganese vanadates, to LIBs presents challenges; Li-insertion is destructive to anode framework, and increasing capacity increases structural strains that pulverize anode materials and results in a short-cycle life. This thesis reports on various methods to extended the cycle life of high-capacity materials. Most of the work is conducted on nano-sized anode materials to reduce Li and electron transport pathway length (facilitating charge-transfer) and reduce strains from volume expansions (preserving anode structure). The first method involves encapsulating tin particles into a graphene-containing carbon nanofiber (CNF) matrix. The composite-CNF matrix houses tin particles to assume strains from tin-volume expansions and produces favorable surface-electrolyte chemistries for stable charge-discharge cycling. Before tin addition, graphene-containing CNFs are produced and assessed as anode materials for LIBs. Graphene addition to CNFs improves electronic and mechanical properties of CNFs. Furthermore, the 2-D nature of graphene provides Li-binding sites to enhance composite-CNF both first-cycle and high-rate capacities > 150% when compared to CNFs in the absence of graphene. With addition of Sn, we vary loadings and thermal production temperature to elucidate structure-composition relationships of tin and graphene-containing CNF electrodes that lead to increased capacity retention. Of note, electrodes containing

  3. High capacity embedding with indexed data recovery using adjunctive numerical relations in multimedia signal covers

    Science.gov (United States)

    Collins, James C.; Agaian, Sos S.

    2013-05-01

    We introduce a technique for covertly embedding data throughout an audio file using redundant number system decomposition across non-standard digital bit-lines. This bit-line implementation integrates an index recoverable embedded algorithm with an extended bit level representation that achieves a high capacity data channel within an audio multimedia file. It will be shown this new steganography method has minimal aural distortive affects while preserving both first and second order cover statistics, making it less susceptible to most steganalysis attacks. Our research approach involves reviewing the common numerical methods used in common binary-based algorithms. We then describe basic concepts and challenges when attempting to implement complex embedding algorithms that are based on redundant number systems. Finally, we introduce a novel class of numerical based multiple bit-line decomposition systems, which we define as Adjunctive Numerical Representations. The system is primarily described using basic PCM techniques in uncompressed audio files however extended applications for alternate multimedia is addressed. This new embedding system will not only provide the statistical stability required for effective steganography but will also give us an improvement in the embedding capacity in this class of multimedia carrier files. This novelty of our approach is demonstrated by an ability to embed high capacity covert data while simultaneously providing a means for rapid, indexed data recovery.

  4. Energy Efficiency and Capacity Tradeoff in Cloud Radio Access Network of High-Speed Railways

    Directory of Open Access Journals (Sweden)

    Shichao Li

    2017-01-01

    Full Text Available To meet the increasing demand of high-data-rate services of high-speed railway (HSR passengers, cloud radio access network (C-RAN is proposed. This paper investigates the tradeoff between energy efficiency (EE performance and capacity in C-RAN of HSR. Considering that the train location can be predicted, we propose a predictable path loss based time domain power allocation method (PPTPA to improve EE performance of HSR communication system. First, we consider that the communication system of HSR only bears the passenger information services (PISs. The energy-efficient power allocation problem with delay constraint is studied. The formulated problem is nonconvex. To deal with it, an equivalent convex problem is reformulated. Based on PPTPA, we propose an iterative algorithm to improve the EE performance. Second, we consider that the PISs and the train control services (TCSs are all bore. A capacity optimization problem with joint EE and services transmission delay constraints is formulated. Based on PPTPA, we propose a hybrid power allocation scheme to improve the capacity of the system. Finally, we analyze the effect of small-scale fading on EE performance. The effectiveness of the proposed power allocation algorithm is validated by HSR channel measurement trace based emulation results and extensive simulation results.

  5. Review on anionic redox for high-capacity lithium- and sodium-ion batteries

    Science.gov (United States)

    Zhao, Chenglong; Wang, Qidi; Lu, Yaxiang; Hu, Yong-Sheng; Li, Baohua; Chen, Liquan

    2017-05-01

    Rechargeable batteries, especially lithium-ion batteries, are now widely used as power sources for portable electronics and electric vehicles, but material innovations are still needed to satisfy the increasing demand for larger energy density. Recently, lithium- and sodium-rich electrode materials, including the A2MO3-family layered compounds (A  =  Li, Na; M  =  Mn4+, Ru4+, etc), have been extensively studied as potential high-capacity electrode materials for a cumulative cationic and anionic redox activity. Negatively charged oxide ions can potentially donate electrons to compensate for the absence of oxidable transition metals as a redox center to further increase the reversible capacity. Understanding and controlling the state-of-the-art anionic redox processes is pivotal for the design of advanced energy materials, highlighted in rechargeable batteries. Hence, experimental and theoretical approaches have been developed to consecutively study the diverting processes, states, and structures involved. In this review, we attempt to present a literature overview and provide insight into the reaction mechanism with respect to the anionic redox processes, proposing some opinions as target oriented. It is hoped that, through this discussion, the search for anionic redox electrode materials with high-capacity rechargeable batteries can be advanced, and practical applications realized as soon as possible.

  6. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  7. Homogeneous bubble nucleation in H2O- and H2O-CO2-bearing basaltic melts: Results of high temperature decompression experiments

    Science.gov (United States)

    Le Gall, Nolwenn; Pichavant, Michel

    2016-11-01

    High pressure and temperature decompression experiments were conducted to provide experimental information on the conditions of homogeneous bubble nucleation in basaltic melts. Experiments were performed on H2O- and H2O-CO2-bearing natural melts from Stromboli. Three starting volatile compositions were investigated: series #1 (4.91 wt% H2O, no CO2), series #2 (2.37-2.45 wt% H2O, 901-1011 ppm CO2) and series #3 (0.80-1.09 wt% H2O, 840-923 ppm CO2). The volatile-bearing glasses were first synthesized at 1200 °C and 200 MPa, and second continuously decompressed in the pressure range 150-25 MPa and rapidly quenched. A fast decompression rate of 78 kPa/s (or 3 m/s) was applied to limit the water loss from the glass cylinder and the formation of a H2O-depleted rim. Post-decompression glasses were characterized texturally by X-ray microtomography. The results demonstrate that homogenous bubble nucleation requires supersaturation pressures (difference between saturation pressure and pressure at which homogeneous bubble nucleation is observed, ∆ PHoN) ≤ 50-100 MPa. ∆ PHoN varies with the dissolved CO2 concentration, from ≪ 50 MPa (no CO2, series #1) to ≤ 50 MPa (872 ± 45 ppm CO2, series #3) to < 100 MPa (973 ± 63 ppm CO2, series #2). In series #1 melts, homogeneous bubble nucleation occurs as two distinct events, the first at high pressure (200 < P < 150 MPa) and the second at low pressure (50 < P < 25 MPa), just below the fragmentation level. In contrast, homogenous nucleation in series #2 and #3 melts is a continuous process. As well, chemical near-equilibrium degassing occurs in the series #1 melts, unlike in the series #2 and #3 melts which retain high CO2 concentrations even for higher vesicularities (up to 23% at 25 MPa). Thus, our experimental observations underline a significant effect of CO2 on the physical mechanisms of bubble vesiculation in basaltic melts. Our experimental decompression textures either reproduce or approach the characteristics of

  8. A high capacity multiple watermarking scheme based on Fourier descriptor and Sudoku

    Science.gov (United States)

    Zhang, Li; Zheng, Huimin

    2015-12-01

    Digital watermark is a type of technology to hide some significant information which is mainly used to protect digital data. A high capacity multiple watermarking method is proposed, which adapts the Fourier descriptor to pre-process the watermarks, while a Sudoku puzzle is used as a reference matrix in embedding process and a key in extraction process. It can dramatically reduce the required capacity by applying Fourier descriptor. Meanwhile, the security of watermarks can be guaranteed due to the Sudoku puzzle. Unlike previous algorithms applying Sudoku puzzle in spatial domain, the proposed algorithm works in transformed domain by applying LWT2.In addition, the proposed algorithm can detect the temper location accurately. The experimental results demonstrated that the goals mentioned above have been achieved.

  9. A high capacity text steganography scheme based on LZW compression and color coding

    Directory of Open Access Journals (Sweden)

    Aruna Malik

    2017-02-01

    Full Text Available In this paper, capacity and security issues of text steganography have been considered by employing LZW compression technique and color coding based approach. The proposed technique uses the forward mail platform to hide the secret data. This algorithm first compresses secret data and then hides the compressed secret data into the email addresses and also in the cover message of the email. The secret data bits are embedded in the message (or cover text by making it colored using a color coding table. Experimental results show that the proposed method not only produces a high embedding capacity but also reduces computational complexity. Moreover, the security of the proposed method is significantly improved by employing stego keys. The superiority of the proposed method has been experimentally verified by comparing with recently developed existing techniques.

  10. A new method for high-capacity information hiding in video robust against temporal desynchronization

    Science.gov (United States)

    Mitekin, Vitaly; Fedoseev, Victor A.

    2015-02-01

    This paper presents a new method for high-capacity information hiding in digital video and algorithms of embedding and extraction of hidden information based on this method. These algorithms do not require temporal synchronization to provide robustness against both malicious and non-malicious frame dropping (temporal desynchronization). At the same time, due to randomized distribution of hidden information bits across the video frames, the proposed method allows to increase the hiding capacity proportionally to the number of frames used for information embedding. The proposed method is also robust against "watermark estimation" attack aimed at estimation of hidden information without knowing the embedding key or non-watermarked video. Presented experimental results demonstrate declared features of this method.

  11. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production

    Science.gov (United States)

    Tian, Jia; Xu, Zi-Yue; Zhang, Dan-Wei; Wang, Hui; Xie, Song-Hai; Xu, Da-Wen; Ren, Yuan-Hang; Wang, Hao; Liu, Yi; Li, Zhan-Ting

    2016-05-01

    Self-assembly has a unique presence when it comes to creating complicated, ordered supramolecular architectures from simple components under mild conditions. Here, we describe a self-assembly strategy for the generation of the first homogeneous supramolecular metal-organic framework (SMOF-1) in water at room temperature from a hexaarmed [Ru(bpy)3]2+-based precursor and cucurbit[8]uril (CB[8]). The solution-phase periodicity of this cubic transition metal-cored supramolecular organic framework (MSOF) is confirmed by small-angle X-ray scattering and diffraction experiments, which, as supported by TEM imaging, is commensurate with the periodicity in the solid state. We further demonstrate that SMOF-1 adsorbs anionic Wells-Dawson-type polyoxometalates (WD-POMs) in a one-cage-one-guest manner to give WD-POM@SMOF-1 hybrid assemblies. Upon visible-light (500 nm) irradiation, such hybrids enable fast multi-electron injection from photosensitive [Ru(bpy)3]2+ units to redox-active WD-POM units, leading to efficient hydrogen production in aqueous media and in organic media. The demonstrated strategy opens the door for the development of new classes of liquid-phase and solid-phase ordered porous materials.

  12. Endurance capacity and neuromuscular fatigue following high- vs moderate-intensity endurance training: A randomized trial.

    Science.gov (United States)

    O'Leary, T J; Collett, J; Howells, K; Morris, M G

    2017-02-16

    High-intensity exercise induces significant central and peripheral fatigue; however, the effect of endurance training on these mechanisms of fatigue is poorly understood. We compared the effect of cycling endurance training of disparate intensities on high-intensity exercise endurance capacity and the associated limiting central and peripheral fatigue mechanisms. Twenty adults were randomly assigned to 6 weeks of either high-intensity interval training (HIIT, 6-8×5 minutes at halfway between lactate threshold and maximal oxygen uptake [50%Δ]) or volume-matched moderate-intensity continuous training (CONT, ~60-80 minutes at 90% lactate threshold). Two time to exhaustion (TTE) trials at 50%Δ were completed pre- and post-training to assess endurance capacity; the two post-training trials were completed at the pretraining 50%Δ (same absolute intensity) and the "new" post-training 50%Δ (same relative intensity). Pre- and post-exercise responses to femoral nerve and motor cortex stimulation were examined to determine peripheral and central fatigue, respectively. HIIT resulted in greater increases in TTE at the same absolute and relative intensities as pre-training (148% and 43%, respectively) compared with CONT (38% and -4%, respectively) (P≤.019). Compared with pre-training, HIIT increased the level of potentiated quadriceps twitch reduction (-34% vs -43%, respectively, P=.023) and attenuated the level of voluntary activation reduction (-7% vs -3%, respectively, P=.047) following the TTE trial at the same relative intensity. There were no other training effects on neuromuscular fatigue development. This suggests that central fatigue resistance contributes to enhanced high-intensity exercise endurance capacity after HIIT by allowing greater performance to be extruded from the muscle. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Bearing Capacity of High Density Polyethylene (HDPE Reinforced Sand Using Plate Load Test

    Directory of Open Access Journals (Sweden)

    Er. Aly K

    2015-06-01

    Full Text Available The work presented here is a study to examine the improvement in bearing capacity of coastal sand of Trivandrum, Kerala, India using high density polyethylene (HDPE /woven fabric as reinforcement in discrete layers. The bearing capacity was evaluated using plate load test. The effect of reinforcement configurations like sheet reinforcement (sanded with adhesive, with adhesive and sheet alone and strip reinforcement (single and grid pattern are investigated. The test parameters chosen for the present study are, depth of topmost layer of reinforcement layer below footing, compacted density and number of layers of reinforcement etc. From the tests, it has been observed that sheet reinforcement is more effective than sheet sanded with adhesive and strip reinforcements. It is found that the synthetic adhesive gives no binding action at the interface of the reinforcement and soil. But it is to be noted that the sheet with adhesive dried has a marked influence on the bearing capacity especially at lower densities. The strip reinforcements in single pattern is considered to be a favorable choice for minimum reinforcement. The strip reinforcement in single or grid pattern gives sufficient improvement in strength.

  14. Optimization of regenerator in high capacity Stirling type pulse tube cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Imura, J. [College of Science and Technology, Nihon University, 7-24-1, Narashinodai, Funabashi-shi, Chiba 274-8501 (Japan)], E-mail: junnosuke_imura@yahoo.co.jp; Iwata, N.; Yamamoto, H. [College of Science and Technology, Nihon University, 7-24-1, Narashinodai, Funabashi-shi, Chiba 274-8501 (Japan); Ohashi, Y.; Nomachi, H.; Okumura, N. [Aisin Seiki Co., Ltd., 2-1, Asahi-machi, Kariya, Aichi 448-8650 (Japan); Nagaya, S.; Tamada, T.; Hirano, N. [Chubu Electric Power Co., Inc., 1, Toshin-cho, Higashi-ku, Nagoya-shi, Aichi 261-8680 (Japan)

    2008-09-15

    The purpose of this work is to obtain a cooling capacity of 200 W at 80 K under power consumption of 4 kW for a superconducting magnetic energy storage system. It was found that there existed large temperature distribution in a circumference of the regenerator. The temperature difference became larger as increasing the piston displacement. The maximum difference of temperature was 150 K. Such the inhomogeneous distribution of the regenerator temperature was caused from turbulent flow of helium gas. Then several hard copper meshes were inserted to prevent the distortion of the mesh. As the result, the difference of temperature decreased to 37 K and the high performance was obtained; the lowest temperature of 37 K and the cooling capacity of 158 W at 80 K. Conclusively %Carnot was improved up to 14%. Furthermore, when power consumption was increased to 3.8 kW and the piston displacement was 16 mm peak to peak, the higher performance was obtained; the cooling capacity of 180 W at 80 K.

  15. Optimization of regenerator in high capacity Stirling type pulse tube cryocooler

    Science.gov (United States)

    Imura, J.; Iwata, N.; Yamamoto, H.; Ohashi, Y.; Nomachi, H.; Okumura, N.; Nagaya, S.; Tamada, T.; Hirano, N.

    2008-09-01

    The purpose of this work is to obtain a cooling capacity of 200 W at 80 K under power consumption of 4 kW for a superconducting magnetic energy storage system. It was found that there existed large temperature distribution in a circumference of the regenerator. The temperature difference became larger as increasing the piston displacement. The maximum difference of temperature was 150 K. Such the inhomogeneous distribution of the regenerator temperature was caused from turbulent flow of helium gas. Then several hard copper meshes were inserted to prevent the distortion of the mesh. As the result, the difference of temperature decreased to 37 K and the high performance was obtained; the lowest temperature of 37 K and the cooling capacity of 158 W at 80 K. Conclusively %Carnot was improved up to 14%. Furthermore, when power consumption was increased to 3.8 kW and the piston displacement was 16 mm peak to peak, the higher performance was obtained; the cooling capacity of 180 W at 80 K.

  16. Li2C2, a High-Capacity Cathode Material for Lithium Ion Batteries.

    Science.gov (United States)

    Tian, Na; Gao, Yurui; Li, Yurong; Wang, Zhaoxiang; Song, Xiaoyan; Chen, Liquan

    2016-01-11

    As a typical alkaline earth metal carbide, lithium carbide (Li2C2) has the highest theoretical specific capacity (1400 mA h g(-1)) among all the reported lithium-containing cathode materials for lithium ion batteries. Herein, the feasibility of using Li2C2 as a cathode material was studied. The results show that at least half of the lithium can be extracted from Li2C2 and the reversible specific capacity reaches 700 mA h g(-1). The C≡C bond tends to rotate to form C4 (C≡C⋅⋅⋅C≡C) chains during lithium extraction, as indicated with the first-principles molecular dynamics (FPMD) simulation. The low electronic and ionic conductivity are believed to be responsible for the potential gap between charge and discharge, as is supported with density functional theory (DFT) calculations and Arrhenius fitting results. These findings illustrate the feasibility to use the alkali and alkaline earth metal carbides as high-capacity electrode materials for secondary batteries.

  17. ERP markers of target selection discriminate children with high vs. low working memory capacity

    Directory of Open Access Journals (Sweden)

    Andria eShimi

    2015-11-01

    Full Text Available Selective attention enables enhancing a subset out of multiple competing items to maximize the capacity of our limited visual working memory (VWM system. Multiple behavioral and electrophysiological studies have revealed the cognitive and neural mechanisms supporting adults’ selective attention of visual percepts for encoding in VWM. However, research on children is more limited. What are the neural mechanisms involved in children’s selection of incoming percepts in service of VWM? Do these differ from the ones subserving adults’ selection? Ten-year-olds and adults used a spatial arrow cue to select a colored item for later recognition from an array of four colored items. The temporal dynamics of selection were investigated through EEG signals locked to the onset of the memory array. Both children and adults elicited significantly more negative activity over posterior scalp locations contralateral to the item to-be-selected for encoding (N2pc. However, this activity was elicited later and for longer in children compared to adults. Furthermore, although children as a group did not elicit a significant N2pc during the time-window in which N2pc was elicited in adults, the magnitude of N2pc during the adult time-window related to their behavioral performance during the later recognition phase of the task. This in turn highlights how children’s neural activity subserving attention during encoding relates to better subsequent VWM performance. Significant differences were observed when children were divided into groups of high vs. low VWM capacity as a function of cueing benefit. Children with large cue benefits in VWM capacity elicited an adult-like contralateral negativity following attentional selection of the to-be-encoded item, whereas children with low VWM capacity did not. These results corroborate the close coupling between selective attention and VWM from childhood and elucidate further the attentional mechanisms constraining VWM

  18. ERP markers of target selection discriminate children with high vs. low working memory capacity.

    Science.gov (United States)

    Shimi, Andria; Nobre, Anna Christina; Scerif, Gaia

    2015-01-01

    Selective attention enables enhancing a subset out of multiple competing items to maximize the capacity of our limited visual working memory (VWM) system. Multiple behavioral and electrophysiological studies have revealed the cognitive and neural mechanisms supporting adults' selective attention of visual percepts for encoding in VWM. However, research on children is more limited. What are the neural mechanisms involved in children's selection of incoming percepts in service of VWM? Do these differ from the ones subserving adults' selection? Ten-year-olds and adults used a spatial arrow cue to select a colored item for later recognition from an array of four colored items. The temporal dynamics of selection were investigated through EEG signals locked to the onset of the memory array. Both children and adults elicited significantly more negative activity over posterior scalp locations contralateral to the item to-be-selected for encoding (N2pc). However, this activity was elicited later and for longer in children compared to adults. Furthermore, although children as a group did not elicit a significant N2pc during the time-window in which N2pc was elicited in adults, the magnitude of N2pc during the "adult time-window" related to their behavioral performance during the later recognition phase of the task. This in turn highlights how children's neural activity subserving attention during encoding relates to better subsequent VWM performance. Significant differences were observed when children were divided into groups of high vs. low VWM capacity as a function of cueing benefit. Children with large cue benefits in VWM capacity elicited an adult-like contralateral negativity following attentional selection of the to-be-encoded item, whereas children with low VWM capacity did not. These results corroborate the close coupling between selective attention and VWM from childhood and elucidate further the attentional mechanisms constraining VWM performance in children.

  19. ERP markers of target selection discriminate children with high vs. low working memory capacity

    Science.gov (United States)

    Shimi, Andria; Nobre, Anna Christina; Scerif, Gaia

    2015-01-01

    Selective attention enables enhancing a subset out of multiple competing items to maximize the capacity of our limited visual working memory (VWM) system. Multiple behavioral and electrophysiological studies have revealed the cognitive and neural mechanisms supporting adults’ selective attention of visual percepts for encoding in VWM. However, research on children is more limited. What are the neural mechanisms involved in children’s selection of incoming percepts in service of VWM? Do these differ from the ones subserving adults’ selection? Ten-year-olds and adults used a spatial arrow cue to select a colored item for later recognition from an array of four colored items. The temporal dynamics of selection were investigated through EEG signals locked to the onset of the memory array. Both children and adults elicited significantly more negative activity over posterior scalp locations contralateral to the item to-be-selected for encoding (N2pc). However, this activity was elicited later and for longer in children compared to adults. Furthermore, although children as a group did not elicit a significant N2pc during the time-window in which N2pc was elicited in adults, the magnitude of N2pc during the “adult time-window” related to their behavioral performance during the later recognition phase of the task. This in turn highlights how children’s neural activity subserving attention during encoding relates to better subsequent VWM performance. Significant differences were observed when children were divided into groups of high vs. low VWM capacity as a function of cueing benefit. Children with large cue benefits in VWM capacity elicited an adult-like contralateral negativity following attentional selection of the to-be-encoded item, whereas children with low VWM capacity did not. These results corroborate the close coupling between selective attention and VWM from childhood and elucidate further the attentional mechanisms constraining VWM performance in

  20. iImplementation of AMBA AHB protocol for high capacity memory management using VHDL

    Directory of Open Access Journals (Sweden)

    Varsha vishwarkama

    2012-03-01

    Full Text Available Microprocessor performance has improved rapidly these years. In contrast memory latencies and bandwidths have improved little. The result is that the memory access time is the bottleneck which limits the system performance. In case of larger system design which requires more number of I/O ports and more memory capacity the system designer may interface external I/O ports and memory with the system. In this paper we are using advanced microcontroller bus architecture with its advanced high performance bus. AMBA AHB provides parallel communications with multi master bus management, high clock frequency, high performance systems for data transfer operation from the memory interfaced with the master or slave peripheral devices. AMBA AHB supports on chip communications standard for designing high-performance embedded microcontrollers.

