WorldWideScience

Sample records for high cadence synchronized

  1. The Power of Auditory-Motor Synchronization in Sports: Enhancing Running Performance by Coupling Cadence with the Right Beats

    Science.gov (United States)

    Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants’ cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants’ cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli –which was most salient during the metronome condition– helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner’s cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by

  2. The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats.

    Directory of Open Access Journals (Sweden)

    Robert Jan Bood

    Full Text Available Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1 a control condition without acoustic stimuli, 2 a metronome condition with a sequence of beeps matching participants' cadence (synchronization, and 3 a music condition with synchronous motivational music matched to participants' cadence (synchronization+motivation. Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-maximal running intensity. The beat of the stimuli -which was most salient during the metronome condition- helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps. These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner's cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by

  3. The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats.

    Science.gov (United States)

    Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants' cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants' cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli -which was most salient during the metronome condition- helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner's cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by auditory

  4. Image Quality in High-resolution and High-cadence Solar Imaging

    Science.gov (United States)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  5. Dynamic high-cadence cycling improves motor symptoms in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Angela eRidgel

    2015-09-01

    Full Text Available Rationale: Individuals with Parkinson’s disease (PD often have deficits in kinesthesia. There is a need for rehabilitation interventions that improve these kinesthetic deficits. Forced (tandem cycling at a high cadence improves motor function. However, tandem cycling is difficult to implement in a rehabilitation setting. Objective: To construct an instrumented, motored cycle and to examine if high cadence dynamic cycling promotes improvements in motor function. Method: This motored cycle had two different modes: dynamic and static cycling. In dynamic mode, the motor maintained 75-85 rpm. In static mode, the rider determined the pedaling cadence. UPDRS Motor III and Timed Up and Go (TUG were used to assess changes in motor function after three cycling sessions. Results: Individuals in the static group showed a lower cadence but a higher power, torque and heart rate than the dynamic group. UPDRS score showed a significant 13.9% improvement in the dynamic group and only a 0.9% improvement in the static group. There was also a 16.5% improvement in TUG time in the dynamic group but only an 8% improvement in the static group. Conclusion: These findings show that dynamic cycling can improve PD motor function and that activation of proprioceptors with a high cadence but variable pattern may be important for motor improvements in PD.

  6. High-Cadence Transit Timing Variation Monitoring of Extrasolar Planets

    Directory of Open Access Journals (Sweden)

    Naef D.

    2011-02-01

    Full Text Available We report ground-based high-cadence transit timing observations of the extrasolar planet WASP-2b. We achieve a typical timing error of 15-30 sec. The data show no significant deviations from the predicted ephemeris.

  7. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  8. Asteroids in the High Cadence Transient Survey

    Science.gov (United States)

    Peña, J.; Fuentes, C.; Förster, F.; Maureira, J. C.; San Martín, J.; Littín, J.; Huijse, P.; Cabrera-Vives, G.; Estévez, P. A.; Galbany, L.; González-Gaitán, S.; Martínez, J.; de Jaeger, Th.; Hamuy, M.

    2018-03-01

    We report on the serendipitous observations of solar system objects imaged during the High cadence Transient Survey 2014 observation campaign. Data from this high-cadence wide-field survey was originally analyzed for finding variable static sources using machine learning to select the most-likely candidates. In this work, we search for moving transients consistent with solar system objects and derive their orbital parameters. We use a simple, custom motion detection algorithm to link trajectories and assume Keplerian motion to derive the asteroid’s orbital parameters. We use known asteroids from the Minor Planet Center database to assess the detection efficiency of the survey and our search algorithm. Trajectories have an average of nine detections spread over two days, and our fit yields typical errors of {σ }a∼ 0.07 {au}, σ e ∼ 0.07 and σ i ∼ 0.°5 in semimajor axis, eccentricity, and inclination, respectively, for known asteroids in our sample. We extract 7700 orbits from our trajectories, identifying 19 near-Earth objects, 6687 asteroids, 14 Centaurs, and 15 trans-Neptunian objects. This highlights the complementarity of supernova wide-field surveys for solar system research and the significance of machine learning to clean data of false detections. It is a good example of the data-driven science that Large Synoptic Survey Telescope will deliver.

  9. Cycling cadence affects heart rate variability

    International Nuclear Information System (INIS)

    Lunt, Heather C; Corbett, Jo; Barwood, Martin J; Tipton, Michael J

    2011-01-01

    The purpose of this study was to examine the effect different cycling cadences have on heart rate variability (HRV) when exercising at constant power outputs. Sixteen males had ECG and respiratory measurements recorded at rest and during 8, 10 min periods of cycling at four different cadences (40, 60, 80 and 100 revs min −1 ) and two power outputs (0 W (unloaded) and 100 W (loaded)). The cycling periods were performed following a Latin square design. Spectral analyses of R–R intervals by fast Fourier transforms were used to quantify absolute frequency domain HRV indices (ms 2 ) during the final 5 min of each bout, which were then log transformed using the natural logarithm (Ln). HRV indices of high frequency (HF) power were reduced when cadence was increased (during unloaded cycling (0 W) log transformed HF power decreased from a mean [SD] of 6.3 [1.4] Ln ms 2 at 40 revs min −1 to 3.9 [1.3] Ln ms 2 at 100 revs min −1 ). During loaded cycling (at 100 W), the low to high frequency (LF:HF) ratio formed a 'J' shaped curve as cadence increased from 40 revs min −1 (1.4 [0.4]) to 100 revs min −1 (1.9 [0.7]), but dipped below the 40 revs min −1 values during the 60 revs min −1 1.1 (0.3) and 80 revs min −1 1.2 (0.6) cadence conditions. Cardiac frequency (f C ) and ventilatory variables were strongly correlated with frequency domain HRV indices (r = −0.80 to −0.95). It is concluded that HRV indices are influenced by both cycling cadence and power output; this is mediated by the f C and ventilatory changes that occur as cadence or exercise intensity is increased. Consequently, if HRV is assessed during exercise, both power output/exercise intensity and cadence should be standardized

  10. Cadence® High High-Speed PCB Design Flow Workshop

    CERN Document Server

    2006-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  11. Spontaneous Entrainment of Running Cadence to Music Tempo.

    Science.gov (United States)

    Van Dyck, Edith; Moens, Bart; Buhmann, Jeska; Demey, Michiel; Coorevits, Esther; Dalla Bella, Simone; Leman, Marc

    Since accumulating evidence suggests that step rate is strongly associated with running-related injuries, it is important for runners to exercise at an appropriate running cadence. As music tempo has been shown to be capable of impacting exercise performance of repetitive endurance activities, it might also serve as a means to (re)shape running cadence. The aim of this study was to validate the impact of music tempo on running cadence. Sixteen recreational runners ran four laps of 200 m (i.e. 800 m in total); this task was repeated 11 times with a short break in between each four-lap sequence. During the first lap of a sequence, participants ran at a self-paced tempo without musical accompaniment. Running cadence of the first lap was registered, and during the second lap, music with a tempo matching the assessed cadence was played. In the final two laps, the music tempo was either increased/decreased by 3.00, 2.50, 2.00, 1.50, or 1.00 % or was kept stable. This range was chosen since the aim of this study was to test spontaneous entrainment (an average person can distinguish tempo variations of about 4 %). Each participant performed all conditions. Imperceptible shifts in musical tempi in proportion to the runner's self-paced running tempo significantly influenced running cadence ( p  tempo conditions and adaptation in running cadence ( p  effect of condition on the level of entrainment was revealed ( p  effects of music tempo on running cadence can only be obtained up to a certain level of tempo modification. Finally, significantly higher levels of tempo entrainment were found for female participants compared to their male counterparts ( p  music tempo could serve as an unprompted means to impact running cadence. As increases in step rate may prove beneficial in the prevention and treatment of common running-related injuries, this finding could be especially relevant for treatment purposes, such as exercise prescription and gait retraining. Music tempo

  12. Cadence® High-Speed PCB Layout Flow Workshop

    CERN Document Server

    2003-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  13. Fast in-database cross-matching of high-cadence, high-density source lists with an up-to-date sky model

    NARCIS (Netherlands)

    L.H.A. Scheers (Bart); S. Bloemen; H.F. Mühleisen (Hannes); P. Schellart; A. Van Elteren (Arjen); M.L. Kersten (Martin); P.J. Groot

    2018-01-01

    htmlabstract

    Coming high-cadence wide-field optical telescopes will image hundreds of thousands of sources per minute. Besides inspecting the near real-time data streams for transient and variability events, the accumulated data archive is a wealthy laboratory for making complementary scientific

  14. The DECam Minute Cadence Survey

    Science.gov (United States)

    Belardi, C.; Kilic, M.; Munn, J. A.; Gianninas, A.; Barber, S. D.; Dey, A.; Stetson, P. B.

    2017-03-01

    We present the first results from a minute cadence survey of a 3 deg2 field obtained with the Dark Energy Camera. We imaged part of the Canada- France-Hawaii Telescope Legacy Survey area over eight half-nights. We use the stacked images to identify 111 high proper motion white dwarf candidates with g≤ 24.5 mag and search for eclipse-like events and other sources of variability. We find a new g=20.64 mag pulsating ZZ Ceti star with pulsation periods of 11-13 min. However, we do not find any transiting planetary companions in the habitable zone of our target white dwarfs. Given the probability of eclipses of 1% and our observing window from the ground, the non-detection of such companions in this first field is not surprising. Minute cadence DECam observations of additional fields will provide stringent constraints on the frequency of planets in the white dwarf habitable zone.

  15. High-cadence, High-resolution Spectroscopic Observations of Herbig Stars HD 98922 and V1295 Aquila

    Energy Technology Data Exchange (ETDEWEB)

    Aarnio, Alicia N.; Monnier, John D.; Calvet, Nuria; Che, Xiao [Department of Astronomy, University of Michigan, 311 West Hall, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Harries, Tim J.; Kraus, Stefan; Acreman, David [Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2017-10-10

    Recent observational work has indicated that mechanisms for accretion and outflow in Herbig Ae/Be star–disk systems may differ from magnetospheric accretion (MA) as it is thought to occur in T Tauri star–disk systems. In this work, we assess the temporal evolution of spectral lines probing accretion and mass loss in Herbig Ae/Be systems and test for consistency with the MA paradigm. For two Herbig Ae/Be stars, HD 98922 (B9e) and V1295 Aql (A2e), we have gathered multi-epoch (∼years) and high-cadence (∼minutes) high-resolution optical spectra to probe a wide range of kinematic processes. Employing a line equivalent width evolution correlation metric introduced here, we identify species co-evolving (indicative of common line origin) via novel visualization. We interferometrically constrain often problematically degenerate parameters, inclination and inner-disk radius, allowing us to focus on the structure of the wind, magnetosphere, and inner gaseous disk in radiative transfer models. Over all timescales sampled, the strongest variability occurs within the blueshifted absorption components of the Balmer series lines; the strength of variability increases with the cadence of the observations. Finally, high-resolution spectra allow us to probe substructure within the Balmer series’ blueshifted absorption components: we observe static, low-velocity features and time-evolving features at higher velocities. Overall, we find the observed line morphologies and variability are inconsistent with a scaled-up T Tauri MA scenario. We suggest that as magnetic field structure and strength change dramatically with increasing stellar mass from T Tauri to Herbig Ae/Be stars, so too may accretion and outflow processes.

  16. High-cadence, High-resolution Spectroscopic Observations of Herbig Stars HD 98922 and V1295 Aquila

    International Nuclear Information System (INIS)

    Aarnio, Alicia N.; Monnier, John D.; Calvet, Nuria; Che, Xiao; Harries, Tim J.; Kraus, Stefan; Acreman, David

    2017-01-01

    Recent observational work has indicated that mechanisms for accretion and outflow in Herbig Ae/Be star–disk systems may differ from magnetospheric accretion (MA) as it is thought to occur in T Tauri star–disk systems. In this work, we assess the temporal evolution of spectral lines probing accretion and mass loss in Herbig Ae/Be systems and test for consistency with the MA paradigm. For two Herbig Ae/Be stars, HD 98922 (B9e) and V1295 Aql (A2e), we have gathered multi-epoch (∼years) and high-cadence (∼minutes) high-resolution optical spectra to probe a wide range of kinematic processes. Employing a line equivalent width evolution correlation metric introduced here, we identify species co-evolving (indicative of common line origin) via novel visualization. We interferometrically constrain often problematically degenerate parameters, inclination and inner-disk radius, allowing us to focus on the structure of the wind, magnetosphere, and inner gaseous disk in radiative transfer models. Over all timescales sampled, the strongest variability occurs within the blueshifted absorption components of the Balmer series lines; the strength of variability increases with the cadence of the observations. Finally, high-resolution spectra allow us to probe substructure within the Balmer series’ blueshifted absorption components: we observe static, low-velocity features and time-evolving features at higher velocities. Overall, we find the observed line morphologies and variability are inconsistent with a scaled-up T Tauri MA scenario. We suggest that as magnetic field structure and strength change dramatically with increasing stellar mass from T Tauri to Herbig Ae/Be stars, so too may accretion and outflow processes.

  17. Investigating the Magnetic Imprints of Major Solar Eruptions with SDO /HMI High-cadence Vector Magnetograms

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xudong; Hoeksema, J. Todd; Liu Yang; Chen Ruizhu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Kazachenko, Maria, E-mail: xudong@Sun.stanford.edu [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2017-04-10

    The solar active region photospheric magnetic field evolves rapidly during major eruptive events, suggesting appreciable feedback from the corona. Previous studies of these “magnetic imprints” are mostly based on line of sight only or lower-cadence vector observations; a temporally resolved depiction of the vector field evolution is hitherto lacking. Here, we introduce the high-cadence (90 s or 135 s) vector magnetogram data set from the Helioseismic and Magnetic Imager, which is well suited for investigating the phenomenon. These observations allow quantitative characterization of the permanent, step-like changes that are most pronounced in the horizontal field component (B {sub h}). A highly structured pattern emerges from analysis of an archetypical event, SOL2011-02-15T01:56, where B {sub h} near the main polarity inversion line increases significantly during the earlier phase of the associated flare with a timescale of several minutes, while B {sub h} in the periphery decreases at later times with smaller magnitudes and a slightly longer timescale. The data set also allows effective identification of the “magnetic transient” artifact, where enhanced flare emission alters the Stokes profiles and the inferred magnetic field becomes unreliable. Our results provide insights on the momentum processes in solar eruptions. The data set may also be useful to the study of sunquakes and data-driven modeling of the corona.

  18. ATLAS: A High-cadence All-sky Survey System

    Science.gov (United States)

    Tonry, J. L.; Denneau, L.; Heinze, A. N.; Stalder, B.; Smith, K. W.; Smartt, S. J.; Stubbs, C. W.; Weiland, H. J.; Rest, A.

    2018-06-01

    Technology has advanced to the point that it is possible to image the entire sky every night and process the data in real time. The sky is hardly static: many interesting phenomena occur, including variable stationary objects such as stars or QSOs, transient stationary objects such as supernovae or M dwarf flares, and moving objects such as asteroids and the stars themselves. Funded by NASA, we have designed and built a sky survey system for the purpose of finding dangerous near-Earth asteroids (NEAs). This system, the “Asteroid Terrestrial-impact Last Alert System” (ATLAS), has been optimized to produce the best survey capability per unit cost, and therefore is an efficient and competitive system for finding potentially hazardous asteroids (PHAs) but also for tracking variables and finding transients. While carrying out its NASA mission, ATLAS now discovers more bright (m day cadence. ATLAS discovered the afterglow of a gamma-ray burst independent of the high energy trigger and has released a variable star catalog of 5 × 106 sources. This is the first of a series of articles describing ATLAS, devoted to the design and performance of the ATLAS system. Subsequent articles will describe in more detail the software, the survey strategy, ATLAS-derived NEA population statistics, transient detections, and the first data release of variable stars and transient light curves.

  19. Effects of Different Lifting Cadences on Ground Reaction Forces during the Squat Exercise

    Science.gov (United States)

    Bentley, Jason R.; Amonette, William E.; Hagan, R. Donald

    2008-01-01

    The purpose of this investigation was to determine the effect of different cadences on the ground reaction force (GRF(sub R)) during the squat exercise. It is known that squats performed with greater acceleration will produce greater inertial forces; however, it is not well understood how different squat cadences affect GRF(sub R). It was hypothesized that faster squat cadences will result in greater peak GRF(sub R). METHODS: Six male subjects (30.8+/-4.4 y, 179.5+/-8.9 cm, 88.8+/-13.3 kg) with previous squat experience performed three sets of three squats using three different cadences (FC = 1 sec descent/1 sec ascent; MC = 3 sec descent/1 sec ascent; SC = 4 sec descent/2 sec ascent) with barbell mass equal to body mass. Ground reaction force was used to calculate inertial force trajectories of the body plus barbell (FI(sub system)). Forces were normalized to body mass. RESULTS: Peak GRF(sub R) and peak FI(sub system) were significantly higher in FC squats compared to MC (p=0.0002) and SC (p=0.0002). Range of GRF(sub R) and FI(sub system) were also significantly higher in FC compared to MC (psquat cadences result in significantly greater peak GRF(sub R) due to the inertia of the system. GRF(sub R) was more dependent upon decent cadence than on ascent cadence. PRACTICAL APPLICATION: This study demonstrates that faster squat cadences produce greater ground reaction forces. Therefore, the use of faster squat cadences might enhance strength and power adaptations to long-term resistance exercise training. Key Words: velocity, weight training, resistive exercise

  20. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1996-01-01

    The purpose of Phase 1 of the study is to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. The systems we consider are high data rate space communication systems. Also...... components. Node synchronization performed within a Viterbi decoder is discussed, and algorithms for frame synchronization are described and analyzed. We present a list of system configurations that we find potentially useful. Further, the high level architecture of units that contain frame synchronization...... and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder and another for placement after the decoder. The high level architectures of three possible implementations of Viterbi decoders are described: The first...

  1. Synchronization of low- and high-threshold motor units.

    Science.gov (United States)

    Defreitas, Jason M; Beck, Travis W; Ye, Xin; Stock, Matt S

    2014-04-01

    We examined the degree of synchronization for both low- and high-threshold motor unit (MU) pairs at high force levels. MU spike trains were recorded from the quadriceps during high-force isometric leg extensions. Short-term synchronization (between -6 and 6 ms) was calculated for every unique MU pair for each contraction. At high force levels, earlier recruited motor unit pairs (low-threshold) demonstrated relatively low levels of short-term synchronization (approximately 7.3% extra firings than would have been expected by chance). However, the magnitude of synchronization increased significantly and linearly with mean recruitment threshold (reaching 22.1% extra firings for motor unit pairs recruited above 70% MVC). Three potential mechanisms that could explain the observed differences in synchronization across motor unit types are proposed and discussed. Copyright © 2013 Wiley Periodicals, Inc.

  2. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1998-01-01

    The study has been divided into two phases. The purpose of Phase 1 of the study was to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. After selection of which specific...... potentially useful.Algorithms for frame synchronization are described and analyzed. Further, the high level architecture of units that contain frame synchronization and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder...... towards a realization in an FPGA.Node synchronization performed within a Viterbi decoder is discussed, and the high level architectures of three possible implementations of Viterbi decoders are described: The first implementation uses a number of commercially available decoders while the the two others...

  3. The influence of cadence and shoes on patellofemoral joint kinetics in runners with patellofemoral pain.

    Science.gov (United States)

    Bonacci, Jason; Hall, Michelle; Fox, Aaron; Saunders, Natalie; Shipsides, Tristan; Vicenzino, Bill

    2018-06-01

    To determine the effect of a combination of a minimalist shoe and increased cadence on measures of patellofemoral joint loading during running in individuals with patellofemoral pain. Within-participant repeated measures with four conditions presented in random order: (1) control shoe at preferred cadence; (2) control shoe with +10% cadence; (3) minimalist shoe at preferred cadence; (4) minimalist shoe with +10% cadence. Fifteen recreational runners with patellofemoral pain ran on an instrumented treadmill while three-dimensional motion capture data were acquired. Peak patellofemoral joint stress, joint reaction force, knee extensor moment and knee joint angle during the stance phase of running were calculated. One-way repeated measures ANOVA was used to compare the control condition (1) to the three experimental conditions (2-4). Running in a minimalist shoe at an increased cadence reduced patellofemoral stress and joint reaction force on average by approximately 29% (ppatellofemoral joint stress by 15% and joint reaction force by 17% (ppatellofemoral joint stress and joint reaction force by 16% and 19% (ppatellofemoral pain, running in a minimalist shoe at an increased cadence had the greatest reduction in patellofemoral joint loading compared to a control shoe at preferred cadence. This may be an effective intervention to modulate biomechanical factors related to patellofemoral pain. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. The influence of musical cadence into aquatic jumping jacks kinematics.

    Science.gov (United States)

    Costa, Mário J; Oliveira, Cristiana; Teixeira, Genoveva; Marinho, Daniel A; Silva, António J; Barbosa, Tiago M

    2011-01-01

    The aim of this study was to analyze the relationships between the head-out aquatic exercise "Jumping jacks" kinematics and the musical cadence in healthy and fit subjects. Five young women, with at least one year of experience conducting head- out aquatic programs were videotaped in the frontal plane, with a pair of cameras providing a double projection (above and below the water surface). Subjects performed an incremental protocol of five bouts (120 b·min(-1), 135 b·min(-1), 150 b·min(-1), 165 b·min(-1) and 180 b·min(-1)) with 16 full cycles of the "Jumping jacks" exercise. Data processing and calculation of upper limbs' (i.e. hands), lower limbs' (i.e. feet) and center of mass' 2D linear velocity and displacement were computed with the software Ariel Performance Analysis System and applying the 2D-DLT algorithm. Subjects decreased the cycle period during the incremental protocol. Significant and negative relationships with the musical cadence were verified for the center of mass and upper limbs vertical displacement. On the other hand, for the lower limbs lateral velocity, a significant and positive relationship was observed. It is concluded that expert and fit subjects increase the lower limb's velocity to maintain the range of motion, while the upper limb's displacement is reduced to coupe the music cadence. Key pointsWhile performing the Jumping Jacks, expert and fit subjects increase their lower limbs segmental velocity to maintain the range of motion.The upper limbs displacement is reduced to maintain the music cadence.Expert and fit subjects present similar response for alternating or simultaneously head-out aquatic exercises when increasing the music cadence.

  5. Column Store for GWAC: A High-cadence, High-density, Large-scale Astronomical Light Curve Pipeline and Distributed Shared-nothing Database

    Science.gov (United States)

    Wan, Meng; Wu, Chao; Wang, Jing; Qiu, Yulei; Xin, Liping; Mullender, Sjoerd; Mühleisen, Hannes; Scheers, Bart; Zhang, Ying; Nes, Niels; Kersten, Martin; Huang, Yongpan; Deng, Jinsong; Wei, Jianyan

    2016-11-01

    The ground-based wide-angle camera array (GWAC), a part of the SVOM space mission, will search for various types of optical transients by continuously imaging a field of view (FOV) of 5000 degrees2 every 15 s. Each exposure consists of 36 × 4k × 4k pixels, typically resulting in 36 × ˜175,600 extracted sources. For a modern time-domain astronomy project like GWAC, which produces massive amounts of data with a high cadence, it is challenging to search for short timescale transients in both real-time and archived data, and to build long-term light curves for variable sources. Here, we develop a high-cadence, high-density light curve pipeline (HCHDLP) to process the GWAC data in real-time, and design a distributed shared-nothing database to manage the massive amount of archived data which will be used to generate a source catalog with more than 100 billion records during 10 years of operation. First, we develop HCHDLP based on the column-store DBMS of MonetDB, taking advantage of MonetDB’s high performance when applied to massive data processing. To realize the real-time functionality of HCHDLP, we optimize the pipeline in its source association function, including both time and space complexity from outside the database (SQL semantic) and inside (RANGE-JOIN implementation), as well as in its strategy of building complex light curves. The optimized source association function is accelerated by three orders of magnitude. Second, we build a distributed database using a two-level time partitioning strategy via the MERGE TABLE and REMOTE TABLE technology of MonetDB. Intensive tests validate that our database architecture is able to achieve both linear scalability in response time and concurrent access by multiple users. In summary, our studies provide guidance for a solution to GWAC in real-time data processing and management of massive data.

  6. Fast in-database cross-matching of high-cadence, high-density source lists with an up-to-date sky model

    Science.gov (United States)

    Scheers, B.; Bloemen, S.; Mühleisen, H.; Schellart, P.; van Elteren, A.; Kersten, M.; Groot, P. J.

    2018-04-01

    Coming high-cadence wide-field optical telescopes will image hundreds of thousands of sources per minute. Besides inspecting the near real-time data streams for transient and variability events, the accumulated data archive is a wealthy laboratory for making complementary scientific discoveries. The goal of this work is to optimise column-oriented database techniques to enable the construction of a full-source and light-curve database for large-scale surveys, that is accessible by the astronomical community. We adopted LOFAR's Transients Pipeline as the baseline and modified it to enable the processing of optical images that have much higher source densities. The pipeline adds new source lists to the archive database, while cross-matching them with the known cataloguedsources in order to build a full light-curve archive. We investigated several techniques of indexing and partitioning the largest tables, allowing for faster positional source look-ups in the cross matching algorithms. We monitored all query run times in long-term pipeline runs where we processed a subset of IPHAS data that have image source density peaks over 170,000 per field of view (500,000 deg-2). Our analysis demonstrates that horizontal table partitions of declination widths of one-degree control the query run times. Usage of an index strategy where the partitions are densely sorted according to source declination yields another improvement. Most queries run in sublinear time and a few (< 20%) run in linear time, because of dependencies on input source-list and result-set size. We observed that for this logical database partitioning schema the limiting cadence the pipeline achieved with processing IPHAS data is 25 s.

  7. Effect of gender, cadence, and water immersion on ground reaction forces during stationary running.

    Science.gov (United States)

    de Brito Fontana, Heiliane; Haupenthal, Alessandro; Ruschel, Caroline; Hubert, Marcel; Ridehalgh, Colette; Roesler, Helio

    2012-05-01

    Controlled laboratory study. To analyze the vertical and anteroposterior components of the ground reaction force during stationary running performed in water and on dry land, focusing on the effect of gender, level of immersion, and cadence. Stationary running, as a fundamental component of aquatic rehabilitation and training protocols, is little explored in the literature with regard to biomechanical variables, which makes it difficult to determine and control the mechanical load acting on the individuals. Twenty-two subjects performed 1 minute of stationary running on land, immersed to the hip, and immersed to the chest at 3 different cadences: 90 steps per minute, 110 steps per minute, and 130 steps per minute. Force data were acquired with a force plate, and the variables were vertical peak (Fy), loading rate (LR), anterior peak (Fx anterior), and posterior peak (Fx posterior). Data were normalized to subjects' body weight (BW) and analyzed using repeated-measures analysis of variance. Fy ranged from 0.98 to 2.11 BW, LR ranged from 5.38 to 11.52 BW/s, Fx anterior ranged from 0.07 to 0.14 BW, and Fx posterior ranged from 0.06 to 0.09 BW. The gender factor had no effect on the variables analyzed. A significant interaction between level of immersion and cadence was observed for Fy, Fx anterior, and Fx posterior. On dry land, Fy increased with increasing cadence, whereas in water this effect was seen only between 90 steps per minute and the 2 higher cadences. The higher the level of immersion, the lower the magnitude of Fy. LR was reduced under both water conditions and increased with increasing cadence, regardless of the level of immersion. Ground reaction forces during stationary running are similar between genders. Fy and LR are lower in water, though the values are increased at higher cadences.

  8. Development of high-performance sintered friction material for synchronizer ring; Koseino shoketsu synchronizer ring masatsu zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, K; Fuwa, Y; Okajima, H; Yoshikawa, K [Toyota Motor Corp., Aichi (Japan); Nakamura, M [Japan Powder Metallurgy Co. Ltd., Tokyo (Japan)

    1997-10-01

    Increasing vehicle speed and power, high-performance synchronizer ring of manual transmission is required. We develop double layer sintered synchronizer ring for high performance and cost reduction. The main structure is consisted of ferrous sinter for high strength. In this paper, friction materials of sintered synchronizer ring are studied. We can get the good friction and anti-wear property by means of hard particles (FeTi, ZrO2), solid lubricant (Graphite) and suitable porosity in brass sinter matrix. And we also achieve high joining strength between double layers adding Cu-P material. 6 refs., 13 figs., 2 tabs.

  9. High-cadence observations of spicular-type events on the Sun

    Science.gov (United States)

    Shetye, J.; Doyle, J. G.; Scullion, E.; Nelson, C. J.; Kuridze, D.; Henriques, V.; Woeger, F.; Ray, T.

    2016-05-01

    Context. Chromospheric observations taken at high-cadence and high-spatial resolution show a range of spicule-like features, including Type-I, Type-II (as well as rapid blue-shifted excursions (RBEs) and rapid red-shifted excursions (RREs) which are thought to be on-disk counterparts of Type-II spicules) and those which seem to appear within a few seconds, which if interpreted as flows would imply mass flow velocities in excess of 1000 km s-1. Aims: This article seeks to quantify and study rapidly appearing spicular-type events. We also compare the multi-object multi-frame blind deconvolution (MOMFBD) and speckle reconstruction techniques to understand if these spicules are more favourably observed using a particular technique. Methods: We use spectral imaging observations taken with the CRisp Imaging SpectroPolarimeter (CRISP) on the Swedish 1-m Solar Telescope. Data was sampled at multiple positions within the Hα line profile for both an on-disk and limb location. Results: The data is host to numerous rapidly appearing features which are observed at different locations within the Hα line profile. The feature's durations vary between 10-20 s and lengths around 3500 km. Sometimes, a time delay in their appearance between the blue and red wings of 3-5 s is evident, whereas, sometimes they are near simultaneous. In some instances, features are observed to fade and then re-emerge at the same location several tens of seconds later. Conclusions: We provide the first statistical analysis of these spicules and suggest that these observations can be interpreted as the line-of-sight (LOS) movement of highly dynamic spicules moving in and out of the narrow 60 mÅ transmission filter that is used to observe in different parts of the Hα line profile. The LOS velocity component of the observed fast chromospheric features, manifested as Doppler shifts, are responsible for their appearance in the red and blue wings of Hα line. Additional work involving data at other

  10. Super-Nyquist White Dwarf Pulsations in K2 Long-Cadence Data

    Science.gov (United States)

    Bell, Keaton J.; Hermes, JJ; Montgomery, Michael H.; Vanderbosch, Zach

    2017-06-01

    The Kepler and K2 missions have recently revolutionized the field of white dwarf asteroseismology. Since white dwarfs pulsate on timescales of order 10 minutes, we aim to observe these objects at K2’s short cadence (1 minute). Occasionally we find signatures of pulsations in white dwarf targets that were only observed by K2 at long cadence (30 minute). These signals suffer extreme aliasing since the intrinsic frequencies exceed the Nyquist sampling limit. We present our work to recover accurate frequency determinations for these targets, guided by a limited amount of supplementary, ground-based photometry from McDonald Observatory.

  11. Acute changes in foot strike pattern and cadence affect running parameters associated with tibial stress fractures.

    Science.gov (United States)

    Yong, Jennifer R; Silder, Amy; Montgomery, Kate L; Fredericson, Michael; Delp, Scott L

    2018-05-18

    Tibial stress fractures are a common and debilitating injury that occur in distance runners. Runners may be able to decrease tibial stress fracture risk by adopting a running pattern that reduces biomechanical parameters associated with a history of tibial stress fracture. The purpose of this study was to test the hypothesis that converting to a forefoot striking pattern or increasing cadence without focusing on changing foot strike type would reduce injury risk parameters in recreational runners. Running kinematics, ground reaction forces and tibial accelerations were recorded from seventeen healthy, habitual rearfoot striking runners while running in their natural running pattern and after two acute retraining conditions: (1) converting to forefoot striking without focusing on cadence and (2) increasing cadence without focusing on foot strike. We found that converting to forefoot striking decreased two risk factors for tibial stress fracture: average and peak loading rates. Increasing cadence decreased one risk factor: peak hip adduction angle. Our results demonstrate that acute adaptation to forefoot striking reduces different injury risk parameters than acute adaptation to increased cadence and suggest that both modifications may reduce the risk of tibial stress fractures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. High-cadence observations of CME initiation and plasma dynamics in the corona with TESIS on board CORONAS-Photon

    Science.gov (United States)

    Bogachev, Sergey; Kuzin, Sergey; Zhitnik, I. A.; Bugaenko, O. I.; Goncharov, A. L.; Ignatyev, A. P.; Krutov, V. V.; Lomkova, V. M.; Mitrofanov, A. V.; Nasonkina, T. P.; Oparin, S. N.; Petzov, A. A.; Shestov, S. V.; Slemzin, V. A.; Soloviev, V. A.; Suhodrev, N. K.; Shergina, T. A.

    The TESIS is an ensemble of space instruments designed in Lebedev Institute of Russian Academy of Sciences for spectroscopic and imaging investigation of the Sun in EUV and soft X-ray spectral range with high spatial, temporal and spectral resolution. From 2009 January, when TESIS was launched onboard the Coronas-Photon satellite, it provided about 200 000 new images and spectra of the Sun, obtained during one of the deepest solar minimum in last century. Because of the wide field of view (4 solar radii) and high sensitivity, TESIS provided high-quality data on the origin and dynamics of eruptive prominences and CMEs in the low and intermediate solar corona. TESIS is also the first EUV instrument which provided high-cadence observations of coronal bright points and solar spicules with temporal resolution of a few seconds. We present first results of TESIS observations and discuss them from a scientific point of view.

  13. Introduction à la CAO CADENCE - French version only

    CERN Multimedia

    Davide Vitè

    2002-01-01

    CERN Technical Training Programme: Learning for the LHC ! Dans le cadre du suivi du programme ELEC-2002 : Electronics in HEP, une nouvelle session du cours Introduction à la CAO CADENCE : de la saisie de schéma Concept-HDL au PCB est programmée pour les 10 et 11 décembre prochains. Le cours, en français, est gratuit et sera animé par Serge Brobecker de la division IT/PS/EAS. L'objectif de cette formation est de donner une vue générale du système CAO CADENCE utilisé au CERN, et d'en connaître l'environnement et les possibilités, en acquérant des notions suffisantes pour utiliser la saisie de schéma. Le cours est ciblé pour une audience d'ingénieurs et techniciens désirant utiliser les outils CAO disponibles au CERN, afin de concevoir des circuits logiques et des circuits programmables digitaux. Si vous désirez partic...

  14. Self-tuning in master-slave synchronization of high-precision stage systems

    NARCIS (Netherlands)

    Heertjes, M.F.; Temizer, B.; Schneiders, M.G.E.

    2013-01-01

    For synchronization of high-precision stage systems, in particular the synchronization between a wafer and a reticle stage system of a wafer scanner, a master–slave controller design is presented. The design consists of a synchronization controller based on FIR filters and a data-driven self-tuning

  15. Highly Accurate Timestamping for Ethernet-Based Clock Synchronization

    OpenAIRE

    Loschmidt, Patrick; Exel, Reinhard; Gaderer, Georg

    2012-01-01

    It is not only for test and measurement of great importance to synchronize clocks of networked devices to timely coordinate data acquisition. In this context the seek for high accuracy in Ethernet-based clock synchronization has been significantly supported by enhancements to the Network Time Protocol (NTP) and the introduction of the Precision Time Protocol (PTP). The latter was even applied to instrumentation and measurement applications through the introduction of LXI....

  16. A plasma switch synchronous closing operations in high-voltage networks

    International Nuclear Information System (INIS)

    Mourente, P.

    1984-01-01

    Overvoltages and overcurrent arising in energizing or in fast reclosing operations are a concerning problem in high-voltage networks. Reduction of overvoltages and overcurrents is possible using the synchronous closing technique. Some attempts have been done to perform the synchronous closing with conventional circuit-breakers. But since the requirements to synchronous closing and to current interruption are very contradictory this technique is not yet a common practice. Three simple cases may be used as examples to show the benefits of synchronous closing; energizaton of grounded star capacitor bank; back-to-back switching of large capacitor banks; and fast reclosing on transmission lines

  17. Vertical ground reaction force in stationary running in water and on land: A study with a wide range of cadences.

    Science.gov (United States)

    de Brito Fontana, Heiliane; Ruschel, Caroline; Dell'Antonio, Elisa; Haupenthal, Alessandro; Pereira, Gustavo Soares; Roesler, Helio

    2018-04-01

    The aim of this study was to analyze the effect of cadence, immersion level as well as body density on the vertical component (Fy max ) of ground reaction force (GRF) during stationary running (SR). In a controlled, laboratory study, thirty-two subjects ran at a wide range of cadences (85-210 steps/min) in water, immersed to the hip and to the chest, and on dry land. Fy max. was verified by a waterproof force measurement system and predicted based on a statistical model including cadence, immersion ratio and body density. The effect of cadence was shown to depend on the environment: while Fy max increases linearly with increasing cadence on land; in water, Fy max reaches a plateau at both hip and chest immersions. All factors analyzed, cadence, immersion level and body density affected Fy max significantly, with immersion (aquatic × land environment) showing the greatest effect. In water, different cadences may lead to bigger changes in Fy max than the changes obtained by moving subjects from hip to chest immersion. A regression model able to predict 69% of Fy max variability in water was proposed and validated. Cadence, Immersion and body density affect Fy max in a significant and non-independent way. Besides a model of potential use in the prescription of stationary running in water, our analysis provides insights into the different responses of GRF to changes in exercise parameters between land and aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. The power of auditory-motor synchronization in sports: Enhancing running performance by coupling cadence with the right beats

    NARCIS (Netherlands)

    Bood, R.J.; Nijssen, M; van der Kamp, J.; Roerdink, M.

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our

  19. Walking training with cueing of cadence improves walking speed and stride length after stroke more than walking training alone: a systematic review.

    Science.gov (United States)

    Nascimento, Lucas R; de Oliveira, Camila Quel; Ada, Louise; Michaelsen, Stella M; Teixeira-Salmela, Luci F

    2015-01-01

    After stroke, is walking training with cueing of cadence superior to walking training alone in improving walking speed, stride length, cadence and symmetry? Systematic review with meta-analysis of randomised or controlled trials. Adults who have had a stroke. Walking training with cueing of cadence. Four walking outcomes were of interest: walking speed, stride length, cadence and symmetry. This review included seven trials involving 211 participants. Because one trial caused substantial statistical heterogeneity, meta-analyses were conducted with and without this trial. Walking training with cueing of cadence improved walking speed by 0.23 m/s (95% CI 0.18 to 0.27, I(2)=0%), stride length by 0.21 m (95% CI 0.14 to 0.28, I(2)=18%), cadence by 19 steps/minute (95% CI 14 to 23, I(2)=40%), and symmetry by 15% (95% CI 3 to 26, random effects) more than walking training alone. This review provides evidence that walking training with cueing of cadence improves walking speed and stride length more than walking training alone. It may also produce benefits in terms of cadence and symmetry of walking. The evidence appears strong enough to recommend the addition of 30 minutes of cueing of cadence to walking training, four times a week for 4 weeks, in order to improve walking in moderately disabled individuals with stroke. PROSPERO (CRD42013005873). Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  20. Global Erratum for Kepler Q0-Q17 and K2 C0-C5 Short Cadence Data

    Science.gov (United States)

    Caldwell, Douglas; Van Cleve, Jeffrey E.

    2016-01-01

    An accounting error has scrambled much of the short-cadence collateral smear data used to correct for the effects of Keplers shutterless readout. This error has been present since launch and affects approximately half of all short-cadence targets observed by Kepler and K2 to date. The resulting calibration errors are present in both the short-cadence target pixel files and the short-cadence light curves for Kepler Data Releases 1-24 and K2 Data Releases 1-7. This error does not affect long-cadence data. Since it will take some time to correct this error and reprocess all Kepler and K2 data, a list of affected targets is provided. Even though the affected targets are readily identified, the science impact for any particular target may be difficult to assess. Since the smear signal is often small compared to the target signal, the effect is negligible for many targets. However, the smear signal is scene-dependent, so time varying signals can be introduced into any target by the other stars falling on the same CCD column. Some tips on how to assess the severity of the calibration error are provided in this document.

  1. Primary or secondary tasks? Dual-task interference between cyclist hazard perception and cadence control using cross-modal sensory aids with rider assistance bike computers.

    Science.gov (United States)

    Yang, Chao-Yang; Wu, Cheng-Tse

    2017-03-01

    This research investigated the risks involved in bicycle riding while using various sensory modalities to deliver training information. To understand the risks associated with using bike computers, this study evaluated hazard perception performance through lab-based simulations of authentic riding conditions. Analysing hazard sensitivity (d') of signal detection theory, the rider's response time, and eye glances provided insights into the risks of using bike computers. In this study, 30 participants were tested with eight hazard perception tasks while they maintained a cadence of 60 ± 5 RPM and used bike computers with different sensory displays, namely visual, auditory, and tactile feedback signals. The results indicated that synchronously using different sense organs to receive cadence feedback significantly affects hazard perception performance; direct visual information leads to the worst rider distraction, with a mean sensitivity to hazards (d') of -1.03. For systems with multiple interacting sensory aids, auditory aids were found to result in the greatest reduction in sensitivity to hazards (d' mean = -0.57), whereas tactile sensory aids reduced the degree of rider distraction (d' mean = -0.23). Our work complements existing work in this domain by advancing the understanding of how to design devices that deliver information subtly, thereby preventing disruption of a rider's perception of road hazards. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Quality of Experience for Large Ultra-High-Resolution Tiled Displays with Synchronization Mismatch

    Directory of Open Access Journals (Sweden)

    Deshpande Sachin

    2011-01-01

    Full Text Available This paper relates to quality of experience when viewing images, video, or other content on large ultra-high-resolution displays made from individual display tiles. We define experiments to measure vernier acuity caused by synchronization mismatch for moving images. The experiments are used to obtain synchronization mismatch acuity threshold as a function of object velocity and as a function of occlusion or gap width. Our main motivation for measuring the synchronization mismatch vernier acuity is its relevance in the application of tiled display systems, which create a single contiguous image using individual discrete panels arranged in a matrix with each panel utilizing a distributed synchronization algorithm to display parts of the overall image. We also propose a subjective assessment method for perception evaluation of synchronization mismatch for large ultra-high-resolution tiled displays. For this, we design a synchronization mismatch measurement test video set for various tile configurations for various interpanel synchronization mismatch values. The proposed method for synchronization mismatch perception can evaluate tiled displays with or without tile bezels. The results from this work can help during design of low-cost tiled display systems, which utilize distributed synchronization mechanisms for a contiguous or bezeled image display.

  3. System and method to allow a synchronous motor to successfully synchronize with loads that have high inertia and/or high torque

    Science.gov (United States)

    Melfi, Michael J.

    2015-10-20

    A mechanical soft-start type coupling is used as an interface between a line start, synchronous motor and a heavy load to enable the synchronous motor to bring the heavy load up to or near synchronous speed. The soft-start coupling effectively isolates the synchronous motor from the load for enough time to enable the synchronous motor to come up to full speed. The soft-start coupling then brings the load up to or near synchronous speed.

  4. Plasma dynamics in solar macrospicules from high-cadence extreme-UV observations

    Science.gov (United States)

    Loboda, I. P.; Bogachev, S. A.

    2017-01-01

    Macrospicules are relatively large spicule-like formations found mainly over the polar coronal holes when observing in the transition region spectral lines. In this study, we took advantage of the two short series of observations in the He II 304 Å line obtained by the TESIS solar observatory with a cadence of up to 3.5 s to study the dynamics of macrospicules in unprecedented detail. We used a one-dimensional hydrodynamic method based on the assumption of their axial symmetry and on a simple radiative transfer model to reconstruct the evolution of the internal velocity field of 18 macrospicules from this dataset. Besides the internal dynamics, we studied the motion of the apparent end points of the same 18 macrospicules and found 15 of them to follow parabolic trajectories with high precision which correspond closely to the obtained velocity fields. We found that in a clear, unperturbed case these macrospicules move with a constant deceleration inconsistent with a purely ballistic motion and have roughly the same velocity along their entire axis, with the obtained decelerations typically ranging from 160 to 230 m s-2, and initial velocities from 80 to 130 km s-1. We also found a propagating acoustic wave for one of the macrospicules and a clear linear correlation between the initial velocities of the macrospicules and their decelerations, which indicates that they may be driven by magneto-acoustic shocks. Finally, we inverted our previous method by taking velocities from the parabolic fits to give rough estimates of the percentage of mass lost by 12 of the macrospicules. We found that typically from 10 to 30% of their observed mass fades out of the line (presumably being heated to higher coronal temperatures) with three exceptions of 50% and one of 80%.

  5. Effects of different frequencies of rhythmic auditory cueing on the stride length, cadence, and gait speed in healthy young females.

    Science.gov (United States)

    Yu, Lili; Zhang, Qi; Hu, Chunying; Huang, Qiuchen; Ye, Miao; Li, Desheng

    2015-02-01

    [Purpose] The aim of this study was to explore the effects of different frequencies of rhythmic auditory cueing (RAC) on stride length, cadence, and gait speed in healthy young females. The findings of this study might be used as clinical guidance of physical therapy for choosing the suitable frequency of RAC. [Subjects] Thirteen healthy young females were recruited in this study. [Methods] Ten meters walking tests were measured in all subjects under 4 conditions with each repeated 3 times and a 3-min seated rest period between repetitions. Subjects first walked as usual and then were asked to listen carefully to the rhythm of a metronome and walk with 3 kinds of RAC (90%, 100%, and 110% of the mean cadence). The three frequencies (90%, 100%, and 110%) of RAC were randomly assigned. Gait speed, stride length, and cadence were calculated, and a statistical analysis was performed using the SPSS (version 17.0) computer package. [Results] The gait speed and cadence of 90% RAC walking showed significant decreases compared with normal walking and 100% and 110% RAC walking. The stride length, cadence, and gait speed of 110% RAC walking showed significant increases compared with normal walking and 90% and 100% RAC walking. [Conclusion] Our results showed that 110% RAC was the best of the 3 cueing frequencies for improvement of stride length, cadence, and gait speed in healthy young females.

  6. High-precision shape representation using a neuromorphic vision sensor with synchronous address-event communication interface

    Science.gov (United States)

    Belbachir, A. N.; Hofstätter, M.; Litzenberger, M.; Schön, P.

    2009-10-01

    A synchronous communication interface for neuromorphic temporal contrast vision sensors is described and evaluated in this paper. This interface has been designed for ultra high-speed synchronous arbitration of a temporal contrast image sensors pixels' data. Enabling high-precision timestamping, this system demonstrates its uniqueness for handling peak data rates and preserving the main advantage of the neuromorphic electronic systems, that is high and accurate temporal resolution. Based on a synchronous arbitration concept, the timestamping has a resolution of 100 ns. Both synchronous and (state-of-the-art) asynchronous arbiters have been implemented in a neuromorphic dual-line vision sensor chip in a standard 0.35 µm CMOS process. The performance analysis of both arbiters and the advantages of the synchronous arbitration over asynchronous arbitration in capturing high-speed objects are discussed in detail.

