WorldWideScience

Sample records for high cadence imaging

  1. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  2. ALMA's high-cadence imaging capabilities for solar observations

    CERN Document Server

    Wedemeyer, Sven

    2015-01-01

    The Atacama Large Millimeter/submillimeter Array offers an unprecedented view of our Sun at sub-/millimeter wavelengths. The high spatial, temporal, and spectral resolution facilitates the measurement of gas temperatures and magnetic fields in the solar chromosphere with high precision. The anticipated results will revolutionize our understanding of the solar atmosphere and may in particular result in major steps towards solving the coronal heating problem. Based on state-of-the-art 3D radiation magnetohydrodynamic simulations, we calculate the emergent continuum intensity (and thus brightness temperature maps) in the wavelength range accessed by ALMA and simulate instrumental effects for different array configurations. First results show that the local gas temperature can be closely mapped with ALMA and that much of the complex small-scale chromospheric pattern can be resolved.

  3. High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics

    Science.gov (United States)

    Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, Jack E.; Smith, Stephen J.; Smith, Randall K.

    2010-01-01

    High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.

  4. ROSA: a high cadence, synchronized multi-camera solar imaging system

    CERN Document Server

    Jess, D B; Christian, D J; Keenan, F P; Ryans, R S I; Crockett, P J

    2009-01-01

    Rapid Oscillations in the Solar Atmosphere (ROSA) is a synchronized, six camera high cadence solar imaging instrument developed by Queen's University Belfast. The system is available on the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA as a common-user instrument. Consisting of six 1k x 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02-15 e/s/pixel), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, or 200 Hz when the CCD is windowed. Combining multiple cameras and fast readout rates, ROSA will accumulate approximately 12 TB of data per 8 hours observing. Following successful commissioning during August 2008, ROSA will allow multi-wavelength studies of the solar atmosphere at high temporal resolution.

  5. The PLATO Simulator: Modelling of High-Precision High-Cadence Space-Based Imaging

    CERN Document Server

    Marcos-Arenal, P; De Ridder, J; Aerts, C; Huygen, R; Samadi, R; Green, J; Piotto, G; Salmon, S; Catala, C; Rauer, H

    2014-01-01

    Many aspects of the design trade-off of a space-based instrument and its performance can best be tackled through simulations of the expected observations. The complex interplay of various noise sources in the course of the observations make such simulations an indispensable part of the assessment and design study of any space-based mission. We present a formalism to model and simulate photometric time series of CCD images by including models of the CCD and its electronics, the telescope optics, the stellar field, the jitter movements of the spacecraft, and all important natural noise sources. This formalism has been implemented in a versatile end-to-end simulation software tool, called PLATO Simulator, specifically designed for the PLATO space mission to be operated from L2, but easily adaptable to similar types of missions. We provide a detailed description of several noise sources and discuss their properties, in connection with the optical design, the allowable level of jitter, the quantum efficiency of th...

  6. MASS ESTIMATES OF RAPIDLY MOVING PROMINENCE MATERIAL FROM HIGH-CADENCE EUV IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Williams, David R.; Baker, Deborah [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Surrey, RH5 6NT (United Kingdom); Van Driel-Gesztelyi, Lidia, E-mail: d.r.williams@ucl.ac.uk [LESIA-Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, 92195 Meudon (France)

    2013-02-20

    We present a new method for determining the column density of erupting filament material using state-of-the-art multi-wavelength imaging data. Much of the prior work on filament/prominence structure can be divided between studies that use a polychromatic approach with targeted campaign observations and those that use synoptic observations, frequently in only one or two wavelengths. The superior time resolution, sensitivity, and near-synchronicity of data from the Solar Dynamics Observatory's Advanced Imaging Assembly allow us to combine these two techniques using photoionization continuum opacity to determine the spatial distribution of hydrogen in filament material. We apply the combined techniques to SDO/AIA observations of a filament that erupted during the spectacular coronal mass ejection on 2011 June 7. The resulting 'polychromatic opacity imaging' method offers a powerful way to track partially ionized gas as it erupts through the solar atmosphere on a regular basis, without the need for coordinated observations, thereby readily offering regular, realistic mass-distribution estimates for models of these erupting structures.

  7. The ASTROID Simulator Software Package: Realistic Modelling of High-Precision High-Cadence Space-Based Imaging

    CERN Document Server

    Marcos-Arenal, P; De Ridder, J; Huygen, R; Aerts, C

    2014-01-01

    The preparation of a space-mission that carries out any kind of imaging to detect high-precision low-amplitude variability of its targets requires a robust model for the expected performance of its instruments. This model cannot be derived from simple addition of noise properties due to the complex interaction between the various noise sources. While it is not feasible to build and test a prototype of the imaging device on-ground, realistic numerical simulations in the form of an end-to-end simulator can be used to model the noise propagation in the observations. These simulations not only allow studying the performance of the instrument, its noise source response and its data quality, but also the instrument design verification for different types of configurations, the observing strategy and the scientific feasibility of an observing proposal. In this way, a complete description and assessment of the objectives to expect from the mission can be derived. We present a high-precision simulation software packag...

  8. High-Cadence Transit Timing Variation Monitoring of Extrasolar Planets

    Directory of Open Access Journals (Sweden)

    Naef D.

    2011-02-01

    Full Text Available We report ground-based high-cadence transit timing observations of the extrasolar planet WASP-2b. We achieve a typical timing error of 15-30 sec. The data show no significant deviations from the predicted ephemeris.

  9. High-Cadence, High-Contrast Imaging for Exoplanet Mapping: Observations of the HR 8799 Planets with VLT/SPHERE Satellite Spot-Corrected Relative Photometry

    CERN Document Server

    Apai, Daniel; Skemer, Andrew; Hanson, Jake R; Lagrange, Anne-Marie; Biller, Beth A; Bonnefoy, Mickael; Buenzli, Esther; Vigan, Arthur

    2016-01-01

    Time-resolved photometry is an important new probe of the physics of condensate clouds in extrasolar planets and brown dwarfs. Extreme adaptive optics systems can directly image planets, but precise brightness measurements are challenging. We present VLT/SPHERE high-contrast, time-resolved broad H-band near-infrared photometry for four exoplanets in the HR 8799 system, sampling changes from night to night over five nights with relatively short integrations. The photospheres of these four planets are often modeled by patchy clouds and may show large-amplitude rotational brightness modulations. Our observations provide high-quality images of the system. We present a detailed performance analysis of different data analysis approaches to accurately measure the relative brightnesses of the four exoplanets. We explore the information in satellite spots and demonstrate their use as a proxy for image quality. While the brightness variations of the satellite spots are strongly correlated, we also identify a second-ord...

  10. HIGH-CADENCE, HIGH-CONTRAST IMAGING FOR EXOPLANET MAPPING: OBSERVATIONS OF THE HR 8799 PLANETS WITH VLT/SPHERE SATELLITE-SPOT-CORRECTED RELATIVE PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Apai, Dániel; Skemer, Andrew; Hanson, Jake R. [Steward Observatory, The University of Arizona, Tucson, AZ 85721 (United States); Kasper, Markus [European Southern Observatory, Garching (Germany); Lagrange, Anne-Marie; Bonnefoy, Mickaël [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Biller, Beth A. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Buenzli, Esther [Max Planck Institute for Astronomy, Königstuhl 17, Heidelberg, D-69117 (Germany); Vigan, Arthur, E-mail: apai@arizona.edu [Aix-Marseille Université, CNRS, Laboratoire d’ Astrophysique de Marseille, UMR 7326, F-13388 Marseille (France)

    2016-03-20

    Time-resolved photometry is an important new probe of the physics of condensate clouds in extrasolar planets and brown dwarfs. Extreme adaptive optics systems can directly image planets, but precise brightness measurements are challenging. We present VLT/SPHERE high-contrast, time-resolved broad H-band near-infrared photometry for four exoplanets in the HR 8799 system, sampling changes from night to night over five nights with relatively short integrations. The photospheres of these four planets are often modeled by patchy clouds and may show large-amplitude rotational brightness modulations. Our observations provide high-quality images of the system. We present a detailed performance analysis of different data analysis approaches to accurately measure the relative brightnesses of the four exoplanets. We explore the information in satellite spots and demonstrate their use as a proxy for image quality. While the brightness variations of the satellite spots are strongly correlated, we also identify a second-order anti-correlation pattern between the different spots. Our study finds that KLIP reduction based on principal components analysis with satellite-spot-modulated artificial-planet-injection-based photometry leads to a significant (∼3×) gain in photometric accuracy over standard aperture-based photometry and reaches 0.1 mag per point accuracy for our data set, the signal-to-noise ratio of which is limited by small field rotation. Relative planet-to-planet photometry can be compared between nights, enabling observations spanning multiple nights to probe variability. Recent high-quality relative H-band photometry of the b–c planet pair agrees to about 1%.

  11. A synthetic high fidelity, high cadence spectral Earth database

    Science.gov (United States)

    Schwieterman, Edward; Meadows, Victoria; Robinson, Tyler D.; Lustig-Yaeger, Jacob; Sparks, William B.; Cracraft, Misty

    2016-10-01

    Earth is currently our only, and will always be our best, example of a living planet. While Earth data model comparisons have been effectively used in recent years to validate spectral models, observations by interplanetary spacecraft are limited to "snapshots" in terms of viewing geometry and Earth's dynamic surface and atmosphere state. We use the well-validated Virtual Planetary Laboratory 3D spectral Earth model to generate both simulated disk-averaged spectra and high resolution, spatially resolved spectral data cubes of Earth at a viewing geometry consistent with Lunar viewing angles at wavelengths from the far UV (0.1 μm) the to the far IR (200 μm). The database includes disk-averaged spectra from dates 03/19/2008 to 04/23/2008 at one-hour cadence and fully spectral data cubes for a subset of those times. These spectral products have a wide range of applications including calibration of spacecraft instrumentation (Robinson et al. 2014), modeling the radiation environment of permanently shadowed Lunar craters due to Earthshine (Glenar et al., in prep), and testing the detectability of atmospheric and surface features of an Earth-like planet orbiting a distant star with a large space-based telescope mission concepts such as LUVOIR. These data include the phase and time-dependent changes in spectral biosignatures (O2, O3, CH4, VRE) and habitability markers (N2, H2O, CO2, ocean glint). The advantages of the VPL Earth model data products over 1D spectra traditionally used for testing instrument architectures include accurate modeling of Earth's surface inhomogeneity (continental distribution and ice caps), cloud cover and variability, pole to equator temperature gradients, obliquity, phase-dependent scattering effects, and rotation. We present a subset of this spectral data including anticipated signal-to-noise calculations of an exoEarth twin at different phases using a coronagraph instrument model (Robinson et al. 2015). We also calculate time

  12. Effects of low- vs. high-cadence interval training on cycling performance.

    Science.gov (United States)

    Paton, Carl D; Hopkins, Will G; Cook, Christian

    2009-09-01

    High-resistance interval training produces substantial gains in sprint and endurance performance of cyclists in the competitive phase of a season. Here, we report the effect of changing the cadence of the intervals. We randomized 18 road cyclists to 2 groups for 4 weeks of training. Both groups replaced part of their usual training with 8 30-minute sessions consisting of sets of explosive single-leg jumps alternating with sets of high-intensity cycling sprints performed at either low cadence (60-70 min(-1)) or high cadence (110-120 min(-1)) on a training ergometer. Testosterone concentration was assayed in saliva samples collected before and after each session. Cycle ergometry before and after the intervention provided measures of performance (mean power in a 60-s time trial, incremental peak power, 4-mM lactate power) and physiologic indices of endurance performance (maximum oxygen uptake, exercise economy, fractional utilization of maximum oxygen uptake). Testosterone concentration in each session increased by 97% +/- 39% (mean +/- between-subject SD) in the low-cadence group but by only 62% +/- 23% in the high-cadence group. Performance in the low-cadence group improved more than in the high-cadence group, with mean differences of 2.5% (90% confidence limits, +/-4.8%) for 60-second mean power, 3.6% (+/-3.7%) for peak power, and 7.0% (+/-5.9%) for 4-mM lactate power. Maximum oxygen uptake showed a corresponding mean difference of 3.2% (+/-4.2%), but differences for other physiologic indices were unclear. Correlations between changes in performance and physiology were also unclear. Low-cadence interval training is probably more effective than high-cadence training in improving performance of well-trained competitive cyclists. The effects on performance may be related to training-associated effects on testosterone and to effects on maximum oxygen uptake.

  13. Dynamic high-cadence cycling improves motor symptoms in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Angela eRidgel

    2015-09-01

    Full Text Available Rationale: Individuals with Parkinson’s disease (PD often have deficits in kinesthesia. There is a need for rehabilitation interventions that improve these kinesthetic deficits. Forced (tandem cycling at a high cadence improves motor function. However, tandem cycling is difficult to implement in a rehabilitation setting. Objective: To construct an instrumented, motored cycle and to examine if high cadence dynamic cycling promotes improvements in motor function. Method: This motored cycle had two different modes: dynamic and static cycling. In dynamic mode, the motor maintained 75-85 rpm. In static mode, the rider determined the pedaling cadence. UPDRS Motor III and Timed Up and Go (TUG were used to assess changes in motor function after three cycling sessions. Results: Individuals in the static group showed a lower cadence but a higher power, torque and heart rate than the dynamic group. UPDRS score showed a significant 13.9% improvement in the dynamic group and only a 0.9% improvement in the static group. There was also a 16.5% improvement in TUG time in the dynamic group but only an 8% improvement in the static group. Conclusion: These findings show that dynamic cycling can improve PD motor function and that activation of proprioceptors with a high cadence but variable pattern may be important for motor improvements in PD.

  14. Inversions of High-Cadence SOLIS-VSM Stokes Observations

    NARCIS (Netherlands)

    Fischer, C.E.; Keller, C.U.; Snik, F.

    2008-01-01

    We have processed full-Stokes observations made with the SOLIS-VSM using Fe I 630.15 and Fe I 630.25 nm. The data have high spectral and temporal resolution, moderate spatial resolution, and large polarimetric sensitivity and accuracy. We use the code LILIA, an LTE inversion code written by Socas-Na

  15. High--cadence observations of spicular-type events on the Sun

    CERN Document Server

    Shetye, J; Scullion, E; Nelson, C J; Kuridze, D; Henriques, V; Woeger, F; Ray, T

    2016-01-01

    Chromospheric observations taken at high cadence and high spatial resolution show a range of spicule like features, including Type I, Type II (as well as RBEs and RREs) and those which seem to appear within a few seconds, which if interpreted as flows would imply mass flow velocities in excess of 1000 km/s. This article seeks to quantify and study rapidly appearing spicular type events. We also compare the MOMFBD and speckle reconstruction techniques in order to understand if such spicules are more favourably observed using a particular technique. We use spectral imaging observations taken with the CRISP on the Swedish 1 m Solar Telescope. Data was sampled at multiple positions within the Halpha line profile for both an ondisk and limb location. The data is host to numerous rapidly appearing features which are observed at different locations within the Halpha line profile. The feature's durations vary between 10 and 20 s and lengths around 3500 km. Sometimes, a time delay in their appearance between the blue ...

  16. The High Cadence Transient Survey (HiTS) - I. Survey design and supernova shock breakout constraints

    CERN Document Server

    Förster, Francisco; Martín, Jaime San; Hamuy, Mario; Martínez, Jorge; Huijse, Pablo; Cabrera, Guillermo; Galbany, Lluís; de Jaeger, Thomas; González-Gaitán, Santiago; Anderson, Joseph P; Kuncarayakti, Hanindyo; Pignata, Giuliano; Bufano, Filomena; Littín, Jorge; Olivares, Felipe; Medina, Gustavo; Smith, R Chris; Vivas, A Katherina; Estévez, Pablo A; Muñoz, Ricardo; Vera, Eduardo

    2016-01-01

    We present the first results of the High cadence Transient Survey (HiTS), a survey whose objective is to detect and follow up optical transients with characteristic timescales from hours to days, especially the earliest hours of supernova (SN) explosions. HiTS uses the Dark Energy Camera (DECam) and a custom made pipeline for image subtraction, candidate filtering and candidate visualization, which runs in real-time to be able to react rapidly to the new transients. We discuss the survey design, the technical challenges associated with the real-time analysis of these large volumes of data and our first results. In our 2013, 2014 and 2015 campaigns we have detected more than 120 young SN candidates, but we did not find a clear signature from the short-lived SN shock breakouts (SBOs) originating after the core collapse of red supergiant stars, which was the initial science aim of this survey. Using the empirical distribution of limiting-magnitudes from our observational campaigns we measured the expected recove...

  17. RATS-Kepler -- a deep high cadence survey of the Kepler field

    CERN Document Server

    Ramsay, Gavin; Hakala, Pasi; Barclay, Thomas; Garcia-Alvarez, David; Antoci, Victoria; Greiss, Sandra; Still, Martin; Steeghs, Danny; Gansicke, Boris; Reynolds, Mark

    2013-01-01

    We outline the purpose, strategy and first results of a deep, high cadence, photometric survey of the Kepler field using the Isaac Newton Telescope on La Palma and the MDM 1.3m Telescope on Kitt Peak. Our goal was to identify sources located in the Kepler field of view which are variable on a timescale of a few mins to 1 hour. The astrophysically most interesting sources would then have been candidates for observation using Kepler using 1 min sampling. Our survey covered ~42% of the Kepler field of view and we have obtained light curves for 7.1x10^5 objects in the range 13images available to download. We obtained Kepler data of 18 sources which we found to be variable using our survey and we give an overview of the currently available data here. These sources include a pulsating DA white dwarf, eleven delta Sct sta...

  18. Low cadence interval training at moderate intensity does not improve cycling performance in highly trained veteran cyclists

    Directory of Open Access Journals (Sweden)

    Morten eKristoffersen

    2014-01-01

    Full Text Available Purpose: The aim of the present study was to investigate effects of low cadence training at moderate intensity on aerobic capacity, cycling performance, gross efficiency, freely chosen cadence and leg strength in veteran cyclists. Method: Twenty-two well trained veteran cyclists (age: 47 ±6 years, maximal oxygen consumption (VO2max: 57.9 ±3.7 ml. kg-1. min-1 were randomized into two groups, a low cadence training group and a freely chose cadence training group. Respiratory variables, power output, cadence and leg strength were tested before and after a 12 weeks training intervention period. The low cadence training group performed 12 weeks of moderate (73-82 % of maximal heart rate (HRmax interval training (5 x 6 min with a cadence of 40 revolutions per minute (rpm two times a week, in addition to their usual training. The freely chosen cadence group added 90 minutes of training at freely chosen cadence at moderate intensity. Results: No significant effects of the low cadence training on aerobic capacity, cycling performance, power output, cadence, gross efficiency or leg strength was found. The freely chosen cadence group significantly improved both VO2max (58.9±2.4 vs. 62.2±3.2 ml. kg-1. min-1, VO2 consumption at lactate threshold (49.4 ±3.8 vs. 51.8±3.5 ml. kg-1. min-1 and during the 30 min performance test (52.8±3.0 vs. 54.7±3.5 ml. kg-1. min-1, and power output at lactate threshold (284 ±47 vs. 294 ±48 W and during the 30 min performance test (284±42 vs. 297±50 W. Conclusion: Twelve weeks of low cadence (40 rpm interval training at moderate intensity (73-82 % of HRmax twice a week does not improve aerobic capacity, cycling performance or leg strength in highly trained veteran cyclists. However, adding training at same intensity (% of HRmax and duration (90 minutes weekly at freely chosen cadence seems beneficial for performance and physiological adaptations.