  1. Iron titanium phosphates as high-specific-capacity electrode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Essehli, R., E-mail: essehli.rachid@yahoo.fr [Laboratory of Mineral Solid and Analytical Chemistry (LMSAC), Department of Chemistry, Faculty of Sciences, University Mohamed I, PO. Box 717, 60000 Oujda (Morocco); ESECO SYSTEMS 270 rue Thomas Edison, Atelier Relais No 6, 34400 Lunel (France); El Bali, B. [Laboratory of Mineral Solid and Analytical Chemistry (LMSAC), Department of Chemistry, Faculty of Sciences, University Mohamed I, PO. Box 717, 60000 Oujda (Morocco); Faik, A. [CIC energigune, Parque Tecnológico de Álava, Albert Einstein 48, 01510 Miñano, Álava (Spain); Naji, M. [CNRS, UPR3079 CEMHTI, 1D avenue de la Recherche Scientifique, 45071 Orléans cedex 2 (France); Benmokhtar, S. [LCPGM, Laboratoire de Chimie-Physique Générale des Matériaux, Département de Chimie, Université Hassan II-Mohammedia, Faculté des Sciences Ben M’Sik, Casablanca (Morocco); Zhong, Y.R.; Su, L.W.; Zhou, Z. [Institute of New Energy Material Chemistry, Synergetic Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (China); Kim, J.; Kang, K. [Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Dusek, M. [Institute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8 (Czech Republic)

    2014-02-05

    Highlights: • Iron Titanium Phosphates as High-Specific-Capacity. • Electrode Materials for Lithium ion Batteries. • During the following cycles, good reversible capacity retention and better cyclabilit. • Ex-situ XRD analysis during the first discharge shows an amorphization of this anode material. -- Abstract: Two iron titanium phosphates, Fe{sub 0.5}TiOPO{sub 4} and Fe{sub 0.5}Ti{sub 2}(PO{sub 4}){sub 3}, were prepared, and their crystal structures and electrochemical performances were compared. The electrochemical measurements of Fe{sub 0.5}TiOPO{sub 4} as an anode of a lithium ion cell showed that upon the first discharge down to 0.5 V, the cell delivered a capacity of 560 mA h/g, corresponding to the insertion of 5 Li’s per formula unit Fe{sub 0.5}TiOPO{sub 4}. Ex-situ XRD reveals a gradual evolution of the structure during cycling of the material, with lower crystallinity after the first discharge cycle. By correlating the electrochemical performances with the structural studies, new insights are achieved into the electrochemical behaviour of the Fe{sub 0.5}TiOPO{sub 4} anode material, suggesting a combination of intercalation and conversion reactions. The Nasicon-type Fe{sub 0.5}Ti{sub 2}(PO{sub 4}){sub 3} consists of a three-dimensional network made of corners and edges sharing [TiO{sub 6}] and [FeO{sub 6}] octahedra and [PO{sub 4}] tetrahedra leading to the formation of trimmers [FeTi{sub 2}O{sub 12}]. The first discharge of lithium ion cells based on Fe{sub 0.5}Ti{sub 2}(PO{sub 4}){sub 3} materials showed electrochemical activity of Ti{sup 4+}/Ti{sup 3+} and Fe{sup 2+}/Fe{sup 0} couples in the 2.5–1 V region. Below this voltage, the discharge profiles are typical of phosphate systems where Li{sub 3}PO{sub 4} is a product of the electrochemical reaction with lithium; moreover, the electrolyte solvent is reduced. An initial capacities as high as 1100 mA h g{sup −1} can be obtained at deep discharge. However, there is an irreversible capacity

  2. Core--strategy leading to high reversible hydrogen storage capacity for NaBH4.

    Science.gov (United States)

    Christian, Meganne L; Aguey-Zinsou, Kondo-François

    2012-09-25

    Owing to its high storage capacity (10.8 mass %), sodium borohydride (NaBH(4)) is a promising hydrogen storage material. However, the temperature for hydrogen release is high (>500 °C), and reversibility of the release is unachievable under reasonable conditions. Herein, we demonstrate the potential of a novel strategy leading to high and stable hydrogen absorption/desorption cycling for NaBH(4) under mild pressure conditions (4 MPa). By an antisolvent precipitation method, the size of NaBH(4) particles was restricted to a few nanometers (hydrogen at 400 °C. Further encapsulation of these nanoparticles upon reaction of nickel chloride at their surface allowed the synthesis of a core--shell nanostructure, NaBH(4)@Ni, and this provided a route for (a) the effective nanoconfinement of the melted NaBH(4) core and its dehydrogenation products, and (b) reversibility and fast kinetics owing to short diffusion lengths, the unstable nature of nickel borohydride, and possible modification of reaction paths. Hence at 350 °C, a reversible and steady hydrogen capacity of 5 mass % was achieved for NaBH(4)@Ni; 80% of the hydrogen could be desorbed or absorbed in less than 60 min, and full capacity was reached within 5 h. To the best of our knowledge, this is the first time that such performances have been achieved with NaBH(4). This demonstrates the potential of the strategy in leading to major advancements in the design of effective hydrogen storage materials from pristine borohydrides.

  3. High capacity implantable data recorders: system design and experience in canines and Denning black bears.

    Science.gov (United States)

    Laske, Timothy G; Harlow, Henry J; Werder, Jon C; Marshall, Mark T; Iaizzo, Paul A

    2005-11-01

    Implantable medical devices have increasingly large capacities for storing patient data as a diagnostic aid and to allow patient monitoring. Although these devices can store a significant amount of data, an increased ability for data storage was required for chronic monitoring in recent physiological studies. Novel high capacity implantable data recorders were designed for use in advanced physiological studies of canines and free-ranging black bears. These hermitically sealed titanium encased recorders were chronically implanted and programmed to record intrabody broadband electrical activity to monitor electrocardiograms and electromyograms, and single-axis acceleration to document relative activities. Changes in cardiac T-wave morphology were characterized in the canines over a 6 month period, providing new physiological data for the design of algorithms and filtering schemes that could be employed to avoid inappropriate implantable defibrillator shocks. Unique characteristics of bear hibernation physiology were successfully identified in the black bears, including: heart rate, respiratory rate, gross body movement, and shiver An unanticipated high rejection rate of these devices occurred in the bears, with five of six being externalized during the overwintering period, including two devices implanted in the peritoneal cavity. High capacity implantable data recorders were designed and utilized for the collection of long-term physiological data in both laboratory and extreme field environments. The devices described were programmable to accommodate the diverse research protocols. Additionally, we have described substantial differences in the response of two species to a common device. Variations in the foreign body response of different mammals must be identified and taken into consideration when choosing tissue-contacting materials in the application of biomedical technology to physiologic research.

  4. Orange oil/water nanoemulsions prepared by high pressure homogenizer; Nanoemulsoes oleo de laranja/agua preparadas em homogeneizador de alta pressao

    Energy Technology Data Exchange (ETDEWEB)

    Kourniatis, Loretta R.; Spinelli, Luciana S.; Mansur, Claudia R.E. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano; Gonzalez, Gaspar [Centro de Pesquisas e Desenvolvimento Leopoldo Americo Miguez de Mello (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    The objective of this work was to use the high-pressure homogenizer (HPH) to prepare stable oil/water nanoemulsions presenting narrow particle size distribution. The dispersions were prepared using nonionic surfactants based on ethoxylated ether. The size and distribution of the droplets formed, along with their stability, were determined in a Zetasizer Nano ZS particle size analyzer. The stability and the droplet size distribution in these systems do not present the significant differences with the increase of the processing pressure in the HPH). The processing time can promote the biggest dispersion in the size of particles, thus reducing its stability. (author)

  5. Effects of Homogenization and Ultra-high Temperature Processing on the Properties of Whole Milk Concentrated by a Multiple-Membrane Separation System

    OpenAIRE

    Chang, Chien-Ti

    1995-01-01

    Three different concentrated whole milks (2.5x, 2.75x, and 3.0x) were produced by mixing equal parts of ultrafiltration retentate of whole milk and reverse osmosis retentate of the UF milk permeate. The concentrated whole milks were ultra-high temperature processed by direct steam injection (140.6°C) followed by flash cooling and two-stage homogenization pressures (2500/500 psi, 3500/700 psi, or 4500/900 psi). The milk concentrates were packaged aseptically and stored at room temperature. On ...

  6. Fluorous Metal-Organic Frameworks with Enhanced Stability and High H2/CO2 Storage Capacities

    Science.gov (United States)

    Zhang, Da-Shuai; Chang, Ze; Li, Yi-Fan; Jiang, Zhong-Yi; Xuan, Zhi-Hong; Zhang, Ying-Hui; Li, Jian-Rong; Chen, Qiang; Hu, Tong-Liang; Bu, Xian-He

    2013-01-01

    A new class of metal-organic frameworks (MOFs) has been synthesized by ligand-functionalization strategy. Systematic studies of their adsorption properties were performed at low and high pressure. Importantly, when fluorine was introduced into the framework via the functionalization, both the framework stabilities and adsorption capacities towards H2/CO2 were enhanced significantly. This consequence can be well interpreted by theoretical studies of these MOFs structures. In addition, one of these MOFs TKL-107 was used to fabricate mixed matrix membranes, which exhibit great potential for the application of CO2 separation. PMID:24264725

  7. Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Raymond W.

    2012-07-30

    This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.

  8. Preparation of Isolated Single-walled Carbon Nanotubes with High Hydrogen Storage Capacity

    Institute of Scientific and Technical Information of China (English)

    张艾飞; 刘吉平; 吕广庶; 刘华

    2006-01-01

    Isolated single-walled carbon nanotubes with high proportion of opening tips were synthesized by using alcohol as carbon source. The mechanism of cutting action of oxygen was proposed to explain its growth. Compared with carbon nanotubes synthesized with benzene as carbon source, their specific surface area was heightened by approximately 2.2 times (from 200.5 to 648 m2/g) and the hydrogen storage capacity was increased by approximately 6.5 times (from 0.95 to 7.17%, ω)which had exceeded DOE energy standard of vehicular hydrogen storage.

  9. High-temperature heat capacity of orthovanadates Ce1- x Bi x VO4

    Science.gov (United States)

    Denisova, L. T.; Chumilina, L. G.; Belousova, N. V.; Denisov, V. M.

    2016-09-01

    Orthovanadates Ce1- x Bi x VO4 (1 ≥ x ≥ 0) have been produced by solid-phase synthesis from initial oxides CeO2, Bi2O3, and V2O5 upon step-by-step burning. The high-temperature heat capacity of Ce1- x Bi x VO4 has been measured by differential scanning calorimetry. The experimental data on C p = f(T) were used to calculate the thermodynamic properties (the enthalpy changes, the entropy changes, and the Gibbs energy).

  10. Programmatic status of NASA's CSTI high capacity power Stirling space power converter program

    Science.gov (United States)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  11. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Cole, Wesley

    2016-07-18

    This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  12. Design optimization of cast Cu-Al-Be-B alloys for high clamping capacity

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    This paper investigated high-damping Cu-Al-Be-B cast alloys using metallographic analysis, X-ray diffraction (XRD) and electrical resistance measurements for transformation temperatures. The results showed that beryllium can stabilize β phase, resulting in a thermo-elastic martensite microstructure leading to high-damping capacity in cast Cu-Al-BeB alloys. Trace additions of boron to Cu-Al-Be alloys can significantly refine the grains, providing high strength and ductility to the alloys. A factorial design of experiment method was used to optimize the composition and properties of cast Cu-Al-BeB alloys. The optimal microstructure for thermo-elastic martensite can be obtained by adjusting the amounts of aluminum and beryllium to eutectoid or pseudo-eutectoid compositions. An optimized cast Cu-Al-Be-B alloy was developed to provide excellent mechanical properties, tensile strength σb = 767 MPa, elongation δ = 7.62 %, and damping capacity S. D.C =18.70%.

  13. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System.

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Hager, Martin D; Schubert, Ulrich S

    2016-11-07

    Redox-flow batteries (RFB) can easily store large amounts of electric energy and thereby mitigate the fluctuating output of renewable power plants. They are widely discussed as energy-storage solutions for wind and solar farms to improve the stability of the electrical grid. Most common RFB concepts are based on strongly acidic metal-salt solutions or poorly performing organics. Herein we present a battery which employs the highly soluble N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) and the viologen derivative N,N'-dimethyl-4,4-bipyridinium dichloride (MV) in a simple and safe aqueous solution as redox-active materials. The resulting battery using these electrolyte solutions has capacities of 54 Ah L(-1) , giving a total energy density of 38 Wh L(-1) at a cell voltage of 1.4 V. With peak current densities of up to 200 mA cm(-2) the TEMPTMA/MV system is a suitable candidate for compact high-capacity and high-power applications.

  14. Proteolytic activity of protease produced by Pseudomonas fluorescens IB 2312 in skimmed milk subject to the process of high pressure homogenization

    Directory of Open Access Journals (Sweden)

    Claudia Regina Gonçalves Pinho

    2014-08-01

    Full Text Available The presence of thermoresistant proteases produced by psychrotrophic microorganisms have been identified as a limiting factor of the UHT milk shelflife, causing undesirable changes in milk products. High pressure homogenization (HPH processing is a non-thermal method of food preservation, able to promotes the microbiological safety and inactivation of some enzymes. Thus, this work assessed the proteolytic activity of protease produced by Pseudomonas fluorescens in skim milk subjected to high pressure homogenization process. The milk samples were added by the protease enzymatic extract (10% v/v and subjected to pressures up to 300 MPa. The assays showed that pressures on the order of 300 MPa caused a 72.5% reduction in proteolytic activity. Therefore, the process at high pressures resulted in significant inactivation of this thermoresistent enzyme, which possibly favors the shelf-life extension of the UHT milk and also limits the yield and quality loss of cheeses due to undesirable sensory changes in flavor and texture caused by this enzyme.

  15. Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage.

    Science.gov (United States)

    Yao, Xiangdong; Wu, Chengzhang; Du, Aijun; Lu, Gao Qing; Cheng, Huiming; Smith, Sean C; Zou, Jin; He, Yinghe

    2006-06-22

    Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.

  16. High-capacity thermo-responsive magnetic molecularly imprinted polymers for selective extraction of curcuminoids.

    Science.gov (United States)

    You, Qingping; Zhang, Yuping; Zhang, Qingwen; Guo, Junfang; Huang, Weihua; Shi, Shuyun; Chen, Xiaoqin

    2014-08-08

    Thermo-responsive magnetic molecularly imprinted polymers (TMMIPs) for selective recognition of curcuminoids with high capacity and selectivity have firstly been developed. The resulting TMMIPs were characterized by TEM, FT-IR, TGA, VSM and UV, which indicated that TMMIPs showed thermo-responsiveness [lower critical solution temperature (LCST) at 33.71°C] and rapid magnetic separation (5s). The polymerization, adsorption and release conditions were optimized in detail to obtain the highest binding capacity, selectivity and release ratio. We found that the adopted thermo-responsive monomer [N-isopropylacrylamide (NIPAm)] could be considered not only as inert polymer backbone for thermo-responsiveness but also as functional co-monomers combination with basic monomer (4-VP) for more specific binding sites when ethanol was added in binding solution. The maximum adsorption capacity with highest selectivity of curcumin was 440.3μg/g (1.93 times that on MMIPs with no thermosensitivity) at 45°C (above LCST) in 20% (v/v) ethanol solution on shrunk TMMIPs, and the maximum release proportion was about 98% at 20°C (below LCST) in methanol-acetic acid (9/1, v/v) solution on swelled TMMIPs. The adsorption process between curcumin and TMMIPs followed Langumuir adsorption isotherm and pseudo-first-order reaction kinetics. The prepared TMMIPs also showed high reproducibility (RSD<6% for batch-to-batch evaluation) and stability (only 7% decrease after five cycles). Subsequently, the TMMIPs were successfully applied for selective extraction of curcuminoids from complex natural product, Curcuma longa.

  17. An insect herbivore microbiome with high plant biomass-degrading capacity.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    2010-09-01

    Full Text Available Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini, which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  18. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity

    Science.gov (United States)

    Foster, Carl; Farland, Courtney V.; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T.; Porcari, John P.

    2015-01-01

    High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key points Steady state training equivalent to HIIT in untrained students Mild interval training presents very similar physiologic challenge compared to steady state training HIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval training Enjoyment of training decreases across the course of an 8 week experimental training program PMID:26664271

  19. Incorporating magnesium and calcium cations in porous organic frameworks for high-capacity hydrogen storage.

    Science.gov (United States)

    Wang, Lin; Sun, Yingxin; Sun, Huai

    2011-01-01

    We propose incorporating a bi-functional group consisting of magnesium or calcium cations and a 1,2,4,5-benzenetetroxide anion (C6H2O4(4-)) in porous materials to enhance the hydrogen storage capacity. The C6H2O4M2 bifunctional group is highly stable and polarized, and each group provides 18 (M = Mg) or 22 (M = Ca) binding sites for hydrogen molecules with an average binding energy of ca. 10 kJ mol(-1) per hydrogen molecule based on RIMP2/ TZVPP calculations. Two porous materials (PAF-Mg or PAF-Ca) constructed with the bi-functional groups show remarkable improvement in hydrogen uptakes at normal ambient conditions. At 233 K and 10 MPa, the predicted gravimetric uptakes are 6.8 and 6.4 wt% for PAF-Mg and PAF-Ca respectively. This work reveals that fabricating materials with large numbers of binding sites and relatively low binding energies is a promising approach to achieve high capacity for on-board storage of hydrogen.

  20. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra; Pinto-Tomas, Adrian; Foster, Clifton; Pauly, Markus; Weimer, Paul; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy; Slater, Steven; Donohue, Timothy; Currie, Cameron; Tringe, Susannah G.

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  1. High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers.

    Directory of Open Access Journals (Sweden)

    Aamir Razaq

    Full Text Available Highly porous polypyrrole (PPy-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg(-1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30-50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m(2 g(-1 of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT(6, (dT(20, and (dT(40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules.

  2. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity.

    Science.gov (United States)

    Foster, Carl; Farland, Courtney V; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T; Porcari, John P

    2015-12-01

    High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. There were significant (p training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p training in sedentary young adults. Key pointsSteady state training equivalent to HIIT in untrained studentsMild interval training presents very similar physiologic challenge compared to steady state trainingHIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval trainingEnjoyment of training decreases across the course of an 8 week experimental training program.

  3. High-Capacity Conductive Nanocellulose Paper Sheets for Electrochemically Controlled Extraction of DNA Oligomers

    Science.gov (United States)

    Razaq, Aamir; Nyström, Gustav; Strømme, Maria; Mihranyan, Albert; Nyholm, Leif

    2011-01-01

    Highly porous polypyrrole (PPy)-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg−1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30–50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m2 g−1) of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT)6, (dT)20, and (dT)40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules. PMID:22195031

  4. E- and W-band high-capacity hybrid fiber-wireless link

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Pang, Xiaodan; Tafur Monroy, Idelfonso

    2014-01-01

    In this paper we summarize the work conducted in our group in the area of E- and W-band optical high-capacity fiber-wireless links. We present performance evaluations of E- and W-band mm-wave signal generation using photonic frequency upconversion employing both VCSELs and ECLs, along with transm......In this paper we summarize the work conducted in our group in the area of E- and W-band optical high-capacity fiber-wireless links. We present performance evaluations of E- and W-band mm-wave signal generation using photonic frequency upconversion employing both VCSELs and ECLs, along...... with transmission over different type of optical fibers and for a number of values for the wireless link distance. Hybrid wireless-optical links can be composed of mature and resilient technology available off-the-shelf, and provide functionalities that can add value to optical access networks, specifically...... in mobile backhaul/fronthaul applications, dense distributed antenna systems and fiber-over-radio scenarios....

  5. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    Science.gov (United States)

    Suen, Garret; Scott, Jarrod J.; Aylward, Frank O.; Adams, Sandra M.; Tringe, Susannah G.; Pinto-Tomás, Adrián A.; Foster, Clifton E.; Pauly, Markus; Weimer, Paul J.; Barry, Kerrie W.; Goodwin, Lynne A.; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy T.; Slater, Steven C.; Donohue, Timothy J.; Currie, Cameron R.

    2010-01-01

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy. PMID:20885794

  6. High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement

    Institute of Scientific and Technical Information of China (English)

    WANG Tie-Jun; LI Tao; DU Fang-Fang; DENG Fu-Guo

    2011-01-01

    We present a quantum hyperdense coding protocol with hyperentanglement in polarization and spatial-mode degrees of freedom of photons first and then give the details for a quantum secure direct communication (QSDC)protocol based on this quantum hyperdense coding protocol. This QSDC protocol has the advantage of having a higher capacity than the quantum communication protocols with a qubit system. Compared with the QSDC protocol based on superdense coding with d-dimensional systems, this QSDC protocol is more feasible as the preparation of a high-dimension quantum system is more difficult than that of a two-level quantum system at present.%@@ We present a quantum hyperdense coding protocol with hyperentanglement in polarization and spatial-mode degrees of freedom of photons first and then give the details for a quantum secure direct communication(QSDC)protocol based on this quantum hyperdense coding protocol.This QSDC protocol has the advantage of having a higher capacity than the quantum communication protocols with a qubit system.Compared with the QSDC protocol based on superdense coding with d-dimensional systems, this QSDC protocol is more feasible as the preparation of a high-dimension quantum system is more difficult than that of a two-level quantum system at present.

  7. Expression of angiogenic regulators and skeletal muscle capillarity in selectively bred high aerobic capacity mice.

    Science.gov (United States)

    Audet, Gerald N; Meek, Thomas H; Garland, Theodore; Olfert, I Mark

    2011-11-01

    Selective breeding for high voluntary wheel running in untrained mice has resulted in a 'mini muscle' (MM) phenotype, which has increased skeletal muscle capillarity compared with muscles from non-selected control lines. Vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1) are essential mediators of skeletal muscle angiogenesis; thus, we hypothesized that untrained MM mice with elevated muscle capillarity would have higher basal VEGF expression and lower basal TSP-1 expression, and potentially an exaggerated VEGF response to acute exercise. We examined skeletal muscle morphology and skeletal muscle protein expression of VEGF and TSP-1 in male mice from two (untrained) mouse lines selectively bred for high exercise capacity (MM and Non-MM), as well as one non-selected control mouse line (normal aerobic capacity). In the MM mice, gastrocnemius (GA) and plantaris (PLT) muscle capillarity (i.e. capillary-to-fibre ratio and capillary density) were greater compared with control mice (P capillarity in PLT was greater than in control mice (P capillarity among groups. In the GA, MM mice had 58% greater basal VEGF (P capillarity is associated with altered balance between positive and negative angiogenic regulators (i.e. VEGF versus TSP-1, respectively). Based on the greater capillarity and significant VEGF response to exercise in MM mice, these data suggest that VEGF expression may, at least in part, be genetically determined.

  8. PV Hosting Capacity Analysis and Enhancement Using High Resolution Stochastic Modeling

    Directory of Open Access Journals (Sweden)

    Emilio J. Palacios-Garcia

    2017-09-01

    Full Text Available Reduction of CO2 emissions is a main target in the future smart grid. This goal is boosting the installation of renewable energy resources (RES, as well as a major consumer engagement that seeks for a more efficient utilization of these resources toward the figure of ‘prosumers’. Nevertheless, these resources present an intermittent nature, which requires the presence of an energy storage system and an energy management system (EMS to ensure an uninterrupted power supply. Moreover, network-related issues might arise due to the increasing power of renewable resources installed in the grid, the storage systems also being capable of contributing to the network stability. However, to assess these future scenarios and test the control strategies, a simulation system is needed. The aim of this paper is to analyze the interaction between residential consumers with high penetration of PV generation and distributed storage and the grid by means of a high temporal resolution simulation scenario based on a stochastic residential load model and PV production records. Results of the model are presented for different PV power rates and storage capacities, as well as a two-level charging strategy as a mechanism for increasing the hosting capacity (HC of the network.