  7. High-precision shape representation using a neuromorphic vision sensor with synchronous address-event communication interface

    International Nuclear Information System (INIS)

    Belbachir, A N; Hofstätter, M; Litzenberger, M; Schön, P

    2009-01-01

    A synchronous communication interface for neuromorphic temporal contrast vision sensors is described and evaluated in this paper. This interface has been designed for ultra high-speed synchronous arbitration of a temporal contrast image sensors pixels' data. Enabling high-precision timestamping, this system demonstrates its uniqueness for handling peak data rates and preserving the main advantage of the neuromorphic electronic systems, that is high and accurate temporal resolution. Based on a synchronous arbitration concept, the timestamping has a resolution of 100 ns. Both synchronous and (state-of-the-art) asynchronous arbiters have been implemented in a neuromorphic dual-line vision sensor chip in a standard 0.35 µm CMOS process. The performance analysis of both arbiters and the advantages of the synchronous arbitration over asynchronous arbitration in capturing high-speed objects are discussed in detail

  8. Methodology for GPS Synchronization Evaluation with High Accuracy

    OpenAIRE

    Li Zan; Braun Torsten; Dimitrova Desislava

    2015-01-01

    Clock synchronization in the order of nanoseconds is one of the critical factors for time based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper we are particularly interested in GPS based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. Ou...

  9. Methodology for GPS Synchronization Evaluation with High Accuracy

    OpenAIRE

    Li, Zan; Braun, Torsten; Dimitrova, Desislava Cvetanova

    2015-01-01

    Clock synchronization in the order of nanoseconds is one of the critical factors for time-based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper, we are particularly interested in GPS-based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. O...

  10. A high-precision synchronization circuit for clock distribution

    International Nuclear Information System (INIS)

    Lu Chong; Tan Hongzhou; Duan Zhikui; Ding Yi

    2015-01-01

    In this paper, a novel structure of a high-precision synchronization circuit, HPSC, using interleaved delay units and a dynamic compensation circuit is proposed. HPSCs are designed for synchronization of clock distribution networks in large-scale integrated circuits, where high-quality clocks are required. The application of a hybrid structure of a coarse delay line and dynamic compensation circuit performs roughly the alignment of the clock signal in two clock cycles, and finishes the fine tuning in the next three clock cycles with the phase error suppressed under 3.8 ps. The proposed circuit is implemented and fabricated using a SMIC 0.13 μm 1P6M process with a supply voltage at 1.2 V. The allowed operation frequency ranges from 200 to 800 MHz, and the duty cycle ranges between [20%, 80%]. The active area of the core circuits is 245 × 134 μm 2 , and the power consumption is 1.64 mW at 500 MHz. (paper)

  11. Ground Reaction Force and Cadence during Stationary Running Sprint in Water and on Land.

    Science.gov (United States)

    Fontana, H de Brito; Ruschel, C; Haupenthal, A; Hubert, M; Roesler, H

    2015-06-01

    This study was aimed at analyzing the cadence (Cadmax) and the peak vertical ground reaction force (Fymax) during stationary running sprint on dry land and at hip and chest level of water immersion. We hypothesized that both Fymax and Cadmax depend on the level of immersion and that differences in Cadmax between immersions do not affect Fymax during stationary sprint. 32 subjects performed the exercise at maximum cadence at each immersion level and data were collected with force plates. The results show that Cadmax and Fymax decrease 17 and 58% from dry land to chest immersion respectively, with no effect of cadence on Fymax. While previous studies have shown similar neuromuscular responses between aquatic and on land stationary sprint, our results emphasize the differences in Fymax between environments and levels of immersion. Additionally, the characteristics of this exercise permit maximum movement speed in water to be close to the maximum speed on dry land. The valuable combination of reduced risk of orthopedic trauma with similar neuromuscular responses is provided by the stationary sprint exercise in water. The results of this study support the rationale behind the prescription of stationary sprinting in sports training sessions as well as rehabilitation programs. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Variability in Cadence During Forced Cycling Predicts Motor Improvement in Individuals With Parkinson’s Disease

    Science.gov (United States)

    Ridgel, Angela L.; Abdar, Hassan Mohammadi; Alberts, Jay L.; Discenzo, Fred M.; Loparo, Kenneth A.

    2014-01-01

    Variability in severity and progression of Parkinson’s disease symptoms makes it challenging to design therapy interventions that provide maximal benefit. Previous studies showed that forced cycling, at greater pedaling rates, results in greater improvements in motor function than voluntary cycling. The precise mechanism for differences in function following exercise is unknown. We examined the complexity of biomechanical and physiological features of forced and voluntary cycling and correlated these features to improvements in motor function as measured by the Unified Parkinson’s Disease Rating Scale (UPDRS). Heart rate, cadence, and power were analyzed using entropy signal processing techniques. Pattern variability in heart rate and power were greater in the voluntary group when compared to forced group. In contrast, variability in cadence was higher during forced cycling. UPDRS Motor III scores predicted from the pattern variability data were highly correlated to measured scores in the forced group. This study shows how time series analysis methods of biomechanical and physiological parameters of exercise can be used to predict improvements in motor function. This knowledge will be important in the development of optimal exercise-based rehabilitation programs for Parkinson’s disease. PMID:23144045

  13. Low-cost synchronization of high-speed audio and video recordings in bio-acoustic experiments.

    Science.gov (United States)

    Laurijssen, Dennis; Verreycken, Erik; Geipel, Inga; Daems, Walter; Peremans, Herbert; Steckel, Jan

    2018-02-27

    In this paper, we present a method for synchronizing high-speed audio and video recordings of bio-acoustic experiments. By embedding a random signal into the recorded video and audio data, robust synchronization of a diverse set of sensor streams can be performed without the need to keep detailed records. The synchronization can be performed using recording devices without dedicated synchronization inputs. We demonstrate the efficacy of the approach in two sets of experiments: behavioral experiments on different species of echolocating bats and the recordings of field crickets. We present the general operating principle of the synchronization method, discuss its synchronization strength and provide insights into how to construct such a device using off-the-shelf components. © 2018. Published by The Company of Biologists Ltd.

  14. SynUTC - high precision time synchronization over ethernet networks

    CERN Document Server

    Höller, R; Horauer, M; Kerö, N; Schmid, U; Schossmaier, K

    2002-01-01

    This article describes our SynUTC (Synchronized Universal Time Coordinated) technology, which enables high-accuracy distribution of GPS time and time synchronization of network nodes connected via standard Ethernet LANs. By means of exchanging data packets in conjunction with moderate hardware support at nodes and switches, an overall worst-case accuracy in the range of some 100 ns can be achieved, with negligible communication overhead. Our technology thus improves the 1 ms-range accuracy achievable by conventional, software-based approaches like NTP by 4 orders of magnitude. Applications can use the high-accuracy global time provided by SynUTC for event timestamping and event generation both at hardware and software level. SynUTC is based upon inserting highly accurate time information into dedicated data packets at the media-independent interface (MII) between the physical layer transceiver and the network controller upon packet transmission and reception, respectively. As a consequence, every node has acc...

  15. Synchronized High-Speed Vision Sensor Network for Expansion of Field of View

    Directory of Open Access Journals (Sweden)

    Akihito Noda

    2018-04-01

    Full Text Available We propose a 500-frames-per-second high-speed vision (HSV sensor network that acquires frames at a timing that is precisely synchronized across the network. Multiple vision sensor nodes, individually comprising a camera and a PC, are connected via Ethernet for data transmission and for clock synchronization. A network of synchronized HSV sensors provides a significantly expanded field-of-view compared with that of each individual HSV sensor. In the proposed system, the shutter of each camera is controlled based on the clock of the PC locally provided inside the node, and the shutters are globally synchronized using the Precision Time Protocol (PTP over the network. A theoretical analysis and experiment results indicate that the shutter trigger skew among the nodes is a few tens of microseconds at most, which is significantly smaller than the frame interval of 1000-fps-class high-speed cameras. Experimental results obtained with the proposed system comprising four nodes demonstrated the ability to capture the propagation of a small displacement along a large-scale structure.

  16. Designing high-order power-source synchronous current converters for islanded and grid-connected microgrids

    DEFF Research Database (Denmark)

    Ashabani, Mahdi; Gooi, Hoay Beng; Guerrero, Josep M.

    2018-01-01

    This paper deals with development of a versatile and compact control strategy for voltage source converters in grid-connected and islanded microgrids using synchronous current converters technology. The key feature is its new integrated high-order controller/synchronizer with applicability to both...... and automated current-based grid synchronization. Moreover, the controller realizes a power-source current-controlled microgrid with minimum control loops, as compared to widely adopted voltage controlled microgrids in the literature, with advantages such as fault-ride-through and inherent droop-less power...... sharing capabilities. Adaptive current-based synchronization and smooth switching to islanding mode provides high flexibility, reliability and only-plug operation capability. Extensive simulation and experimental results are presented to demonstrate performance of the proposed control and management...

  17. High-cadence Imaging and Imaging Spectroscopy at the GREGOR Solar Telescope—A Collaborative Research Environment for High-resolution Solar Physics

    Science.gov (United States)

    Denker, Carsten; Kuckein, Christoph; Verma, Meetu; González Manrique, Sergio J.; Diercke, Andrea; Enke, Harry; Klar, Jochen; Balthasar, Horst; Louis, Rohan E.; Dineva, Ekaterina

    2018-05-01

    In high-resolution solar physics, the volume and complexity of photometric, spectroscopic, and polarimetric ground-based data significantly increased in the last decade, reaching data acquisition rates of terabytes per hour. This is driven by the desire to capture fast processes on the Sun and the necessity for short exposure times “freezing” the atmospheric seeing, thus enabling ex post facto image restoration. Consequently, large-format and high-cadence detectors are nowadays used in solar observations to facilitate image restoration. Based on our experience during the “early science” phase with the 1.5 m GREGOR solar telescope (2014–2015) and the subsequent transition to routine observations in 2016, we describe data collection and data management tailored toward image restoration and imaging spectroscopy. We outline our approaches regarding data processing, analysis, and archiving for two of GREGOR’s post-focus instruments (see http://gregor.aip.de), i.e., the GREGOR Fabry–Pérot Interferometer (GFPI) and the newly installed High-Resolution Fast Imager (HiFI). The heterogeneous and complex nature of multidimensional data arising from high-resolution solar observations provides an intriguing but also a challenging example for “big data” in astronomy. The big data challenge has two aspects: (1) establishing a workflow for publishing the data for the whole community and beyond and (2) creating a collaborative research environment (CRE), where computationally intense data and postprocessing tools are colocated and collaborative work is enabled for scientists of multiple institutes. This requires either collaboration with a data center or frameworks and databases capable of dealing with huge data sets based on virtual observatory (VO) and other community standards and procedures.

  18. Multi-application inter-tile synchronization on ultra-high-resolution display walls

    KAUST Repository

    Nam, Sungwon

    2010-01-01

    Ultra-high-resolution tiled-display walls are typically driven by a cluster of computers. Each computer may drive one or more displays. Synchronization between the computers is necessary to ensure that animated imagery displayed on the wall appears seamless. Most tiled-display middleware systems are designed around the assumption that only a single application instance is running in the tiled display at a time. Therefore synchronization can be achieved with a simple solution such as a networked barrier. When a tiled display has to support multiple applications at the same time, however, the simple networked barrier approach does not scale. In this paper we propose and experimentally validate two synchronization algorithms to achieve low-latency, intertile synchronization for multiple applications with independently varying frame rates. The two-phase algorithm is more generally applicable to various highresolution tiled display systems. The one-phase algorithm provides superior results but requires support for the Network Time Protocol and is more CPU-intensive. Copyright 2010 ACM.

  19. Analysis and control of high power synchronous rectifier

    Energy Technology Data Exchange (ETDEWEB)

    Singh Tejinder.

    1993-01-01

    The description, steady state/dynamic analysis and control design of a high power synchronous rectifier is presented. The proposed rectifier system exploits selective harmonic elimination modulation techniques to minimize filtering requirements, and overcomes the dc voltage limitations of prior art equipment. A detailed derivation of the optimum pulse width modulation switching patterns, in the low frequency range for high power applications is presented. A general mathematical model of the rectifier is established which is non-linear and time-invariant. The transformation of reference frame and small signal linearization techniques are used to obtain closed form solutions from the mathematical model. The modelling procedure is verified by computer simulation. The closed loop design of the synchronous rectifier based on a phase and amplitude control strategy is investigated. The transfer functions derived from this analysis are used for the design of the regulators. The steady-state and dynamic results predicted by computer simulation are verified by PECAN. A systematic design procedure is developed and a detailed design example of a 1 MV-amp rectifer system is presented. 23 refs., 33 figs.

  20. High-Order Sliding Mode-Based Synchronous Control of a Novel Stair-Climbing Wheelchair Robot

    Directory of Open Access Journals (Sweden)

    Juanxiu Liu

    2015-01-01

    Full Text Available For the attitude control of a novel stair-climbing wheelchair with inertial uncertainties and external disturbance torques, a new synchronous control method is proposed via combing high-order sliding mode control techniques with cross-coupling techniques. For this purpose, a proper controller is designed, which can improve the performance of the system under conditions of uncertainties and torque perturbations and also can guarantee the synchronization of the system. Firstly, a robust high-order sliding mode control law is designed to track the desired position trajectories effectively. Secondly, considering the coordination of the multiple joints, a high-order sliding mode synchronization controller is designed to reduce the synchronization errors and tracking errors based on the controller designed previously. Stability of the closed-loop system is proved by Lyapunov theory. The simulation is performed by MATLAB to verify the effectiveness of the proposed controller. By comparing the simulation results of two controllers, it is obvious that the proposed scheme has better performance and stronger robustness.

  1. High Precision Fast Projective Synchronization for Chaotic Systems with Unknown Parameters

    Science.gov (United States)

    Nian, Fuzhong; Wang, Xingyuan; Lin, Da; Niu, Yujun

    2013-08-01

    A high precision fast projective synchronization method for chaotic systems with unknown parameters was proposed by introducing optimal matrix. Numerical simulations indicate that the precision be improved about three orders compared with other common methods under the same condition of software and hardware. Moreover, when average error is less than 10-3, the synchronization speed is 6500 times than common methods, the iteration needs only 4 times. The unknown parameters also were identified rapidly. The theoretical analysis and proof also were given.

  2. Freely chosen cadence during a covert manipulation of ambient temperature.

    Science.gov (United States)

    Hartley, Geoffrey L; Cheung, Stephen S

    2013-01-01

    The present study investigated relationships between changes in power output (PO) to torque (TOR) or freely chosen cadence (FCC) during thermal loading. Twenty participants cycled at a constant rating of perceived exertion while ambient temperature (Ta) was covertly manipulated at 20-min intervals of 20 °C, 35 °C, and 20 °C. The magnitude responses of PO, FCC and TOR were analyzed using repeated-measures ANOVA, while the temporal correlations were analyzed using Auto-Regressive Integrated Moving Averages (ARIMA). Increases in Ta caused significant thermal strain (p FCC remained unchanged (p = .51). ARIMA indicates that changes in PO were highly correlated to TOR (stationary r2 = .954, p = .04), while FCC was moderately correlated (stationary r2 = .717, p = .01) to PO. In conclusion, changes in PO are caused by a modulation in TOR, whereas FCC remains unchanged and therefore, unaffected by thermal stressors.

  3. Average Albedos of Close-in Super-Earths and Super-Neptunes from Statistical Analysis of Long-cadence Kepler Secondary Eclipse Data

    Science.gov (United States)

    Sheets, Holly A.; Deming, Drake

    2017-10-01

    We present the results of our work to determine the average albedo for small, close-in planets in the Kepler candidate catalog. We have adapted our method of averaging short-cadence light curves of multiple Kepler planet candidates to long-cadence data, in order to detect an average albedo for the group of candidates. Long-cadence data exist for many more candidates than the short-cadence data, and so we separate the candidates into smaller radius bins than in our previous work: 1-2 {R}\\oplus , 2-4 {R}\\oplus , and 4-6 {R}\\oplus . We find that, on average, all three groups appear darker than suggested by the short-cadence results, but not as dark as many hot Jupiters. The average geometric albedos for the three groups are 0.11 ± 0.06, 0.05 ± 0.04, and 0.23 ± 0.11, respectively, for the case where heat is uniformly distributed about the planet. If heat redistribution is inefficient, the albedos are even lower, since there will be a greater thermal contribution to the total light from the planet. We confirm that newly identified false-positive Kepler Object of Interest (KOI) 1662.01 is indeed an eclipsing binary at twice the period listed in the planet candidate catalog. We also newly identify planet candidate KOI 4351.01 as an eclipsing binary, and we report a secondary eclipse measurement for Kepler-4b (KOI 7.01) of ˜7.50 ppm at a phase of ˜0.7, indicating that the planet is on an eccentric orbit.

  4. Alternative designs of high-temperature superconducting synchronous generators

    OpenAIRE

    Goddard, K. F.; Lukasik, B.; Sykulski, J. K.

    2010-01-01

    This paper discusses the different possible designs of both cored and coreless superconducting synchronous generators using high-temperature superconducting (HTS) tapes, with particular reference to demonstrators built at the University of Southampton using BiSCCO conductors. An overview of the electromagnetic, thermal, and mechanical issues is provided, the advantages and drawbacks of particular designs are highlighted, the need for compromises is explained, and practical solutions are offer...

  5. Synchronicity from Synchronized Chaos

    Directory of Open Access Journals (Sweden)

    Gregory S. Duane

    2015-03-01

    Full Text Available The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related eventsmysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1 synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2 the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable interpretations if the quantum world resides on a generalized synchronization “manifold”.

  6. Four-channel high speed synchronized acquisition multiple trigger storage measurement system

    International Nuclear Information System (INIS)

    Guo Jian; Wang Wenlian; Zhang Zhijie

    2010-01-01

    A new storage measurement system based on the CPLD, MCU and FLASH (large-capacity flash memory) is proposed. The large capacity storage characteristic of the FLASH MEMORY is used to realize multi channel synchronized acquisition and the function of multiple records and read once. The function of multi channel synchronization, high speed data acquisition, the triggering several times, and the adjustability of working parameters expands the application of storage measurement system. The storage measurement system can be used in a variety of pressure and temperature test in explosion field. (authors)

  7. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity

    International Nuclear Information System (INIS)

    Han Fang; Wang Zhi-Jie; Gong Tao; Fan Hong

    2015-01-01

    It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synchronization can be found in an excitatory/inhibitory (E/I) neuronal network with medium synaptic delay and high level of heterogeneity, which often occurs in real neuronal networks. Two effects of post-synaptic potentials (PSP) to network synchronization are presented, and the synaptic contribution of excitatory and inhibitory neurons to robust synchronization in this E/I network is investigated. It is found that both excitatory and inhibitory neurons may contribute to robust synchronization in E/I networks, especially the excitatory PSP has a more positive effect on synchronization in E/I networks than that in excitatory networks. This may explain the strong robustness of synchronization in E/I neuronal networks. (paper)

  8. Synchronous motor with soft start element formed between the motor rotor and motor output shaft to successfully synchronize loads that have high inertia and/or high torque

    Science.gov (United States)

    Umans, Stephen D; Nisley, Donald L; Melfi, Michael J

    2014-10-28

    A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.

  9. High-Order Sliding Mode-Based Synchronous Control of a Novel Stair-Climbing Wheelchair Robot

    OpenAIRE

    Liu, Juanxiu; Wu, Yifei; Guo, Jian; Chen, Qingwei

    2015-01-01

    For the attitude control of a novel stair-climbing wheelchair with inertial uncertainties and external disturbance torques, a new synchronous control method is proposed via combing high-order sliding mode control techniques with cross-coupling techniques. For this purpose, a proper controller is designed, which can improve the performance of the system under conditions of uncertainties and torque perturbations and also can guarantee the synchronization of the system. Firstly, a robust high-or...

  10. Synchronization of a coupled Hodgkin-Huxley neurons via high order sliding-mode feedback

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Lopez, R. [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, 02200 Azcapotzalco, Mexico, D.F. (Mexico)], E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, R. [Departamento de Control Automatico, CINVESTAV-IPN, Apartado Postal 14-740, Mexico, D.F. C.P. 07360 (Mexico)], E-mail: rguerra@ctrl.cinvestav.mx

    2008-07-15

    This work deals with the synchronizations of two both coupled Hodgkin-Huxley (H-H) neurons, where the master neuron posses inner noise and the slave neuron is considered in a resting state, (without inner noise) and an exciting state (with inner noise). The synchronization procedure is done via a feedback control, considering a class of high order sliding-mode controller which provides chattering reduction and finite time synchronization convergence, with a satisfactory performance. Theoretical analysis is done in order to show the closed-loop stability of the proposed controller and the calculated finite time for convergence. The main results are illustrated via numerical experiments.

  11. Synchronization of a coupled Hodgkin-Huxley neurons via high order sliding-mode feedback

    International Nuclear Information System (INIS)

    Aguilar-Lopez, R.; Martinez-Guerra, R.

    2008-01-01

    This work deals with the synchronizations of two both coupled Hodgkin-Huxley (H-H) neurons, where the master neuron posses inner noise and the slave neuron is considered in a resting state, (without inner noise) and an exciting state (with inner noise). The synchronization procedure is done via a feedback control, considering a class of high order sliding-mode controller which provides chattering reduction and finite time synchronization convergence, with a satisfactory performance. Theoretical analysis is done in order to show the closed-loop stability of the proposed controller and the calculated finite time for convergence. The main results are illustrated via numerical experiments

  12. Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems

    Science.gov (United States)

    Chen, Ming; He, Jing; Cao, Zizheng; Tang, Jin; Chen, Lin; Wu, Xian

    2014-09-01

    In this paper, we propose and experimentally demonstrate a symbol synchronization and sampling frequency synchronization techniques in real-time direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) system, over 100-km standard single mode fiber (SSMF) using a cost-effective directly modulated distributed feedback (DFB) laser. The experiment results show that the proposed symbol synchronization based on training sequence (TS) has a low complexity and high accuracy even at a sampling frequency offset (SFO) of 5000-ppm. Meanwhile, the proposed pilot-assisted sampling frequency synchronization between digital-to-analog converter (DAC) and analog-to-digital converter (ADC) is capable of estimating SFOs with an accuracy of technique can also compensate SFO effects within a small residual SFO caused by deviation of SFO estimation and low-precision or unstable clock source. The two synchronization techniques are suitable for high-speed DDO-OFDM transmission systems.

  13. Synchronization in reduced-order of chaotic systems via control approaches based on high-order sliding-mode observer

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, A. [Electrical Engineering Doctoral Program, Mechanical and Electrical Engineering Faculty, Autonomous University of Nuevo Leon, 66450 San Nicolas de los Garza, N.L. (Mexico)], E-mail: angelrdz@gmail.com; De Leon, J. [Electrical Engineering Doctoral Program, Mechanical and Electrical Engineering Faculty, Autonomous University of Nuevo Leon, 66450 San Nicolas de los Garza, N.L. (Mexico)], E-mail: drjleon@gmail.com; Fridman, L. [Department of Control, Division of Electrical Engineering, Engineering Faculty, National Autonomous University of Mexico, 04510 Mexico City (Mexico)], E-mail: lfridman@servidor.unam.mx

    2009-12-15

    The reduced-order synchronization problem of two chaotic systems (master-slave) with different dimension and relative degree is considered. A control scheme based on a high-order sliding-mode observer-identifier and a feedback state controller is proposed, where the trajectories of slave can be synchronized with a canonical projection of the master. Thus, the reduced-order synchronization is achieved in spite of master/slave mismatches. Simulation results are provided in order to illustrate the performance of the proposed synchronization scheme.

  14. Synchronization in reduced-order of chaotic systems via control approaches based on high-order sliding-mode observer

    International Nuclear Information System (INIS)

    Rodriguez, A.; De Leon, J.; Fridman, L.

    2009-01-01

    The reduced-order synchronization problem of two chaotic systems (master-slave) with different dimension and relative degree is considered. A control scheme based on a high-order sliding-mode observer-identifier and a feedback state controller is proposed, where the trajectories of slave can be synchronized with a canonical projection of the master. Thus, the reduced-order synchronization is achieved in spite of master/slave mismatches. Simulation results are provided in order to illustrate the performance of the proposed synchronization scheme.

  15. Traffic signal synchronization in the saturated high-density grid road network.

    Science.gov (United States)

    Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye

    2015-01-01

    Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN.

  16. The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and recreational cyclists.

    Science.gov (United States)

    Sanderson, D J; Hennig, E M; Black, A H

    2000-03-01

    The aim of this study was to determine the response of cyclists to manipulations of cadence and power output in terms of force application and plantar pressure distribution. Two groups of cyclists, 17 recreational and 12 competitive, rode at three nominal cadences (60, 80, 100 rev x min(-1)) and four power outputs (100, 200, 300, 400 W) while simultaneous force and in-shoe pressure data were collected. Two piezoelectric triaxial force transducers mounted in the right pedal measured components of the pedal force and orientation, and a discrete transducer system with 12 transducers recorded the in-shoe pressures. Force application was characterized by calculating peak resultant and peak effective pedal forces and positive and negative impulses. In-shoe pressures were analysed as peak pressures and as the percent relative load. The force data showed no significant group effect but there was a cadence and power main effect. The impulse data showed a significant three-way interaction. Increased cadence resulted in a decreased positive impulse, while increased power output resulted in an increased impulse. The competitive group produced less positive impulse but the difference became less at higher cadences. Few between-group differences were found in pressure, notable only in the pressure under the first metatarsal region. This showed a consistent pattern of in-shoe pressure distribution, where the primary loading structures were the first metatarsal and hallux. There was no indication that pressure at specific sites influenced the pedal force application. The absence of group differences indicated that pressure distribution was not the result of training, but reflected the intrinsic relationship between the foot, the shoe and the pedal.

  17. Do Long-cadence Data of the Kepler Spacecraft Capture Basic Properties of Flares?

    Science.gov (United States)

    Yang, Huiqin; Liu, Jifeng; Qiao, Erlin; Zhang, Haotong; Gao, Qing; Cui, Kaiming; Han, Henggeng

    2018-06-01

    Flare research is becoming a burgeoning realm of interest in the study of stellar activity due to the launch of Kepler in 2009. Kepler provides data with two time resolutions, i.e., the long-cadence (LC) data with a time resolution of 30 minutes and the short-cadence (SC) data with a time resolution of 1 minute, both of which can be used to study stellar flares. In this paper, we search flares in light curves with both LC data and SC data, and compare them in aspects of the true-flare rate, the flare energy, the flare amplitude, and the flare duration. It is found that LC data systematically underestimated the energies of flares by 25%, and underestimated the amplitudes of flares by 60% compared with SC flares. The durations are systematically overestimated by 50% compared with SC flares. However, the above percentages are poorly constrained and there is a lot of scatter. About 60% of SC flares have not been detected by LC data. We investigate the limitation of LC data, and suggest that although LC data cannot reflect the detailed profiles of flares, they can also capture the basic properties of stellar flares.

  18. Breaking projective chaos synchronization secure communication using filtering and generalized synchronization

    International Nuclear Information System (INIS)

    Alvarez, G.; Li Shujun; Montoya, F.; Pastor, G.; Romera, M.

    2005-01-01

    This paper describes the security weaknesses of a recently proposed secure communication method based on chaotic masking using projective synchronization of two chaotic systems. We show that the system is insecure and how to break it in two different ways, by high-pass filtering and by generalized synchronization

  19. High precision synchronization of time and frequency and its applications

    International Nuclear Information System (INIS)

    Wang Lijun

    2014-01-01

    We discuss the concept and methods for remote synchronization of time and frequency. We discuss a recent experiment that demonstrated time and frequency synchronization via a commercial fiber network, reaching accuracy of 7 × 10 -15 /s, 5 × 10 -19 /day, and a maximum time uncertainty of less than 50 femtoseconds. We discuss synchronization methods applicable to different topologies and their important scientific applications. (authors)

  20. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention.

    Science.gov (United States)

    Lobier, Muriel; Palva, J Matias; Palva, Satu

    2018-01-15

    Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Concept study of 20 MW high-speed permanent magnet synchronous motor for marine propulsion

    NARCIS (Netherlands)

    Bogomolov, M.D.

    2013-01-01

    High-speed permanent magnet synchronous machines are of great interest in the applications where high utilization factor and efficiency are required. Depending on application, power requirements change from kilowatts to megawatts. To investigate power limits of high-speed machines, the present

  2. The effect of high mesencephalic transection (cerveau isolé) and pentobarbital on basal forebrain mechanisms of EEG synchronization.

    Science.gov (United States)

    Obál, F; Benedek, G; Szikszay, M; Obál, F

    1979-01-01

    A study was made of the effects of high mesencephalic transection (cerveau isolé) and low doses of pentobarbital on the cortical synchronizations elicited in acute immobilized cats by (a) low frequency stimulation of the lateral hypothalamus (HL) and nucleus ventralis anterior thalami (VA) and (b) by low and high frequency stimulation of the laterobasal preoptic region (RPO) and olfactory tubercle (TbOf). The results obtained were as follows: (1) The synchronizations induced by basal forebrain stimulations were found to survive in acute cerveau isolé cats, moreover, even a facilitation of the synchronizing effect were observed. (2) A gradual facilitation was observed upon TbOf and RPO stimulation, while in the case of VA and HL stimulations, the facilitation appeared immediately after the transection. (3) Low doses of pentobarbital depressed the cortical effects of TbOf stimulation, while an increase of the synchronizing effect of low frequency VA and HL stimulation was found. The observations suggested that (i) the synchronizing mechanism in the ventral part of the basal forebrain (RPO and TbOf) differs from that of the thalamus and HL; (ii) the basal forebrain synchronizing mechanism is effective without the contribution of the brain stem; (iii) the mechanism responsible for the synchronizing effect of low frequency HL stimulation is similar as that described for the thalamus.

  3. Synchronization and chaos in spin-transfer-torque nano-oscillators coupled via a high-speed operational amplifier

    International Nuclear Information System (INIS)

    Sanid, C; Murugesh, S

    2014-01-01

    We propose a system of two coupled spin-torque nano-oscillators (STNOs), one driver and another response, and demonstrate using numerical studies the synchronization of the response system to the frequency of the driver system. To this end we use a high-speed operational amplifier in the form of a voltage follower, which essentially isolates the drive system from the response system. We find the occurrence of 1 : 1 as well as 2 : 1 synchronization in the system, wherein the oscillators show limit cycle dynamics. An increase in power output is noticed when the two oscillators are locked in 1 : 1 synchronization. Moreover in the crossover region between these two synchronization dynamics we show the existence of chaotic dynamics in the slave system. The coupled dynamics under periodic forcing, using a small ac input current in addition to that of the dc part, is also studied. The slave oscillator is seen to retain its qualitative identity in the parameter space in spite of being fed in, at times, a chaotic signal. Such electrically coupled STNOs will be highly useful in fabricating commercial spin-valve oscillators with high power output, when integrated with other spintronic devices. (paper)

  4. Acoustophoretic Synchronization of Mammalian Cells in Microchannels

    DEFF Research Database (Denmark)

    Thévoz, P.; Adams, J.D.; Shea, H.

    2010-01-01

    We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel to selec......We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...

  5. A method of high accuracy clock synchronization by frequency following with VCXO

    International Nuclear Information System (INIS)

    Ma Yichao; Wu Jie; Zhang Jie; Song Hongzhi; Kong Yang

    2011-01-01

    In this paper, the principle of the synchronous protocol of the IEEE1588 is analyzed, and the factors that affect the accuracy of synchronization is summarized. Through the hardware timer in a microcontroller, we give the exactly the time when a package is sent or received. So synchronization of the distributed clocks can reach 1 μs in this way. Another method to improve precision of the synchronization is to replace the traditional fixed frequency crystal of the slave device, which needs to follow up the master clock, by an adjustable VCXO. So it is possible to fine tune the frequency of the distributed clocks, and reduce the drift of clock, which shows great benefit for the clock synchronization. A test measurement shows the synchronization of distribute clocks can be better than 10 ns using this method, which is more accurate than the method realized by software. (authors)

  6. Synchronization and anti-synchronization coexist in Chen-Lee chaotic systems

    International Nuclear Information System (INIS)

    Chen, J.-H.; Chen, H.-K.; Lin, Y.-K.

    2009-01-01

    This study demonstrates that synchronization and anti-synchronization can coexist in Chen-Lee chaotic systems by direct linear coupling. Based on Lyapunov's direct method, a linear controller was designed to assure that two different types of synchronization can simultaneously be achieved. Further, the hybrid projective synchronization of Chen-Lee chaotic systems was studied using a nonlinear control scheme. The nonlinear controller was designed according to the Lyapunov stability theory to guarantee the hybrid projective synchronization, including synchronization, anti-synchronization, and projective synchronization. Finally, numerical examples are presented in order to illustrate the proposed synchronization approach.

  7. Impact of Loss Synchronization on Reliable High Speed Networks: A Model Based Simulation

    Directory of Open Access Journals (Sweden)

    Suman Kumar

    2014-01-01

    Full Text Available Contemporary nature of network evolution demands for simulation models which are flexible, scalable, and easily implementable. In this paper, we propose a fluid based model for performance analysis of reliable high speed networks. In particular, this paper aims to study the dynamic relationship between congestion control algorithms and queue management schemes, in order to develop a better understanding of the causal linkages between the two. We propose a loss synchronization module which is user configurable. We validate our model through simulations under controlled settings. Also, we present a performance analysis to provide insights into two important issues concerning 10 Gbps high speed networks: (i impact of bottleneck buffer size on the performance of 10 Gbps high speed network and (ii impact of level of loss synchronization on link utilization-fairness tradeoffs. The practical impact of the proposed work is to provide design guidelines along with a powerful simulation tool to protocol designers and network developers.

  8. Robust Timing Synchronization in Aeronautical Mobile Communication Systems

    Science.gov (United States)

    Xiong, Fu-Qin; Pinchak, Stanley

    2004-01-01

    This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines

  9. CERN Technical Training 2002: Learning for the LHC! Introduction à la CAO CADENCE - French version only

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Dans le cadre du suivi du programme ELEC-2002 : Electronics in HEP, une nouvelle session du cours Introduction à la CAO CADENCE. De la saisie de schéma Concept-HDL au PCB est programmée pour le 4 et 5 juin prochains. Le cours, en français, est gratuit et sera animé par Serge Brobecker de la division IT/PS/EAS. Objectif de cette formation est de donner une vue générale du système CAO CADENCE utilisé au CERN, et d'en connaître l'environnement et les possibilités, en acquérant des notions suffisantes pour utiliser la saisie de schéma. Le cours est ciblé pour une audience d'ingénieurs et techniciens désirant utiliser les outils CAO disponibles au CERN, afin de concevoir des circuits logiques et des circuits programmables digitaux. Plus d'information, et possibilité d'inscription par EDH sont accessibles depuis les pages «...

  10. Synchronous Half-Wave Rectifier

    Science.gov (United States)

    Rippel, Wally E.

    1989-01-01

    Synchronous rectifying circuit behaves like diode having unusually low voltage drop during forward-voltage half cycles. Circuit particularly useful in power supplies with potentials of 5 Vdc or less, where normal forward-voltage drops in ordinary diodes unacceptably large. Fabricated as monolithic assembly or as hybrid. Synchronous half-wave rectifier includes active circuits to attain low forward voltage drop and high rectification efficiency.

  11. Management of synchronized network activity by highly active neurons

    International Nuclear Information System (INIS)

    Shein, Mark; Raichman, Nadav; Ben-Jacob, Eshel; Volman, Vladislav; Hanein, Yael

    2008-01-01

    Increasing evidence supports the idea that spontaneous brain activity may have an important functional role. Cultured neuronal networks provide a suitable model system to search for the mechanisms by which neuronal spontaneous activity is maintained and regulated. This activity is marked by synchronized bursting events (SBEs)—short time windows (hundreds of milliseconds) of rapid neuronal firing separated by long quiescent periods (seconds). However, there exists a special subset of rapidly firing neurons whose activity also persists between SBEs. It has been proposed that these highly active (HA) neurons play an important role in the management (i.e. establishment, maintenance and regulation) of the synchronized network activity. Here, we studied the dynamical properties and the functional role of HA neurons in homogeneous and engineered networks, during early network development, upon recovery from chemical inhibition and in response to electrical stimulations. We found that their sequences of inter-spike intervals (ISI) exhibit long time correlations and a unimodal distribution. During the network's development and under intense inhibition, the observed activity follows a transition period during which mostly HA neurons are active. Studying networks with engineered geometry, we found that HA neurons are precursors (the first to fire) of the spontaneous SBEs and are more responsive to electrical stimulations

  12. Determination of the High Frequency Inductance Profile of Surface Mounted Permanent Magnet Synchronous Motors

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2008-01-01

    ) synchronous motors. This paper presents an AC+DC measurement method for determination of the d-axis and q-axis high frequency inductance profiles of SMPM synchronous motors. This method uses DC currents to set a desired magnetic working point on the motor laminations, and then superimpose balanced small AC......Accurate knowledge of the high frequency inductance profile plays an important role in many designs of sensorless controllers for Surface inductance. A special algorithm is used to decouple the cross-coupling effects between the d-axis and the q-axis, which allows Mounted Permanent Magnet (SMPM...... signals to measure the incremental a separate determination of the d, q inductance profiles as functions of the d, q currents. Experimental results on a commercial SMPM motor using the proposed method are presented in this paper....

  13. Synchronization and secure communication of chaotic systems via robust adaptive high-gain fuzzy observer

    International Nuclear Information System (INIS)

    Hyun, Chang-Ho; Park, Chang-Woo; Kim, Jae-Hun; Park, Mignon

    2009-01-01

    This paper proposes an alternative robust adaptive high-gain fuzzy observer design scheme and its application to synchronization and secure communication of chaotic systems. It is assumed that their states are immeasurable and their parameters are unknown. The structure of the proposed observer is represented by Takagi-Sugeno fuzzy model and has the integrator of the estimation error. It improves the performance of high-gain observer and makes the proposed observer robust against noisy measurements, uncertainties and parameter perturbations as well. Using Lyapunov stability theory, an adaptive law is derived to estimate the unknown parameters and the stability of the proposed observer is analyzed. Some simulation result of synchronization and secure communication of chaotic systems is given to present the validity of theoretical derivations and the performance of the proposed observer as an application.

  14. High-voltage pulse generator synchronous with LINAC

    International Nuclear Information System (INIS)

    Muto, M.; Hiratsuka, Yoshio; Niimura, Nobuo

    1974-01-01

    High-voltage pulse generator (H.V. Flip-Flop) No.2, an improved type of No.1, is described, which is used in the structural analysis of transient phenomena in materials through the neutron TOF with a Linac. The method of producing positive and negative high-voltage pulses synchronous with the Linac is identical with that in No.1. However, No.2 has outstanding features as follows: (1) The rise time of output pulses is reduced to 0.3 msec, due to the improvement of switching circuit and the winding of a step-up transformer; (2) The widths of positive and negative pulses are variable up to maximum 8 and 16 frames, respectively (One frame = 10 msec); (3) The distribution of TOF signals from a BF 3 counter to a time analyzer is possible even in the negative voltage duration. The panel is provided with the switches for choosing pulse width and the frame for analysis, as well as the dials for setting positive/negative pulse voltage values and the respective indicating meters. (Mori, K)

  15. AGN Accretion Physics in the Time Domain: Survey Cadences, Stochastic Analysis, and Physical Interpretations

    Science.gov (United States)

    Moreno, Jackeline; Vogeley, Michael S.; Richards, Gordon; O'Brien, John T.; Kasliwal, Vishal

    2018-01-01

    We present rigorous testing of survey cadences (K2, SDSS, CRTS, & Pan-STARRS) for quasar variability science using a magnetohydrodynamics synthetic lightcurve and the canonical lightcurve from Kepler, Zw 229.15. We explain where the state of the art is in regards to physical interpretations of stochastic models (CARMA) applied to AGN variability. Quasar variability offers a time domain approach of probing accretion physics at the SMBH scale. Evidence shows that the strongest amplitude changes in the brightness of AGN occur on long timescales ranging from months to hundreds of days. These global behaviors can be constrained by survey data despite low sampling resolution. CARMA processes provide a flexible family of models used to interpolate between data points, predict future observations and describe behaviors in a lightcurve. This is accomplished by decomposing a signal into rise and decay timescales, frequencies for cyclic behavior and shock amplitudes. Characteristic timescales may point to length-scales over which a physical process operates such as turbulent eddies, warping or hotspots due to local thermal instabilities. We present the distribution of SDSS Stripe 82 quasars in CARMA parameters space that pass our cadence tests and also explain how the Damped Harmonic Oscillator model, CARMA(2,1), reduces to the Damped Random Walk, CARMA(1,0), given the data in a specific region of the parameter space.

  16. Optimized design of a high-power-density PM-assisted synchronous reluctance machine with ferrite magnets for electric vehicles

    Directory of Open Access Journals (Sweden)

    Liu Xiping

    2017-06-01

    Full Text Available This paper proposes a permanent magnet (PM-assisted synchronous reluctance machine (PMASynRM using ferrite magnets with the same power density as rareearth PM synchronous motors employed in Toyota Prius 2010. A suitable rotor structure for high torque density and high power density is discussed with respect to the demagnetization of ferrite magnets, mechanical strength and torque ripple. Some electromagnetic characteristics including torque, output power, loss and efficiency are calculated by 2-D finite element analysis (FEA. The analysis results show that a high power density and high efficiency of PMASynRM are obtained by using ferrite magnets.

  17. Optimal Pole Number and Winding Designs for Low Speed–High Torque Synchronous Reluctance Machines

    Directory of Open Access Journals (Sweden)

    Gurutz Artetxe

    2018-01-01

    Full Text Available This paper studies the feasibility of using synchronous reluctance machines (SynRM for low speed–high torque applications. The challenge lies in obtaining low torque ripple values, high power factor, and, especially, high torque density values, comparable to those of permanent magnet synchronous machines (PMSMs, but without resorting to use permanent magnets. A design and calculation procedure based on multistatic finite element analysis is developed and experimentally validated via a 200 Nm, 160 rpm prototype SynRM. After that, machine designs with different rotor pole and stator slot number combinations are studied, together with different winding types: integral-slot distributed-windings (ISDW, fractional-slot distributed-windings (FSDW and fractional-slot concentrated-windings (FSCW. Some design criteria for low-speed SynRM are drawn from the results of the study. Finally, a performance comparison between a PMSM and a SynRM is performed for the same application and the conclusions of the study are summarized.

  18. Adaptive Synchronization of Robotic Sensor Networks

    OpenAIRE

    Yıldırım, Kasım Sinan; Gürcan, Önder

    2014-01-01

    The main focus of recent time synchronization research is developing power-efficient synchronization methods that meet pre-defined accuracy requirements. However, an aspect that has been often overlooked is the high dynamics of the network topology due to the mobility of the nodes. Employing existing flooding-based and peer-to-peer synchronization methods, are networked robots still be able to adapt themselves and self-adjust their logical clocks under mobile network dynamics? In this paper, ...

  19. Synchronization of metronomes

    Science.gov (United States)

    Pantaleone, James

    2002-10-01

    Synchronization is a common phenomenon in physical and biological systems. We examine the synchronization of two (and more) metronomes placed on a freely moving base. The small motion of the base couples the pendulums causing synchronization. The synchronization is generally in-phase, with antiphase synchronization occurring only under special conditions. The metronome system provides a mechanical realization of the popular Kuramoto model for synchronization of biological oscillators, and is excellent for classroom demonstrations and an undergraduate physics lab.

  20. Zero-lag synchronization and bubbling in delay-coupled lasers.

    Science.gov (United States)

    Tiana-Alsina, J; Hicke, K; Porte, X; Soriano, M C; Torrent, M C; Garcia-Ojalvo, J; Fischer, I

    2012-02-01

    We show experimentally that two semiconductor lasers mutually coupled via a passive relay fiber loop exhibit chaos synchronization at zero lag, and study how this synchronized regime is lost as the lasers' pump currents are increased. We characterize the synchronization properties of the system with high temporal resolution in two different chaotic regimes, namely, low-frequency fluctuations and coherence collapse, identifying significant differences between them. In particular, a marked decrease in synchronization quality develops as the lasers enter the coherence collapse regime. Our high-resolution measurements allow us to establish that synchronization loss is associated with bubbling events, the frequency of which increases with increasing pump current.

  1. Topology Optimization of a High-Temperature Superconducting Field Winding of a Synchronous Machine

    DEFF Research Database (Denmark)

    Pozzi, Matias; Mijatovic, Nenad; Jensen, Bogi Bech

    2013-01-01

    This paper presents topology optimization (TO) of the high-temperature superconductor (HTS) field winding of an HTS synchronous machine. The TO problem is defined in order to find the minimum HTS material usage for a given HTS synchronous machine design. Optimization is performed using a modified...... genetic algorithm with local optimization search based on on/off sensitivity analysis. The results show an optimal HTS coil distribution, achieving compact designs with a maximum of approximately 22% of the available space for the field winding occupied with HTS tape. In addition, this paper describes...... potential HTS savings, which could be achieved using multiple power supplies for the excitation of the machine. Using the TO approach combined with two excitation currents, an additional HTS saving of 9.1% can be achieved....

  2. The least channel capacity for chaos synchronization.

    Science.gov (United States)

    Wang, Mogei; Wang, Xingyuan; Liu, Zhenzhen; Zhang, Huaguang

    2011-03-01

    Recently researchers have found that a channel with capacity exceeding the Kolmogorov-Sinai entropy of the drive system (h(KS)) is theoretically necessary and sufficient to sustain the unidirectional synchronization to arbitrarily high precision. In this study, we use symbolic dynamics and the automaton reset sequence to distinguish the information that is required in identifying the current drive word and obtaining the synchronization. Then, we show that the least channel capacity that is sufficient to transmit the distinguished information and attain the synchronization of arbitrarily high precision is h(KS). Numerical simulations provide support for our conclusions.

  3. Upper Extremity Freezing and Dyscoordination in Parkinson’s Disease: Effects of Amplitude and Cadence Manipulations

    Directory of Open Access Journals (Sweden)

    April J. Williams

    2013-01-01

    Full Text Available Purpose. Motor freezing, the inability to produce effective movement, is associated with decreasing amplitude, hastening of movement, and poor coordination. We investigated how manipulations of movement amplitude and cadence affect upper extremity (UE coordination as measured by the phase coordination index (PCI—only previously measured in gait—and freezing of the upper extremity (FO-UE in people with Parkinson's disease (PD who experience freezing of gait (PD + FOG, do not experience FOG (PD-FOG, and healthy controls. Methods. Twenty-seven participants with PD and 18 healthy older adults made alternating bimanual movements between targets under four conditions: Baseline; Fast; Small; SmallFast. Kinematic data were recorded and analyzed for PCI and FO-UE events. PCI and FO-UE were compared across groups and conditions. Correlations between UE PCI, gait PCI, FO-UE, and Freezing of Gait Questionnaire (FOG-Q were determined. Results. PD + FOG had poorer coordination than healthy old during SmallFast. UE coordination correlated with number of FO-UE episodes in two conditions and FOG-Q score in one. No differences existed between PD−/+FOG in coordination or number of FO-UE episodes. Conclusions. Dyscoordination and FO-UE can be elicited by manipulating cadence and amplitude of an alternating bimanual task. It remains unclear whether FO-UE and FOG share common mechanisms.