  19. Cadence® High High-Speed PCB Design Flow Workshop

    CERN Document Server

    2006-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  20. High-cadence observations of CME initiation and plasma dynamics in the corona with TESIS on board CORONAS-Photon

    Science.gov (United States)

    Bogachev, Sergey; Kuzin, Sergey; Zhitnik, I. A.; Bugaenko, O. I.; Goncharov, A. L.; Ignatyev, A. P.; Krutov, V. V.; Lomkova, V. M.; Mitrofanov, A. V.; Nasonkina, T. P.; Oparin, S. N.; Petzov, A. A.; Shestov, S. V.; Slemzin, V. A.; Soloviev, V. A.; Suhodrev, N. K.; Shergina, T. A.

    The TESIS is an ensemble of space instruments designed in Lebedev Institute of Russian Academy of Sciences for spectroscopic and imaging investigation of the Sun in EUV and soft X-ray spectral range with high spatial, temporal and spectral resolution. From 2009 January, when TESIS was launched onboard the Coronas-Photon satellite, it provided about 200 000 new images and spectra of the Sun, obtained during one of the deepest solar minimum in last century. Because of the wide field of view (4 solar radii) and high sensitivity, TESIS provided high-quality data on the origin and dynamics of eruptive prominences and CMEs in the low and intermediate solar corona. TESIS is also the first EUV instrument which provided high-cadence observations of coronal bright points and solar spicules with temporal resolution of a few seconds. We present first results of TESIS observations and discuss them from a scientific point of view.

  1. High Cadence Digital Full Disk Hα Patrol Device at Kanzelhöhe

    Science.gov (United States)

    Otruba, W.

    1999-09-01

    The need for monitoring the sun in the prominent Hα-line is evident. For a long time this recording was done on photographic film at Kanzelhöhe Solar Observatory. Now with the evolution of CCDs and digital mass storage devices it is possible and even more economical to do this job digitally. A 1kx1k CCD camera and a standard frame grabbing system on a conventional PC are attached to the established Kanzelhöhe Patrol Instrument with a narrow band Hα filter. At the present state a very simple frame selection mechanism is installed to improve the image quality. The data are archived on CDs. The development of a standard image processing and evaluation system is in progress. Low cadence synoptic images are currently fed into the SOHO synoptic database. Instant data access from the Kanzelhöhe database via WWW is planned.

  2. Investigating the Magnetic Imprints of Major Solar Eruptions with SDO/HMI High-Cadence Vector Magnetograms

    Science.gov (United States)

    Sun, Xudong; Hoeksema, Jon Todd; Liu, Yang; Kazachenko, Maria D.; Chen, Ruizhu

    2017-08-01

    The solar active region photospheric magnetic field evolves rapidly during major eruptive events, suggesting appreciable feedback from the corona. Previous studies of these “magnetic imprints” are mostly based on line-of-sight only or lower-cadence vector observations; a temporally resolved depiction of the vector field evolution is hitherto lacking. Here, we introduce the high-cadence (90 s or 135 s) vector magnetogram data set from the Helioseismic and Magnetic Imager, which is well suited for investigating the phenomenon. These observations allow quantitative characterization of the permanent, step-like changes that are most pronounced in the horizontal field component (Bh). A highly structured pattern emerges from analysis of several events, including an archetypical example, SOL2011-02-15T01:56, where Bh near the main polarity inversion line increases significantly during the earlier phase of the associated flare with a timescale of several minutes, while Bh in the periphery decreases at later times with smaller magnitudes and a slightly longer timescale. The data set also allows effective identification of the “magnetic transient” artifact, where enhanced flare emission alters the Stokes profiles and the inferred magnetic field becomes unreliable. Our results provide insights on the momentum processes in solar eruptions. The data set may also be useful to the study of sunquakes and data-driven modeling of the corona.

  3. High-cadence observations of spicular-type events on the Sun

    Science.gov (United States)

    Shetye, J.; Doyle, J. G.; Scullion, E.; Nelson, C. J.; Kuridze, D.; Henriques, V.; Woeger, F.; Ray, T.

    2016-05-01

    Context. Chromospheric observations taken at high-cadence and high-spatial resolution show a range of spicule-like features, including Type-I, Type-II (as well as rapid blue-shifted excursions (RBEs) and rapid red-shifted excursions (RREs) which are thought to be on-disk counterparts of Type-II spicules) and those which seem to appear within a few seconds, which if interpreted as flows would imply mass flow velocities in excess of 1000 km s-1. Aims: This article seeks to quantify and study rapidly appearing spicular-type events. We also compare the multi-object multi-frame blind deconvolution (MOMFBD) and speckle reconstruction techniques to understand if these spicules are more favourably observed using a particular technique. Methods: We use spectral imaging observations taken with the CRisp Imaging SpectroPolarimeter (CRISP) on the Swedish 1-m Solar Telescope. Data was sampled at multiple positions within the Hα line profile for both an on-disk and limb location. Results: The data is host to numerous rapidly appearing features which are observed at different locations within the Hα line profile. The feature's durations vary between 10-20 s and lengths around 3500 km. Sometimes, a time delay in their appearance between the blue and red wings of 3-5 s is evident, whereas, sometimes they are near simultaneous. In some instances, features are observed to fade and then re-emerge at the same location several tens of seconds later. Conclusions: We provide the first statistical analysis of these spicules and suggest that these observations can be interpreted as the line-of-sight (LOS) movement of highly dynamic spicules moving in and out of the narrow 60 mÅ transmission filter that is used to observe in different parts of the Hα line profile. The LOS velocity component of the observed fast chromospheric features, manifested as Doppler shifts, are responsible for their appearance in the red and blue wings of Hα line. Additional work involving data at other

  4. Cadence® High-Speed PCB Layout Flow Workshop

    CERN Document Server

    2003-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  5. Plasma dynamics in solar macrospicules from high-cadence EUV observations

    CERN Document Server

    Loboda, I P

    2016-01-01

    Macrospicules are relatively large spicule-like formations found mainly over the polar coronal holes when observing in the transition region spectral lines. In this study, we took advantage of the two short series of observations in the He II 304 \\r{A} line obtained by the TESIS solar observatory with a cadence of up to 3.5 s to study the dynamics of macrospicules in unprecedented detail. We used a one-dimensional hydrodynamic method based on the assumption of their axial symmetry and on a simple radiative transfer model to reconstruct the evolution of the internal velocity field of 18 macrospicules from this dataset. Besides the internal dynamics, we studied the motion of the apparent end points of the same 18 macrospicules and found 15 of them to follow parabolic trajectories with high precision which correspond closely to the obtained velocity fields. We found that in a clear, unperturbed case these macrospicules move with a constant deceleration inconsistent with a purely ballistic motion and have roughly...

  6. Precise High-Cadence Time Series of Five Variable Young Stars in Auriga with MOST

    CERN Document Server

    Cody, Ann Marie; Hillenbrand, Lynne A; Matthews, Jaymie M; Kallinger, Thomas

    2013-01-01

    To explore young star variability on a large range of timescales, we have used the MOST satellite to obtain 24 days of continuous, sub-minute cadence, high-precision optical photometry on a field of classical and weak-lined T Tauri stars (TTS) in the Taurus-Auriga star formation complex. Observations of AB Aurigae, SU Aurigae, V396 Aurigae, V397 Aurigae, and HD 31305 reveal brightness fluctuations at the 1-10% level on timescales of hours to weeks. We have further assessed the variability properties with Fourier, wavelet, and autocorrelation techniques, identifying one significant period per star. We present spot models in an attempt to fit the periodicities, but find that we cannot fully account for the observed variability. Rather, all stars exhibit a mixture of periodic and aperiodic behavior, with the latter dominating stochastically on timescales less than several days. After removal of the main periodicity, periodograms for each light curve display power law trends consistent with those seen for other y...

  7. Plasma dynamics in solar macrospicules from high-cadence extreme-UV observations

    Science.gov (United States)

    Loboda, I. P.; Bogachev, S. A.

    2017-01-01

    Macrospicules are relatively large spicule-like formations found mainly over the polar coronal holes when observing in the transition region spectral lines. In this study, we took advantage of the two short series of observations in the He ii 304 Å line obtained by the TESIS solar observatory with a cadence of up to 3.5 s to study the dynamics of macrospicules in unprecedented detail. We used a one-dimensional hydrodynamic method based on the assumption of their axial symmetry and on a simple radiative transfer model to reconstruct the evolution of the internal velocity field of 18 macrospicules from this dataset. Besides the internal dynamics, we studied the motion of the apparent end points of the same 18 macrospicules and found 15 of them to follow parabolic trajectories with high precision which correspond closely to the obtained velocity fields. We found that in a clear, unperturbed case these macrospicules move with a constant deceleration inconsistent with a purely ballistic motion and have roughly the same velocity along their entire axis, with the obtained decelerations typically ranging from 160 to 230 m s-2, and initial velocities from 80 to 130 km s-1. We also found a propagating acoustic wave for one of the macrospicules and a clear linear correlation between the initial velocities of the macrospicules and their decelerations, which indicates that they may be driven by magneto-acoustic shocks. Finally, we inverted our previous method by taking velocities from the parabolic fits to give rough estimates of the percentage of mass lost by 12 of the macrospicules. We found that typically from 10 to 30% of their observed mass fades out of the line (presumably being heated to higher coronal temperatures) with three exceptions of 50% and one of 80%.

  8. Column Store for GWAC: A High-cadence, High-density, Large-scale Astronomical Light Curve Pipeline and Distributed Shared-nothing Database

    Science.gov (United States)

    Wan, Meng; Wu, Chao; Wang, Jing; Qiu, Yulei; Xin, Liping; Mullender, Sjoerd; Mühleisen, Hannes; Scheers, Bart; Zhang, Ying; Nes, Niels; Kersten, Martin; Huang, Yongpan; Deng, Jinsong; Wei, Jianyan

    2016-11-01

    The ground-based wide-angle camera array (GWAC), a part of the SVOM space mission, will search for various types of optical transients by continuously imaging a field of view (FOV) of 5000 degrees2 every 15 s. Each exposure consists of 36 × 4k × 4k pixels, typically resulting in 36 × ∼175,600 extracted sources. For a modern time-domain astronomy project like GWAC, which produces massive amounts of data with a high cadence, it is challenging to search for short timescale transients in both real-time and archived data, and to build long-term light curves for variable sources. Here, we develop a high-cadence, high-density light curve pipeline (HCHDLP) to process the GWAC data in real-time, and design a distributed shared-nothing database to manage the massive amount of archived data which will be used to generate a source catalog with more than 100 billion records during 10 years of operation. First, we develop HCHDLP based on the column-store DBMS of MonetDB, taking advantage of MonetDB’s high performance when applied to massive data processing. To realize the real-time functionality of HCHDLP, we optimize the pipeline in its source association function, including both time and space complexity from outside the database (SQL semantic) and inside (RANGE-JOIN implementation), as well as in its strategy of building complex light curves. The optimized source association function is accelerated by three orders of magnitude. Second, we build a distributed database using a two-level time partitioning strategy via the MERGE TABLE and REMOTE TABLE technology of MonetDB. Intensive tests validate that our database architecture is able to achieve both linear scalability in response time and concurrent access by multiple users. In summary, our studies provide guidance for a solution to GWAC in real-time data processing and management of massive data.

  9. The DECam Minute Cadence Survey I

    CERN Document Server

    Belardi, Claudia; Munn, Jeffrey A; Gianninas, A; Barber, Sara D; Dey, Arjun; Stetson, Peter B

    2016-01-01

    We present the first results from a minute cadence survey of a three square degree field obtained with the Dark Energy Camera. We imaged part of the Canada-France-Hawaii Telescope Legacy Survey area over eight half-nights. We use the stacked images to identify 111 high proper motion white dwarf candidates with g $\\leq24.5$ mag and search for eclipse-like events and other sources of variability. We find a new g = 20.64 mag pulsating ZZ Ceti star with pulsation periods of 11-13 min. However, we do not find any transiting planetary companions in the habitable zone of our target white dwarfs. Given the probability of eclipses of 1% and our observing window from the ground, the non-detection of such companions in this first field is not surprising. Minute cadence DECam observations of additional fields will provide stringent constraints on the frequency of planets in the white dwarf habitable zone.

  10. Effects of low and high cadence interval training on power output in flat and uphill cycling time-trials.

    Science.gov (United States)

    Nimmerichter, Alfred; Eston, Roger; Bachl, Norbert; Williams, Craig

    2012-01-01

    This study tested the effects of low-cadence (60 rev min(-1)) uphill (Int(60)) or high-cadence (100 rev min(-1)) level-ground (Int(100)) interval training on power output (PO) during 20-min uphill (TT(up)) and flat (TT(flat)) time-trials. Eighteen male cyclists ([Formula: see text]: 58.6 ± 5.4 mL min(-1) kg(-1)) were randomly assigned to Int(60), Int(100) or a control group (Con). The interval training comprised two training sessions per week over 4 weeks, which consisted of six bouts of 5 min at the PO corresponding to the respiratory compensation point (RCP). For the control group, no interval training was conducted. A two-factor ANOVA revealed significant increases on performance measures obtained from a laboratory-graded exercise test (GXT) (P (max): 2.8 ± 3.0%; p < 0.01; PO and [Formula: see text] at RCP: 3.6 ± 6.3% and 4.7 ± 8.2%, respectively; p < 0.05; and [Formula: see text] at ventilatory threshold: 4.9 ± 5.6%; p < 0.01), with no significant group effects. Significant interactions between group and uphill and flat time-trial, pre- versus post-training on PO were observed (p < 0.05). Int(60) increased PO during both TT(up) (4.4 ± 5.3%) and TT(flat) (1.5 ± 4.5%). The changes were -1.3 ± 3.6, 2.6 ± 6.0% for Int(100) and 4.0 ± 4.6%, -3.5 ± 5.4% for Con during TT(up) and TT(flat), respectively. PO was significantly higher during TT(up) than TT(flat) (4.4 ± 6.0; 6.3 ± 5.6%; pre and post-training, respectively; p < 0.001). These findings suggest that higher forces during the low-cadence intervals are potentially beneficial to improve performance. In contrast to the GXT, the time-trials are ecologically valid to detect specific performance adaptations.

  11. Factors affecting cadence choice during submaximal cycling and cadence influence on performance.

    Science.gov (United States)

    Hansen, Ernst A; Smith, Gerald

    2009-03-01

    Cadence choice during cycling has been of considerable interest among cyclists, coaches, and researchers for nearly 100 years. The present review examines and summarizes the current knowledge of factors affecting the freely chosen cadence during submaximal cycling and of the influence of cadence choice on performance. In addition, suggestions for future research are given along with scientifically based, practical recommendations for those involved in cycling. Within the past 10 years, a number of papers have been published that have brought novel insight into the subject. For example, under the influence of spinal central pattern generators, a robust innate voluntary motor rhythm has been suggested as the primary basis for freely chosen cadence in cycling. This might clarify the cadence paradox in which the freely chosen cadence during low-to-moderate submaximal cycling is considerably higher and thereby less economical than the energetically optimal cadence. A number of factors, including age, power output, and road gradient, have been shown to affect the choice of cadence to some extent. During high-intensity cycling, close to the maximal aerobic power output, cyclists choose an energetically economical cadence that is also favorable for performance. In contrast, the choice of a relatively high cadence during cycling at low-to-moderate intensity is uneconomical and could compromise performance during prolonged cycling.

  12. High-cadence observations of spicular-type events and their wave-signatures

    Science.gov (United States)

    Shetye, Juie

    2016-05-01

    We present, a statistical study of spectral images, taken from the CRISP instrument at the Swedish 1-m Solar Telescope in H-alpha 656.28 nm of fast spicules with Doppler velocities in the range of -41km/s to +41 km/s. Remarkably, many of these spicules display apparent velocities above 500 km/s, very short lifetimes of up to 20 s combined with width or thickness of 100 km and apparent lengths of around 3500 km. Here we present, the other spectral properties of these events in the H-alpha line scan. Most features showed signature in multiple line position as we scan along the line scan. In around 89 % of the cases, there is temporal offset by 3.7 s to 5 s between the red-wing and blue-wing signatures. Another result is that 25% of cases are repetitive i.e. appear at the same location but they are not co-temporal or necessarily periodic in nature. Putting all the evidence together, we interpret the observations as mass motions (of flux tubes) that appear in the field-of-view of CRISP’s 0.0060 nm filters in the line of sight, along their projection as we scan. Further we observed transverse motion associated with these structures, which in some cases could be related to high-frequency kink-waves. We describe some cases showing this motion and the energies associated with them. The current work presented already tests the limits of current telescopes in terms of the temporal and spatial resolution. DKIST VTF instrument, having 3 times more spatial resolution than CRISP and much higher temporal resolution, we can being to understand the nature of such fine-scale transient phenomena in greater details.

  13. Young brown dwarfs at high cadence: Warm Spitzer time series monitoring of very low mass Sigma Orionis cluster members

    CERN Document Server

    Cody, Ann Marie

    2011-01-01

    The continuous temporal coverage and high photometric precision afforded by space observatories has opened up new opportunities for the study of variability processes in young stellar cluster members. Of particular interest is the phenomenon of deuterium-burning pulsation in brown dwarfs and very-low-mass stars, whose existence on 1-4 hours timescales has been proposed but not yet borne out by observations. To investigate short-timescale variability in young, low-mass objects, we carried out high-precision, high-cadence time series monitoring with the Warm Spitzer mission on 14 low mass stars and brown dwarfs in the ~3 Myr Sigma Orionis cluster. The flux in many of our raw light curves is strongly correlated with sub-pixel position and can vary systematically as much as 10%. We present a new approach to disentangle true stellar variability from this "pixel-phase effect," which is more pronounced in Warm Spitzer observations as compared to the cryogenic mission. The light curves after correction reveal that mo...

  14. High Cadence Observations and Analysis of Spicular-type Events Using CRISP Onboard SST

    Science.gov (United States)

    Shetye, J.; Doyle, J. G.; Scullion, E.; Nelson, C. J.; Kuridze, D.

    2016-04-01

    We present spectroscopic and imaging observations of apparent ultra-fast spicule-like features observed with CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST). The data shows spicules with an apparent velocity above 500 km s-1, very short lifetimes of up to 20 s and length/height around 3500 km. The spicules are seen as dark absorption structures in the Hα wings ±516 mÅ, ±774 mÅ and ±1032 mÅ which suddenly appear and disappear from the FOV. These features show a time delay in their appearance in the blue and red wings by 3-5 s. We suggest that their appearance/disappearance is due to their Doppler motion in and out of the 60 mÅ filter. See Fig. 1 for the evolution of the event at two line positions.