  9. Microbiological stabilization of tiger nuts' milk beverage using ultra-high pressure homogenization. A preliminary study on microbial shelf-life extension.

    Science.gov (United States)

    Codina-Torrella, I; Guamis, B; Zamora, A; Quevedo, J M; Trujillo, A J

    2018-02-01

    Tiger nuts' milk beverages are highly perishable products. For this reason, the interest of food industry for their commercialization makes necessary the application of preservation treatments to prolong their shelf-life. In the current study, the effect of ultra-high pressure homogenization (UHPH) on the microbiological and sensory qualities of tiger nuts' milk beverage was evaluated. Characteristics of UHPH-treated products (at 200 and 300 MPa, with inlet temperature of 40 °C) were compared with those of raw (RP) and conventionally homogenized-pasteurized (H-P) beverages, after treatment and during cold storage at 4 °C. Microbiological quality of beverages was studied by enumerating total counts, psychrotrophic bacteria, lactobacilli, enterobacteria, molds and yeasts, and mesophilic spores. Evolution of color and sensory characteristics of beverages were also determined. Microbiological shelf-life of the tiger nuts' milk beverages was extended from 3 to 25, 30 and 57 days by applying H-P and UHPH treatments at 200 and 300 MPa, respectively. Color of beverages was the only attribute that differentiated UHPH samples from the others, with greater luminosity and whiteness. Hence, UHPH treatments showed to be an alternative to the conventional H-P for obtaining tiger nuts' milk beverages with an improved microbiological shelf-life and good sensorial characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cell membrane fatty acid changes and desaturase expression of Saccharomyces bayanus exposed to high pressure homogenization in relation to the supplementation of exogenous unsaturated fatty acids

    Science.gov (United States)

    Serrazanetti, Diana I.; Patrignani, Francesca; Russo, Alessandra; Vannini, Lucia; Siroli, Lorenzo; Gardini, Fausto; Lanciotti, Rosalba

    2015-01-01

    Aims: The aim of this work was to study the responses of Saccharomyces bayanus cells exposed to sub-lethal high-pressure homogenization (HPH) and determine whether the plasmatic membrane can sense HPH in the presence, or absence, of exogenous unsaturated fatty acids (UFAs) in the growth medium. Methods and Results: High-pressure homogenization damaged and caused the collapse of cell walls and membranes of a portion of cells; however, HPH did not significantly affect S. bayanus cell viability (less than 0.3 Log CFU ml-1). HPH strongly affected the membrane fatty acid (FA) composition by increasing the percentage of total UFA when compared with saturated fatty acids. The gene expression showed that the transcription of OLE1, ERG3, and ERG11 increased after HPH. The presence of exogenous UFA abolished HPH-induced effects on the OLE1 and ERG3 genes, increased the percentage of membrane lipids and decreased the expression of OLE1 and ERG3 within 30 min of treatment. Conclusion: The results suggest a key role for UFA in the microbial cell response to sub-lethal stress. In addition, these data provide insight into the molecular basis of the response of S. bayanus to this innovative technology. Significance and Impact of the Study: Elucidation of the mechanism of action for sub-lethal HPH will enable the utilization of this technology to modulate the starter performance at the industrial scale. PMID:26528258

  11. Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates

    Science.gov (United States)

    Li, Zhongbo; Meng, Guowen; Liang, Ting; Zhang, Zhuo; Zhu, Xiaoguang

    2013-01-01

    We report a facile low-cost synthetic approach to large-scale Ag nanosheet-assembled films with a high density of uniformly distributed sub-10 nm gaps between the adjacent nanosheets on Si substrates via galvanic cell reactions. The distribution density of Ag nanosheets on substrates could be tailored by tuning the duration of the HF-etching and the concentration of citric acid in the solution. Furthermore, in conjunction with a conventional photolithography, highly uniform patterned Ag nanosheet-assembled structures with different morphologies can be achieved on Si substrates via galvanic-cell-induced growth. By using rhodamine 6G as a standard test molecule, the large-scale Ag nanosheet-assembled films exhibit highly active and homogenous surface-enhanced Raman scattering (SERS) effect and also show promising potentials as reliable SERS substrates for rapid detection of trace polychlorinated biphenyls (PCBs).

  12. Highly porous organic polymers bearing tertiary amine group and their exceptionally high CO{sub 2} uptake capacities

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Ruth; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2015-02-15

    We report a very simple and unique strategy for synthesis of a tertiary amine functionalized high surface area porous organic polymer (POP) PDVTA-1 through the co-polymerization of monomers divinylbenzene (DVB) and triallylamine (TAA) under solvothermal reaction conditions. Two different PDVTA-1 samples have been synthesized by varying the molar ratio of the monomers. The porous polymeric materials have been thoroughly characterized by solid state {sup 13}C CP MAS-NMR, FT-IR and UV–vis spectroscopy, N{sub 2} sorption, HR TEM and FE SEM to understand its chemical environment, nanostructure, bonding, morphology and related surface properties. PDVTA-1 with higher amine content (DVB/TAA=4.0) showed exceptionally high CO{sub 2} uptake capacity of 85.8 wt% (19.5 mmol g{sup −1}) at 273 K and 43.69 wt% (9.93 mmol g{sup −1}) at 298 K under 3 bar pressure, whereas relatively low amine loaded material (DVB/TAA=7.0) shows uptake capacity of 59.2 wt% (13.45 mmol g{sup −1}) at 273 K and 34.36 wt% (7.81 mmol g{sup −1}) at 298 K. Highly porous nanostructure together with very high surface area and basicity at the surface due to the presence of abundant basic tertiary amine N-sites in the framework of PDVTA-1 could be responsible for very high CO{sub 2} adsorption. - Graphical abstract: Exceptionally high CO2 uptake (85.8 wt % at 273 K) has been observed over a high surface area porous organic polymer PDVTA-1 synthesized through copolymerization of divinylbenzene and triallyl amine. - Highlights: • Designing the synthesis of a new N-rich cross-linked porous organic polymer PDVTA-1. • PDVTA-1 showed mesoporosity with very high surface area of 903 m{sup 2} g{sup −1}. • High surface area and presence of basic sites facilitates the CO{sub 2} uptake. • PDVTA-1 showed exceptionally high CO{sub 2} adsorption capacity of 85.8 wt% at 273 K, 3 bar pressure.

  13. High-Capacity Hybrid Optical Fiber-Wireless Communications Links in Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan

    techniques with both coherent and incoherent optical sources are studied and demonstrated. Employments of advanced modulation formats including phase-shift keying (PSK), M-quadrature amplitude modulation (QAM) and orthogonal frequency-division multiplexing (OFDM) for high speed photonic-wireless transmission......Integration between fiber-optic and wireless communications systems in the "last mile" access networks is currently considered as a promising solution for both service providers and users, in terms of minimizing deployment cost, shortening upgrading period and increasing mobility and flexibility...... techniques. In conclusion, the results presented in the thesis show the feasibility of employing mm-wave signals, advanced modulation formats and spatial multiplexing technologies in next generation high capacity hybrid optical fiber-wireless access systems....

  14. Spherical polystyrene-supported chitosan thin film of fast kinetics and high capacity for copper removal

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei, E-mail: jiangwei@nju.edu.cn; Chen, Xubin; Pan, Bingcai; Zhang, Quanxing; Teng, Long; Chen, Yufan; Liu, Lu

    2014-07-15

    Graphical abstract: - Highlights: • Sub-micron-sized polystyrene supported chitosan thin-film was synthesized. • Absorbents exhibited fast kinetics and high capacity for Cu(II) removal from water. • Absorbents could be employed for repeated use for Cu(II) removal after regeneration. - Abstract: In order to accelerate the kinetics and improve the utilization of the surface active groups of chitosan (CS) for heavy metal ion removal, sub-micron-sized polystyrene supported chitosan thin-film was synthesized by the electrostatic assembly method. Glutaraldehyde was used as cross-linking agent. Chitosan thin-film was well coated onto the surface of the polystyrene (PS) beads characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). Their adsorption toward Cu(II) ions was investigated as a function of solution pH, degree of cross-linking, equilibrium Cu(II) ions concentration and contact time. The maximum adsorptive capacity of PS–CS was 99.8 mg/g in the adsorption isotherm study. More attractively, the adsorption equilibrium was achieved in 10 min, which showed superior properties among similar adsorbents. Continuous adsorption–desorption cyclic results demonstrated that Cu(II)-loaded PS–CS can be effectively regenerated by a hydrochloric acid solution (HCl), and the regenerated composite beads could be employed for repeated use without significant capacity loss, indicating the good stability of the adsorbents. The XPS analysis confirmed that the adsorption process was due to surface complexes with atoms of chitosan. Generally, PS beads could be employed as a promising host to fabricate efficient composites that originated from chitosan or other bio-sorbents for environmental remediation.

  15. Rolling cycle amplification based single-color quantum dots–ruthenium complex assembling dyads for homogeneous and highly selective detection of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen; Liu, Yufei; Ye, Tai; Xiang, Xia; Ji, Xinghu; He, Zhike, E-mail: zhkhe@whu.edu.cn

    2015-01-01

    Graphical abstract: A universal, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. - Highlights: • The single-color QDs–Ru assembling dyads were applied in homogeneous DNA assay. • This biosensor exhibited high selectivity against base mismatched sequences. • This biosensor could be severed as universal platform for the detection of ssDNA. • This sensor could be used to detect the target in human serum samples. • This DNA sensor had a good selectivity under the interference of other dsDNA. - Abstract: In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen){sub 2}(dppx)]{sup 2+} (dppx = 7,8-dimethyldipyrido [3,2-a:2′,3′-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen){sub 2}(dppx)]{sup 2+} is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen){sub 2}(dppx)]{sup 2+} through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover

  16. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity

    Directory of Open Access Journals (Sweden)

    Carl Foster, Courtney V. Farland, Flavia Guidotti, Michelle Harbin, Brianna Roberts, Jeff Schuette, Andrew Tuuri, Scott T. Doberstein, John P. Porcari

    2015-12-01

    Full Text Available High intensity interval training (HIIT has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly. Steady-state (n = 19 exercised (cycle ergometer 20 minutes at 90% of ventilatory threshold (VT. Tabata (n = 21 completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15 completed 13 sets of 30s (20 min @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p < 0.05 increases in VO2max (+19, +18 and +18% and PPO (+17, +24 and +14% for each training group, as well as significant increases in peak (+8, + 9 and +5% & mean (+4, +7 and +6% power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05 than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05 across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults.

  17. Fast and simple high-capacity quantum cryptography with error detection

    Science.gov (United States)

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.

    2017-04-01

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.

  18. High capacity for extracellular acid-base regulation in the air-breathing fish Pangasianodon hypophthalmus.

    Science.gov (United States)

    Damsgaard, Christian; Gam, Le Thi Hong; Tuong, Dang Diem; Thinh, Phan Vinh; Huong Thanh, Do Thi; Wang, Tobias; Bayley, Mark

    2015-05-01

    The evolution of accessory air-breathing structures is typically associated with reduction of the gills, although branchial ion transport remains pivotal for acid-base and ion regulation. Therefore, air-breathing fishes are believed to have a low capacity for extracellular pH regulation during a respiratory acidosis. In the present study, we investigated acid-base regulation during hypercapnia in the air-breathing fish Pangasianodon hypophthalmus in normoxic and hypoxic water at 28-30°C. Contrary to previous studies, we show that this air-breathing fish has a pronounced ability to regulate extracellular pH (pHe) during hypercapnia, with complete metabolic compensation of pHe within 72 h of exposure to hypoxic hypercapnia with CO2 levels above 34 mmHg. The high capacity for pHe regulation relies on a pronounced ability to increase levels of HCO3(-) in the plasma. Our study illustrates the diversity in the physiology of air-breathing fishes, such that generalizations across phylogenies may be difficult.

  19. Invited Article: Polarization diversity and modulation for high-speed optical communications: architectures and capacity

    Directory of Open Access Journals (Sweden)

    William Shieh

    2016-07-01

    Full Text Available Polarization is one of the fundamental properties of optical waves. To cope with the exponential growth of the Internet traffic, optical communications has advanced by leaps and bounds within the last decade. For the first time, the polarization domain has been extensively explored for high-speed optical communications. In this paper, we discuss the general principle of polarization modulation in both Jones and Stokes spaces. We show that there is no linear optical device capable of transforming an arbitrary input polarization into one that is orthogonal to itself. This excludes the receiver self-polarization diversity architecture by splitting the signal into two branches, and then transferring one of the branches into orthogonal polarization. We next propose a novel Stokes vector (SV detection architecture using four single-ended photodiodes (PD that can recover a full set of SV. We then derive a closed-form expression for the information capacity of different SV detection architectures and compare the capacity of our proposed architectures with that of intensity-modulated directly-detected (IM/DD method. We next study the 3-PD SV detection architecture where a subset of SV is detected, and devise a novel modulation algorithm that can achieve 2-dimensional modulation with the 3-PD detection. By using cost-effective SV receivers, polarization modulation and multiplexing offers a powerful solution for short-reach optical networks where the wavelength domain is quickly exhausted.

  20. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries

    Science.gov (United States)

    Odziomek, Mateusz; Chaput, Frédéric; Rutkowska, Anna; Świerczek, Konrad; Olszewska, Danuta; Sitarz, Maciej; Lerouge, Frédéric; Parola, Stephane

    2017-05-01

    High-performance Li-ion batteries require materials with well-designed and controlled structures on nanometre and micrometre scales. Electrochemical properties can be enhanced by reducing crystallite size and by manipulating structure and morphology. Here we show a method for preparing hierarchically structured Li4Ti5O12 yielding nano- and microstructure well-suited for use in lithium-ion batteries. Scalable glycothermal synthesis yields well-crystallized primary 4-8 nm nanoparticles, assembled into porous secondary particles. X-ray photoelectron spectroscopy reveals presence of Ti+4 only; combined with chemical analysis showing lithium deficiency, this suggests oxygen non-stoichiometry. Electron microscopy confirms hierarchical morphology of the obtained material. Extended cycling tests in half cells demonstrates capacity of 170 mAh g-1 and no sign of capacity fading after 1,000 cycles at 50C rate (charging completed in 72 s). The particular combination of nanostructure, microstructure and non-stoichiometry for the prepared lithium titanate is believed to underlie the observed electrochemical performance of material.

  1. Invited Article: Polarization diversity and modulation for high-speed optical communications: architectures and capacity

    Science.gov (United States)

    Shieh, William; Khodakarami, Hamid; Che, Di

    2016-07-01

    Polarization is one of the fundamental properties of optical waves. To cope with the exponential growth of the Internet traffic, optical communications has advanced by leaps and bounds within the last decade. For the first time, the polarization domain has been extensively explored for high-speed optical communications. In this paper, we discuss the general principle of polarization modulation in both Jones and Stokes spaces. We show that there is no linear optical device capable of transforming an arbitrary input polarization into one that is orthogonal to itself. This excludes the receiver self-polarization diversity architecture by splitting the signal into two branches, and then transferring one of the branches into orthogonal polarization. We next propose a novel Stokes vector (SV) detection architecture using four single-ended photodiodes (PD) that can recover a full set of SV. We then derive a closed-form expression for the information capacity of different SV detection architectures and compare the capacity of our proposed architectures with that of intensity-modulated directly-detected (IM/DD) method. We next study the 3-PD SV detection architecture where a subset of SV is detected, and devise a novel modulation algorithm that can achieve 2-dimensional modulation with the 3-PD detection. By using cost-effective SV receivers, polarization modulation and multiplexing offers a powerful solution for short-reach optical networks where the wavelength domain is quickly exhausted.

  2. Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species.

    Science.gov (United States)

    Ellsworth, David S; Crous, Kristine Y; Lambers, Hans; Cooke, Julia

    2015-06-01

    Leaf photosynthetic CO2 responses can provide insight into how major nutrients, such as phosphorus (P), constrain leaf CO2 assimilation rates (Anet). However, triose-phosphate limitations are rarely employed in the classic photosynthesis model and it is uncertain as to what extent these limitations occur in field situations. In contrast to predictions from biochemical theory of photosynthesis, we found consistent evidence in the field of lower Anet in high [CO2] and low [O2 ] than at ambient [O2 ]. For 10 species of trees and shrubs across a range of soil P availability in Australia, none of them showed a positive response of Anet at saturating [CO2] (i.e. Amax) to 2 kPa O2. Three species showed >20% reductions in Amax in low [O2], a phenomenon potentially explained by orthophosphate (Pi) savings during photorespiration. These species, with largest photosynthetic capacity and Pi  > 2 mmol P m(-2), rely the most on additional Pi made available from photorespiration rather than species growing in P-impoverished soils. The results suggest that rarely used adjustments to a biochemical photosynthesis model are useful for predicting Amax and give insight into the biochemical limitations of photosynthesis rates at a range of leaf P concentrations. Phosphate limitations to photosynthetic capacity are likely more common in the field than previously considered.

  3. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dezhen [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhou, Yumei, E-mail: zhouyumei@mail.xjtu.edu.cn [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ding, Xiangdong [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Otsuka, Kazuhiro [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sun, Jun [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Xiaobing [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2015-04-24

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti{sub 50}(Pd{sub 50−x}D{sub x}) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q{sup −1}~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q{sup −1}~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges.

  4. Lamprey parasitism of sharks and teleosts: high capacity urea excretion in an extant vertebrate relic.

    Science.gov (United States)

    Wilkie, Michael P; Turnbull, Steven; Bird, Jonathan; Wang, Yuxiang S; Claude, Jaime F; Youson, John H

    2004-08-01

    We observed 10 sea lampreys (Petromyzon marinus) parasitizing basking sharks (Cetorhinus maximus), the world's second largest fish, in the Bay of Fundy. Due to the high concentrations of urea in the blood and tissues of ureosmotic elasmobranchs, we hypothesized that sea lampreys would have mechanisms to eliminate co-ingested urea while feeding on basking sharks. Post-removal urea excretion rates (J(Urea)) in two lampreys, removed from separate sharks by divers, were initially 450 ( approximately 9000 micromol N kg-1 h-1) and 75 times ( approximately 1500 micromol N kg-1 h-1) greater than basal (non-feeding) rates ( approximately 20 micromol N kg-1 h-1). In contrast, J(Urea) increased by 15-fold after parasitic lampreys were removed from non-ureosmotic rainbow trout (Oncorhynchus mykiss). Since activities of the ornithine urea cycle (OUC) enzymes, carbamoyl phosphate synthetase III (CPSase III) and ornithine carbamoyl transferase (OCT) were relatively low in liver and below detection in intestine and muscle, it is unlikely that the excreted urea arose from de novo urea synthesis. Measurements of arginase activity suggested that hydrolysis of dietary arginine made a minor contribution to J(Urea.). Post-feeding ammonia excretion rates (J(Amm)) were 15- to 25-fold greater than basal rates in lampreys removed from both basking sharks and rainbow trout, suggesting that parasitic lampreys have a high capacity to deaminate amino acids. We conclude that the sea lamprey's ability to penetrate the dermal denticle armor of sharks, to rapidly excrete large volumes of urea and a high capacity to deaminate amino acids, represent adaptations that have contributed to the evolutionary success of these phylogenetically ancient vertebrates.

  5. Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction for the determination of sulfonamides in animal tissues using high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi

    2015-12-01

    Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg.

  6. On the induction of homogeneous bulk crystallization in Eu-doped calcium aluminosilicate glass by applying simultaneous high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, R. F., E-mail: robsonfmuniz@yahoo.com.br [Institut Lumière Matière, UMR 5306 CNRS-Université Lyon 1, Université de Lyon, 69622 Villeurbanne (France); Departamento de Física, Universidade Estadual de Maringá, 87020900, Maringá, PR (Brazil); Ligny, D. de [Department of Materials Science, Glass and Ceramics, University of Erlangen Nürnberg, Martensstr. 5, 91058 Erlangen (Germany); Le Floch, S.; Martinet, C.; Guyot, Y. [Institut Lumière Matière, UMR 5306 CNRS-Université Lyon 1, Université de Lyon, 69622 Villeurbanne (France); Rohling, J. H.; Medina, A. N.; Sandrini, M.; Baesso, M. L. [Departamento de Física, Universidade Estadual de Maringá, 87020900, Maringá, PR (Brazil); Andrade, L. H. C.; Lima, S. M. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, C.P. 351, Dourados, MS (Brazil)

    2016-06-28

    From initial calcium aluminosilicate glass, transparent glass-ceramics have been successfully synthesized under simultaneous high pressure and temperature (SHPT). Possible homogeneous volumetric crystallization of this glassy system, which was not achieved previously by means of conventional heat treatment, has been put in evidence with a SHPT procedure. Structural, mechanical, and optical properties of glass and glass-ceramic obtained were investigated. Raman spectroscopy and X-ray diffraction allowed to identify two main crystalline phases: merwinite [Ca{sub 3}Mg(SiO{sub 4}){sub 2}] and diopside [CaMgSi{sub 2}O{sub 6}]. A Raman scanning profile showed that the formation of merwinite is quite homogeneous over the bulk sample. However, the sample surface also contains significant diopside crystals. Instrumented Berkovich nanoindentation was applied to determine the effect of SHPT on hardness from glass to glass-ceramic. For Eu-doped samples, the broadband emission due to 4f{sup 6}5d{sup 1} → 4f{sup 7} transition of Eu{sup 2+} was studied in both host systems. Additionally, the {sup 5}D{sub 0} → {sup 7}F{sub J} transition of Eu{sup 3+} was used as an environment probe in the pristine glass and the glass-ceramic.

  7. [Determination of five triazine herbicides in infant milk powder by high performance liquid chromatography coupled with ionic liquid-based homogeneous liquid-liquid microextraction].

    Science.gov (United States)

    Zhang, Liyuan; Yao, Di; Li, Na; Zhang, Hanqi; Yu, Aimin

    2015-07-01

    A high performance liquid chromatography coupled with homogeneous liquid-liquid microextraction was developed for the determination of five triazine herbicides in infant milk powders. The ionic liquid was used as microextraction solvent. The separation of the herbicides was performed on an Eclipse XDB-C18 column using acetonitrile and water as mobile phases in gradient mode. The effects of homogeneous liquid-liquid extraction conditions on the experimental results were investigated in detail. Under the optimized experimental conditions, the calibration curves for determining the analytes were linear and the correlation coefficients were ≥ 0.9992. The limits of detection for cyanazine, desmetryn, terbumeton, terbuthylazine and dimethametryn were 12.1, 13.8, 11.8, 14.6 and 13.7 μg/kg, respectively. The recoveries of the analytes spiked in four infant milk powders ranged from 92.2% to 103.2% and the relative standard deviations were lower than 6%. This method is sensitive, simple, and suitable for the determination of triazine herbicides in milk powder samples.