  4. Powder metallurgy ferrous synchronizer ring with brass-based friction layer; Tetsu-do niso shoketsu synchronize ring no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okajima, H; Yoshikawa, K; Miyajima, K; Sugiyama, M [Toyota Motor Corp., Aichi (Japan); Nakamura, M; Ito, M [Japan Powder Metallurgy Co. Ltd., Tokyo (Japan)

    1997-10-01

    Synchronizer rings for manual transmissions are generally made of brass or molybdenum coated brass. Powder metallurgy (PM) synchronizer ring was developed for the purpose of high performance and cost reduction. This synchronizer ring consists of the high strength PM ferrous ring that needs neither special densification nor heat treatment, and it has the brass-based friction layer. New joining technique was required because of that shape and two different materials. Powder of copper-phosphorus alloy are admixed with the friction material. While sintering, that melt and migrate to the interface. Then the friction layer and the ferrous ring are joined tightly. 7 refs., 9 figs., 6 tabs.

  5. Design of a new type synchronous focusing mechanism

    Science.gov (United States)

    Zhang, Jintao; Tan, Ruijun; Chen, Zhou; Zhang, Yongqi; Fu, Panlong; Qu, Yachen

    2018-05-01

    Aiming at the dual channel telescopic imaging system composed of infrared imaging system, low-light-level imaging system and image fusion module, In the fusion of low-light-level images and infrared images, it is obvious that using clear source images is easier to obtain high definition fused images. When the target is imaged at 15m to infinity, focusing is needed to ensure the imaging quality of the dual channel imaging system; therefore, a new type of synchronous focusing mechanism is designed. The synchronous focusing mechanism realizes the focusing function through the synchronous translational imaging devices, mainly including the structure of the screw rod nut, the shaft hole coordination structure and the spring steel ball eliminating clearance structure, etc. Starting from the synchronous focusing function of two imaging devices, the structure characteristics of the synchronous focusing mechanism are introduced in detail, and the focusing range is analyzed. The experimental results show that the synchronous focusing mechanism has the advantages of ingenious design, high focusing accuracy and stable and reliable operation.

  6. Walk Ratio (Step Length/Cadence) as a Summary Index of Neuromotor Control of Gait: Application to Multiple Sclerosis

    Science.gov (United States)

    Rota, Viviana; Perucca, Laura; Simone, Anna; Tesio, Luigi

    2011-01-01

    In healthy adults, the step length/cadence ratio [walk ratio (WR) in mm/(steps/min) and normalized for height] is known to be constant around 6.5 mm/(step/min). It is a speed-independent index of the overall neuromotor gait control, in as much as it reflects energy expenditure, balance, between-step variability, and attentional demand. The speed…

  7. Perfect synchronization in networks of phase-frustrated oscillators

    Science.gov (United States)

    Kundu, Prosenjit; Hens, Chittaranjan; Barzel, Baruch; Pal, Pinaki

    2017-11-01

    Synchronizing phase-frustrated Kuramoto oscillators, a challenge that has found applications from neuronal networks to the power grid, is an eluding problem, as even small phase lags cause the oscillators to avoid synchronization. Here we show, constructively, how to strategically select the optimal frequency set, capturing the natural frequencies of all oscillators, for a given network and phase lags, that will ensure perfect synchronization. We find that high levels of synchronization are sustained in the vicinity of the optimal set, allowing for some level of deviation in the frequencies without significant degradation of synchronization. Demonstrating our results on first- and second-order phase-frustrated Kuramoto dynamics, we implement them on both model and real power grid networks, showing how to achieve synchronization in a phase-frustrated environment.

  8. Efficient synchronization of structurally adaptive coupled Hindmarsh-Rose neurons

    International Nuclear Information System (INIS)

    Moujahid, A.; D'Anjou, A.; Torrealdea, F.J.; Torrealdea, F.

    2011-01-01

    Highlights: → Neural activity might be constrained by a requirement of energy efficiency. → Signaling in synchrony is a normal way to propagate information between neurons. → Quality of synchrony affects the capacity to exchange information and the energy cost. → Adaptive mechanism leads to high degree of synchronization between nonidentical neurons. - Abstract: The use of spikes to carry information between brain areas implies complete or partial synchronization of the neurons involved. The degree of synchronization reached by two coupled systems and the energy cost of maintaining their synchronized behavior is highly dependent on the nature of the systems. For non-identical systems the maintenance of a synchronized regime is energetically a costly process. In this work, we study conditions under which two non-identical electrically coupled neurons can reach an efficient regime of synchronization at low energy cost. We show that the energy consumption required to keep the synchronized regime can be spontaneously reduced if the receiving neuron has adaptive mechanisms able to bring its biological parameters closer in value to the corresponding ones in the sending neuron.

  9. High-Q cavity-induced synchronization in oscillator arrays

    DEFF Research Database (Denmark)

    Filatrella, Giovanni; Pedersen, Niels Falsig; Wiesenfeld, Kurt

    2000-01-01

    A model for a large number of Josephson junctions coupled to a cavity is presented. The system displays synchronization behavior very similar to that reported in recent experiments [P. Barbara ct al., Phys. Rev. Lett. 82, 1963 (1999)]. The essential dynamical mechanism responsible for coherence...

  10. Stroboscope Based Synchronization of Full Frame CCD Sensors.

    Science.gov (United States)

    Shen, Liang; Feng, Xiaobing; Zhang, Yuan; Shi, Min; Zhu, Dengming; Wang, Zhaoqi

    2017-04-07

    The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD) consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equipment, the proposed approach greatly reduces the cost by using inexpensive CCD cameras and one stroboscope. The results show that our method could reach a high accuracy much better than the frame-level synchronization of traditional software methods.

  11. Destroying Aliases from the Ground and Space: Super-Nyquist ZZ Cetis in K2 Long Cadence Data

    Science.gov (United States)

    Bell, Keaton J.; Hermes, J. J.; Vanderbosch, Z.; Montgomery, M. H.; Winget, D. E.; Dennihy, E.; Fuchs, J. T.; Tremblay, P.-E.

    2017-12-01

    With typical periods of the order of 10 minutes, the pulsation signatures of ZZ Ceti variables (pulsating hydrogen-atmosphere white dwarf stars) are severely undersampled by long-cadence (29.42 minutes per exposure) K2 observations. Nyquist aliasing renders the intrinsic frequencies ambiguous, stifling precision asteroseismology. We report the discovery of two new ZZ Cetis in long-cadence K2 data: EPIC 210377280 and EPIC 220274129. Guided by three to four nights of follow-up, high-speed (≤slant 30 s) photometry from the McDonald Observatory, we recover accurate pulsation frequencies for K2 signals that reflected four to five times off the Nyquist with the full precision of over 70 days of monitoring (∼0.01 μHz). In turn, the K2 observations enable us to select the correct peaks from the alias structure of the ground-based signals caused by gaps in the observations. We identify at least seven independent pulsation modes in the light curves of each of these stars. For EPIC 220274129, we detect three complete sets of rotationally split {\\ell }=1 (dipole mode) triplets, which we use to asteroseismically infer the stellar rotation period of 12.7 ± 1.3 hr. We also detect two sub-Nyquist K2 signals that are likely combination (difference) frequencies. We attribute our inability to match some of the K2 signals to the ground-based data to changes in pulsation amplitudes between epochs of observation. Model fits to SOAR spectroscopy place both EPIC 210377280 and EPIC 220274129 near the middle of the ZZ Ceti instability strip, with {T}{eff} =11590+/- 200 K and 11810 ± 210 K, and masses 0.57 ± 0.03 M ⊙ and 0.62 ± 0.03 M ⊙, respectively.

  12. Overview of Cell Synchronization.

    Science.gov (United States)

    Banfalvi, Gaspar

    2017-01-01

    The widespread interest in cell synchronization is maintained by the studies of control mechanism involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.

  13. Detection of generalized synchronization using echo state networks

    Science.gov (United States)

    Ibáñez-Soria, D.; Garcia-Ojalvo, J.; Soria-Frisch, A.; Ruffini, G.

    2018-03-01

    Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences interleaved with unsynchronized ones. Correctly tuned, echo state networks are able to efficiently discriminate between unsynchronized and synchronized sequences even in the presence of relatively high levels of noise. Compared to other state-of-the-art techniques of synchronization detection, the online capabilities of the proposed Echo State Network based methodology make it a promising choice for real-time applications aiming to monitor dynamical synchronization changes in continuous signals.

  14. New type of chaos synchronization in discrete-time systems: the F-M synchronization

    Directory of Open Access Journals (Sweden)

    Ouannas Adel

    2018-04-01

    Full Text Available In this paper, a new type of synchronization for chaotic (hyperchaotic maps with different dimensions is proposed. The novel scheme is called F – M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F with the matrix projective synchronization (based on a matrix M. In particular, the proposed approach enables F – M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F – M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.

  15. New type of chaos synchronization in discrete-time systems: the F-M synchronization

    Science.gov (United States)

    Ouannas, Adel; Grassi, Giuseppe; Karouma, Abdulrahman; Ziar, Toufik; Wang, Xiong; Pham, Viet-Thanh

    2018-04-01

    In this paper, a new type of synchronization for chaotic (hyperchaotic) maps with different dimensions is proposed. The novel scheme is called F - M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F) with the matrix projective synchronization (based on a matrix M). In particular, the proposed approach enables F - M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F - M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.

  16. Stroboscope Based Synchronization of Full Frame CCD Sensors

    Directory of Open Access Journals (Sweden)

    Liang Shen

    2017-04-01

    Full Text Available The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equipment, the proposed approach greatly reduces the cost by using inexpensive CCD cameras and one stroboscope. The results show that our method could reach a high accuracy much better than the frame-level synchronization of traditional software methods.

  17. On Synchronization Primitive Systems.

    Science.gov (United States)

    The report studies the question: what synchronization primitive should be used to handle inter-process communication. A formal model is presented...between these synchronization primitives. Although only four synchronization primitives are compared, the general methods can be used to compare other... synchronization primitives. Moreover, in the definitions of these synchronization primitives, conditional branches are explicitly allowed. In addition

  18. Development of Digital Control for High Power Permanent-Magnet Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Ming-Hung Chen

    2014-01-01

    Full Text Available This paper is concerned with the development of digital control system for high power permanent-magnet synchronous motor (PMSM to yield good speed regulation, low current harmonic, and stable output speed. The design of controller is conducted by digitizing the mathematical model of PMSM using impulse invariance technique. The predicted current estimator, which is insensitive to motor feedback currents, is proposed to function under stationary frame for harmonic current suppression. In the AC/DC power converter, mathematical model and dc-link voltage limit of the three-phase switch-mode rectifier are derived. In addition, a current controller under synchronous frame is introduced to reduce the current harmonics and increase the power factor on the input side. A digital control system for 75 kW PMSM is realized with digital signal processor (R5F5630EDDFP. Experimental results indicate that the total harmonic distortion of current is reduced from 4.1% to 2.8% for 50 kW output power by the proposed predicted current estimator technique.

  19. Suppression of synchronous resonance for VSGs

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wu, Heng; Wang, Xiongfei

    2017-01-01

    The virtual synchronous generator (VSG) is an attractive interfacing technique for high-penetration renewable generation. By incorporating the inertia control, the grid-connected voltage-source converter can behave in a similar way with the SGs, which is helpful to enhance the stability of the po......The virtual synchronous generator (VSG) is an attractive interfacing technique for high-penetration renewable generation. By incorporating the inertia control, the grid-connected voltage-source converter can behave in a similar way with the SGs, which is helpful to enhance the stability...... of the power system. However, it is reported that the synchronous frequency resonance (SFR) can be aroused in the VSG due to the resonance peaks in the power control loops at the fundamental frequency. By modelling the power control loop in the dq domain, the mechanism underlying the SFR is studied. It reveals...

  20. A Novel Method of Clock Synchronization in Distributed Systems

    Science.gov (United States)

    Li, Gun; Niu, Meng-jie; Chai, Yang-shun; Chen, Xin; Ren, Yan-qiu

    2017-04-01

    Time synchronization plays an important role in the spacecraft formation flight and constellation autonomous navigation, etc. For the application of clock synchronization in a network system, it is not always true that all the observed nodes in the network are interconnected, therefore, it is difficult to achieve the high-precision time synchronization of a network system in the condition that a certain node can only obtain the measurement information of clock from a single neighboring node, but cannot obtain it from other nodes. Aiming at this problem, a novel method of high-precision time synchronization in a network system is proposed. In this paper, each clock is regarded as a node in the network system, and based on the definition of different topological structures of a distributed system, the three control algorithms of time synchronization under the following three cases are designed: without a master clock (reference clock), with a master clock (reference clock), and with a fixed communication delay in the network system. And the validity of the designed clock synchronization protocol is proved by both stability analysis and numerical simulation.

  1. Stages of chaotic synchronization.

    Science.gov (United States)

    Tang, D. Y.; Dykstra, R.; Hamilton, M. W.; Heckenberg, N. R.

    1998-09-01

    In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (c) 1998 American Institute of Physics.

  2. Synchronous ethernet and IEEE 1588 in telecoms next generation synchronization networks

    CERN Document Server

    2013-01-01

    This book addresses the multiple technical aspects of the distribution of synchronization in new generation telecommunication networks, focusing in particular on synchronous Ethernet and IEEE1588 technologies. Many packet network engineers struggle with understanding the challenges that precise synchronization distribution can impose on networks. The usual “why”, “when” and particularly “how” can cause problems for many engineers. In parallel to this, some other markets have identical synchronization requirements, but with their own design requirements, generating further questions. This book attempts to respond to the different questions by providing background technical information. Invaluable information on state of-the-art packet network synchronization and timing architectures is provided, as well as an unbiased view on the synchronization technologies that have been internationally standardized over recent years, with the aim of providing the average reader (who is not skilled in the art) wi...

  3. High-level 13C-enrichment of random and synchronous populations of Chlamydomonas reinhardii

    International Nuclear Information System (INIS)

    Price, R.L.; Crissman, H.A.; Martin, J.C.; Kollman, V.H.

    1975-01-01

    The alga Chlamydomonas reinhardii was grown in suspension culture at high levels of 13 C-enrichment (98 mol percent) both in synchronous and random populations for the purpose of investigating possible macro- and ultrastructural changes in the cell as induced by essentially total carbon replacement. The algae, grown in spinner flasks, were analyzed using a newly developed multiparameter flow-system technique applied to characterizing various algal genera. The versatility of this technique provides for measuring and processing several cell characteristics simultaneously and separating cells according to selected combinations of parameters. In these studies, cell volume (by Coulter aperture) and DNA and chlorophyll content were determined simultaneously. Cell ultrastructure was examined at various levels of isotope enrichment and time periods by electron microscopy. The data presented for synchronous growth of this organism demonstrate the absence of biological effects (considering the parameters measured) due to the almost total replacement of cellular 12 C with 13 C. Interpretational problems encountered when looking for biological effects on random populations are discussed

  4. Impulsive Synchronization and Adaptive-Impulsive Synchronization of a Novel Financial Hyperchaotic System

    Directory of Open Access Journals (Sweden)

    Xiuli Chai

    2013-01-01

    Full Text Available The impulsive synchronization and adaptive-impulsive synchronization of a novel financial hyperchaotic system are investigated. Based on comparing principle for impulsive functional differential equations, several sufficient conditions for impulsive synchronization are derived, and the upper bounds of impulsive interval for stable synchronization are estimated. Furthermore, a nonlinear adaptive-impulsive control scheme is designed to synchronize the financial system using invariant principle of impulsive dynamical systems. Moreover, corresponding numerical simulations are presented to illustrate the effectiveness and feasibility of the proposed methods.

  5. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons

    Science.gov (United States)

    Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D

    2016-01-01

    Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1ARH) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1ARH neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1ARH neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1ARH neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1ARH neurons. We propose that Kiss1ARH neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. DOI: http://dx.doi.org/10.7554/eLife.16246.001 PMID:27549338

  6. Synchronization of Estrus in Cattle: A Review

    Directory of Open Access Journals (Sweden)

    R. Islam

    2011-06-01

    Full Text Available Numbers of estrus synchronization programmes are available in cattle based on the use of various hormones like progesterone, prostaglandin F2a and their various combinations with other hormones like estrogen and Gonadotrophin Releasing hormone (GnRH. Selection of appropriate estrus synchronization protocol should be made on the basis of management capabilities and expectations of the farmer. Synchronization of oestrus can be accomplished with the injection of prostaglandin F2a alone, but it needs proper detection of the ovarian status of the cows as prostaglandin F2a is active in only functional corpus luteum in between 8 to 17 days of estrous cycle. Progesterone may reduce fertility up to 14 percent, but short time progesterone exposure (less than 14 days is beneficial. Addition of GnRH in the Progesterone or Prostaglandin based synchronization programme is helpful for more synchrony in estrus as GnRH may be helpful to synchronize the oestrous cycle in delayed pubertal heifers and post partum cows (Post partum anoestrum and further a single, timed artificial insemination is possible with this method. New methods of synchronizing estrus in which the GnRH-PG protocol is preceded by progesterone treatment offer effective synchronization of estrus with high fertility. [Vet. World 2011; 4(3.000: 136-141

  7. Synchronization of sub-picosecond electron and laser pulses

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-01-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) copyright 1999 American Institute of Physics

  8. Synchronous Control Method and Realization of Automated Pharmacy Elevator

    Science.gov (United States)

    Liu, Xiang-Quan

    Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.

  9. Pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions

    International Nuclear Information System (INIS)

    Yan-Li, Zou; Guan-Rong, Chen

    2009-01-01

    This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value. (general)

  10. IPTV inter-destination synchronization: A network-based approach

    NARCIS (Netherlands)

    Stokking, H.M.; Deventer, M.O. van; Niamut, O.A.; Walraven, F.A.; Mekuria, R.N.

    2010-01-01

    This paper introduces a novel network-based approach to inter-destination media synchronization. The approach meets the need for synchronization in advanced TV concepts like social TV and offers high scalability, unlike conventional end-point based approaches. The solution for interdestination media

  11. Alternate rhythmic vibratory stimulation of trunk muscles affects walking cadence and velocity in Parkinson's disease.

    Science.gov (United States)

    De Nunzio, Alessandro M; Grasso, Margherita; Nardone, Antonio; Godi, Marco; Schieppati, Marco

    2010-02-01

    During the administration of timed bilateral alternate vibration to homonymous leg or trunk muscles during quiet upright stance, Parkinsonian (PD) patients undergo cyclic antero-posterior and medio-lateral transfers of the centre of foot pressure. This event might be potentially exploited for improving gait in these patients. Here, we tested this hypothesis by applying alternate muscle vibration during walking in PD. Fifteen patients and 15 healthy subjects walked on an instrumented walkway under four conditions: no vibration (no-Vib), and vibration of tibialis anterior (TA-Vib), soleus (Sol-Vib) and erector spinae (ES-Vib) muscles of both sides. Trains of vibration (internal frequency 100 Hz) were delivered to right and left side at alternating frequency of 10% above preferred step cadence. During vibration, stride length, cadence and velocity increased in both patients and healthy subjects, significantly so for ES-Vib. Stance and swing time tended to decrease. Width of support base increased with Sol-Vib or TA-Vib, but was unaffected by ES-Vib. Alternate ES vibration enhances gait velocity in PD. The stronger effect of ES over leg muscle vibration might depend on the relevance of the proprioceptive inflow from the trunk muscles and on the absence of adverse effects on the support base width. Trunk control is defective in PD. The effect of timed vibratory stimulation on gait suggests the potential use of trunk proprioceptive stimulation for tuning the central pattern generators for locomotion in PD. Copyright (c) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Cadências escolares, ritmos docentes School cadences, teaching rhythms

    Directory of Open Access Journals (Sweden)

    Inês Assunção de Castro Teixeira

    1999-07-01

    Full Text Available O artigo analisa alguns dos eixos que estruturam os ritmos cotidianos dos professores, próprios às temporalidades da vida social na escola. Parte do pressuposto de que o tempo é uma "categoria do pensamento lógico", originada no ritmo da vida social (Dukheim, e que essa rítmica é uma "modalidade concreta do tempo social" (Lefebvre e Régulier. O estudo é parte de uma pesquisa que busca tematizar a experiência do tempo de sujeitos que se encontram na condição de professores - docentes de quinta à oitava séries do ensino fundamental e do ensino médio -, levando em conta seus vínculos com a construção de identidades docentes. O texto se desenvolve em torno de três eixos: as cadências das interações entre educandos e educadores, os ritmos dos calendários e os compassos dos horários escolares. Conclui-se que os ritmos docentes, embora circunscritos à rítmica da vida moderna, têm particularidades associadas às cadências da escola, aos processos pedagógicos e àqueles relacionados à formação humana. Trata-se, pois, de analisar a polirritmia dos tempos da escola em sua complexidade e peculiaridades, de forma a se compreenderem as modulações e significações da experiência do tempo na condição de professor, vivência constitutiva das identidades docentes.This paper analyzes some of the concepts peculiar to the temporality of the school social life that structure the everyday rhythm of teachers. It assumes that time is a "category of logical thinking" originated in the rhythm of social life (Durkheim, and that such rhythmic character is a "concrete modality of social time" (Lefebvre and Régulier. This study is part of a research that seeks to discuss the experience of time for teachers of the 5th to 8th grades of the Primary Education and of the Secondary Education, taking into account the teachers’ links with the construction of their own teaching identities. The text is developed around three themes: the cadences

  13. Symbol Synchronization for Diffusion-Based Molecular Communications.

    Science.gov (United States)

    Jamali, Vahid; Ahmadzadeh, Arman; Schober, Robert

    2017-12-01

    Symbol synchronization refers to the estimation of the start of a symbol interval and is needed for reliable detection. In this paper, we develop several symbol synchronization schemes for molecular communication (MC) systems where we consider some practical challenges, which have not been addressed in the literature yet. In particular, we take into account that in MC systems, the transmitter may not be equipped with an internal clock and may not be able to emit molecules with a fixed release frequency. Such restrictions hold for practical nanotransmitters, e.g., modified cells, where the lengths of the symbol intervals may vary due to the inherent randomness in the availability of food and energy for molecule generation, the process for molecule production, and the release process. To address this issue, we develop two synchronization-detection frameworks which both employ two types of molecule. In the first framework, one type of molecule is used for symbol synchronization and the other one is used for data detection, whereas in the second framework, both types of molecule are used for joint symbol synchronization and data detection. For both frameworks, we first derive the optimal maximum likelihood (ML) symbol synchronization schemes as performance upper bounds. Since ML synchronization entails high complexity, for each framework, we also propose three low-complexity suboptimal schemes, namely a linear filter-based scheme, a peak observation-based scheme, and a threshold-trigger scheme, which are suitable for MC systems with limited computational capabilities. Furthermore, we study the relative complexity and the constraints associated with the proposed schemes and the impact of the insertion and deletion errors that arise due to imperfect synchronization. Our simulation results reveal the effectiveness of the proposed synchronization schemes and suggest that the end-to-end performance of MC systems significantly depends on the accuracy of the symbol

  14. Synchronization on effective networks

    International Nuclear Information System (INIS)

    Zhou Tao; Zhao Ming; Zhou Changsong

    2010-01-01

    The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.

  15. Synchronization on effective networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao [Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhao Ming [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou Changsong, E-mail: cszhou@hkbu.edu.h [Department of Physics, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-04-15

    The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.

  16. A Synchronization Method for Single-Phase Grid-Tied Inverters

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2016-01-01

    The controllers of single-phase grid-tied inverters require improvements to enable distribution generation systems to meet the grid codes/standards with respect to power quality and the fault ride through capability. In that case, the response of the selected synchronization technique is crucial...... for the performance of the entire grid-tied inverter. In this paper, a new synchronization method with good dynamics and high accuracy under a highly distorted voltage is proposed. This method uses a Multi-Harmonic Decoupling Cell (MHDC), which thus can cancel out the oscillations on the synchronization signals due...... to the harmonic voltage distortion while maintaining the dynamic response of the synchronization. Therefore, the accurate and dynamic response of the proposed MHDC-PLL can be beneficial for the performance of the whole single-phase grid-tied inverter....

  17. A Case of Synchronous Bilateral Upper Urinary System Urothelial Carcinoma

    Directory of Open Access Journals (Sweden)

    Ibrahim Buldu

    2014-12-01

    Full Text Available Synchronous bilateral upper urinary tract urothelial cancer (UTUC is a very rare form of urothelial cancer. In patients with high-risk unilateral UTUC, radical nephroureterectomy (RNU is the gold standard treatment. However, there is no consensus on the treatment for synchronous bilateral UTUC. Evaluation of the patient and the tumor is recommended. Bilateral nephron-sparing surgery (NSS was performed on a 53-year-old patient who presented with high-risk synchronous bilateral UTUC, and the outcome was reported.

  18. Experimental Investigation of Chaos Synchronization in DFB Diode Lasers with Unsymmetrical Scheme

    International Nuclear Information System (INIS)

    Ling-Zhen, Yang; Xiu-Juan, Zhang; An-Bang, Wang; Dong-Ming, Guo; Yun-Cai, Wang

    2008-01-01

    We experimentally generate high dimension chaotic waveforms with smooth spectrum using a distributed feedback (DFB) semiconductor laser with unidirectional fibre ring long-cavity feedback, and implement the stable chaos synchronization when the chaotic light is injected into a solitary DFB laser diode. The synchronization quality is investigated by time-domain and frequency-domain analysis separately. The frequency-domain analysis indicates that the synchronization has higher quality in the high frequency band. The influences of the injection strength and the frequency detuning on the synchronization are measured. Our experimental results show that the robust synchronization can be maintained with the optical frequency detuning from -UGHz to 40 GHz. (general)

  19. Synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Pecora, Louis M.; Carroll, Thomas L.

    2015-01-01

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators

  20. High Precision Clock Bias Prediction Model in Clock Synchronization System

    Directory of Open Access Journals (Sweden)

    Zan Liu

    2016-01-01

    Full Text Available Time synchronization is a fundamental requirement for many services provided by a distributed system. Clock calibration through the time signal is the usual way to realize the synchronization among the clocks used in the distributed system. The interference to time signal transmission or equipment failures may bring about failure to synchronize the time. To solve this problem, a clock bias prediction module is paralleled in the clock calibration system. And for improving the precision of clock bias prediction, the first-order grey model with one variable (GM(1,1 model is proposed. In the traditional GM(1,1 model, the combination of parameters determined by least squares criterion is not optimal; therefore, the particle swarm optimization (PSO is used to optimize GM(1,1 model. At the same time, in order to avoid PSO getting stuck at local optimization and improve its efficiency, the mechanisms that double subgroups and nonlinear decreasing inertia weight are proposed. In order to test the precision of the improved model, we design clock calibration experiments, where time signal is transferred via radio and wired channel, respectively. The improved model is built on the basis of clock bias acquired in the experiments. The results show that the improved model is superior to other models both in precision and in stability. The precision of improved model increased by 66.4%~76.7%.

  1. Synchronization of EEG activity in patients with bipolar disorder

    Science.gov (United States)

    Panischev, O. Yu; Demin, S. A.; Muhametshin, I. G.; Demina, N. Yu

    2015-12-01

    In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome.

  2. Content-based intermedia synchronization

    Science.gov (United States)

    Oh, Dong-Young; Sampath-Kumar, Srihari; Rangan, P. Venkat

    1995-03-01

    Inter-media synchronization methods developed until now have been based on syntactic timestamping of video frames and audio samples. These methods are not fully appropriate for the synchronization of multimedia objects which may have to be accessed individually by their contents, e.g. content-base data retrieval. We propose a content-based multimedia synchronization scheme in which a media stream is viewed as hierarchial composition of smaller objects which are logically structured based on the contents, and the synchronization is achieved by deriving temporal relations among logical units of media object. content-based synchronization offers several advantages such as, elimination of the need for time stamping, freedom from limitations of jitter, synchronization of independently captured media objects in video editing, and compensation for inherent asynchronies in capture times of video and audio.

  3. Design of High Performance Permanent-Magnet Synchronous Wind Generators

    Directory of Open Access Journals (Sweden)

    Chun-Yu Hsiao

    2014-11-01

    Full Text Available This paper is devoted to the analysis and design of high performance permanent-magnet synchronous wind generators (PSWGs. A systematic and sequential methodology for the design of PMSGs is proposed with a high performance wind generator as a design model. Aiming at high induced voltage, low harmonic distortion as well as high generator efficiency, optimal generator parameters such as pole-arc to pole-pitch ratio and stator-slot-shoes dimension, etc. are determined with the proposed technique using Maxwell 2-D, Matlab software and the Taguchi method. The proposed double three-phase and six-phase winding configurations, which consist of six windings in the stator, can provide evenly distributed current for versatile applications regarding the voltage and current demands for practical consideration. Specifically, windings are connected in series to increase the output voltage at low wind speed, and in parallel during high wind speed to generate electricity even when either one winding fails, thereby enhancing the reliability as well. A PMSG is designed and implemented based on the proposed method. When the simulation is performed with a 6 Ω load, the output power for the double three-phase winding and six-phase winding are correspondingly 10.64 and 11.13 kW. In addition, 24 Ω load experiments show that the efficiencies of double three-phase winding and six-phase winding are 96.56% and 98.54%, respectively, verifying the proposed high performance operation.

  4. Fast Self-Synchronization between LowVoltage Microgrid and Inverter using Virtual Synchronous Converter

    Directory of Open Access Journals (Sweden)

    Md Ruhul Amin

    2017-12-01

    Full Text Available In this paper, a fast self-synchronization known as virtual synchronous converter (VSCon between single-phase microgrid and inverter in low-voltage microgrid, has been developed in Matlab/Simulink. The idea is to any phase locked loop (PLL circuit for inverter-microgrid synchronization in order to improve the synchronization time. As known, it is difficult and lengthy process to tune the PLL gain parameters to reach suitable performance for synchronizing among the voltage, phase-angle and frequency between them. Due to this problem, a fast self synchronization technique is needed in order to minimize the time losses at the microgrid connection. Therefore, the VSCon has been developed which is based on the synchronous generator mathematical model but in virtual environment representation. It has been applied in the inverter control for generating switching pattern to the inverter switches in order to respond to the grid voltage for improve the synchronization. For a prove of concept, several simulation tests in MATLAB models have been conducted, in order to see the effectiveness of this VSCon. First test has been conducted, when a 240V, 50Hz frequency grid source is used for observing the self-synchronization the system with the power flows output. Furthermore, the next test is conducted when the grid frequency is changed from the rated frequency at 50Hz to 51Hz and the result shows the VSCon in inverter control takes nearly 40ms to synchronize to this new frequency value. The test on grid phase-angle delay also been tested when ac grid voltage has 150 phase delay. As from all the results, the improved inverter control with VSCon structure is able to have fast and self-synchronized between the invertergrid connection before the power from the inverter can be transferred.

  5. Analysis of Synchronization for Coupled Hybrid Systems

    DEFF Research Database (Denmark)

    Li, Zheng; Wisniewski, Rafal

    2006-01-01

    In the control systems with coupled multi-subsystem, the subsystems might be synchronized (i.e. all the subsystems have the same operation states), which results in negative influence to the whole system. For example, in the supermarket refrigeration systems, the synchronized switch of each...... subsystem will cause low efficiency, inferior control performance and a high wear on the compressor. This paper takes the supermarket refrigeration systems as an example to analyze the synchronization and its coupling strengths of coupled hybrid systems, which may provide a base for further research...... of control strategies. This paper combines topology and section mapping theories together to show a new way of analyzing hybrid systems...

  6. A secure communication scheme using projective chaos synchronization

    International Nuclear Information System (INIS)

    Li Zhigang; Xu Daolin

    2004-01-01

    Most secure communication schemes using chaotic dynamics are based on identical synchronization. In this paper, we show the possibility of secure communication using projective synchronization (PS). The unpredictability of the scaling factor in projective synchronization can additionally enhance the security of communication. It is also showed that the scaling factor can be employed to improve the robustness against noise contamination. The feasibility of the communication scheme in high-dimensional chaotic systems, such as the hyperchaotic Roessler system, is demonstrated. Numerical results show the success in transmitting a sound signal through chaotic systems

  7. Control system for several rotating mirror camera synchronization operation

    Science.gov (United States)

    Liu, Ningwen; Wu, Yunfeng; Tan, Xianxiang; Lai, Guoji

    1997-05-01

    This paper introduces a single chip microcomputer control system for synchronization operation of several rotating mirror high-speed cameras. The system consists of four parts: the microcomputer control unit (including the synchronization part and precise measurement part and the time delay part), the shutter control unit, the motor driving unit and the high voltage pulse generator unit. The control system has been used to control the synchronization working process of the GSI cameras (driven by a motor) and FJZ-250 rotating mirror cameras (driven by a gas driven turbine). We have obtained the films of the same objective from different directions in different speed or in same speed.

  8. Synchronization of Multipoint Hoists

    Science.gov (United States)

    A contractor has conceived an electrohydraulic feedback system that will provide position synchronization of four aircraft cargo hoists. To... synchronized hoist system. Test results show that the feedback system concept provides adequate synchronization control; i.e., the platform pitch and roll

  9. Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies.

    Science.gov (United States)

    Dutta, Soumita; Avasthi, Prachee

    2017-01-01

    The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas . This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small

  10. Synchronization of EEG activity in patients with bipolar disorder

    International Nuclear Information System (INIS)

    Panischev, O Yu; Demin, S A; Muhametshin, I G; Yu Demina, N

    2015-01-01

    In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome. (paper)

  11. Chaos synchronization basing on symbolic dynamics with nongenerating partition.

    Science.gov (United States)

    Wang, Xingyuan; Wang, Mogei; Liu, Zhenzhen

    2009-06-01

    Using symbolic dynamics and information theory, we study the information transmission needed for synchronizing unidirectionally coupled oscillators. It is found that when sustaining chaos synchronization with nongenerating partition, the synchronization error will be larger than a critical value, although the required coupled channel capacity can be smaller than the case of using a generating partition. Then we show that no matter whether a generating or nongenerating partition is in use, a high-quality detector can guarantee the lead of the response oscillator, while the lag responding can make up the low precision of the detector. A practicable synchronization scheme basing on a nongenerating partition is also proposed in this paper.

  12. Synchronous characterization of semiconductor microcavity laser beam.

    Science.gov (United States)

    Wang, T; Lippi, G L

    2015-06-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  13. Self-discharge synchronizing operations in the external electrode fluorescent multi-lamps backlight

    International Nuclear Information System (INIS)

    Cho, Guangsup; Kwon, Nam O; Kim, Young M; Kim, Sung J; Cho, Tae S; Kim, Bong S; Kang, June G; Choi, Eun H; Lee, Ung W; Yang, Soon C; Uhm, Han S

    2003-01-01

    The external electrode fluorescent lamp (EEFL) is operated in a high frequency mode because the lamp lighting is basically a dielectric barrier discharge. The self-discharge synchronization is defined by synchronizing the self-discharge time of the dielectric wall charge with the voltage rising and falling time. It is shown that for the self-discharge synchronization a high brightness is obtained in the multi-lamps backlight connected in parallel with the EEFLs operated with square waves from a switching inverter. The frequency for self-discharge synchronizing is also shown to increase as the driving voltage increases

  14. Cell Division Synchronization

    Science.gov (United States)

    The report summarizes the progress in the design and construction of automatic equipment for synchronizing cell division in culture by periodic...Concurrent experiments in hypothermic synchronization of algal cell division are reported.

  15. Synchronization dynamics of two different dynamical systems

    International Nuclear Information System (INIS)

    Luo, Albert C.J.; Min Fuhong

    2011-01-01

    Highlights: → Synchronization dynamics of two distinct dynamical systems. → Synchronization, de-synchronization and instantaneous synchronization. → A controlled pendulum synchronizing with the Duffing oscillator. → Synchronization invariant set. → Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.

  16. FPGA based fast synchronous serial multi-wire links synchronization

    Science.gov (United States)

    Pozniak, Krzysztof T.

    2013-10-01

    The paper debates synchronization method of multi-wire, serial link of constant latency, by means of pseudo-random numbers generators. The solution was designed for various families of FPGA circuits. There were debated synchronization algorithm and functional structure of parameterized transmitter and receiver modules. The modules were realized in VHDL language in a behavioral form.

  17. Communication with spatial periodic chaos synchronization

    International Nuclear Information System (INIS)

    Zhou, J.; Huang, H.B.; Qi, G.X.; Yang, P.; Xie, X.

    2005-01-01

    Based on the spatial periodic chaos synchronization in coupled ring and linear arrays, we proposed a random high-dimensional chaotic encryption scheme. The transmitter can choose hyperchaotic signals randomly from the ring at any different time and simultaneously transmit the information of chaotic oscillators in the ring to receiver through public channel, so that the message can be masked by different hyperchaotic signals in different time intervals during communication, and the receiver can decode the message based on chaos synchronization but the attacker does not know the random hyperchaotic dynamics and cannot decode the message. Furthermore, the high sensitivity to the symmetry of the coupling structure makes the attacker very difficult to obtain any useful message from the channel

  18. Synchronizing Strategies under Partial Observability

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Laursen, Simon; Srba, Jiri

    2014-01-01

    Embedded devices usually share only partial information about their current configurations as the communication bandwidth can be restricted. Despite this, we may wish to bring a failed device into a given predetermined configuration. This problem, also known as resetting or synchronizing words, has...... been intensively studied for systems that do not provide any information about their configurations. In order to capture more general scenarios, we extend the existing theory of synchronizing words to synchronizing strategies, and study the synchronization, short-synchronization and subset...

  19. Chaos synchronization in RCL-shunted Josephson junction via active control

    International Nuclear Information System (INIS)

    Ucar, Ahmet; Lonngren, Karl E.; Bai, E.-W.

    2007-01-01

    This paper investigates the synchronization of coupled RCL-shunted Josephson junction that is of interest in high-frequency applications. A nonlinear controller is developed in order to achieve the desired behavior. The synchronization is obtained using the slave-master technique and the controller ensures that the states of the controlled chaotic slave system exponentially synchronize with the state of the master system. Numerical simulations are illustrate and verify the proposed method

  20. Determination of High-Frequency d- and q-axis Inductances for Surface-Mounted Permanent-Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Vetuschi, M.; Rasmussen, Peter Omand

    2010-01-01

    This paper presents a reliable method for the experimental determination of high-frequency d- and q -axis inductances for surface-mounted permanent-magnet synchronous machines (SMPMSMs). Knowledge of the high-frequency d- and q-axis inductances plays an important role in the efficient design...... of sensorless controllers using high-frequency signal injection techniques. The proposed method employs a static locked-rotor test using an ac +dc power supply. By injecting a high-frequency rotating voltage vector into the machine, the d- and q-axis inductances may simultaneously be determined with no need...

  1. Synchronization in networks with multiple interaction layers

    Science.gov (United States)

    del Genio, Charo I.; Gómez-Gardeñes, Jesús; Bonamassa, Ivan; Boccaletti, Stefano

    2016-01-01

    The structure of many real-world systems is best captured by networks consisting of several interaction layers. Understanding how a multilayered structure of connections affects the synchronization properties of dynamical systems evolving on top of it is a highly relevant endeavor in mathematics and physics and has potential applications in several socially relevant topics, such as power grid engineering and neural dynamics. We propose a general framework to assess the stability of the synchronized state in networks with multiple interaction layers, deriving a necessary condition that generalizes the master stability function approach. We validate our method by applying it to a network of Rössler oscillators with a double layer of interactions and show that highly rich phenomenology emerges from this. This includes cases where the stability of synchronization can be induced even if both layers would have individually induced unstable synchrony, an effect genuinely arising from the true multilayer structure of the interactions among the units in the network. PMID:28138540

  2. Biologically Inspired Intercellular Slot Synchronization

    Directory of Open Access Journals (Sweden)

    Alexander Tyrrell

    2009-01-01

    Full Text Available The present article develops a decentralized interbase station slot synchronization algorithm suitable for cellular mobile communication systems. The proposed cellular firefly synchronization (CelFSync algorithm is derived from the theory of pulse-coupled oscillators, common to describe synchronization phenomena in biological systems, such as the spontaneous synchronization of fireflies. In order to maintain synchronization among base stations (BSs, even when there is no direct link between adjacent BSs, some selected user terminals (UTs participate in the network synchronization process. Synchronization emerges by exchanging two distinct synchronization words, one transmitted by BSs and the other by active UTs, without any a priori assumption on the initial timing misalignments of BSs and UTs. In large-scale networks with inter-BS site distances up to a few kilometers, propagation delays severely affect the attainable timing accuracy of CelFSync. We show that by an appropriate combination of CelFSync with the timing advance procedure, which aligns uplink transmission of UTs to arrive simultaneously at the BS, a timing accuracy within a fraction of the inter-BS propagation delay is retained.

  3. Exploiting Schemas in Data Synchronization

    DEFF Research Database (Denmark)

    Foster, J. Nathan; Greenwald, Michael B.; Kirkegaard, Christian

    2005-01-01

    Increased reliance on optimistic data replication has led to burgeoning interest in tools and frameworks for disconnected updates to replicated data.We have implemented a generic synchronization framework, called HARMONY, that can be used to build state-based synchronizers for a wide variety...... of tree-structureddata formats. A novel feature of this framework is that the synchronization process - in particular, the recognition of conflicts - is driven by the schema of the structures being synchronized.We formalize HARMONY's synchronization algorithm, state a simple and intuitive specification......, and illustrate, using simple address books as a case study, how it can be used to synchronize trees representing a variety of specific forms of applicationdata, including sets, records, tuples, and relations....

  4. Implementation of a novel synchronous multi-site all day high-fidelity simulation.

    Science.gov (United States)

    Abraham, Paul; Verdonk, Franck; Buleon, Clement; Tesniere, Antoine; Lilot, Marc

    2018-01-01

    Integration of simulation in educational curricula for anesthesia and intensive care residents is a hot topic. There is a great interest for simulation centers to share their experiences through multi-site synchronous simulation sessions. The present study results from an experience conducted at three sites in France (Paris, Lyon, and Caen), which involved 16 instructors and 25 residents facing the same scenario across 1 day. Synchronous simulations were performed at each site with local and shared debriefing via teleconference. This innovative approach to simulation was found to be feasible, although certain difficulties were encountered with connectivity.

  5. Optimum off-line trace synchronization of computer clusters

    International Nuclear Information System (INIS)

    Jabbarifar, Masoume; Dagenais, Michel; Roy, Robert; Sendi, Alireza Shameli

    2012-01-01

    A tracing and monitoring framework produces detailed execution trace files for a system. Each trace file contains events with associated timestamps based on the local clock of their respective system, which are not perfectly synchronized. To monitor all behavior in multi-core distributed systems, a global time reference is required, thus the need for traces synchronization techniques. The synchronization is time consuming when there is a cluster of many computers. In this paper we propose an optimized technique to reduce the total synchronization time. Compared with related techniques that have been used on kernel level traces, this method improves the performance while maintaining a high accuracy. It uses the packet rate and the hop count as two major criteria to focus the computation on more accurate network links during synchronization. These criteria, tested in real-word experiments, were identified as most important features of a network. Furthermore, we present numerical and analytical evaluation results, and compare these with previous methods demonstrating the accuracy and the performance of the method.

  6. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  7. Practical experience with IEEE 1588 high precision time synchronization in electrical substation based on IEC 61850 process bus

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.; Goraj, M.J.; McGhee, J. [RuggedCom Inc., Concord, ON (Canada)

    2010-07-01

    This paper discussed a time synchronization and dynamic multicast filtering procedure conducted on an IEC 61850 process bus. The Institute of Electrical and Electronic (IEEE) 1588 time synchronization and dynamic multicast filtering procedure was conducted at a substation equipped with non-conventional instrument transformers (NCIT) and intelligent circuit breakers. The process bus interconnected IEDs within a bay that included a real time sampled value (SV) measurement system. The system was designed to reduce the use of copper wiring and to eliminate high energy signal processes. Digitized sampled measured values were sent from the electronic instrument transformers to protect and control relays. A merging unit was used to enable the transmission of the digitized current and voltage measurements across an ethernet network. Two sampling rates were supplied for power system monitoring and protection applications. The merging units continuously sent sampling values of current and voltages acquired from primary equipment. Precision time protocol systems were discussed, and issues related to time synchronization were reviewed. A network topology was provided. 4 refs., 4 figs.

  8. Image Blocking Encryption Algorithm Based on Laser Chaos Synchronization

    Directory of Open Access Journals (Sweden)

    Shu-Ying Wang

    2016-01-01

    Full Text Available In view of the digital image transmission security, based on laser chaos synchronization and Arnold cat map, a novel image encryption scheme is proposed. Based on pixel values of plain image a parameter is generated to influence the secret key. Sequences of the drive system and response system are pretreated by the same method and make image blocking encryption scheme for plain image. Finally, pixels position are scrambled by general Arnold transformation. In decryption process, the chaotic synchronization accuracy is fully considered and the relationship between the effect of synchronization and decryption is analyzed, which has characteristics of high precision, higher efficiency, simplicity, flexibility, and better controllability. The experimental results show that the encryption algorithm image has high security and good antijamming performance.

  9. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  10. Anti-synchronization of chaotic oscillators

    International Nuclear Information System (INIS)

    Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Ryu, Jung-Wan; Park, Young-Jai

    2003-01-01

    We have observed anti-synchronization phenomena in coupled identical chaotic oscillators. Anti-synchronization can be characterized by the vanishing of the sum of relevant variables. We have qualitatively analyzed its base mechanism by using the dynamics of the difference and the sum of the relevant variables in coupled chaotic oscillators. Near the threshold of the synchronization and anti-synchronization transition, we have obtained the novel characteristic relation

  11. Phase synchronization of non-Abelian oscillators on small-world networks

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhi-Ming [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhao, Ming [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou, Tao [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)]. E-mail: zhutou@ustc.edu; Zhu, Chen-Ping [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Bing-Hong [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2007-02-26

    In this Letter, by extending the concept of Kuramoto oscillator to the left-invariant flow on general Lie group, we investigate the generalized phase synchronization on networks. The analyses and simulations of some typical dynamical systems on Watts-Strogatz networks are given, including the n-dimensional torus, the identity component of 3-dimensional general linear group, the special unitary group, and the special orthogonal group. In all cases, the greater disorder of networks will predict better synchronizability, and the small-world effect ensures the global synchronization for sufficiently large coupling strength. The collective synchronized behaviors of many dynamical systems, such as the integrable systems, the two-state quantum systems and the top systems, can be described by the present phase synchronization frame. In addition, it is intuitive that the low-dimensional systems are more easily to synchronize, however, to our surprise, we found that the high-dimensional systems display obviously synchronized behaviors in regular networks, while these phenomena cannot be observed in low-dimensional systems.