  15. High Cadence Photometric Survey of Four Southern Hemisphere Milky Way Globular Clusters

    Science.gov (United States)

    Walker, Douglas Kyle; Albrow, Michael

    2015-08-01

    The Milky Way galaxy is surrounded by some 200 compact Globular Cluster (GCs) of stars, containing up to a million stars each. At 13 billion years of age, these globular clusters are almost as old as the universe itself and were born when the first generations of stars and galaxies formed. GCs are dynamical test beds for investigating and proving theories of stellar evolution. A key parameter to understanding the evolution of GCs is the binary fraction of stars contained within a GC. Binary stars are thought to be a controlling factor in globular cluster evolution and provide a unique tool to determine crucial information about a variety of stellar characteristics such as mass, radius and luminosity. In addition to containing binary stars, GCs also harbor a wide variety of variable stars such as RR Lyrae stars and other stellar exotica, such as blue stragglers, cataclysmic variables, and low-mass X-ray binaries. Recently, a potential new class of rapidly pulsating star, hydrogen-rich subdwarf (sdO) pulsators, has been discovered in the Omega Centauri GC. At present, these Hydrogen sdO pulsators have not been detected in any other GC or among the general field star population.This talk will discuss the use of Difference Imaging Algorithms (DIAs) applied to time-series photometry data from the 10m Southern African Large Telescope (SALT) to investigate short period low amplitude variable stars in the GCs: NGC 1904, NGC 2808, NGC 4833 and NGC 5139. We will present results of• Searching for new discoveries in pulsating stars, cataclysmic variables (a white dwarf star accreting material from its companion), BY Draconis stars (rapidly rotating dwarf stars spun up by a binary companion) and contact binary stars (rapidly rotating binaries that are beginning to coalesce)• Comparison analysis of variables across clusters in relation to cluster Main Sequence regions• Determining the fraction of binary stars in the identified GCsSpecific scientific questions that are

  16. High-cadence spectroscopy of M-dwarfs - II. Searching for stellar pulsations with HARPS

    Science.gov (United States)

    Berdiñas, Z. M.; Rodríguez-López, C.; Amado, P. J.; Anglada-Escudé, G.; Barnes, J. R.; MacDonald, J.; Zechmeister, M.; Sarmiento, L. F.

    2017-08-01

    Stellar oscillations appear all across the Hertzsprung-Russell diagram. Recent theoretical studies support their existence also in the atmosphere of M dwarfs. These studies predict for them short periodicities ranging from 20 min to 3 h. Our Cool Tiny Beats (CTB) programme aims at finding these oscillations for the very first time. With this goal, CTB explores the short time domain of M dwarfs using radial velocity data from the High Accuracy Radial velocity Planet Searcher (HARPS)-European Southern Observatory and HARPS-N high-precision spectrographs. Here we present the results for the two most long-term stable targets observed to date with CTB, GJ 588 and GJ 699 (i.e. Barnard's star). In the first part of this work we detail the correction of several instrumental effects. These corrections are especially relevant when searching for subnight signals. Results show no significant signals in the range where M dwarfs pulsations were predicted. However, we estimate that stellar pulsations with amplitudes larger than ˜0.5 m s-1 can be detected with a 90 per cent completeness with our observations. This result, along with the excess of power regions detected in the periodograms, opens the possibility of non-resolved very low amplitude pulsation signals. Next generation more precise instrumentation would be required to detect such oscillations. However, the possibility of detecting pulsating M-dwarf stars with larger amplitudes is feasible due to the short size of the analysed sample. This motivates the need for completeness of the CTB survey.

  17. Programmable Cadence Timer

    Science.gov (United States)

    Hall, William A.; Gilbert, John

    1990-01-01

    Electronic metronome paces users through wide range of exercise routines. Conceptual programmable cadence timer provides rhythmic aural and visual cues. Timer automatically changes cadence according to program entered by the user. It also functions as clock, stopwatch, or alarm. Modular pacer operated as single unit or as two units. With audiovisual module moved away from base module, user concentrates on exercise cues without distraction from information appearing on the liquid-crystal display. Variety of uses in rehabilitative medicine, experimental medicine, sports, and gymnastics. Used in intermittent positive-pressure breathing treatment, in which patient must rhythmically inhale and retain medication delivered under positive pressure; and in incentive spirometer treatment, in which patient must inhale maximally at regular intervals.

  18. Does limited gear ratio driven higher training cadence in junior cycling reflect in maximum effort sprint?

    OpenAIRE

    Rannama, Indrek; Port, Kristjan; Bazanov, Boriss

    2012-01-01

    Maximum gears for youth category riders are limited. As a result, youth category riders are regularly compelled to ride in a high cadence regime. The aim of this study was to investigate if regular work at high cadence regime due to limited transmission in youth category riders reflects in effectual cadence at the point of maximal power generation during the 10 second sprint effort. 24 junior and youth national team cyclist’s average maximal peak power at various cadence regimes was registere...

  19. OGLE-2015-BLG-0051/KMT-2015-BLG-0048Lb: a Giant Planet Orbiting a Low-mass Bulge Star Discovered by High-cadence Microlensing Surveys

    CERN Document Server

    Han, C; Gould, A; Bozza, V; Jung, Y K; Albrow, M D; Kim, S -L; Lee, C -U; Cha, S -M; Kim, D -J; Lee, Y; Park, B -G; Shin, I -G; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Wyrzykowski, Ł; Pawlak, M

    2016-01-01

    We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite that the short planetary signal occurred in the very early Bulge season during which the lensing event could be seen for just about an hour, the signal was continuously and densely covered. From the Bayesian analysis using models of the mass function, matter and velocity distributions combined with the information of the angular Einstein radius, it is found that the host of the planet is located in the Galactic bulge. The planet has a mass $0.72_{-0.07}^{+0.65}\\ M_{\\rm J}$ and it is orbiting a low-mass M-dwarf host with a projected separation $d_\\perp=0.73 \\pm 0.08$ AU. The discovery of the planet demonstrates the capability of the current high-cadence microlensing lensing surveys in detecting and characterizing planets.

  20. Double-mode radial-non-radial RR Lyrae stars. OGLE-IV photometry of two high cadence fields in the Galactic bulge

    CERN Document Server

    Netzel, H; Moskalik, P

    2015-01-01

    We analyse the OGLE-IV photometry of the first overtone and double-mode RR Lyrae stars (RRc/RRd) in the two fields towards the Galactic bulge observed with high cadence. In 27 per cent of RRc stars we find additional non-radial mode, with characteristic period ratio, P x /P 1O \\in (0.6, 0.64). It strongly corroborates the conclusion arising from the analysis of space photometry of RRc stars, that this form of pulsation must be common. In the Petersen diagram the stars form three sequences. In 20 stars we find two or three close secondary modes simultaneously. The additional modes are clearly non-stationary. Their amplitude and/or phase vary in time. As a result, the patterns observed in the frequency spectra of these stars may be very complex. In some stars the additional modes split into doublets, triplets or appear as a more complex bands of increased power. Subharmonics of additional modes are detected in 20 per cent of stars. They also display a complex structure. Including our previous study of the OGLE-...

  1. OGLE-2015-BLG-0051/KMT-2015-BLG-0048Lb: A Giant Planet Orbiting a Low-mass Bulge Star Discovered by High-cadence Microlensing Surveys

    Science.gov (United States)

    Han, C.; Udalski, A.; Gould, A.; Bozza, V.; Jung, Y. K.; Albrow, M. D.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; Park, B.-G.; Shin, I.-G.; KMTNet Collaboration; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Wyrzykowski, Ł.; Pawlak, M.; OGLE Collaboration

    2016-10-01

    We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite the fact that the short planetary signal occurred in the very early Bulge season during which the lensing event could be seen for just about an hour, the signal was continuously and densely covered. From the Bayesian analysis using models of the mass function, and matter and velocity distributions, combined with information on the angular Einstein radius, it is found that the host of the planet is located in the Galactic bulge. The planet has a mass {0.72}-0.07+0.65 {M}{{J}} and it is orbiting a low-mass M-dwarf host with a projected separation {d}\\perp =0.73+/- 0.08 {{au}}. The discovery of the planet demonstrates the capability of the current high-cadence microlensing lensing surveys in detecting and characterizing planets.

  2. High-cadence nowcast of a proxy K-type index of the local magnetic activity for improved space weather monitoring applications

    Science.gov (United States)

    Stankov, S.; Verhulst, T. G. W.; Sapundjiev, D.

    2016-12-01

    The K index is a quasi-logarithmic index characterizing the 3-hourly range in the transient geomagnetic field activity at a certain location relative to its regular "quiet-day" variation. It is a popular choice among researchers; however, the 3-hour time scale is much larger than the characteristic time of various phenomena associated with an elevated geomagnetic activity. These include disturbances in the ionosphere that are of particular interest because of their (adverse) effects on present-day radio communications and navigation practices. From this aspect, there is an on-going demand for services providing real-time assessment of the (local and global) magnetic activity and alerting the users for the purpose of taking mitigating actions. An obstacle to the real-time estimation of the K index stems from the fact that the original definition of this index postulates the use of measurements from both sides of the abovementioned 3-hour interval. We offer a method for estimating, in real time, the local magnetic activity via a K-type index (K*) which closely resembles the "classical" K index. The main difference is in the way of determining the solar regular variation of the geomagnetic field - the new, real-time approach uses data from past measurements only. Another difference is that the concept of fixed 3-hour time periods (0-3, 3-6, …, 21-24), each characterized with a single K value, is abolished; instead, in the new approach, a K* value is derived at any time using data from the most recent 3 hours. Following this approach, a novel nowcast system was developed based on a fully automated computer procedure for real-time digital magnetogram data acquisition, data screening, establishing the field's regular variation, calculating the K* index, and issuing an alert if storm-level activity is indicated. The nominal cadence is envisaged to be as high as one K* value per minute. Another important feature of this nowcast system is the strict control on the data

  3. The influence of gait cadence on the ground reaction forces and plantar pressures during load carriage of young adults.

    Science.gov (United States)

    Castro, Marcelo P; Figueiredo, Maria Cristina; Abreu, Sofia; Sousa, Helena; Machado, Leandro; Santos, Rubim; Vilas-Boas, João Paulo

    2015-07-01

    Biomechanical gait parameters--ground reaction forces (GRFs) and plantar pressures--during load carriage of young adults were compared at a low gait cadence and a high gait cadence. Differences between load carriage and normal walking during both gait cadences were also assessed. A force plate and an in-shoe plantar pressure system were used to assess 60 adults while they were walking either normally (unloaded condition) or wearing a backpack (loaded condition) at low (70 steps per minute) and high gait cadences (120 steps per minute). GRF and plantar pressure peaks were scaled to body weight (or body weight plus backpack weight). With medium to high effect sizes we found greater anterior-posterior and vertical GRFs and greater plantar pressure peaks in the rearfoot, forefoot and hallux when the participants walked carrying a backpack at high gait cadences compared to walking at low gait cadences. Differences between loaded and unloaded conditions in both gait cadences were also observed.

  4. Effect of starting cadence on sprint-performance indices in friction-loaded cycle ergometry.

    Science.gov (United States)

    Wright, Rachel L; Wood, Dan M; James, David V B

    2007-03-01

    The aims of the study were to investigate whether starting cadence had an effect on 10-s sprint-performance indices in friction-loaded cycle ergometry and to investigate the influence of method of power determination. In a counterbalanced order, 12 men and 12 women performed three 10-s sprints using a stationary (0 rev/min), moderate (60 rev/min), and high (120 rev/min) starting cadence. Calculated performance indices were peak power, cadence at peak power, time to peak power, and work to peak power. When the uncorrected method of power determination was applied, there was a main effect for starting cadence in female participants for peak power (stationary 635 +/- 183.7 W, moderate 615.4 +/- 168.9 W, and high 798.4 +/- 120.1 W) and cadence at peak power (89.8 +/- 2.3 rev/min, 87.9 +/- 21.5 rev/min, and 113.1 +/- 12.5 rev/min). For both the uncorrected and directly measured methods of power determination in men and women, there was a main effect for starting cadence for time to peak power and work to peak power. In women, for an uncorrected method of power determination, it can be concluded that starting cadence does affect peak power and cadence at peak power. This effect is, however, negated by a direct-measurement method of power determination. In men and women, for both uncorrected and directly measured methods of power determination, time to peak power and work to peak power were affected by starting cadence. Therefore, a higher-cadence start is unsuitable, particularly when sprint-performance indices are determined from an uncorrected method.

  5. Effects of cycling training at imposed low cadences

    DEFF Research Database (Denmark)

    Hansen, Ernst A.; Rønnestad, Bent R.

    2017-01-01

    cadence. Eighty rpm can for example be considered a low cadence if effort is maximal. On the other hand, the cadence has to be lower than 80 rpm (e.g. 40-70 rpm) to be considered low if cycling is performed at low power output. The reason is that the choice of cadence is dependent on power output...

  6. A novel method for transient detection in high-cadence optical surveys. Its application for a systematic search for novae in M 31

    Science.gov (United States)

    Soraisam, Monika D.; Gilfanov, Marat; Kupfer, Thomas; Masci, Frank; Shafter, Allen W.; Prince, Thomas A.; Kulkarni, Shrinivas R.; Ofek, Eran O.; Bellm, Eric

    2017-02-01

    Context. In the present era of large-scale surveys in the time domain, the processing of data, from procurement up to the detection of sources, is generally automated. One of the main challenges in the astrophysical analysis of their output is contamination by artifacts, especially in the regions of high surface brightness of unresolved emission. Aims: We present a novel method for identifying candidates for variable and transient sources from the outputs of optical time-domain survey data pipelines. We use the method to conduct a systematic search for novae in the intermediate Palomar Transient Factory (iPTF) observations of the bulge part of M 31 during the second half of 2013. Methods: We demonstrate that a significant fraction of artifacts produced by the iPTF pipeline form a locally uniform background of false detections approximately obeying Poissonian statistics, whereas genuine variable and transient sources, as well as artifacts associated with bright stars, result in clusters of detections whose spread is determined by the source localization accuracy. This makes the problem analogous to source detection on images produced by grazing incidence X-ray telescopes, enabling one to utilize the arsenal of powerful tools developed in X-ray astronomy. In particular, we use a wavelet-based source detection algorithm from the Chandra data analysis package CIAO. Results: Starting from 2.5 × 105 raw detections made by the iPTF data pipeline, we obtain approximately 4000 unique source candidates. Cross-matching these candidates with the source-catalog of a deep reference image of the same field, we find counterparts for 90% of the candidates. These sources are either artifacts due to imperfect PSF matching or genuine variable sources. The remaining approximately 400 detections are transient sources. We identify novae among these candidates by applying selection cuts to their lightcurves based on the expected properties of novae. Thus, we recovered all 12 known novae

  7. High-cadence spectroscopy of M dwarfs - I. Analysis of systematic effects in HARPS-N line profile measurements on the bright binary GJ 725A+B

    Science.gov (United States)

    Berdiñas, Z. M.; Amado, P. J.; Anglada-Escudé, G.; Rodríguez-López, C.; Barnes, J.

    2016-07-01

    Understanding the sources of instrumental systematic noise is a must to improve the design of future spectrographs. In this study, we alternated observations of the well-suited pair of M-stars GJ 725A+B to delve into the sub-night High Accuracy Radial Velocity Planet Searcher for the Northern hemisphere (HARPS-N) response. Besides the possible presence of a low-mass planet orbiting GJ 725B, our observations reveal changes in the spectral energy distribution (SED) correlated with measurements of the width of the instrumental line profile and, to a lower degree, with the Doppler measurements. To study the origin of these effects, we searched for correlations among several quantities defined and measured on the spectra and on the acquisition images. We find that the changes in apparent SED are very likely related to flux losses at the fibre input. Further tests indicate that such flux losses do not seriously affect the shape of the instrumental point spread function of HARPS-N, but identify an inefficient fitting of the continuum as the most likely source of the systematic variability observed in the full width at half-maximum. This index, accounting for the HARPS-N cross-correlation profiles width, is often used to decorrelate Doppler time series. We show that the Doppler measurement obtained by a parametric least-squares fitting of the spectrum accounting for continuum variability is insensitive to changes in the slope of the SED, suggesting that forward modelling techniques to measure moments of the line profile are the optimal way to achieve higher accuracy. Remaining residual variability at ˜1 m s-1 suggests that for M-stars Doppler surveys the current noise floor still has an instrumental origin.

  8. A Cadence layout wrapper for MATLAB

    OpenAIRE

    Tsirepli, Ismini

    2006-01-01

    In this thesis, the focus is on creating a wrapper between MATLAB and the Cadence Virtuoso design environment. The central idea is to use the wrapper and write the code for an entire analog layout as scripts in MATLAB. Basically, we will implement a set of necessary commands for performing the most fundamental tasks in layout generation from within MATLAB.

  9. A novel method for transient detection in high-cadence optical surveys: Its application for a systematic search for novae in M31

    CERN Document Server

    Soraisam, Monika D; Kupfer, Thomas; Masci, Frank; Shafter, Allen W; Prince, Thomas A; Kulkarni, Shrinivas R; Ofek, Eran O; Bellm, Eric

    2016-01-01

    [abridged] In large-scale time-domain surveys, the processing of data, from procurement up to the detection of sources, is generally automated. One of the main challenges is contamination by artifacts, especially in regions of strong unresolved emission. We present a novel method for identifying candidates for variables and transients from the outputs of such surveys' data pipelines. We use the method to systematically search for novae in iPTF observations of the bulge of M31. We demonstrate that most artifacts produced by the iPTF pipeline form a locally uniform background of false detections approximately obeying Poissonian statistics, whereas genuine variables and transients as well as artifacts associated with bright stars result in clusters of detections, whose spread is determined by the source localization accuracy. This makes the problem analogous to source detection on images produced by X-ray telescopes, enabling one to utilize tools developed in X-ray astronomy. In particular, we use a wavelet-base...

  10. The Effect of Cadence on Shank Muscle Oxygen Consumption and Deoxygenation in Relation to Joint Specific Power and Cycling Kinematics.

    Science.gov (United States)

    Skovereng, Knut; Ettema, Gertjan; van Beekvelt, Mireille

    2017-01-01

    The purpose of the present study was to investigate the effect of cadence on joint specific power and cycling kinematics in the ankle joint in addition to muscle oxygenation and muscle VO2 in the gastrocnemius and tibialis anterior. Thirteen cyclists cycled at a cadence of 60, 70, 80, 90, 100 and 110 rpm at a constant external work rate of 160.1 ± 21.3 W. Increasing cadence led to a decrease in ankle power in the dorsal flexion phase and to an increase in ankle joint angular velocity above 80 rpm. In addition, increasing cadence increased deoxygenation and desaturation for both the gastrocnemius and tibialis anterior muscles. Muscle VO2 increased following increased cadence but only in the tibialis anterior and only at cadences above 80 rpm, thus coinciding with the increase in ankle joint angular velocity. There was no effect of cadence in the gastrocnemius. This study demonstrates that high cadences lead to increased mVO2 in the TA muscles that cannot be explained by power in the dorsal flexion phase.