  8. On the induction of homogeneous bulk crystallization in Eu-doped calcium aluminosilicate glass by applying simultaneous high pressure and temperature

    Science.gov (United States)

    Muniz, R. F.; de Ligny, D.; Le Floch, S.; Martinet, C.; Rohling, J. H.; Medina, A. N.; Sandrini, M.; Andrade, L. H. C.; Lima, S. M.; Baesso, M. L.; Guyot, Y.

    2016-06-01

    From initial calcium aluminosilicate glass, transparent glass-ceramics have been successfully synthesized under simultaneous high pressure and temperature (SHPT). Possible homogeneous volumetric crystallization of this glassy system, which was not achieved previously by means of conventional heat treatment, has been put in evidence with a SHPT procedure. Structural, mechanical, and optical properties of glass and glass-ceramic obtained were investigated. Raman spectroscopy and X-ray diffraction allowed to identify two main crystalline phases: merwinite [Ca3Mg(SiO4)2] and diopside [CaMgSi2O6]. A Raman scanning profile showed that the formation of merwinite is quite homogeneous over the bulk sample. However, the sample surface also contains significant diopside crystals. Instrumented Berkovich nanoindentation was applied to determine the effect of SHPT on hardness from glass to glass-ceramic. For Eu-doped samples, the broadband emission due to 4f65d1 → 4f7 transition of Eu2+ was studied in both host systems. Additionally, the 5D0 → 7FJ transition of Eu3+ was used as an environment probe in the pristine glass and the glass-ceramic.

  9. A novel cell-based duplex high-throughput screening assay combining fluorescent Ca(2+) measurement with homogeneous time-resolved fluorescence technology.

    Science.gov (United States)

    Kiss, László; Cselenyák, Attila; Varga, Ágnes; Visegrády, András

    2016-08-15

    Cell-based assays for G-protein-coupled receptor (GPCR) activation applied in high-throughput screening (HTS) monitor various readouts for second messengers or intracellular effectors. Recently, our understanding of diverging signaling pathways downstream of receptor activation and the capability of small molecules to selectively modulate signaling routes has increased substantially, underlining the importance of selecting appropriate readouts in cellular functional screens. To minimize the rate of false negatives in large-scale screening campaigns, it is crucial to maximize the chance of a ligand being detected, and generally applicable methods for detecting multiple analytes from a single well might serve this purpose. The few assays developed so far based on multiplexed GPCR readouts are limited to only certain applications and usually rely on genetic manipulations hindering screening in native or native-like cellular systems. Here we describe a more generally applicable and HTS-compatible homogeneous assay based on the combination of fluorometric detection of [Ca(2+)] with subsequent homogeneous time-resolved fluorescence (HTRF) cAMP readout in the same well. Besides describing development and validation of the assay, using a cell line recombinantly expressing the human PTH1 receptor screening of a small library is also presented, demonstrating the robustness and HTS compatibility of the novel paradigm.

  10. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.

    Science.gov (United States)

    Wang, Linlin; Gong, Huaxu; Wang, Caihua; Wang, Dake; Tang, Kaibin; Qian, Yitai

    2012-11-07

    Various CuO nanostructures have been well studied as anode materials for lithium ion batteries (LIBs); however, there are few reports on the synthesis of porous CuO nanostructures used for anode materials, especially one-dimensional (1D) porous CuO. In this work, novel 1D highly porous CuO nanorods with tunable porous size were synthesized in large-quantities by a new, friendly, but very simple approach. We found that the pore size could be controlled by adjusting the sintering temperature in the calcination process. With the rising of calcination temperature, the pore size of CuO has been tuned in the range of ∼0.4 nm to 22 nm. The porous CuO materials have been applied as anode materials in LIBs and the effects of porous size on the electrochemical properties were observed. The highly porous CuO nanorods with porous size in the range of ∼6 nm to 22 nm yielded excellent high specific capacity, good cycling stability, and high rate performance, superior to that of most reported CuO nanocomposites. The CuO material delivers a high reversible capacity of 654 mA h g(-1) and 93% capacity retention over 200 cycles at a rate of 0.5 C. It also exhibits excellent high rate capacity of 410 mA h g(-1) even at 6 C. These results suggest that the facile synthetic method of producing a tunable highly porous CuO nanostructure can realize a long cycle life with high reversible capacity, which is suitable for next-generation high-performance LIBs.

  11. AQUEOUS HOMOGENEOUS REACTORTECHNICAL PANEL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D.J.; Bajorek, S.; Bakel, A.; Flanagan, G.; Mubayi, V.; Skarda, R.; Staudenmeier, J.; Taiwo, T.; Tonoike, K.; Tripp, C.; Wei, T.; Yarsky, P.

    2010-12-03

    Considerable interest has been expressed for developing a stable U.S. production capacity for medical isotopes and particularly for molybdenum- 99 (99Mo). This is motivated by recent re-ductions in production and supply worldwide. Consistent with U.S. nonproliferation objectives, any new production capability should not use highly enriched uranium fuel or targets. Conse-quently, Aqueous Homogeneous Reactors (AHRs) are under consideration for potential 99Mo production using low-enriched uranium. Although the Nuclear Regulatory Commission (NRC) has guidance to facilitate the licensing process for non-power reactors, that guidance is focused on reactors with fixed, solid fuel and hence, not applicable to an AHR. A panel was convened to study the technical issues associated with normal operation and potential transients and accidents of an AHR that might be designed for isotope production. The panel has produced the requisite AHR licensing guidance for three chapters that exist now for non-power reactor licensing: Reac-tor Description, Reactor Coolant Systems, and Accident Analysis. The guidance is in two parts for each chapter: 1) standard format and content a licensee would use and 2) the standard review plan the NRC staff would use. This guidance takes into account the unique features of an AHR such as the fuel being in solution; the fission product barriers being the vessel and attached systems; the production and release of radiolytic and fission product gases and their impact on operations and their control by a gas management system; and the movement of fuel into and out of the reactor vessel.

  12. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    Science.gov (United States)

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  13. One-pot five-component synthesis of highly functionalized piperidines using oxalic acid dihydrate as a homogenous catalyst

    Institute of Scientific and Technical Information of China (English)

    Seyed Sajad Sajadikhah; Malek Taher Maghsoodlou; Nourallah Hazeri; Sayyed Mostafa Habibi-Khorassani; Anthony C. Willis

    2012-01-01

    An efficient green protocol is described for the preparation of highly functionalized piperidines via a one-pot five-component reaction between aromatic aldehydes,anilines and β-ketoesters in the presence of oxalic acid dihydrate as catalyst in ethanol at ambient temperature.The structure as well as the relative stereochemistry of these compounds was confirmed by single X-ray crystallographic analysis.

  14. Separation and purification of glucosinolates from crude plant homogenates by high-speed counter-current chromatography.

    Science.gov (United States)

    Fahey, Jed W; Wade, Kristina L; Stephenson, Katherine K; Chou, F Edward

    2003-05-01

    Glucosinolates are anionic, hydrophilic plant secondary metabolites which are of particular interest due to their role in the prevention of cancer and other chronic and degenerative diseases. The separation and purification of glucosinolates from a variety of plant sources (e.g. seeds of broccoli, arugula and the horseradish tree), was achieved using high-speed counter-current chromatography (HSCCC). A high-salt, highly polar system containing 1-propanol-acetonitrile-saturated aqueous ammonium sulfate-water (1:0.5:1.2:1), was run on a semi-preparative scale and then transferred directly to preparative scale. Up to 7 g of a concentrated methanolic syrup containing about 10% glucosinolates was loaded on an 850-ml HSCCC column, and good separation and recovery were demonstrated for 4-methylsulfinylbutyl, 3-methylsulfinylpropyl, 4-methylthiobutyl, 2-propenyl and 4-(rhamnopyranosyloxy)benzyl glucosinolates. Multiple injections (5 to 6 times) were performed with well-preserved liquid stationary phase under centrifugal force. Pooled sequential runs with broccoli seed extract yielded about 20 g of its predominant glucosinolate, glucoraphanin, which was produced at > 95% purity and reduced to powdered form.

  15. Lifting locally homogeneous geometric structures

    CERN Document Server

    McKay, Benjamin

    2011-01-01

    We prove that under some purely algebraic conditions every locally homogeneous structure modelled on some homogeneous space is induced by a locally homogeneous structure modelled on a different homogeneous space.

  16. Synthesization of high-capacity auto-associative memories using complex-valued neural networks

    Science.gov (United States)

    Huang, Yu-Jiao; Wang, Xiao-Yan; Long, Hai-Xia; Yang, Xu-Hua

    2016-12-01

    In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. Stability criteria dependent on external inputs of neural networks are derived. The designed networks can retrieve the stored patterns by external inputs rather than initial conditions. The derivation can memorize the desired patterns with lower-dimensional neural networks than real-valued neural networks, and eliminate spurious equilibria of complex-valued neural networks. One numerical example is provided to show the effectiveness and superiority of the presented results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503338, 61573316, 61374152, and 11302195) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ15F030005).

  17. Lithium decoration of three dimensional boron-doped graphene frameworks for high-capacity hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yunhui; Meng, Zhaoshun; Liu, Yuzhen; You, Dongsen; Wu, Kai; Lv, Jinchao; Wang, Xuezheng; Deng, Kaiming; Lu, Ruifeng, E-mail: dewei@ujs.edu.cn, E-mail: rflu@njust.edu.cn [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Rao, Dewei, E-mail: dewei@ujs.edu.cn, E-mail: rflu@njust.edu.cn [Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013 (China)

    2015-02-09

    Based on density functional theory and the first principles molecular dynamics simulations, a three-dimensional B-doped graphene-interconnected framework has been constructed that shows good thermal stability even after metal loading. The average binding energy of adsorbed Li atoms on the proposed material (2.64 eV) is considerably larger than the cohesive energy per atom of bulk Li metal (1.60 eV). This value is ideal for atomically dispersed Li doping in experiments. From grand canonical Monte Carlo simulations, high hydrogen storage capacities of 5.9 wt% and 52.6 g/L in the Li-decorated material are attained at 298 K and 100 bars.

  18. Functionality and homogeneity.

    NARCIS (Netherlands)

    2011-01-01

    Functionality and homogeneity are two of the five Sustainable Safety principles. The functionality principle aims for roads to have but one exclusive function and distinguishes between traffic function (flow) and access function (residence). The homogeneity principle aims at differences in mass, spe

  19. Functionality and homogeneity.

    NARCIS (Netherlands)

    2011-01-01

    Functionality and homogeneity are two of the five Sustainable Safety principles. The functionality principle aims for roads to have but one exclusive function and distinguishes between traffic function (flow) and access function (residence). The homogeneity principle aims at differences in mass, spe

  20. The catalytic reactions in the Cu-Li-Mg-H high capacity hydrogen storage system.

    Science.gov (United States)

    Braga, M H; El-Azab, A

    2014-11-14

    A family of hydrides, including the high capacity MgH2 and LiH, is reported. The disadvantages these hydrides normally display (high absorption/desorption temperatures and poor kinetics) are mitigated by Cu-hydride catalysis. This paper reports on the synthesis of novel CuLi0.08Mg1.42H4 and CuLi0.08Mg1.92H5 hydrides, which are structurally and thermodynamically characterized for the first time. The CuLi0.08Mg1.42H4 hydride structure in nanotubes is able to hold molecular H2, increasing the gravimetric and volumetric capacity of this compound. The catalytic effect these compounds show on hydride formation and decomposition of CuMg2 and Cu2Mg/MgH2, Li and LiH, Mg and MgH2 is analyzed. The Gibbs energy, decomposition temperature, and gravimetric capacity of the reactions occurring within the Cu-Li-Mg-H system are presented for the first time. First principles and phonon calculations are compared with experiments, including neutron spectroscopy. It is demonstrated that the most advantageous sample contains CuLi0.08Mg1.92 and (Li) ∼ Li2Mg3; it desorbs/absorbs hydrogen according to the reaction, 2CuLi0.08Mg1.42H4 + 2Li + 4MgH2 ↔ 2CuLi0.08Mg1.92 + Li2Mg3 + 8H2 at 114 °C (5.0 wt%) - 1 atm, falling within the proton exchange membrane fuel cell applications window. Finally the reaction 2CuLi0.08Mg1.42H4 + MgH2 ↔ 2CuLi0.08Mg1.92 + 5H2 at 15 °C (4.4 wt%) - 1 atm is found to be the main reaction of the samples containing CuLi0.08Mg1.92 that were analyzed in this study.

  1. A Novel and High Capacity Audio Steganography Algorithm Based on Adaptive Data Embedding Positions

    Directory of Open Access Journals (Sweden)

    Haider Ismael Shahadi

    2014-03-01

    Full Text Available In this study, a novel and high embedding capacity audio steganography scheme based on Lifting Wavelet Transform (LWT and adaptive embedding positions is proposed. Specifically, the message data is inserted in the imperceptible positions that chosen from the coefficients of detail sub-bands taking advantage of our proposed Weighted Block Matching (WBM. The WBM is preceded by preparing the cover audio in order to select the bits-positions that can possibly be used for embedding from each detail coefficient based on coefficient amplitude then copy the contents of the selected bits-positions and arrange them in blocks of bits. Also, the message data is arranged in blocks of bits after preprocessed and encrypted. The WBM computes the matching between each message block and whole extracted cover blocks to find the similarity between them. This process help to provide optimal locations to hide the message blocks. These locations are considered as a stego-key that is ciphered and hided within the final detail sub-band which is specified for this purpose. The proposed approach attains higher security than other fixed embedding positions approaches because the random positions for the embedded message blocks based on adaptive selection for embedding positions. Experimental results show that the proposed technique is not only has very high embedding capacity (exceed 300 kbps with excellent transparency (above 35 dB for the cover to noise ratio, but also achieve lossless massage retrieved. Comparisons with the related audio steganography algorithms also show that our proposed scheme outperforms all the selected algorithms.

  2. X-chromosome SNP analyses in 11 human Mediterranean populations show a high overall genetic homogeneity except in North-west Africans (Moroccans

    Directory of Open Access Journals (Sweden)

    Ben Dhiab Mohamed

    2008-02-01

    Full Text Available Abstract Background Due to its history, with a high number of migration events, the Mediterranean basin represents a challenging area for population genetic studies. A large number of genetic studies have been carried out in the Mediterranean area using different markers but no consensus has been reached on the genetic landscape of the Mediterranean populations. In order to further investigate the genetics of the human Mediterranean populations, we typed 894 individuals from 11 Mediterranean populations with 25 single-nucleotide polymorphisms (SNPs located on the X-chromosome. Results A high overall homogeneity was found among the Mediterranean populations except for the population from Morocco, which seemed to differ genetically from the rest of the populations in the Mediterranean area. A very low genetic distance was found between populations in the Middle East and most of the western part of the Mediterranean Sea. A higher migration rate in females versus males was observed by comparing data from X-chromosome, mt-DNA and Y-chromosome SNPs both in the Mediterranean and a wider geographic area. Multilocus association was observed among the 25 SNPs on the X-chromosome in the populations from Ibiza and Cosenza. Conclusion Our results support both the hypothesis of (1 a reduced impact of the Neolithic Wave and more recent migration movements in NW-Africa, and (2 the importance of the Strait of Gibraltar as a geographic barrier. In contrast, the high genetic homogeneity observed in the Mediterranean area could be interpreted as the result of the Neolithic wave caused by a large demic diffusion and/or more recent migration events. A differentiated contribution of males and females to the genetic landscape of the Mediterranean area was observed with a higher migration rate in females than in males. A certain level of background linkage disequilibrium in populations in Ibiza and Cosenza could be attributed to their demographic background.

  3. Homogeneity analysis of high yield manufacturing process of mems-based pzt thick film vibrational energy harvesters

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Pedersen, C.M.

    2011-01-01

    This work presents a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibrational energy harvesters aimed towards vibration sources with peak frequencies in the range of a few hundred Hz. By combining KOH etching with mechanical front side protection, SOI wafer...... to accurately define the thickness of the silicon part of the harvester and a silicon compatible PZT thick film screen-printing technique, we are able to fabricate energy harvesters on wafer scale with a yield higher than 90%. The characterization of the fabricated harvesters is focused towards the full wafer....../mass-production aspect; hence the analysis of uniformity in harvested power and resonant frequency....

  4. Influence of high-pressure homogenization, ultrasonication, and supercritical fluid on free astaxanthin extraction from β-glucanase-treated Phaffia rhodozyma cells.

    Science.gov (United States)

    Hasan, Mojeer; Azhar, Mohd; Nangia, Hina; Bhatt, Prakash Chandra; Panda, Bibhu Prasad

    2016-01-01

    In this study astaxanthin production by Phaffia rhodozyma was enhanced by chemical mutation using ethyl methane sulfonate. The mutant produces a higher amount of astaxanthin than the wild yeast strain. In comparison to supercritical fluid technique, high-pressure homogenization is better for extracting astaxanthin from yeast cells. Ultrasonication of dimethyl sulfoxide, hexane, and acetone-treated cells yielded less astaxanthin than β-glucanase enzyme-treated cells. The combination of ultrasonication with β-glucanase enzyme is found to be the most efficient method of extraction among all the tested physical and chemical extraction methods. It gives a maximum yield of 435.71 ± 6.55 µg free astaxanthin per gram of yeast cell mass.

  5. Effect of high-pressure homogenization, nonfat milk solids, and milkfat on the technological performance of a functional strain for the production of probiotic fermented milks.

    Science.gov (United States)

    Patrignani, F; Iucci, L; Lanciotti, R; Vallicelli, M; Mathara, J Maina; Holzapfel, W H; Guerzoni, M E

    2007-10-01

    The aim of this research was the evaluation of the effects of milkfat content, nonfat milk solids content, and high-pressure homogenization on 1) fermentation rates of the probiotic strain Lactobacillus paracasei BFE 5264 inoculated in milk; 2) viability loss of this strain during refrigerated storage; and 3) texture parameters, volatile compounds, and sensorial properties of the coagula obtained. The data achieved suggested a very strong effect of the independent variables on the measured attributes of fermented milks. In fact, the coagulation times were significantly affected by pressure and added milkfat, and the rheological parameters of the fermented milk increased with the pressure applied to the milk for added nonfat milk solids concentrations lower than 3%. Moreover, the polynomial models and the relative response surfaces obtained permitted us to identify the levels of the 3 independent variables that minimized the viability loss of the probiotic strain used during refrigerated storage.

  6. Effect of a pre-treatment of milk with high pressure homogenization on yield as well as on microbiological, lipolytic and proteolytic patterns of "Pecorino" cheese.

    Science.gov (United States)

    Vannini, Lucia; Patrignani, Francesca; Iucci, Luciana; Ndagijimana, Maurice; Vallicelli, Melania; Lanciotti, Rosalba; Guerzoni, Maria Elisabetta

    2008-12-10

    The principal aim of this work was to compare Pecorino cheeses obtained from ewes' milk previously subjected to high pressure homogenization (HPH) at 100 MPa with those produced from raw and heat treated ewes' milk. The HPH milk treatment induced a significant increase of the cheese yield and caused a reduction of enterococci, lactococci and yeasts in the curds. Enterococci cell loads remained at lower levels in cheeses obtained from HPH milk over the ripening period. Analyses of free fatty acids, Sodium Dodecil Sulphate (SDS)-PAGE profiles, Gas Chromatography-Mass Spectrometry-Solid Phase Microextraction (GC-MS-SPME) measurements of volatile compounds and sensory traits evidenced that the pressure treatment can be regarded also as a useful tool to differentiate products obtained from the same raw material. In fact such a milk treatment induced a marked lipolysis, an early proteolysis, a relevant modification of the volatile molecule profiles and sensory properties of Pecorino cheese.

  7. High-Density Three-Dimension Graphene Macroscopic Objects for High-Capacity Removal of Heavy Metal Ions

    Science.gov (United States)

    Li, Weiwei; Gao, Song; Wu, Liqiong; Qiu, Shengqiang; Guo, Yufen; Geng, Xiumei; Chen, Mingliang; Liao, Shutian; Zhu, Chao; Gong, Youpin; Long, Mingsheng; Xu, Jianbao; Wei, Xiangfei; Sun, Mengtao; Liu, Liwei

    2013-01-01

    The chemical vapor deposition (CVD) fabrication of high-density three-dimension graphene macroscopic objects (3D-GMOs) with a relatively low porosity has not yet been realized, although they are desirable for applications in which high mechanical and electrical properties are required. Here, we explore a method to rapidly prepare the high-density 3D-GMOs using nickel chloride hexahydrate (NiCl2·6H2O) as a catalyst precursor by CVD process at atmospheric pressure. Further, the free-standing 3D-GMOs are employed as electrolytic electrodes to remove various heavy metal ions. The robust 3D structure, high conductivity (~12 S/cm) and large specific surface area (~560 m2/g) enable ultra-high electrical adsorption capacities (Cd2+ ~ 434 mg/g, Pb2+ ~ 882 mg/g, Ni2+ ~ 1,683 mg/g, Cu2+ ~ 3,820 mg/g) from aqueous solutions and fast desorption. The current work has significance in the studies of both the fabrication of high-density 3D-GMOs and the removal of heavy metal ions. PMID:23821107

  8. Microbial response and elimination capacity in biofilters subjected to high toluene loadings.

    Science.gov (United States)

    Song, JiHyeon; Kinney, Kerry A

    2005-09-01

    Elimination capacity (EC) is frequently used as a performance and design criterion for vapor-phase biofilters without further verification of the microbial quantity and activity. This study was conducted to investigate how biofilters respond to high pollutant loadings and ultimately how this affects the EC of the biofilter. Two identical laboratory-scale biofilters were maintained at an initial toluene loading rate of 46 g m-3 h-1 for a period of 24 days. After the initial biofilm development stage, the loading rates were increased to 91 g m-3 h-1 and 137 g m-3 h-1, respectively. Following a short period of pseudo-steady state, toluene removal efficiencies rapidly declined in both biofilters, with a concurrent decline in both critical and maximum ECs. The decline was mainly due to deterioration in the biodegradation activity of the biofilm and a decline in the toluene-degrading bacterial population within the biofilm phase. The findings imply that high toluene loadings accelerated the deterioration in overall performance due to a rapid accumulation of inactive biomass. As a result, care must be used when relying on EC values for biofilter design and operational purposes, since the values do not appropriately reflect the temporal changes in biodegradation activity and active biomass quantities that can occur in biofilters subjected to high inlet loadings.

  9. Monoclonal origin of peritoneal implants and lymph node deposits in serous borderline ovarian tumors (s-BOT) with high intratumoral homogeneity.

    Science.gov (United States)

    Horn, Lars-Christian; Höhn, Anne K; Einenkel, Jens; Siebolts, Udo

    2014-11-01

    Molecular studies have shown that the most prevalent mutations in serous ovarian borderline tumors (s-BOT) are BRAF and/or KRAS alterations. About one third of s-BOT represent peritoneal implants and/or lymph node involvement. These extraovarian deposits may be monoclonal or polyclonal in origin. To test both the hypotheses, mutational analyses using pyrosequencing for BRAF codon 600 and KRAS codon 12/13 and 61 of microdissected tissue was performed in 15 s-BOT and their invasive and noninvasive peritoneal implants. Two to 6 implants from different peritoneal sites were examined in 13 cases. Lymph node deposits were available for the analysis in 3 cases. Six s-BOT showed mutation in exon 2 codon 12 of the KRAS proto-oncogen. Five additional cases showed BRAF p.V600E mutation representing an overall mutation rate of 73.3%. Multiple (2-6) peritoneal implants were analyzed after microdissection in 13 of 15 cases. All showed identical mutational results when compared with the ovarian site of the disease. All lymph node deposits, including those with multiple deposits in different nodes, showed identical results, suggesting high intratumoral mutational homogeneity. The evidence presented in this study and the majority of data reported in the literature support the hypothesis that s-BOT with their peritoneal implants and lymph node deposits show identical mutational status of BRAF and KRAS suggesting a monoclonal rather than a polyclonal disease regarding these both tested genetic loci. In addition, a high intratumoral genetic homogeneity can be suggested. In conclusion, the results of the present study support the monoclonal origin of s-BOT and their peritoneal implants and lymph node deposits.