  12. Phase synchronization of non-Abelian oscillators on small-world networks

    International Nuclear Information System (INIS)

    Gu, Zhi-Ming; Zhao, Ming; Zhou, Tao; Zhu, Chen-Ping; Wang, Bing-Hong

    2007-01-01

    In this Letter, by extending the concept of Kuramoto oscillator to the left-invariant flow on general Lie group, we investigate the generalized phase synchronization on networks. The analyses and simulations of some typical dynamical systems on Watts-Strogatz networks are given, including the n-dimensional torus, the identity component of 3-dimensional general linear group, the special unitary group, and the special orthogonal group. In all cases, the greater disorder of networks will predict better synchronizability, and the small-world effect ensures the global synchronization for sufficiently large coupling strength. The collective synchronized behaviors of many dynamical systems, such as the integrable systems, the two-state quantum systems and the top systems, can be described by the present phase synchronization frame. In addition, it is intuitive that the low-dimensional systems are more easily to synchronize, however, to our surprise, we found that the high-dimensional systems display obviously synchronized behaviors in regular networks, while these phenomena cannot be observed in low-dimensional systems

  13. Sensorless V/f Control of Permanent Magnet Synchronous Motors

    OpenAIRE

    Montesinos-Miracle, Daniel; Perera, P. D. Chandana; Galceran-Arellano, Samuel; Blaabjerg, Frede

    2010-01-01

    V/f control strategy for permanent magnet synchronous motors can be useful for HVAC applications, where not high performance is required. Permanent magnet synchronous motors have efficiency advantages over the induction motor. But open loop V/f control is not stable in the whole frequency range. As demonstrated, the V/f control strategy becomes

  14. Coexistence and switching of anticipating synchronization and lag synchronization in an optical system

    International Nuclear Information System (INIS)

    Wu, Liang; Zhu, Shiqun

    2003-01-01

    The chaotic synchronization between two bi-directionally coupled external cavity single-mode semiconductor lasers is investigated. Numerical simulation shows that anticipating synchronization and lag synchronization coexist and switch between each other in certain parameter regime. The anticipating time with different effects that were discussed quite differently in the previous theoretical analysis and experimental observation is determined by the involved parameters in the system

  15. Adaptive Backoff Synchronization Techniques

    Science.gov (United States)

    1989-07-01

    Percentage of synchronization and non- synchronisation references that cause invalidations in directory schemes with 2, 3, 4, 5, and 64 pointers...processors to arrive. The slight relative increase of synchronisation overhead in all cases when going from two to five pointers is because synchronization ...MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS q~JU VLSI Memo No. 89-547 It July 1989 Adaptive Backoff Synchronization Techniques Anant

  16. Synchronicity and Leadership

    NARCIS (Netherlands)

    Merry, Philip

    2017-01-01

    LAY SUMMARY SYNCHRONICITY AND LEADERSHIP TILBURG PHD DISSERTATION, PHILIP MERRY World’s First PhD to Research Synchronicity And Leadership Using Grounded Theory OUT OF THE BLUE COINCIDENCES: research topic Most people have had the experience of thinking of someone and then, almost magically have

  17. Synchronous implementation of optoelectronic NOR and XNOR logic gates using parallel synchronization of three chaotic lasers

    International Nuclear Information System (INIS)

    Yan Sen-Lin

    2014-01-01

    The parallel synchronization of three chaotic lasers is used to emulate optoelectronic logic NOR and XNOR gates via modulating the light and the current. We deduce a logical computational equation that governs the chaotic synchronization, logical input, and logical output. We construct fundamental gates based on the three chaotic lasers and define the computational principle depending on the parallel synchronization. The logic gate can be implemented by appropriately synchronizing two chaotic lasers. The system shows practicability and flexibility because it can emulate synchronously an XNOR gate, two NOR gates, and so on. The synchronization can still be deteceted when mismatches exist with a certain range. (general)

  18. Inversions of High-Cadence SOLIS-VSM Stokes Observations

    NARCIS (Netherlands)

    Fischer, C.E.; Keller, C.U.; Snik, F.

    2008-01-01

    We have processed full-Stokes observations made with the SOLIS-VSM using Fe I 630.15 and Fe I 630.25 nm. The data have high spectral and temporal resolution, moderate spatial resolution, and large polarimetric sensitivity and accuracy. We use the code LILIA, an LTE inversion code written by

  19. Instructor's guide : - synchronized skating school

    OpenAIRE

    Mokkila, Eveliina

    2011-01-01

    The starting point to the Instructor’s guide for synchronized skating school was the situation that Turun Riennon Taitoluistelu figure skating club constantly struggles to get enough skaters to the Beginner team in synchronized skating. The guidebook was written to guide the skating school instructors towards providing more synchronized skating teaching in their lessons. As a result from introducing synchronized skating more in the skating school, it is expected to have more children conti...

  20. Synchronization of Concurrent Processes

    Science.gov (United States)

    1975-07-01

    Pettersen Stanford Ur.iversity Artificial Intelligence Laboratory ABSTRACT Th oaoer gives an overview of commonly used synchronization primitives and...wr.ters . ut.l.z.ng the DroDo4d synchronization primitive . The solution is simpler and shorter than other known S’ms The first sections of the paper...un reicr»» side il nrcttaary and Identity by block number) Scheduling, process scheduling, synchronization , mutual exclusion, semaphores , critical

  1. System and method for clock synchronization and position determination using entangled photon pairs

    Science.gov (United States)

    Shih, Yanhua (Inventor)

    2010-01-01

    A system and method for clock synchronization and position determination using entangled photon pairs is provided. The present invention relies on the measurement of the second order correlation function of entangled states. Photons from an entangled photon source travel one-way to the clocks to be synchronized. By analyzing photon registration time histories generated at each clock location, the entangled states allow for high accuracy clock synchronization as well as high accuracy position determination.

  2. Cross-spectrum symbol synchronization

    Science.gov (United States)

    Mccallister, R. D.; Simon, M. K.

    1981-01-01

    A popular method of symbol synchronization exploits one aspect of generalized harmonic analysis, normally referred to as the cross-spectrum. Utilizing nonlinear techniques, the input symbol energy is effectively concentrated onto multiples of the symbol clock frequency, facilitating application of conventional phase lock synchronization techniques. A general treatment of the cross-spectrum technique is developed and shown to be applicable across a broad class of symbol modulation formats. An important specific symbol synchronization application is then treated, focusing the general development to provide both insight and quantitative measure of the performance impact associated with variation in these key synchronization parameters: symbol modulation format, symbol transition probability, symbol energy to noise density ratio, and symbol rate to filter bandwidth ratio.

  3. Loss analysis of a 1 MW class HTS synchronous motor

    International Nuclear Information System (INIS)

    Baik, S K; Kwon, Y K; Kim, H M; Lee, J D; Kim, Y C; Park, H J; Kwon, W S; Park, G S

    2009-01-01

    The HTS (High-Temperature Superconducting) synchronous motor has advantages over the conventional synchronous motor such as smaller size and higher efficiency. Higher efficiency is due to smaller loss than the conventional motor, so it is important to do loss analysis in order to develop a machine with higher efficiency. This paper deals with machine losses those are dissipated in each part of a HTS synchronous motor. These losses are analyzed theoretically and compared with loss data obtained from experimental results of a 1 MW class HTS synchronous motor. Each machine loss is measured based on IEEE 115 standard and the results are analyzed and considered based on the manufacturing of the test machine.

  4. Unidirectional synchronization of Hodgkin-Huxley neurons

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo-Perez, Octavio [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: octavio@ipicyt.edu.mx; Femat, Ricardo [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: rfemat@ipicyt.edu.mx

    2005-07-01

    Synchronization dynamics of two noiseless Hodgkin-Huxley (HH) neurons under the action of feedback control is studied. The spiking patterns of the action potentials evoked by periodic external modulations attain synchronization states under the feedback action. Numerical simulations for the synchronization dynamics of regular-irregular desynchronized spiking sequences are displayed. The results are discussed in context of generalized synchronization. It is also shown that the HH neurons can be synchronized in face of unmeasured states.

  5. Multi-application inter-tile synchronization on ultra-high-resolution display walls

    KAUST Repository

    Nam, Sungwon; Deshpande, Sachin; Vishwanath, Venkatram; Jeong, Byungil; Renambot, Luc; Leigh, Jason

    2010-01-01

    barrier. When a tiled display has to support multiple applications at the same time, however, the simple networked barrier approach does not scale. In this paper we propose and experimentally validate two synchronization algorithms to achieve low-latency

  6. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid ...

  7. Adaptive Control Algorithm of the Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Shevchenko Victor

    2017-01-01

    Full Text Available The article discusses the the problem of controlling a synchronous generator, namely, maintaining the stability of the control object in the conditions of occurrence of noise and disturbances in the regulatory process. The model of a synchronous generator is represented by a system of differential equations of Park-Gorev, where state variables are computed relative to synchronously rotating d, q-axis. Management of synchronous generator is proposed to organize on the basis of the position-path control using algorithms to adapt with the reference model. Basic control law directed on the stabilizing indicators the frequency generated by the current and the required power level, which is achieved by controlling the mechanical torque on the shaft of the turbine and the value of the excitation voltage of the synchronous generator. Modification of the classic adaptation algorithm using the reference model, allowing to minimize the error of the reference regulation and the model under investigation within the prescribed limits, produced by means of the introduction of additional variables controller adaptation in the model. Сarried out the mathematical modeling of control provided influence on the studied model of continuous nonlinear and unmeasured the disturbance. Simulation results confirm the high level accuracy of tracking and adaptation investigated model with respect to the reference, and the present value of the loop error depends on parameters performance of regulator.

  8. Synchronous adenocarcinomas of the colon presenting as synchronous colocolic intussusceptions in an adult

    Directory of Open Access Journals (Sweden)

    Chen Chuang-Wei

    2012-12-01

    Full Text Available Abstract Intussusception is uncommon in adults. To our knowledge, synchronous colocolic intussusceptions have never been reported in the literature. Here we described the case of a 59-year-old female of synchronous colocolic intussusceptions presenting as acute abdomen that was diagnosed by CT preoperatively. Laparotomy with radical right hemicolectomy and sigmoidectomy was undertaken without reduction of the invagination due to a significant risk of associated malignancy. The final diagnosis was synchronous adenocarcinoma of proximal transverse colon and sigmoid colon without lymph nodes or distant metastasis. The patient had an uneventful recovery. The case also emphasizes the importance of thorough exploration during surgery for bowel invagination since synchronous events may occur.

  9. Extension of Pairwise Broadcast Clock Synchronization for Multicluster Sensor Networks

    Directory of Open Access Journals (Sweden)

    Bruce W. Suter

    2008-01-01

    Full Text Available Time synchronization is crucial for wireless sensor networks (WSNs in performing a number of fundamental operations such as data coordination, power management, security, and localization. The Pairwise Broadcast Synchronization (PBS protocol was recently proposed to minimize the number of timing messages required for global network synchronization, which enables the design of highly energy-efficient WSNs. However, PBS requires all nodes in the network to lie within the communication ranges of two leader nodes, a condition which might not be available in some applications. This paper proposes an extension of PBS to the more general class of sensor networks. Based on the hierarchical structure of the network, an energy-efficient pair selection algorithm is proposed to select the best pairwise synchronization sequence to reduce the overall energy consumption. It is shown that in a multicluster networking environment, PBS requires a far less number of timing messages than other well-known synchronization protocols and incurs no loss in synchronization accuracy. Moreover, the proposed scheme presents significant energy savings for densely deployed WSNs.

  10. Fault-tolerant clock synchronization in distributed systems

    Science.gov (United States)

    Ramanathan, Parameswaran; Shin, Kang G.; Butler, Ricky W.

    1990-01-01

    Existing fault-tolerant clock synchronization algorithms are compared and contrasted. These include the following: software synchronization algorithms, such as convergence-averaging, convergence-nonaveraging, and consistency algorithms, as well as probabilistic synchronization; hardware synchronization algorithms; and hybrid synchronization. The worst-case clock skews guaranteed by representative algorithms are compared, along with other important aspects such as time, message, and cost overhead imposed by the algorithms. More recent developments such as hardware-assisted software synchronization and algorithms for synchronizing large, partially connected distributed systems are especially emphasized.

  11. Synchronous prostate and rectal adenocarcinomas irradiation utilising volumetric modulated arc therapy

    OpenAIRE

    Ng, Sweet Ping; Tran, Thu; Moloney, Philip; Sale, Charlotte; Mathlum, Maitham; Ong, Grace; Lynch, Rod

    2015-01-01

    Abstract Cases of synchronous prostate and colorectal adenocarcinomas have been sporadically reported. There are case reports on patients with synchronous prostate and rectal cancers treated with external beam radiotherapy alone or combined with high?dose rate brachytherapy boost to the prostate. Here, we illustrate a patient with synchronous prostate and rectal cancers treated using the volumetric arc therapy (VMAT) technique. The patient was treated with radical radiotherapy to 50.4 Gy in 2...

  12. Does stock price synchronicity effect information content of reported earnings? Evidence from the MENA region

    Directory of Open Access Journals (Sweden)

    Omar Farooq

    2016-08-01

    Full Text Available This paper documents the effect of stock price synchronicity on the value relevance of reported earnings in the MENA region during the period between 2009 and 2013. Our results show that the information content of reported earnings increases with increase in stock price synchronicity. We document higher impact of earnings on returns for firms with higher stock price synchronicity. We argue that firms with high synchronicity have better information environment. As a result, these firms disclose information that is of high quality. We also show that information conveyed through stock price synchronicity is more important than information conveyed through traditional governance mechanisms

  13. Development of sub-100 femtosecond timing and synchronization system.

    Science.gov (United States)

    Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John

    2018-01-01

    The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (∼0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.

  14. An induction/synchronous motor with high temperature superconductor/normal conductor hybrid double-cage rotor windings

    International Nuclear Information System (INIS)

    Nakamura, T; Nagao, K; Nishimura, T; Matsumura, K

    2009-01-01

    We propose hybrid double-cage rotor windings that consist of a high temperature superconductor (HTS) and a normal conductor, which are introduced into an HTS induction/synchronous motor (HTS-ISM). The motor rotates as a conventional induction motor when the operating temperature of the hybrid rotor is above the critical temperature of the HTS bars, i.e., in the normal conducting state. On the other hand, the HTS-ISM rotates as a synchronous motor when the temperature is below the critical temperature, i.e., in the superconducting (zero resistance) state. In other words, we do not always need to take care of the cooling conditions, if the HTS-ISM is automatically, as well as appropriately, controlled, depending upon the rotation mode. Namely, the above-mentioned hybrid double-cage HTS-ISM is possibly a breakthrough in solving the cooling problems of HTS rotating machines, especially for industrial applications. The experimental results of the aforementioned motor are reported. An example of an operation flowchart of the motor is also presented and discussed.

  15. Medical issues in synchronized skating.

    Science.gov (United States)

    Abbott, Kristin; Hecht, Suzanne

    2013-01-01

    Synchronized skating is a unique sport of team skating and currently represents the largest competitive discipline in U.S. Figure Skating. Synchronized skating allows skaters to compete as part of a team with opportunities to represent their country in international competitions. As the popularity of the sport continues to grow, more of these athletes will present to sports medicine clinics with injuries and illnesses related to participation in synchronized skating. The purpose of this article is to review the common injuries and medical conditions affecting synchronized skaters.

  16. The mechanism of synchronization in feed-forward neuronal networks

    International Nuclear Information System (INIS)

    Goedeke, S; Diesmann, M

    2008-01-01

    Synchronization in feed-forward subnetworks of the brain has been proposed to explain the precisely timed spike patterns observed in experiments. While the attractor dynamics of these networks is now well understood, the underlying single neuron mechanisms remain unexplained. Previous attempts have captured the effects of the highly fluctuating membrane potential by relating spike intensity f(U) to the instantaneous voltage U generated by the input. This article shows that f is high during the rise and low during the decay of U(t), demonstrating that the U-dot-dependence of f, not refractoriness, is essential for synchronization. Moreover, the bifurcation scenario is quantitatively described by a simple f(U,U-dot) relationship. These findings suggest f(U,U-dot) as the relevant model class for the investigation of neural synchronization phenomena in a noisy environment

  17. STUDYING BUSINESS CYCLES SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    N. Servetnyk

    2014-06-01

    Full Text Available The paper researches business cycles synchronization. The fluctuations in post-Soviet countries are considered. The study examines different measures of synchronization in groups of countries according to some criteria.

  18. Performance prediction of a synchronization link for distributed aerospace wireless systems.

    Science.gov (United States)

    Wang, Wen-Qin; Shao, Huaizong

    2013-01-01

    For reasons of stealth and other operational advantages, distributed aerospace wireless systems have received much attention in recent years. In a distributed aerospace wireless system, since the transmitter and receiver placed on separated platforms which use independent master oscillators, there is no cancellation of low-frequency phase noise as in the monostatic cases. Thus, high accurate time and frequency synchronization techniques are required for distributed wireless systems. The use of a dedicated synchronization link to quantify and compensate oscillator frequency instability is investigated in this paper. With the mathematical statistical models of phase noise, closed-form analytic expressions for the synchronization link performance are derived. The possible error contributions including oscillator, phase-locked loop, and receiver noise are quantified. The link synchronization performance is predicted by utilizing the knowledge of the statistical models, system error contributions, and sampling considerations. Simulation results show that effective synchronization error compensation can be achieved by using this dedicated synchronization link.

  19. Clock synchronization and dispersion

    International Nuclear Information System (INIS)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Wong, Franco N C

    2002-01-01

    We present a method to defeat effects of dispersion of timing signals when synchronizing clocks. It is based on the recently proposed 'conveyor belt synchronization' scheme and on the quantum dispersion cancellation effect

  20. Generalized Synchronization of Nonlinear Chaotic Systems through Natural Bioinspired Controlling Strategy

    Directory of Open Access Journals (Sweden)

    Shih-Yu Li

    2015-01-01

    Full Text Available A novel bioinspired control strategy design is proposed for generalized synchronization of nonlinear chaotic systems, combining the bioinspired stability theory, fuzzy modeling, and a novel, simple-form Lyapunov control function design of derived high efficient, heuristic and bioinspired controllers. Three main contributions are concluded: (1 apply the bioinspired stability theory to further analyze the stability of fuzzy error systems; the high performance of controllers has been shown in previous study by Li and Ge 2009, (2 a new Lyapunov control function based on bioinspired stability theory is designed to achieve synchronization without using traditional LMI method, which is a simple linear homogeneous function of states and the process of designing controller to synchronize two fuzzy chaotic systems becomes much simpler, and (3 three different situations of synchronization are proposed; classical master and slave Lorenz systems, slave Chen’s system, and Rossler’s system as functional system are illustrated to further show the effectiveness and feasibility of our novel strategy. The simulation results show that our novel control strategy can be applied to different and complicated control situations with high effectiveness.

  1. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  2. Switched modified function projective synchronization of hyperchaotic Qi system with uncertain parameters

    Science.gov (United States)

    Sebastian Sudheer, K.; Sabir, M.

    2010-12-01

    This work is involved with switched modified function projective synchronization of two identical Qi hyperchaotic systems using adaptive control method. Switched synchronization of chaotic systems in which a state variable of the drive system synchronize with a different state variable of the response system is a promising type of synchronization as it provides greater security in secure communication. Modified function projective synchronization with the unpredictability of scaling functions can enhance security. Recently formulated hyperchaotic Qi system in the hyperchaotic mode has an extremely broad frequency bandwidth of high magnitudes, verifying its unusual random nature and indicating its great potential for some relevant engineering applications such as secure communications. By Lyapunove stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems modified function projective synchronized. Synchronization under the effect of noise is also considered. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.

  3. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  4. Synchronization in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  5. Chaos synchronization of coupled hyperchaotic system

    International Nuclear Information System (INIS)

    Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng

    2009-01-01

    Chaos synchronization, as an important topic, has become an active research subject in nonlinear science. Over the past two decades, chaos synchronization between nonlinear systems has been extensively studied, and many types of synchronization have been announced. This paper introduces synchronization of coupled hyperchaotic system, based on the Lapunov stability theory, asymptotic stability of the system is guaranteed by means of Lapunov function. The numerical simulation was provided in order to show the effectiveness of this method for the synchronization of the chaotic hyperchaotic Chen system and Rossler system.

  6. Bursting synchronization in clustered neuronal networks

    International Nuclear Information System (INIS)

    Yu Hai-Tao; Wang Jiang; Deng Bin; Wei Xi-Le

    2013-01-01

    Neuronal networks in the brain exhibit the modular (clustered) property, i.e., they are composed of certain subnetworks with differential internal and external connectivity. We investigate bursting synchronization in a clustered neuronal network. A transition to mutual-phase synchronization takes place on the bursting time scale of coupled neurons, while on the spiking time scale, they behave asynchronously. This synchronization transition can be induced by the variations of inter- and intracoupling strengths, as well as the probability of random links between different subnetworks. Considering that some pathological conditions are related with the synchronization of bursting neurons in the brain, we analyze the control of bursting synchronization by using a time-periodic external signal in the clustered neuronal network. Simulation results show a frequency locking tongue in the driving parameter plane, where bursting synchronization is maintained, even in the presence of external driving. Hence, effective synchronization suppression can be realized with the driving parameters outside the frequency locking region. (interdisciplinary physics and related areas of science and technology)

  7. Synchronous Communication in a Web-Based Senior High School Course: Maximizing Affordances and Minimizing Constraints of the Tool

    Science.gov (United States)

    Murphy, Elizabeth; Coffin, George

    2003-01-01

    Researchers studied the use of a suite of synchronous communication tools in support of a Web-based, senior high school French course whose students were dispersed over the vast, sparsely populated province of Newfoundland and Labrador, Canada. The objective was to describe interaction according to four types: student-teacher, student-student,…

  8. Acute response of high-intensity and traditional resistance exercise on anaerobic power.

    Science.gov (United States)

    Austad, Mark A; Gay, Chip R; Murray, Steven R; Pettitt, Robert W

    2013-09-01

    Quantifying the maximal work capacity (W') above the aerobic critical power (CP) has emerged as a method for estimating anaerobic work capacity. Slower cadence, lower-load resistance training (RT), colloquially referred to as high-intensity training (HIT), is purported to be a better metabolic stressor than faster cadence higher-load RT, but to date, this belief has not been supported by research. We compared the acute effects of HIT and traditional RT bouts on average power within a 150-second time period (P(150 s)), CP, and W', as measured from a 3-minute all-out exercise test using cycling ergometry (3 MT). Eight recreationally active male subjects (mean ± SD: age 22 ± 2 years, body mass 85 ± 14 kg, and height 18 ± 9 cm) completed a baseline 3 MT 10 repetition maximum testing on leg press and leg extension machines, and post-bout 3 MTs after an HIT (4:2 second cadence) or a traditional RT bout (1:1 second cadence). Measurements of CP from the 3 MTs were similar between the baseline, post-HIT (α = 0.96), and post-traditional RT bouts (α = 0.98). Neither HIT (269.2 ± 51.3 W) nor traditional RT (275.1 ± 51.3 W) evoked depreciations (p > 0.05) in P(150 s) from the baseline (275.1 ± 45.4 W). Moreover, estimates of W' at the baseline (8.3 ± 3.2 kJ) were unaffected (p > 0.05) either by the HIT (7.6 ± 2.3 kJ) or by the traditional RT (8.3 ± 1.3 kJ) bouts. These data indicate that the 4:2 cadence is insufficient to exhaust a person's capacity for high-intensity work. Longer RT durations, either by slower cadences or by multiple sets, are necessary to evoke substantive declines on W' and should be investigated.

  9. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    Science.gov (United States)

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Neural Synchronization and Cryptography

    Science.gov (United States)

    Ruttor, Andreas

    2007-11-01

    Neural networks can synchronize by learning from each other. In the case of discrete weights full synchronization is achieved in a finite number of steps. Additional networks can be trained by using the inputs and outputs generated during this process as examples. Several learning rules for both tasks are presented and analyzed. In the case of Tree Parity Machines synchronization is much faster than learning. Scaling laws for the number of steps needed for full synchronization and successful learning are derived using analytical models. They indicate that the difference between both processes can be controlled by changing the synaptic depth. In the case of bidirectional interaction the synchronization time increases proportional to the square of this parameter, but it grows exponentially, if information is transmitted in one direction only. Because of this effect neural synchronization can be used to construct a cryptographic key-exchange protocol. Here the partners benefit from mutual interaction, so that a passive attacker is usually unable to learn the generated key in time. The success probabilities of different attack methods are determined by numerical simulations and scaling laws are derived from the data. They show that the partners can reach any desired level of security by just increasing the synaptic depth. Then the complexity of a successful attack grows exponentially, but there is only a polynomial increase of the effort needed to generate a key. Further improvements of security are possible by replacing the random inputs with queries generated by the partners.

  11. Time-resolved studies at PETRA III with a highly repetitive synchronized laser system

    Energy Technology Data Exchange (ETDEWEB)

    Schlie, Mortiz

    2013-09-15

    Atomic and molecular processes can nowadays be directly followed in the time domain. This is a core technique for a better understanding of the involved fundamental physics, thus auguring new applications in the future as well. Usually the so-called pump-probe technique making use of two synchronized ultrashort light pulses is utilized to obtain this time-resolved data. In this work, the development and characterization of a synchronization system enabling such pump-probe studies at the storage ring PETRA III in combination with an external, then synchronized fs-laser system is described. The synchronization is based on an extended PLL approach with three interconnected feedback loops allowing to monitor short-time losses of the lock and thus prevent them. This way, the jitter between the laser PHAROS and the PETRA III reference signal is reduced to {sigma} <5 ps. Thus the system allows to conduct experiments at a repetition rate of 130 kHz with a temporal resolution limited only by the X-ray pulse length. A major emphasis in the fundamental introductory chapters is an intuitive explanation of the basic principles of phase locked loops and the different aspects of phase noise to allow a deeper understanding of the synchronization. Furthermore, first pump-probe experiments conducted at different beamlines at PETRA III are presented, demonstrating the usability of the laser system in a scientific environment as well. In first characterizing experiments the pulse duration of PETRA III X-ray pulses has been measured to be 90 ps FWHM. In particular, there have been time resolved X-ray absorption spectroscopy experiments on Gaq3 and Znq2 conducted at beamline P11. First results show dynamics of the electronic excitation on the timescale of a few hundred pico seconds up to a few nano seconds and provide a basic understanding for further research on those molecules. For Gaq3 this data is analyzed in detail and compared with visible fluorescence measurements suggesting at

  12. Time-resolved studies at PETRA III with a highly repetitive synchronized laser system

    International Nuclear Information System (INIS)

    Schlie, Mortiz

    2013-09-01

    Atomic and molecular processes can nowadays be directly followed in the time domain. This is a core technique for a better understanding of the involved fundamental physics, thus auguring new applications in the future as well. Usually the so-called pump-probe technique making use of two synchronized ultrashort light pulses is utilized to obtain this time-resolved data. In this work, the development and characterization of a synchronization system enabling such pump-probe studies at the storage ring PETRA III in combination with an external, then synchronized fs-laser system is described. The synchronization is based on an extended PLL approach with three interconnected feedback loops allowing to monitor short-time losses of the lock and thus prevent them. This way, the jitter between the laser PHAROS and the PETRA III reference signal is reduced to σ <5 ps. Thus the system allows to conduct experiments at a repetition rate of 130 kHz with a temporal resolution limited only by the X-ray pulse length. A major emphasis in the fundamental introductory chapters is an intuitive explanation of the basic principles of phase locked loops and the different aspects of phase noise to allow a deeper understanding of the synchronization. Furthermore, first pump-probe experiments conducted at different beamlines at PETRA III are presented, demonstrating the usability of the laser system in a scientific environment as well. In first characterizing experiments the pulse duration of PETRA III X-ray pulses has been measured to be 90 ps FWHM. In particular, there have been time resolved X-ray absorption spectroscopy experiments on Gaq3 and Znq2 conducted at beamline P11. First results show dynamics of the electronic excitation on the timescale of a few hundred pico seconds up to a few nano seconds and provide a basic understanding for further research on those molecules. For Gaq3 this data is analyzed in detail and compared with visible fluorescence measurements suggesting at least

  13. Targeting engineering synchronization in chaotic systems

    Science.gov (United States)

    Bhowmick, Sourav K.; Ghosh, Dibakar

    2016-07-01

    A method of targeting engineering synchronization states in two identical and mismatch chaotic systems is explained in detail. The method is proposed using linear feedback controller coupling for engineering synchronization such as mixed synchronization, linear and nonlinear generalized synchronization and targeting fixed point. The general form of coupling design to target any desire synchronization state under unidirectional coupling with the help of Lyapunov function stability theory is derived analytically. A scaling factor is introduced in the coupling definition to smooth control without any loss of synchrony. Numerical results are done on two mismatch Lorenz systems and two identical Sprott oscillators.

  14. Projective synchronization of time-varying delayed neural network with adaptive scaling factors

    International Nuclear Information System (INIS)

    Ghosh, Dibakar; Banerjee, Santo

    2013-01-01

    Highlights: • Projective synchronization in coupled delayed neural chaotic systems with modulated delay time is introduced. • An adaptive rule for the scaling factors is introduced. • This scheme is highly applicable in secure communication. -- Abstract: In this work, the projective synchronization between two continuous time delayed neural systems with time varying delay is investigated. A sufficient condition for synchronization for the coupled systems with modulated delay is presented analytically with the help of the Krasovskii–Lyapunov approach. The effect of adaptive scaling factors on synchronization are also studied in details. Numerical simulations verify the effectiveness of the analytic results

  15. The Development of Synchronization Function for Triple Redundancy System Based on SCADE

    Directory of Open Access Journals (Sweden)

    Moupeng

    2015-07-01

    Full Text Available Redundancy technique is an effective approach to improve the reliability and security of flight control system, synchronization function of redundancy system is the key technology of redundancy management. The flight control computer synchronization model is developed by graphical modeling method in the SCADE development environment, the automatic code generation technology is used to generate high level reliable embedded real-time code for synchronization function, omitting the code test process, shorten the development cycle. In the practical application, the program can accomplish the functional synchronization, and lay a well foundation for the redundancy system.

  16. Synchronization of tubular pressure oscillations in interacting nephrons

    International Nuclear Information System (INIS)

    Sosnovtseva, O.V.; Postnov, D.E.; Mosekilde, E.; Holstein-Rathlou, N.-H.

    2003-01-01

    The pressure and flow regulation in the individual functional unit of the kidney (the nephron) tends to operate in an unstable regime. For normal rats, the regulation displays regular self-sustained oscillations, but for rats with high blood pressure the oscillations become chaotic. We explain the mechanisms responsible for this behavior and discuss the involved bifurcations. Experimental data show that neighboring nephrons adjust their pressure and flow regulation in accordance with one another. For rats with normal blood pressure, in-phase as well as anti-phase synchronization can be observed. For spontaneously hypertensive rats, indications of chaotic phase synchronization are found. Accounting for a hermodynamics as well as for a vascular coupling between nephrons that share a common interlobular artery, we present a model of the interaction of the pressure and flow regulations between adjacent nephrons. It is shown that this model, with physiologically realistic parameter values, can reproduce the different types of experimentally observed synchronization, including multistability and partial phase synchronization with respect to the slow and fast dynamics

  17. Synchronization of tubular pressure oscillations in interacting nephrons

    Energy Technology Data Exchange (ETDEWEB)

    Sosnovtseva, O.V. E-mail: olga@fysik.dtu.dk; Postnov, D.E.; Mosekilde, E.; Holstein-Rathlou, N.-H

    2003-01-01

    The pressure and flow regulation in the individual functional unit of the kidney (the nephron) tends to operate in an unstable regime. For normal rats, the regulation displays regular self-sustained oscillations, but for rats with high blood pressure the oscillations become chaotic. We explain the mechanisms responsible for this behavior and discuss the involved bifurcations. Experimental data show that neighboring nephrons adjust their pressure and flow regulation in accordance with one another. For rats with normal blood pressure, in-phase as well as anti-phase synchronization can be observed. For spontaneously hypertensive rats, indications of chaotic phase synchronization are found. Accounting for a hermodynamics as well as for a vascular coupling between nephrons that share a common interlobular artery, we present a model of the interaction of the pressure and flow regulations between adjacent nephrons. It is shown that this model, with physiologically realistic parameter values, can reproduce the different types of experimentally observed synchronization, including multistability and partial phase synchronization with respect to the slow and fast dynamics.

  18. Physical Layer Ethernet Clock Synchronization

    Science.gov (United States)

    2010-11-01

    42 nd Annual Precise Time and Time Interval (PTTI) Meeting 77 PHYSICAL LAYER ETHERNET CLOCK SYNCHRONIZATION Reinhard Exel, Georg...oeaw.ac.at Nikolaus Kerö Oregano Systems, Mohsgasse 1, 1030 Wien, Austria E-mail: nikolaus.keroe@oregano.at Abstract Clock synchronization ...is a service widely used in distributed networks to coordinate data acquisition and actions. As the requirement to achieve tighter synchronization

  19. Synchronization of generalized Henon map via backstepping design

    International Nuclear Information System (INIS)

    Huang Lilian; Wang Mao; Feng Rupeng

    2005-01-01

    This paper proposes a backstepping method to resolve the synchronization of discrete-time chaotic systems. The proposed scheme offers systematic design method for the synchronization of a class of discrete-time hyper-chaotic systems, which implies much complicated high-order chaotic systems can be used to improve the security in chaos communications. A well-known chaotic systems: generalized Henon map is considered as illustrative example to demonstrate the general applicability of backstepping design. Numerical simulations verify the effectiveness of the approach

  20. Traveling-wave synchronous coil gun

    International Nuclear Information System (INIS)

    Elliott, D.G.

    1991-01-01

    This paper reports on a traveling-wave synchronous coil gun which permits independent adjustment of the magnetic field and armature current for high velocity at low armature mass fraction. Magnetic field energy is transferred from the rear of the wave to the front without passing through the power supply. Elaborate switching is required

  1. Enhancing Time Synchronization Support in Wireless Sensor Networks.

    Science.gov (United States)

    Tavares Bruscato, Leandro; Heimfarth, Tales; Pignaton de Freitas, Edison

    2017-12-20

    With the emerging Internet of Things (IoT) technology becoming reality, a number of applications are being proposed. Several of these applications are highly dependent on wireless sensor networks (WSN) to acquire data from the surrounding environment. In order to be really useful for most of applications, the acquired data must be coherent in terms of the time in which they are acquired, which implies that the entire sensor network presents a certain level of time synchronization. Moreover, to efficiently exchange and forward data, many communication protocols used in WSN rely also on time synchronization among the sensor nodes. Observing the importance in complying with this need for time synchronization, this work focuses on the second synchronization problem, proposing, implementing and testing a time synchronization service for low-power WSN using low frequency real-time clocks in each node. To implement this service, three algorithms based on different strategies are proposed: one based on an auto-correction approach, the second based on a prediction mechanism, while the third uses an analytical correction mechanism. Their goal is the same, i.e., to make the clocks of the sensor nodes converge as quickly as possible and then to keep them most similar as possible. This goal comes along with the requirement to keep low energy consumption. Differently from other works in the literature, the proposal here is independent of any specific protocol, i.e., it may be adapted to be used in different protocols. Moreover, it explores the minimum number of synchronization messages by means of a smart clock update strategy, allowing the trade-off between the desired level of synchronization and the associated energy consumption. Experimental results, which includes data acquired from simulations and testbed deployments, provide evidence of the success in meeting this goal, as well as providing means to compare these three approaches considering the best synchronization

  2. Enhancing Time Synchronization Support in Wireless Sensor Networks

    Science.gov (United States)

    Tavares Bruscato, Leandro; Heimfarth, Tales; Pignaton de Freitas, Edison

    2017-01-01

    With the emerging Internet of Things (IoT) technology becoming reality, a number of applications are being proposed. Several of these applications are highly dependent on wireless sensor networks (WSN) to acquire data from the surrounding environment. In order to be really useful for most of applications, the acquired data must be coherent in terms of the time in which they are acquired, which implies that the entire sensor network presents a certain level of time synchronization. Moreover, to efficiently exchange and forward data, many communication protocols used in WSN rely also on time synchronization among the sensor nodes. Observing the importance in complying with this need for time synchronization, this work focuses on the second synchronization problem, proposing, implementing and testing a time synchronization service for low-power WSN using low frequency real-time clocks in each node. To implement this service, three algorithms based on different strategies are proposed: one based on an auto-correction approach, the second based on a prediction mechanism, while the third uses an analytical correction mechanism. Their goal is the same, i.e., to make the clocks of the sensor nodes converge as quickly as possible and then to keep them most similar as possible. This goal comes along with the requirement to keep low energy consumption. Differently from other works in the literature, the proposal here is independent of any specific protocol, i.e., it may be adapted to be used in different protocols. Moreover, it explores the minimum number of synchronization messages by means of a smart clock update strategy, allowing the trade-off between the desired level of synchronization and the associated energy consumption. Experimental results, which includes data acquired from simulations and testbed deployments, provide evidence of the success in meeting this goal, as well as providing means to compare these three approaches considering the best synchronization

  3. THE STUDY OF THE AUTONOMOUS SYNCHRONOUS GENERATOR MODES

    Directory of Open Access Journals (Sweden)

    V. S. Safaryan

    2017-01-01

    Full Text Available The importance of the problem of the static stability of the stationary mode of the power system for its operation is extremely high. The investigation of the static stability of the power system is a subject of a number of works, but the problems of static stability of the stationary points of an autonomous synchronous generator are given little attention. The article considers transient and resonant (stationary modes of the generator under active-inductive and active-capacitive loads. Mathematical model of transients in a natural form and in the coordinate system d, q are plotted. It is discovered that the mathematical model of the transition process of an autonomous synchronous generator is identical to the mathematical model of the transition process of the synchronous machine under three-phase short circuit. Electromagnetic transients of an autonomous synchronous generator are described by a system of linear autonomous differential equations with constant coefficients. However, the equivalent circuit of a generator contains dependent sources. We investigated the stability of stationary motion of an autonomous synchronous generator at a given angular velocity of rotation of the rotor. The condition for the existence and stability of stationary points of an autonomous synchronous generator is derived. The condition for the existence of stationary points of such a generator does not depend on the active load resistance and stator windings, and inductance of the rotor. The determining of stationary points of the generator is reduced to finding roots of a polynomial of the fourth degree. The graphs of electromagnetic torque dependencies on the angular velocity of rotation of the rotor (mechanical characteristics are plotted. The equivalent circuits, corresponding to the equations of the transition process of an autonomous synchronous generator, are featured as well.

  4. Investigation on synchronization of the offset printing process for fine patterning and precision overlay

    International Nuclear Information System (INIS)

    Kang, Dongwoo; Lee, Eonseok; Kim, Hyunchang; Choi, Young-Man; Lee, Seunghyun; Kim, Inyoung; Yoon, Dukkyun; Jo, Jeongdai; Kim, Bongmin; Lee, Taik-Min

    2014-01-01

    Offset printing processes are promising candidates for producing printed electronics due to their capacity for fine patterning and suitability for mass production. To print high-resolution patterns with good overlay using offset printing, the velocities of two contact surfaces, which ink is transferred between, should be synchronized perfectly. However, an exact velocity of the contact surfaces is unknown due to several imperfections, including tolerances, blanket swelling, and velocity ripple, which prevents the system from being operated in the synchronized condition. In this paper, a novel method of measurement based on the sticking model of friction force was proposed to determine the best synchronized condition, i.e., the condition in which the rate of synchronization error is minimized. It was verified by experiment that the friction force can accurately represent the rate of synchronization error. Based on the measurement results of the synchronization error, the allowable margin of synchronization error when printing high-resolution patterns was investigated experimentally using reverse offset printing. There is a region where the patterning performance is unchanged even though the synchronization error is varied, and this may be viewed as indirect evidence that printability performance is secured when there is no slip at the contact interface. To understand what happens at the contact surfaces during ink transfer, the deformation model of the blanket's surface was developed. The model estimates how much deformation on the blanket's surface can be borne by the synchronization error when there is no slip at the contact interface. In addition, the model shows that the synchronization error results in scale variation in the machine direction (MD), which means that the printing registration in the MD can be adjusted actively by controlling the synchronization if there is a sufficient margin of synchronization error to guarantee printability. The effect of

  5. Synchronization of the small-world neuronal network with unreliable synapses

    International Nuclear Information System (INIS)

    Li, Chunguang; Zheng, Qunxian

    2010-01-01

    As is well known, synchronization phenomena are ubiquitous in neuronal systems. Recently a lot of work concerning the synchronization of the neuronal network has been accomplished. In these works, the synapses are usually considered reliable, but experimental results show that, in biological neuronal networks, synapses are usually unreliable. In our previous work, we have studied the synchronization of the neuronal network with unreliable synapses; however, we have not paid attention to the effect of topology on the synchronization of the neuronal network. Several recent studies have found that biological neuronal networks have typical properties of small-world networks, characterized by a short path length and high clustering coefficient. In this work, mainly based on the small-world neuronal network (SWNN) with inhibitory neurons, we study the effect of network topology on the synchronization of the neuronal network with unreliable synapses. Together with the network topology, the effects of the GABAergic reversal potential, time delay and noise are also considered. Interestingly, we found a counter-intuitive phenomenon for the SWNN with specific shortcut adding probability, that is, the less reliable the synapses, the better the synchronization performance of the SWNN. We also consider the effects of both local noise and global noise in this work. It is shown that these two different types of noise have distinct effects on the synchronization: one is negative and the other is positive

  6. Nonlinear Dynamics of Controlled Synchronizations of Manipulator System

    Directory of Open Access Journals (Sweden)

    Qingkai Han

    2014-01-01

    Full Text Available The nonlinear dynamics of the manipulator system which is controlled to achieve the synchronization motions is investigated in the paper. Firstly, the control strategies and modeling approaches of the manipulator system are given, in which the synchronization goal is defined by both synchronization errors and its derivatives. The synchronization controllers applied on the manipulator system include neuron synchronization controller, improved OPCL synchronization controller, and MRAC-PD synchronization controller. Then, an improved adaptive synchronized control strategy is proposed in order to estimate online the unknown structure parameters and state variables of the manipulator system and to realize the needed synchronous compensation. Furthermore, a robust adaptive synchronization controller is also researched to guarantee the dynamic stability of the system. Finally, the stability of motion synchronizations of the manipulator system possessing nonlinear component is discussed, together with the effect of control parameters and joint friction and others. Some typical motions such as motion bifurcations and the loss of synchronization of it are obtained and illustrated as periodic, multiperiodic, and/or chaotic motion patterns.

  7. Continuous and discontinuous transitions to synchronization.

    Science.gov (United States)

    Wang, Chaoqing; Garnier, Nicolas B

    2016-11-01

    We describe how the transition to synchronization in a system of globally coupled Stuart-Landau oscillators changes from continuous to discontinuous when the nature of the coupling is moved from diffusive to reactive. We explain this drastic qualitative change as resulting from the co-existence of a particular synchronized macrostate together with the trivial incoherent macrostate, in a range of parameter values for which the latter is linearly stable. In contrast to the paradigmatic Kuramoto model, this particular state observed at the synchronization transition contains a finite, non-vanishing number of synchronized oscillators, which results in a discontinuous transition. We consider successively two situations where either a fully synchronized state or a partially synchronized state exists at the transition. Thermodynamic limit and finite size effects are briefly discussed, as well as connections with recently observed discontinuous transitions.

  8. Adaptive feedback synchronization of Lue system

    International Nuclear Information System (INIS)

    Han, X.; Lu, J.-A.; Wu, X.

    2004-01-01

    This letter further improves and extends the works of Chen and Lue [Chaos, Solitons and Fractals 14 (2002) 643] and Wang et al. [Phys. Lett. A 312 (2003) 34]. In detail, the linear feedback synchronization and adaptive feedback synchronization for Lue system are discussed. And the lower bound of the feedback gain in linear feedback synchronization is presented. The adaptive feedback synchronization with only one controller is designed, which improves the proof in the work by Wang et al. The adaptive synchronization with two controllers for completely uncertain Lue system is also discussed, which extends the work of Chen and Lue. Also, numerical simulations show the effectiveness of these methods

  9. A Novel Time Synchronization Method for Dynamic Reconfigurable Bus

    Directory of Open Access Journals (Sweden)

    Zhang Weigong

    2016-01-01

    Full Text Available UM-BUS is a novel dynamically reconfigurable high-speed serial bus for embedded systems. It can achieve fault tolerance by detecting the channel status in real time and reconfigure dynamically at run-time. The bus supports direct interconnections between up to eight master nodes and multiple slave nodes. In order to solve the time synchronization problem among master nodes, this paper proposes a novel time synchronization method, which can meet the requirement of time precision in UM-BUS. In this proposed method, time is firstly broadcasted through time broadcast packets. Then, the transmission delay and time deviations via three handshakes during link self-checking and channel detection can be worked out referring to the IEEE 1588 protocol. Thereby, each node calibrates its own time according to the broadcasted time. The proposed method has been proved to meet the requirement of real-time time synchronization. The experimental results show that the synchronous precision can achieve a bias less than 20 ns.

  10. Power quality improvement of single-phase photovoltaic systems through a robust synchronization method

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2014-01-01

    An increasing amount of single-phase photovoltaic (PV) systems on the distribution network requires more advanced synchronization methods in order to meet the grid codes with respect to power quality and fault ride through capability. The response of the synchronization technique selected...... is crucial for the performance of PV inverters. In this paper, a new synchronization method with good dynamics and accurate response under highly distorted voltage is proposed. This method uses a Multi-Harmonic Decoupling Cell (MHDC), which cancels out the oscillations on the synchronization signals due...

  11. Generalized synchronization between chimera states

    Science.gov (United States)

    Andrzejak, Ralph G.; Ruzzene, Giulia; Malvestio, Irene

    2017-05-01

    Networks of coupled oscillators in chimera states are characterized by an intriguing interplay of synchronous and asynchronous motion. While chimera states were initially discovered in mathematical model systems, there is growing experimental and conceptual evidence that they manifest themselves also in natural and man-made networks. In real-world systems, however, synchronization and desynchronization are not only important within individual networks but also across different interacting networks. It is therefore essential to investigate if chimera states can be synchronized across networks. To address this open problem, we use the classical setting of ring networks of non-locally coupled identical phase oscillators. We apply diffusive drive-response couplings between pairs of such networks that individually show chimera states when there is no coupling between them. The drive and response networks are either identical or they differ by a variable mismatch in their phase lag parameters. In both cases, already for weak couplings, the coherent domain of the response network aligns its position to the one of the driver networks. For identical networks, a sufficiently strong coupling leads to identical synchronization between the drive and response. For non-identical networks, we use the auxiliary system approach to demonstrate that generalized synchronization is established instead. In this case, the response network continues to show a chimera dynamics which however remains distinct from the one of the driver. Hence, segregated synchronized and desynchronized domains in individual networks congregate in generalized synchronization across networks.

  12. Outer Synchronization of Complex Networks by Impulse

    International Nuclear Information System (INIS)

    Sun Wen; Yan Zizong; Chen Shihua; Lü Jinhu

    2011-01-01

    This paper investigates outer synchronization of complex networks, especially, outer complete synchronization and outer anti-synchronization between the driving network and the response network. Employing the impulsive control method which is uncontinuous, simple, efficient, low-cost and easy to implement in practical applications, we obtain some sufficient conditions of outer complete synchronization and outer anti-synchronization between two complex networks. Numerical simulations demonstrate the effectiveness of the proposed impulsive control scheme. (general)

  13. A chimeric path to neuronal synchronization

    Science.gov (United States)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).

  14. A chimeric path to neuronal synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L. [School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709 (United States)

    2015-01-15

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  15. A chimeric path to neuronal synchronization

    International Nuclear Information System (INIS)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  16. Development of Propulsion Inverter Control System for High-Speed Maglev based on Long Stator Linear Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jeong-Min Jo

    2017-02-01

    Full Text Available In the case of a long-stator linear drive, unlike rotative drives for which speed or position sensors are a single unit attached to the shaft, these sensors extend along the guideway. The position signals transmitted from a maglev vehicle cannot meet the need of the real-time propulsion control in the on-ground inverter power substations. In this paper the design of the propulsion inverter control system with a position estimator for driving a long-stator synchronous motor in a high-speed maglev train is proposed. The experiments have been carried out at the 150 m long guideway at the O-song test track. To investigate the performance of the position estimator, the propulsion control system with, and without, the position estimator are compared. The result confirms that the proposed strategy can meet the dynamic property needs of the propulsion inverter control system for driving long-stator linear synchronous motors.