  11. HIGH CADENCE NIR OBSERVATIONS OF EXTRASOLAR PLANETS

    Directory of Open Access Journals (Sweden)

    C. Caceres

    2011-01-01

    Full Text Available Un segundo paso en la caracterización de planetas extrasolares ha sido alcanzado con la detección de la emisión térmica, por medio de observaciones de las curvas de luz de estos objetos, en su fase de eclipse secundario. Utilizamos observaciones de alta resolución temporal en el infrarrojo cercano para detectar los eclipses secundarios y los tránsitos primarios de algunos planetas extrasolares observables desde el sur, las que producen una caracterización de alta precisión de estos sistemas.

  12. Effects of cadence on aerobic capacity following a prolonged, varied intensity cycling trial.

    Science.gov (United States)

    Stebbins, Charles L; Moore, Jesse L; Casazza, Gretchen A

    2014-01-01

    We determined if high cadences, during a prolonged cycling protocol with varying intensities (similar to race situations) decrease performance compared to cycling at a lower, more energetically optimal, cadence. Eight healthy, competitive male road cyclists (35 ± 2 yr) cycled for 180 min at either 80 or 100 rpm (randomized) with varying intensities of power outputs corresponding to 50, 65 and 80% of VO2max. At the end of this cycling period, participants completed a ramped exercise test to exhaustion at their preferred cadence (90 ± 7 rpm). There were no cadence differences in blood glucose, respiratory exchange ratio or rate of perceived exertion. Heart Rate, VO2 and blood lactate were higher at 100 rpm vs. 80 rpm. The total energy cost while cycling during the 65% and 80% VO2max intervals at 100 rpm (15.2 ± 2.7 and 19.1 ± 2.5 kcal∙min(-1), respectively) were higher than at 80 rpm (14.3 ± 2.7 and 18.3± 2.2 kcal∙min(-1), respectively) (p < 0.05). Gross efficiency was higher at 80 rpm vs. 100 rpm during both the 65% (22.8 ± 1.0 vs. 21.3 ± 4.5%) and the 80% (23.1 vs. 22.1 ± 0.9%) exercise intensities (P< 0.05). Maximal power during the performance test (362 ± 38 watts) was greater at 80 rpm than 100 rpm (327 ± 27 watts) (p < 0.05). Findings suggest that in conditions simulating those seen during prolonged competitive cycling, higher cadences (i.e., 100 vs. 80 rpm) are less efficient, resulting in greater energy expenditure and reduced peak power output during maximal performance. Key PointsWhen competitive cyclists perform prolonged exercise that simulates racing conditions (i.e., variable, low-moderate submaximal cycling), a higher cadence results in excess energy expenditure and lower gross efficiency compared to a lower cadence at the same power output.Consequently, maximal power output is reduced during a subsequent exercise bout to exhaustion after using a higher cadence.Selection of a lower, more energetically optimal cadence during prolonged

  13. Kinematic correlates of walking cadence in the foot.

    Science.gov (United States)

    Caravaggi, Paolo; Leardini, Alberto; Crompton, Robin

    2010-08-26

    Evidence has frequently been reported of modifications in gait patterns within the lower limb related to the cadence of walking. Most reports have concerned relationships between cadence and kinematic and the kinetic changes occurring in the main joints and muscles of the lower limb as a whole. The aim of the present study was to assess whether significant changes are also measurable in kinematics of the foot segments. An existing 15 marker-set protocol allowed a four-segment foot and shank model to be defined for relative rotations between the segments to be calculated. Stereophotogrammetry was employed to record marker position data from ten subjects walking at three cadences. The slow- and normal cadence datasets showed similar profiles of joint rotation in three anatomical planes, but significant differences were found between these and the fast cadence. At all joints, frame-by-frame statistical analysis revealed increased dorsiflexion from heel-strike to midstance (p walking.

  14. High speed multiphoton imaging

    Science.gov (United States)

    Li, Yongxiao; Brustle, Anne; Gautam, Vini; Cockburn, Ian; Gillespie, Cathy; Gaus, Katharina; Lee, Woei Ming

    2016-12-01

    Intravital multiphoton microscopy has emerged as a powerful technique to visualize cellular processes in-vivo. Real time processes revealed through live imaging provided many opportunities to capture cellular activities in living animals. The typical parameters that determine the performance of multiphoton microscopy are speed, field of view, 3D imaging and imaging depth; many of these are important to achieving data from in-vivo. Here, we provide a full exposition of the flexible polygon mirror based high speed laser scanning multiphoton imaging system, PCI-6110 card (National Instruments) and high speed analog frame grabber card (Matrox Solios eA/XA), which allows for rapid adjustments between frame rates i.e. 5 Hz to 50 Hz with 512 × 512 pixels. Furthermore, a motion correction algorithm is also used to mitigate motion artifacts. A customized control software called Pscan 1.0 is developed for the system. This is then followed by calibration of the imaging performance of the system and a series of quantitative in-vitro and in-vivo imaging in neuronal tissues and mice.

  15. Effects Of Cadence on Aerobic Capacity Following a Prolonged, Varied Intensity Cycling Trial

    Directory of Open Access Journals (Sweden)

    Charles L. Stebbins

    2014-03-01

    Full Text Available We determined if high cadences, during a prolonged cycling protocol with varying intensities (similar to race situations decrease performance compared to cycling at a lower, more energetically optimal, cadence. Eight healthy, competitive male road cyclists (35 ± 2 yr cycled for 180 min at either 80 or 100 rpm (randomized with varying intensities of power outputs corresponding to 50, 65 and 80% of VO2max. At the end of this cycling period, participants completed a ramped exercise test to exhaustion at their preferred cadence (90 ± 7 rpm. There were no cadence differences in blood glucose, respiratory exchange ratio or rate of perceived exertion. Heart Rate, VO2 and blood lactate were higher at 100 rpm vs. 80 rpm. The total energy cost while cycling during the 65% and 80% VO2max intervals at 100 rpm (15.2 ± 2.7 and 19.1 ± 2.5 kcal∙min-1, respectively were higher than at 80 rpm (14.3 ± 2.7 and 18.3± 2.2 kcal∙min-1, respectively (p < 0.05. Gross efficiency was higher at 80 rpm vs. 100 rpm during both the 65% (22.8 ± 1.0 vs. 21.3 ± 4.5% and the 80% (23.1 vs. 22.1 ± 0.9% exercise intensities (P< 0.05. Maximal power during the performance test (362 ± 38 watts was greater at 80 rpm than 100 rpm (327 ± 27 watts (p < 0.05. Findings suggest that in conditions simulating those seen during prolonged competitive cycling, higher cadences (i.e., 100 vs. 80 rpm are less efficient, resulting in greater energy expenditure and reduced peak power output during maximal performance.

  16. Using cadence to study free-living ambulatory behaviour.

    Science.gov (United States)

    Tudor-Locke, Catrine; Rowe, David A

    2012-05-01

    The health benefits of a physically active lifestyle across a person's lifespan have been established. If there is any single physical activity behaviour that we should measure well and promote effectively, it is ambulatory activity and, more specifically, walking. Since public health physical activity guidelines include statements related to intensity of activity, it follows that we need to measure and promote free-living patterns of ambulatory activity that are congruent with this intent. The purpose of this review article is to present and summarize the potential for using cadence (steps/minute) to represent such behavioural patterns of ambulatory activity in free-living. Cadence is one of the spatio-temporal parameters of gait or walking speed. It is typically assessed using short-distance walks in clinical research and practice, but free-living cadence can be captured with a number of commercially available accelerometers that possess time-stamping technology. This presents a unique opportunity to use the same metric to communicate both ambulatory performance (assessed under testing conditions) and behaviour (assessed in the real world). Ranges for normal walking cadence assessed under laboratory conditions are 96-138 steps/minute for women and 81-135 steps/minute for men across their lifespan. The correlation between mean cadence and intensity (assessed with indirect calorimetry and expressed as metabolic equivalents [METs]) based on five treadmill/overground walking studies, is r = 0.93 and 100 steps/minute is considered to be a reasonable heuristic value indicative of walking at least at absolutely-defined moderate intensity (i.e. minimally, 3 METs) in adults. The weighted mean cadence derived from eight studies that have observed pedestrian cadence under natural conditions was 115.2 steps/minute, demonstrating that achieving 100 steps/minute is realistic in specific settings that occur in real life. However, accelerometer data collected in a large

  17. Cadence, Stride Rate and Stride Length during Triathlon Competition.

    Science.gov (United States)

    Landers, Grant J; Blanksby, Brian A; Rackland, Timothy

    Triathlon research shows cycling alters the physiological response of subsequent running but, at present, biomechanical changes are unresolved. This study examined cycling cadence and running stride rate (SR) and length (SL) used by senior elite triathletes during competition. These variables were then compared to running and triathlon performance. Data from 51 elite male World Championships triathletes were analyzed via video recordings and Video Expert II Coach. Triathletes revealed consistent cadences throughout the majority of the cycle (96.8 +2.7 rpm) and run (90.9 +2.4 rpm) disciplines. However, a cadence increase (99.6 +5.7 rpm) was recorded at the completion of the cycle prior to running. Running SR and SL was significantly lower at the end of the run indicating a level of fatigue (ptriathlon performance (p<0.01) suggesting those that could maintain a longer SL had a faster run and better final finishing position.

  18. Secure High Dynamic Range Images

    OpenAIRE

    Med Amine Touil; Noureddine Ellouze

    2016-01-01

    In this paper, a tone mapping algorithm is proposed to produce LDR (Limited Dynamic Range) images from HDR (High Dynamic Range) images. In the approach, non-linear functions are applied to compress the dynamic range of HDR images. Security tools will be then applied to the resulting LDR images and their effectiveness will be tested on the reconstructed HDR images. Three specific examples of security tools are described in more details: integrity verification using hash function to compute loc...

  19. Determining optimal cadence for an individual road cyclist from field data.

    Science.gov (United States)

    Reed, Robert; Scarf, Philip; Jobson, Simon Adrian; Passfield, Louis

    2016-11-01

    The cadence that maximises power output developed at the crank by an individual cyclist is conventionally determined using a laboratory test. The purpose of this study was two-fold: (i) to show that such a cadence, which we call the optimal cadence, can be determined using power output, heart-rate, and cadence measured in the field and (ii) to describe methodology to do so. For an individual cyclist's sessions, power output is related to cadence and the elicited heart-rate using a non-linear regression model. Optimal cadences are found for two riders (83 and 70 revolutions per minute, respectively); these cadences are similar to the riders' preferred cadences (82-92 rpm and 65-75 rpm). Power output reduces by approximately 6% for cadences 20 rpm above or below optimum. Our methodology can be used by a rider to determine an optimal cadence without laboratory testing intervention: the rider will need to collect power output, heart-rate, and cadence measurements from training and racing sessions over an extended period (>6 months); ride at a range of cadences within those sessions; and calculate his/her optimal cadence using the methodology described or a software tool that implements it.

  20. THE INFLUENCE OF MUSICAL CADENCE INTO AQUATIC JUMPING JACKS KINEMATICS

    Directory of Open Access Journals (Sweden)

    Mário J. Costa

    2011-12-01

    Full Text Available The aim of this study was to analyze the relationships between the head-out aquatic exercise "Jumping jacks" kinematics and the musical cadence in healthy and fit subjects. Five young women, with at least one year of experience conducting head- out aquatic programs were videotaped in the frontal plane, with a pair of cameras providing a double projection (above and below the water surface. Subjects performed an incremental protocol of five bouts (120 b·min-1, 135 b·min-1, 150 b·min-1, 165 b·min-1 and 180 b·min-1 with 16 full cycles of the "Jumping jacks" exercise. Data processing and calculation of upper limbs' (i.e. hands, lower limbs' (i.e. feet and center of mass' 2D linear velocity and displacement were computed with the software Ariel Performance Analysis System and applying the 2D-DLT algorithm. Subjects decreased the cycle period during the incremental protocol. Significant and negative relationships with the musical cadence were verified for the center of mass and upper limbs vertical displacement. On the other hand, for the lower limbs lateral velocity, a significant and positive relationship was observed. It is concluded that expert and fit subjects increase the lower limb's velocity to maintain the range of motion, while the upper limb's displacement is reduced to coupe the music cadence.

  1. Secure High Dynamic Range Images

    Directory of Open Access Journals (Sweden)

    Med Amine Touil

    2016-04-01

    Full Text Available In this paper, a tone mapping algorithm is proposed to produce LDR (Limited Dynamic Range images from HDR (High Dynamic Range images. In the approach, non-linear functions are applied to compress the dynamic range of HDR images. Security tools will be then applied to the resulting LDR images and their effectiveness will be tested on the reconstructed HDR images. Three specific examples of security tools are described in more details: integrity verification using hash function to compute local digital signatures, encryption for confidentiality, and scrambling technique.

  2. K2 C12 Raw Cadence TPFs for EVEREST TRAPPIST-1 De-trending

    OpenAIRE

    Luger, Rodrigo

    2017-01-01

    Raw data used by EVEREST to de-trend the TRAPPIST-1 K2 Campaign 12 raw cadence light curve. Check out the links below to read up on how to use this data. NOTE: The TRAPPIST-1 long cadence and short cadence TPFs have been updated to reflect the correct BJD times for every cadence. Previously, the timestamps were in geocentric time, yielding an offset of ~8 minutes, which primarily affected the precision of transit analyses in the short cadence data. HOWEVER, the timestamps in the auxiliary...

  3. High-cadence spectroscopy of M-dwarfs. I. Analysis of systematic effects in HARPS-N line profile measurements on the bright binary GJ 725A+B

    CERN Document Server

    Berdiñas, Zaira M; Anglada-Escudé, Guillem; Rodríguez-López, Cristina; Barnes, John

    2016-01-01

    Understanding the sources of instrumental systematic noise is a must to improve the design of future spectrographs. In this study, we alternated observations of the well-suited pair of M-stars GJ 725A+B to delve into the sub-night HARPS-N response. Besides the possible presence of a low-mass planet orbiting GJ 725B, our observations reveal changes in the spectral energy distribution (SED) correlated with measurements of the width of the instrumental line profile and, to a lower degree, with the Doppler measurements. To study the origin of these effects, we searched for correlations among several quantities defined and measured on the spectra and on the acquisition images. We find that the changes in apparent SED are very likely related to flux losses at the fibre input. Further tests indicate that such flux losses do not seriously affect the shape of the instrumental point spread function of HARPS-N, but identify an inefficient fitting of the continuum as the most likely source of the systematic variability o...

  4. High Resolution Acoustical Imaging

    Science.gov (United States)

    1989-05-01

    1028 (September 1982). 26 G. Arfken , Mathematical Methods for Physicists (Academic Press, New York, 1971), 2nd printing, pp.662-666. 27 W. R. Hahn...difference in the approach used by the two methods , as noted in the previous paragraph, forming a direct mathematical com- parison may be impossible...examines high resolution methods which use a linear array to locate stationary objects which have scattered the fressure waves. Several;- new methods

  5. Introduction à la CAO CADENCE - French version only

    CERN Multimedia

    Davide Vitè

    2002-01-01

    CERN Technical Training Programme: Learning for the LHC ! Dans le cadre du suivi du programme ELEC-2002 : Electronics in HEP, une nouvelle session du cours Introduction à la CAO CADENCE : de la saisie de schéma Concept-HDL au PCB est programmée pour les 10 et 11 décembre prochains. Le cours, en français, est gratuit et sera animé par Serge Brobecker de la division IT/PS/EAS. L'objectif de cette formation est de donner une vue générale du système CAO CADENCE utilisé au CERN, et d'en connaître l'environnement et les possibilités, en acquérant des notions suffisantes pour utiliser la saisie de schéma. Le cours est ciblé pour une audience d'ingénieurs et techniciens désirant utiliser les outils CAO disponibles au CERN, afin de concevoir des circuits logiques et des circuits programmables digitaux. Si vous désirez partic...

  6. High Information Capacity Quantum Imaging

    Science.gov (United States)

    2014-09-19

    the quantum nature of light), and detector reset time. Algorithmic : We provide a method for spatiotemporally-regularized estimation of intensity and...High Information Capacity Quantum Imaging This is the final report for the DARPA InPho program. In reality, we finished this program in early 2013...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Quantum Imaging, Photon Counting, LIDAR REPORT DOCUMENTATION PAGE 11

  7. Studies of high repetition rate laser-produced plasma soft-X-ray amplifiers; Etudes d'amplificateurs plasma laser a haute cadence dans le domaine X-UV et applications

    Energy Technology Data Exchange (ETDEWEB)

    Cassou, K

    2006-12-15

    The progress made as well on the Ti:Sa laser system, as in the control and the knowledge of laser produced X-UV sources allowed the construction of a X-UV laser station dedicated to the applications. My thesis work falls under the development of this station and more particularly on the characterization of a X-UV laser plasma amplifier. The experimental study relates to the coupling improvement of the pump infra-red laser with plasma within the framework of the transient collisional X-UV laser generation. These X-UV lasers are generated in a plasma formed by the interaction of a solid target and a laser pulse of approximately 500 ps duration, followed by a second infra-red laser pulse known as of pump (about 5 ps) impinging on the target in grazing incidence. For the first time, a complete parametric study was undertaken on the influence of the grazing angle on the pumping of the amplifying medium. One of the results was to reach very high peak brightness about 10{sup 28} ph/s/mm{sup 2}/mrad{sup 2}/(0.1%bandwidth), which compares well with the free-electron laser brightness. Moreover, we modified then used a new two-dimensional hydrodynamic code with adaptive mesh refinement in order to understand the influence of the space-time properties of the infra-red laser on the formation and the evolution of the amplifying plasma. Our modeling highlighted the interest to use a super Gaussian transverse profile for the line focus leading to an increase in a factor two of the gain region size and a reduction of the electron density gradient by three orders of magnitude. These improvements should strongly increase the energy contained in X-UV laser beam. We thus used X-UV laser to study the appearance of transient defects produced by a laser IR on a beam-splitter rear side. We also began research on the mechanisms of DNA damage induced by a very intense X-UV radiation. (author)

  8. High-Frequency Oscillations in a Solar Active Region observed with the Rapid Dual Imager

    CERN Document Server

    Jess, D B; Mathioudakis, M; Bloomfield, D S; Keenan, F P

    2007-01-01

    High-cadence, synchronized, multiwavelength optical observations of a solar active region (NOAA 10794) are presented. The data were obtained with the Dunn Solar Telescope at the National Solar Observatory/Sacramento Peak using a newly developed camera system : the Rapid Dual Imager. Wavelet analysis is undertaken to search for intensity related oscillatory signatures, and periodicities ranging from 20 to 370 s are found with significance levels exceeding 95%. Observations in the H-alpha blue wing show more penumbral oscillatory phenomena when compared to simultaneous G-band observations. The H-alpha oscillations are interpreted as the signatures of plasma motions with a mean velocity of 20 km/s. The strong oscillatory power over H-alpha blue-wing and G-band penumbral bright grains is an indication of the Evershed flow with frequencies higher than previously reported.