  10. Qustionnaire to evaluate the capacity of self-care in patients with high blood pressure

    OpenAIRE

    Achury Saldaña, Diana Marcela; Pontificia Universidad Javeriana; Sepúlveda, Gloria Judith; Pontificia Universidad Javeriana; Rodríguez Colmenares, Sandra Mónica; Pontificia Universidad Javeriana

    2011-01-01

    Introduction: this paper describes the initial construction and validation of an instument used to evaluate the capacity of self-care in patients with hypertension. The instrument is based on Dorothea Orem's Theory of Self-Care and is comprised of 17 items grouped into three dimensions: fundamental capacities; power components; and capacity of self-care management. Methods: the instument was administered to 159 people with hypertension. Construct validity was established using factorial analy...

  11. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Lifen; Cao, Yuliang; Henderson, Wesley A.; Sushko, Maria L.; Shao, Yuyan; Xiao, Jie; Wang, Wei; Engelhard, Mark H.; Nie, Zimin; Liu, Jun

    2016-01-01

    Hard carbon nanoparticles (HCNP) were synthesized by the pyrolysis of a polyaniline precursor. The measured Na+ cation diffusion coefficient (10-13-10-15cm2s-1) in the HCNP obtained at 1150 °C is two orders of magnitude lower than that of Li+ in graphite (10-10-13-15cm2s-1), indicating that reducing the carbon particle size is very important for improving electrochemical performance. These measurements also enable a clear visualization of the stepwise reaction phases and rate changes which occur throughout the insertion/extraction processes in HCNP, The electrochemical measurements also show that the nano-sized HCNP obtained at 1150 °C exhibited higher practical capacity at voltages lower than 1.2 V (vs. Na/Na⁺), as well as a prolonged cycling stability, which is attributed to an optimum spacing of 0.366 nm between the graphitic layers and the nano particular size resulting in a low-barrier Na+ cation insertion. These results suggest that HCNP is a very promising high-capacity/stability anode for low cost sodium-ion batteries (SIBs).

  12. Synthesis, characterization and dye removal ability of high capacity polymeric adsorbent: Polyaminoimide homopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, Niyaz Mohammad, E-mail: nm_mahmoodi@aut.ac.ir [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Najafi, Farhood [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Khorramfar, Shooka [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Amini, Farrokhlegha [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Arami, Mokhtar [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Polyaminoimide homopolymer (PAIHP) was synthesized and characterized. Black-Right-Pointing-Pointer Kinetics data followed pseudo-second order kinetic model. Black-Right-Pointing-Pointer Isotherm data followed Langmuir isotherm. Black-Right-Pointing-Pointer Q{sub 0} for DR31, DR23, DB22 and AB25 was 6667, 5555, 9090 and 5882 mg/g, respectively. Black-Right-Pointing-Pointer PAIHP was regenerated at pH 12. - Abstract: In this paper, polyaminoimide homopolymer (PAIHP) was synthesized and its dye removal ability was investigated. Physical characteristics of PAIHP were studied using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Direct Red 31 (DR31), Direct Red 23 (DR23), Direct Black 22 (DB22) and Acid Blue 25 (AB25) were used as model compounds. The kinetic and isotherm of dye adsorption were studied. The effect of operational parameter such as adsorbent dosage, pH and salt on dye removal was evaluated. Adsorption kinetic of dyes followed pseudo-second order kinetics. The maximum dye adsorption capacity (Q{sub 0}) of PAIHP was 6667 mg/g, 5555 mg/g, 9090 mg/g and 5882 mg/g for DR31, DR23, DB22 and AB25, respectively. It was found that adsorption of DR31, DR23, DB22 and AB25 onto PAIHP followed with Langmuir isotherm. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% for DR31, 86% for DR23, 87% for DB22 and 90% for AB25 were achieved in aqueous solution at pH 12. The results showed that the PAIHP as a polymeric adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored wastewater.

  13. Secured Data Encoding Technique in High Capacity Color Barcodes for M-Ticket Application

    Directory of Open Access Journals (Sweden)

    B. Akila

    2013-01-01

    Full Text Available This research aim is to increase the capacity of barcode (i.e. Number of data bits embedded inside barcode will be increased by encoding data through orientation modulation in elliptical dot array. BARCODES that encode digital data on physical media are commonly utilized in commercial applications for tracing/tracking of trade items, in security applications for linking personal documents with a user, or in other applications as an auxiliary channel to encode additional information on a physical medium. which are fundamentally analog, these methods can add security and functionality and features that are associated with digital techniques at the expense of consuming space on the media. For instance, in personal IDs, driving licenses and passports, high capacity can enable the encoding of a sample speech signal, a picture, or other identifying personal information which in turn may be used to establish authenticity of the user. Care must, however, be exercised in designing color barcodes to ensure that they are robust to variations in the color printing and scanning processes, which have a greater impact when considering color rather than black/white reproduction and capture.2D bar codes are being considered for new emerging applications such as M-ticketing, where they carry selected information of a ticket that is received via a mobile phone; reliable and secure personal identification, where they store personal biometric data on the identification document; and visual communications with side information, where they can be used as an auxiliary channel conveying additional data for improving visual communications.

  14. Computational prediction of high methane storage capacity in V-MOF-74.

    Science.gov (United States)

    Hyeon, Seokwon; Kim, Young-Chul; Kim, Jihan

    2017-08-09

    The methane adsorption properties in M-MOF-74 (M = Mg, Ti, V, Cr, Mn, Co, Ni, Cu, and Zn) were investigated for potential adsorbed natural gas (ANG) vehicle applications. In particular, density functional theory (DFT) simulations were conducted to derive the force field parameters that were used in the grand canonical Monte Carlo (GCMC) simulations to obtain the methane adsorption isotherm curves. Our results indicate that commonly used DFT exchange correlation functionals (e.g. vdW-DF, vdW-DF2, PBE+D2) overestimated the methane binding strength to the metal sites, leading to inaccurate description of the adsorption properties. As such, the global scaling factor within the exchange correlation functional, PBE+D2, was optimized to find a suitable functional that leads to good agreement with the available experimental methane adsorption data. From the newly derived force field parameters, our computational simulations predict a methane uptake of 279 cm(3) cm(-3) in V-MOF-74 at T = 298 K and P = 65 bar (condition relevant to ANG storage operation), which would be higher than the current record holder of HKUST-1 (270 cm(3) cm(-3)). Although the methane working capacity (65-5.8 bar uptake difference) is low due to strong binding of methane with the V-MOF-74, varying the process conditions (e.g. lower adsorption temperature, higher desorption temperature, lower desorption pressure) can lead to a significantly high methane working capacity, towards the goal of meeting the DOE requirements for ANG technology.

  15. Chemical thermodynamics of nuclear materials. 8. The high-temperature heat capacity of unalloyed plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Oetting, F.L.; Adams, R.O. (Rockwell International Corp., Golden, CO (USA). Energy Systems Group)

    1983-06-01

    The heat capacity of pure plutonium metal has been determined from 330 to 700 K by adiabatic calorimetry. This includes measurements on the ..cap alpha..-, ..beta..-, ..gamma..-, and delta-phases. A large contribution to the heat capacity, especially in the delta-phase, is due to the electronic heat capacity. A negative anharmonic heat capacity is found for the ..cap alpha..-phase. The enthalpies and temperatures of the transitions between these phases were also determined. With the use of thermodynamic quantities on the delta'-, epsilon-, and (1)-phases available from the literature, the thermal functions for pure plutonium metal were calculated to 1000 K.

  16. High capacity and high density functional conductive polymer and SiO anode for high-energy lithium-ion batteries.

    Science.gov (United States)

    Zhao, Hui; Yuca, Neslihan; Zheng, Ziyan; Fu, Yanbao; Battaglia, Vincent S; Abdelbast, Guerfi; Zaghib, Karim; Liu, Gao

    2015-01-14

    High capacity and high density functional conductive polymer binder/SiO electrodes are fabricated and calendered to various porosities. The effect of calendering is investigated in the reduction of thickness and porosity, as well as the increase of density. SiO particle size remains unchanged after calendering. When compressed to an appropriate density, an improved cycling performance and increased energy density are shown compared to the uncalendered electrode and overcalendered electrode. The calendered electrode has a high-density of ∼1.2 g/cm(3). A high loading electrode with an areal capacity of ∼3.5 mAh/cm(2) at a C/10 rate is achieved using functional conductive polymer binder and simple and effective calendering method.

  17. Ventilation Limits Aerobic Capacity after Functional Electrical Stimulation Row Training in High Spinal Cord Injury.

    Science.gov (United States)

    Qiu, Shuang; Alzhab, Saeed; Picard, Glen; Taylor, J Andrew

    2016-06-01

    In the able-bodied, exercise training results in increased ventilatory capacity to meet increased aerobic demands of trained skeletal muscle. However, after spinal cord injury (SCI), peak ventilation can be limited by pulmonary muscle denervation. In fact, peak ventilation may restrict aerobic capacity in direct relation to injury level. Hybrid functional electrical stimulation (FES) exercise training results in increased aerobic capacity and dissociation between aerobic capacity and injury level in those with injuries at T3 and below. However, injuries above T3 have the greatest pulmonary denervation, and ventilatory capacity may restrict the increase in aerobic capacity with hybrid FES training. We assessed relationships among injury level, peak ventilation, and peak aerobic capacity and calculated oxygen uptake efficiency slope during hybrid FES exercise in 12 individuals (1 female) with SCI at level T2 to C4 (injury duration = 0.33-33 yr, age = 20-60 yr), before and after 6 months of FES-row training (FES-RT). Training increased peak aerobic capacity by 12% (P = 0.02) with only a modest increase in peak ventilation (7 of 12 subjects, P = 0.09). Both before and after training, injury level was directly related to peak ventilation (R = 0.48 and 0.43) and peak aerobic capacity (R = 0.70 and 0.55). Before training, the relationship of peak aerobic capacity to peak ventilation was strong (R = 0.62), however, after training, this relationship became almost completely linearized (R = 0.84). In addition, oxygen uptake efficiency slope increased by 11% (P injuries (above T3) appears to restrict aerobic capacity.

  18. Soluble Fiber with High Water-Binding Capacity, Swelling Capacity, and Fermentability Reduces Food Intake by Promoting Satiety Rather Than Satiation in Rats

    Science.gov (United States)

    Tan, Chengquan; Wei, Hongkui; Zhao, Xichen; Xu, Chuanhui; Zhou, Yuanfei; Peng, Jian

    2016-01-01

    To understand whether soluble fiber (SF) with high water-binding capacity (WBC), swelling capacity (SC) and fermentability reduces food intake and whether it does so by promoting satiety or satiation or both, we investigated the effects of different SFs with these properties on the food intake in rats. Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch (PWMS) plus guar gum (PG), and PWMS starch plus xanthan gum (PX) for three weeks, with the measured values of SF, WBC, and SC in the four diets following the order of PG > KF > PX > control. Food intake, body weight, meal pattern, behavioral satiety sequence, and short-chain fatty acids (SCFAs) in cecal content were evaluated. KF and PG groups reduced the food intake, mainly due to the decreased feeding behavior and increased satiety, as indicated by decreased meal numbers and increased inter-meal intervals. Additionally, KF and PG groups increased concentrations of acetate acid, propionate acid, and SCFAs in the cecal contents. Our results indicate that SF with high WBC, SC, and fermentability reduces food intake—probably by promoting a feeling of satiety in rats to decrease their feeding behavior. PMID:27706095

  19. Soluble Fiber with High Water-Binding Capacity, Swelling Capacity, and Fermentability Reduces Food Intake by Promoting Satiety Rather Than Satiation in Rats.

    Science.gov (United States)

    Tan, Chengquan; Wei, Hongkui; Zhao, Xichen; Xu, Chuanhui; Zhou, Yuanfei; Peng, Jian

    2016-10-02

    To understand whether soluble fiber (SF) with high water-binding capacity (WBC), swelling capacity (SC) and fermentability reduces food intake and whether it does so by promoting satiety or satiation or both, we investigated the effects of different SFs with these properties on the food intake in rats. Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch (PWMS) plus guar gum (PG), and PWMS starch plus xanthan gum (PX) for three weeks, with the measured values of SF, WBC, and SC in the four diets following the order of PG > KF > PX > control. Food intake, body weight, meal pattern, behavioral satiety sequence, and short-chain fatty acids (SCFAs) in cecal content were evaluated. KF and PG groups reduced the food intake, mainly due to the decreased feeding behavior and increased satiety, as indicated by decreased meal numbers and increased inter-meal intervals. Additionally, KF and PG groups increased concentrations of acetate acid, propionate acid, and SCFAs in the cecal contents. Our results indicate that SF with high WBC, SC, and fermentability reduces food intake-probably by promoting a feeling of satiety in rats to decrease their feeding behavior.

  20. Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K

    Science.gov (United States)

    Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Dai, Wei; Li, Ke; Pang, Xiaomin; Yu, Guoyao; Luo, Ercang

    2016-12-01

    This paper presents a two-stage high-capacity free-piston Stirling cryocooler driven by a linear compressor to meet the requirement of the high temperature superconductor (HTS) motor applications. The cryocooler system comprises a single piston linear compressor, a two-stage free piston Stirling cryocooler and a passive oscillator. A single stepped displacer configuration was adopted. A numerical model based on the thermoacoustic theory was used to optimize the system operating and structure parameters. Distributions of pressure wave, phase differences between the pressure wave and the volume flow rate and different energy flows are presented for a better understanding of the system. Some characterizing experimental results are presented. Thus far, the cryocooler has reached a lowest cold-head temperature of 27.6 K and achieved a cooling power of 78 W at 40 K with an input electric power of 3.2 kW, which indicates a relative Carnot efficiency of 14.8%. When the cold-head temperature increased to 77 K, the cooling power reached 284 W with a relative Carnot efficiency of 25.9%. The influences of different parameters such as mean pressure, input electric power and cold-head temperature are also investigated.

  1. MEO based secured, robust, high capacity and perceptual quality image watermarking in DWT-SVD domain.

    Science.gov (United States)

    Gunjal, Baisa L; Mali, Suresh N

    2015-01-01

    The aim of this paper is to present multiobjective evolutionary optimizer (MEO) based highly secured and strongly robust image watermarking technique using discrete wavelet transform (DWT) and singular value decomposition (SVD). Many researchers have failed to achieve optimization of perceptual quality and robustness with high capacity watermark embedding. Here, we achieved optimized peak signal to noise ratio (PSNR) and normalized correlation (NC) using MEO. Strong security is implemented through eight different security levels including watermark scrambling by Fibonacci-Lucas transformation (FLT). Haar wavelet is selected for DWT decomposition to compare practical performance of wavelets from different wavelet families. The technique is non-blind and tested with cover images of size 512x512 and grey scale watermark of size 256x256. The achieved perceptual quality in terms of PSNR is 79.8611dBs for Lena, 87.8446 dBs for peppers and 93.2853 dBs for lake images by varying scale factor K1 from 1 to 5. All candidate images used for testing namely Lena, peppers and lake images show exact recovery of watermark giving NC equals to 1. The robustness is tested against variety of attacks on watermarked image. The experimental demonstration proved that proposed method gives NC more than 0.96 for majority of attacks under consideration. The performance evaluation of this technique is found superior to all existing hybrid image watermarking techniques under consideration.

  2. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-09-06

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  3. High levels of SOX5 decrease proliferative capacity of human B cells, but permit plasmablast differentiation.

    Directory of Open Access Journals (Sweden)

    Mirzokhid Rakhmanov

    Full Text Available Currently very little is known about the differential expression and function of the transcription factor SOX5 during B cell maturation. We identified two new splice variants of SOX5 in human B cells, encoding the known L-SOX5B isoform and a new shorter isoform L-SOX5F. The SOX5 transcripts are highly expressed during late stages of B-cell differentiation, including atypical memory B cells, activated CD21low B cells and germinal center B cells of tonsils. In tonsillar sections SOX5 expression was predominantly polarized to centrocytes within the light zone. After in vitro stimulation, SOX5 expression was down-regulated during proliferation while high expression levels were permissible for plasmablast differentiation. Overexpression of L-SOX5F in human primary B lymphocytes resulted in reduced proliferation, less survival of CD138neg B cells, but comparable numbers of CD138+CD38hi plasmablasts compared to control cells. Thus, our findings describe for the first time a functional role of SOX5 during late B cell development reducing the proliferative capacity and thus potentially affecting the differentiation of B cells during the germinal center response.

  4. High-capacity, low-tortuosity, and channel-guided lithium metal anode

    Science.gov (United States)

    Zhang, Ying; Luo, Wei; Wang, Chengwei; Li, Yiju; Chen, Chaoji; Song, Jianwei; Dai, Jiaqi; Hitz, Emily M.; Xu, Shaomao; Yang, Chunpeng; Wang, Yanbin; Hu, Liangbing

    2017-04-01

    Lithium metal anode with the highest capacity and lowest anode potential is extremely attractive to battery technologies, but infinite volume change during the Li stripping/plating process results in cracks and fractures of the solid electrolyte interphase, low Coulombic efficiency, and dendritic growth of Li. Here, we use a carbonized wood (C-wood) as a 3D, highly porous (73% porosity) conductive framework with well-aligned channels as Li host material. We discovered that molten Li metal can infuse into the straight channels of C-wood to form a Li/C-wood electrode after surface treatment. The C-wood channels function as excellent guides in which the Li stripping/plating process can take place and effectively confine the volume change that occurs. Moreover, the local current density can be minimized due to the 3D C-wood framework. Therefore, in symmetric cells, the as-prepared Li/C-wood electrode presents a lower overpotential (90 mV at 3 mAṡcm-2), more-stable stripping/plating profiles, and better cycling performance (˜150 h at 3 mAṡcm-2) compared with bare Li metal electrode. Our findings may open up a solution for fabricating stable Li metal anode, which further facilitates future application of high-energy-density Li metal batteries.

  5. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Science.gov (United States)

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  6. State Violence and Oppositional Protest in High-Capacity Authoritarian Regimes

    Directory of Open Access Journals (Sweden)

    Hank Johnston

    2012-05-01

    Full Text Available This examination of the mobilization-repression nexus in high-capacity authoritarian regimes draws on examples from China, Russia, Iran, and several Middle Eastern states to develop a framework for analyzing state violence and how political oppositions are organized. The study examines middle and low levels of state violence, the provincial and municipal organization of party and regime, and the police, private militias, and thugs as low-level enforcers, and focuses on: (1 the complexity of the state’s apparatus of repression and control and how different levels exercise different forms of violence against activists; (2 the creativity of the opposition’s actions to voice its demands and avoid repression and surveillance; and (3 the recursive relationship between the two, a dark dance between state and opposition with high stakes for both. Hierarchical analysis at national, provincial, and local levels, and lateral analysis across these levels, where elite interests frequently diverge, show that intersections and gaps on both axes can create lapses in social control and openings the opposition. These free spaces of speech and innovative action give rise to novel ways to keep oppositional sentiments in the public forum. The article offers several propositions for analyzing repression and state violence at various levels, and, similarly, the various ways that these free spaces occur.

  7. Analysis of achievable capacity in irregularly-placed high performance mesh nodes

    CSIR Research Space (South Africa)

    Olwal, TO

    2012-09-01

    Full Text Available challenge. This paper derives the achievable capacity limit of such HPNs’ placements. The analytical results show that the network capacity increases with the irregularity of HPNs placements, the number of antennas as well as the multiplicity of radios per...

  8. Capacity Payments in Restructured Markets under Low and High Penetration Levels of Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Jenkin, Philipp Beiter, and Robert Margolis

    2016-02-01

    Growing levels of variable renewable energy resources arguably create new challenges for capacity market designs, because variable renewable energy suppresses wholesale energy prices while providing relatively little capacity. This effect becomes more pronounced the higher the variable renewable energy penetration in a market. The purpose of this report is threefold. First, we provide a brief outline of the purpose and design of various capacity markets using administratively determined capacity demand curves. Second, we discuss some of the main challenges raised in existing literature and a set of interviews that we conducted with market participants, regulators, and observers. Third, we consider some of the challenges to capacity markets that arise with higher variable renewable energy penetration.

  9. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf;

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...... the dimension and the intensity is used to quantify and rank the homogeneity of glass products. Compared with the refractive index method, the image processing method has a wider detection range and a lower statistical uncertainty....

  10. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...... the dimension and the intensity is used to quantify and rank the homogeneity of glass products. Compared with the refractive index method, the image processing method has a wider detection range and a lower statistical uncertainty....

  11. Benchmarking monthly homogenization algorithms

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2011-08-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  12. High compositional homogeneity in In-rich InGaAs nanowire arrays on nanoimprinted SiO{sub 2}/Si (111)

    Energy Technology Data Exchange (ETDEWEB)

    Hertenberger, S.; Vizbaras, K.; Rudolph, D.; Becker, J.; Bolte, S.; Bichler, M.; Finley, J. J.; Amann, M.-C.; Koblmueller, G. [Walter Schottky Institut and Physik Department, Technische Universitaet Muenchen, Garching 85748 (Germany); Funk, S.; Zardo, I.; Abstreiter, G. [Walter Schottky Institut and Physik Department, Technische Universitaet Muenchen, Garching 85748 (Germany); Institute for Advanced Study, Technische Universitaet Muenchen, Garching 85748 (Germany); Yadav, A.; Scarpa, G.; Lugli, P. [Institute for Nanoelectronics, Technische Universitaet Muenchen, Munich 80333 (Germany); Doeblinger, M. [Department of Chemistry, Ludwig-Maximilian Universitaet Muenchen, Munich 81377 (Germany)

    2012-07-23

    We report improved homogeneity control of composition-tuned In{sub 1-x}Ga{sub x}As (x < 0.4) nanowire (NW) arrays grown by catalyst-free molecular beam epitaxy (MBE) on nanoimprinted SiO{sub 2}/Si (111) substrates. Using very high As/(Ga+In) ratios at growth temperatures of 550 Degree-Sign C enabled uniform incorporation of the respective group-III elements (In,Ga) over the investigated composition range, confirmed by high-resolution x-ray diffraction (HRXRD) and energy dispersive x-ray spectroscopy. Low-temperature (20 K) photoluminescence of these In-rich In{sub 1-x}Ga{sub x}As NW ensembles reveal state-of-the-art linewidths of {approx}29-33 meV. These are independent of Ga content, suggesting an overall low degree of phase separation. In contrast, self-assembled, non-periodic In{sub 1-x}Ga{sub x}As NW arrays show larger inhomogeneity with increased peakwidths in 2{theta}-{omega} HRXRD scans as well as broadened Raman modes. These results demonstrate the excellent potential of site-selective MBE growth of high-periodicity non-tapered In{sub 1-x}Ga{sub x}As NW arrays with low size and composition dispersion for optimized device integration on Si.