  17. Chaos synchronization between Chen system and Genesio system

    International Nuclear Information System (INIS)

    Wu Xianyong; Guan Zhihong; Wu Zhengping; Li Tao

    2007-01-01

    This Letter presents two synchronization schemes between two different chaotic systems. Active control synchronization and adaptive synchronization between Chen system and Genesio system are studied, different controllers are designed to synchronize the drive and response systems, active control synchronization is used when system parameters are known; adaptive synchronization is employed when system parameters are unknown or uncertain. Simulation results show the effectiveness of the proposed schemes

  18. Synchronization of indirectly coupled Lorenz oscillators

    Indian Academy of Sciences (India)

    Synchronization of indirectly coupled Lorenz oscillators: An experimental study. Amit Sharma Manish Dev Shrimali. Synchronization, Coupled Systems and Networks Volume 77 Issue 5 November 2011 pp 881-889 ... The in-phase and anti-phase synchronization of indirectly coupled chaotic oscillators reported in Phys. Rev ...

  19. A synchronous game for binary constraint systems

    Science.gov (United States)

    Kim, Se-Jin; Paulsen, Vern; Schafhauser, Christopher

    2018-03-01

    Recently, Slofstra proved that the set of quantum correlations is not closed. We prove that the set of synchronous quantum correlations is not closed, which implies his result, by giving an example of a synchronous game that has a perfect quantum approximate strategy but no perfect quantum strategy. We also exhibit a graph for which the quantum independence number and the quantum approximate independence number are different. We prove new characterisations of synchronous quantum approximate correlations and synchronous quantum spatial correlations. We solve the synchronous approximation problem of Dykema and the second author, which yields a new equivalence of Connes' embedding problem in terms of synchronous correlations.

  20. SLAC synchronous condenser

    International Nuclear Information System (INIS)

    Corvin, C.

    1995-06-01

    A synchronous condenser is a synchronous machine that generates reactive power that leads real power by 90 degrees in phase. The leading reactive power generated by the condenser offsets or cancels the normal lagging reactive power consumed by inductive and nonlinear loads at the accelerator complex. The quality of SLAC's utility power is improved with the addition of the condenser. The inertia of the condenser's 35,000 pound rotor damps and smoothes voltage excursions on two 12 kilovolt master substation buses, improving voltage regulation site wide. The condenser absorbs high frequency transients and noise in effect ''scrubbing'' the electric system power at its primary distribution source. In addition, the condenser produces a substantial savings in power costs. Federal and investor owned utilities that supply electric power to SLAC levy a monthly penalty for lagging reactive power delivered to the site. For the 1993 fiscal year this totaled over $285,000 in added costs for the year. By generating leading reactive power on site, thereby reducing total lagging reactive power requirements, a substantial savings in electric utility bills is achieved. Actual savings of $150,000 or more a year are possible depending on experimental operations

  1. Heart rate variability and baroreflex sensitivity in bilateral lung transplant recipients.

    Science.gov (United States)

    Fontolliet, Timothée; Gianella, Pietro; Pichot, Vincent; Barthélémy, Jean-Claude; Gasche-Soccal, Paola; Ferretti, Guido; Lador, Frédéric

    2018-01-09

    The effects of lung afferents denervation on cardiovascular regulation can be assessed on bilateral lung transplantation patients. The high-frequency component of heart rate variability is known to be synchronous with breathing frequency. Then, if heart beat is neurally modulated by breathing frequency, we may expect disappearance of high frequency of heart rate variability in bilateral lung transplantation patients. On 11 patients and 11 matching healthy controls, we measured R-R interval (electrocardiography), blood pressure (Portapres ® ) and breathing frequency (ultrasonic device) in supine rest, during 10-min free breathing, 10-min cadenced breathing (0·25 Hz) and 5-min handgrip. We analysed heart rate variability and spontaneous variability of arterial blood pressure, by power spectral analysis, and baroreflex sensitivity, by the sequence method. Concerning heart rate variability, with respect to controls, transplant recipients had lower total power and lower low- and high-frequency power. The low-frequency/high-frequency ratio was higher. Concerning systolic, diastolic and mean arterial pressure variability, transplant recipients had lower total power (only for cadenced breathing), low frequency and low-frequency/high-frequency ratio during free and cadenced breathing. Baroreflex sensitivity was decreased. Denervated lungs induced strong heart rate variability reduction. The higher low-frequency/high-frequency ratio suggested that the total power drop was mostly due to high frequency. These results support the hypothesis that neural modulation from lung afferents contributes to the high frequency of heart rate variability. © 2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  2. Control synchronization of differential mobile robots

    NARCIS (Netherlands)

    Nijmeijer, H.; Rodriguez Angeles, A.; Allgoewer, F.

    2004-01-01

    In this paper a synchronization controller for differential mobile robots is proposed. The synchronization goal is to control the angular position of each wheel to a desired trajectory and at the same time the differential (or synchronization) error between the angular positions of the two wheels.

  3. Frame Synchronization Without Attached Sync Markers

    Science.gov (United States)

    Hamkins, Jon

    2011-01-01

    We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).

  4. Analysis of remote synchronization in complex networks

    Science.gov (United States)

    Gambuzza, Lucia Valentina; Cardillo, Alessio; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2013-12-01

    A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.

  5. RUN LENGTH SYNCHRONIZATION TECHNIQUES

    Science.gov (United States)

    An important aspect of digital communications is the problem of determining efficient methods for acquiring block synchronization . In this paper we...utilizes an N-digit sync sequence as prefix to the data blocks. The results of this study show that this technique is a practical method for acquiring block synchronization .

  6. Complete synchronization of two Chen-Lee systems

    International Nuclear Information System (INIS)

    Sheu, L-J; Chen, J-H; Chen, H-K; Tam, L-M; Lao, S-K; Chen, W-C; Lin, K-T

    2008-01-01

    This study demonstrates that complete synchronization of two Chen-Lee chaotic systems can be easily achieved. The upper bound of the Chen-Lee chaotic system is estimated numerically. A controller is designed to synchronize two chaotic systems. Sufficient conditions for synchronization are obtained using Lyapunov's direct method. Two numerical examples are presented to verify the proposed synchronization approach

  7. Sensitivity optimization of Bell-Bloom magnetometers by manipulation of atomic spin synchronization

    Science.gov (United States)

    Ranjbaran, M.; Tehranchi, M. M.; Hamidi, S. M.; Khalkhali, S. M. H.

    2018-05-01

    Many efforts have been devoted to the developments of atomic magnetometers for achieving the high sensitivity required in biomagnetic applications. To reach the high sensitivity, many types of atomic magnetometers have been introduced for optimization of the creation and relaxation rates of atomic spin polarization. In this paper, regards to sensitivity optimization techniques in the Mx configuration, we have proposed a novelty approach for synchronization of the spin precession in the Bell-Bloom magnetometers. We have utilized the phenomenological Bloch equations to simulate the spin dynamics when modulation of pumping light and radio frequency magnetic field were both used for atomic spin synchronization. Our results showed that the synchronization process, improved the magnetometer sensitivity respect to the classical configurations.

  8. Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors.

    Science.gov (United States)

    Chen, Qiang; Ren, Xuemei; Na, Jing

    2015-09-01

    In this paper, a robust finite-time chaos synchronization scheme is proposed for two uncertain third-order permanent magnet synchronous motors (PMSMs). The whole synchronization error system is divided into two cascaded subsystems: a first-order subsystem and a second-order subsystem. For the first subsystem, we design a finite-time controller based on the finite-time Lyapunov stability theory. Then, according to the backstepping idea and the adding a power integrator technique, a second finite-time controller is constructed recursively for the second subsystem. No exogenous forces are required in the controllers design but only the direct-axis (d-axis) and the quadrature-axis (q-axis) stator voltages are used as manipulated variables. Comparative simulations are provided to show the effectiveness and superior performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Synchronization in Quantum Key Distribution Systems

    Directory of Open Access Journals (Sweden)

    Anton Pljonkin

    2017-10-01

    Full Text Available In the description of quantum key distribution systems, much attention is paid to the operation of quantum cryptography protocols. The main problem is the insufficient study of the synchronization process of quantum key distribution systems. This paper contains a general description of quantum cryptography principles. A two-line fiber-optic quantum key distribution system with phase coding of photon states in transceiver and coding station synchronization mode was examined. A quantum key distribution system was built on the basis of the scheme with automatic compensation of polarization mode distortions. Single-photon avalanche diodes were used as optical radiation detecting devices. It was estimated how the parameters used in quantum key distribution systems of optical detectors affect the detection of the time frame with attenuated optical pulse in synchronization mode with respect to its probabilistic and time-domain characteristics. A design method was given for the process that detects the time frame that includes an optical pulse during synchronization. This paper describes the main quantum communication channel attack methods by removing a portion of optical emission. This paper describes the developed synchronization algorithm that takes into account the time required to restore the photodetector’s operation state after the photon has been registered during synchronization. The computer simulation results of the developed synchronization algorithm were analyzed. The efficiency of the developed algorithm with respect to synchronization process protection from unauthorized gathering of optical emission is demonstrated herein.

  10. Modulated Field Synchronous Generator for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper presents a modern electromechanical conversion systemsolution as the modulated field synchronous generator, offering on theone hand, an output voltage with constant frequency in terms of speedvariation of the wind turbine and on the other hand an advantagepower / weight ratio due to the high frequency for which the magneticcircuit of the electric machine is sized. The mathematical model of the modulated field synchronous generator is implemented in MatLABmodeling language, highlighting the command structure on thetransistors bases of the inverter transistors, through which thefunctioning of the electric machine can be studied, especially in terms of the frequency of the delivered voltage.

  11. Generalized projective synchronization via the state observer and its application in secure communication

    International Nuclear Information System (INIS)

    Wu Di; Li Juan-Juan

    2010-01-01

    Based on the improved state observer and the pole placement technique, by adding a constant which extends the scope of use of the original system, a new design method of generalized projective synchronization is proposed. With this method, by changing the projective synchronization scale factor, one can achieve not only complete synchronization, but also anti-synchronization, as well as arbitrary percentage of projective synchronization, so that the system may attain arbitrary synchronization in a relatively short period of time, which makes this study more meaningful. By numerical simulation, and choosing appropriate scale factor, the results of repeated experiments verify that this method is highly effective and satisfactory. Finally, based on this method and the relevant feedback concept, a novel secure communication project is designed. Numerical simulation verifies that this secure communication project is very valid, and moreover, the experimental result has been greatly improved in decryption time. (general)

  12. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  13. V123 Beam Synchronous Encoder Module

    International Nuclear Information System (INIS)

    Kerner, T.; Conkling, C. R.; Oerter, B.

    1999-01-01

    The V123 Synchronous Encoder Module transmits events to distributed trigger modules and embedded decoders around the RHIC rings where they are used to provide beam instrumentation triggers [1,2,3]. The RHIC beam synchronous event link hardware is mainly comprised of three VMEbus board designs, the central input modules (V201), and encoder modules (V123), and the distributed trigger modules (V124). Two beam synchronous links, one for each ring, are distributed via fiberoptic and fanned out via twisted wire pair cables. The V123 synchronizes with the RF system clock derived from the beam bucket frequency and a revolution fiducial pulse. The RF system clock is used to create the beam synchronous event link carrier and events are synchronized with the rotation fiducial. A low jitter RF clock is later recovered from this carrier by phase lock loops in the trigger modules. Prioritized hardware and software triggers fill up to 15 beam event code transmission slots per revolution while tracking the ramping RF acceleration frequency and storage frequency. The revolution fiducial event is always the first event transmitted which is used to synchronize the firing of the abort kicker and to locate the first bucket for decoders distributed about the ring

  14. Effects of frustration on explosive synchronization

    Science.gov (United States)

    Huang, Xia; Gao, Jian; Sun, Yu-Ting; Zheng, Zhi-Gang; Xu, Can

    2016-12-01

    In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.

  15. Grid Synchronization of Wind Turbine Converters under Transient Grid Faults using a Double Synchronous Reference Frame PLL

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede; Rodriguez, P.

    2008-01-01

    This work employs the Double Synchronous Reference Frame PLL (DSRF-PLL) as an effective method for grid synchronization of WT's power converters in the presence of transient faults in the grid. The DSRF-PLL exploits a dual synchronous reference frame voltage characterization, adding a decoupling...... network to a standard SRF-PLL in order to effectively separate the positive- and negative-sequence voltage components in a fast and accurate way. Experimental evaluation of the proposed grid synchronization method and simulations regarding its application to ride through transient faults verify...

  16. 40 CFR 93.128 - Traffic signal synchronization projects.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Traffic signal synchronization... synchronization projects. Traffic signal synchronization projects may be approved, funded, and implemented without... include such regionally significant traffic signal synchronization projects. ...

  17. Partial Synchronization Manifolds for Linearly Time-Delay Coupled Systems

    OpenAIRE

    Steur, Erik; van Leeuwen, Cees; Michiels, Wim

    2014-01-01

    Sometimes a network of dynamical systems shows a form of incomplete synchronization characterized by synchronization of some but not all of its systems. This type of incomplete synchronization is called partial synchronization. Partial synchronization is associated with the existence of partial synchronization manifolds, which are linear invariant subspaces of C, the state space of the network of systems. We focus on partial synchronization manifolds in networks of system...

  18. Design of Tokamak synchronous data acquisition system based on PXI express

    International Nuclear Information System (INIS)

    Liu Rui; Zheng Wei; Zhang Ming; Weng Chuqiao; Zhuang Ge; Ding Tonghai; Yu Kexun

    2014-01-01

    With the development of J-TEXT device, the original data acquisition system can't meet the experiment's requirement on stability, modularity and sampling rate, so a new data acquisition system needs to be built. This paper introduces the design and implementation of the distributed Tokamak synchronous high-speed data acquisition system based on PXI Express. The acquisition unit consists of PXIe case Nl PXIe 1062Q, PXIe controller NI PXIe-8133 and high-speed synchronous data acquisition card Nl PXIe-6368, compatible with the latest standard of ITER CODAC, so it has good mechanical sealing, strong modularity and high sampling rate etc. The system takes a synchronous difference acquisition for diagnosis signal. The data storage adopts MDSplus which is the general database in the nuclear fusion field. The test and experimental results show that the system can work continuously and stably at 2 MSps sampling rate, and meet the requirement of experiment device's operation well. (authors)

  19. Synchronous machines. General principles and structures; Machines synchrones. Principes generaux et structures

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ahmed, H.; Feld, G.; Multon, B. [Ecole Normale Superieure de Cachan, Lab. SATIE, Systemes et Applications des Technologies de l' Information et de l' Energie, UMR CNRS 8029, 94 (France); Bernard, N. [Institut Universitaire de Saint-Nazaire, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 44 - Nantes (France)

    2005-10-01

    Power generation is mainly performed by synchronous rotating machines which consume about a third of the world primary energy. Electric motors used in industrial applications convert about two thirds of this electricity. Therefore, synchronous machines are present everywhere at different scales, from micro-actuators of few micro-watts to thermo-mechanical production units of more than 1 GW, and represent a large variety of structures which have in common the synchronism between the frequency of the power supply currents and the relative movement of the fixed part with respect to the mobile part. Since several decades, these machines are more and more used as variable speed motors with permanent magnets. The advances in power electronics have contributed to the widening of their use in various applications with a huge range of powers. This article presents the general principle of operation of electromechanical converters of synchronous type: 1 - electromechanical conversion in electromagnetic systems: basic laws and elementary structures (elementary structure, energy conversion cycle, case of a system working in linear magnetic regime), rotating fields structure (magneto-motive force and Ferraris theorem, superficial air gap permeance, air gap magnetic induction, case of a permanent magnet inductor, magnetic energy and electromagnetic torque, conditions for reaching a non-null average torque, application to common cases); 2 - constitution, operation modes and efficiency: constitution and main types of synchronous machines, efficiency - analysis by similarity laws (other expression of the electromagnetic torque, thermal limitation in permanent regime, scale effects, effect of pole pairs number, examples of efficiencies and domains of use), operation modes. (J.S.)

  20. Chaos synchronization based on contraction principle

    International Nuclear Information System (INIS)

    Wang Junwei; Zhou Tianshou

    2007-01-01

    This paper introduces contraction principle. Based on such a principle, a novel scheme is proposed to synchronize coupled systems with global diffusive coupling. A rigorous sufficient condition on chaos synchronization is derived. As an example, coupled Lorenz systems with nearest-neighbor diffusive coupling are investigated, and numerical simulations are given to validate the proposed synchronization approach

  1. Design and simulation of permanent magnet synchronous motor control system

    Science.gov (United States)

    Li, Li; Liu, Yongqiu

    2018-06-01

    In recent years, with the development of power electronics, microelectronics, new motor control theory and rare earth permanent magnet materials, permanent magnet synchronous motors have been rapidly applied. Permanent magnet synchronous motors have the advantages of small size, low loss and high efficiency. Today, energy conservation and environmental protection are increasingly valued. It is very necessary to study them. Permanent magnet synchronous motor control system has a wide range of application prospects in the fields of electric vehicles, ships and other transportation. Using the simulation function of MATLAB/SIMULINK, a modular design structure was used to simulate the whole system model of speed loop adjustment, current PI modulation, SVPWM (Space Vector Pulse Width Module) wave generation and double closed loop. The results show that this control method has good robustness, and this method can improve the design efficiency and shorten the system design time. In this article, the analysis of the control principle of modern permanent magnet synchronous motor and the various processes of MATLAB simulation application will be analyzed in detail. The basic theory, basic method and application technology of the permanent magnet synchronous motor control system are systematically introduced.

  2. Generalized synchronization in discrete maps. New point of view on weak and strong synchronization

    International Nuclear Information System (INIS)

    Koronovskii, Alexey A.; Moskalenko, Olga I.; Shurygina, Svetlana A.; Hramov, Alexander E.

    2013-01-01

    In the present Letter we show that the concept of the generalized synchronization regime in discrete maps needs refining in the same way as it has been done for the flow systems Koronovskii et al. [Koronovskii AA, Moskalenko OI, Hramov AE. Nearest neighbors, phase tubes, and generalized synchronization. Phys Rev E 2011;84:037201]. We have shown that, in the general case, when the relationship between state vectors of the interacting chaotic maps are considered, the prehistory must be taken into account. We extend the phase tube approach to the systems with a discrete time coupled both unidirectionally and mutually and analyze the essence of the generalized synchronization by means of this technique. Obtained results show that the division of the generalized synchronization into the weak and the strong ones also must be reconsidered. Unidirectionally coupled logistic maps and Hénon maps coupled mutually are used as sample systems.

  3. Injuries and medical issues in synchronized Olympic sports.

    Science.gov (United States)

    Mountjoy, Margo

    2009-01-01

    Spectators of the Olympic Games can enjoy a wide variety of sports, including strength, team, timed, endurance, and artistic sports. In the Olympic program, there are two synchronized events: synchronized diving and synchronized swimming. The precision of the synchronization of the athlete's movements and skills is an added feature of entertainment. Synchronized athletes have additional training requirements to perfect the synchronization of their skills. The physical demands on the athlete from the repetition of training required for the perfection of synchronization result in injuries unique to these sports. Although both traumatic and overuse injuries occur, overuse injuries are more common. As these disciplines are artistic, judged sports, these athletes also are susceptible to eating disorders and the female athlete triad. This article reviews the training regimen of these athletes and outlines the injuries and health concerns that are common in the synchronized sports.

  4. A Novel Soft-Switching Synchronous Buck Converter for Portable Applications

    Directory of Open Access Journals (Sweden)

    Anup Kumar Panda

    2008-01-01

    Full Text Available This paper proposes a zero-voltage-transition (ZVT pulse-width-modulated (PWM synchronous buck converter, which is designed to operate at low voltage and high efficiency typically required for portable systems. A new passive auxiliary circuit that allows the main switch to operate with zero-voltage switching has been incorporated in the conventional PWM synchronous buck converter. The operation principles and a detailed steady-state analysis of the ZVT-PWM synchronous converter implemented with the auxiliary circuit are presented. Besides, the main switch and all of the semiconductor devices operate under soft-switching conditions. Thus, the auxiliary circuit provides a larger overall efficiency. The feasibility of the auxiliary circuit is confirmed by simulation and experimental results.

  5. Traffic signal synchronization.

    Science.gov (United States)

    Huang, Ding-wei; Huang, Wei-neng

    2003-05-01

    The benefits of traffic signal synchronization are examined within the cellular automata approach. The microsimulations of traffic flow are obtained with different settings of signal period T and time delay delta. Both numerical results and analytical approximations are presented. For undersaturated traffic, the green-light wave solutions can be realized. For saturated traffic, the correlation among the traffic signals has no effect on the throughput. For oversaturated traffic, the benefits of synchronization are manifest only when stochastic noise is suppressed.

  6. Injuries in synchronized skating.

    Science.gov (United States)

    Dubravcic-Simunjak, S; Kuipers, H; Moran, J; Simunjak, B; Pecina, M

    2006-06-01

    Synchronized skating is a relatively new competitive sport and data about injuries in this discipline are lacking. Therefore the purpose of this study was to investigate the frequency and pattern of acute and overuse injuries in synchronized skaters. Before and during the World Synchronized Skating Championship 2004, a questionnaire inquiring about the frequency of injuries in this skating discipline was given to 23 participating teams. A total of 514 women and 14 men senior skaters completed the questionnaires (100 % response). Two hundred and eighteen (42.4 %) female and 6 (42.9 %) male skaters had suffered from acute injuries during their synchronized skating career. As some skaters had suffered from more than one injury, the total number of acute injuries in females was 398 and in males 14. In female skaters 19.8 % of acute injuries were head injuries, 7.1 % trunk, 33.2 % upper, and 39.9 % lower extremity injuries. In male skaters 14.3 % were head injuries, 28.6 % upper, and 57.1 % lower extremity injuries, with no report of trunk injuries. Sixty-nine female and 2 male skaters had low back problems and 112 female and 2 male skaters had one or more overuse syndromes during their skating career. Of 155 overuse injuries in female skaters, 102 (65.8 %) occurred during their figure skating career, while 53 injuries (34.2 %) only occurred when they skated in synchronized skating teams. In male skaters, out of 5 overuse injuries, 4 (80 %) occurred in their figure skating career, while 1 (20 %) occurred during their synchronized skating career. Out of the total of 412 injuries, 338 (82 %) occurred during on-ice practice, while 74 (18 %) happened during off-ice training. Ninety-one (26.9 %) acute injures occurred while practicing individual elements, and 247 (73.1 %) on-ice injuries occurred while practicing different team elements. We conclude that injuries in synchronized skating should be of medical concern due to an increasing number of acute injuries, especially

  7. Measures of Quantum Synchronization in Continuous Variable Systems

    Science.gov (United States)

    Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.

    2013-09-01

    We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.

  8. Nonlinearity induced synchronization enhancement in mechanical oscillators

    Science.gov (United States)

    Czaplewski, David A.; Lopez, Omar; Guest, Jeffrey R.; Antonio, Dario; Arroyo, Sebastian I.; Zanette, Damian H.

    2018-05-08

    An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency lies within a certain interval, known as the synchronization range, around the oscillator's natural frequency. Under ordinary conditions, the width of the synchronization range decreases when the oscillation amplitude grows, which constrains synchronized motion of micro- and nano-mechanical resonators to narrow frequency and amplitude bounds. The present invention shows that nonlinearity in the oscillator can be exploited to manifest a regime where the synchronization range increases with an increasing oscillation amplitude. The present invention shows that nonlinearities in specific configurations of oscillator systems, as described herein, are the key determinants of the effect. The present invention presents a new configuration and operation regime that enhances the synchronization of micro- and nano-mechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.

  9. Adaptive H∞ Chaos Anti-synchronization

    International Nuclear Information System (INIS)

    Ahn, Choon Ki

    2010-01-01

    A new adaptive H ∞ anti-synchronization (AHAS) method is proposed for chaotic systems in the presence of unknown parameters and external disturbances. Based on the Lyapunov theory and linear matrix inequality formulation, the AHAS controller with adaptive laws of unknown parameters is derived to not only guarantee adaptive anti-synchronization but also reduce the effect of external disturbances to an H ∞ norm constraint. As an application of the proposed AHAS method, the H ∞ anti-synchronization problem for Genesio–Tesi chaotic systems is investigated. (general)

  10. Randomized, controlled trial comparing synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in preterm infants.

    Science.gov (United States)

    Reyes, Zenaida C; Claure, Nelson; Tauscher, Markus K; D'Ugard, Carmen; Vanbuskirk, Silvia; Bancalari, Eduardo

    2006-10-01

    Prolonged mechanical ventilation is associated with lung injury in preterm infants. In these infants, weaning from synchronized intermittent mandatory ventilation may be delayed by their inability to cope with increased respiratory loads. The addition of pressure support to synchronized intermittent mandatory ventilation can offset these loads and may facilitate weaning. The purpose of this work was to compare synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in weaning from mechanical ventilation and the duration of supplemental oxygen dependency in preterm infants with respiratory failure. Preterm infants weighing 500 to 1000 g at birth who required mechanical ventilation during the first postnatal week were randomly assigned to synchronized intermittent mandatory ventilation or synchronized intermittent mandatory ventilation plus pressure support. In both groups, weaning followed a set protocol during the first 28 days. Outcomes were assessed during the first 28 days and until discharge or death. There were 107 infants enrolled (53 synchronized intermittent mandatory ventilation plus pressure support and 54 synchronized intermittent mandatory ventilation). Demographic and perinatal data, mortality, and morbidity did not differ between groups. During the first 28 days, infants in the synchronized intermittent mandatory ventilation plus pressure support group reached minimal ventilator settings and were extubated earlier than infants in the synchronized intermittent mandatory ventilation group. Total duration of mechanical ventilation, duration of oxygen dependency, and oxygen need at 36 weeks' postmenstrual age alone or combined with death did not differ between groups. However, infants in synchronized intermittent mandatory ventilation plus pressure support within the 700- to 1000-g birth weight strata had a shorter oxygen dependency. The results of this study suggest that the addition of

  11. Spontaneous group synchronization of movements and respiratory rhythms.

    Directory of Open Access Journals (Sweden)

    Erwan Codrons

    Full Text Available We tested whether pre-assigned arm movements performed in a group setting spontaneously synchronized and whether synchronization extended to heart and respiratory rhythms. We monitored arm movements, respiration and electrocardiogram at rest and during spontaneous, music and metronome-associated arm-swinging. No directions were given on whether or how the arm swinging were to be synchronized between participants or with the external cues. Synchronization within 3 groups of 10 participants studied collectively was compared with pseudo-synchronization of 3 groups of 10 participants that underwent an identical protocol but in an individual setting. Motor synchronization was found to be higher in the collective groups than in the individuals for the metronome-associated condition. On a repetition of the protocol on the following day, motor synchronization in the collective groups extended to the spontaneous, un-cued condition. Breathing was also more synchronized in the collective groups than in the individuals, particularly at rest and in the music-associated condition. Group synchronization occurs without explicit instructions, and involves both movements and respiratory control rhythms.

  12. Synchronization controller design of HIRFL-CSR based on ACEX1K50

    International Nuclear Information System (INIS)

    Li Guihua; Qiao Weimin; Jing Lan

    2011-01-01

    The synchronization controller is the core component of Lanzhou HIRFL-CSR synchronous system. As the highest instruction unit and timing unit of HIRFL-CSR control system, it directs the entire system to do the proper thing at the proper time and requires the timing accuracy of nanosecond and very high stability of running. The methods of realizing the main function modules of synchronization processor and the key technologies by using hardware description language (VHDL) on ACEX1K50 chip were introduced. The test results and the actual applications were given. (authors)

  13. Vestibular hearing and neural synchronization.

    Science.gov (United States)

    Emami, Seyede Faranak; Daneshi, Ahmad

    2012-01-01

    Objectives. Vestibular hearing as an auditory sensitivity of the saccule in the human ear is revealed by cervical vestibular evoked myogenic potentials (cVEMPs). The range of the vestibular hearing lies in the low frequency. Also, the amplitude of an auditory brainstem response component depends on the amount of synchronized neural activity, and the auditory nerve fibers' responses have the best synchronization with the low frequency. Thus, the aim of this study was to investigate correlation between vestibular hearing using cVEMPs and neural synchronization via slow wave Auditory Brainstem Responses (sABR). Study Design. This case-control survey was consisted of twenty-two dizzy patients, compared to twenty healthy controls. Methods. Intervention comprised of Pure Tone Audiometry (PTA), Impedance acoustic metry (IA), Videonystagmography (VNG), fast wave ABR (fABR), sABR, and cVEMPs. Results. The affected ears of the dizzy patients had the abnormal findings of cVEMPs (insecure vestibular hearing) and the abnormal findings of sABR (decreased neural synchronization). Comparison of the cVEMPs at affected ears versus unaffected ears and the normal persons revealed significant differences (P < 0.05). Conclusion. Safe vestibular hearing was effective in the improvement of the neural synchronization.

  14. Combinatorial Modulation of Signaling Pathways Reveals Cell-Type-Specific Requirements for Highly Efficient and Synchronous iPSC Reprogramming

    Directory of Open Access Journals (Sweden)

    Simon E. Vidal

    2014-10-01

    Full Text Available The differentiated state of somatic cells provides barriers for the derivation of induced pluripotent stem cells (iPSCs. To address why some cell types reprogram more readily than others, we studied the effect of combined modulation of cellular signaling pathways. Surprisingly, inhibition of transforming growth factor β (TGF-β together with activation of Wnt signaling in the presence of ascorbic acid allows >80% of murine fibroblasts to acquire pluripotency after 1 week of reprogramming factor expression. In contrast, hepatic and blood progenitors predominantly required only TGF-β inhibition or canonical Wnt activation, respectively, to reprogram at efficiencies approaching 100%. Strikingly, blood progenitors reactivated endogenous pluripotency loci in a highly synchronous manner, and we demonstrate that expression of specific chromatin-modifying enzymes and reduced TGF-β/mitogen-activated protein (MAP kinase activity are intrinsic properties associated with the unique reprogramming response of these cells. Our observations define cell-type-specific requirements for the rapid and synchronous reprogramming of somatic cells.

  15. Noise and Synchronization Analysis of the Cold-Receptor Neuronal Network Model

    Directory of Open Access Journals (Sweden)

    Ying Du

    2014-01-01

    Full Text Available This paper analyzes the dynamics of the cold receptor neural network model. First, it examines noise effects on neuronal stimulus in the model. From ISI plots, it is shown that there are considerable differences between purely deterministic simulations and noisy ones. The ISI-distance is used to measure the noise effects on spike trains quantitatively. It is found that spike trains observed in neural models can be more strongly affected by noise for different temperatures in some aspects; meanwhile, spike train has greater variability with the noise intensity increasing. The synchronization of neuronal network with different connectivity patterns is also studied. It is shown that chaotic and high period patterns are more difficult to get complete synchronization than the situation in single spike and low period patterns. The neuronal network will exhibit various patterns of firing synchronization by varying some key parameters such as the coupling strength. Different types of firing synchronization are diagnosed by a correlation coefficient and the ISI-distance method. The simulations show that the synchronization status of neurons is related to the network connectivity patterns.

  16. An Energy-efficient Clock Synchronization Protocol for Wireless Sensor Networks

    OpenAIRE

    Albu, Roxana; Labit, Yann; Thierry, Gayraud; Pascal, Berthou

    2010-01-01

    5p.; International audience; The behavior of Wireless Sensor Networks (WSN) is nowadays widely analyzed. One of the most important issues is related to their energy consumption, as this has a major impact on the network lifetime. Another important application requirement is to ensure data sensing synchronization, which leads to additional energy consumption as a high number of messages is sent and received at each node. Our proposal consists in implementing a combined synchronization protocol...

  17. Synchronization in complex networks with switching topology

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Qing-guo

    2011-01-01

    This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.

  18. Three types of generalized synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Yang Junzhong [School of Science, Beijing University of Posts and Telecomunications, Beijing 100876 (China)]. E-mail: jzyang@bupt.edu.cn; Hu Gang [China Center for Advanced Science and Technology (CCAST) (World Laboratory), PO Box 8730, Beijing 100080 (China) and Department of Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: ganghu@bnu.edu.cn

    2007-02-05

    The roles played by drive and response systems on generalized chaos synchronization (GS) are studied. And the generalized synchronization is classified, based on these roles, to three distinctive types: the passive GS which is mainly determined by the response system and insensitive to the driving signal; the resonant GS where phase synchronization between the drive and response systems is preceding GS; and the interacting GS where both the drive and response have influences on the status of GS. The features of these GS types and the possible changes from one types to others are investigated.

  19. Three types of generalized synchronization

    International Nuclear Information System (INIS)

    Yang Junzhong; Hu Gang

    2007-01-01

    The roles played by drive and response systems on generalized chaos synchronization (GS) are studied. And the generalized synchronization is classified, based on these roles, to three distinctive types: the passive GS which is mainly determined by the response system and insensitive to the driving signal; the resonant GS where phase synchronization between the drive and response systems is preceding GS; and the interacting GS where both the drive and response have influences on the status of GS. The features of these GS types and the possible changes from one types to others are investigated

  20. GPS synchronized power system phase angle measurements

    Science.gov (United States)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  1. Synchronous motor with HTS-2G wires

    Science.gov (United States)

    Dezhin, D.; Ilyasov, R.; Kozub, S.; Kovalev, K.; Verzhbitsky, L.

    2014-05-01

    One of the applications of new high-temperature superconductor materials (HTS) is field coils for synchronous electrical machines. The use of YBCO 2G HTS tapes (HTS-2G) allows increasing of magnetic flux density in the air gap, which will increase the output power and reduce the dimensions of the motor. Such motors with improved characteristics can be successfully used in transportation as traction motor. In MAI-based "Center of Superconducting machines and devices" with the support of "Rosatom" has been designed and tested a prototype of the 50 kW synchronous motor with radial magnetic flux from a field-coils based on HTS-2G tapes. The experimental and theoretical results are presented.

  2. Synchronization of binocular motion parameters optoelectronic measurement system

    Science.gov (United States)

    Zhang, Lingfei; Ye, Dong; Che, Rensheng; Chen, Gang

    2008-10-01

    The synchronization between high-speed digital cameras and computers is very important for the binocular vision system based on light-weighted passive IR reflective markers and IR LED array PCB board, which is often used to measure the 3-D motion parameters of a rocket motor. In order to solve this problem, a comparison on the existing approaches to camera synchronization in the published literature was conducted. The advantages and disadvantages of the currently used methods were illustrated and their suitable applications were discussed. A new method, which uses self-made hardware resetting camera and software triggering image acquisition board, is provided. The self-made hardware is used to send TTL signal to two image acquisition boards one time per second. The TTL signal is used to reset two cameras and two image acquisition boards as PRIN signal, and then two image acquisition boards send same EXSYNC signal to two cameras. In this way, two cameras can be synchronized to exposure and capture images in the mean time. The test results indicated that the new approach designed in this paper can meet the demand of image acquisition at a speed of 200f/s, whose synchronization accuracy is up to micro second.

  3. Introduction to media synchronization (Mediasync)

    NARCIS (Netherlands)

    M.A. Montagud Climent (Mario); P.S. Cesar Garcia (Pablo Santiago); F. Boronat (Fernando); A.J. Jansen (Jack)

    2018-01-01

    textabstractMedia synchronization is a core research area in multimedia systems. This chapter introduces the area by providing key definitions, classifications, and examples. It also discusses the relevance of different types of media synchronization to ensure satisfactory Quality of Experience

  4. Fast Burst Synchronization for Power Line Communication Systems

    Directory of Open Access Journals (Sweden)

    Lampe Lutz

    2007-01-01

    Full Text Available Fast burst synchronization is an important requirement in asynchronous communication networks, where devices transmit short data packets in an unscheduled fashion. Such a synchronization is typically achieved by means of a preamble sent in front of the data packet. In this paper, we study fast burst synchronization for power line communication (PLC systems operating below 500 kHz and transmitting data rates of up to about 500 kbps as it is typical in various PLC network applications. In particular, we are concerned with the receiver processing of the preamble signal and the actual design of preambles suitable for fast burst synchronization in such PLC systems. Our approach is comprehensive in that it takes into account the most distinctive characteristics of the power line channel, which are multipath propagation, highly varying path loss, and disturbance by impulse noise, as well as important practical constraints, especially the need for spectral shaping of the preamble signal and fast adjustment of the automatic gain control (AGC. In fact, we regard the explicit incorporation of these various requirements into the preamble design as the main contribution of this work. We devise an optimization criterion and a stochastic algorithm to search for suitable preamble sequences. A comprehensive performance comparison of a designed and two conventional preambles shows that the designed sequence is superior in terms of (a fast burst synchronization in various transmission environments, (b fast AGC adjustment, and (c compliance of its spectrum with the spectral mask applied to the data transmit signal.

  5. Autofluorescence of pigmented skin lesions using a pulsed UV laser with synchronized detection: clinical results

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Svenmarker, Pontus; Tidemand-Lichtenberg, Peter

    2010-01-01

    signal, which may in turn produce high contrast images that improve diagnosis, even in the presence of ambient room light. The synchronized set-up utilizes a compact, diode pumped, pulsed UV laser at 355 nm which is coupled to a CCD camera and a liquid crystal tunable filter. The excitation and image......We report preliminary clinical results of autofluorescence imaging of malignant and benign skin lesions, using pulsed 355 nm laser excitation with synchronized detection. The novel synchronized detection system allows high signal-to-noise ratio to be achieved in the resulting autofluorescence...

  6. 6-year periodicity and variable synchronicity in a mass-flowering plant.

    Directory of Open Access Journals (Sweden)

    Satoshi Kakishima

    Full Text Available Periodical organisms, such as bamboos and periodical cicadas, are very famous for their synchronous reproduction. In bamboos and other periodical plants, the synchronicity of mass-flowering and withering has been often reported indicating these species are monocarpic (semelparous species. Therefore, synchronicity and periodicity are often suspected to be fairly tightly coupled traits in these periodical plants. We investigate the periodicity and synchronicity of Strobilanthes flexicaulis, and a closely related species S. tashiroi on Okinawa Island, Japan. The genus Strobilanthes is known for several periodical species. Based on 32-year observational data, we confirmed that S. flexicaulis is 6-year periodical mass-flowering monocarpic plant. All the flowering plants had died after flowering. In contrast, we found that S. tashiroi is a polycarpic perennial with no mass-flowering from three-year individual tracking. We also surveyed six local populations of S. flexicaulis and found variation in the synchronicity from four highly synchronized populations (>98% of plants flowering in the mass year to two less synchronized one with 11-47% of plants flowering before and after the mass year. This result might imply that synchrony may be selected for when periodicity is established in monocarpic species. We found the selective advantages for mass-flowering in pollinator activities and predator satiation. The current results suggest that the periodical S. flexicaulis might have evolved periodicity from a non-periodical close relative. The current report should become a key finding for understanding the evolution of periodical plants.

  7. Robust synchronization of chaotic systems via feedback

    Energy Technology Data Exchange (ETDEWEB)

    Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion

    2008-07-01

    This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)

  8. Inducverters: PLL-Less Converters with Auto-Synchronization and Emulated Inertia Capability

    DEFF Research Database (Denmark)

    Ashabani, Mahdi; Freijedo Fernandez, Francisco Daniel; Golestan, Saeed

    2016-01-01

    current information and can track grid frequency, angle and voltage amplitude variations while feeding constant amount of power which is of high interest in frequency varying grids and also in the case of grid voltage angle jump. Another advantage of the inducverter is that it introduces virtual inertia...... impedance. The controller also offers stable and high-performance synchronization and operation under unbalanced and/or distorted grid conditions. The work beside synchronous current converters give a bird’s eye view to research in the new area of PLL-less and virtual inertia-based operation of VSCs...

  9. Detection and Symbol Synchronization for Multiple-bit Per Photon Optical Communications

    Science.gov (United States)

    Marshall, W. K.

    1985-01-01

    Methods of detection and synchronization in a highly efficient direct detection optical communication system are reported. Results of measurements on this moderate-rate demonstration system capable of transmitting 2.5 bits/detected photon in low-background situations indicate that symbol slot synchronization is not a problem, and that a simple symbol detection scheme is adequate for this situation. This system is a candidate for interplanetary optical communications.

  10. Synchronization of ;light-sensitive; Hindmarsh-Rose neurons

    Science.gov (United States)

    Castanedo-Guerra, Isaac; Steur, Erik; Nijmeijer, Henk

    2018-04-01

    The suprachiasmatic nucleus is a network of synchronized neurons whose electrical activity follows a 24 h cycle. The synchronization phenomenon (among these neurons) is not completely understood. In this work we study, via experiments and numerical simulations, the phenomenon in which the synchronization threshold changes under the influence of an external (bifurcation) parameter in coupled Hindmarsh-Rose neurons. This parameter ;shapes; the activity of the individual neurons the same way as some neurons in the brain react to light. We corroborate this experimental finding with numerical simulations by quantifying the amount of synchronization using Pearson's correlation coefficient. In order to address the local stability problem of the synchronous state, Floquet theory is applied in the case where the dynamic systems show continuous periodic solutions. These results show how the sufficient coupling strength for synchronization between these neurons is affected by an external cue (e.g. light).

  11. Distributed Synchronization in Communication Networks

    Science.gov (United States)

    2018-01-24

    synchronization. Secondly, it is known that identical oscillators with sin() coupling functions are guaranteed to synchronize in phase on a complete...provide sufficient conditions for phase- locking , i.e., convergence to a stable equilibrium almost surely. We additionally find conditions when the

  12. Generation of dual-wavelength, synchronized, tunable, high energy, femtosecond laser pulses with nearly perfect gaussian spatial profile

    Science.gov (United States)

    Wang, J.-K.; Siegal, Y.; Lü, C.; Mazur, E.

    1992-07-01

    We use self-phase modulation in a single-mode fiber to produce broadband femtosecond laser pulses. Subsequent amplification through two Bethune cells yields high-energy, tunable, pulses synchronized with the output of an amplified colliding-pulse-modelocked (CPM) laser. We routinely obtain tunable 200 μJ pulses of 42 fs (fwhm) duration with a nearly perfect gaussian spatial profile. Although self-phase modulation in a single-mode fiber is widely used in femtosecond laser systems, amplification of a fiber-generated supercontinuum in a Bethune cell amplifier is a new feature which maintains the high-quality spatial profile while providing high gain. This laser system is particularly well suited for high energy dual-wavelength pump=probe experiments and time-resolved four-wave mixing spectroscopy.

  13. Synchronization of coupled metronomes on two layers

    Science.gov (United States)

    Zhang, Jing; Yu, Yi-Zhen; Wang, Xin-Gang

    2017-12-01

    Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.

  14. Chaos synchronization based on intermittent state observer

    Institute of Scientific and Technical Information of China (English)

    Li Guo-Hui; Zhou Shi-Ping; Xu De-Ming

    2004-01-01

    This paper describes the method of synchronizing slave to the master trajectory using an intermittent state observer by constructing a synchronizer which drives the response system globally tracing the driving system asymptotically. It has been shown from the theory of synchronization error-analysis that a satisfactory result of chaos synchronization is expected under an appropriate intermittent period and state observer. Compared with continuous control method,the proposed intermittent method can target the desired orbit more efficiently. The application of the method is demonstrated on the hyperchaotic Rossler systems. Numerical simulations show that the length of the synchronization interval rs is of crucial importance for our scheme, and the method is robust with respect to parameter mismatch.

  15. Hypothesis test for synchronization: twin surrogates revisited.

    Science.gov (United States)

    Romano, M Carmen; Thiel, Marco; Kurths, Jürgen; Mergenthaler, Konstantin; Engbert, Ralf

    2009-03-01

    The method of twin surrogates has been introduced to test for phase synchronization of complex systems in the case of passive experiments. In this paper we derive new analytical expressions for the number of twins depending on the size of the neighborhood, as well as on the length of the trajectory. This allows us to determine the optimal parameters for the generation of twin surrogates. Furthermore, we determine the quality of the twin surrogates with respect to several linear and nonlinear statistics depending on the parameters of the method. In the second part of the paper we perform a hypothesis test for phase synchronization in the case of experimental data from fixational eye movements. These miniature eye movements have been shown to play a central role in neural information processing underlying the perception of static visual scenes. The high number of data sets (21 subjects and 30 trials per person) allows us to compare the generated twin surrogates with the "natural" surrogates that correspond to the different trials. We show that the generated twin surrogates reproduce very well all linear and nonlinear characteristics of the underlying experimental system. The synchronization analysis of fixational eye movements by means of twin surrogates reveals that the synchronization between the left and right eye is significant, indicating that either the centers in the brain stem generating fixational eye movements are closely linked, or, alternatively that there is only one center controlling both eyes.

  16. The formation of synchronization cliques during the development of modular neural networks

    International Nuclear Information System (INIS)

    Fuchs, Einat; Ayali, Amir; Ben-Jacob, Eshel; Boccaletti, Stefano

    2009-01-01

    Modular organization is a special feature shared by many biological and social networks alike. It is a hallmark for systems exhibiting multitasking, in which individual tasks are performed by separated and yet coordinated functional groups. Understanding how networks of segregated modules develop to support coordinated multitasking functionalities is the main topic of the current study. Using simulations of biologically inspired neuronal networks during development, we study the formation of functional groups (cliques) and inter-neuronal synchronization. The results indicate that synchronization cliques first develop locally according to the explicit network topological organization. Later on, at intermediate connectivity levels, when networks have both local segregation and long-range integration, new synchronization cliques with distinctive properties are formed. In particular, by defining a new measure of synchronization centrality, we identify at these developmental stages dominant neurons whose functional centrality largely exceeds the topological one. These are generated mainly in a few dominant clusters that become the centers of the newly formed synchronization cliques. We show that by the local synchronization properties at the very early developmental stages, it is possible to predict with high accuracy which clusters will become dominant in later stages of network development

  17. Synchronization of Coupled Neurons Controlled by a Pacemaker

    International Nuclear Information System (INIS)

    Li Mei-Sheng; Zhang Hong-Hui; Zhao Yong; Shi Xia

    2011-01-01

    We investigate synchronization of Hindmarsh—Rose neurons with gap junctions under the control of a pacemaker. In a ring Hindmarsh—Rose neuronal network, the coupled neurons with the pacemaker can occur in synchronization more easily than those without the pacemaker. Furthermore, the pacemaker can induce phase synchronization or nearly-complete synchronization of nonidentical neurons. This synchronization can occur more easily when time delay is considered. Theses results can be helpful to understand the activities of the real neuronal system. (general)

  18. Small-world networks exhibit pronounced intermittent synchronization

    Science.gov (United States)

    Choudhary, Anshul; Mitra, Chiranjit; Kohar, Vivek; Sinha, Sudeshna; Kurths, Jürgen

    2017-11-01

    We report the phenomenon of temporally intermittently synchronized and desynchronized dynamics in Watts-Strogatz networks of chaotic Rössler oscillators. We consider topologies for which the master stability function (MSF) predicts stable synchronized behaviour, as the rewiring probability (p) is tuned from 0 to 1. MSF essentially utilizes the largest non-zero Lyapunov exponent transversal to the synchronization manifold in making stability considerations, thereby ignoring the other Lyapunov exponents. However, for an N-node networked dynamical system, we observe that the difference in its Lyapunov spectra (corresponding to the N - 1 directions transversal to the synchronization manifold) is crucial and serves as an indicator of the presence of intermittently synchronized behaviour. In addition to the linear stability-based (MSF) analysis, we further provide global stability estimate in terms of the fraction of state-space volume shared by the intermittently synchronized state, as p is varied from 0 to 1. This fraction becomes appreciably large in the small-world regime, which is surprising, since this limit has been otherwise considered optimal for synchronized dynamics. Finally, we characterize the nature of the observed intermittency and its dominance in state-space as network rewiring probability (p) is varied.