  9. Cadence and cause of lake-forming climates on Mars

    Science.gov (United States)

    Kite, Edwin; Goldblatt, Colin; Gao, Peter; Mayer, David; Sneed, Jonathan

    2016-10-01

    Paleolakes on Mars record a sustained hydrologic cycle, but soils upstream record a largely dry past, so lake-forming climates were intermittent. The cadence of lakes on Mars is constrained by relatively young (~3 Ga) deltas and alluvial fans. Deposit build-up required lakes to persist for >2 Kyr (assuming dilute flow), but the watersheds' little-weathered soils indicate a swift return to dry conditions. The lake-forming climates' duty cycle and trigger mechanism remain unknown. Here we show that these data are inconsistent with many previously-proposed triggers for lake-forming climates, but consistent with a novel CH4-burst mechanism. Assuming runoff was sourced from snowmelt, SO2- and impact-triggered warming are too brief, and H2-enabled warming too persistent, to match data. However, chaotic transitions in mean obliquity are a potential trigger with suitable cadence. Mean-obliquity transitions drive latitudinal shifts in temperature and ice loading that destabilize CH4 clathrate. For achievable hydrate stability zone occupancy fractions, CH4 builds up to levels whose direct radiative forcing is comparable to a quadrupling of CO2 (20 W/m2), and sufficient to modulate lake-forming climates. Sub-lake CH4 destabilization provides positive feedback. Photolysis of CH4 curtails individual lake-forming climates to 105-106 yr duration, and depletion of CH4-clathrate limits lake-forming climates to 1-3 in number, consistent with intermittency data. We further propose that Mars' first atmospheric collapse could drive ice sheets from highlands to poles, destabilizing sub-ice clathrate and triggering the formation of the ~4 Ga-old valley networks. Our results show how a warmer early Mars can undergo intermittent orbitally-triggered excursions to a warm, wet climate state.

  10. GravityCam: ground-based wide-field high-resolution imaging and high-speed photometry

    Science.gov (United States)

    Dominik, Martin; Mackay, Craig; Steele, Iain; Snodgrass, Colin; Hirsch, Michael; Gråe Jørgensen, Uffe; Hundertmark, Markus; Rebolo, Rafael; Horne, Keith; Bridle, Sarah; Sicardy, Bruno; Bramich, Daniel; Alsubai, Khalid

    2015-12-01

    The image blurring by the Earth's atmosphere generally poses a substantial limitation to ground-based observations. While opportunities in space are scarce, lucky imaging can correct over a much larger patch of sky and with much fainter reference stars. We propose the first of a new kind of versatile instruments, "GravityCam", composed of ~100 EMCCDs, that will open up two entirely new windows to ground-based astronomy: (1) wide-field high-resolution imaging, and (2) wide-field high-speed photometry. Potential applications include (a) a gravitational microlensing survey going 4 magnitudes deeper than current efforts, and thereby gaining a factor 100 in mass at the same sensitivity, which means probing down to Lunar mass or even below, (b) extra-solar planet hunting via transits in galactic bulge fields, with high time resolution well-suited for transit timing variation studies, (c) variable stars in crowded fields, with sensitivity to very short periods, (d) asteroseismology with many bright stars in one pointing, (e) serendipitous occultations of stars by small solar system bodies, giving access to the small end of the Kuiper Belt size distribution and potentially leading to the first detection of true Oort cloud objects, while predicted occultations at high time resolution can reveal atmospheres, satellites, or rings, (f) general data mining of the high-speed variable sky (down to 40 ms cadence).

  11. The effect of a cadence retraining protocol on running biomechanics and efficiency: a pilot study.

    Science.gov (United States)

    Hafer, Jocelyn F; Brown, Allison M; deMille, Polly; Hillstrom, Howard J; Garber, Carol Ewing

    2015-01-01

    Many studies have documented the association between mechanical deviations from normal and the presence or risk of injury. Some runners attempt to change mechanics by increasing running cadence. Previous work documented that increasing running cadence reduces deviations in mechanics tied to injury. The long-term effect of a cadence retraining intervention on running mechanics and energy expenditure is unknown. This study aimed to determine if increasing running cadence by 10% decreases running efficiency and changes kinematics and kinetics to make them less similar to those associated with injury. Additionally, this study aimed to determine if, after 6 weeks of cadence retraining, there would be carryover in kinematic and kinetic changes from an increased cadence state to a runner's preferred running cadence without decreased running efficiency. We measured oxygen uptake, kinematic and kinetic data on six uninjured participants before and after a 6-week intervention. Increasing cadence did not result in decreased running efficiency but did result in decreases in stride length, hip adduction angle and hip abductor moment. Carryover was observed in runners' post-intervention preferred running form as decreased hip adduction angle and vertical loading rate.

  12. High-contrast imaging testbed

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K; Silva, D; Poyneer, L; Macintosh, B; Bauman, B; Palmer, D; Remington, T; Delgadillo-Lariz, M

    2008-01-23

    Several high-contrast imaging systems are currently under construction to enable the detection of extra-solar planets. In order for these systems to achieve their objectives, however, there is considerable developmental work and testing which must take place. Given the need to perform these tests, a spatially-filtered Shack-Hartmann adaptive optics system has been assembled to evaluate new algorithms and hardware configurations which will be implemented in these future high-contrast imaging systems. In this article, construction and phase measurements of a membrane 'woofer' mirror are presented. In addition, results from closed-loop operation of the assembled testbed with static phase plates are presented. The testbed is currently being upgraded to enable operation at speeds approaching 500 hz and to enable studies of the interactions between the woofer and tweeter deformable mirrors.

  13. High performance scalable image coding

    Institute of Scientific and Technical Information of China (English)

    Gan Tao; He Yanmin; Zhu Weile

    2007-01-01

    A high performance scalable image coding algorithm is proposed. The salient features of this algorithm are the ways to form and locate the significant clusters. Thanks to the list structure, the new coding algorithm achieves fine fractional bit-plane coding with negligible additional complexity. Experiments show that it performs comparably or better than the state-of-the-art coders. Furthermore, the flexible codec supports both quality and resolution scalability, which is very attractive in many network applications.

  14. The effect of cycling cadence on subsequent 10km running performance in well-trained triathletes.

    Science.gov (United States)

    Tew, Garry

    2005-09-01

    The aim of this study was to examine the effects of different pedalling cadences on the performance of a subsequent 10km treadmill run. Eight male triathletes (age 38.9 ± 15.4 years, body mass 72.2 ± 5.2 kg, and stature 176 ± 6 cm; mean ± SD) completed a maximal cycling test, one isolated run (10km), and then three randomly ordered cycle-run sessions (65 minutes cycling + 10km run). During the cycling bout of the cycle-run sessions, subjects cycled at an intensity corresponding to 70% Pmax while maintaining one of three cadences, corresponding to preferred cadence (PC), PC+15% (fast cadence) and PC-15% (slow cadence). Slow, preferred and fast cadences were 71.8 ± 3.0, 84.5 ± 3.6, and 97.3 ± 4.3 rpm, respectively (mean ± SD). Physiological variables measured during the cycle-run and isolated run sessions were VO2, VE, RER, HR, RPE, and blood lactate. Biomechanical variables measured during the cycle-run and isolated run sessions were running velocity, stride length, stride frequency, and hip and knee angles at foot-strike and toe-off. Running performance times were also recorded. A significant effect of prior cycling exercise was found on 10km running time (p = 0.001) without any cadence effect (p = 0.801, ω(2) = 0.006) (49:58 ± 8:20, 49:09 ± 8:26, 49:28 ± 8:09, and 44:45 ± 6:27 min·s(-1) for the slow, preferred, fast, and isolated run conditions, respectively; mean ± SD). However, during the first 500 m of the run, running velocity was significantly higher after cycling at the preferred and fast cadences than after the slow cadence (p run. However, no significant effect of cycling cadence on running performance was observed within the cadence ranges usually used by triathletes. Key PointsCompared with an isolated run, completion of a cycling event impairs the performance of a subsequent run independently of the pedalling cadence.The choice of cadence within triathletes' usual range does not seem to influence the performance of a 10km run.The results

  15. High-resolution infrared imaging

    Science.gov (United States)

    Falco, Charles M.

    2010-08-01

    The hands and mind of an artist are intimately involved in the creative process of image formation, intrinsically making paintings significantly more complex than photographs to analyze. In spite of this difficulty, several years ago the artist David Hockney and I identified optical evidence within a number of paintings that demonstrated artists began using optical projections as early as c1425 - nearly 175 years before Galileo - as aids for producing portions of their images. In the course of our work, Hockney and I developed insights that I have been applying to a new approach to computerized image analysis. Recently I developed and characterized a portable high resolution infrared for capturing additional information from paintings. Because many pigments are semi-transparent in the IR, in a number of cases IR photographs ("reflectograms") have revealed marks made by the artists that had been hidden under paint ever since they were made. I have used this IR camera to capture photographs ("reflectograms") of hundreds of paintings in over a dozen museums on three continents and, in some cases, these reflectograms have provided new insights into decisions the artists made in creating the final images that we see in the visible.

  16. THE EFFECT OF CYCLING CADENCE ON SUBSEQUENT 10KM RUNNING PERFORMANCE IN WELL-TRAINED TRIATHLETES

    Directory of Open Access Journals (Sweden)

    Garry A. Tew

    2005-09-01

    Full Text Available The aim of this study was to examine the effects of different pedalling cadences on the performance of a subsequent 10km treadmill run. Eight male triathletes (age 38.9 ± 15.4 years, body mass 72.2 ± 5.2 kg, and stature 176 ± 6 cm; mean ± SD completed a maximal cycling test, one isolated run (10km, and then three randomly ordered cycle-run sessions (65 minutes cycling + 10km run. During the cycling bout of the cycle-run sessions, subjects cycled at an intensity corresponding to 70% Pmax while maintaining one of three cadences, corresponding to preferred cadence (PC, PC+15% (fast cadence and PC-15% (slow cadence. Slow, preferred and fast cadences were 71.8 ± 3.0, 84.5 ± 3.6, and 97.3 ± 4.3 rpm, respectively (mean ± SD. Physiological variables measured during the cycle-run and isolated run sessions were VO2, VE, RER, HR, RPE, and blood lactate. Biomechanical variables measured during the cycle-run and isolated run sessions were running velocity, stride length, stride frequency, and hip and knee angles at foot-strike and toe-off. Running performance times were also recorded. A significant effect of prior cycling exercise was found on 10km running time (p = 0.001 without any cadence effect (p = 0.801, ω2 = 0.006 (49:58 ± 8:20, 49:09 ± 8:26, 49:28 ± 8:09, and 44:45 ± 6:27 min·s-1 for the slow, preferred, fast, and isolated run conditions, respectively; mean ± SD. However, during the first 500 m of the run, running velocity was significantly higher after cycling at the preferred and fast cadences than after the slow cadence (p < 0.05. Furthermore, the slow cadence condition was associated with a significantly lower HR (p = 0.012 and VE (p = 0.026 during cycling than in the fast cadence condition. The results confirm the deterioration in running performance completed after the cycling event compared with the isolated run. However, no significant effect of cycling cadence on running performance was observed within the cadence ranges

  17. High-resolution, high-sensitivity, ground-based solar spectropolarimetry with a new fast imaging polarimeter

    CERN Document Server

    Iglesias, F A; Nagaraju, K; Solanki, S K

    2016-01-01

    Context. Remote sensing of weak and small-scale solar magnetic fields is of utmost relevance for a number of important open questions in solar physics. This requires the acquisition of spectropolarimetric data with high spatial resolution (0.1 arcsec) and low noise (1e-3 to 1e-5 of the continuum intensity). The main limitations to obtain these measurements from the ground, are the degradation of the image resolution produced by atmospheric seeing and the seeing-induced crosstalk (SIC). Aims. We introduce the prototype of the Fast Solar Polarimeter (FSP), a new ground-based, high-cadence polarimeter that tackles the above-mentioned limitations by producing data that are optimally suited for the application of post-facto image restoration, and by operating at a modulation frequency of 100 Hz to reduce SIC. Results. The pnCCD camera reaches 400 fps while keeping a high duty cycle (98.6 %) and very low noise (4.94 erms). The modulator is optimized to have high (> 80%) total polarimetric efficiency in the visible ...

  18. Changes in coordination and its variability with an increase in running cadence.

    Science.gov (United States)

    Hafer, Jocelyn F; Freedman Silvernail, Julia; Hillstrom, Howard J; Boyer, Katherine A

    2016-08-01

    Alterations in joint mechanics have been associated with common overuse injuries. An increase in running cadence in healthy runners has been shown to improve several parameters that have been tied to injury, but the reorganisation of motion that produces these changes has not been examined. The purpose of this study was to determine if runners change their segment coordination and coordination variability with an acute increase in cadence. Data were collected as ten uninjured runners ran overground at their preferred cadence as well as a cadence 10% higher than preferred. Segment coordination and coordination variability were calculated for select thigh-shank and shank-foot couples and selected knee mechanics were also calculated. Paired t-tests were used to examine differences between the preferred and increased cadence conditions. With increased cadence, there was a decrease in peak knee flexion and a later occurrence of peak knee flexion and internal rotation and shank internal rotation. Segment coordination was altered with most changes occurring in mid-late stance. Coordination variability decreased with an increase in cadence across all couples and phases of gait. These results suggest examination of coordination and its variability could give insight into the risk of intervention-induced injury.

  19. High-resolution image analysis.

    Science.gov (United States)

    Preston, K

    1986-01-01

    In many departments of cytology, cytogenetics, hematology, and pathology, research projects using high-resolution computerized microscopy are now being mounted for computation of morphometric measurements on various structural components, as well as for determination of cellular DNA content. The majority of these measurements are made in a partially automated, computer-assisted mode, wherein there is strong interaction between the user and the computerized microscope. At the same time, full automation has been accomplished for both sample preparation and sample examination for clinical determination of the white blood cell differential count. At the time of writing, approximately 1,000 robot differential counting microscopes are in the field, analyzing images of human white blood cells, red blood cells, and platelets at the overall rate of about 100,000 slides per day. This mammoth through-put represents a major accomplishment in the application of machine vision to automated microscopy for hematology. In other areas of automated high-resolution microscopy, such as cytology and cytogenetics, no commercial instruments are available (although a few metaphase-finding machines are available and other new machines have been announced during the past year). This is a disappointing product, considering the nearly half century of research effort in these areas. This paper provides examples of the state of the art in automation of cell analysis for blood smears, cervical smears, and chromosome preparations. Also treated are new developments in multi-resolution automated microscopy, where images are now being generated and analyzed by a single machine over a range of 64:1 magnification and from 10,000 X 20,000 to 500 X 500 in total picture elements (pixels). Examples of images of human lymph node and liver tissue are presented. Semi-automated systems are not treated, although there is mention of recent research in the automation of tissue analysis.

  20. Cadências escolares, ritmos docentes School cadences, teaching rhythms

    Directory of Open Access Journals (Sweden)

    Inês Assunção de Castro Teixeira

    1999-07-01

    Full Text Available O artigo analisa alguns dos eixos que estruturam os ritmos cotidianos dos professores, próprios às temporalidades da vida social na escola. Parte do pressuposto de que o tempo é uma "categoria do pensamento lógico", originada no ritmo da vida social (Dukheim, e que essa rítmica é uma "modalidade concreta do tempo social" (Lefebvre e Régulier. O estudo é parte de uma pesquisa que busca tematizar a experiência do tempo de sujeitos que se encontram na condição de professores - docentes de quinta à oitava séries do ensino fundamental e do ensino médio -, levando em conta seus vínculos com a construção de identidades docentes. O texto se desenvolve em torno de três eixos: as cadências das interações entre educandos e educadores, os ritmos dos calendários e os compassos dos horários escolares. Conclui-se que os ritmos docentes, embora circunscritos à rítmica da vida moderna, têm particularidades associadas às cadências da escola, aos processos pedagógicos e àqueles relacionados à formação humana. Trata-se, pois, de analisar a polirritmia dos tempos da escola em sua complexidade e peculiaridades, de forma a se compreenderem as modulações e significações da experiência do tempo na condição de professor, vivência constitutiva das identidades docentes.This paper analyzes some of the concepts peculiar to the temporality of the school social life that structure the everyday rhythm of teachers. It assumes that time is a "category of logical thinking" originated in the rhythm of social life (Durkheim, and that such rhythmic character is a "concrete modality of social time" (Lefebvre and Régulier. This study is part of a research that seeks to discuss the experience of time for teachers of the 5th to 8th grades of the Primary Education and of the Secondary Education, taking into account the teachers’ links with the construction of their own teaching identities. The text is developed around three themes: the cadences

  1. Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity

    Science.gov (United States)

    Ardic, Fusun; Göcer, Esra

    2016-01-01

    Abstract The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer. A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland–Altman analyses were performed to show the relationship and agreement between the results of 2 devices. Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P PEDO and YX200 pedometer in the Bland–Altman analysis. Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a desired speed. PMID:26962822

  2. Faraday imaging at high temperatures

    Science.gov (United States)

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  3. Cardiorespiratory responses during deep water running with and without horizontal displacement at different cadences

    Directory of Open Access Journals (Sweden)

    A.C. Kanitz

    2014-12-01

    Conclusions: The results indicate that the increase in both cadence and displacement results in significant cardiorespiratory responses as a result of deep water running. This finding is important for adapting exercise prescription to the goals of participants.

  4. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study.

    Science.gov (United States)

    Hussain, Shahid; Xie, Sheng Q; Jamwal, Prashant K

    2013-03-01

    Cadence or stride frequency is an important parameter being controlled in gait training of neurologically impaired subjects. The aim of this study was to examine the effects of cadence variation on muscle activation patterns during robot assisted unimpaired gait using dynamic simulations. A twodimensional (2-D) musculoskeletal model of human gait was developed considering eight major muscle groups along with existing ground contact force (GCF) model. A 2-D model of a robotic orthosis was also developed which provides actuation to the hip, knee and ankle joints in the sagittal plane to guide subjects limbs on reference trajectories. A custom inverse dynamics algorithm was used along with a quadratic minimization algorithm to obtain a feasible set of muscle activation patterns. Predicted patterns of muscle activations during slow, natural and fast cadence were compared and the mean muscle activations were found to be increasing with an increase in cadence. The proposed dynamic simulation provide important insight into the muscle activation variations with change in cadence during robot assisted gait and provide the basis for investigating the influence of cadence regulation on neuromuscular parameters of interest during robot assisted gait.

  5. Effect of Cadence on Respiratory Response During Unloaded Cycling in Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Jastrzębska Agnieszka D.