  13. Rolling cycle amplification based single-color quantum dots-ruthenium complex assembling dyads for homogeneous and highly selective detection of DNA.

    Science.gov (United States)

    Su, Chen; Liu, Yufei; Ye, Tai; Xiang, Xia; Ji, Xinghu; He, Zhike

    2015-01-01

    In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots-ruthenium complex (QDs-Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen)2(dppx)](2+) (dppx=7,8-dimethyldipyrido [3,2-a:2',3'-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen)2(dppx)](2+) is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen)2(dppx)](2+) through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover, this strategy applies QDs-Ru assembling dyads to the detection of single-strand DNA (ssDNA) without any functionalization and separation techniques.

  14. Assessment of homogeneity of the shear-strain pattern in Al–7 wt%Si casting alloy processed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Cepeda-Jiménez, C.M., E-mail: carmen.cepeda@imdea.org [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain); Orozco-Caballero, A.; García-Infanta, J.M. [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain); Zhilyaev, A.P. [Institute for Metals Superplasticity Problems, Russian Academy of Science, 39 Khalturina, 450001 Ufa (Russian Federation); Ruano, O.A.; Carreño, F. [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2014-03-01

    An as-cast Al–7 wt%Si alloy was subjected to processing by high-pressure torsion (HPT) at room temperature, through 1/4, 1/2, 1 and 5 turns at a pressure of 6 GPa and two rotation speeds, 0.1 and 1 rpm. Vickers microhardness was measured along diameters of HPT disk surfaces. The final hardness values were higher than in the initial as-cast condition and, unexpectedly, nearly constant under all different processing conditions, and along the disk diameter. The microstructure was characterised by optical and scanning electron microscopy. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The morphology and distribution of the eutectic constituent in the HPT processed materials is used to delineate the shear strain, which was analysed in the cross-section planes of the disks. A high degree of homogeneity in the imposed shear strain throughout the samples was observed, being congruent with the ideal rigid-body torsion. In addition, the high compressive pressure applied, causing compressive strain prior to the torsional strain, is responsible for the deformation-induced precipitation of small Si particles and for the (sub)grain refinement in the primary Al constituent. The role of torsional strain is that of increasing monothonically the redistribution of the eutectic silicon and the misorientation of the (sub)grains.

  15. THE ROLE OF AEROBIC CAPACITY IN HIGH-INTENSITY INTERMITTENT EFFORTS IN ICE-HOCKEY

    Directory of Open Access Journals (Sweden)

    A. Stanula

    2014-08-01

    Full Text Available The primary objective of this study was to determine a relationship between aerobic capacity ( ·VO2max and fatigue from high-intensity skating in elite male hockey players. The subjects were twenty-four male members of the senior national ice hockey team of Poland who played the position of forward or defence. Each subject completed an on-ice Repeated-Skate Sprint test (RSS consisting of 6 timed 89-m sprints, with 30 s of rest between subsequent efforts, and an incremental test on a cycle ergometer in the laboratory, the aim of which was to establish their maximal oxygen uptake ( ·VO2max. The analysis of variance showed that each next repetition in the 6x89 m test was significantly longer than the previous one (F5,138=53.33, p<0.001. An analysis of the fatigue index (FI calculated from the times recorded for subsequent repetitions showed that the value of the FI increased with subsequent repetitions, reaching its maximum between repetitions 5 and 6 (3.10±1.16%. The total FI was 13.77±1.74%. The coefficient of correlation between ·VO2max and the total FI for 6 sprints on the distance of 89 m (r =–0.584 was significant (p=0.003. The variance in the index of players’ fatigue in the 6x89 m test accounted for 34% of the variance in ·VO2max. The 6x89 m test proposed in this study offers a high test-retest correlation coefficient (r=0.78. Even though the test is criticized for being too exhaustive and thereby for producing highly variable results it still seems that it was well selected for repeated sprint ability testing in hockey players.

  16. High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shanshan; Yan, Tingting; Wang, Hui; Chen, Guorong; Huang, Lei; Zhang, Jianping; Shi, Liyi; Zhang, Dengsong, E-mail: dszhang@shu.edu.cn

    2016-04-30

    Graphical abstract: - Highlights: • The nitrogen-doped porous hollow carbon spheres were prepared. • The obtained materials have a good capacitive deionization performance. • The electrodes show high salt adsorption rate and good regeneration performance. - Abstract: In this work, nitrogen-doped porous hollow carbon spheres (N-PHCS) were well prepared by using polystyrene (PS) spheres as hard templates and dopamine hydrochloride as carbon and nitrogen sources. Field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images demonstrate that the N-PHCS have a uniform, spherical and hollow structure. Nitrogen adsorption–desorption analysis shows that the N-PHCS have a high specific area of 512 m{sup 2}/g. X-ray photoelectron spectroscopy result reveals that the nitrogen doping amount is 2.92%. The hollow and porous structure and effective nitrogen doping can contribute to large accessible surface area, efficient ion transport and good conductivity. In the electrochemical tests, we can conclude that the N-PHCS have a high specific capacitance value, a good stability and low inner resistance. The N-PHCS electrodes present a high salt adsorption capacity of 12.95 mg/g at a cell voltage of 1.4 V with a flow rate of 40 mL/min in a 500 mg/L NaCl aqueous solution. Moreover, the N-PHCS electrodes show high salt adsorption rate and good regeneration performance in the CDI process. With high surface specific area and effective nitrogen doping, the N-PHCS is promising to the CDI and other electrochemical applications.

  17. CNT Sheet Air Electrode for the Development of Ultra-High Cell Capacity in Lithium-Air Batteries

    Science.gov (United States)

    Nomura, Akihiro; Ito, Kimihiko; Kubo, Yoshimi

    2017-04-01

    Lithium-air batteries (LABs) are expected to provide a cell with a much higher capacity than ever attained before, but their prototype cells present a limited areal cell capacity of no more than 10 mAh cm-2, mainly due to the limitation of their air electrodes. Here, we demonstrate the use of flexible carbon nanotube (CNT) sheets as a promising air electrode for developing ultra-high capacity in LAB cells, achieving areal cell capacities of up to 30 mAh cm-2, which is approximately 15 times higher than the capacity of cells with lithium-ion battery (LiB) technology (~2 mAh cm-2). During discharge, the CNT sheet electrode experienced enormous swelling to a thickness of a few millimeters because of the discharge product deposition of lithium peroxide (Li2O2), but the sheet was fully recovered after being fully charged. This behavior results from the CNT sheet characteristics of the flexible and fibrous conductive network and suggests that the CNT sheet is an effective air electrode material for developing a commercially available LAB cell with an ultra-high cell capacity.

  18. Synthesis of high capacity cation exchangers from a low-grade Chinese natural zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yifei, E-mail: yifeiwang0206@yahoo.com.cn [College of Biology and Chemical Engineering, Jiaxing University, Jiaxing, Zhejiang 314001 (China); Department of Chemistry, XiXi Campus, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Lin Feng [Department of Chemistry, XiXi Campus, Zhejiang University, Hangzhou, Zhejiang 310028 (China)

    2009-07-30

    The Chinese natural zeolite, in which clinoptilolite coexists with quartz was treated hydrothermally with NaOH solutions, either with or without fusion with NaOH powder as pretreatment. Zeolite Na-P, Na-Y and analcime were identified as the reacted products, depending on the reaction conditions such as NaOH concentration, reaction time and hydrothermal temperature. The products were identified by X-ray diffraction, and characterized by Fourier transform IR and ICP. With hydrothermal treatment after fusion of natural zeolite with NaOH, high purity of zeolite Na-Y and Na-P can be selectively formed, their cation exchange capacity (CEC) are 275 and 355 meq/100 g respectively, which are greatly higher than that of the natural zeolite (97 meq/100 g). Furthermore, the ammonium removal by the synthetic zeolite Na-P in aqueous solution was also studied. The equilibrium isotherms have been got and the influence of other cations present in water upon the ammonia uptake suggested an order of preference Ca{sup 2+} > K{sup +} > Mg{sup 2+}.

  19. Synthesis of high capacity cation exchangers from a low-grade Chinese natural zeolite.

    Science.gov (United States)

    Wang, Yifei; Lin, Feng

    2009-07-30

    The Chinese natural zeolite, in which clinoptilolite coexists with quartz was treated hydrothermally with NaOH solutions, either with or without fusion with NaOH powder as pretreatment. Zeolite Na-P, Na-Y and analcime were identified as the reacted products, depending on the reaction conditions such as NaOH concentration, reaction time and hydrothermal temperature. The products were identified by X-ray diffraction, and characterized by Fourier transform IR and ICP. With hydrothermal treatment after fusion of natural zeolite with NaOH, high purity of zeolite Na-Y and Na-P can be selectively formed, their cation exchange capacity (CEC) are 275 and 355 meq/100g respectively, which are greatly higher than that of the natural zeolite (97 meq/100g). Furthermore, the ammonium removal by the synthetic zeolite Na-P in aqueous solution was also studied. The equilibrium isotherms have been got and the influence of other cations present in water upon the ammonia uptake suggested an order of preference Ca(2+)>K(+)>Mg(2+).

  20. A High-Capacity Image Data Hiding Scheme Using Adaptive LSB Substitution

    Directory of Open Access Journals (Sweden)

    H. Yang

    2009-12-01

    Full Text Available Many existing steganographic methods hide more secret data into edged areas than smooth areas in the host image, which does not differentiate textures from edges and causes serious degradation in actual edge areas. To avoid abrupt changes in image edge areas, as well as to achieve better quality of the stego-image, a novel image data hiding technique by adaptive Least Significant Bits (LSBs substitution is proposed in this paper. The scheme exploits the brightness, edges, and texture masking of the host image to estimate the number k of LSBs for data hiding. Pixels in the noise non-sensitive regions are embedded by a k-bit LSB substitution with a lager value of k than that of the pixels in noise sensitive regions. Moreover, an optimal pixel adjustment process is used to enhance stego-image visual quality obtained by simple LSB substitution method. To ensure that the adaptive number k of LSBs remains unchanged after pixel modification, the LSBs number is computed by the high-order bits rather than all the bits of the image pixel value. The theoretical analyses and experiment results show that the proposed method achieves higher embedding capacity and better stegoimage quality compared with some existing LSB methods.

  1. Zirconium oxide aerogel for effective enrichment of phosphopeptides with high binding capacity.

    Science.gov (United States)

    Zhang, Liyuan; Xu, Jin; Sun, Liangliang; Ma, Junfeng; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2011-04-01

    In this study, zirconium oxide (ZrO(2)) aerogel was synthesized via a green sol-gel approach, with zirconium oxychloride, instead of the commonly used alkoxide with high toxicity, as the precursor. With such material, phosphopeptides from the digests of 4 pmol of β-casein with the coexistence of 100 times (mol ratio) BSA could be selectively captured, and identified by MALDI-TOF MS. Due to the large surface area (416.0 m(2) g(-1)) and the mesoporous structure (the average pore size of 10.2 nm) of ZrO(2) aerogel, a 20-fold higher loading capacity for phosphopeptide, YKVPQLEIVPN[pS]AEER (MW 1952.12), was obtained compared to that of commercial ZrO(2) microspheres (341.5 vs. 17.87 mg g(-1)). The metal oxide aerogel was further applied in the enrichment of phosphopeptides from 100 ng nonfat milk, and 17 phosphopeptides were positively identified, with a 1.5-fold improvement in phosphopeptide detection compared with previously reported results. These results demonstrate that ZrO(2) aerogel can be a powerful enrichment material for phosphoproteome study.

  2. Estimated Aerobic Capacity Changes in Adolescents with Obesity Following High Intensity Interval Exercise

    Directory of Open Access Journals (Sweden)

    Brooke E. Starkoff

    2014-07-01

    Full Text Available Vigorous aerobic exercise may improve aerobic capacity (VO2max and cardiometabolic profiles in adolescents with obesity, independent of changes to weight. Our aim was to assess changes in estimated VO2max in obese adolescents following a 6-week exercise program of varying intensities. Adolescents with obesity were recruited from an American mid-west children’s hospital and randomized into moderate exercise (MOD or high intensity interval exercise (HIIE groups for a 6-week exercise intervention, consisting of cycle ergometry for 40 minutes, 3 days per week. Heart rate was measured every two minutes during each exercise session.  Estimated VO2max measured via Åstrand cycle test, body composition, and physical activity (PA enjoyment evaluated via questionnaire were assessed pre/post-intervention. Twenty-seven adolescents (age 14.7±1.5; 17 female, 10 male completed the intervention. Estimated VO2max increased only in the HIIE group (20.0±5.7 to 22.7±6.5 ml/kg/min, p=0.015. The HIIE group also demonstrated increased PA enjoyment, which was correlated with average heart rate achieved during the intervention (r=0.55; p=0.043. Six weeks of HIIE elicited improvements to estimated VO2max in adolescents with obesity. Furthermore, those exercising at higher heart rates demonstrated greater PA enjoyment, implicating enjoyment as an important determinant of VO2max, specifically following higher intensity activities.

  3. Synthesis and Characterization of Al-Cr-Pillared Montmorillonite with High Thermal Stability and Adsorption Capacity

    Institute of Scientific and Technical Information of China (English)

    CAO Ming-li; LIU Shi-zhen; YU Yong-fu

    2004-01-01

    Al-Cr-pillared montmorillonite was synthesized by using bentonite and Al-Cr pillaring solutionsas starting materials. The basal spacing and specific surface areas of the materials were significantly increased rela-tive to those of untreated clays. When the Al/Cr molar ratio ( R ) was 0.10, the d (001) value and specific surfacearea of pillared montmorillonite were 1.9194 nm and 165.7 m2 g- 1 , respectively. Thermal stability of the mate-rials was determined using calcined tests and X- ray diffraction (XRD) analysis. The materials formed at differentR(0.05;0.10;0.15;0.25) exhibit a high thermal stability at 300℃ , especially at initial R = 0.10, the basalinterlayer spacing of materials is stabilized at 1.7313 nm after calcined at 500℃ for 2 h. Adsorption behavior ofthe materials was studied by adsorption experiments. The results show that the Al- Cr-pillared montmorillonites ex-hibit much stronger adsorption capacity on Cr6+ in aqueous solution than untreated clays do.

  4. Synthesis of CeO2-based core/shell nanoparticles with high oxygen storage capacity

    Science.gov (United States)

    Uzunoglu, Aytekin; Kose, Dursun Ali; Stanciu, Lia A.

    2017-07-01

    Ceria plays a key role in various applications including sensing and catalysis owing to its high oxygen storage capacity (OSC). The aim of this work is to prepare novel MO x /CeO2 (M: Zr, Ti, Cu) metal oxide systems with core/shell structures using a facile two-step chemical precipitation method. The synthesized nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and N2 adsorption methods. The OSC property of the samples was evaluated using TGA analysis conducted at 600 °C under reductive (5% H2/Ar) and oxidative (synthetic air) environments. The OSCs of the samples were found to be 130, 253, and 2098 µmol-O2/g for ZrO2/CeO2, TiO2/CeO2, and CuO/CeO2, respectively. Effects of heat treatment on the physical and redox properties of the samples were also evaluated. In this regard, the samples were exposed to 500 °C for 5 h under ambient environment. It was observed that the heat treatment induced the formation of mixed metal oxide alloys and the BET surface area of the samples diminished significantly. The OSC of the samples, however, did not experience any significant chance, which was attributed to the compensation of the loss in the surface area by the alloy formation after the heat treatment.

  5. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    Science.gov (United States)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    This technology assessment of long-term high capacity data storage systems identifies an emerging crisis of severe proportions related to preserving important historical data in science, healthcare, manufacturing, finance and other fields. For the last 50 years, the information revolution, which has engulfed all major institutions of modem society, centered itself on data-their collection, storage, retrieval, transmission, analysis and presentation. The transformation of long term historical data records into information concepts, according to Drucker, is the next stage in this revolution towards building the new information based scientific and business foundations. For this to occur, data survivability, reliability and evolvability of long term storage media and systems pose formidable technological challenges. Unlike the Y2K problem, where the clock is ticking and a crisis is set to go off at a specific time, large capacity data storage repositories face a crisis similar to the social security system in that the seriousness of the problem emerges after a decade or two. The essence of the storage crisis is as follows: since it could take a decade to migrate a peta-byte of data to a new media for preservation, and the life expectancy of the storage media itself is only a decade, then it may not be possible to complete the transfer before an irrecoverable data loss occurs. Over the last two decades, a number of anecdotal crises have occurred where vital scientific and business data were lost or would have been lost if not for major expenditures of resources and funds to save this data, much like what is happening today to solve the Y2K problem. A pr-ime example was the joint NASA/NSF/NOAA effort to rescue eight years worth of TOVS/AVHRR data from an obsolete system, which otherwise would have not resulted in the valuable 20-year long satellite record of global warming. Current storage systems solutions to long-term data survivability rest on scalable architectures

  6. Differential expression of HDACs and KATs in high and low regeneration capacity neurons during spinal cord regeneration.

    Science.gov (United States)

    Chen, Jie; Laramore, Cindy; Shifman, Michael I

    2016-06-01

    After spinal cord injury (SCI) in mammals, injured axons fail to regenerate. By contrast, lampreys recover from complete spinal transection and axons regenerate selectively in their correct paths. Yet the large, identified reticulospinal neurons in the lamprey brain vary greatly in their regenerative abilities - some have high regeneration capacity (probability of regeneration >50%) and others have low regeneration capacity (regenerating and non-regenerating neurons located in the same brain region and projecting to the same axon tracts suggests that differences in their regenerating abilities depend upon factors intrinsic to the neurons. Previous work has suggested that axon regeneration, especially in PNS, could depend on epigenetic mechanisms of histone modifications, such as the acetylation of histone tails. Our data indicated that expression of the enzymes responsible for regulating the acetylation of histone (KATs and HDACs) - KAT2A, KAT5 and P300 and HDAC3 did not change after SCI in either high regeneration capacity or low regeneration capacity neurons. In the present report, we show a novel and unexpected relationship between neuron regeneration abilities and expression of HDAC1. While HDAC1 expression was downregulated in both high and low regeneration capacity neurons 2 and 4weeks after SCI, it was upregulated at 7weeks at almost all RS neurons. However, at 10weeks post-transection only high regeneration capacity neurons displayed elevated HDAC1 mRNA expression and HDAC1 expression was again downregulated in low regeneration capacity neurons. Moreover, we show that HDAC1 is preferentially expressed in regenerated neurons, but not in non-regenerating neurons. Together, these results suggest that SCI causes significant changes in HDAC1 expression and that HDAC1 expression in regenerating neurons may modulates a survival or regeneration programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax.

    Science.gov (United States)

    Webster, Richard J; Driever, Steven M; Kromdijk, Johannes; McGrath, Justin; Leakey, Andrew D B; Siebke, Katharina; Demetriades-Shah, Tanvir; Bonnage, Steve; Peloe, Tony; Lawson, Tracy; Long, Stephen P

    2016-02-10

    Arundo donax has attracted interest as a potential bioenergy crop due to a high apparent productivity. It uses C3 photosynthesis yet appears competitive with C4 grass biomass feedstock's and grows in warm conditions where C4 species might be expected to be that productive. Despite this there has been no systematic study of leaf photosynthetic properties. This study determines photosynthetic and photorespiratory parameters for leaves in a natural stand of A. donax growing in southern Portugal. We hypothesise that A. donax has a high photosynthetic potential in high and low light, stomatal limitation to be small and intrinsic water use efficiency unusually low. High photosynthetic rates in A. donax resulted from a high capacity for both maximum Rubisco (Vc,max 117 μmol CO2 m(-2) s(-1)) and ribulose-1:5-bisphosphate limited carboxylation rate (Jmax 213 μmol CO2 m(-2) s(-1)) under light-saturated conditions. Maximum quantum yield for light-limited CO2 assimilation was also high relative to other C3 species. Photorespiratory losses were similar to other C3 species under the conditions of measurement (25%), while stomatal limitation was high (0.25) resulting in a high intrinsic water use efficiency. Overall the photosynthetic capacity of A. donax is high compared to other C3 species, and comparable to C4 bioenergy grasses.

  8. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan

    2012-09-30

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  9. Ammonia metabolism capacity of HepG2 cells with high expression of human glutamine synthetase

    Institute of Scientific and Technical Information of China (English)

    Nan-Hong Tang; Xiao-Qian Wang; Xiu-Jin Li; Yan-Ling Chen

    2008-01-01

    BACKGROUND:Currently, one of the tough problems for the application of bioartiifcial liver (BAL) is the shortage of suitable hepatocytes. There are reports on different types of BAL assistance developed with porcine hepatocytes and HepG2 C3A cells, but their defects are obvious. In recent years, some studies focus more on liver cells with features of human origin and improved detoxiifcation. In this study, a hepatocyte line with high expression of human glutamine synthetase (hGS) was raised and its capacity for ammonia metabolism was investigated. METHODS:hGS cDNA and alpha-fetoprotein transcription regulatory element (AFP-TRE) were cloned with the designed primers. The eukaryotic expression vectors, pLNChGS and pLNAFhGS, were constructed and transfected into PA317 cells. Recombinant retroviruses (Retro-hGS and Retro-AFhGS) were produced and then infected into HepG2 cells. G418-resistant cell clones, HepG2/pLNChGS and HepG2/pLNAFhGS, were selected and ampliifed. Then hGS mRNA was measured by semi-quantitative RT-PCR;hGS enzymatic activity and ammonia metabolism analysis in different concentration of NH4+were detected with a quantitative biochemistry kit. The cell proliferation was also detected by MTT chromatometry. RESULTS:The expression of hGS mRNA in HepG2/pLNChGS cells (8.306±0.336) and HepG2/pLNAFhGS cells (21.358±1.716) was much stronger than in control cells (P CONCLUSION:The constructed hepatocytes (HepG2 cells) with speciifc high-expression of hGS have a powerful ability to degrade ammonia in vitro, and provide necessary experimental data for the selection of biomaterials in BAL.

  10. High Capacity Reversible Watermarking for Audio by Histogram Shifting and Predicted Error Expansion

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-01-01

    Full Text Available Being reversible, the watermarking information embedded in audio signals can be extracted while the original audio data can achieve lossless recovery. Currently, the few reversible audio watermarking algorithms are confronted with following problems: relatively low SNR (signal-to-noise of embedded audio; a large amount of auxiliary embedded location information; and the absence of accurate capacity control capability. In this paper, we present a novel reversible audio watermarking scheme based on improved prediction error expansion and histogram shifting. First, we use differential evolution algorithm to optimize prediction coefficients and then apply prediction error expansion to output stego data. Second, in order to reduce location map bits length, we introduced histogram shifting scheme. Meanwhile, the prediction error modification threshold according to a given embedding capacity can be computed by our proposed scheme. Experiments show that this algorithm improves the SNR of embedded audio signals and embedding capacity, drastically reduces location map bits length, and enhances capacity control capability.