  19. Global chaos synchronization with channel time-delay

    International Nuclear Information System (INIS)

    Jiang Guoping; Zheng Weixing; Chen Guanrong

    2004-01-01

    This paper addresses a practical issue in chaos synchronization where there is a time-delay in the receiver as compared with the transmitter. A new synchronization scheme and a general criterion for global chaos synchronization are proposed and developed from the approach of unidirectional linear error feedback coupling with time-delay. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criterion under which the global chaos synchronization of the time-delay coupled systems is achieved

  20. Global chaos synchronization of coupled parametrically excited ...

    Indian Academy of Sciences (India)

    In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which ...

  1. Identification of highly synchronized subnetworks from gene expression data.

    Science.gov (United States)

    Gao, Shouguo; Wang, Xujing

    2013-01-01

    There has been a growing interest in identifying context-specific active protein-protein interaction (PPI) subnetworks through integration of PPI and time course gene expression data. However the interaction dynamics during the biological process under study has not been sufficiently considered previously. Here we propose a topology-phase locking (TopoPL) based scoring metric for identifying active PPI subnetworks from time series expression data. First the temporal coordination in gene expression changes is evaluated through phase locking analysis; The results are subsequently integrated with PPI to define an activity score for each PPI subnetwork, based on individual member expression, as well topological characteristics of the PPI network and of the expression temporal coordination network; Lastly, the subnetworks with the top scores in the whole PPI network are identified through simulated annealing search. Application of TopoPL to simulated data and to the yeast cell cycle data showed that it can more sensitively identify biologically meaningful subnetworks than the method that only utilizes the static PPI topology, or the additive scoring method. Using TopoPL we identified a core subnetwork with 49 genes important to yeast cell cycle. Interestingly, this core contains a protein complex known to be related to arrangement of ribosome subunits that exhibit extremely high gene expression synchronization. Inclusion of interaction dynamics is important to the identification of relevant gene networks.

  2. Full state hybrid projective synchronization in hyperchaotic systems

    International Nuclear Information System (INIS)

    Chu Yandong; Chang Yingxiang; Zhang Jiangang; Li Xianfeng; An Xinlei

    2009-01-01

    In this letter, we investigate the full state hybrid projective synchronization (FSHPS) which includes complete synchronization, anti-synchronization and projective synchronization as its special items. Based on Lyapunov stability theory a controller can be designed for achieving the FSHPS of hyperchaotic systems. Numerical simulations are provided to verify the effectiveness of the proposed scheme.

  3. Synchronizing noisy nonidentical oscillators by transient uncoupling

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Aditya, E-mail: adityat@iitk.ac.in; Mannattil, Manu, E-mail: mmanu@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Schröder, Malte, E-mail: malte@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Timme, Marc, E-mail: timme@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Department of Physics, Technical University of Darmstadt, 64289 Darmstadt (Germany); Chakraborty, Sagar, E-mail: sagarc@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Mechanics and Applied Mathematics Group, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India)

    2016-09-15

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.

  4. Synchronization in complex networks with a modular structure.

    Science.gov (United States)

    Park, Kwangho; Lai, Ying-Cheng; Gupte, Saurabh; Kim, Jong-Won

    2006-03-01

    Networks with a community (or modular) structure arise in social and biological sciences. In such a network individuals tend to form local communities, each having dense internal connections. The linkage among the communities is, however, much more sparse. The dynamics on modular networks, for instance synchronization, may be of great social or biological interest. (Here by synchronization we mean some synchronous behavior among the nodes in the network, not, for example, partially synchronous behavior in the network or the synchronizability of the network with some external dynamics.) By using a recent theoretical framework, the master-stability approach originally introduced by Pecora and Carroll in the context of synchronization in coupled nonlinear oscillators, we address synchronization in complex modular networks. We use a prototype model and develop scaling relations for the network synchronizability with respect to variations of some key network structural parameters. Our results indicate that random, long-range links among distant modules is the key to synchronization. As an application we suggest a viable strategy to achieve synchronous behavior in social networks.

  5. Personalised Prescription of Scalable High Intensity Interval Training to Inactive Female Adults of Different Ages.

    Directory of Open Access Journals (Sweden)

    Jacqueline L Mair

    Full Text Available Stepping is a convenient form of scalable high-intensity interval training (HIIT that may lead to health benefits. However, the accurate personalised prescription of stepping is hampered by a lack of evidence on optimal stepping cadences and step heights for various populations. This study examined the acute physiological responses to stepping exercise at various heights and cadences in young (n = 14 and middle-aged (n = 14 females in order to develop an equation that facilitates prescription of stepping at targeted intensities. Participants completed a step test protocol consisting of randomised three-minute bouts at different step cadences (80, 90, 100, 110 steps·min-1 and step heights (17, 25, 30, 34 cm. Aerobic demand and heart rate values were measured throughout. Resting metabolic rate was measured in order to develop female specific metabolic equivalents (METs for stepping. Results revealed significant differences between age groups for METs and heart rate reserve, and within-group differences for METs, heart rate, and metabolic cost, at different step heights and cadences. At a given step height and cadence, middle-aged females were required to work at an intensity on average 1.9 ± 0.26 METs greater than the younger females. A prescriptive equation was developed to assess energy cost in METs using multilevel regression analysis with factors of step height, step cadence and age. Considering recent evidence supporting accumulated bouts of HIIT exercise for health benefits, this equation, which allows HIIT to be personally prescribed to inactive and sedentary women, has potential impact as a public health exercise prescription tool.

  6. Hidden imperfect synchronization of wall turbulence.

    Science.gov (United States)

    Tardu, Sedat F

    2010-03-01

    Instantaneous amplitude and phase concept emerging from analytical signal formulation is applied to the wavelet coefficients of streamwise velocity fluctuations in the buffer layer of a near wall turbulent flow. Experiments and direct numerical simulations show both the existence of long periods of inert zones wherein the local phase is constant. These regions are separated by random phase jumps. The local amplitude is globally highly intermittent, but not in the phase locked regions wherein it varies smoothly. These behaviors are reminiscent of phase synchronization phenomena observed in stochastic chaotic systems. The lengths of the constant phase inert (laminar) zones reveal a type I intermittency behavior, in concordance with saddle-node bifurcation, and the periodic orbits of saddle nature recently identified in Couette turbulence. The imperfect synchronization is related to the footprint of coherent Reynolds shear stress producing eddies convecting in the low buffer.

  7. Business cycle synchronization in Europe

    DEFF Research Database (Denmark)

    Bergman, Ulf Michael; Jonung, Lars

    2011-01-01

    In this paper we study business cycle synchronization in the three Scandinavian countries Denmark, Norway and Sweden prior to, during and after the Scandinavian Currency Union 1873–1913. We find that the degree of synchronization tended to increase during the currency union, thus supporting earlier...

  8. Digital synchronization and communication techniques

    Science.gov (United States)

    Lindsey, William C.

    1992-01-01

    Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.

  9. Nonlinear observer based phase synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Meng Juan; Wang Xingyuan

    2007-01-01

    This Letter analyzes the phase synchronization problem of autonomous chaotic systems. Based on the nonlinear state observer algorithm and the pole placement technique, a phase synchronization scheme is designed. The phase synchronization of a new chaotic system is achieved by using this observer controller. Numerical simulations further demonstrate the effectiveness of the proposed phase synchronization scheme

  10. Structural damage detection robust against time synchronization errors

    International Nuclear Information System (INIS)

    Yan, Guirong; Dyke, Shirley J

    2010-01-01

    Structural damage detection based on wireless sensor networks can be affected significantly by time synchronization errors among sensors. Precise time synchronization of sensor nodes has been viewed as crucial for addressing this issue. However, precise time synchronization over a long period of time is often impractical in large wireless sensor networks due to two inherent challenges. First, time synchronization needs to be performed periodically, requiring frequent wireless communication among sensors at significant energy cost. Second, significant time synchronization errors may result from node failures which are likely to occur during long-term deployment over civil infrastructures. In this paper, a damage detection approach is proposed that is robust against time synchronization errors in wireless sensor networks. The paper first examines the ways in which time synchronization errors distort identified mode shapes, and then proposes a strategy for reducing distortion in the identified mode shapes. Modified values for these identified mode shapes are then used in conjunction with flexibility-based damage detection methods to localize damage. This alternative approach relaxes the need for frequent sensor synchronization and can tolerate significant time synchronization errors caused by node failures. The proposed approach is successfully demonstrated through numerical simulations and experimental tests in a lab

  11. Pilotless Frame Synchronization Using LDPC Code Constraints

    Science.gov (United States)

    Jones, Christopher; Vissasenor, John

    2009-01-01

    A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.

  12. Communicating via robust synchronization of chaotic lasers

    International Nuclear Information System (INIS)

    Lopez-Gutierrez, R.M.; Posadas-Castillo, C.; Lopez-Mancilla, D.; Cruz-Hernandez, C.

    2009-01-01

    In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.

  13. Communicating via robust synchronization of chaotic lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Gutierrez, R.M. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); Posadas-Castillo, C. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); FIME, Autonomous University of Nuevo Leon (UANL), Pedro de Alba, S.N., Cd. Universitaria, San Nicolas de los Garza, NL (Mexico); Lopez-Mancilla, D. [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de los Lagos, Universidad de Guadalajara (CULagos-UdeG), Enrique Diaz de Leon s/n, 47460 Lagos de Moreno, Jal. (Mexico); Cruz-Hernandez, C. [Electronics and Telecommunications Department, Scientific Research and Advanced Studies of Ensenada (CICESE), Km. 107 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico)], E-mail: ccruz@cicese.mx

    2009-10-15

    In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.

  14. A synchronous serial bus for multidimensional array acoustic logging tool

    Science.gov (United States)

    Men, Baiyong; Ju, Xiaodong; Lu, Junqiang; Qiao, Wenxiao

    2016-12-01

    In high-temperature and spatial borehole applications, a distributed structure is employed in a multidimensional array acoustic logging tool (MDALT) based on a phased array technique for electronic systems. However, new challenges, such as synchronous multichannel data acquisition, multinode real-time control and bulk data transmission in a limited interval, have emerged. To address these challenges, we developed a synchronous serial bus (SSB) in this study. SSB works in a half-duplex mode via a master-slave architecture. It also consists of a single master, several slaves, a differential clock line and a differential data line. The clock line is simplex, whereas the data line is half-duplex and synchronous to the clock line. A reliable communication between the master and the slaves with real-time adjustment of synchronisation is achieved by rationally designing the frame format and protocol of communication and by introducing a scramble code and a Hamming error-correcting code. The control logic of the master and the slaves is realized in field programmable gate array (FPGA) or complex programmable logic device (CPLD). The clock speed of SSB is 10 MHz, the effective data rate of the bulk data transmission is over 99%, and the synchronous errors amongst the slaves are less than 10 ns. Room-temperature test, high-temperature test (175 °C) and field test demonstrate that the proposed SSB is qualified for MDALT.

  15. Synchronous atmospheric radiation correction of GF-2 satellite multispectral image

    Science.gov (United States)

    Bian, Fuqiang; Fan, Dongdong; Zhang, Yan; Wang, Dandan

    2018-02-01

    GF-2 remote sensing products have been widely used in many fields for its high-quality information, which provides technical support for the the macroeconomic decisions. Atmospheric correction is the necessary part in the data preprocessing of the quantitative high resolution remote sensing, which can eliminate the signal interference in the radiation path caused by atmospheric scattering and absorption, and reducting apparent reflectance into real reflectance of the surface targets. Aiming at the problem that current research lack of atmospheric date which are synchronization and region matching of the surface observation image, this research utilize the MODIS Level 1B synchronous data to simulate synchronized atmospheric condition, and write programs to implementation process of aerosol retrieval and atmospheric correction, then generate a lookup table of the remote sensing image based on the radioactive transfer model of 6S (second simulation of a satellite signal in the solar spectrum) to correct the atmospheric effect of multispectral image from GF-2 satellite PMS-1 payload. According to the correction results, this paper analyzes the pixel histogram of the reflectance spectrum of the 4 spectral bands of PMS-1, and evaluates the correction results of different spectral bands. Then conducted a comparison experiment on the same GF-2 image based on the QUAC. According to the different targets respectively statistics the average value of NDVI, implement a comparative study of NDVI from two different results. The degree of influence was discussed by whether to adopt synchronous atmospheric date. The study shows that the result of the synchronous atmospheric parameters have significantly improved the quantitative application of the GF-2 remote sensing data.

  16. Synchronization of Integrated Systems on a Chip

    Directory of Open Access Journals (Sweden)

    González-Díaz O.

    2012-04-01

    Full Text Available In the present paper, the non-conventional interconnected and coupled ring oscillators approach working as clock distribution networks to synchronize electronic systems on a chip (SoC is proposed. Typical CMOS (Complementary Metal-Oxide Semiconductor N-well 0.35 µm Austria Micro Systems process parameters were used for conventional and non-conventional clock distribution nets design and simulation. Experimental results from local and global clock distribution networks fabricated using a CMOS 0.35 µm process show that the use of interconnected rings arrays, as globally asynchronous locally synchronous (GALS clock distribution networks, represent an appropriate approach due to good performance regarding scalability, low clock-skew, high-speed, faults tolerant and robust under process variations, regularity, and modularity.

  17. Synchronization Analysis of the Supermarket Refrigeration System

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Chen, Liang; Larsen, Lars Finn Sloth

    2009-01-01

    is analyzed using the bifurcation and chaos theory. It is demonstrated that the system can have a complex chaotic behavior, which is far from the synchronization. This shows that making the system chaotic is a good choice for a de-synchronization strategy. The positive maximum Lyapunov exponent is usually...... taken as an indication of the existence of chaos. It is used in the paper as a measure of performance for the tendency of the system to synchronize, that is, the higher value of the maximum Lyapunov exponent the lower risk for synchronization....

  18. Price synchronization in retailing: some empirical evidence

    Directory of Open Access Journals (Sweden)

    Marcelo Resende

    2014-06-01

    Full Text Available The paper investigates the synchronization of price changes in the context of retail tire dealers in São Paulo-Brazil and selected items in supermarkets for cleaning supplies and food in Rio de Janeiro-Brazil. Results indicate similar and non-negligible synchronization for different brands, although magnitudes are distant from a perfect synchronization pattern. We find interesting patterns in inter-firm competition, with similar magnitudes across different tire types. Intra-chain synchronization is substantial, indicating that a common price adjustment policy tends to be sustained for each chain across different products.

  19. Synchronization of coupled nonidentical multidelay feedback systems

    International Nuclear Information System (INIS)

    Hoang, Thang Manh; Nakagawa, Masahiro

    2007-01-01

    We present the lag synchronization of coupled nonidentical multidelay feedback systems, in which the synchronization signal is the sum of nonlinearly transformed components of delayed state variable. The sufficient condition for synchronization is considered by the Krasovskii-Lyapunov theory. The specific examples will demonstrate and verify the effectiveness of the proposed model

  20. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed....

  1. Impulsive synchronization of Chen's hyperchaotic system

    International Nuclear Information System (INIS)

    Haeri, Mohammad; Dehghani, Mahsa

    2006-01-01

    In this Letter the impulsive synchronization of the Chen's hyperchaotic systems is discussed. Some new and sufficient conditions on varying impulsive distance are established in order to guarantee the synchronizabillity of the systems using the synchronization method. In particular, some simple conditions are derived in synchronizing the systems by equal impulsive distances. Two illustrative examples are provided to show the feasibility and the effectiveness of the proposed method. The boundaries of the stable regions are also estimated

  2. A True Open-Loop Synchronization Technique

    DEFF Research Database (Denmark)

    Golestan, Saeed; Vidal, Ana; Yepes, Alejandro G.

    2016-01-01

    Synchronization techniques can be broadly classified into two major categories: Closed-loop and open-loop methods. The open-loop synchronization (OLS) techniques, contrary to the closed-loop ones, are unconditionally stable and benefit from a fast dynamic response. Their performance, however, tends...... is to develop a true OLS (and therefore, unconditionally stable) technique without any need for the calculation of sine and cosine functions. The effectiveness of the proposed synchronization technique is confirmed through the simulation and experimental results....

  3. Synchronization of delay-coupled nonlinear oscillators: an approach based on the stability analysis of synchronized equilibria.

    Science.gov (United States)

    Michiels, Wim; Nijmeijer, Henk

    2009-09-01

    We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators with delays in the interconnections. The network topology is described by a directed graph. Unlike the conventional approach of deriving directly sufficient synchronization conditions, the approach of the paper starts from an exact stability analysis in a (gain, delay) parameter space of a synchronized equilibrium and extracts insights from an analysis of its bifurcations and from the corresponding emerging behavior. Instrumental to this analysis a factorization of the characteristic equation is employed that not only facilitates the analysis and reduces computational cost but also allows to determine the precise role of the individual agents and the topology of the network in the (in)stability mechanisms. The study provides an algorithm to perform a stability and bifurcation analysis of synchronized equilibria. Furthermore, it reveals fundamental limitations to synchronization and it explains under which conditions on the topology of the network and on the characteristics of the coupling the systems are expected to synchronize. In the second part of the paper the results are applied to coupled Lorenz systems. The main results show that for sufficiently large coupling gains, delay-coupled Lorenz systems exhibit a generic behavior that does not depend on the number of systems and the topology of the network, as long as some basic assumptions are satisfied, including the strong connectivity of the graph. Here the linearized stability analysis is strengthened by a nonlinear stability analysis which confirms the predictions based on the linearized stability and bifurcation analysis. This illustrates the usefulness of the exact linearized analysis in a situation where a direct nonlinear stability analysis is not possible or where it yields conservative conditions from which it is hard to get qualitative insights in the synchronization mechanisms and their scaling properties

  4. Forced synchronization and asynchronous quenching in a thermo-acoustic system

    Science.gov (United States)

    Mondal, Sirshendu; Pawar, Samadhan A.; Sujith, Raman

    2017-11-01

    Forced synchronization, which has been extensively studied in theory and experiments, occurs through two different mechanisms known as phase locking and asynchronous quenching. The latter indicates the suppression of oscillation amplitude. In most practical combustion systems such as gas turbine engines, the main concern is high amplitude pressure oscillations, known as thermo-acoustic instability. Thermo-acoustic instability is undesirable and needs to be suppressed because of its damaging consequences to an engine. In the present study, a systematic experimental investigation of forced synchronization is performed in a prototypical thermo-acoustic system, a Rijke tube, in its limit cycle operation. Further, we show a qualitatively similar behavior using a reduced order model. In the phase locking region, the simultaneous occurrence of synchronization and resonant amplification leads to high amplitude pressure oscillations. However, a reduction in the amplitude of natural oscillations by about 78% of the unforced amplitude is observed when the forcing frequency is far lower than the natural frequency. This shows the possibility of suppression of the oscillation amplitude through asynchronous quenching in thermo-acoustic systems.

  5. The role of leadership in the synchronization of directed complex networks

    International Nuclear Information System (INIS)

    Sheshbolouki, Aida; Zarei, Mina; Sarbazi-Azad, Hamid

    2015-01-01

    Synchronization is a phenomenon that occurs in systems of interacting units, and is widespread in nature, society and technology. Recent studies have enlightened us regarding the interplay between synchronization dynamics and interaction structure. However, most of these studies neglect that real-world networks may actually be directed and disconnected. Here, we study the synchronization of directed networks with multiple leaders using the Kuramoto model. We found that in networks with high driving strength, the steady-state frequency of each node is determined by the linear combination of leaders’ natural frequencies, with structural coefficients that can be calculated using the eigenvectors of a network Laplacian matrix corresponding to zero eigenvalues. The steady-state frequencies of the nodes following multiple leaders are not fixed and have sharp peaks between consecutive time instances where leaders meet each other in the phase circle. The results suggest a new way of understanding how leadership style influences the synchronization dynamics of directed networks. (paper)

  6. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    Science.gov (United States)

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  7. Synchronization in networks with heterogeneous coupling delays

    Science.gov (United States)

    Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor

    2018-01-01

    Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.

  8. Synchronization of hyperchaotic oscillators via single unidirectional chaotic-coupling

    International Nuclear Information System (INIS)

    Zou Yanli; Zhu Jie; Chen Guanrong; Luo Xiaoshu

    2005-01-01

    In this paper, synchronization of two hyperchaotic oscillators via a single variable's unidirectional coupling is studied. First, the synchronizability of the coupled hyperchaotic oscillators is proved mathematically. Then, the convergence speed of this synchronization scheme is analyzed. In order to speed up the response with a relatively large coupling strength, two kinds of chaotic coupling synchronization schemes are proposed. In terms of numerical simulations and the numerical calculation of the largest conditional Lyapunov exponent, it is shown that in a given range of coupling strengths, chaotic-coupling synchronization is quicker than the typical continuous-coupling synchronization. Furthermore, A circuit realization based on the chaotic synchronization scheme is designed and Pspice circuit simulation validates the simulated hyperchaos synchronization mechanism

  9. Two novel synchronization criterions for a unified chaotic system

    International Nuclear Information System (INIS)

    Tao Chaohai; Xiong Hongxia; Hu Feng

    2006-01-01

    Two novel synchronization criterions are proposed in this paper. It includes drive-response synchronization and adaptive synchronization schemes. Moreover, these synchronization criterions can be applied to a large class of chaotic systems and are very useful for secure communication

  10. Synchronization of Rikitake chaotic attractor using active control

    International Nuclear Information System (INIS)

    Vincent, U.E.

    2005-01-01

    Using synchronization technique based on control theory, we design an active controller which enables the synchronization of two identical Rikitake two-disc dynamo systems. Numerical simulations are used to show the robustness of the active control scheme in synchronizing coupled Rikitake dynamical systems. On the sequential application of the active control, transitions from temporary phase locking (TPL) state to complete synchronization state were found

  11. Control of a superconducting synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y; Pei, R; Jiang, Q; Hong, Z; Coombs, T A [Engineering Department, Cambridge University, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2007-04-15

    This paper presents a control algorithm for starting up a high temperature superconducting synchronous motor. The mathematical model of the motor has been established in m-file in Matlab and the parameters have been identified by means of the finite-element analysis method. Different starting methods for the motor have been compared and discussed, and eventually a hybrid control algorithm is proposed.

  12. Mixed synchronization in chaotic oscillators using scalar coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Sourav K.; Hens, Chittaranjan [CSIR – Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India); Ghosh, Dibakar, E-mail: drghosh_math@yahoo.co.in [Department of Mathematics, University of Kalyani, West Bengal 741235 (India); Dana, Syamal K. [CSIR – Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India)

    2012-07-23

    We report experimental evidence of mixed synchronization in two unidirectionally coupled chaotic oscillators using a scalar coupling. In this synchronization regime, some of the state variables may be in complete synchronization while others may be in anti-synchronization state. We extended the theory by using an adaptive controller with an updating law based on Lyapunov function stability to include parameter fluctuation. Using the scheme, we implemented a cryptographic encoding for digital signal through parameter modulation. -- Highlights: ► We provided experimental evidence of the mixed synchronization scheme while other methods are mostly theoretical nature. ► We numerically studied adaptive mixed synchronization when the parameters are not completely known using scalar coupling. ► We proposed a secure communication system where three digital messages are transmitted using parameter modulation.

  13. Synchronization of delay-coupled nonlinear oscillators : an approach based on the stability analysis of synchronized equilibria

    NARCIS (Netherlands)

    Michiels, W.; Nijmeijer, H.

    2009-01-01

    We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators with delays in the interconnections. The network topology is described by a directed graph. Unlike the conventional approach of deriving directly sufficient synchronization conditions, the approach of the

  14. Synchronization and comparison of Lifelog audio recordings

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai

    2008-01-01

    as a preprocessing step to select and synchronize recordings before further processing. The two methods perform similarly in classification, but fingerprinting scales better with the number of recordings, while cross-correlation can offer sample resolution synchronization. We propose and investigate the benefits...... of combining the two. In particular we show that the combination allows sample resolution synchronization and scalability....

  15. A Spatiotemporal-Chaos-Based Cryptosystem Taking Advantage of Both Synchronous and Self-Synchronizing Schemes

    Science.gov (United States)

    Lü, Hua-Ping; Wang, Shi-Hong; Li, Xiao-Wen; Tang, Guo-Ning; Kuang, Jin-Yu; Ye, Wei-Ping; Hu, Gang

    2004-06-01

    Two-dimensional one-way coupled map lattices are used for cryptography where multiple space units produce chaotic outputs in parallel. One of the outputs plays the role of driving for synchronization of the decryption system while the others perform the function of information encoding. With this separation of functions the receiver can establish a self-checking and self-correction mechanism, and enjoys the advantages of both synchronous and self-synchronizing schemes. A comparison between the present system with the system of advanced encryption standard (AES) is presented in the aspect of channel noise influence. Numerical investigations show that our system is much stronger than AES against channel noise perturbations, and thus can be better used for secure communications with large channel noise.

  16. A validation methodology for fault-tolerant clock synchronization

    Science.gov (United States)

    Johnson, S. C.; Butler, R. W.

    1984-01-01

    A validation method for the synchronization subsystem of a fault-tolerant computer system is presented. The high reliability requirement of flight crucial systems precludes the use of most traditional validation methods. The method presented utilizes formal design proof to uncover design and coding errors and experimentation to validate the assumptions of the design proof. The experimental method is described and illustrated by validating an experimental implementation of the Software Implemented Fault Tolerance (SIFT) clock synchronization algorithm. The design proof of the algorithm defines the maximum skew between any two nonfaulty clocks in the system in terms of theoretical upper bounds on certain system parameters. The quantile to which each parameter must be estimated is determined by a combinatorial analysis of the system reliability. The parameters are measured by direct and indirect means, and upper bounds are estimated. A nonparametric method based on an asymptotic property of the tail of a distribution is used to estimate the upper bound of a critical system parameter. Although the proof process is very costly, it is extremely valuable when validating the crucial synchronization subsystem.

  17. Guide to Synchronization of Video Systems to IRIG Timing

    Science.gov (United States)

    1992-07-01

    and industry. 1-2 CHAPTER 2 SYNCHRONISATION Before delving into the details of synchronization , a review is needed of the reasons for synchronizing ... Synchronization of Video Systems to IRIG Timing Optical Systems Group Range Commanders Council White Sands Missile Range, NM 88002-5110 RCC Document 456-92 Range...This document addresses a broad field of video synchronization to IRIG timing with emphasis on color synchronization . This document deals with

  18. One-Stage and Two-Stage Schemes of High Performance Synchronous PWM with Smooth Pulses-Ratio Changing

    DEFF Research Database (Denmark)

    Oleschuk, V.; Blaabjerg, Frede

    2002-01-01

    This paper presents detailed description of one-stage and two-stage schemes of a novel method of synchronous, pulsewidth modulation (PWM) for voltage source inverters for ac drive application. The proposed control functions provide accurate realization of different versions of voltage space vector...... modulation with synchronization of the voltage waveform of the inverter and with smooth pulse-ratio changing. Voltage spectra do not contain even harmonic and sub-harmonics (combined harmonics) during the whole control range including the zone of overmodulation. Examples of determination of the basic control...

  19. Quantum synchronization in an optomechanical system based on Lyapunov control.

    Science.gov (United States)

    Li, Wenlin; Li, Chong; Song, Heshan

    2016-06-01

    We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.

  20. A Semantics of Synchronization.

    Science.gov (United States)

    1980-09-01

    suggestion of having very hungry philosophers. One can easily imagine the complexity of the equivalent implementation using semaphores . Synchronization types...Edinburgh, July 1978. [STAR79] Stark, E.W., " Semaphore Primitives and Fair Mutual Exclusion," TM-158, Laboratory for Computer Science, M.I.T., Cambridge...AD-AQ91 015 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/S 9/2 A SEMANTICS OF SYNCHRONIZATION .(U) .C SEP 80 C A SEAQUIST N00015-75

  1. Control of synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in

  2. Sources and Propagation of High Frequency Waves in the Solar Photosphere and Chromosphere

    Science.gov (United States)

    Lawrence, John K.; Cadavid, A. C.

    2009-05-01

    We study the spatial distribution of oscillatory power in two sequences of high-cadence, high-resolution images taken by the Solar Optical Telescope on board Hinode. The sequences consist of simultaneous, co-registered G-Band (GB) and Ca II H-Line (HL) images with pixel scale 80 km and fields of view 40 x 40 Mm and 80 x 40 Mm. The first sequence has cadence 21 s over 3 hours on 2007 April 14; the other has cadence 24 s over 2 hours on 2007 March 30. Both sequences include network and internetwork at heliocentric angle 35 degrees. Time averaging of Morlet wavelet transforms gives smoothed Fourier spectra for each spatial location in the GB and HL data. We averaged over four different frequency bands to highlight different physical regimes: "evolutionary” timescales (f web of a cellular pattern with scales 2 - 3 Mm. These are found to coincide with the boundaries of stable clusters of granules. These dark boundaries may correspond to downflows that control the cell structuring and that could be the source of acoustic power.

  3. PET System Synchronization and Timing Resolution Using High-Speed Data Links

    OpenAIRE

    Aliaga Varea, Ramón José; Monzó Ferrer, José María; SPAGGIARI, MICHELE; Ferrando Jódar, Néstor; Gadea Gironés, Rafael; Colom Palero, Ricardo José

    2011-01-01

    Current PET systems with fully digital trigger rely on early digitization of detector signals and the use of digital processors, usually FPGAs, for recognition of valid gamma events on single detectors. Timestamps are assigned and later used for coincidence analysis. In order to maintain a decent timing resolution for events detected on different acquisition boards, it is necessary that local timestamps on different FPGAs be synchronized. Sub-nanosecond accuracy is mandatory if we want this e...

  4. Protecting Clock Synchronization: Adversary Detection through Network Monitoring

    Directory of Open Access Journals (Sweden)

    Elena Lisova

    2016-01-01

    Full Text Available Nowadays, industrial networks are often used for safety-critical applications with real-time requirements. Such applications usually have a time-triggered nature with message scheduling as a core property. Scheduling requires nodes to share the same notion of time, that is, to be synchronized. Therefore, clock synchronization is a fundamental asset in real-time networks. However, since typical standards for clock synchronization, for example, IEEE 1588, do not provide the required level of security, it raises the question of clock synchronization protection. In this paper, we identify a way to break synchronization based on the IEEE 1588 standard, by conducting a man-in-the-middle (MIM attack followed by a delay attack. A MIM attack can be accomplished through, for example, Address Resolution Protocol (ARP poisoning. Using the AVISPA tool, we evaluate the potential to perform a delay attack using ARP poisoning and analyze its consequences showing both that the attack can, indeed, break clock synchronization and that some design choices, such as a relaxed synchronization condition mode, delay bounding, and using knowledge of environmental conditions, can make the network more robust/resilient against these kinds of attacks. Lastly, a Configuration Agent is proposed to monitor and detect anomalies introduced by an adversary performing attacks targeting clock synchronization.

  5. Linear Synchronous Motor Repeatability Tests

    International Nuclear Information System (INIS)

    Ward, C.R.

    2002-01-01

    A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility

  6. Synchronicity, instant messaging, and performance among financial traders.

    Science.gov (United States)

    Saavedra, Serguei; Hagerty, Kathleen; Uzzi, Brian

    2011-03-29

    Successful animal systems often manage risk through synchronous behavior that spontaneously arises without leadership. In critical human systems facing risk, such as financial markets or military operations, our understanding of the benefits associated with synchronicity is nascent but promising. Building on previous work illuminating commonalities between ecological and human systems, we compare the activity patterns of individual financial traders with the simultaneous activity of other traders--an individual and spontaneous characteristic we call synchronous trading. Additionally, we examine the association of synchronous trading with individual performance and communication patterns. Analyzing empirical data on day traders' second-to-second trading and instant messaging, we find that the higher the traders' synchronous trading is, the less likely they are to lose money at the end of the day. We also find that the daily instant messaging patterns of traders are closely associated with their level of synchronous trading. This result suggests that synchronicity and vanguard technology may help traders cope with risky decisions in complex systems and may furnish unique prospects for achieving collective and individual goals.

  7. Chaos synchronizations of chaotic systems via active nonlinear control

    International Nuclear Information System (INIS)

    Huang, J; Xiao, T J

    2008-01-01

    This paper not only investigates the chaos synchronization between two LCC chaotic systems, but also discusses the chaos synchronization between LCC system and Genesio system. Some novel active nonlinear controllers are designed to achieve synchronizations between drive and response systems effectively. Moreover, the sufficient conditions of synchronizations are derived by using Lyapunov stability theorem. Numerical simulations are presented to verify the theoretical analysis, which shows that the synchronization schemes are global effective

  8. Nonlinear transfer function encodes synchronization in a neural network from the mammalian brain.

    Science.gov (United States)

    Menendez de la Prida, L; Sanchez-Andres, J V

    1999-09-01

    Synchronization is one of the mechanisms by which the brain encodes information. The observed synchronization of neuronal activity has, however, several levels of fluctuations, which presumably regulate local features of specific areas. This means that biological neural networks should have an intrinsic mechanism able to synchronize the neuronal activity but also to preserve the firing capability of individual cells. Here, we investigate the input-output relationship of a biological neural network from developing mammalian brain, i.e., the hippocampus. We show that the probability of occurrence of synchronous output activity (which consists in stereotyped population bursts recorded throughout the hippocampus) is encoded by a sigmoidal transfer function of the input frequency. Under this scope, low-frequency inputs will not produce any coherent output while high-frequency inputs will determine a synchronous pattern of output activity (population bursts). We analyze the effect of the network size (N) on the parameters of the transfer function (threshold and slope). We found that sigmoidal functions realistically simulate the synchronous output activity of hippocampal neural networks. This outcome is particularly important in the application of results from neural network models to neurobiology.

  9. Quantum synchronization of a driven self-sustained oscillator.

    Science.gov (United States)

    Walter, Stefan; Nunnenkamp, Andreas; Bruder, Christoph

    2014-03-07

    Synchronization is a universal phenomenon that is important both in fundamental studies and in technical applications. Here we investigate synchronization in the simplest quantum-mechanical scenario possible, i.e., a quantum-mechanical self-sustained oscillator coupled to an external harmonic drive. Using the power spectrum we analyze synchronization in terms of frequency entrainment and frequency locking in close analogy to the classical case. We show that there is a steplike crossover to a synchronized state as a function of the driving strength. In contrast to the classical case, there is a finite threshold value in driving. Quantum noise reduces the synchronized region and leads to a deviation from strict frequency locking.

  10. Synchronization of modified Colpitts oscillators with structural perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Kammogne, Soup Tewa; Fotsin, H B, E-mail: hbfotsin@yahoo.fr [Laboratoire d' electronique, Departement de Physique, Faculte des sciences, Universite de Dschang, PO Box 067, Dschang (Cameroon)

    2011-06-01

    This paper deals with the problem of the synchronization of uncertain modified Colpitts oscillators. Considering the effect of external disturbances on the system parameters and nonlinear control inputs, a robust controller based on Lyapunov theory is designed for the output synchronization between a slave system and a master system in order to ensure the synchronization of uncertain modified Colpitts oscillator systems. This approach was chosen not only to guarantee a stable synchronization but also to reduce the effect of external perturbation. Nonadaptive feedback synchronization with only one controller for the system is investigated. Numerical simulations are performed to confirm the efficiency of the proposed control scheme.

  11. Phase synchronization on small-world networks with community structure

    International Nuclear Information System (INIS)

    Xiao-Hua, Wang; Li-Cheng, Jiao; Jian-She, Wu

    2010-01-01

    In this paper, we propose a simple model that can generate small-world network with community structure. The network is introduced as a tunable community organization with parameter r, which is directly measured by the ratio of inter- to intra-community connectivity, and a smaller r corresponds to a stronger community structure. The structure properties, including the degree distribution, clustering, the communication efficiency and modularity are also analysed for the network. In addition, by using the Kuramoto model, we investigated the phase synchronization on this network, and found that increasing the fuzziness of community structure will markedly enhance the network synchronizability; however, in an abnormal region (r ≤ 0.001), the network has even worse synchronizability than the case of isolated communities (r = 0). Furthermore, this network exhibits a remarkable synchronization behaviour in topological scales: the oscillators of high densely interconnected communities synchronize more easily, and more rapidly than the whole network. (general)

  12. Impulsive generalized function synchronization of complex dynamical networks

    International Nuclear Information System (INIS)

    Zhang, Qunjiao; Chen, Juan; Wan, Li

    2013-01-01

    This Letter investigates generalized function synchronization of continuous and discrete complex networks by impulsive control. By constructing the reasonable corresponding impulsively controlled response networks, some criteria and corollaries are derived for the generalized function synchronization between the impulsively controlled complex networks, continuous and discrete networks are both included. Furthermore, the generalized linear synchronization and nonlinear synchronization are respectively illustrated by several examples. All the numerical simulations demonstrate the correctness of the theoretical results

  13. Stroboscope Based Synchronization of Full Frame CCD Sensors

    OpenAIRE

    Shen, Liang; Feng, Xiaobing; Zhang, Yuan; Shi, Min; Zhu, Dengming; Wang, Zhaoqi

    2017-01-01

    The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD) consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equi...

  14. Multi-beam synchronous measurement based on PSD phase detection using frequency-domain multiplexing

    Science.gov (United States)

    Duan, Ying; Qin, Lan; Xue, Lian; Xi, Feng; Mao, Jiubing

    2013-10-01

    According to the principle of centroid measurement, position-sensitive detectors (PSD) are commonly used for micro displacement detection. However, single-beam detection method cannot satisfy such tasks as multi-dimension position measurement, three dimension vision reconstruction, and robot precision positioning, which require synchronous measurement of multiple light beams. Consequently, we designed PSD phase detection method using frequency-domain multiplexing for synchronous detection of multiple modulated light beams. Compared to previous PSD amplitude detection method, the phase detection method using FDM has advantages of simplified measuring system, low cost, high capability of resistance to light interference as well as improved resolution. The feasibility of multi-beam synchronous measurement based on PSD phase detection using FDM was validated by multi-beam measuring experiments. The maximum non-linearity error of the multi-beam synchronous measurement is 6.62%.

  15. OMEGA SYSTEM SYNCHRONIZATION.

    Science.gov (United States)

    TIME SIGNALS, * SYNCHRONIZATION (ELECTRONICS)), NETWORKS, FREQUENCY, STANDARDS, RADIO SIGNALS, ERRORS, VERY LOW FREQUENCY, PROPAGATION, ACCURACY, ATOMIC CLOCKS, CESIUM, RADIO STATIONS, NAVAL SHORE FACILITIES

  16. Synchronization of mobile chaotic oscillator networks

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Naoya, E-mail: fujiwara@csis.u-tokyo.ac.jp [Center for Spatial Information Science, The University of Tokyo, 277-8568 Chiba (Japan); Kurths, Jürgen [Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany and Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen (United Kingdom); Díaz-Guilera, Albert [Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona (Spain)

    2016-09-15

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  17. Synchronization of mobile chaotic oscillator networks

    International Nuclear Information System (INIS)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-01-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  18. Synchronization of mobile chaotic oscillator networks.

    Science.gov (United States)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-09-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  19. Static synchronous compensator with superconducting magnetic energy storage for high power utility applications

    International Nuclear Information System (INIS)

    Molina, Marcelo G.; Mercado, Pedro E.; Watanabe, Edson H.

    2007-01-01

    Power systems security in the case of contingencies is ensured by maintaining adequate 'short-term generation reserve'. This reserve must be appropriately activated by means of the primary frequency control (PFC). Because the generation is an electro-mechanical process, the primary control reserve controllability is not as fast as required, especially by modern power systems. Since the new improvements achieved on the conventional control methods have not been enough to satisfy the high requirements established, the necessity of enhancing the performance of the PFC has arisen. At present, the new energy storage systems (ESS) are a feasible alternative to store excess energy for substituting for the primary control reserve. In this way, it is possible to combine this new ESS with power converter based flexible ac transmission systems (FACTS). This allows an effective exchange of active power with the electric grid and, thus, enhances the PFC. This paper presents an improved PFC scheme incorporating a static synchronous compensator (STATCOM) coupled with a superconducting magnetic energy storage (SMES) device. A detailed full model and a control algorithm based on a decoupled current control strategy of the enhanced compensator are proposed. The integrated STATCOM/SMES controller topology includes three level, multi-pulse, voltage source inverters (VSI) with phase control and incorporates a two quadrant, three level, dc-dc chopper as the interface between the STATCOM and the SMES coil. A novel three level control scheme is proposed by using concepts of instantaneous power in the synchronous rotating d-q reference frame. The dynamic performance of the presented control algorithms is evaluated through digital simulation performed by using SimPowerSystems of SIMULINK/MATLAB T M , and technical analysis is performed to obtain conclusions about the benefits of using SMES devices in the PFC of the electric system. Presently, a laboratory scale prototype device based on

  20. Bodily Synchronization Underlying Joke Telling

    Directory of Open Access Journals (Sweden)

    R. C. Schmidt

    2014-08-01

    Full Text Available Advances in video and time series analysis have greatly enhanced our ability to study the bodily synchronization that occurs in natural interactions. Past research has demonstrated that the behavioral synchronization involved in social interactions is similar to dynamical synchronization found generically in nature. The present study investigated how the bodily synchronization in a joke telling task is spread across different nested temporal scales. Pairs of participants enacted knock-knock jokes and times series of their bodily activity were recorded. Coherence and relative phase analyses were used to evaluate the synchronization of bodily rhythms for the whole trial as well as at the subsidiary time scales of the whole joke, the setup of the punch line, the two-person exchange and the utterance. The analyses revealed greater than chance entrainment of the joke teller’s and joke responder’s movements at all time scales and that the relative phasing of the teller’s movements led those of the responder at the longer time scales. Moreover, this entrainment was greater when visual information about the partner’s movements was present but was decreased particularly at the shorter time scales when explicit gesturing in telling the joke was performed. In short, the results demonstrate that a complex interpersonal bodily dance occurs during structured conversation interactions and that this dance is constructed from a set of rhythms associated with the nested behavioral structure of the interaction.

  1. Multivalued synchronization by Poincaré coupling

    Science.gov (United States)

    Ontañón-García, L. J.; Campos-Cantón, E.; Femat, R.; Campos-Cantón, I.; Bonilla-Marín, M.

    2013-10-01

    This work presents multivalued chaotic synchronization via coupling based on the Poincaré plane. The coupling is carried out by an underdamped signal, triggered every crossing event of the trajectory of the master system through a previously defined Poincaré plane. A master-slave system is explored, and the synchronization between the systems is detected via the auxiliary system approach and the maximum conditional Lyapunov exponent. Due to the response to specific conditions two phenomena may be obtained: univalued and multivalued synchronization. Since the Lyapunov exponent is not enough to detect these two phenomena, the distance between the pieces of trajectories of the slave and auxiliary systems with different initial conditions is also used as a tool for the detection of multivalued synchronization. Computer simulations using the benchmark chaotic systems of Lorenz and Rössler are used to exemplify the approach proposed.

  2. On synchronized regions of discrete-time complex dynamical networks

    International Nuclear Information System (INIS)

    Duan Zhisheng; Chen Guanrong

    2011-01-01

    In this paper, the local synchronization of discrete-time complex networks is studied. First, it is shown that for any natural number n, there exists a discrete-time network which has at least left floor n/2 right floor +1 disconnected synchronized regions for local synchronization, which implies the possibility of intermittent synchronization behaviors. Different from the continuous-time networks, the existence of an unbounded synchronized region is impossible for discrete-time networks. The convexity of the synchronized regions is also characterized based on the stability of a class of matrix pencils, which is useful for enlarging the stability region so as to improve the network synchronizability.

  3. Usability of synchronization for cognitive modeling

    International Nuclear Information System (INIS)

    Diebner, Hans H.; Grond, Florian

    2005-01-01

    We discuss the synchronization features of a previously introduced adaptive system for dynamics recognition in more detail. We investigate the usability of synchronization for modeling and parameter estimations. It is pointed out inhowfar the adaptive system based on synchronization can become a powerful tool in modeling. The adaptive system can store modules of pre-adapted dynamics and is potentially capable of undergoing self-modification. We compare the stored modules with pre-knowledge that a modeler puts into his or her models. In this sense the adaptive system functions like an expert system

  4. Chaotic system synchronization with an unknown master model using a hybrid HOD active control approach

    Energy Technology Data Exchange (ETDEWEB)

    Du Shengzhi [Department of EAD, ICT Faculty, Tshwane University of Technology, Pretoria 0001 (South Africa); French South Africa Technical Institute of Electronics (F' SATIE), Tshwane University of Technology, Pretoria 0001 (South Africa)], E-mail: dushengzhi@gmail.com; Wyk, Barend J. van; Qi Guoyuan; Tu Chunling [French South Africa Technical Institute of Electronics (F' SATIE), Tshwane University of Technology, Pretoria 0001 (South Africa)

    2009-11-15

    In this paper, a hybrid method using active control and a High Order Differentiator (HOD) methodology is proposed to synchronize chaotic systems. Compared to some traditional active control methods, this new method can synchronize chaotic systems where only output states of the master system are available, i.e. the system is considered a black box. The HOD is used to estimate the derivative information of the master system followed by an active control methodology relying on HOD information. The Qi hyperchaotic system is used to verify the performance of this hybrid method. The proposed method is also compared to some traditional methods. Experimental results show that the proposed method has high synchronization precision and speed and is robust against uncertainties in the master system. The circus implements of the proposed synchronizing scheme are included in this paper. The simulation results show the feasibility of the proposed scheme.

  5. Multicellular models of intercellular synchronization in circadian neural networks

    International Nuclear Information System (INIS)

    Henson, Michael A.

    2013-01-01

    The circadian clock generates 24 h rhythms that drive physiological and behavioral processes in a diverse range of organisms including microbes, plants, insects, and mammals. Recent experimental advances have produced improved understanding of the molecular mechanisms involved in circadian rhythm generation at the single cell level. However, the intercellular mechanisms that allow large populations of coupled pacemaker cells to synchronize and coordinate their rhythms remain poorly understood. The purpose of this article is to review recent progress in dynamic modeling of the circadian clock with a focus on multicellular models required to describe cell population synchronization. Mammalian systems are emphasized to illustrate the highly heterogeneous structure and rich dynamical behavior of multicellular circadian systems. Available multicellular models are characterized with respect to their single cell descriptions, intercellular coupling mechanisms, and network topologies. Examples drawn from our own research are used to demonstrate the advantages associated with integrating detailed single cell models within realistic multicellular networks for prediction of mammalian system dynamics. Mathematical modeling is shown to represent a powerful tool for understanding the intracellular and intercellular mechanisms utilized to robustly synchronize large populations of highly heterogeneous and sparsely coupled single cell oscillators. The article concludes with some possible directions for future research

  6. Linearly and nonlinearly bidirectionally coupled synchronization of hyperchaotic systems

    International Nuclear Information System (INIS)

    Zhou Jin; Lu Junan; Wu Xiaoqun

    2007-01-01

    To date, there have been many results about unidirectionally coupled synchronization of chaotic systems. However, much less work is reported on bidirectionally-coupled synchronization. In this paper, we investigate the synchronization of two bidirectionally coupled Chen hyperchaotic systems, which are coupled linearly and nonlinearly respectively. Firstly, linearly coupled synchronization of two hyperchaotic Chen systems is investigated, and a theorem on how to choose the coupling coefficients are developed to guarantee the global asymptotical synchronization of two coupled hyperchaotic systems. Analysis shows that the choice of the coupling coefficients relies on the bound of the chaotic system. Secondly, the nonlinearly coupled synchronization is studied; a sufficient condition for the locally asymptotical synchronization is derived, which is independent of the bound of the hyperchaotic system. Finally, numerical simulations are included to verify the effectiveness and feasibility of the developed theorems

  7. 30 CFR 56.19008 - Friction hoist synchronizing mechanisms.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Friction hoist synchronizing mechanisms. 56... Personnel Hoisting Hoists § 56.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with synchronizing...