    2015-03-01

    Full Text Available Purpose. The aim of the study was to establish the respiratory response to unloaded cycling at different cadences. Methods. Eleven healthy participants performed a maximal graded exercise test on a cycle ergometer to assess aerobic fitness (maximal oxygen consumption: 46.27 ± 5.41 ml · min-1 · kg-1 and eight 10-min unloaded pedaling (0 W bouts at a constant cadence (from 40 to 110 rpm. Respiratory data were measured continuously during each effort and then averaged over 30 s. Blood samples were collected before and 2 min after each effort to monitor changes in acid-base balance. Results. The efforts were performed at an intensity of 16.5-37.5% VO2peak. Respiratory response was not differentiated in cadences of 40, 50, 60 rpm. From 70 rpm, an increase in cadence was significantly associated with increased minute ventilation (F = 168.11, p < 0.000 and oxygen consumption (F = 214.86 p < 0.000 and, from 80 rpm, respiratory frequency (F = 16.06, p < 0.001 and tidal volume (F = 54.67, p < 0.000. No significant changes in acid-base balance were observed as a result of difference cadences. Conclusions. Unloaded cycling at a cadence of 70 rpm or above has a significant effect on respiratory function and may be associated with the involvement of large muscle ergoreceptors (mechanoreceptors stimulated by the frequency of muscle contractions.

  6. A Multiband Generalization of the Analysis of Variance Period Estimation Algorithm and the Effect of Inter-band Observing Cadence on Period Recovery Rate

    CERN Document Server

    Mondrik, Nicholas; Marshall, Jennifer L

    2015-01-01

    We present a new method of extending the single band Analysis of Variance period estimation algorithm to multiple bands. We use SDSS Stripe 82 RR Lyrae to show that in the case of low number of observations per band and non-simultaneous observations, improvements in period recovery rates of up to $\\approx$60\\% are observed. We also investigate the effect of inter-band observing cadence on period recovery rates. We find that using non-simultaneous observation times between bands is ideal for the multiband method, and using simultaneous multiband data is only marginally better than using single band data. These results will be particularly useful in planning observing cadences for wide-field astronomical imaging surveys such as LSST. They also have the potential to improve the extraction of transient data from surveys with few ($\\lesssim 30$) observations per band across several bands, such as the Dark Energy Survey.

  7. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...

  8. Shadow Attenuation With High Dynamic Range Images

    Science.gov (United States)

    Shadow often interferes with accurate image analysis. To mitigate shadow effects in near-earth imagery (2 m above ground level), we created high dynamic range (HDR) nadir images and used them to measure grassland ground cover. HDR composites were created by merging three differentially-exposed image...

  9. Semiconductor crystal high resolution imager

    Science.gov (United States)

    Levin, Craig S. (Inventor); Matteson, James (Inventor)

    2011-01-01

    A radiation imaging device (10). The radiation image device (10) comprises a subject radiation station (12) producing photon emissions (14), and at least one semiconductor crystal detector (16) arranged in an edge-on orientation with respect to the emitted photons (14) to directly receive the emitted photons (14) and produce a signal. The semiconductor crystal detector (16) comprises at least one anode and at least one cathode that produces the signal in response to the emitted photons (14).

  10. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  11. Structural High-resolution Satellite Image Indexing

    OpenAIRE

    Xia, Gui-Song; YANG, WEN; Delon, Julie; Gousseau, Yann; Sun, Hong; Maître, Henri

    2010-01-01

    International audience; Satellite images with high spatial resolution raise many challenging issues in image understanding and pattern recognition. First, they allow measurement of small objects maybe up to 0.5 m, and both texture and geometrical structures emerge simultaneously. Second, objects in the same type of scenes might appear at different scales and orientations. Consequently, image indexing methods should combine the structure and texture information of images and comply with some i...

  12. Improved High Dynamic Range Image Reproduction Method

    Directory of Open Access Journals (Sweden)

    András Rövid

    2007-10-01

    Full Text Available High dynamic range (HDR of illumination may cause serious distortions andother problems in viewing and further processing of digital images. This paper describes anew algorithm for HDR image creation based on merging images taken with differentexposure time. There are many fields, in which HDR images can be used advantageously,with the help of them the accuracy, reliability and many other features of the certain imageprocessing methods can be improved.

  13. Guest editorial : high dynamic range imaging

    OpenAIRE

    Santos, Luís Paulo; Debattista, Kurt

    2013-01-01

    High Dynamic Range (HDR) imagery is a step-change in imaging technology that is not limited to the 8-bits per pixel for each color channel that traditional or low-dynamic range digital images have been constrained to. These restrictions have meant that the current and relatively novel imaging technologies including stereoscopic, HD and ultraHD imaging do not provide an accurate representation of the lighting available in a real world environment. HDR technology has enabled the capture, sto...

  14. Effects of musical cadence in the acute physiologic adaptations to head-out aquatic exercises.

    Science.gov (United States)

    Barbosa, Tiago M; Sousa, Vítor F; Silva, António J; Reis, Vítor M; Marinho, Daniel A; Bragada, José A

    2010-01-01

    The purpose of this study was to analyze the relationships between musical cadence and the physiologic adaptations to basic head-out aquatic exercises. Fifteen young and clinically healthy women performed, immersed to the breast, a cardiovascular aquatic exercise called the "rocking horse." The study design included an intermittent and progressive protocol starting at a 90 b.min(-1) rhythm and increasing every 6 minutes, by 15 b.min(-1), up to 195 b.min(-1) or exhaustion. The rating of perceived effort (RPE) at the maximal heart rate achieved during each bout (HRmax), the percentage of the maximal theoretical heart rate estimated (%HRmax), and the blood lactate concentration ([La-]) were evaluated. The musical cadence was also calculated at 4 mmol.L(-1) of blood lactate (R4), the RPE at R4 (RPE@R4), the HR at R4 (HR@R4), and the %HRmax at R4 (%HRmax@R4). Strong relationships were verified between the musical cadence and the RPE (R2 = 0.85; p musical cadence created an increase in the physiologic response. Therefore, instructors must choose musical cadences according to the goals of the session they are conducting to achieve the desired intensity.

  15. Antenna development for high field plasma imaging.

    Science.gov (United States)

    Kong, X; Domier, C W; Luhmann, N C

    2010-10-01

    Electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) are two microwave nonperturbing plasma visualization techniques that employ millimeter-wave imaging arrays with lens-coupled planar antennas, yielding time-resolved images of temperature (via ECEI) and electron density (via MIR) fluctuations within high temperature magnetic fusion plasmas. A series of new planar antennas have been developed that extend this technology to frequencies as high as 220 GHz for use on high field plasma devices with toroidal fields in excess of 3 T. Antenna designs are presented together with theoretical calculations, simulations, and experimental measurements.

  16. Angular Differential Imaging: a Powerful High-Contrast Imaging Technique

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C; Lafreniere, D; Doyon, R; Macintosh, B; Nadeau, D

    2005-11-07

    Angular differential imaging is a high-contrast imaging technique that reduces speckle noise from quasi-static optical aberrations and facilitates the detection of faint nearby companions. A sequence of images is acquired with an altitude/azimuth telescope, the instrument rotator being turned off. This keeps the instrument and telescope optics aligned, stabilizes the instrumental PSF and allows the field of view to rotate with respect to the instrument. For each image, a reference PSF obtained from other images of the sequence is subtracted. All residual images are then rotated to align the field and are median combined. Observed performances are reported for Gemini Altair/NIRI data. Inside the speckle dominated region of the PSF, it is shown that quasi-static PSF noise can be reduced by a factor {approx}5 for each image subtraction. The combination of all residuals then provides an additional gain of the order of the square root of the total number of images acquired. To our knowledge, this is the first time an acquisition strategy and reduction pipeline designed for speckle attenuation and high contrast imaging is demonstrated to significantly get better detection limits with longer integration times at all angular separations. A PSF noise attenuation of 100 was achieved from 2-hour long sequences of images of Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than 7''. This technique can be used with currently available instruments to search for {approx} 1 M{sub Jup} exoplanets with orbits of radii between 50 and 300 AU around nearby young stars. The possibility of combining the technique with other high-contrast imaging methods is briefly discussed.

  17. High-contrast imaging with METIS

    Science.gov (United States)

    Kenworthy, Matthew A.; Absil, Olivier; Agócs, Tibor; Pantin, Eric; Quanz, Sascha; Stuik, Remko; Snik, Frans; Brandl, Bernhard

    2016-08-01

    The Mid-infrared E-ELT Imager and Spectrograph (METIS) for the European Extremely Large Telescope (E-ELT) consists of diffraction-limited imagers that cover 3 to 14 microns with medium resolution (R 5000) long slit spectroscopy, and an integral field spectrograph for high spectral resolution spectroscopy (R 100,000) over the L and M bands. One of the science cases that METIS addresses is the characterization of faint circumstellar material and exoplanet companions through imaging and spectroscopy. We present our approach for high contrast imaging with METIS, covering diffraction suppression with coronagraphs, the removal of slowly changing optical aberrations with focal plane wavefront sensing, interferometric imaging with sparse aperture masks, and observing strategies for both the imagers and IFU image slicers.

  18. Transit Timing Observations from Kepler. IX. Catalog of the Full Long-Cadence Data Set

    CERN Document Server

    Holczer, Tomer; Nachmani, Gil; Jontof-Hutter, Daniel; Ford, Eric B; Fabrycky, Daniel; Ragozzine, Darin; Kane, Mackenzie; Steffen, Jason H

    2016-01-01

    We present a new transit timing catalog of 2599 Kepler Objects of Interest (=KOIs), using the PDC-MAP long-cadence light curves that include the full seventeen quarters of the mission (ftp://wise- ftp.tau.ac.il/pub/tauttv/TTV/ver_112). The goal is to produce an easy-to-use catalog that can stimulate further analyses of interesting systems. For 779 KOIs with high enough SNRs, we derived the timing, duration and depth of 69,914 transits. For 1820 KOIs with lower SNR, we derived only the timing of 225,273 transits. After removal of outlier timings, we derived various statistics for each KOI that were used to indicate significant variations. Including systems found by previous works, we have detected 260 KOIs which showed significant TTVs with long-term variations (>100 day), and another fourteen KOIs with periodic modulations shorter than 100 day and small amplitudes. For five of those, the periodicity is probably due to the crossing of rotating stellar spots by the transiting planets.

  19. Cardiorespiratory responses during deep water running with and without horizontal displacement at different cadences

    OpenAIRE

    A.C. Kanitz; G.V. Liedtke; Pinto, S.S.; C.L. Alberton; L.F.M. Kruel

    2014-01-01

    Objective: To compare the cardiorespiratory responses during deep water running with and without displacement at different cadences. Methods: Twelve young women performed deep water running with and without displacement during 4 min at three separate cadences: (a) 60 bpm; (b) 80 bpm; and (c) 100 bpm. The heart rate (HR), ventilation (Ve) and oxygen uptake (VO2) were collected in the last minute of each test. Two-way ANOVA for repeated measures was used with Bonferroni's post hoc test (p 

  20. Pyramidal fractal dimension for high resolution images

    Science.gov (United States)

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024 ×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  1. High resolution ultraviolet imaging spectrometer for latent image analysis.

    Science.gov (United States)

    Lyu, Hang; Liao, Ningfang; Li, Hongsong; Wu, Wenmin

    2016-03-21

    In this work, we present a close-range ultraviolet imaging spectrometer with high spatial resolution, and reasonably high spectral resolution. As the transmissive optical components cause chromatic aberration in the ultraviolet (UV) spectral range, an all-reflective imaging scheme is introduced to promote the image quality. The proposed instrument consists of an oscillating mirror, a Cassegrain objective, a Michelson structure, an Offner relay, and a UV enhanced CCD. The finished spectrometer has a spatial resolution of 29.30μm on the target plane; the spectral scope covers both near and middle UV band; and can obtain approximately 100 wavelength samples over the range of 240~370nm. The control computer coordinates all the components of the instrument and enables capturing a series of images, which can be reconstructed into an interferogram datacube. The datacube can be converted into a spectrum datacube, which contains spectral information of each pixel with many wavelength samples. A spectral calibration is carried out by using a high pressure mercury discharge lamp. A test run demonstrated that this interferometric configuration can obtain high resolution spectrum datacube. The pattern recognition algorithm is introduced to analyze the datacube and distinguish the latent traces from the base materials. This design is particularly good at identifying the latent traces in the application field of forensic imaging.

  2. High Temperature Fiberoptic Thermal Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  3. High speed functional magnetic resonance imaging

    CERN Document Server

    Gibson, A M

    2002-01-01

    The work in this thesis has been undertaken by the except where indicated by reference, within the Magnetic Resonance Centre at the University of Nottingham during the period from October 1998 to October 2001. This thesis documents the implementation and application of a novel high-speed imaging technique, the multi-slice, echo shifted, echo planar imaging technique. This was implemented on the Nottingham 3 T imaging system, for functional magnetic resonance imaging. The technique uses echo shifting over the slices in a multi-slice echo planar imaging acquisition scheme, making the echo time longer than the repetition time per slice. This allows for rapid volumar sampling of the blood oxygen level dependent effect in the human brain. The new high-speed technique was used to investigate the variability of measuring the timing differences between haemodynamic responses, at the same cortical location, to simple cued motor tasks. The technique was also used in an investigation into motor cortex functional connect...

  4. Influence of road incline and body position on power-cadence relationship in endurance cycling.

    Science.gov (United States)

    Emanuele, Umberto; Denoth, Jachen

    2012-07-01

    In race cycling, the external power-cadence relationship at the performance level, that is sustainable for the given race distance, plays a key role. The two variables of interest from this relationship are the maximal external power output (P (max)) and the corresponding optimal cadence (C (opt)). Experimental studies and field observations of cyclists have revealed that when cycling uphill is compared to cycling on level ground, the freely chosen cadence is lower and a more upright body position seems to be advantageous. To date, no study has addressed whether P (max) or C (opt) is influenced by road incline or body position. Thus, the main aim of this study was to examine the effect of road incline (0 vs. 7%) and racing position (upright posture vs. dropped posture) on P (max) and C (opt). Eighteen experienced cyclists participated in this study. Experiment I tested the hypothesis that road incline influenced P (max) and C (opt) at the second ventilatory threshold ([Formula: see text] and [Formula: see text]). Experiment II tested the hypothesis that the racing position influenced [Formula: see text], but not [Formula: see text]. The results of experiment I showed that [Formula: see text] and [Formula: see text] were significantly lower when cycling uphill compared to cycling on level ground (P cycling uphill, it is reasonable to choose (1) a lower cadence and (2) a more upright body position.

  5. Body size and walking cadence affect lower extremity joint power in children's gait.

    Science.gov (United States)

    Shultz, Sarah P; Hills, Andrew P; Sitler, Michael R; Hillstrom, Howard J

    2010-06-01

    Obese children move less and with greater difficulty than normal-weight counterparts but expend comparable energy. Increased metabolic costs have been attributed to poor biomechanics but few studies have investigated the influence of obesity on mechanical demands of gait. This study sought to assess three-dimensional lower extremity joint powers in two walking cadences in 28 obese and normal-weight children. 3D-motion analysis was conducted for five trials of barefoot walking at self-selected and 30% greater than self-selected cadences. Mechanical power was calculated at the hip, knee, and ankle in sagittal, frontal and transverse planes. Significant group differences were seen for all power phases in the sagittal plane, hip and knee power at weight acceptance and hip power at propulsion in the frontal plane, and knee power during mid-stance in the transverse plane. After adjusting for body weight, group differences existed in hip and knee power phases at weight acceptance in sagittal and frontal planes, respectively. Differences in cadence existed for all hip joint powers in the sagittal plane and frontal plane hip power at propulsion. Frontal plane knee power at weight acceptance and sagittal plane knee power at propulsion were significantly different between cadences. Larger joint powers in obese children contribute to difficulty performing locomotor tasks, potentially decreasing motivation to exercise.

  6. High Resolution Orientation Imaging Microscopy

    Science.gov (United States)

    2012-05-02

    carbon distribution as it relates to the presence of Bainite phase (with small tetragonality) interspersed among the cubic ferrite. An example of the...preferentially segregate. The view offered by these high resolution methods differs from what has been considered before: grains thought to be Bainite

  7. CMOS Image Sensors for High Speed Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2009-01-01

    Full Text Available Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4~5 μm due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps.

  8. CMOS Image Sensors for High Speed Applications.

    Science.gov (United States)

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  9. High Throughput Neuro-Imaging Informatics

    Directory of Open Access Journals (Sweden)

    Michael I Miller

    2013-12-01

    Full Text Available This paper describes neuroinformatics technologies at 1 mm anatomical scale based on high throughput 3D functional and structural imaging technologies of the human brain. The core is an abstract pipeline for converting functional and structural imagery into their high dimensional neuroinformatic representations index containing O(E3-E4 discriminating dimensions. The pipeline is based on advanced image analysis coupled to digital knowledge representations in the form of dense atlases of the human brain at gross anatomical scale. We demonstrate the integration of these high-dimensional representations with machine learning methods, which have become the mainstay of other fields of science including genomics as well as social networks. Such high throughput facilities have the potential to alter the way medical images are stored and utilized in radiological workflows. The neuroinformatics pipeline is used to examine cross-sectional and personalized analyses of neuropsychiatric illnesses in clinical applications as well as longitudinal studies. We demonstrate the use of high throughput machine learning methods for supporting (i cross-sectional image analysis to evaluate the health status of individual subjects with respect to the population data, (ii integration of image and non-image information for diagnosis and prognosis.

  10. High resolution 3-D wavelength diversity imaging

    Science.gov (United States)

    Farhat, N. H.

    1981-09-01

    A physical optics, vector formulation of microwave imaging of perfectly conducting objects by wavelength and polarization diversity is presented. The results provide the theoretical basis for optimal data acquisition and three-dimensional tomographic image retrieval procedures. These include: (a) the selection of highly thinned (sparse) receiving array arrangements capable of collecting large amounts of information about remote scattering objects in a cost effective manner and (b) techniques for 3-D tomographic image reconstruction and display in which polarization diversity data is fully accounted for. Data acquisition employing a highly attractive AMTDR (Amplitude Modulated Target Derived Reference) technique is discussed and demonstrated by computer simulation. Equipment configuration for the implementation of the AMTDR technique is also given together with a measurement configuration for the implementation of wavelength diversity imaging in a roof experiment aimed at imaging a passing aircraft. Extension of the theory presented to 3-D tomographic imaging of passive noise emitting objects by spectrally selective far field cross-correlation measurements is also given. Finally several refinements made in our anechoic-chamber measurement system are shown to yield drastic improvement in performance and retrieved image quality.