  11. High temperature heat capacity of PuPO{sub 4} monazite-analogue

    Energy Technology Data Exchange (ETDEWEB)

    Benes, Ondrej, E-mail: ondrej.benes@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Popa, Karin [' Al.I. Cuza' University, Department of Chemistry, 11-Carol I Blvd., 700506 Iasi (Romania); Reuscher, Vivien [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Physikalisch-Chemisches Institut, Ruprecht-Karls-Universitaet Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg (Germany); Zappia, Alessandro; Staicu, Dragos; Konings, Rudy J.M. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany)

    2011-11-15

    Highlights: > The heat capacity of PuPO{sub 4} has been measured up to 1400 K. > Good agreement between the DSC and the drop technique has been found. > It was demonstrated that drop calorimetry is precise enough to measure relatively small samples. - Abstract: The enthalpy increments of PuPO{sub 4} have been measured using drop calorimetry in the temperature range from 530 K to 1386 K. The heat capacity was derived from the obtained data and compared with heat capacity data obtained directly from differential scanning calorimeter measured in this study from 400 K to 1400 K. The recommended heat capacity of PuPO{sub 4} was determined based on both techniques as: C{sub p}{sup 0}(JK{sup -1}mol{sup -1})=126.600+32.999x10{sup -3}(T/K)-1.9503x10{sup 6}(T/K){sup -2}.

  12. High capacity reversible watermarking for audio by histogram shifting and predicted error expansion.

    Science.gov (United States)

    Wang, Fei; Xie, Zhaoxin; Chen, Zuo

    2014-01-01

    Being reversible, the watermarking information embedded in audio signals can be extracted while the original audio data can achieve lossless recovery. Currently, the few reversible audio watermarking algorithms are confronted with following problems: relatively low SNR (signal-to-noise) of embedded audio; a large amount of auxiliary embedded location information; and the absence of accurate capacity control capability. In this paper, we present a novel reversible audio watermarking scheme based on improved prediction error expansion and histogram shifting. First, we use differential evolution algorithm to optimize prediction coefficients and then apply prediction error expansion to output stego data. Second, in order to reduce location map bits length, we introduced histogram shifting scheme. Meanwhile, the prediction error modification threshold according to a given embedding capacity can be computed by our proposed scheme. Experiments show that this algorithm improves the SNR of embedded audio signals and embedding capacity, drastically reduces location map bits length, and enhances capacity control capability.

  13. Effect of high-quality technical capacity characteristics to the impact of industrial production

    Directory of Open Access Journals (Sweden)

    Lysenko Y.V.

    2017-01-01

    Full Text Available The article deals with problems of the qualitative assessment of the technical capacity of the economic industrial organizations, in which the development of methods for assessment and management of heterogeneous quality of resources requires establishing their resultant value at any ratio of the structural elements (resources and the definition (increase or decrease the effectiveness of their quantitative characteristics. The extent of the qualitative assessment of the adequacy of technical capacity of industry organizations has a direct impact on the efficiency of its formation. The article made specific calculations to identify the functional relationship between the productivity of industrial production and the main characteristics of the technical capacity of industry organizations Chelyabinsk and Sverdlovsk regions. It was concluded that the negative correlation between the quantitative security technology and efficiency of industrial production - the last influence energy power technical capacity. The equations of regression, depending on the factor variable, made their forecast.

  14. Microwave photonics technologies supporting high capacity and flexible wireless communications systems

    DEFF Research Database (Denmark)

    Lu, Xiaofeng; Tatarczak, Anna; Rommel, Simon;

    2015-01-01

    Emerging 5G wireless systems require technologies for increased capacity, guarantee robustness, low latency and flexibility. We review a number of approaches to provide the above based on microwave photonics and hybrid optical fiber-wireless communication techniques.......Emerging 5G wireless systems require technologies for increased capacity, guarantee robustness, low latency and flexibility. We review a number of approaches to provide the above based on microwave photonics and hybrid optical fiber-wireless communication techniques....

  15. Electrospun titania-based fibers for high areal capacity Li-ion battery anodes

    Science.gov (United States)

    Self, Ethan C.; Wycisk, Ryszard; Pintauro, Peter N.

    2015-05-01

    Electrospinning is utilized to prepare composite fiber Li-ion battery anodes containing titania and carbon nanoparticles with a poly (acrylic acid) binder. The electrospun material exhibits a stable charge/discharge capacity with only 5% capacity fade over 450 cycles at 0.5 C. Compared to a conventional slurry cast electrode of the same composition, the electrospun anode demonstrates 4-fold higher capacity retention (31% vs. 7.9%) at a charge/discharge rate of 5 C. Electrospinning is also used to prepare ultrathick anodes (>1 mm) with areal capacities up to 3.9 mAh cm-2. Notably, the thick electrodes exhibit areal capacities of 2.5 and 1.3 mAh cm-2 at 1 C and 2 C, respectively. Electrospun anodes with densely packed fibers have a 2 C volumetric capacity which exceeds that of the slurry cast material (21.2 and 17.5 mAh cm-3, respectively). The excellent performance of the electrospun anodes is attributed to interfiber voids which provide complete electrolyte intrusion, a large electrode/electrolyte interface, and short Li+ transport pathways between the electrolyte and titania nanoparticles.

  16. Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials.

    Science.gov (United States)

    Eames, Christopher; Islam, M Saiful

    2014-11-19

    Two-dimensional transition metal carbides (termed MXenes) are a new family of compounds generating considerable interest due to their unique properties and potential applications. Intercalation of ions into MXenes has recently been demonstrated with good electrochemical performance, making them viable electrode materials for rechargeable batteries. Here we have performed global screening of the capacity and voltage for a variety of intercalation ions (Li(+), Na(+), K(+), and Mg(2+)) into a large number of M2C-based compounds (M = Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta) with F-, H-, O-, and OH-functionalized surfaces using density functional theory methods. In terms of gravimetric capacity a greater amount of Li(+) or Mg(2+) can be intercalated into an MXene than Na(+) or K(+), which is related to the size of the intercalating ion. Variation of the surface functional group and transition metal species can significantly affect the voltage and capacity of an MXene, with oxygen termination leading to the highest capacity. The most promising group of M2C materials in terms of anode voltage and gravimetric capacity (>400 mAh/g) are compounds containing light transition metals (e.g., Sc, Ti, V, and Cr) with nonfunctionalized or O-terminated surfaces. The results presented here provide valuable insights into exploring a rich variety of high-capacity MXenes for potential battery applications.

  17. Improving reversible capacities of high surface lithium insertion materials – the case of amorphous TiO2

    Directory of Open Access Journals (Sweden)

    Swapna eGanapathy

    2014-11-01

    Full Text Available Chemisorbed water and solvent molecules and their reactivity with components from the electrolyte in high-surface nanostructured electrodes remains a contributing factor towards capacity diminishment on cycling in lithium ion batteries due to the limit in maximum annealing temperature. Here we report a marked improvement in the capacity retention of amorphous TiO2 by the choice of preparation solvent, control of annealing temperature and the presence of surface functional groups. Careful heating of the amorphous TiO2 sample prepared in acetone under vacuum lead to complete removal of all molecular solvent and an improved capacity retention of 220 mAh/g over 50 cycles at a C/10 rate. Amorphous TiO2 when prepared in ethanol and heated under vacuum showed an even better capacity retention of 240 mAh/g. From FTIR Spectroscopy and Electron Energy Loss Spectroscopy measurements, the improved capacity is attributed to the complete removal of ethanol and the presence of very small fractions of residual functional groups coordinated to oxygen-deficient surface titanium sites. These displace the more reactive chemisorbed hydroxyl groups, limiting reaction with components from the electrolyte and possibly enhancing the integrity of the solid electrolyte interface (SEI. The present research provides a facile strategy to improve the capacity retention of nanostructured electrode materials.

  18. DETERMINISTIC HOMOGENIZATION OF QUASILINEAR DAMPED HYPERBOLIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Gabriel Nguetseng; Hubert Nnang; Nils Svanstedt

    2011-01-01

    Deterministic homogenization is studied for quasilinear monotone hyperbolic problems with a linear damping term.It is shown by the sigma-convergence method that the sequence of solutions to a class of multi-scale highly oscillatory hyperbolic problems converges to the solution to a homogenized quasilinear hyperbolic problem.

  19. Dual-Size Silicon Nanocrystal-Embedded SiO(x) Nanocomposite as a High-Capacity Lithium Storage Material.

    Science.gov (United States)

    Park, Eunjun; Yoo, Hyundong; Lee, Jaewoo; Park, Min-Sik; Kim, Young-Jun; Kim, Hansu

    2015-07-28

    SiOx-based materials attracted a great deal of attention as high-capacity Li(+) storage materials for lithium-ion batteries due to their high reversible capacity and good cycle performance. However, these materials still suffer from low initial Coulombic efficiency as well as high production cost, which are associated with the complicated synthesis process. Here, we propose a dual-size Si nanocrystal-embedded SiOx nanocomposite as a high-capacity Li(+) storage material prepared via cost-effective sol-gel reaction of triethoxysilane with commercially available Si nanoparticles. In the proposed nanocomposite, dual-size Si nanocrystals are incorporated into the amorphous SiOx matrix, providing a high capacity (1914 mAh g(-1)) with a notably improved initial efficiency (73.6%) and stable cycle performance over 100 cycles. The highly robust electrochemical and mechanical properties of the dual-size Si nanocrystal-embedded SiOx nanocomposite presented here are mainly attributed to its peculiar nanoarchitecture. This study represents one of the most promising routes for advancing SiOx-based Li(+) storage materials for practical use.

  20. Ultra high pressure homogenization (UHPH inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS and milk

    Directory of Open Access Journals (Sweden)

    Peng eDong

    2015-07-01

    Full Text Available Ultra high pressure homogenization (UHPH opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0, low fat milk (1.5%, pH 6.7 and whole milk (3.5%, pH 6.7 at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300 and 350 MPa with an inlet temperature at ~80 °C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using mechanistic linear first order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125 °C caused no reduction of spores. A reduction of 3.5 log10 CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150 °C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation.

  1. Nutrient Limitations Constrain the Feedback Capacity of Landscapes in the High Arctic: Nonlinearities and Synergism

    Science.gov (United States)

    Arens, S. J.; Sullivan, P. F.; Welker, J. M.; Rogers, M. C.; Holland, K.; Schimel, J.; Persson, K.

    2006-12-01

    of N alone causes a nonlinear response. The rapidity by which these dramatic changes occurred indicates that increases in atmospheric N deposition or the stimulation of organic matter decomposition and the mineralization of N due to warmer air and soil temperatures has the capacity to completely alter surface dynamics and feedback processes in the High Arctic.

  2. Spongelike Nanosized Mn 3 O 4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    KAUST Repository

    Gao, Jie

    2011-07-12

    Mn3O4 has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn 3O4 was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering and scanning electron microscopy. Its electrochemical performance, as an anode material, was evaluated by galvanostatic discharge-charge tests. The results indicate that this novel type of nanosized Mn3O4 exhibits a high initial reversible capacity (869 mA h/g) and significantly enhanced first Coulomb efficiency with a stabilized reversible capacity of around 800 mA h/g after over 40 charge/discharge cycles. © 2011 American Chemical Society.

  3. Investigation of Metal Oxide/Carbon Nano Material as Anode for High Capacity Lithium-ion Cells

    Science.gov (United States)

    Wu, James Jianjun; Hong, Haiping

    2014-01-01

    NASA is developing high specific energy and high specific capacity lithium-ion battery (LIB) technology for future NASA missions. Current state-of-art LIBs have issues in terms of safety and thermal stability, and are reaching limits in specific energy capability based on the electrochemical materials selected. For example, the graphite anode has a limited capability to store Li since the theoretical capacity of graphite is 372 mAh/g. To achieve higher specific capacity and energy density, and to improve safety for current LIBs, alternative advanced anode, cathode, and electrolyte materials are pursued under the NASA Advanced Space Power System Project. In this study, the nanostructed metal oxide, such as Fe2O3 on carbon nanotubes (CNT) composite as an LIB anode has been investigated.

  4. Locus coeruleus galanin expression is enhanced after exercise in rats selectively bred for high capacity for aerobic activity.

    Science.gov (United States)

    Murray, Patrick S; Groves, Jessica L; Pettett, Brett J; Britton, Steven L; Koch, Lauren G; Dishman, Rod K; Holmes, Philip V

    2010-12-01

    The neuropeptide galanin extensively coexists with norepinephrine in locus coeruleus (LC) neurons. Previous research in this laboratory has demonstrated that unlimited access to activity wheels in the home cage increases mRNA for galanin (GAL) in the LC, and that GAL mediates some of the beneficial effects of exercise on brain function. To assess whether capacity for aerobic exercise modulates this upregulation in galanin mRNA, three heterogeneous rat models were tested: rats selectively bred for (1) high intrinsic (untrained) aerobic capacity (High Capacity Runners, HCR) and (2) low intrinsic aerobic capacity (Low Capacity Runners, LCR) and (3) unselected Sprague-Dawley (SD) rats with and without free access to running wheels for 3 weeks. Following this exercise protocol, mRNA for tyrosine hydroxylase (TH) and GAL was measured in the LC. The wheel running distances between the three models were significantly different, and age contributed as a significant covariate. Both selection and wheel access condition significantly affected GAL mRNA expression, but not TH mRNA expression. GAL was elevated in exercising HCR and SD rats compared to sedentary rats while LCR rats did not differ between conditions. Overall running distance significantly correlated with GAL mRNA expression, but not with TH mRNA expression. No strain differences in GAL or TH gene expression were observed in sedentary rats. Thus, intrinsic aerobic running capacity influences GAL gene expression in the LC only insofar as actual running behavior is concerned; aerobic capacity does not influence GAL expression in addition to changes associated with running.

  5. Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries

    Science.gov (United States)

    Xue, Leigang; Lee, Seung-Yul; Zhao, Zuofeng; Angell, C. Austen

    2015-11-01

    Safety and high energy density are the two focus issues for current lithium ion batteries. For safety, it has been demonstrated that sulfone electrolytes are much less flammable than the prevailing all-carbonate type, and they are also promising for high voltage batteries due to the high oxidization resistance. However, the high melting points and viscosities greatly restricted their application. Based on our previous work on use of fluidity-enhancing cosolvents to make binary sulfone-carbonate electrolytes, we report here a three-component system that is more conductive and should be even less flammable while additionally having better low temperature stability. The conductivity-viscosity relations have been determined for this electrolyte and are comparable to those of the "standard" carbonate electrolyte. The additional component also produces much improved capacity retention for the LiNi0.5Mn1.5O4 cathode. As with carbonate electrolytes, increase of temperature to 55 °C leads to rapid capacity decrease during cycling, but the capacity loss is due to the salt, not the solvent. The high discharge capacity observed at 25 °C when LiBF4 replaces LiPF6, is fully retained at 55 °C.

  6. Ultrasound-assisted ionic liquid-based homogeneous liquid-liquid microextraction high-performance liquid chromatography for determination of tanshinones in Salvia miltiorrhiza Bge. root.

    Science.gov (United States)

    Wang, Zhibing; Cao, Bocheng; Yu, Aimin; Zhang, Hanqi; Qiu, Fangping

    2015-02-01

    The ultrasound-assisted ionic liquid-based homogeneous liquid-liquid microextraction has been developed and applied to the extraction of four tanshinones, including dihydrotanshinone, tanshinone I, cryptotanshinone and tanshinone IIA in Salvia miltiorrhiza Bge. root. High performance liquid chromatography was applied to the separation and determination of the analytes. The ionic liquid was used as extraction solvent and target analytes were extracted with help of ultrasound. Then, ion-pairing agent was added into the sample solution, which resulted in the formation of water-insoluble ionic liquid in the solution. The phase separation was performed by centrifugation. The extraction, concentration and purification of target analytes were performed simultaneously. The experimental parameters, including type and volume of ionic liquid, sample amount, the size of sample particle, pH value of extraction medium, extraction temperature, extraction time, amount of ion-pairing agent and centrifuging time, were investigated and optimized. The calibration curves showed good linear relationship (r>0.9997). The limits of detection and quantification were in the range of 0.052-0.093 and 0.17-0.31 μg mL(-1), respectively. The recoveries were between 70.45% and 94.23% with relative standard deviations lower than 5.31%. The present method is free of volatile organic solvents, and represents lower expenditures of sample, extraction time and solvent, compared with UAE and HRE. There was no obvious difference in the extraction yields of active constitutions obtained by the three extraction methods.

  7. Microwave-assisted ionic liquid homogeneous liquid-liquid microextraction coupled with high performance liquid chromatography for the determination of anthraquinones in Rheum palmatum L.

    Science.gov (United States)

    Wang, Zhibing; Hu, Jianxue; Du, Hongxia; He, Shuang; Li, Qing; Zhang, Hanqi

    2016-06-01

    The microwave-assisted ionic liquid homogeneous liquid-liquid microextraction (MA-IL-HLLME) coupled with high performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of anthraquinones, including aloe-emodin, emodin, chrysophanol and physcion in root of Rheum palmatum L. Several experimental parameters influencing the extraction efficiency, including amount of sample, type and volume of ionic liquid, volume and pH value of extraction medium, microwave power and extraction time, concentration of NH4PF6 as well as centrifugal condition were optimized. When 140μL of ionic liquid ([C8MIM][BF4]) was used as an extraction solvent, target analytes can be extracted from sample matrix in one minute with the help of microwave irradiation. The MA-IL-HLLME is simple and quick. The calibration curves exhibited good linear relationship (r>0.9984). The limits of detection and quantification were in the range of 0.015-0.026 and 0.051-0.088μgmL(-1), respectively. The spiked recovery for each analyte was in the range of 81.13-93.07% with relative standard deviations lower than 6.89%. The present method is free of volatile organic solvents, and represents lower expenditures of sample, extraction time and solvent, compared with ultrasonic and heat reflux extraction. The results indicated that the present method can be successfully applied to the determination of anthraquinones in medicinal plant.

  8. Overall Key Performance Indicator to Optimizing Operation of High-Pressure Homogenizers for a Reliable Quantification of Intracellular Components in Pichia pastoris.

    Science.gov (United States)

    Garcia-Ortega, Xavier; Reyes, Cecilia; Montesinos, José Luis; Valero, Francisco

    2015-01-01

    The most commonly used cell disruption procedures may present lack of reproducibility, which introduces significant errors in the quantification of intracellular components. In this work, an approach consisting in the definition of an overall key performance indicator (KPI) was implemented for a lab scale high-pressure homogenizer (HPH) in order to determine the disruption settings that allow the reliable quantification of a wide sort of intracellular components. This innovative KPI was based on the combination of three independent reporting indicators: decrease of absorbance, release of total protein, and release of alkaline phosphatase activity. The yeast Pichia pastoris growing on methanol was selected as model microorganism due to it presents an important widening of the cell wall needing more severe methods and operating conditions than Escherichia coli and Saccharomyces cerevisiae. From the outcome of the reporting indicators, the cell disruption efficiency achieved using HPH was about fourfold higher than other lab standard cell disruption methodologies, such bead milling cell permeabilization. This approach was also applied to a pilot plant scale HPH validating the methodology in a scale-up of the disruption process. This innovative non-complex approach developed to evaluate the efficacy of a disruption procedure or equipment can be easily applied to optimize the most common disruption processes, in order to reach not only reliable quantification but also recovery of intracellular components from cell factories of interest.

  9. Proteomic changes in the rat brain induced by homogenous irradiation and by the bystander effect resulting from high energy synchrotron X-ray microbeams.

    Science.gov (United States)

    Smith, Richard W; Wang, Jiaxi; Schültke, Elisabeth; Seymour, Colin B; Bräuer-Krisch, Elke; Laissue, Jean A; Blattmann, Hans; Mothersill, Carmel E

    2013-02-01

    To further evaluate the use of microbeam irradiation (MBI) as a potential means of non-invasive brain tumor treatment by investigating the induction of a bystander effect in non-irradiated tissue. Adult rats were irradiated with 35 or 350 Gy at the European Synchotron Research Facility (ESRF), using homogenous (broad beam) irradiation (HI) or a high energy microbeam delivered to the right brain hemisphere only. The proteome of the frontal lobes were then analyzed using two-dimensional electrophoresis (2-DE) and mass spectrometry. HI resulted in proteomic responses indicative of tumourigenesis; increased albumin, aconitase and triosphosphate isomerase (TPI), and decreased dihydrolipoyldehydrogenase (DLD). The MBI bystander effect proteomic changes were indicative of reactive oxygen species mediated apoptosis; reduced TPI, prohibitin and tubulin and increased glial fibrillary acidic protein (GFAP). These potentially anti-tumourigenic apoptotic proteomic changes are also associated with neurodegeneration. However the bystander effect also increased heat shock protein (HSP) 71 turnover. HSP 71 is known to protect against all of the neurological disorders characterized by the bystander effect proteome changes. These results indicate that the collective interaction of these MBI-induced bystander effect proteins and their mediation by HSP 71, may confer a protective effect which now warrants additional experimental attention.

  10. High pressure homogenization processing, thermal treatment and milk matrix affect in vitro bioaccessibility of phenolics in apple, grape and orange juice to different extents.

    Science.gov (United States)

    He, Zhiyong; Tao, Yadan; Zeng, Maomao; Zhang, Shuang; Tao, Guanjun; Qin, Fang; Chen, Jie

    2016-06-01

    The effects of high pressure homogenization processing (HPHP), thermal treatment (TT) and milk matrix (soy, skimmed and whole milk) on the phenolic bioaccessibility and the ABTS scavenging activity of apple, grape and orange juice (AJ, GJ and OJ) were investigated. HPHP and soy milk diminished AJ's total phenolic bioaccessibility 29.3%, 26.3%, respectively, whereas TT and bovine milk hardly affected it. HPHP had little effect on GJ's and OJ's total phenolic bioaccessibility, while TT enhanced them 27.3-33.9%, 19.0-29.2%, respectively, and milk matrix increased them 26.6-31.1%, 13.3-43.4%, respectively. Furthermore, TT (80 °C/30 min) and TT (90 °C/30 s) presented the similar influences on GJ's and OJ's phenolic bioaccessibility. Skimmed milk showed a better enhancing effect on OJ's total phenolic bioaccessibility than soy and whole milk, but had a similar effect on GJ's as whole milk. These results contribute to promoting the health benefits of fruit juices by optimizing the processing and formulas in the food industry.

  11. Novel asymptotic results on the high-order statistics of the channel capacity over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-06-01

    The exact analysis of the higher-order statistics of the channel capacity (i.e., higher-order ergodic capacity) often leads to complicated expressions involving advanced special functions. In this paper, we provide a generic framework for the computation of the higher-order statistics of the channel capacity over generalized fading channels. As such, this novel framework for the higher-order statistics results in simple, closed-form expressions which are shown to be asymptotically tight bounds in the high signal-to-noise ratio (SNR) regime of a variety of fading environment. In addition, it reveals the existence of differences (i.e., constant capacity gaps in log-domain) among different fading environments. By asymptotically tight bound we mean that the high SNR limit of the difference between the actual higher-order statistics of the channel capacity and its asymptotic bound (i.e., lower bound) tends to zero. The mathematical formalism is illustrated with some selected numerical examples that validate the correctness of our newly derived results. © 2012 IEEE.