  8. [Synchronous sigmoideum- and caecum volvulus].

    Science.gov (United States)

    Berg, Anna Korsgaard; Perdawood, Sharaf Karim

    2015-09-21

    This case presents a synchronous sigmoid- and caecum volvulus in a 69-year old man with Parkinson's disease, hypertension and previous history of colonic volvulus. On admission the patient had abdominal pain, nausea, vomiting and constipation. The CT scan showed a sigmoid volvulus with a dilated caecum. The synchronous sigmoideum- and caecum volvulus was diagnosed intraoperatively. Total colectomy and ileostomy was performed.

  9. Pinning Synchronization of Linear Complex Coupling Synchronous Generators Network of Hydroelectric Generating Set

    Directory of Open Access Journals (Sweden)

    Xuefei Wu

    2014-01-01

    Full Text Available A novel linear complex system for hydroturbine-generator sets in multimachine power systems is suggested in this paper and synchronization of the power-grid networks is studied. The advanced graph theory and stability theory are combined to solve the problem. Here we derive a sufficient condition under which the synchronous state of power-grid networks is stable in disturbance attenuation. Finally, numerical simulations are provided to illustrate the effectiveness of the results by the IEEE 39 bus system.

  10. Synchronization of two chaotic systems: Dynamic compensator approach

    International Nuclear Information System (INIS)

    Chen, C.-K.; Lai, T.-W.; Yan, J.-J.; Liao, T.-L.

    2009-01-01

    This study is concerned with the identical synchronization problem for a class of chaotic systems. A dynamic compensator is proposed to achieve the synchronization between master and slave chaotic systems using only the accessible output variables. A sufficient condition is also proposed to ensure the global synchronization. Furthermore, the strictly positive real (SPR) restriction, which is normally required in most of the observer-based synchronization schemes, is released in our approach. Two numerical examples are included to illustrate the proposed scheme.

  11. Performance Comparison between a Permanent Magnet Synchronous Motor and an Induction Motor as a Traction Motor for High Speed Train

    Science.gov (United States)

    Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo

    Performance tests are carried out to demonstrate the superiority of a permanent magnet synchronous motor to an induction motor as a traction motor for high-speed train. A prototype motor was manufactured by replacing the rotor of a conventional induction motor. The test results show that the permanent magnet motor is lighter, efficient and more silent than the induction motor because of the different rotor structure.

  12. Failure of delayed feedback deep brain stimulation for intermittent pathological synchronization in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Andrey Dovzhenok

    Full Text Available Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson's disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS. This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson's disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a computational model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson's disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.

  13. Using Indexed and Synchronous Events to Model and Validate Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Chen-Wei Wang

    2015-06-01

    Full Text Available Timed Transition Models (TTMs are event-based descriptions for modelling, specifying, and verifying discrete real-time systems. An event can be spontaneous, fair, or timed with specified bounds. TTMs have a textual syntax, an operational semantics, and an automated tool supporting linear-time temporal logic. We extend TTMs and its tool with two novel modelling features for writing high-level specifications: indexed events and synchronous events. Indexed events allow for concise description of behaviour common to a set of actors. The indexing construct allows us to select a specific actor and to specify a temporal property for that actor. We use indexed events to validate the requirements of a train control system. Synchronous events allow developers to decompose simultaneous state updates into actions of separate events. To specify the intended data flow among synchronized actions, we use primed variables to reference the post-state (i.e., one resulted from taking the synchronized actions. The TTM tool automatically infers the data flow from synchronous events, and reports errors on inconsistencies due to circular data flow. We use synchronous events to validate part of the requirements of a nuclear shutdown system. In both case studies, we show how the new notation facilitates the formal validation of system requirements, and use the TTM tool to verify safety, liveness, and real-time properties.

  14. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Nicholas W. [GE Energy Management, Atlanta, GA (United States); Leonardi, Bruno [GE Energy Management, Atlanta, GA (United States); D' Aquila, Robert [GE Energy Management, Atlanta, GA (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-17

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar and wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable

  15. Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity

    Science.gov (United States)

    Ardic, Fusun; Göcer, Esra

    2016-01-01

    Abstract The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer. A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland–Altman analyses were performed to show the relationship and agreement between the results of 2 devices. Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P PEDO and YX200 pedometer in the Bland–Altman analysis. Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a desired speed. PMID:26962822

  16. Emergent explosive synchronization in adaptive complex networks

    Science.gov (United States)

    Avalos-Gaytán, Vanesa; Almendral, Juan A.; Leyva, I.; Battiston, F.; Nicosia, V.; Latora, V.; Boccaletti, S.

    2018-04-01

    Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.

  17. Adaptive modified function projective synchronization of multiple time-delayed chaotic Rossler system

    International Nuclear Information System (INIS)

    Sudheer, K. Sebastian; Sabir, M.

    2011-01-01

    In this Letter we consider modified function projective synchronization of unidirectionally coupled multiple time-delayed Rossler chaotic systems using adaptive controls. Recently, delay differential equations have attracted much attention in the field of nonlinear dynamics. The high complexity of the multiple time-delayed systems can provide a new architecture for enhancing message security in chaos based encryption systems. Adaptive control can be used for synchronization when the parameters of the system are unknown. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems are function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.

  18. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used to...

  19. Synchronization in slowly switching networks of coupled oscillators

    Science.gov (United States)

    Zhou, Jie; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Boccaletti, S.

    2016-01-01

    Networks whose structure of connections evolves in time constitute a big challenge in the study of synchronization, in particular when the time scales for the evolution of the graph topology are comparable with (or even longer than) those pertinent to the units’ dynamics. We here focus on networks with a slow-switching structure, and show that the necessary conditions for synchronization, i.e. the conditions for which synchronization is locally stable, are determined by the time average of the largest Lyapunov exponents of transverse modes of the switching topologies. Comparison between fast- and slow-switching networks allows elucidating that slow-switching processes prompt synchronization in the cases where the Master Stability Function is concave, whereas fast-switching schemes facilitate synchronization for convex curves. Moreover, the condition of slow-switching enables the introduction of a control strategy for inducing synchronization in networks with arbitrary structure and coupling strength, which is of evident relevance for broad applications in real world systems. PMID:27779253

  20. Synchronized flow in oversaturated city traffic.

    Science.gov (United States)

    Kerner, Boris S; Klenov, Sergey L; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael

    2013-11-01

    Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. E 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.

  1. Design of Parameter Independent, High Performance Sensorless Controllers for Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Xie, Ge

    . The transient fluctuation of the estimated rotor position error is around 20 degrees with a step load torque change from 0% to 100% of the rated torque. The position error in steady state is within ±2 electrical degrees for the best case. The proposed method may also be used for e.g. online machine parameter......The Permanent Magnet Synchronous Machine (PMSM) has become an attractive candidate for various industrial applications due to its high efficiency and torque density. In the PMSM drive system, simple and robust control methods play an important role in achieving satisfactory drive performances....... For reducing the cost and increasing the reliability of the drive system, eliminating the mechanical sensor brings a lot advantages to the PMSM drive system. Therefore, sensorless control was developed and has been increasingly used in different PMSM drive systems in the last 20 years. However, machine...

  2. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    Blokland, W.; Steimel, J.

    1998-01-01

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System. copyright 1998 American Institute of Physics

  3. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    Blokland, Willem; Steimel, James

    1998-01-01

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System

  4. Fermi Timing and Synchronization System

    International Nuclear Information System (INIS)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.

    2006-01-01

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed

  5. Fermi Timing and Synchronization System

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D' Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  6. Synchronization in complex networks with adaptive coupling

    International Nuclear Information System (INIS)

    Zhang Rong; Hu Manfeng; Xu Zhenyuan

    2007-01-01

    Generally it is very difficult to realized synchronization for some complex networks. In order to synchronize, the coupling coefficient of networks has to be very large, especially when the number of coupled nodes is larger. In this Letter, we consider the problem of synchronization in complex networks with adaptive coupling. A new concept about asymptotic stability is presented, then we proved by using the well-known LaSalle invariance principle, that the state of such a complex network can synchronize an arbitrary assigned state of an isolated node of the network as long as the feedback gain is positive. Unified system is simulated as the nodes of adaptive coupling complex networks with different topologies

  7. How single node dynamics enhances synchronization in neural networks with electrical coupling

    International Nuclear Information System (INIS)

    Bonacini, E.; Burioni, R.; Di Volo, M.; Groppi, M.; Soresina, C.; Vezzani, A.

    2016-01-01

    The stability of the completely synchronous state in neural networks with electrical coupling is analytically investigated applying both the Master Stability Function approach (MSF), developed by Pecora and Carroll (1998), and the Connection Graph Stability method (CGS) proposed by Belykh et al. (2004). The local dynamics is described by Morris–Lecar model for spiking neurons and by Hindmarsh–Rose model in spike, burst, irregular spike and irregular burst regimes. The combined application of both CGS and MSF methods provides an efficient estimate of the synchronization thresholds, namely bounds for the coupling strength ranges in which the synchronous state is stable. In all the considered cases, we observe that high values of coupling strength tend to synchronize the system. Furthermore, we observe a correlation between the single node attractor and the local stability properties given by MSF. The analytical results are compared with numerical simulations on a sample network, with excellent agreement.

  8. Synchronization in Complex Networks of Nonlinear Dynamical Systems

    CERN Document Server

    Wu, Chai Wah

    2007-01-01

    This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide

  9. Simulation For Synchronization Of A Micro-Grid With Three-Phase Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Jafari Far

    2015-08-01

    Full Text Available Abstract today due to the high reliability of the micro-grids they have developed significantly. They have two states of operation the island state and connection to the main grid. Under certain circumstances the micro-grid is connected to or disconnected from the network. Synchronization of a micro-grid with the network must be done when its voltage is synchronized with the voltage in the main grid. Phase lock loops are responsible to identify the voltage phase of the micro-gird and the main grid and when these two voltages are in the same phase they connect the micro-grid to the main grid. In this research the connection of a micro-grid to the main grid in the two phases of synchronous and asynchronous voltage is simulated and investigated.

  10. Explosive synchronization transitions in complex neural networks

    Science.gov (United States)

    Chen, Hanshuang; He, Gang; Huang, Feng; Shen, Chuansheng; Hou, Zhonghuai

    2013-09-01

    It has been recently reported that explosive synchronization transitions can take place in networks of phase oscillators [Gómez-Gardeñes et al. Phys. Rev. Lett. 106, 128701 (2011)] and chaotic oscillators [Leyva et al. Phys. Rev. Lett. 108, 168702 (2012)]. Here, we investigate the effect of a microscopic correlation between the dynamics and the interacting topology of coupled FitzHugh-Nagumo oscillators on phase synchronization transition in Barabási-Albert (BA) scale-free networks and Erdös-Rényi (ER) random networks. We show that, if natural frequencies of the oscillations are positively correlated with node degrees and the width of the frequency distribution is larger than a threshold value, a strong hysteresis loop arises in the synchronization diagram of BA networks, indicating the evidence of an explosive transition towards synchronization of relaxation oscillators system. In contrast to the results in BA networks, in more homogeneous ER networks, the synchronization transition is always of continuous type regardless of the width of the frequency distribution. Moreover, we consider the effect of degree-mixing patterns on the nature of the synchronization transition, and find that the degree assortativity is unfavorable for the occurrence of such an explosive transition.

  11. Sensorless interior permanent magnet synchronous motor control with rotational inertia adjustment

    Directory of Open Access Journals (Sweden)

    Yongle Mao

    2016-12-01

    Full Text Available Mechanical model is generally required in high dynamic sensorless motor control schemes for zero phase lag estimation of rotor position and speed. However, the rotational inertia uncertainty will cause dynamic estimation errors, eventually resulting in performance deterioration of the sensorless control system. Therefore, this article proposes a high dynamic performance sensorless control strategy with online adjustment of the rotational inertia. Based on a synthetic back electromotive force model, the voltage equation of interior permanent magnet synchronous motor is transformed to that of an equivalent non-salient permanent magnet synchronous motor. Then, an extended nonlinear observer is designed for interior permanent magnet synchronous motor in the stator-fixed coordinate frame, with rotor position, speed and load torque simultaneously estimated. The effect of inaccurate rotational inertia on the estimation of rotor position and speed is investigated, and a novel rotational inertia adjustment approach that employs the gradient descent algorithm is proposed to suppress the dynamic estimation errors. The effectiveness of the proposed control strategy is demonstrated by experimental tests.

  12. Synchronization Of Parallel Discrete Event Simulations

    Science.gov (United States)

    Steinman, Jeffrey S.

    1992-01-01

    Adaptive, parallel, discrete-event-simulation-synchronization algorithm, Breathing Time Buckets, developed in Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES) operating system. Algorithm allows parallel simulations to process events optimistically in fluctuating time cycles that naturally adapt while simulation in progress. Combines best of optimistic and conservative synchronization strategies while avoiding major disadvantages. Algorithm processes events optimistically in time cycles adapting while simulation in progress. Well suited for modeling communication networks, for large-scale war games, for simulated flights of aircraft, for simulations of computer equipment, for mathematical modeling, for interactive engineering simulations, and for depictions of flows of information.

  13. Permutation parity machines for neural synchronization

    International Nuclear Information System (INIS)

    Reyes, O M; Kopitzke, I; Zimmermann, K-H

    2009-01-01

    Synchronization of neural networks has been studied in recent years as an alternative to cryptographic applications such as the realization of symmetric key exchange protocols. This paper presents a first view of the so-called permutation parity machine, an artificial neural network proposed as a binary variant of the tree parity machine. The dynamics of the synchronization process by mutual learning between permutation parity machines is analytically studied and the results are compared with those of tree parity machines. It will turn out that for neural synchronization, permutation parity machines form a viable alternative to tree parity machines

  14. Complex systems fractionality, time-delay and synchronization

    CERN Document Server

    Sun, Jian-Qiao

    2012-01-01

    "Complex Systems: Fractionality, Time-delay and Synchronization" covers the most recent developments and advances in the theory and application of complex systems in these areas. Each chapter was written by scientists highly active in the field of complex systems. The book discusses a new treatise on fractional dynamics and control, as well as the new methods for differential delay systems and control. Lastly, a theoretical framework for the complexity and synchronization of complex system is presented. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. It can also serve as a reference book for graduate students in physics, applied mathematics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Jian-Qiao Sun is a Professor at the University of California, Merced, USA.

  15. Simulation of an HTS Synchronous Superconducting Generator

    DEFF Research Database (Denmark)

    In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, etc. Unlike...... of heating losses a cumbersome task. Furthermore, the high aspect ratio of the superconducting materials involved adds a penalty in the time required to perform simulations. The chosen strategy for simulation is as follows: A mechanical torque signal together with an electric load is used to drive the finite...... element model of a synchronous generator where the current distribution in the rotor windings is assumed uniform. Then, a second finite element model for the superconducting material is linked to calculate the actual current distribution in the windings of the rotor. Finally, heating losses are computed...

  16. Vector magnetic field inversions of high cadence SOLIS-VSM data

    NARCIS (Netherlands)

    Fischer, C.E.; Keller, C.U.; Snik, F.

    2007-01-01

    We have processed full Stokes observations from the SOLIS VSM in the photospheric lines Fe I 630.15 nm and 630.25 nm. The data sets have high spectral and temporal resolution, moderate spatial resolution, and large polarimetric sensitivity and accuracy. We used the LILIA, an LTE code written by

  17. An approach of parameter estimation for non-synchronous systems

    International Nuclear Information System (INIS)

    Xu Daolin; Lu Fangfang

    2005-01-01

    Synchronization-based parameter estimation is simple and effective but only available to synchronous systems. To come over this limitation, we propose a technique that the parameters of an unknown physical process (possibly a non-synchronous system) can be identified from a time series via a minimization procedure based on a synchronization control. The feasibility of this approach is illustrated in several chaotic systems

  18. Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography.

    Science.gov (United States)

    Kanter, Ido; Butkovski, Maria; Peleg, Yitzhak; Zigzag, Meital; Aviad, Yaara; Reidler, Igor; Rosenbluh, Michael; Kinzel, Wolfgang

    2010-08-16

    Random bit generators (RBGs) constitute an important tool in cryptography, stochastic simulations and secure communications. The later in particular has some difficult requirements: high generation rate of unpredictable bit strings and secure key-exchange protocols over public channels. Deterministic algorithms generate pseudo-random number sequences at high rates, however, their unpredictability is limited by the very nature of their deterministic origin. Recently, physical RBGs based on chaotic semiconductor lasers were shown to exceed Gbit/s rates. Whether secure synchronization of two high rate physical RBGs is possible remains an open question. Here we propose a method, whereby two fast RBGs based on mutually coupled chaotic lasers, are synchronized. Using information theoretic analysis we demonstrate security against a powerful computational eavesdropper, capable of noiseless amplification, where all parameters are publicly known. The method is also extended to secure synchronization of a small network of three RBGs.

  19. Development of a synchronous subset of AADL

    DEFF Research Database (Denmark)

    Filali, Mamoun; Lawall, Julia

    2010-01-01

    We study the definition and the mapping of an AADL subset: the so called synchronous subset. We show that the data port protocol used for delayed and immediate connections between periodic threads can be interpreted in a  synchronous way. In this paper, we formalize this interpretation and study ...... the development of its mapping such that the original synchronous semantics is preserved. For that purpose, we use refinements through the Event B method....

  20. Method for Converter Synchronization with RF Injection

    OpenAIRE

    Joshua P. Bruckmeyer; Ivica Kostanic

    2015-01-01

    This paper presents an injection method for synchronizing analog to digital converters (ADC). This approach can eliminate the need for precision routed discrete synchronization signals of current technologies, such as JESD204. By eliminating the setup and hold time requirements at the conversion (or near conversion) clock rate, higher sample rate systems can be synchronized. Measured data from an existing multiple ADC conversion system was used to evaluate the method. Coherent beams were simu...

  1. Complete switched modified function projective synchronization of a ...

    Indian Academy of Sciences (India)

    This paper extends previous work, where CSMFPS of chaotic systems means that all the state variables of the drive system synchronize with different state variables of the response system. As the synchronization scheme has many combined forms, it is a promising type of synchronization and can provide greater security in ...

  2. Implementation of the laser-based femtosecond precision synchronization system at FLASH

    International Nuclear Information System (INIS)

    Schulz, Sebastian

    2011-05-01

    FLASH, the high-gain free-electron laser (FEL) in Hamburg, enables the generation of light pulses with wavelengths in the soft X-ray region and durations down to a few femtoseconds. To fully exploit this capability in time-resolved pump-probe experiments, and for the projected externally seeded operation, the critical components of the accelerator and several external laser systems have to be synchronized with a temporal accuracy at least in the same order of magnitude. This can not be realized purely with established RF-based systems and therefore, an optical, laser-based synchronization system is required. In this thesis, the optical synchronization system of FLASH has been, based on previous successful proof-of-principle experiments, massively extended. One major topic is the comprehensive characterization of the timing reference of the system and a comparison of different types of such master laser oscillators, as well as studies on their short- and long-term stability. Similar investigations have been carried out for the upgraded and newly installed length-stabilized fiber links, which connect the remote locations at the accelerator to the optical timing reference. The successful demonstration of an all-optical synchronization of a Ti:sapphire oscillator with sub-10 femtosecond timing jitter and the connection of the photo injector laser system to the synchronization system mark further important key experiments of this thesis. The robustness of the actual implementations played a key role, as the synchronization system forms the basis for the future, operator-friendly arrival time feedback.

  3. Synchronous-flux-generator (SFG)

    Energy Technology Data Exchange (ETDEWEB)

    Zweygbergk, S.V.; Ljungstroem, O. (ed.)

    1976-01-01

    The synchronous machine is the most common rotating electric machine for producing electric energy in a large scale, but it is also used for other purposes. One well known everyday example is its use as driving motor in the electric synchronous clock. One has in this connection made full use of one of the main qualities of this kind of machine--its rotating speed is bound to the frequency of the feeding voltage, either if it is working as a motor or as a generator. Characteristics are discussed.

  4. Pulse Synchronization System (PSS)

    International Nuclear Information System (INIS)

    1977-06-01

    This document is intended to serve as an operations manual, as well as a documentation of the backup analyses pertinent to the design as delivered. A history of earlier unsuccessful versions of the Pulse Synchronization System (PSS) is not included. The function of the PSS is to synchronize the time of arrival at the fusion target of laser pulses that are propagated through the 20 amplifier chains of the SHIVA laser. The positional accuracy requirement is +-1.5 mm (+-5 psec), and is obtained by the PSS with a wide margin factor

  5. Invariant Solar Sail Formations in Elliptical Sun-Synchronous Orbits

    Science.gov (United States)

    Parsay, Khashayar

    Current and past missions that study the Earth's geomagnetic tail require multiple spacecraft to fly in formation about a highly eccentric Keplerian reference orbit that has its apogee inside a predefined science region of interest. Because the geomagnetic tail is directed along the Sun-Earth line and therefore rotates annually, inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year. This limitation reduces the duration of the science phase to less than a few months annually. Solar sails are capable of creating non-Keplerian, Sun-synchronous orbits that rotate with the geomagnetic tail. A solar sail flying in a Sun-synchronous orbit will have a continuous presence in the geomagnetic tail throughout the entire year, which significantly improves the in situ observations of the magnetosphere. To achieve a Sun-synchronous orbit, a solar sail is required to maintain a Sun-pointing attitude, which leads to the artificial precession of the orbit apse line in a Sun-synchronous manner, leaving the orbit apogee inside the science region of interest throughout entire the year. To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this dissertation is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail

  6. Identical synchronization of coupled Rossler systems

    DEFF Research Database (Denmark)

    Yanchuk, S.; Maistrenko, Y.; Mosekilde, Erik

    1999-01-01

    Analyzing the transverse stability of low periodic orbits embedded in the synchronized chaotic state for a system of two coupled Rössler oscillators, we obtain the conditions for synchronization and determine the coupling parameters for which riddled basins of attraction may arise. It is shown how...

  7. Synchronization of oscillators in complex networks

    Indian Academy of Sciences (India)

    Abstract. Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to ...

  8. Synchronization of oscillators in complex networks

    Indian Academy of Sciences (India)

    Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to explore ...

  9. Performance Analysis of Trench Power MOSFETs in High-Frequency Synchronous Buck Converter Applications

    Directory of Open Access Journals (Sweden)

    Yali Xiong

    2008-01-01

    Full Text Available This paper investigates the performance perspectives and theoretical limitations of trench power MOSFETs in synchronous rectifier buck converters operating in the MHz frequency range. Several trench MOSFET technologies are studied using a mixed-mode device/circuit modeling approach. Individual power loss contributions from the control and synchronous MOSFETs, and their dependence on switching frequency between 500 kHz and 5 MHz are discussed in detail. It is observed that the conduction loss contribution decreases from 40% to 4% while the switching loss contribution increases from 60% to 96% as the switching frequency increases from 500 KHz to 5 MHz. Beyond 1 MHz frequency there is no obvious benefit to increase the die size of either SyncFET or CtrlFET. The RDS(ON×QG figure of merit (FOM still correlates well to the overall converter efficiency in the MHz frequency range. The efficiency of the hard switching buck topology is limited to 80% at 2 MHz and 65% at 5 MHz even with the most advanced trench MOSFET technologies.

  10. Moving Stimuli Facilitate Synchronization But Not Temporal Perception.

    Science.gov (United States)

    Silva, Susana; Castro, São Luís

    2016-01-01

    Recent studies have shown that a moving visual stimulus (e.g., a bouncing ball) facilitates synchronization compared to a static stimulus (e.g., a flashing light), and that it can even be as effective as an auditory beep. We asked a group of participants to perform different tasks with four stimulus types: beeps, siren-like sounds, visual flashes (static) and bouncing balls. First, participants performed synchronization with isochronous sequences (stimulus-guided synchronization), followed by a continuation phase in which the stimulus was internally generated (imagery-guided synchronization). Then they performed a perception task, in which they judged whether the final part of a temporal sequence was compatible with the previous beat structure (stimulus-guided perception). Similar to synchronization, an imagery-guided variant was added, in which sequences contained a gap in between (imagery-guided perception). Balls outperformed flashes and matched beeps (powerful ball effect) in stimulus-guided synchronization but not in perception (stimulus- or imagery-guided). In imagery-guided synchronization, performance accuracy decreased for beeps and balls, but not for flashes and sirens. Our findings suggest that the advantages of moving visual stimuli over static ones are grounded in action rather than perception, and they support the hypothesis that the sensorimotor coupling mechanisms for auditory (beeps) and moving visual stimuli (bouncing balls) overlap.

  11. Adaptive synchronization of Rossler system with uncertain parameters

    International Nuclear Information System (INIS)

    Park, Ju H.

    2005-01-01

    This article addresses control for the chaos synchronization of Rossler systems with three uncertain parameters. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical Rossler systems asymptotically synchronized. A numerical simulations is presented to show the effectiveness of the proposed chaos synchronization scheme

  12. Does synchronization reflect a true interaction in the cardiorespiratory system?

    Science.gov (United States)

    Toledo, E; Akselrod, S; Pinhas, I; Aravot, D

    2002-01-01

    Cardiorespiratory synchronization, studied within the framework of phase synchronization, has recently raised interest as one of the interactions in the cardiorespiratory system. In this work, we present a quantitative approach to the analysis of this nonlinear phenomenon. Our primary aim is to determine whether synchronization between HR and respiration rate is a real phenomenon or a random one. First, we developed an algorithm, which detects epochs of synchronization automatically and objectively. The algorithm was applied to recordings of respiration and HR obtained from 13 normal subjects and 13 heart transplant patients. Surrogate data sets were constructed from the original recordings, specifically lacking the coupling between HR and respiration. The statistical properties of synchronization in the two data sets and in their surrogates were compared. Synchronization was observed in all groups: in normal subjects, in the heart transplant patients and in the surrogates. Interestingly, synchronization was less abundant in normal subjects than in the transplant patients, indicating that the unique physiological condition of the latter promote cardiorespiratory synchronization. The duration of synchronization epochs was significantly shorter in the surrogate data of both data sets, suggesting that at least some of the synchronization epochs are real. In view of those results, cardiorespiratory synchronization, although not a major feature of cardiorespiratory interaction, seems to be a real phenomenon rather than an artifact.

  13. Anti-synchronization between different chaotic complex systems

    International Nuclear Information System (INIS)

    Liu Ping; Liu Shutang

    2011-01-01

    Many studies on the anti-synchronization of nonlinear real dynamic systems have been carried out, whereas the anti-synchronization of chaotic complex systems has not been studied extensively. In this work, the anti-synchronization between a new chaotic complex system and a complex Lorenz system and that between a new chaotic complex system and a complex Lue system were separately investigated by active control and nonlinear control methods, and explicit expressions were derived for the controllers that are used to achieve the anti-synchronization of chaotic complex systems. These expressions were tested numerically and excellent agreement was found. Concerning the new chaotic complex system, we discuss its dynamical properties including dissipation, chaotic behavior, fixed points, and their stability and invariance.

  14. Simulation For Synchronization Of A Micro-Grid With Three-Phase Systems

    OpenAIRE

    Mohammad Jafari Far

    2015-01-01

    Abstract today due to the high reliability of the micro-grids they have developed significantly. They have two states of operation the island state and connection to the main grid. Under certain circumstances the micro-grid is connected to or disconnected from the network. Synchronization of a micro-grid with the network must be done when its voltage is synchronized with the voltage in the main grid. Phase lock loops are responsible to identify the voltage phase of the micro-gird and the main...

  15. High-resolution time series of Pseudomonas aeruginosa gene expression and rhamnolipid secretion through growth curve synchronization

    Directory of Open Access Journals (Sweden)

    Xavier João B

    2011-06-01

    Full Text Available Abstract Background Online spectrophotometric measurements allow monitoring dynamic biological processes with high-time resolution. Contrastingly, numerous other methods require laborious treatment of samples and can only be carried out offline. Integrating both types of measurement would allow analyzing biological processes more comprehensively. A typical example of this problem is acquiring quantitative data on rhamnolipid secretion by the opportunistic pathogen Pseudomonas aeruginosa. P. aeruginosa cell growth can be measured by optical density (OD600 and gene expression can be measured using reporter fusions with a fluorescent protein, allowing high time resolution monitoring. However, measuring the secreted rhamnolipid biosurfactants requires laborious sample processing, which makes this an offline measurement. Results Here, we propose a method to integrate growth curve data with endpoint measurements of secreted metabolites that is inspired by a model of exponential cell growth. If serial diluting an inoculum gives reproducible time series shifted in time, then time series of endpoint measurements can be reconstructed using calculated time shifts between dilutions. We illustrate the method using measured rhamnolipid secretion by P. aeruginosa as endpoint measurements and we integrate these measurements with high-resolution growth curves measured by OD600 and expression of rhamnolipid synthesis genes monitored using a reporter fusion. Two-fold serial dilution allowed integrating rhamnolipid measurements at a ~0.4 h-1 frequency with high-time resolved data measured at a 6 h-1 frequency. We show how this simple method can be used in combination with mutants lacking specific genes in the rhamnolipid synthesis or quorum sensing regulation to acquire rich dynamic data on P. aeruginosa virulence regulation. Additionally, the linear relation between the ratio of inocula and the time-shift between curves produces high-precision measurements of

  16. The synchronization of three fractional differential systems

    International Nuclear Information System (INIS)

    Li Changpin; Yan Jianping

    2007-01-01

    In this paper, a new method is proposed and applied to the synchronization of fractional differential systems (or 'differential systems with fractional orders'), where both drive and response systems have the same dimensionality and are coupled by the driving signal. The present technique is based on the stability criterion of linear fractional systems. This method is implemented in (chaos) synchronization of the fractional Lorenz system, Chen system and Chua circuit. Numerical simulations show the present synchronization method works well

  17. Synchronizing a class of uncertain chaotic systems

    International Nuclear Information System (INIS)

    Chen Maoyin; Zhou Donghua; Shang Yun

    2005-01-01

    This Letter deals with the synchronization of a class of uncertain chaotic systems in the drive-response framework. A robust adaptive observer based response system is designed to synchronize a given chaotic system with unknown parameters and external disturbances. Lyapunov stability ensures the global synchronization between the drive and response systems even if Lipschitz constants on function matrices and bounds on uncertainties are unknown. Numerical simulation of Genesio-Tesi system verifies the effectiveness of this scheme

  18. Synchronization and emergence in complex systems

    Indian Academy of Sciences (India)

    ... complex systems. Fatihcan M Atay. Synchronization, Coupled Systems and Networks Volume 77 Issue 5 November 2011 pp 855-863 ... We show how novel behaviour can emerge in complex systems at the global level through synchronization of the activities of their constituent units. Two mechanisms are suggested for ...

  19. Time Synchronization and Distribution Mechanisms for Space Networks

    Science.gov (United States)

    Woo, Simon S.; Gao, Jay L.; Clare, Loren P.; Mills, David L.

    2011-01-01

    This work discusses research on the problems of synchronizing and distributing time information between spacecraft based on the Network Time Protocol (NTP), where NTP is a standard time synchronization protocol widely used in the terrestrial network. The Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol was designed and developed for synchronizing spacecraft that are in proximity where proximity is less than 100,000 km distant. A particular application is synchronization between a Mars orbiter and rover. Lunar scenarios as well as outer-planet deep space mother-ship-probe missions may also apply. Spacecraft with more accurate time information functions as a time-server, and the other spacecraft functions as a time-client. PITS can be easily integrated and adaptable to the CCSDS Proximity-1 Space Link Protocol with minor modifications. In particular, PITS can take advantage of the timestamping strategy that underlying link layer functionality provides for accurate time offset calculation. The PITS algorithm achieves time synchronization with eight consecutive space network time packet exchanges between two spacecraft. PITS can detect and avoid possible errors from receiving duplicate and out-of-order packets by comparing with the current state variables and timestamps. Further, PITS is able to detect error events and autonomously recover from unexpected events that can possibly occur during the time synchronization and distribution process. This capability achieves an additional level of protocol protection on top of CRC or Error Correction Codes. PITS is a lightweight and efficient protocol, eliminating the needs for explicit frame sequence number and long buffer storage. The PITS protocol is capable of providing time synchronization and distribution services for a more general domain where multiple entities need to achieve time synchronization using a single point-to-point link.

  20. A Comparison of Business Cycles Synchronization in the Euro Area and Some Potential Monetary Unions

    Directory of Open Access Journals (Sweden)

    Stanislav Kappel

    2015-01-01

    Full Text Available Synchronization of business cycle is one of the main criteria for creation of a monetary union. With increasing synchronization of business cycle, a probability of occurrence of demand and supply shocks, which are asymmetric, decreases. The aim of this contribution is to evaluate synchronicity of business cycle in the euro area and some potential monetary unions. There are MERCOSUR (i.e. Argentina, Brazil, Paraguay, Uruguay and Venezuela, NAFTA (Canada, Mexico and the United States of America. For this aim, correlation analysis and two indexes of cyclical components of GDP are used. The cyclical components of GDP are obtained due to the Hodrick-Prescott filter. The results indicate a high degree of business cycles synchronization among states of the euro area (especially in countries of so called core of the euro area and states of NAFTA. In opposite, a lower degree of business cycles synchronization was reached among states of MERCOSUR. According to the criterion of business cycle synchronization, NAFTA is more appropriate candidate than MERCOSUR for creation monetary area.

  1. High Frequency Voltage Injection Methods and Observer Design for Initial Position Detection of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Jin, Xinhai; Ni, Ronggang; Chen, Wei

    2018-01-01

    The information of the initial rotor position is essential for smooth start up and robust control of Permanent Magnet Synchronous Machines (PMSMs). RoTating Voltage Injection (RTVI) methods in the stationary reference frame have been commonly adopted to detect the initial rotor position at stands......The information of the initial rotor position is essential for smooth start up and robust control of Permanent Magnet Synchronous Machines (PMSMs). RoTating Voltage Injection (RTVI) methods in the stationary reference frame have been commonly adopted to detect the initial rotor position...

  2. Transmission delays in hardware clock synchronization

    Science.gov (United States)

    Shin, Kang G.; Ramanathan, P.

    1988-01-01

    Various methods, both with software and hardware, have been proposed to synchronize a set of physical clocks in a system. Software methods are very flexible and economical but suffer an excessive time overhead, whereas hardware methods require no time overhead but are unable to handle transmission delays in clock signals. The effects of nonzero transmission delays in synchronization have been studied extensively in the communication area in the absence of malicious or Byzantine faults. The authors show that it is easy to incorporate the ideas from the communication area into the existing hardware clock synchronization algorithms to take into account the presence of both malicious faults and nonzero transmission delays.

  3. Synchronization of two coupled turbulent fires

    Science.gov (United States)

    Takagi, Kazushi; Gotoda, Hiroshi; Miyano, Takaya; Murayama, Shogo; Tokuda, Isao T.

    2018-04-01

    We numerically study the scale-free nature of a buoyancy-induced turbulent fire and synchronization of two coupled turbulent fires. A scale-free structure is detected in weighted networks between vortices, while its lifetime obeys a clear power law, indicating intermittent appearances, disappearances, and reappearances of the scale-free property. A significant decrease in the distance between the two fire sources gives rise to a synchronized state in the near field dominated by the unstable motion of large-scale of transverse vortex rings. The synchronized state vanishes in the far field forming well-developed turbulent plumes, regardless of the distance between the two fire sources.

  4. Chaos synchronization between two different chaotic dynamical systems

    International Nuclear Information System (INIS)

    Park, Ju H.

    2006-01-01

    This work presents chaos synchronization between two different chaotic systems by nonlinear control laws. First, synchronization problem between Genesio system and Rossler system has been investigated, and then the similar approach is applied to the synchronization problem between Genesio system and a new chaotic system developed recently in the literature. The control performances are verified by two numerical examples

  5. Chaos synchronization in autonomous chaotic system via hybrid feedback control

    International Nuclear Information System (INIS)

    Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng; Chang Yingxiang

    2009-01-01

    This paper presents the synchronization of chaos by designing united controller. First, this method is implemented in synchronization of a simple system, then we realize the synchronization of Lue hyperchaotic system, we also take tracking control to realize the synchronization of Lue hyperchaotic system. Comparing with results, we can find that hybrid feedback control approach is more effective than tracking control for hyperchaotic system. Numerical simulations show the united synchronization method works well.

  6. The Static Eccentricity Fault Diagnosis in Time Domain at Line Start Permanent Magnet Synchronous Motor

    OpenAIRE

    DOGAN, Zafer

    2016-01-01

    Recently, Line Start Permanent Magnet Synchronous Motor have been commonly utilized in industrial areas because of their high efficiency. Motor faults during operation cause losses of production and high maintenance and repair expenditures. In this study, the effect of static eccentricity fault on line start permanent magnet synchronous motor was investigated. The simulation models of motor belonging to healthy and fault status were formed via Finite Elements Method. The analyses in time doma...

  7. The pace of Holocene vegetation change - testing for synchronous developments

    Science.gov (United States)

    Giesecke, Thomas; Bennett, K. D.; Birks, H. John B.; Bjune, Anne E.; Bozilova, Elisaveta; Feurdean, Angelica; Finsinger, Walter; Froyd, Cynthia; Pokorný, Petr; Rösch, Manfred; Seppä, Heikki; Tonkov, Spasimir; Valsecchi, Verushka; Wolters, Steffen

    2011-09-01

    Mid to high latitude forest ecosystems have undergone several major compositional changes during the Holocene. The temporal and spatial patterns of these vegetation changes hold potential information to their causes and triggers. Here we test the hypothesis that the timing of vegetation change was synchronous on a sub-continental scale, which implies a common trigger or a step-like change in climate parameters. Pollen diagrams from selected European regions were statistically divided into assemblage zones and the temporal pattern of the zone boundaries analysed. The results show that the temporal pattern of vegetation change was significantly different from random. Times of change cluster around 8.2, 4.8, 3.7, and 1.2 ka, while times of higher than average stability were found around 2.1 and 5.1 ka. Compositional changes linked to the expansion of Corylus avellana and Alnus glutinosa centre around 10.6 and 9.5 ka, respectively. A climatic trigger initiating these changes may have occurred 0.5 to 1 ka earlier, respectively. The synchronous expansion of C. avellana and A. glutinosa exemplify that dispersal is not necessarily followed by population expansion. The partly synchronous, partly random expansion of A. glutinosa in adjacent European regions exemplifies that sudden synchronous population expansions are not species specific traits but vary regionally.

  8. Time Optimal Synchronization Procedure and Associated Feedback Loops

    CERN Document Server

    Angoletta, Maria Elena; CERN. Geneva. ATS Department

    2016-01-01

    A procedure to increase the speed of currently used synchronization loops in a synchrotron by an order of magnitude is presented. Beams dynamics constraint imposes an upper limit on excursions in stable phase angle, and the procedure presented exploits this limit to arrive in the synchronized state from an arbitrary initial state in the fastest possible way. Detailed corrector design for beam phase loop, differential frequency loop and final synchronization loop is also presented. Finally, an overview of the synchronization methods currently deployed in some other CERN’s machines is provided, together with a brief comparison with the newly proposed time-optimal algorithm.

  9. Remote synchronization reveals network symmetries and functional modules.

    Science.gov (United States)

    Nicosia, Vincenzo; Valencia, Miguel; Chavez, Mario; Díaz-Guilera, Albert; Latora, Vito

    2013-04-26

    We study a Kuramoto model in which the oscillators are associated with the nodes of a complex network and the interactions include a phase frustration, thus preventing full synchronization. The system organizes into a regime of remote synchronization where pairs of nodes with the same network symmetry are fully synchronized, despite their distance on the graph. We provide analytical arguments to explain this result, and we show how the frustration parameter affects the distribution of phases. An application to brain networks suggests that anatomical symmetry plays a role in neural synchronization by determining correlated functional modules across distant locations.

  10. Cardiac and Respiratory Patterns Synchronize between Persons during Choir Singing

    Science.gov (United States)

    Müller, Viktor; Lindenberger, Ulman

    2011-01-01

    Dyadic and collective activities requiring temporally coordinated action are likely to be associated with cardiac and respiratory patterns that synchronize within and between people. However, the extent and functional significance of cardiac and respiratory between-person couplings have not been investigated thus far. Here, we report interpersonal oscillatory couplings among eleven singers and one conductor engaged in choir singing. We find that: (a) phase synchronization both in respiration and heart rate variability increase significantly during singing relative to a rest condition; (b) phase synchronization is higher when singing in unison than when singing pieces with multiple voice parts; (c) directed coupling measures are consistent with the presence of causal effects of the conductor on the singers at high modulation frequencies; (d) the different voices of the choir are reflected in network analyses of cardiac and respiratory activity based on graph theory. Our results suggest that oscillatory coupling of cardiac and respiratory patterns provide a physiological basis for interpersonal action coordination. PMID:21957466

  11. Synchronous prostate and rectal adenocarcinomas irradiation utilising volumetric modulated arc therapy.

    Science.gov (United States)

    Ng, Sweet Ping; Tran, Thu; Moloney, Philip; Sale, Charlotte; Mathlum, Maitham; Ong, Grace; Lynch, Rod

    2015-12-01

    Cases of synchronous prostate and colorectal adenocarcinomas have been sporadically reported. There are case reports on patients with synchronous prostate and rectal cancers treated with external beam radiotherapy alone or combined with high-dose rate brachytherapy boost to the prostate. Here, we illustrate a patient with synchronous prostate and rectal cancers treated using the volumetric arc therapy (VMAT) technique. The patient was treated with radical radiotherapy to 50.4 Gy in 28 fractions to the pelvis, incorporating the involved internal iliac node and the prostate. A boost of 24 Gy in 12 fractions was delivered to the prostate only, using VMAT. Treatment-related toxicities and follow-up prostate-specific antigen and carcinoembryonic antigen were collected for data analysis. At 12 months, the patient achieved complete response for both rectal and prostate cancers without significant treatment-related toxicities.

  12. Output synchronization of chaotic systems under nonvanishing perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Mancilla, Didier [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de los Lagos, Universidad de Guadalajara (CULagos-UdeG), Enrique Diaz de Leon s/n, 47460 Lagos de Moreno, Jal. (Mexico)], E-mail: didier@uabc.mx; Cruz-Hernandez, Cesar [Electronics and Telecommunications Department, Scientific Research and Advanced Studies of Ensenada (CICESE), Km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico)], E-mail: ccruz@cicese.mx

    2008-08-15

    In this paper, an analysis for chaos synchronization under nonvanishing perturbations is presented. In particular, we use model-matching approach from nonlinear control theory for output synchronization of identical and nonidentical chaotic systems under nonvanishing perturbations in a master-slave configuration. We show that the proposed approach is indeed suitable to synchronize a class of perturbed slaves with a chaotic master system; that is the synchronization error trajectories remain bounded if the perturbations satisfy some conditions. In order to illustrate this robustness synchronization property, we present two cases of study: (i) for identical systems, a pair of coupled Roessler systems, the first like a master and the other like a perturbed slave, and (ii) for nonidentical systems, a Chua's circuit driving a Roessler/slave system with a perturbed control law, in both cases a quantitative analysis on the perturbation is included.

  13. Output synchronization of chaotic systems under nonvanishing perturbations

    International Nuclear Information System (INIS)

    Lopez-Mancilla, Didier; Cruz-Hernandez, Cesar

    2008-01-01

    In this paper, an analysis for chaos synchronization under nonvanishing perturbations is presented. In particular, we use model-matching approach from nonlinear control theory for output synchronization of identical and nonidentical chaotic systems under nonvanishing perturbations in a master-slave configuration. We show that the proposed approach is indeed suitable to synchronize a class of perturbed slaves with a chaotic master system; that is the synchronization error trajectories remain bounded if the perturbations satisfy some conditions. In order to illustrate this robustness synchronization property, we present two cases of study: (i) for identical systems, a pair of coupled Roessler systems, the first like a master and the other like a perturbed slave, and (ii) for nonidentical systems, a Chua's circuit driving a Roessler/slave system with a perturbed control law, in both cases a quantitative analysis on the perturbation is included

  14. Global synchronization algorithms for the Intel iPSC/860

    Science.gov (United States)

    Seidel, Steven R.; Davis, Mark A.

    1992-01-01

    In a distributed memory multicomputer that has no global clock, global processor synchronization can only be achieved through software. Global synchronization algorithms are used in tridiagonal systems solvers, CFD codes, sequence comparison algorithms, and sorting algorithms. They are also useful for event simulation, debugging, and for solving mutual exclusion problems. For the Intel iPSC/860 in particular, global synchronization can be used to ensure the most effective use of the communication network for operations such as the shift, where each processor in a one-dimensional array or ring concurrently sends a message to its right (or left) neighbor. Three global synchronization algorithms are considered for the iPSC/860: the gysnc() primitive provided by Intel, the PICL primitive sync0(), and a new recursive doubling synchronization (RDS) algorithm. The performance of these algorithms is compared to the performance predicted by communication models of both the long and forced message protocols. Measurements of the cost of shift operations preceded by global synchronization show that the RDS algorithm always synchronizes the nodes more precisely and costs only slightly more than the other two algorithms.

  15. Master-Slave Synchronization of 4D Hyperchaotic Rabinovich Systems

    Directory of Open Access Journals (Sweden)

    Ke Ding

    2018-01-01

    Full Text Available This paper is concerned with master-slave synchronization of 4D hyperchaotic Rabinovich systems. Compared with some existing papers, this paper has two contributions. The first contribution is that the nonlinear terms of error systems remained which inherit nonlinear features from master and slave 4D hyperchaotic Rabinovich systems, rather than discarding nonlinear features of original hyperchaotic Rabinovich systems and eliminating those nonlinear terms to derive linear error systems as the control methods in some existing papers. The second contribution is that the synchronization criteria of this paper are global rather than local synchronization results in some existing papers. In addition, those synchronization criteria and control methods for 4D hyperchaotic Rabinovich systems are extended to investigate the synchronization of 3D chaotic Rabinovich systems. The effectiveness of synchronization criteria is illustrated by three simulation examples.

  16. Robust fixed-time synchronization of delayed Cohen-Grossberg neural networks.

    Science.gov (United States)

    Wan, Ying; Cao, Jinde; Wen, Guanghui; Yu, Wenwu

    2016-01-01

    The fixed-time master-slave synchronization of Cohen-Grossberg neural networks with parameter uncertainties and time-varying delays is investigated. Compared with finite-time synchronization where the convergence time relies on the initial synchronization errors, the settling time of fixed-time synchronization can be adjusted to desired values regardless of initial conditions. Novel synchronization control strategy for the slave neural network is proposed. By utilizing the Filippov discontinuous theory and Lyapunov stability theory, some sufficient schemes are provided for selecting the control parameters to ensure synchronization with required convergence time and in the presence of parameter uncertainties. Corresponding criteria for tuning control inputs are also derived for the finite-time synchronization. Finally, two numerical examples are given to illustrate the validity of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. System and method for time synchronization in a wireless network

    Science.gov (United States)

    Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.