  11. Image reconstruction techniques for high resolution human brain PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Comtat, C.; Bataille, F.; Sureau, F. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    High resolution PET imaging is now a well established technique not only for small animal, but also for human brain studies. The ECAT HRRT brain PET scanner(Siemens Molecular Imaging) is characterized by an effective isotropic spatial resolution of 2.5 mm, about a factor of 2 better than for state-of-the-art whole-body clinical PET scanners. Although the absolute sensitivity of the HRRT (6.5 %) for point source in the center of the field-of-view is increased relative to whole-body scanner (typically 4.5 %) thanks to a larger co-polar aperture, the sensitivity in terms of volumetric resolution (75 (m{sup 3} at best for whole-body scanners and 16 (m{sup 3} for t he HRRT) is much lower. This constraint has an impact on the performance of image reconstruction techniques, in particular for dynamic studies. Standard reconstruction methods used with clinical whole-body PET scanners are not optimal for this application. Specific methods had to be developed, based on fully 3D iterative techniques. Different refinements can be added in the reconstruction process to improve image quality: more accurate modeling of the acquisition system, more accurate modeling of the statistical properties of the acquired data, anatomical side information to guide the reconstruction . We will present the performances these added developments for neuronal imaging in humans. (author)

  12. High Speed Telescopic Imaging of Sprites

    Science.gov (United States)

    McHarg, M. G.; Stenbaek-Nielsen, H. C.; Kanmae, T.; Haaland, R. K.

    2010-12-01

    A total of 21 sprite events were recorded at Langmuir Laboratory, New Mexico, during the nights of 14 and 15 July 2010 with a 500 mm focal length Takahashi Sky 90 telescope. The camera used was a Phantom 7.3 with a VideoScope image intensifier. The images were 512x256 pixels for a field of view of 1.3x0.6 degrees. The data were recorded at 16,000 frames per second (62 μs between images) and an integration time of 20 μs per image. Co-aligned with the telescope was a second similar high-speed camera, but with an 85 mm Nikon lens; this camera recorded at 10,000 frames per second with 100 μs exposure. The image format was also 512x256 pixels for a field of view of 7.3x3.7 degrees. The 21 events recorded include all basic sprite elements: Elve, sprite halos, C-sprites, carrot sprites, and large jellyfish sprites. We compare and contrast the spatial details seen in the different types of sprites, including streamer head size and the number of streamers subsequent to streamer head splitting. Telescopic high speed image of streamer tip splitting in sprites recorded at 07:06:09 UT on 15 July 2010.

  13. High-speed cineradiography using electronic imaging

    Science.gov (United States)

    Lucero, Jacob P.; Fry, David A.; Gaskill, William E.; Henderson, R. L.; Crawford, Ted R.; Carey, N. E.

    1993-01-01

    The Los Alamos National Laboratory has constructed and is now operating a cineradiography system for imaging and evaluation of ballistic interaction events at the 1200 meter range of the Terminal Effects Research and Analysis (TERA) Group at the New Mexico Institute of Mining and Technology. Cineradiography is part of a complete firing, tracking, and analysis system at the range. The cine system consists of flash x-ray sources illuminating a one-half meter by two meter fast phosphor screen which is viewed by gated-intensified high resolution still video cameras via turning mirrors. The entire system is armored to protect against events containing up to 13.5 kg of high explosive. Digital images are available for immediate display and processing. The system is capable of frame rates up to 105/sec for up to five total images.

  14. High speed cineradiography using electronic imaging

    Science.gov (United States)

    Lucero, J. P.; Fry, D. A.; Gaskill, W. E.; Henderson, R. L.; Crawford, T. R.; Carey, N. E.

    1992-12-01

    The Los Alamos National Laboratory has constructed and is now operating a cineradiography system for imaging and evaluation of ballistic interaction events at the 1200 meter range of the Terminal Effects Research and Analysis (TERA) Group at the New Mexico Institute of Mining and Technology. Cineradiography is part of a complete firing, tracking, and analysis system at the range. The cine system consists of flash x-ray sources illuminating a one-half meter by two meter fast phosphor screen which is viewed by gated-intensified high resolution still video cameras via turning mirrors. The entire system is armored to protect against events containing up to 13.5 kg of high explosive. Digital images are available for immediate display and processing. The system is capable of frame rates up to 10(exp 5)/sec for up to five total images.

  15. Activity-monitor accuracy in measuring step number and cadence in community-dwelling older adults.

    Science.gov (United States)

    Grant, P Margaret; Dall, Philippa M; Mitchell, Sarah L; Granat, Malcolm H

    2008-04-01

    The primary purpose of this study was to investigate the accuracy of the activPAL physical activity monitor in measuring step number and cadence in older adults. Two pedometers (New-Lifestyles Digi-Walker SW-200 and New-Lifestyles NL2000) used in clinical practice to count steps were simultaneously evaluated. Observation was the criterion measure. Twenty-one participants (65-87 yr old) recruited from community-based exercise classes walked on a treadmill at 5 speeds (0.67, 0.90, 1.12, 1.33, and 1.56 m/s) and outdoors at 3 self-selected speeds (slow, normal, and fast). The absolute percentage error of the activPAL was <1% for all treadmill and outdoor conditions for measuring steps and cadence. With the exception of the slowest treadmill speed, the NL-2000 error was <2%. The SW-200 was the least accurate device, particularly at slower walking speeds. The activPAL monitor accurately recorded step number and cadence. Combined with its ability to identify primary postures, the activPAL might be a useful and versatile device for measuring activity in older adults.

  16. AIRBORNE HIGH-RESOLUTION DIGITAL IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Prado-Molina, J.

    2006-04-01

    Full Text Available A low-cost airborne digital imaging system capable to perform aerial surveys with small-format cameras isintroduced. The equipment is intended to obtain high-resolution multispectral digital photographs constituting so aviable alternative to conventional aerial photography and satellite imagery. Monitoring software handles all theprocedures involved in image acquisition, including flight planning, real-time graphics for aircraft position updatingin a mobile map, and supervises the main variables engaged in the imaging process. This software also creates fileswith the geographical position of the central point of every image, and the flight path followed by the aircraftduring the entire survey. The cameras are mounted on a three-axis stabilized platform. A set of inertial sensorsdetermines platform's deviations independently from the aircraft and an automatic control system keeps thecameras at a continuous nadir pointing and heading, with a precision better than ± 1 arc-degree in three-axis. Thecontrol system is also in charge of saving the platform’s orientation angles when the monitoring software triggersthe camera. These external orientation parameters, together with a procedure for camera calibration give theessential elements for image orthocorrection. Orthomosaics are constructed using commercial GIS software.This system demonstrates the feasibility of large area coverage in a practical and economical way using smallformatcameras. Monitoring and automatization reduce the work while increasing the quality and the amount ofuseful images.

  17. Enhanced high-speed coherent diffraction imaging

    Science.gov (United States)

    Potier, Jonathan; Fricker, Sebastien; Idir, Mourad

    2011-03-01

    Due to recent advances in X-ray microscopy, we are now able to image objects with nanometer resolution thanks to Synchrotron beam lines or Free Electron Lasers (FEL). The PCI (Phase Contrast Imaging) is a robust technique that can recover the wavefront from measurements of only few intensity pictures in the Fresnel diffraction region. With our fast straightforward calculus methods, we manage to provide the phase induced by a microscopic specimen in few seconds. We can therefore obtain high contrasted images from transparent materials at very small scales. To reach atomic resolution imaging and thus make a transition from the near to the far field, the Coherent Diffraction Imaging (CDI) technique finds its roots in the analysis of diffraction patterns to obtain the phase of the altered complex wave. Theoretical results about existence and uniqueness of this retrieved piece of information by both iterative and direct algorithms have already been released. However, performances of algorithms remain limited by the coherence of the X-ray beam, presence of random noise and the saturation threshold of the detector. We will present reconstructions of samples using an enhanced version of HIO algorithm improving the speed of convergence and its repeatability. As a first step toward a practical X-Ray CDI system, initial images for reconstructions are acquired with the laser-based CDI system working in the visible spectrum.

  18. High speed multispectral fluorescence lifetime imaging

    NARCIS (Netherlands)

    Fereidouni, F.; Reitsma, K.; Gerritsen, H.C.

    2013-01-01

    We report a spectrally resolved fluorescence lifetime imaging system based on time gated single photon detection with a fixed gate width of 200 ps and 7 spectral channels. Time gated systems can operate at high count rates but usually have large gate widths and sample only part of the fluorescence d

  19. Compressive sensing for high resolution radar imaging

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Hoogeboom, P.

    2010-01-01

    In this paper we present some preliminary results on the application of Compressive Sensing (CS) to high resolution radar imaging. CS is a recently developed theory which allows reconstruction of sparse signals with a number of measurements much lower than what is required by the Shannon sampling th

  20. High dynamic range imaging sensors and architectures

    CERN Document Server

    Darmont, Arnaud

    2013-01-01

    Illumination is a crucial element in many applications, matching the luminance of the scene with the operational range of a camera. When luminance cannot be adequately controlled, a high dynamic range (HDR) imaging system may be necessary. These systems are being increasingly used in automotive on-board systems, road traffic monitoring, and other industrial, security, and military applications. This book provides readers with an intermediate discussion of HDR image sensors and techniques for industrial and non-industrial applications. It describes various sensor and pixel architectures capable

  1. GRANULOMETRIC MAPS FROM HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    Catherine Mering

    2011-05-01

    Full Text Available A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every pixel of the image according to the granulometric density inside a sliding neighbourhood. Granulometric mapping brings some advantages over traditional thematic mapping by remote sensing by focusing on fine spatial events and small changes in one peculiar category of the landscape.

  2. High-speed CMOS image sensor for high-throughput lensless microfluidic imaging system

    Science.gov (United States)

    Yan, Mei; Huang, Xiwei; Jia, Qixiang; Nadipalli, Revanth; Wang, Tongxi; Shang, Yang; Yu, Hao; Je, Minkyu; Yeo, Kiatseng

    2012-03-01

    The integration of CMOS image sensor and microfluidics becomes a promising technology for point-of-care (POC) diagnosis. However, commercial image sensors usually have limited speed and low-light sensitivity. One high-speed and high-sensitivity CMOS image sensor chip is introduced in this paper, targeted for high-throughput microfluidic imaging system. Firstly, high speed image sensor architecture is introduced with design of column-parallel single-slope analog-todigital converter (ADC) with digital correlated double sampling (CDS). The frame rate can be achieved to 2400 frames/second (fps) with resolution of 128×96 for high-throughput microfluidic imaging. Secondly, the designed system has superior low-light sensitivity, which is achieved by large pixel size (10μm×10μm, 56% fill factor). Pixel peak signalnoise- ratio (SNR) reaches to 50dB with 10dB improvement compared to the commercial pixel (2.2μm×2.2μm). The degradation of pixel resolution is compensated by super-resolution image processing algorithm. By reconstructing single image with multiple low-resolution frames, we can equivalently achieve 2μm resolution with physical 10μm pixel. Thirdly, the system-on-chip (SoC) integration results in a real-time controlled intelligent imaging system without expensive data storage and time-consuming computer analysis. This initial sensor prototype with timing-control makes it possible to develop high-throughput lensless microfluidic imaging system for POC diagnosis.

  3. Radiation length imaging with high resolution telescopes

    CERN Document Server

    Stolzenberg, U; Schwenker, B; Wieduwilt, P; Marinas, C; Lütticke, F

    2016-01-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the $X$/$X_0$ imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of $X$/$X_0$ imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of ...

  4. High-sensitivity, high-speed continuous imaging system

    Science.gov (United States)

    Watson, Scott A; Bender, III, Howard A

    2014-11-18

    A continuous imaging system for recording low levels of light typically extending over small distances with high-frame rates and with a large number of frames is described. Photodiode pixels disposed in an array having a chosen geometry, each pixel having a dedicated amplifier, analog-to-digital convertor, and memory, provide parallel operation of the system. When combined with a plurality of scintillators responsive to a selected source of radiation, in a scintillator array, the light from each scintillator being directed to a single corresponding photodiode in close proximity or lens-coupled thereto, embodiments of the present imaging system may provide images of x-ray, gamma ray, proton, and neutron sources with high efficiency.

  5. Smartphone microendoscopy for high resolution fluorescence imaging

    CERN Document Server

    Hong, Xiangqian; Mugler, Dale H; Yu, Bing

    2016-01-01

    High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the gastrointestinal tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this letter we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 {\\mu}m. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle income countries.

  6. Ultra-high resolution computed tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Knoxville, TN); Tobin, Jr., Kenneth William (Harriman, TN); Gleason, Shaun S. (Knoxville, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  7. NASA High Contrast Imaging for Exoplanets

    Science.gov (United States)

    Lyon, Richard G.

    2008-01-01

    Described is NASA's ongoing program for the detection and characterization of exosolar planets via high-contrast imaging. Some of the more promising proposed techniques under assessment may enable detection of life outside our solar system. In visible light terrestrial planets are approximately 10(exp -10) dimmer than the parent star. Issues such as diffraction, scatter, wavefront, amplitude and polarization all contribute to a reduction in contrast. An overview of the techniques will be discussed.

  8. High Speed and High Resolution Table-Top Nanoscale Imaging

    CERN Document Server

    Tadesse, G K; Demmler, S; HÄdrich, S; Wahyutama, I; Steinert, M; Spielmann, C; ZÜrch, M; TÜnnermann, A; Limpert, J; Rothhardt, J

    2016-01-01

    We present a table-top coherent diffraction imaging (CDI) experiment based on high-order harmonics generated at 18 nm by a high average power femtosecond fiber laser system. The high photon flux, narrow spectral bandwidth and high degree of spatial coherence allow for ultra-high sub-wavelength resolution imaging at a high numerical aperture. Our experiments demonstrate a half-pitch resolution of 13.6 nm, very close to the actual Abbe-limit of 12.4 nm, which is the highest resolution achieved from any table-top XUV or X-ray microscope. In addition, 20.5 nm resolution was achieved with only 3 sec of integration time bringing live diffraction imaging and 3D tomography on the nanoscale one step closer to reality. The current resolution is solely limited by the wavelength and the detector size. Thus, table-top nanoscopes with only a few-nm resolutions are in reach and will find applications in many areas of science and technology.

  9. High-resolution ophthalmic imaging system

    Science.gov (United States)

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  10. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  11. High accuracy FIONA-AFM hybrid imaging.

    Science.gov (United States)

    Fronczek, D N; Quammen, C; Wang, H; Kisker, C; Superfine, R; Taylor, R; Erie, D A; Tessmer, I

    2011-04-01

    Multi-protein complexes are ubiquitous and play essential roles in many biological mechanisms. Single molecule imaging techniques such as electron microscopy (EM) and atomic force microscopy (AFM) are powerful methods for characterizing the structural properties of multi-protein and multi-protein-DNA complexes. However, a significant limitation to these techniques is the ability to distinguish different proteins from one another. Here, we combine high resolution fluorescence microscopy and AFM (FIONA-AFM) to allow the identification of different proteins in such complexes. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, we are able to align fluorescence and AFM information to ≥8nm accuracy. This accuracy is sufficient to identify individual fluorescently labeled proteins in most multi-protein complexes. We investigate the limitations of localization precision and accuracy in fluorescence and AFM images separately and their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two orthogonal techniques (FIONA and AFM) opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5-10nm) information about the conformational properties of multi-protein complexes and the fluorescence can indicate spatial relationships of the proteins in the complexes.

  12. Cadence selection affects metabolic responses during cycling and subsequent running time to fatigue.

    Science.gov (United States)

    Vercruyssen, F; Suriano, R; Bishop, D; Hausswirth, C; Brisswalter, J

    2005-05-01

    To investigate the effect of cadence selection during the final minutes of cycling on metabolic responses, stride pattern, and subsequent running time to fatigue. Eight triathletes performed, in a laboratory setting, two incremental tests (running and cycling) to determine peak oxygen uptake (VO2PEAK) and the lactate threshold (LT), and three cycle-run combinations. During the cycle-run sessions, subjects completed a 30 minute cycling bout (90% of LT) at (a) the freely chosen cadence (FCC, 94 (5) rpm), (b) the FCC during the first 20 minutes and FCC-20% during the last 10 minutes (FCC-20%, 74 (3) rpm), or (c) the FCC during the first 20 minutes and FCC+20% during the last 10 minutes (FCC+20%, 109 (5) rpm). After each cycling bout, running time to fatigue (Tmax) was determined at 85% of maximal velocity. A significant increase in Tmax was found after FCC-20% (894 (199) seconds) compared with FCC and FCC+20% (651 (212) and 624 (214) seconds respectively). VO2, ventilation, heart rate, and blood lactate concentrations were significantly reduced after 30 minutes of cycling at FCC-20% compared with FCC+20%. A significant increase in VO2 was reported between the 3rd and 10th minute of all Tmax sessions, without any significant differences between sessions. Stride pattern and metabolic variables were not significantly different between Tmax sessions. The increase in Tmax after FCC-20% may be associated with the lower metabolic load during the final minutes of cycling compared with the other sessions. However, the lack of significant differences in metabolic responses and stride pattern between the run sessions suggests that other mechanisms, such as changes in muscular activity, probably contribute to the effects of cadence variation on Tmax

  13. The Effect of Cycling Cadence on Subsequent 10km Running Performance in Well-Trained Triathletes

    OpenAIRE

    Tew, Garry A.

    2005-01-01

    The aim of this study was to examine the effects of different pedalling cadences on the performance of a subsequent 10km treadmill run. Eight male triathletes (age 38.9 ± 15.4 years, body mass 72.2 ± 5.2 kg, and stature 176 ± 6 cm; mean ± SD) completed a maximal cycling test, one isolated run (10km), and then three randomly ordered cycle-run sessions (65 minutes cycling + 10km run). During the cycling bout of the cycle-run sessions, subjects cycled at an intensity corresponding to 70% Pmax wh...

  14. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, R. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gruensch, G. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  15. Shape recovery using high dynamic range images

    Institute of Scientific and Technical Information of China (English)

    Zheng Zuoyong; Ma Lizhuang; Li Zhong

    2008-01-01

    An effective method for object shape recovery using HDRIs (high dynamic range images) is proposed. The radiance values of each point on the reference sphere and target object are firstly calculated, thus the set of candidate normals of each target point are found by comparing its radiance to that of each reference sphere point. In single-image shape recovery, a smoothness operation is applied to the target normals to obtain a stable and reasonable result; while in photometric stereo, radiance vectors of reference and target objects formed due to illuminations under different light source directions are directly compared to get the most suitable target normals. Finally, the height values can be recovered from the resulting normal field. Because diffuse and specular reflection are handled in an unified framework with radiance, our approach eliminates the limitation presented in most recovery strategies, i.e., only Lambertian model can be used. The experiment results from the real and synthesized images show the performance of our approach.

  16. High Fidelity Imaging Algorithm for the Undique Imaging Monte Carlo Simulator

    Directory of Open Access Journals (Sweden)

    Tremblay Grégoire

    2016-01-01

    Full Text Available The Undique imaging Monte Carlo simulator (Undique hereafter was developed to reproduce the behavior of 3D imaging devices. This paper describes its high fidelity imaging algorithm.