  12. Highly improved chromium (III uptake capacity in modified sugarcane bagasse using different chemical treatments

    Directory of Open Access Journals (Sweden)

    Vanessa Cristina Gonçalves Dos Santos

    2012-01-01

    Full Text Available The present paper focuses on improving chromium (III uptake capacity of sugarcane bagasse through its chemical modification with citric acid and/or sodium hydroxide. The chemical modifications were confirmed by infrared spectroscopy, with an evident peak observed at 1730 cm-1, attributed to carbonyl groups. Equilibrium was reached after 24 h, and the kinetics followed the pseudo-second-order model. The highest chromium (III maximum adsorption capacity (MAC value was found when using sugarcane bagasse modified with sodium hydroxide and citric acid (58.00 mg g-1 giving a MAC value about three times greater (20.34 mg g-1 than for raw sugarcane bagasse.

  13. Investigation of laser diode face-pumped high average power heat capacity laser

    Institute of Scientific and Technical Information of China (English)

    Shenjin Zhang; Shouhuan Zhou; Xiaojun Tang; Guojiang Bi; Huachang LV

    2006-01-01

    The three-dimensional (3D) pump intensity distribution in medium of the laser diode (LD) pumped highaverage power heat capacity laser is simulated by the ray tracing method, and the divergence characteristicsof fast axis and slow axis of LD are simultaneously considered. The transient 3D temperature and stressdistributions are also simulated by the finite element method (FEM) with considering the uneven heatsource distribution in medium. A LD face-pumped Nd:GGG heat capacity laser is designed. The averageoutput power is 1.49 kW with an optical-optical efficiency of 24.1%.

  14. Improving reversible capacities of high-surface lithium insertion materials – the case of amorphous TiO2

    NARCIS (Netherlands)

    Ganapathy, S.; Basak, S.; Lefering, A.; Rogers, E.; Zandbergen, H.W.; Wagemaker, M.

    2014-01-01

    Chemisorbed water and solvent molecules and their reactivity with components from the electrolyte in high-surface nano-structured electrodes remains a contributing factor toward capacity diminishment on cycling in lithium ion batteries due to the limit in maximum annealing temperature. Here, we repo

  15. A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration.

    Science.gov (United States)

    Boehme, Philip; Zhang, Wenli; Solanki, Manish; Ehrke-Schulz, Eric; Ehrhardt, Anja

    2016-07-19

    For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose.

  16. Depleted skeletal muscle mitochondrial DNA, hyperlactatemia, and decreased oxidative capacity in HIV-infected patients on highly active antiretroviral therapy

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Pedersen, Steen B;

    2005-01-01

    hyperlactatemia is associated with depletion of skeletal muscle (sm)-mtDNA and decreased oxidative capacity in HIV-infected patients on NRTI based highly active antiretroviral therapy (HAART) and whether HIV infection itself is associated with sm-mtDNA depletion. Sm-mtDNA was determined in 42 HIV...... in part could be mediated through an enhanced pro-inflammatory response....

  17. High-School Students' Need for Cognition, Self-Control Capacity, and School Achievement: Testing a Mediation Hypothesis

    Science.gov (United States)

    Bertrams, Alex; Dickhauser, Oliver

    2009-01-01

    In the present article, we examine the hypothesis that high-school students' motivation to engage in cognitive endeavors (i.e., their need for cognition; NFC) is positively related to their dispositional self-control capacity. Furthermore, we test the prediction that the relation between NFC and school achievement is mediated by self-control…

  18. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...

  19. Homogeneity and Entropy

    Science.gov (United States)

    Tignanelli, H. L.; Vazquez, R. A.; Mostaccio, C.; Gordillo, S.; Plastino, A.

    1990-11-01

    RESUMEN. Presentamos una metodologia de analisis de la homogeneidad a partir de la Teoria de la Informaci6n, aplicable a muestras de datos observacionales. ABSTRACT:Standard concepts that underlie Information Theory are employed in order design a methodology that enables one to analyze the homogeneity of a given data sample. Key : DATA ANALYSIS

  20. High-temperature heat capacity of oxides of the CuO-V2O5 system

    Science.gov (United States)

    Denisova, L. T.; Belousova, N. V.; Denisov, V. M.; Galiakhmetova, N. A.

    2017-06-01

    CuV2O6 and Cu2V2O7 compounds have been produced from initial components CuO and V2O5 by solid-phase synthesis. The high-temperature heat capacity of the oxide compounds has been measured using differential scanning calorimetry. The thermodynamic properties (the enthalpy change, the entropy change, and the reduced Gibbs energy) have been calculated using experimental dependences C P = f( T). It is found that there is a correlation between the specific heat capacity and the composition of oxides of the CuO-V2O5 system.

  1. The effect of food and ice cream on the adsorption capacity of paracetamol to high surface activated charcoal

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Angelo, Helle Riis; Christophersen, Anne Bolette

    2003-01-01

    The effect of added food mixture (as if food was present in the stomach of an intoxicated patient) or 4 different types of ice cream (added as a flavouring and lubricating agent) on the adsorption of paracetamol (acetaminophen) to 2 formulations of activated charcoal was determined in vitro......, and paracetamol were mixed with either food mixture or ice cream followed by one hr incubation. The maximum adsorption capacity of paracetamol to activated charcoal was calculated using Langmuirs adsorption isotherm. Paracetamol concentration was analyzed using high pressure liquid chromatography. In the presence...... of food, the paracetamol adsorption capacity of the 2 activated charcoals was reduced by max. 19% (Pcream was mixed with the charcoal...

  2. Fabrication of isradipine nanosuspension by anti-solvent microprecipitation-high-pressure homogenization method for enhancing dissolution rate and oral bioavailability.

    Science.gov (United States)

    Shelar, Dnyanesh B; Pawar, Smita K; Vavia, Pradeep R

    2013-10-01

    The aim of this study was to develop a nanosuspension of a highly hydrophobic drug, isradipine (ISR) by combination of anti-solvent microprecipitation and high-pressure homogenization to achieve the superior in vitro dissolution and in vivo pharmacokinetic profile. The nanosuspension was formulated using combination of stabilizers as vitamin E TPGS and sodium lauryl sulfate. The developed nanosuspension was characterized for particle size, shape, and zeta potential. The particle size of the developed ISR nanosuspension was observed to be approximately 538 nm (by laser diffraction) and 469 nm (by photon correlation spectroscopy) with -33.3 mV zeta potential. Scanning electron microscopy study revealed the good correlation with particle size measured by photon correlation spectroscopy and laser diffraction. The X-ray diffraction and differential scanning calorimetry showed that ISR was present as an amorphous state in the lyophilized form of nanosuspension. In vitro dissolution and saturation solubility study showed the dissolution rate of nanosuspensions (98.60 %) and saturation solubility (98.76 μg/ml) compared with the coarse drug (11.53 % and 14.1 μg/ml, respectively) had been significantly enhanced. The pharmacokinetic study showed that the nanosuspension exhibits increased in AUC0-48 by 2.0-fold compared to coarse suspension. Further, there was increased in C max and decreased in t max of ISR nanosuspension compared to coarse suspension of ISR. These studies proved that particle size reduction can influence ISR absorption in gastrointestinal tract and thus nanosuspension technology is responsible for enhancing oral bioavailability in rats.

  3. Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Zuo, Tianjian; Jensen, Jesper Bevensee;

    2014-01-01

    Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optic...

  4. High-intensity resistance and cardiovascular training improve physical capacity in cancer patients undergoing chemotherapy

    DEFF Research Database (Denmark)

    Quist, Morten; Rørth, Mikael Rahbek; Zacho, Morten

    2006-01-01

    and 65 years of age (mean age 42.8) participated in a 9-h weekly training program over 6 weeks. The intervention involved physical exercise, relaxation, massage, and body-awareness training. Physical capacity (one-repetition maximum tests (1RM), VO2max) and body composition (weight, skin-fold) were...

  5. High-capacity nanostructured germanium-containing materials and lithium alloys thereof

    Science.gov (United States)

    Graetz, Jason A.; Fultz, Brent T.; Ahn, Channing; Yazami, Rachid

    2010-08-24

    Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0capacities, cycle lives, and/or cycling rates compared with similar electrodes made from graphite. These electrodes are useful as anodes for secondary electrochemical cells, for example, batteries and electrochemical supercapacitors.

  6. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism.

    Science.gov (United States)

    Li, Linsen; Meng, Fei; Jin, Song

    2012-11-14

    The increasing demands from large-scale energy applications call for the development of lithium-ion battery (LIB) electrode materials with high energy density. Earth abundant conversion cathode material iron trifluoride (FeF(3)) has a high theoretical capacity (712 mAh g(-1)) and the potential to double the energy density of the current cathode material based on lithium cobalt oxide. Such promise has not been fulfilled due to the nonoptimal material properties and poor kinetics of the electrochemical conversion reactions. Here, we report for the first time a high-capacity LIB cathode that is based on networks of FeF(3) nanowires (NWs) made via an inexpensive and scalable synthesis. The FeF(3) NW cathode yielded a discharge capacity as high as 543 mAh g(-1) at the first cycle and retained a capacity of 223 mAh g(-1) after 50 cycles at room temperature under the current of 50 mA g(-1). Moreover, high-resolution transmission electron microscopy revealed the existence of continuous networks of Fe in the lithiated FeF(3) NWs after discharging, which is likely an important factor for the observed improved electrochemical performance. The loss of active material (FeF(3)) caused by the increasingly ineffective reconversion process during charging was found to be a major factor responsible for the capacity loss upon cycling. With the advantages of low cost, large quantity, and ease of processing, these FeF(3) NWs are not only promising battery cathode materials but also provide a convenient platform for fundamental studies and further improving conversion cathodes in general.

  7. Exploring highly-efficient routing strategy on scale-free networks with limited and diverse node capacity

    Science.gov (United States)

    Zhang, Hui; Jiang, Zhong-Yuan; He, Xuan; Zhang, Shuai

    2015-06-01

    Since the delivery capacity of each node is neither uniform nor strictly proportional to the degree in many real networked systems such as the Internet, we consider the node capacity is composed of a small uniform fraction and a large degree dependent proportion. By comparing the optimal routing strategy [B. Danila, Y. Yu, J. A. Marsh and K. E. Bassler, Phys. Rev. E 74 (2006) 046106; B. Danila, Y. Yu, J. A. Marsh and K. E. Bassler, Chaos 17 (2007) 026102] with the shortest path routing (SPR), the results show that the OR appears to be not efficient enough to enhance network traffic capacity. Then the efficient betweenness defined as the average betweenness for per delivery capacity is employed, and a so-called highly-efficient routing (HER) strategy is proposed. By iteratively minimizing the maximum efficient betweenness of any node in the network, the highest traffic capacity is achieved at the cost of a little average path lengthening. This work is very useful for network service providers to optimize the weight of each link incrementally to improve whole network transport ability.

  8. Study of genetic effects of high energy radiations with different ionizing capacities on extracellular phages.

    Science.gov (United States)

    Bresler, S E; Kalinin, V L; Kopylova, Y U; Krivisky, A S; Rybchin, V N; Shelegedin, V N

    1975-07-01

    The inactivating and mutagenic action of high-energy radiations with different ionizing capacities (gamma-rays, protons, alpha-particles and accelerated ions of 12C and 20Ne) was studied by using coliphages lambda11 and SD as subjects. In particular the role of irradiation conditions (broth suspension, pure buffer, dry samples) and of the host functions recA, exrA and polA was investigated. The dose-response curve of induced mutagenesis was studied by measuring the yield of vir mutants in lambda11 and plaque mutants in SD. The following results were obtained. (1) The inactivation kinetics of phages under the action of gamma-rays and protons was first order to a survival of 10(-7). Heavy ions also showed exponential inactivation kinetics to a survival of 10(-4). At higher doses of 20Ne ion bombardment some deviation from one-hit kinetics was observed. For dry samples of phages the dimensions of targets for all types of radiation were approximately proportional to the molecular weights of phage DNA's. For densely ionizing radiation (heavy ions) the inactivating action was 3-5 times weaker than for gamma-rays and protons. (2) Mutagenesis was observed for all types of radiation, but heavy ions were 1-5-2 times less efficient than gamma-rays. For both phages studied the dose-response curve of mutagenesis was non-linear. The dependence on the dose was near to parabolic for lambda11. For SD a plateau or maximum of mutagenesis was observed for the relative number of mutants at a survival of about 10(-4). (3) Host-cell functions recA and exrA were practically indifferent for survival of gamma-irradiated phage lambda11, but indispensable for mutagenesis. Mutation recAI3 abolished induced vir mutations totally and exrA- reduced them significantly. The absence of the function polA had a considerable influence on phage survival, but no effect on vir mutation yield (if compared at the same survival level). (4) In conditions of indirect action of gamma-rays no vir mutations were

  9. In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.

    Science.gov (United States)

    Ji, Junyi; Liu, Jilei; Lai, Linfei; Zhao, Xin; Zhen, Yongda; Lin, Jianyi; Zhu, Yanwu; Ji, Hengxing; Zhang, Li Li; Ruoff, Rodney S

    2015-08-25

    We report the fabrication of a three-dimensional free-standing nitrogen-doped porous graphene/graphite foam by in situ activation of nitrogen-doped graphene on highly conductive graphite foam (GF). After in situ activation, intimate "sheet contact" was observed between the graphene sheets and the GF. The sheet contact produced by in situ activation is found to be superior to the "point contact" obtained by the traditional drop-casting method and facilitates electron transfer. Due to the intimate contact as well as the use of an ultralight GF current collector, the composite electrode delivers a gravimetric capacity of 642 mAh g(-1) and a volumetric capacity of 602 mAh cm(-3) with respect to the whole electrode mass and volume (including the active materials and the GF current collector). When normalized based on the mass of the active material, the composite electrode delivers a high specific capacity of up to 1687 mAh g(-1), which is superior to that of most graphene-based electrodes. Also, after ∼90 s charging, the anode delivers a capacity of about 100 mAh g(-1) (with respect to the total mass of the electrode), indicating its potential use in high-rate lithium-ion batteries.

  10. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water.

    Science.gov (United States)

    Lin, Kun-Yi Andrew; Chang, Hsuan-Ang

    2015-11-01

    Zeolitic imidazole frameworks (ZIFs), a new class of adsorbents, are proposed to adsorb Malachite Green (MG) in water. Particularly, ZIF-67 was selected owing to its stability in water and straightforward synthesis. The as-synthesized ZIF-67 was characterized and used to adsorb MG from water. Factors affecting the adsorption capacity were investigated including mixing time, temperature, the presence of salts and pH. The kinetics, adsorption isotherm and thermodynamics of the MG adsorption to ZIF-67 were also studied. The adsorption capacity of ZIF-67 for MG could be as high as 2430mgg(-1) at 20°C, which could be improved at the higher temperatures. Such an ultra-high adsorption capacity of ZIF-67 was almost 10-times of those of conventional adsorbents, including activated carbons and biopolymers. A mechanism for the high adsorption capacity was proposed and possibly attributed to the π-π stacking interaction between MG and ZIF-67. ZIF-67 also could be conveniently regenerated by washing with ethanol and the regeneration efficiency could remain 95% up to 4 cycles of the regeneration. ZIF-67 was also able to remove MG from the aquaculture wastewater, in which MG can be typically found. These features enable ZIF-67 to be one of the most effective and promising adsorbent to remove MG from water.

  11. Efficient removal and highly selective adsorption of Hg{sup 2+} by polydopamine nanospheres with total recycle capacity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiulan [School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang bingtuan, Shihezi University, Shihezi 832003 (China); Jia, Xin, E-mail: jiaxin@shzu.edu.cn [School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang bingtuan, Shihezi University, Shihezi 832003 (China); Zhang, Guoxiang [Gansu Dayu Water-saving Group Co., Ltd, Jiuquan 735000 (China); Hu, Jiamei; Sheng, Wenbo; Ma, Zhiyuan; Lu, Jianjiang; Liu, Zhiyong [School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang bingtuan, Shihezi University, Shihezi 832003 (China)

    2014-09-30

    Highlights: • The PDA nanospheres with uniform diameter of 150–200 nm were used to remove Hg{sup 2+} efficiently and selectively. • The desorption capacity of PDA nanospheres was 100% in pH 1. • The structure and removal capacity of PDA nanospheres remained almost unchanged after recycling five times. - Abstract: This study reported a new method for efficient removal of Hg{sup 2+} from contaminated water using highly selective adsorptive polydopamine (PDA) nanospheres, which were uniform and had a small diameter (150–200 nm). The adsorption isotherms, kinetics, thermodynamics were investigated. Also, the effects of ionic strength, co-existing ions on removing ability of PDA nanospheres for Hg{sup 2+} were studied. Adsorption of Hg{sup 2+} was very fast and efficient as adsorption equilibrium was completed within 4 h and the maximum adsorption capacities were 1861.72 mg/g, 2037.22 mg/g, and 2076.81 mg/g at 298 K, 313 K, and 328 K respectively, increasing with increasing of temperature. The PDA nanospheres exhibited highly selective adsorption of Hg{sup 2+} and had a total desorption capacity of 100% in hydrochloric acid solution, pH 1. The results showed that the structure of PDA nanospheres remained almost unchanged after recycling five times. Furthermore, X-ray photoelectron spectroscopy (XPS) was employed to determine the elements of PDA nanospheres before and after Hg{sup 2+} adsorption. Considering their efficient and highly Hg{sup 2+} selective adsorption, total recycle capacity, and high stability, PDA nanospheres will be feasible in a number of practical applications.

  12. High-Capacity Micrometer-Sized Li 2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    KAUST Repository

    Yang, Yuan

    2012-09-19

    Li 2S is a high-capacity cathode material for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 order of magnitude higher than traditional metal oxides/phosphates cathodes. However, Li 2S is usually considered to be electrochemically inactive due to its high electronic resistivity and low lithium-ion diffusivity. In this paper, we discover that a large potential barrier (∼1 V) exists at the beginning of charging for Li 2S. By applying a higher voltage cutoff, this barrier can be overcome and Li 2S becomes active. Moreover, this barrier does not appear again in the following cycling. Subsequent cycling shows that the material behaves similar to common sulfur cathodes with high energy efficiency. The initial discharge capacity is greater than 800 mAh/g for even 10 μm Li 2S particles. Moreover, after 10 cycles, the capacity is stabilized around 500-550 mAh/g with a capacity decay rate of only ∼0.25% per cycle. The origin of the initial barrier is found to be the phase nucleation of polysulfides, but the amplitude of barrier is mainly due to two factors: (a) charge transfer directly between Li 2S and electrolyte without polysulfide and (b) lithium-ion diffusion in Li 2S. These results demonstrate a simple and scalable approach to utilizing Li 2S as the cathode material for rechargeable lithium-ion batteries with high specific energy. © 2012 American Chemical Society.

  13. Leuconostoc bacteriophages from blue cheese manufacture: long-term survival, resistance to thermal treatments, high pressure homogenization and chemical biocides of industrial application.

    Science.gov (United States)

    Pujato, Silvina A; Guglielmotti, Daniela M; Ackermann, Hans-W; Patrignani, Francesca; Lanciotti, Rosalba; Reinheimer, Jorge A; Quiberoni, Andrea

    2014-05-01

    Nine Leuconostoc mesenteroides phages were isolated during blue cheese manufacture yielding faulty products with reduced eye formation. Their morphologies, restriction profiles, host ranges and long-term survival rates (25°C, 8°C, -20°C and -80°C) were analysed. Based on restriction analysis, six of them were further examined regarding resistance to physical (heat and high pressure homogenization, HPH) and chemical treatments (ethanol, sodium hypochlorite, peracetic acid, biocides A, C, E and F). According to their morphology, L. mesenteroides phages studied in the present work belonged to the Caudovirales order and Siphoviridae family. Six distinct restriction patterns were obtained with EcoRV, HindIII, ClaI and XhoI enzymes, revealing interesting phage diversity in the dairy environment. No significant reductions in phage counts were observed after ten months of storage at -20°C and -80°C, while slightly and moderate decrease in phage numbers were noticed at 8°C and 25°C, respectively. The phages subjected to heat treatments generally showed high resistance at 63°C and moderate resistance at 72°C. However, 80°C for 30 min and 90°C for 2 min led to complete inactivation of viral particles. In general, the best ethanol concentration tested was 75%, as complete inactivation for most Leuconostoc phages within 30 min of incubation was achieved. Peracetic acid, and biocides A, C, E and F were highly effective when used at the same or at a moderately lower concentration as recommended by the producer. Usually, moderate or high concentrations (600-1,600 ppm) of sodium hypochlorite were necessary to completely inactivate phage particles. Leuconostoc phages were partially inactivated by HPH treatments as remaining viral particles were found even after 8 passes at 100 MPa. This is the first report of L. mesenteroides phages isolated from an Argentinean dairy cheese plant. The results of this work could be useful for establishing the most effective physical and

  14. Homogeneous Time-Resolved Fluorescence-Based Assay to Monitor Extracellular Signal-Regulated Kinase Signalling in a High-Throughput Format

    Directory of Open Access Journals (Sweden)

    Mohammed Akli eAyoub

    2014-06-01

    Full Text Available The extracellular signal-regulated kinases (ERKs are key components of multiple important cell signalling pathways regulating diverse biological responses. This signalling is characterized by phosphorylation cascades leading to ERK1/2 activation and promoted by various cell surface receptors including G protein-coupled receptors (GPCRs and receptor tyrosine kinases (RTKs. We report the development of a new cell-based phospho-ERK1/2 assay (designated Phospho-ERK, which is a sandwich proximity-based assay using the homogeneous time-resolved fluorescence technology. We have validated the assay on endogenously expressed ERK1/2 activated by the epidermal growth factor (EGFR as a prototypical RTK, as well as various GPCRs belonging to different classes and coupling to different heterotrimeric G proteins. The assay was successfully miniaturized in 384-well plates using various cell lines endogenously, transiently or stably expressing the different receptors. The validation was performed for agonists, antagonists and inhibitors in dose-response as well as kinetic analysis, and the signalling and pharmacological properties of the different receptors were reproduced. Furthermore, the determination of a Z’-factor value of 0.7 indicates the potential of the Phospho-ERK assay for high-throughput screening of compounds that may modulate ERK1/2 signalling. Finally, our study is of great interest in the current context of investigating ERK1/2 signalling with respect to the emerging concepts of biased ligands, G protein-dependent/independent ERK1/2 activation, and functional transactivation between GPCRs and RTKs, illustrating the importance of considering the ERK1/2 pathway in cell signalling.

  15. X-ray absorption near edge spectroscopy at the Mn K-edge in highly homogeneous GaMnN diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sancho-Juan, O.; Cantarero, A.; Garro, N.; Cros, A. [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Martinez-Criado, G.; Salome, M.; Susini, J. [ESRF, Polygone Scientifique Louis Neel, 6 rue Jules Horowitz, 38000 Grenoble (France); Olguin, D. [Dept. de Fisica, CINVESTAV-IPN, 07300 Mexico D.F. (Mexico); Dhar, S.; Ploog, K. [Paul Drude Institute, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2006-06-15

    We have studied by X-ray absorption spectroscopy the local environment of Mn in highly homogeneous Ga{sub 1-x}Mn{sub x}N (0.06

  16. Investigation of the Influence of Sucrose and Cholesterol on the Phase Transition Temperature of nanoliposomal formulation besides using particle size Reduction Techniques (Ultrasonication/High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Z Malaei-Balasi

    2017-05-01

    Full Text Available Introduction: The successful application of nanoliposoms as an effective drug delivery system depends on their stability in the medium. In this article, influence of additive material