    2010-03-30

    A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.

  18. Synchronous correlation matrices and Connes’ embedding conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Dykema, Kenneth J., E-mail: kdykema@math.tamu.edu [Department of Mathematics, Texas A& M University, College Station, Texas 77843-3368 (United States); Paulsen, Vern, E-mail: vern@math.uh.edu [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States)

    2016-01-15

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.

  19. Development of A Super High Speed Permanent Magnet Synchronous Motor (PMSM Controller and Analysis of The Experimental Results

    Directory of Open Access Journals (Sweden)

    Limei Zhao

    2005-02-01

    Full Text Available This paper presents the design and implementation of a DSP-based controller for a super high-speed (>80,000 rpm permanent magnet synchronous motor (PMSM. The PMSM is a key component of the centrifugal compressor drive of a reverse Brayton cryocooler that is currently under development for NASA and Florida Solar Energy Center. The design of the PMSM open-loop control is presented. Experimental results with open-loop control schemes are presented. System optimization and analysis are also illustrated. They verify the effectiveness of the controller design and the optimization scheme.

  20. Cardiovascular and cardiorespiratory phase synchronization in normovolemic and hypovolemic humans.

    Science.gov (United States)

    Zhang, Qingguang; Patwardhan, Abhijit R; Knapp, Charles F; Evans, Joyce M

    2015-02-01

    We investigated whether and how cardiovascular and cardiorespiratory phase synchronization would respond to changes in hydration status and orthostatic stress. Four men and six women were tested during graded head-up tilt (HUT) in both euhydration and dehydration (DEH) conditions. Continuous R-R intervals (RRI), systolic blood pressure (SBP) and respiration were investigated in low (LF 0.04-0.15 Hz) and high (HF 0.15-0.4 Hz) frequency ranges using a phase synchronization index (λ) ranging from 0 (complete lack of interaction) to 1 (perfect interaction) and a directionality index (d), where a positive value of d reflects oscillator 1 driving oscillator 2, and a negative value reflects the opposite driving direction. Surrogate data analysis was used to exclude relationships that occurred by chance. In the LF range, respiration was not synchronized with RRI or SBP, whereas RRI and SBP were phase synchronized. In the HF range, phases among all variables were synchronized. DEH reduced λ among all variables in the HF and did not affect λ between RRI and SBP in the LF region. DEH reduced d between RRI and SBP in the LF and did not affect d among all variables in the HF region. Increasing λ and decreasing d between SBP and RRI were observed in the LF range during HUT. Decreasing λ between SBP and RRI, respiration and RRI, and decreasing d between respiration and SBP were observed in the HF range during HUT. These results show that orthostatic stress disassociated interactions among RRI, SBP and respiration, and that DEH exacerbated the disconnection.

  1. Synchronization of Harb-Zohdy Chaotic System via Back-Stepping Design

    Directory of Open Access Journals (Sweden)

    M. R. Shamsyeh Zahedi∗

    2015-12-01

    Full Text Available This paper is concerned with the problem of synchronization of the Harb-Zohdy chaotic system using the back-stepping. Based on the stability theory, the control for the synchronization of chaotic systems Harb-Zohdy is considered without unknown parameters. Next, an adaptive back-stepping control law is derived to generate an error signal between the drive and response systems Harb-Zohdy with an uncertain parameter asymptotically synchronized. Finally, this method is extended to synchronize the system with two unknown parameters. Note that the method presented here needs only one controller to realize the synchronization. Numerical simulations indicate the effectiveness of the proposed chaos synchronization scheme

  2. Analysis of ECT Synchronization Performance Based on Different Interpolation Methods

    Directory of Open Access Journals (Sweden)

    Yang Zhixin

    2014-01-01

    Full Text Available There are two synchronization methods of electronic transformer in IEC60044-8 standard: impulsive synchronization and interpolation. When the impulsive synchronization method is inapplicability, the data synchronization of electronic transformer can be realized by using the interpolation method. The typical interpolation methods are piecewise linear interpolation, quadratic interpolation, cubic spline interpolation and so on. In this paper, the influences of piecewise linear interpolation, quadratic interpolation and cubic spline interpolation for the data synchronization of electronic transformer are computed, then the computational complexity, the synchronization precision, the reliability, the application range of different interpolation methods are analyzed and compared, which can serve as guide studies for practical applications.

  3. Synchronization of Coupled Nonidentical Fractional-Order Hyperchaotic Systems

    Directory of Open Access Journals (Sweden)

    Zhouchao Wei

    2011-01-01

    Full Text Available Synchronization of coupled nonidentical fractional-order hyperchaotic systems is addressed by the active sliding mode method. By designing an active sliding mode controller and choosing proper control parameters, the master and slave systems are synchronized. Furthermore, synchronizing fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system is performed to show the effectiveness of the proposed controller.

  4. Synchronous Analysis for Diagnostics of Rolling Bearings in the Turbojet Engine

    Directory of Open Access Journals (Sweden)

    Gosiewski Zdzisław

    2005-01-01

    Full Text Available Designed in the Aviation Institute, the K-15 turbojet engine has got rolling bearings, which answers with frequency 5.87 × ω r the unbalance excitation. The signal with such frequency indicates a fault of the outer race of the rolling bearing. A set of the digital synchronous filters was used for the K-15 vibration spectrum analysis. A procedure of filtration was performed by the computer software. The sychronous summation of the measured signals was carried out before the spectrum analysis. Two cases were considered: the engine with a small force due to unbalance (a small angular velocity of the rotor, and the engine with a big unbalance force (high angular velocity. In the first case, the outer race frequency was not observed, despite the existence of the vibration amplitude (caused by unknown disturbances with such frequency before the synchronous summation. In the second case, the outer race frequency after synchronous summation has enlarged amplitude while other spectrum components in its vicinity have been damped. It underlines the usefulness of the synchronous analysis in the vibration diagnostics of the rotating machinery.

  5. Synchronization System for Next Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zavriyev, Anton [MagiQ Technologies, Inc., Somerville, MA (United States)

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  6. Partial synchronization in diffusively time-delay coupled oscillator networks

    NARCIS (Netherlands)

    Steur, E.; Oguchi, T.; Leeuwen, van C.; Nijmeijer, H.

    2012-01-01

    We study networks of diffusively time-delay coupled oscillatory units and we show that networks with certain symmetries can exhibit a form of incomplete synchronization called partial synchronization. We present conditions for the existence and stability of partial synchronization modes in networks

  7. Blended synchronous learning environment: Student perspectives

    Directory of Open Access Journals (Sweden)

    Conklina Sheri

    2017-06-01

    Full Text Available Distance education environments can take many forms, from asynchronous to blended synchronous environments. Blended synchronous learning environment (BSLE can be defined as an innovative setting in which students can decide to attend classes either face-to-face or via a synchronous virtual connection. Many educators are unfamiliar teaching in BSLE because of lack of experience or exposure to this delivery method. Thus, it is important to understand the optimal organisational structures and the effective management of BSLE courses to facilitate student learning and interaction. Seeking to understand this teaching method, an exploratory mixed-method study was conducted to examine graduate students’ perceptions of the BSLE. Quantitative and qualitative data was collected from a questionnaire and analysed. The findings revealed that students were satisfied with the BSLE, interactions, and the instructor. However, findings showed that the instructor divided attention between face-to-face and online synchronous students, which can cause cognitive overload and compromise the quality of instruction. Additionally, this study suggests that technical difficulties can affect students’ satisfaction with BSLE courses. Implications for further research and limitations are discussed.

  8. Synchronicity and the meaning-making psyche.

    Science.gov (United States)

    Colman, Warren

    2011-09-01

    This paper contrasts Jung's account of synchronicity as evidence of an objective principle of meaning in Nature with a view that emphasizes human meaning-making. All synchronicities generate indicative signs but only where this becomes a 'living symbol' of a transcendent intentionality at work in a living universe does synchronicity generate the kind of symbolic meaning that led Jung to posit the existence of a Universal Mind. This is regarded as a form of personal, experiential knowledge belonging to the 'imaginal world of meaning' characteristic of the 'primordial mind', as opposed to the 'rational world of knowledge' in which Jung attempted to present his experiences as if they were empirically and publicly verifiable. Whereas rational knowledge depends on a form of meaning in which causal chains and logical links are paramount, imaginal meaning is generated by forms of congruent correspondence-a feature that synchronicity shares with metaphor and symbol-and the creation of narratives by means of retroactive organization of its constituent elements. © 2011, The Society of Analytical Psychology.

  9. Research on synchronization technology of frequency hopping communication system

    Science.gov (United States)

    Zhao, Xiangwu; Quan, Houde; Cui, Peizhang

    2018-05-01

    Frequency Hopping (FH) communication is a technology of spread spectrum communication. It has strong anti-interference, anti-interception and security capabilities, and has been widely applied in the field of communications. Synchronization technology is one of the most crucial technologies in frequency hopping communication. The speed of synchronization establishment and the reliability of synchronous system directly affect the performance of frequency hopping communication system. Therefore, the research of synchronization technology in frequency hopping communication has important value.

  10. Synchronized dynamic dose reconstruction

    International Nuclear Information System (INIS)

    Litzenberg, Dale W.; Hadley, Scott W.; Tyagi, Neelam; Balter, James M.; Ten Haken, Randall K.; Chetty, Indrin J.

    2007-01-01

    Variations in target volume position between and during treatment fractions can lead to measurable differences in the dose distribution delivered to each patient. Current methods to estimate the ongoing cumulative delivered dose distribution make idealized assumptions about individual patient motion based on average motions observed in a population of patients. In the delivery of intensity modulated radiation therapy (IMRT) with a multi-leaf collimator (MLC), errors are introduced in both the implementation and delivery processes. In addition, target motion and MLC motion can lead to dosimetric errors from interplay effects. All of these effects may be of clinical importance. Here we present a method to compute delivered dose distributions for each treatment beam and fraction, which explicitly incorporates synchronized real-time patient motion data and real-time fluence and machine configuration data. This synchronized dynamic dose reconstruction method properly accounts for the two primary classes of errors that arise from delivering IMRT with an MLC: (a) Interplay errors between target volume motion and MLC motion, and (b) Implementation errors, such as dropped segments, dose over/under shoot, faulty leaf motors, tongue-and-groove effect, rounded leaf ends, and communications delays. These reconstructed dose fractions can then be combined to produce high-quality determinations of the dose distribution actually received to date, from which individualized adaptive treatment strategies can be determined

  11. Synchronization in an array of coupled Boolean networks

    International Nuclear Information System (INIS)

    Li, Rui; Chu, Tianguang

    2012-01-01

    This Letter presents an analytical study of synchronization in an array of coupled deterministic Boolean networks. A necessary and sufficient criterion for synchronization is established based on algebraic representations of logical dynamics in terms of the semi-tensor product of matrices. Some basic properties of a synchronized array of Boolean networks are then derived for the existence of transient states and the upper bound of the number of fixed points. Particularly, an interesting consequence indicates that a “large” mismatch between two coupled Boolean networks in the array may result in loss of synchrony in the entire system. Examples, including the Boolean model of coupled oscillations in the cell cycle, are given to illustrate the present results. -- Highlights: ► We analytically study synchronization in an array of coupled Boolean networks. ► The study is based on the algebraic representations of logical dynamics. ► A necessary and sufficient algebraic criterion for synchronization is established. ► It reveals some basic properties of a synchronized array of Boolean networks. ► A large mismatch between two coupled networks may result in the loss of synchrony.

  12. Synthesizing Modular Invariants for Synchronous Code

    Directory of Open Access Journals (Sweden)

    Pierre-Loic Garoche

    2014-12-01

    Full Text Available In this paper, we explore different techniques to synthesize modular invariants for synchronous code encoded as Horn clauses. Modular invariants are a set of formulas that characterizes the validity of predicates. They are very useful for different aspects of analysis, synthesis, testing and program transformation. We describe two techniques to generate modular invariants for code written in the synchronous dataflow language Lustre. The first technique directly encodes the synchronous code in a modular fashion. While in the second technique, we synthesize modular invariants starting from a monolithic invariant. Both techniques, take advantage of analysis techniques based on property-directed reachability. We also describe a technique to minimize the synthesized invariants.

  13. Systems and methods for self-synchronized digital sampling

    Science.gov (United States)

    Samson, Jr., John R. (Inventor)

    2008-01-01

    Systems and methods for self-synchronized data sampling are provided. In one embodiment, a system for capturing synchronous data samples is provided. The system includes an analog to digital converter adapted to capture signals from one or more sensors and convert the signals into a stream of digital data samples at a sampling frequency determined by a sampling control signal; and a synchronizer coupled to the analog to digital converter and adapted to receive a rotational frequency signal from a rotating machine, wherein the synchronizer is further adapted to generate the sampling control signal, and wherein the sampling control signal is based on the rotational frequency signal.

  14. Principles of synchronous digital hierarchy

    CERN Document Server

    Jain, Rajesh Kumar

    2012-01-01

    The book presents the current standards of digital multiplexing, called synchronous digital hierarchy, including analog multiplexing technologies. It is aimed at telecommunication professionals who want to develop an understanding of digital multiplexing and synchronous digital hierarchy in particular and the functioning of practical telecommunication systems in general. The text includes all relevant fundamentals and provides a handy reference for problem solving or defining operations and maintenance strategies. The author covers digital conversion and TDM principles, line coding and digital

  15. Synchronization in Coupled Oscillators with Two Coexisting Attractors

    International Nuclear Information System (INIS)

    Han-Han, Zhu; Jun-Zhong, Yang

    2008-01-01

    Dynamics in coupled Duffing oscillators with two coexisting symmetrical attractors is investigated. For a pair of Duffing oscillators coupled linearly, the transition to the synchronization generally consists of two steps: Firstly, the two oscillators have to jump onto a same attractor, then they reach synchronization similarly to coupled monostable oscillators. The transition scenarios to the synchronization observed are strongly dependent on initial conditions. (general)

  16. Detection of generalized synchronization using echo state networks

    OpenAIRE

    Ibáñez-Soria, D.; García Ojalvo, Jordi; Soria Frisch, Aureli; Ruffini, G.

    2018-01-01

    Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences i...

  17. Synchronization of oestrus in sheep: Use of different doses of ...

    African Journals Online (AJOL)

    age of cow, date of calving, and body mass). The high .... Use of different doses of progestagen outside the ... the induced oestrous period between the different treatments following .... Oestrus in the control group was synchronized by inserting.

  18. Investigation of a Unified Chaotic System and Its Synchronization by Simulations

    International Nuclear Information System (INIS)

    Qing-Chu, Wu; Xin-Chu, Fu; Small, Michael

    2010-01-01

    We investigate a unified chaotic system and its synchronization including feedback synchronization and adaptive synchronization by numerical simulations. We propose a new dynamical quantity denoted by K, which connects adaptive synchronization and feedback synchronization, to analyze synchronization schemes. We find that K can estimate the smallest coupling strength for a unified chaotic system whether it is complete feedback or one-sided feedback. Based on the previous work, we also give a new dynamical method to compute the leading Lyapunov exponent. (general)

  19. Synchronized control of spiral CT scan for security inspection device

    International Nuclear Information System (INIS)

    Wang Jue; Jiang Zenghui; Wang Fuquan

    2008-01-01

    In security inspection system of spiral CT, the synchronization between removing and rotating, and the scan synchronization between rotating and sampling influence quality of image reconstruction, so it is difficulty and important that how to realize synchronized scan. According to the controlling demand of multi-slice Spiral CT, the method to realize synchronized scan is given. a synchronized control system is designed, in which we use a industrial PC as the control computer, use magnetic grids as position detectors, use alternating current servo motor and roller motor as drivers respectively drive moving axis and rotating axis. This method can solve the problem of synchronized scan, and has a feasibility and value of use. (authors)

  20. Fuzzy stability and synchronization of hyperchaos systems

    International Nuclear Information System (INIS)

    Wang Junwei; Xiong Xiaohua; Zhao Meichun; Zhang Yanbin

    2008-01-01

    This paper studies stability and synchronization of hyperchaos systems via a fuzzy-model-based control design methodology. First, we utilize a Takagi-Sugeno fuzzy model to represent a hyperchaos system. Second, we design fuzzy-model-based controllers for stability and synchronization of the system, based on so-called 'parallel distributed compensation (PDC)'. Third, we reduce a question of stabilizing and synchronizing hyperchaos systems to linear matrix inequalities (LMI) so that convex programming techniques can solve these LMIs efficiently. Finally, the generalized Lorenz hyperchaos system is employed to illustrate the effectiveness of our designing controller

  1. Synchronized RACH-less Handover Solution for LTE Heterogeneous Networks

    DEFF Research Database (Denmark)

    Barbera, Simone; Pedersen, Klaus I.; Rosa, Claudio

    2015-01-01

    reductions in the data connectivity interruption time at each handover, no need for random access in the target cell, and reduced overall handover execution time. Laboratory handover measurement results, using commercial LTE equipment, are presented and analyzed to justify the latency benefits......Some of the most recent LTE features require synchronous base stations, and time-synchronized base stations also offer opportunities for improved handover mechanisms by introducing a new synchronized RACH-less handover scheme. The synchronized RACH-less handover solution offers significant...

  2. O(t-α)-synchronization and Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations.

    Science.gov (United States)

    Chen, Jiejie; Chen, Boshan; Zeng, Zhigang

    2018-04-01

    This paper investigates O(t -α )-synchronization and adaptive Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations. Firstly, based on the framework of Filippov solution and differential inclusion theory, using a Razumikhin-type method, some sufficient conditions ensuring the global O(t -α )-synchronization of considered networks are established via a linear-type discontinuous control. Next, a new fractional differential inequality is established and two new discontinuous adaptive controller is designed to achieve Mittag-Leffler synchronization between the drive system and the response systems using this inequality. Finally, two numerical simulations are given to show the effectiveness of the theoretical results. Our approach and theoretical results have a leading significance in the design of synchronized fractional-order memristive neural networks circuits involving discontinuous activations and time-varying delays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Synchronization resources in heterogeneous environments: Time-sharing, real-time and Java

    International Nuclear Information System (INIS)

    Pereira, A.; Vega, J.; Pacios, L.; Sanchez, E.; Portas, A.

    2006-01-01

    The asynchronous event distribution system (AEDS) was built to provide synchronization resources within the TJ-II local area network. It is a software system developed to add 'soft synchronization' capabilities to the TJ-II data acquisition, control and analysis environments. 'Soft synchronization' signifies that AEDS is not a real-time system. In fact, AEDS is based on TCP/IP over ETHERNET networks. However, its response time is adequate for practical purposes when synchronization requirements can support some delay between event dispatch and message reception. Event broadcasters (or synchronization servers in AEDS terminology) are Windows computers. Destination computers (or synchronization clients) were also Windows machines in the first version of AEDS. However, this fact imposed a very important limitation on synchronization capabilities. To overcome this situation, synchronization clients for different environments have been added to AEDS: for time-sharing operating systems (Unix and Linux), real-time operating systems (OS-9 and VxWorks) and Java applications. These environments have different synchronization primitives, requiring different approaches to provide the required uniform functionality. This has been achieved with POSIX thread library synchronization primitives (mutex and condition variables) on Unix/Linux systems, IPC mechanisms for concurrent processes on OS-9 and VxWorks real-time operating systems, and 'synchronized-wait/notify' primitives on Java virtual machines

  4. Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance.

    Science.gov (United States)

    Wang, Minlin; Ren, Xuemei; Chen, Qiang

    2018-01-01

    The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Blending Online Asynchronous and Synchronous Learning

    Directory of Open Access Journals (Sweden)

    Lisa C. Yamagata-Lynch

    2014-04-01

    Full Text Available In this article I will share a qualitative self-study about a 15-week blended 100% online graduate level course facilitated through synchronous meetings on Blackboard Collaborate and asynchronous discussions on Blackboard. I taught the course at the University of Tennessee (UT during the spring 2012 semester and the course topic was online learning environments. The primary research question of this study was: How can the designer/instructor optimize learning experiences for students who are studying about online learning environments in a blended online course relying on both synchronous and asynchronous technologies? I relied on student reflections of course activities during the beginning, middle, and the end of the semester as the primary data source to obtain their insights regarding course experiences. Through the experiences involved in designing and teaching the course and engaging in this study I found that there is room in the instructional technology research community to address strategies for facilitating online synchronous learning that complement asynchronous learning. Synchronous online whole class meetings and well-structured small group meetings can help students feel a stronger sense of connection to their peers and instructor and stay engaged with course activities. In order to provide meaningful learning spaces in synchronous learning environments, the instructor/designer needs to balance the tension between embracing the flexibility that the online space affords to users and designing deliberate structures that will help them take advantage of the flexible space.

  6. Synchronization of Coupled FitzHugh-Nagumo Neurons Using Self-Feedback Time Delay

    Science.gov (United States)

    Fan, Denggui; Song, Xinle; Liao, Fucheng

    Many neurological diseases are characterized by abnormally synchronous oscillations of neuronal populations. However, how the neurons can synchronize with each other is still not fully understood, which may have potentially hampered the understanding and diagnosis for these dynamical diseases. In this paper, the self-feedback time delay (SFTD) and adaptive control theory are employed to control the onset of synchronization in the coupled FitzHugh-Nagumo (FHN) neurons. It is found that the larger SFTD can induce the complete synchronization of coupled neuronal system. Further investigation reveals that the reinforcing SFTD can significantly postpone the synchronization onsets. In addition, for the case that synchronization cannot be achieved by adjusting SFTD, the parameter estimation update laws and adaptive controller with respect to SFTD of coupled system are investigated to deduce the sufficient condition for complete synchronization. Simulations are also provided to illustrate the effectiveness of the proposed methods. In particular, we observed the fascinating dynamical synchronization transitions, such as chaotic synchronization and bursting synchronization transitions, as well as the transition from anti-synchronization to complete synchronization.

  7. Coevolution of Synchronization and Cooperation in Costly Networked Interactions

    Science.gov (United States)

    Antonioni, Alberto; Cardillo, Alessio

    2017-06-01

    Despite the large number of studies on synchronization, the hypothesis that interactions bear a cost for involved individuals has seldom been considered. The introduction of costly interactions leads, instead, to the formulation of a dichotomous scenario in which an individual may decide to cooperate and pay the cost in order to get synchronized with the rest of the population. Alternatively, the same individual can decide to free ride, without incurring any cost, waiting for others to get synchronized to his or her state. Thus, the emergence of synchronization may be seen as the byproduct of an evolutionary game in which individuals decide their behavior according to the benefit-to-cost ratio they accrued in the past. We study the onset of cooperation and synchronization in networked populations of Kuramoto oscillators and report how topology is essential in order for cooperation to thrive. We also display how different classes of topology foster synchronization differently both at microscopic and macroscopic levels.

  8. Role of multistability in the transition to chaotic phase synchronization

    DEFF Research Database (Denmark)

    Postnov, D.E.; Vadivasova, T.E.; Sosnovtseva, Olga

    1999-01-01

    In this paper we describe the transition to phase synchronization for systems of coupled nonlinear oscillators that individually follow the Feigenbaum route to chaos. A nested structure of phase synchronized regions of different attractor families is observed. With this structure, the transition...... to nonsynchronous behavior is determined by the loss of stability for the most stable synchronous mode. It is shown that the appearance of hyperchaos and the transition from lag synchronization to phase synchronization are related to the merging of chaotic attractors from different families. Numerical examples...

  9. Synchronization of a new fractional-order hyperchaotic system

    International Nuclear Information System (INIS)

    Wu Xiangjun; Lu Hongtao; Shen Shilei

    2009-01-01

    In this letter, a new fractional-order hyperchaotic system is proposed. By utilizing the fractional calculus theory and computer simulations, it is found that hyperchaos exists in the new fractional-order four-dimensional system with order less than 4. The lowest order to have hyperchaos in this system is 2.88. The results are validated by the existence of two positive Lyapunov exponents. Using the pole placement technique, a nonlinear state observer is designed to synchronize a class of nonlinear fractional-order systems. The observer method is used to synchronize two identical fractional-order hyperchaotic systems. In addition, the active control technique is applied to synchronize the new fractional-order hyperchaotic system and the fractional-order Chen hyperchaotic system. The two schemes, based on the stability theory of the fractional-order system, are rather simple, theoretically rigorous and convenient to realize synchronization. They do not require the computation of the conditional Lyapunov exponents. Numerical results are performed to verify the effectiveness of the proposed synchronization schemes.

  10. Synchronization of grid-connected renewable energy sources under highly distorted voltages and unbalanced grid faults

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2013-01-01

    Renewable energy sources require accurate and appropriate performance not only under normal grid operation but also under abnormal and faulty grid conditions according to the modern grid codes. This paper proposes a novel phase-locked loop algorithm (MSHDC-PLL), which can enable the fast...... and dynamic synchronization of the interconnected renewable energy system under unbalanced grid faults and under highly harmonic distorted voltage. The outstanding performance of the suggested PLL is achieved by implementing an innovative multi-sequence/harmonic decoupling cell in order to dynamically cancel...... renewable energy systems. Therefore, the performance of the new PLL can increase the quality of the injected power under abnormal conditions and in addition enable the renewable energy systems to provide the appropriate support to the grid under balanced and unbalanced grid faults....

  11. Balancing Contention and Synchronization on the Intel Paragon

    Science.gov (United States)

    Bokhari, Shahid H.; Nicol, David M.

    1996-01-01

    The Intel Paragon is a mesh-connected distributed memory parallel computer. It uses an oblivious and deterministic message routing algorithm: this permits us to develop highly optimized schedules for frequently needed communication patterns. The complete exchange is one such pattern. Several approaches are available for carrying it out on the mesh. We study an algorithm developed by Scott. This algorithm assumes that a communication link can carry one message at a time and that a node can only transmit one message at a time. It requires global synchronization to enforce a schedule of transmissions. Unfortunately global synchronization has substantial overhead on the Paragon. At the same time the powerful interconnection mechanism of this machine permits 2 or 3 messages to share a communication link with minor overhead. It can also overlap multiple message transmission from the same node to some extent. We develop a generalization of Scott's algorithm that executes complete exchange with a prescribed contention. Schedules that incur greater contention require fewer synchronization steps. This permits us to tradeoff contention against synchronization overhead. We describe the performance of this algorithm and compare it with Scott's original algorithm as well as with a naive algorithm that does not take interconnection structure into account. The Bounded contention algorithm is always better than Scott's algorithm and outperforms the naive algorithm for all but the smallest message sizes. The naive algorithm fails to work on meshes larger than 12 x 12. These results show that due consideration of processor interconnect and machine performance parameters is necessary to obtain peak performance from the Paragon and its successor mesh machines.

  12. Observer-based hyperchaos synchronization in cascaded discrete-time systems

    International Nuclear Information System (INIS)

    Grassi, Giuseppe

    2009-01-01

    This paper deals with the observer-based synchronization in a cascade connection of hyperchaotic discrete-time systems. The paper demonstrates that exact synchronization in finite time is achievable between pairs of drive-response systems using only a scalar synchronizing signal. This 'propagated synchronization' starts from the innermost drive-response system pair and propagates toward the outermost drive-system pair. Choosing the drive-system input to be an information signal (encrypted via an arbitrary encryption function) yields a potential application of this architecture in chaos-based communications.

  13. Lag synchronization of hyperchaos with application to secure communications

    International Nuclear Information System (INIS)

    Li Chuandong; Liao Xiaofeng; Wong Kwokwo

    2005-01-01

    In this paper, hyperchaotic lag synchronization is restated as a nonlinear and lag-in-time observer design issue. This approach leads to a systematic tool, which guarantees the lag synchronization of a wide class of chaotic or hyperchaotic systems via a scalar signal. By exploiting this result, we propose a hyperchaos-based cryptosystem scheme that combines the conventional cryptographic methods and the lag synchronization of chaotic circuits. The computer simulation results show that the lag synchronization scheme and the cryptosystem proposed in this paper are both feasible

  14. Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators

    Science.gov (United States)

    Yao, Chenggui; Yi, Ming; Shuai, Jianwei

    2013-09-01

    Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.

  15. Generalized synchronization and coherent structures in spatially extended systems

    International Nuclear Information System (INIS)

    Basnarkov, Lasko; Duane, Gregory S.; Kocarev, Ljupco

    2014-01-01

    We study the synchronization of a coupled pair of one-dimensional Kuramoto–Sivashinsky systems, with equations augmented by a third-space-derivative term. With two different values of a system parameter, the two systems synchronize in the generalized sense. The phenomenon persists even in the extreme case when one of the equations is missing the extra term. Master–slave synchronization error is small, so the generalized synchronization relationship is useful for predicting the state of the master from that of the slave, or conversely, for controlling the slave. The spatial density of coupling points required to bring about generalized synchronization appears to be related to the wavelength of traveling wave solutions, and more generally to the width of coherent structures in the separate systems

  16. Social Motor Synchronization: Insights for Understanding Social Behavior in Autism.

    Science.gov (United States)

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-07-01

    Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and assessments of ASD traits. We found (a) spontaneous social motor synchronization was associated with responding to joint attention, cooperation, and theory of mind while intentional social motor synchronization was associated with initiating joint attention and theory of mind; and (b) social motor synchronization was associated with ASD severity but not fully explained by motor problems. Findings suggest that objective measures of social motor synchronization may provide insights into understanding ASD traits.

  17. Synchronization in node of complex networks consist of complex chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qiang, E-mail: qiangweibeihua@163.com [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024 (China); Xie, Cheng-jun [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Liu, Hong-jun [School of Information Engineering, Weifang Vocational College, Weifang, 261041 (China); Li, Yan-hui [The Library, Weifang Vocational College, Weifang, 261041 (China)

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  18. Synchronous transmission circuit breaker development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, R D

    1976-08-01

    The need for the development of a synchronous transmission breaker is discussed and the basic preliminary specifications for such a circuit breaker are established and tabulated. The initial exploratory work designed to establish the preferred designs for a synchronous pulse generator, (or current zero predictor), for an operating mechanism and for a suitable interrupter are described in detail. The experimental results obtained with vacuum interrupters and with axial blast interrupters using pure SF/sub 6/, mixtures of SF/sub 6/ and N/sub 2/, and high pressure liquid SF/sub 6/ are reported. The results are then evaluated and the performances obtained with each interrupting media are compared arriving at the end to a choice of a preferred design. This preferred design, an interrupter that uses SF/sub 6/ in the liquid state at pressures of 13.8 megapascals (2000 psi), is completely described. The results obtained in a series of experiments designed to establish limits of performance for this interrupter are also discussed.

  19. Chaos synchronization of coupled neurons with gap junctions

    International Nuclear Information System (INIS)

    Wang Qingyun; Lu Qishao; Chen Guanrong; Guo Dinghui

    2006-01-01

    Based on the asymptotic stability theory of dynamical systems and matrix theory, a general criterion of synchronization stability of N coupled neurons with symmetric configurations is established in this Letter. Especially, three types of connection styles (that is, chain, ring and global connections) are considered. As an illustration, complete synchronization of four coupled identical chaotic Chay neurons is investigated. The maximal conditional Lyapunov exponent is calculated and used to determine complete synchronization. As a result, complete synchronization of four coupled identical chaotic Chay neurons can be achieved when the coupling strength is above a critical value, which is dependent on the specific connection style. Numerical simulation is in good agreement with the theoretical analysis

  20. A clock synchronization skeleton based on RTAI

    NARCIS (Netherlands)

    Huang, Y.; Visser, P.M.; Broenink, Johannes F.

    2006-01-01

    This paper presents a clock synchronization skeleton based on RTAI (Real Time Application Interface). The skeleton is a thin layer that provides unified but extendible interfaces to the underlying operating system, the synchronization algorithms and the upper level applications in need of clock

  1. Chaos synchronization of nonlinear Bloch equations

    International Nuclear Information System (INIS)

    Park, Ju H.

    2006-01-01

    In this paper, the problem of chaos synchronization of Bloch equations is considered. A novel nonlinear controller is designed based on the Lyapunov stability theory. The proposed controller ensures that the states of the controlled chaotic slave system asymptotically synchronizes the states of the master system. A numerical example is given to illuminate the design procedure and advantage of the result derived

  2. A proportional integral estimator-based clock synchronization protocol for wireless sensor networks.

    Science.gov (United States)

    Yang, Wenlun; Fu, Minyue

    2017-11-01

    Clock synchronization is an issue of vital importance in applications of WSNs. This paper proposes a proportional integral estimator-based protocol (EBP) to achieve clock synchronization for wireless sensor networks. As each local clock skew gradually drifts, synchronization accuracy will decline over time. Compared with existing consensus-based approaches, the proposed synchronization protocol improves synchronization accuracy under time-varying clock skews. Moreover, by restricting synchronization error of clock skew into a relative small quantity, it could reduce periodic re-synchronization frequencies. At last, a pseudo-synchronous implementation for skew compensation is introduced as synchronous protocol is unrealistic in practice. Numerical simulations are shown to illustrate the performance of the proposed protocol. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Fault Location Based on Synchronized Measurements: A Comprehensive Survey

    Science.gov (United States)

    Al-Mohammed, A. H.; Abido, M. A.

    2014-01-01

    This paper presents a comprehensive survey on transmission and distribution fault location algorithms that utilize synchronized measurements. Algorithms based on two-end synchronized measurements and fault location algorithms on three-terminal and multiterminal lines are reviewed. Series capacitors equipped with metal oxide varistors (MOVs), when set on a transmission line, create certain problems for line fault locators and, therefore, fault location on series-compensated lines is discussed. The paper reports the work carried out on adaptive fault location algorithms aiming at achieving better fault location accuracy. Work associated with fault location on power system networks, although limited, is also summarized. Additionally, the nonstandard high-frequency-related fault location techniques based on wavelet transform are discussed. Finally, the paper highlights the area for future research. PMID:24701191

  4. Fault Location Based on Synchronized Measurements: A Comprehensive Survey

    Directory of Open Access Journals (Sweden)

    A. H. Al-Mohammed

    2014-01-01

    Full Text Available This paper presents a comprehensive survey on transmission and distribution fault location algorithms that utilize synchronized measurements. Algorithms based on two-end synchronized measurements and fault location algorithms on three-terminal and multiterminal lines are reviewed. Series capacitors equipped with metal oxide varistors (MOVs, when set on a transmission line, create certain problems for line fault locators and, therefore, fault location on series-compensated lines is discussed. The paper reports the work carried out on adaptive fault location algorithms aiming at achieving better fault location accuracy. Work associated with fault location on power system networks, although limited, is also summarized. Additionally, the nonstandard high-frequency-related fault location techniques based on wavelet transform are discussed. Finally, the paper highlights the area for future research.

  5. Control of chaotic oscillators via a class of model free active controller: Suppresion and synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Lopez, Ricardo [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, 02200, Azcapotzalco, Mexico D.F. (Mexico)], E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, Rafael [Departamento de Control Automatico, CINVESTAV-IPN, Apartado Postal 14-740, 07360 Mexico D.F. (Mexico)], E-mail: rguerra@ctrl.cinvestav.mx

    2008-10-15

    The goal of this work is related with the control of chaotic oscillators for chaos suppression and synchronization purposes. The proposed methodology is related with a class of robust active control (RAC) law, where the stabilizing part of the control structure is related with an integral high order sliding-mode and proportional form of the so-called control error. The proposed controller is applied to chaos suppression, synchronization and anti-synchronization tasks for nonlinear oscillators with different order and structure. Numerical experiments illustrate the satisfactory performance of the proposed methodology, when it is applied to Duffing and Chen oscillators.

  6. Control of chaotic oscillators via a class of model free active controller: Suppresion and synchronization

    International Nuclear Information System (INIS)

    Aguilar-Lopez, Ricardo; Martinez-Guerra, Rafael

    2008-01-01

    The goal of this work is related with the control of chaotic oscillators for chaos suppression and synchronization purposes. The proposed methodology is related with a class of robust active control (RAC) law, where the stabilizing part of the control structure is related with an integral high order sliding-mode and proportional form of the so-called control error. The proposed controller is applied to chaos suppression, synchronization and anti-synchronization tasks for nonlinear oscillators with different order and structure. Numerical experiments illustrate the satisfactory performance of the proposed methodology, when it is applied to Duffing and Chen oscillators

  7. Time-varying multiplex network: Intralayer and interlayer synchronization

    Science.gov (United States)

    Rakshit, Sarbendu; Majhi, Soumen; Bera, Bidesh K.; Sinha, Sudeshna; Ghosh, Dibakar

    2017-12-01

    A large class of engineered and natural systems, ranging from transportation networks to neuronal networks, are best represented by multiplex network architectures, namely a network composed of two or more different layers where the mutual interaction in each layer may differ from other layers. Here we consider a multiplex network where the intralayer coupling interactions are switched stochastically with a characteristic frequency. We explore the intralayer and interlayer synchronization of such a time-varying multiplex network. We find that the analytically derived necessary condition for intralayer and interlayer synchronization, obtained by the master stability function approach, is in excellent agreement with our numerical results. Interestingly, we clearly find that the higher frequency of switching links in the layers enhances both intralayer and interlayer synchrony, yielding larger windows of synchronization. Further, we quantify the resilience of synchronous states against random perturbations, using a global stability measure based on the concept of basin stability, and this reveals that intralayer coupling strength is most crucial for determining both intralayer and interlayer synchrony. Lastly, we investigate the robustness of interlayer synchronization against a progressive demultiplexing of the multiplex structure, and we find that for rapid switching of intralayer links, the interlayer synchronization persists even when a large number of interlayer nodes are disconnected.

  8. Synchronization of networks

    Indian Academy of Sciences (India)

    We study the synchronization of coupled dynamical systems on networks. The dynamics is .... Such a time-varying topology can occur in social networks, computer networks, WWW ... This has the effect of reducing the spread of the transverse ...

  9. Synchronization resources in heterogeneous environments: Time-sharing, real-time and Java

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A. [Asociacion EURATOM/CIEMAT para Fusion, CIEMAT Edificio 66, Avda. Complutense, 22, 28040 Madrid (Spain)]. E-mail: augusto.pereira@ciemat.es; Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, CIEMAT Edificio 66, Avda. Complutense, 22, 28040 Madrid (Spain); Pacios, L. [Asociacion EURATOM/CIEMAT para Fusion, CIEMAT Edificio 66, Avda. Complutense, 22, 28040 Madrid (Spain); Sanchez, E. [Asociacion EURATOM/CIEMAT para Fusion, CIEMAT Edificio 66, Avda. Complutense, 22, 28040 Madrid (Spain); Portas, A. [Asociacion EURATOM/CIEMAT para Fusion, CIEMAT Edificio 66, Avda. Complutense, 22, 28040 Madrid (Spain)

    2006-07-15

    The asynchronous event distribution system (AEDS) was built to provide synchronization resources within the TJ-II local area network. It is a software system developed to add 'soft synchronization' capabilities to the TJ-II data acquisition, control and analysis environments. 'Soft synchronization' signifies that AEDS is not a real-time system. In fact, AEDS is based on TCP/IP over ETHERNET networks. However, its response time is adequate for practical purposes when synchronization requirements can support some delay between event dispatch and message reception. Event broadcasters (or synchronization servers in AEDS terminology) are Windows computers. Destination computers (or synchronization clients) were also Windows machines in the first version of AEDS. However, this fact imposed a very important limitation on synchronization capabilities. To overcome this situation, synchronization clients for different environments have been added to AEDS: for time-sharing operating systems (Unix and Linux), real-time operating systems (OS-9 and VxWorks) and Java applications. These environments have different synchronization primitives, requiring different approaches to provide the required uniform functionality. This has been achieved with POSIX thread library synchronization primitives (mutex and condition variables) on Unix/Linux systems, IPC mechanisms for concurrent processes on OS-9 and VxWorks real-time operating systems, and 'synchronized-wait/notify' primitives on Java virtual machines.

  10. Chaos Synchronization in Navier-Stokes Turbulence

    Science.gov (United States)

    Lalescu, Cristian; Meneveau, Charles; Eyink, Gregory

    2013-03-01

    Chaos synchronization (CS) has been studied for some time now (Pecora & Carroll 1990), for systems with only a few degrees of freedom as well as for systems described by partial differential equations (Boccaletti et al 2002). CS in general is said to be present in coupled dynamical systems when a specific property of each system has the same time evolution for all, even though the evolution itself is chaotic. The Navier-Stokes (NS) equations describe the velocity for a wide range of fluids, and their solutions are usually called turbulent if fluctuation amplitudes decrease as a power of their wavenumber. There have been some studies of CS for continuous systems (Kocarev et al 1997), but CS for NS turbulence seems not to have been investigated so far. We focus on the synchronization of the small scales of a turbulent flow for which the time history of large scales is prescribed. Our DNS results show that high-wavenumbers in turbulence are fully slaved to modes with wavenumbers up to a critical fraction of the Kolmogorov dissipation wavenumber. The motivation for our work is to study deeply sub-Kolmogorov scales in fully developed turbulence (Schumacher 2007), which we found to be recoverable even at very high Reynolds number from simulations with moderate resolutions. This work is supported by the National Science Foundation's CDI-II program, project CMMI-0941530

  11. Bus Based Synchronization Method for CHIPPER Based NoC

    Directory of Open Access Journals (Sweden)

    D. Muralidharan

    2016-01-01

    Full Text Available Network on Chip (NoC reduces the communication delay of System on Chip (SoC. The main limitation of NoC is power consumption and area overhead. Bufferless NoC reduces the area complexity and power consumption by eliminating buffers in the traditional routers. The bufferless NoC design should include live lock freeness since they use hot potato routing. This increases the complexity of bufferless NoC design. Among the available propositions to reduce this complexity, CHIPPER based bufferless NoC is considered as one of the best options. Live lock freeness is provided in CHIPPER through golden epoch and golden packet. All routers follow some synchronization method to identify a golden packet. Clock based method is intuitively followed for synchronization in CHIPPER based NoCs. It is shown in this work that the worst-case latency of packets is unbearably high when the above synchronization is followed. To alleviate this problem, broadcast bus NoC (BBus NoC approach is proposed in this work. The proposed method decreases the worst-case latency of packets by increasing the golden epoch rate of CHIPPER.

  12. Function projective lag synchronization of fractional-order chaotic systems

    International Nuclear Information System (INIS)

    Wang Sha; Yu Yong-Guang; Wang Hu; Rahmani Ahmed

    2014-01-01

    Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme. (general)

  13. The role of attention and intention in synchronization to music: effects on gait.

    Science.gov (United States)

    Leow, Li-Ann; Waclawik, Kristina; Grahn, Jessica A

    2018-01-01

    Anecdotal accounts suggest that individuals spontaneously synchronize their movements to the 'beat' of background music, often without intending to, and perhaps even without attending to the music at all. However, the question of whether intention and attention are necessary to synchronize to the beat remains unclear. Here, we compared whether footsteps during overground walking were synchronized to the beat when young healthy adults were explicitly instructed to synchronize (intention to synchronize), and were not instructed to synchronize (no intention) (Experiment 1: intention). We also examined whether reducing participants' attention to the music affected synchronization, again when participants were explicitly instructed to synchronize, and when they were not (Experiment 2: attention/intention). Synchronization was much less frequent when no instructions to synchronize were given. Without explicit instructions to synchronize, there was no evidence of synchronization in 60% of the trials in Experiment 1, and 43% of the trials in Experiment 2. When instructed to synchronize, only 26% of trials in Experiment 1, and 14% of trials in Experiment 2 showed no evidence of synchronization. Because walking to music alters gait, we also examined how gait kinematics changed with or without instructions to synchronize, and attention to the music was required for synchronization to occur. Instructions to synchronize elicited slower, shorter, and more variable strides than walking in silence. Reducing attention to the music did not significantly affect synchronization of footsteps to the beat, but did elicit slower gait. Thus, during walking, intention, but not attention, appears to be necessary to synchronize footsteps to the beat, and synchronization elicits slower, shorter, and more variable strides, at least in young healthy adults.

  14. Design Challenges and Potentials of HTS Synchronous Motor for Superbus

    NARCIS (Netherlands)

    Ani, S.O.; Polinder, H.; Ferreira, J.A.; Ockels, W.J.

    2009-01-01

    This paper discusses the possibilities of applying high temperature superconducting (HTS) synchronous motor to Superbus, an alternative and sustainable type of public transportation developed at TU Delft. Two important factors within the Superbus drive that influence the operating range are weight

  15. Chaos synchronization of a unified chaotic system via partial linearization

    International Nuclear Information System (INIS)

    Yu Yongguang; Li Hanxiong; Duan Jian

    2009-01-01

    A partial linearization method is proposed for realizing the chaos synchronization of an unified chaotic system. Through synchronizing partial state of the chaotic systems can result in the synchronization of their entire states, and the resulting controller is singularity free. The results can be easily extended to the synchronization of other similar chaotic systems. Simulation results are conducted to show the effectiveness of the method.

  16. Electrical implementation of a complete synchronization dynamic system

    International Nuclear Information System (INIS)

    Goncalves, C; Neto, L G

    2011-01-01

    This work presents an electrical implementation of complete synchronization systems, proposing a master/slave synchronization of two identical particle-in-a-box electronic circuits, exhibiting a rich chaotic behaviour. This behaviour was measured, and also emulated, and the results were compared. Just a few works in literature describe experimental measurements of chaotic systems. The master/slave electronic circuits employed have a very simple electronic implementation and results show a complete synchronization of the system.

  17. Micelle-stabilized room-temperature phosphorescence with synchronous scanning

    International Nuclear Information System (INIS)

    Femia, R.A.; Love, L.J.C.

    1984-01-01

    The experimental requirements for synchronous wavelength scanning micelle-stabilized room temperature phosphorescence and the factors affecting peak resolution are presented and compared with those for synchronous wavelength scanning fluorescence. Identification of individual compounds in a four-component mixture is illustrated, and criteria to identify and minimize triplet state energy transfer are given. Considerable improvement in resolution of the synchronous peaks is obtained via second derivative spectra. 20 references, 7 figures, 2 tables

  18. Review of available synchronization and time distribution techniques

    Science.gov (United States)

    Hall, R. G.; Lieberman, T. N.; Stone, R. R.

    1974-01-01

    The methods of synchronizing precision clocks will be reviewed placing particular attention to the simpler techniques, their accuracies, and the approximate cost of equipment. The more exotic methods of synchronization are discussed in lesser detail. The synchronization techniques that will be covered will include satellite dissemination, communication and navigation transmissions via VLF, LF, HF, UHF and microwave as well as commercial and armed forces television. Portable clock trips will also be discussed.

  19. Contributions to time-frequency synchronization in wireless systems

    OpenAIRE

    Koivisto, Tommi

    2015-01-01

    Time and frequency synchronization is an indispensable task for all wireless transceivers and systems. In modern wireless systems, such as 4G and future 5G systems, new wireless technologies set new challenges also to synchronization. In particular, new solutions for time and frequency synchronization are needed in multiantenna and cooperative systems. New research areas arise also in context of interference cancellation and cognitive radio systems where the transmission parameters of the sig...

  20. Detection of Nonverbal Synchronization through Phase Difference in Human Communication.

    Science.gov (United States)

    Kwon, Jinhwan; Ogawa, Ken-ichiro; Ono, Eisuke; Miyake, Yoshihiro

    2015-01-01

    Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of "body movement synchronization" is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD) and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head nods. These