  17. Heart rate variability and surface electromyography of trained cyclists at different cadences

    Directory of Open Access Journals (Sweden)

    Bruno Saraiva

    2016-06-01

    Full Text Available The heart rate variability (HRV and surface electromyography (sEMG are important tools in the evaluation of cardiac autonomic system and neuromuscular parameters, respectively. The aim of the study was to evaluate the behavior of HRV and sEMG of the vastus lateralis in two exercise protocols on a cycle ergometer at 60 and 80 rpm. Eight healthy men cyclists who have trained for at least two years were evaluated. Reduction was observed followed by stabilization of RMSSD and SDNN indices of HRV (p<0.05 along with increases in the amplitude of the sEMG signal (p<0.05 in both protocols. Significant correlations were observed between the responses of HRV and sEMG in the cadence of 60 rpm (RMSSD and sEMG: r = -0.42, p=0.03; SDNN and sEMG: r = -0.45, p=0.01 and 80 rpm (RMSSD and sEMG: r = -0.47, p=0.02; SDNN and sEMG: r = -0.49, p=0.01, yet no difference was observed for these variables between the two protocols. We concluded that the parasympathetic cardiac responses and sEMG are independent of cadences applied at the same power output.

  18. CERN Technical Training 2002: Learning for the LHC! Introduction à la CAO CADENCE - French version only

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Dans le cadre du suivi du programme ELEC-2002 : Electronics in HEP, une nouvelle session du cours Introduction à la CAO CADENCE. De la saisie de schéma Concept-HDL au PCB est programmée pour le 4 et 5 juin prochains. Le cours, en français, est gratuit et sera animé par Serge Brobecker de la division IT/PS/EAS. Objectif de cette formation est de donner une vue générale du système CAO CADENCE utilisé au CERN, et d'en connaître l'environnement et les possibilités, en acquérant des notions suffisantes pour utiliser la saisie de schéma. Le cours est ciblé pour une audience d'ingénieurs et techniciens désirant utiliser les outils CAO disponibles au CERN, afin de concevoir des circuits logiques et des circuits programmables digitaux. Plus d'information, et possibilité d'inscription par EDH sont accessibles depuis les pages «...

  19. Upper Extremity Freezing and Dyscoordination in Parkinson’s Disease: Effects of Amplitude and Cadence Manipulations

    Directory of Open Access Journals (Sweden)

    April J. Williams

    2013-01-01

    Full Text Available Purpose. Motor freezing, the inability to produce effective movement, is associated with decreasing amplitude, hastening of movement, and poor coordination. We investigated how manipulations of movement amplitude and cadence affect upper extremity (UE coordination as measured by the phase coordination index (PCI—only previously measured in gait—and freezing of the upper extremity (FO-UE in people with Parkinson's disease (PD who experience freezing of gait (PD + FOG, do not experience FOG (PD-FOG, and healthy controls. Methods. Twenty-seven participants with PD and 18 healthy older adults made alternating bimanual movements between targets under four conditions: Baseline; Fast; Small; SmallFast. Kinematic data were recorded and analyzed for PCI and FO-UE events. PCI and FO-UE were compared across groups and conditions. Correlations between UE PCI, gait PCI, FO-UE, and Freezing of Gait Questionnaire (FOG-Q were determined. Results. PD + FOG had poorer coordination than healthy old during SmallFast. UE coordination correlated with number of FO-UE episodes in two conditions and FOG-Q score in one. No differences existed between PD−/+FOG in coordination or number of FO-UE episodes. Conclusions. Dyscoordination and FO-UE can be elicited by manipulating cadence and amplitude of an alternating bimanual task. It remains unclear whether FO-UE and FOG share common mechanisms.

  20. Imaging in (high pressure) Micromegas TPC detectors

    Science.gov (United States)

    Luzón, G.; Cebrián, S.; Castel, J.; Dafni, Th.; Galán, J.; Garza, J. G.; Irastorza, I. G.; Iguaz, F. J.; Mirallas, H.; Ruíz-Choliz, E.

    2016-11-01

    The T-REX project of the group of the University of Zaragoza includes a number of R&D and prototyping activities to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches where the pattern recognition of the signal is crucial for background discrimination. In the CAST experiment (CERN Axion Solar Telescope) a background level as low as 0.8 × 10-6 counts keV-1 cm-2 s-1 was achieved. Prototyping and simulations promise a 105 better signal-to-noise ratio than CAST for the future IAXO (International Axion Observatory) using x-ray telescopes. A new strategy is also explored in the search of WIMPS based on high gas pressure: the TREX-DM experiment, a low energy threshold detector. In both cases, axion and WIMP searches, the image of the expected signal is quite simple: a one cluster deposition coming from the magnet bore in the case of axions and, if possible, with a tadpole form in the case of WIMPs. It is the case of double beta decay (DBD) where imaging and pattern recognition play a major role. Results obtained in Xe + trimethylamine (TMA) mixture point to a reduction in electron diffusion which improves the quality of the topological pattern, with a positive impact on the discrimination capability, as shown in TREX-ββ prototype. Microbulk Micromegas are able to image the DBD ionization signature with high quality while, at the same time, measuring its energy deposition with a resolution of at least a ~ 3% FWHM at the transition energy Qββ and even better (up to ~ 1% FWHM) as extrapolated from low energy events. That makes Micromegas-based HPXe TPC a very competitive technique for the next generation DBD experiments (as PANDAX-III). Here, it will be shown the last results of the TREX project detectors and software concerning Axions, Dark matter and double beta decay.

  1. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling.

    Science.gov (United States)

    Bertucci, William; Grappe, Frederic; Girard, Amaury; Betik, Andrew; Rouillon, Jean Denis

    2005-05-01

    Despite the importance of uphill cycling performance during cycling competitions, there is very little research investigating uphill cycling, particularly concerning field studies. The lack of research is partly due to the difficulties in obtaining data in the field. The aim of this study was to analyse the crank torque in road cycling on level and uphill using different pedalling cadences in the seated position. Seven male cyclists performed four tests in the seated position (1) on level ground at 80 and 100 rpm, and (2) on uphill road cycling (9.25% grade) at 60 and 80 rpm.The cyclists exercised for 1 min at their maximal aerobic power. The bicycle was equipped with the SRM Training System (Schoberer, Germany) for the measurement of power output (W), torque (Nm), pedalling cadence (rpm), and cycling velocity (km h(-1)). The most important finding of this study indicated that at maximal aerobic power the crank torque profile (relationship between torque and crank angle) varied substantially according to the pedalling cadence and with a minor effect according to the terrain. At the same power output and pedalling cadence (80 rpm) the torque at a 45 degrees crank angle tended (p cycling compared to level cycling. During uphill cycling at 60 rpm the peak torque was increased by 42% compared with level ground cycling at 100 rpm. When the pedalling cadence was modified, most of the variations in the crank torque profile were localised in the power output sector (45 degrees to 135 degrees).

  2. Cheetah: A high frame rate, high resolution SWIR image camera

    Science.gov (United States)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  3. Bayesian Image Classification At High Latitudes

    Science.gov (United States)

    Bulgin, Claire E.; Eastwood, Steinar; Merchant, Chris J.

    2013-12-01

    The European Space Agency created the Climate Change Initiative (CCI) to maximize the usefulness of Earth Observations to climate science. Sea Surface Temperature (SST) is an essential climate variable to which satellite observations make a crucial contribution, and is one of the projects within the CCI program. SST retrieval is dependent on successful cloud clearing and identification of clear-sky pixels over ocean. At high latitudes image classification is more difficult due to the presence of sea-ice. Newly formed ice has a temperature close to the freezing point of water and a dark surface making it difficult to distinguish from open ocean using data at visible and infrared wavelengths. Similarly, melt ponds on the sea-ice surface make image classification more difficult. We present here a three- way Bayesian classifier for the AATSR instrument classifying pixels as ‘clear-sky over ocean', ‘clear-sky over ice' or ‘cloud' using the 0.6, 1.6, 11 and 12 micron channels. We demonstrate the ability of the classifier to successfully identify sea-ice and consider the potential for generating an ice surface temperature record from AATSR which could be extended using data from SLSTR.

  4. High-resolution colorimetric imaging of paintings

    Science.gov (United States)

    Martinez, Kirk; Cupitt, John; Saunders, David R.

    1993-05-01

    With the aim of providing a digital electronic replacement for conventional photography of paintings, a scanner has been constructed based on a 3000 X 2300 pel resolution camera which is moved precisely over a 1 meter square area. Successive patches are assembled to form a mosaic which covers the whole area at c. 20 pels/mm resolution, which is sufficient to resolve the surface textures, particularly craquelure. To provide high color accuracy, a set of seven broad-band interference filters are used to cover the visible spectrum. A calibration procedure based upon a least-mean-squares fit to the color of patches from a Macbeth Colorchecker chart yields an average color accuracy of better than 3 units in the CMC uniform color space. This work was mainly carried out as part of the VASARI project funded by the European Commission's ESPRIT program, involving companies and galleries from around Europe. The system is being used to record images for conservation research, for archival purposes and to assist in computer-aided learning in the field of art history. The paper will describe the overall system design, including the selection of the various hardware components and the design of controlling software. The theoretical basis for the color calibration methodology is described as well as the software for its practical implementation. The mosaic assembly procedure and some of the associated image processing routines developed are described. Preliminary results from the research will be presented.

  5. Magnotospheric imaging of high latitude ion outflows

    Directory of Open Access Journals (Sweden)

    D. E. Garrido

    Full Text Available High latitude ion outflows mostly consist of upward streaming O+ and He+ emanating from the ionosphere. At heights above 1000 km, these flows consist of cold and hot components which resonantly scatter solar extreme ultraviolet (EUV light, however, the ion populations respond differently to Doppler shifting resulting from the large relative velocities between the ions and the Sun. The possibility of optical detection of the Doppler effect on the scattering rate will be discussed for the O+ (83.4 nm ions. We have contrasted the EUV solar resonance images of these outflows by simulations of the 30.4 nm He+ and 83.4 nm O+ emissions for both quiet and disturbed geomagnetic conditions. Input data for the 1000 km level has been obtained from the EICS instrument aboard the Dynamics Explorer satellite. Our results show emission rates of 50 and 56 milli-Rayleighs at 30.4 nm for quiet and disturbed conditions and 65 and 75 milli-Rayleighs at 83.4 nm for quiet and disturbed conditions, respectively, obtained for a polar orbiting satellite and viewing radially outward. We also find that an imager at an equatorial distance of 9 RE or more is in a favourable position for detecting ion outflows, particularly when the plasmapause is depressed in latitude. However, an occultation disk is necessary to obscure the bright plasmaspheric emissions.

  6. High Accuracy Imaging Polarimetry with NICMOS

    CERN Document Server

    Batcheldor, D; Hines, D C; Schmidt, G D; Axon, D J; Robinson, A; Sparks, W; Tadhunter, C

    2008-01-01

    The ability of NICMOS to perform high accuracy polarimetry is currently hampered by an uncalibrated residual instrumental polarization at a level of 1.2-1.5%. To better quantify and characterize this residual we obtained observations of three polarimetric standard stars at three separate space-craft roll angles. Combined with archival data, these observations were used to characterize the residual instrumental polarization to enable NICMOS to reach its full polarimetric potential. Using these data, we calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetric standards. The uncertainties associated with the parallel transmission coefficients, a result of the photometric repeatability of the observations, dominate the accuracy of p and theta. However, the new coefficients now enable imaging polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15 degrees.

  7. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  8. Collecting highly reproducible images to support dermatological medical diagnosis

    DEFF Research Database (Denmark)

    Gomez, David Delgado; Carstensen, Jens Michael; Ersbøll, Bjarne Kjær

    2006-01-01

    In this article, an integrated imaging system for acquisition of accurate standardized images is proposed. The system also aims at making highly reproducible images over time, so images taken at different times can be compared. The system is made up of an integrating intensity sphere illumination...

  9. Dual-camera system for high-speed imaging in particle image velocimetry

    CERN Document Server

    Hashimoto, K; Hara, T; Onogi, S; Mouri, H

    2012-01-01

    Particle image velocimetry is an important technique in experimental fluid mechanics, for which it has been essential to use a specialized high-speed camera. However, the high speed is at the expense of other performances of the camera, i.e., sensitivity and image resolution. Here, we demonstrate that the high-speed imaging is also possible with a pair of still cameras.

  10. Contrast-enhanced ultrasonography using cadence-contrast pulse sequencing technology for targeted biopsy of the prostate.

    Science.gov (United States)

    Aigner, Friedrich; Pallwein, Leo; Mitterberger, Michael; Pinggera, Germar M; Mikuz, Gregor; Horninger, Wolfgang; Frauscher, Ferdinand

    2009-02-01

    To evaluate contrast-enhanced ultrasonography (US) using cadence-contrast pulse sequencing (CPS) technology, compared with systematic biopsy for detecting prostate cancer, as grey-scale US has low sensitivity and specificity for detecting prostate cancer. In all, 44 men with suspicious prostate-specific antigen (PSA) levels and CPS findings were assessed; all had CPS-targeted and systematic biopsy. Transrectal CPS images were taken with a low mechanical index (0.14). A microbubble contrast agent (SonoVue, Bracco International BV, Amsterdam, the Netherlands) was administered as a bolus, with a maximum dose of 4.8 mL. CPS was used to assess prostatic vascularity. Areas with a rapid and increased contrast enhancement within the peripheral zone were defined as suspicious for prostate cancer. Up to five CPS targeted biopsies were taken and subsequently a 10-core systematic biopsy was taken. Cancer detection rates for the two techniques were compared. Overall, cancer was detected in 35 of 44 patients (80%), with a mean PSA level of 3.8 ng/mL. Lesions suspicious on CPS showed cancer in 35 of 44 patients (80%) and systematic biopsy detected cancer in 15 of 44 patients (34%). CPS-targeted cores were positive in 105 of 220 cores (47.7%) and in 41 of 440 systematic biopsy cores (9.3%) (P biopsy was 6.7 and for CPS-targeted biopsy 6.8 (P > 0.05). The sensitivity of CPS for detecting cancer was 100% (confidence interval, 95%). However, limitations in the series included that only CPS-positive cases were investigated, and CPS-targeted biopsy should be evaluated in a more extended biopsy scheme. Contrast-enhanced US using CPS enables excellent visualization of the microvasculature associated with prostate cancer, and can improve the detection of prostate cancer compared with systematic biopsy.

  11. Modeling and simulation of nanomagnetic logic with cadence virtuoso using Verilog-A

    Science.gov (United States)

    Žiemys, Gražvydas; Giebfried, Andrew; Becherer, Markus; Eichwald, Irina; Schmitt-Landsiedel, Doris; Breitkreutz-v. Gamm, Stephan

    2016-11-01

    This paper presents a novel approach to model and simulate the Nanomagnetic Logic with perpendicular magnetic anisotropy (pNML) using industry standard Cadence Virtuoso software tool. The implementation of an efficient compact model of a single nanomagnet in Verilog-A is introduced. A single magnet is the key element of Nanomagnetic logic systems. Two field coupled nanomagnets act as a magnetic inverter. Furthermore, the majority gate model is introduced. To verify the model, a circuit consisting of five such single magnets in a loop is simulated and the results are compared to an experiment on a fabricated inverter chain. To reproduce the variations in a manufacturing process the Monte Carlo simulation method is applied and the magnetization direction of the last magnet in a chain is evaluated for one hundred clocking cycles. The results are compared to the experimental data.

  12. Density-based retrieval from high-similarity image databases

    DEFF Research Database (Denmark)

    Hansen, Michael Edberg; Carstensen, Jens Michael

    2004-01-01

    Many image classification problems can fruitfully be thought of as image retrieval in a "high similarity image database" (HSID) characterized by being tuned towards a specific application and having a high degree of visual similarity between entries that should be distinguished. We introduce...

  13. Spatially adaptive regularized iterative high-resolution image reconstruction algorithm

    Science.gov (United States)

    Lim, Won Bae; Park, Min K.; Kang, Moon Gi

    2000-12-01

    High resolution images are often required in applications such as remote sensing, frame freeze in video, military and medical imaging. Digital image sensor arrays, which are used for image acquisition in many imaging systems, are not dense enough to prevent aliasing, so the acquired images will be degraded by aliasing effects. To prevent aliasing without loss of resolution, a dense detector array is required. But it may be very costly or unavailable, thus, many imaging systems are designed to allow some level of aliasing during image acquisition. The purpose of our work is to reconstruct an unaliased high resolution image from the acquired aliased image sequence. In this paper, we propose a spatially adaptive regularized iterative high resolution image reconstruction algorithm for blurred, noisy and down-sampled image sequences. The proposed approach is based on a Constrained Least Squares (CLS) high resolution reconstruction algorithm, with spatially adaptive regularization operators and parameters. These regularization terms are shown to improve the reconstructed image quality by forcing smoothness, while preserving edges in the reconstructed high resolution image. Accurate sub-pixel motion registration is the key of the success of the high resolution image reconstruction algorithm. However, sub-pixel motion registration may have some level of registration error. Therefore, a reconstruction algorithm which is robust against the registration error is required. The registration algorithm uses a gradient based sub-pixel motion estimator which provides shift information for each of the recorded frames. The proposed algorithm is based on a technique of high resolution image reconstruction, and it solves spatially adaptive regularized constrained least square minimization functionals. In this paper, we show that the reconstruction algorithm gives dramatic improvements in the resolution of the reconstructed image and is effective in handling the aliased information. The

  14. Imaging beamline for high energy proton radiography

    Institute of Scientific and Technical Information of China (English)

    WEI Tao; YANG Guo-Jun; LONG Ji-Dong; WANG Shao-Heng; HE Xiao-Zhong

    2012-01-01

    Proton radiography is a new tool for advanced hydrotesting.This article will discuss the basic concept of proton radiography first,especially the magnetic lens system.Then a scenario of 50 GeV imaging beamline will be described in every particular,including the matching section,Zumbro lens system and imaging system.The simulation result shows that the scenario of imaging beamline performs well,and the influence of secondary particles can be neglected.

  15. Highly Stable, Large Format EUV Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Higher detection efficiency and better radiation tolerance imagers are needed for the next generation of EUV instruments. Previously, CCD technology has demonstrated...

  16. Extraction and labeling high-resolution images from PDF documents

    Science.gov (United States)

    Chachra, Suchet K.; Xue, Zhiyun; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-12-01

    Accuracy of content-based image retrieval is affected by image resolution among other factors. Higher resolution images enable extraction of image features that more accurately represent the image content. In order to improve the relevance of search results for our biomedical image search engine, Open-I, we have developed techniques to extract and label high-resolution versions of figures from biomedical articles supplied in the PDF format. Open-I uses the open-access subset of biomedical articles from the PubMed Central repository hosted by the National Library of Medicine. Articles are available in XML and in publisher supplied PDF formats. As these PDF documents contain little or no meta-data to identify the embedded images, the task includes labeling images according to their figure number in the article after they have been successfully extracted. For this purpose we use the labeled small size images provided with the XML web version of the article. This paper describes the image extraction process and two alternative approaches to perform image labeling that measure the similarity between two images based upon the image intensity projection on the coordinate axes and similarity based upon the normalized cross-correlation between the intensities of two images. Using image identification based on image intensity projection, we were able to achieve a precision of 92.84% and a recall of 82.18% in labeling of the extracted images.

  17. "How to" incorporate dual-energy imaging into a high volume abdominal imaging practice.

    Science.gov (United States)

    Tamm, Eric P; Le, Ott; Liu, Xinming; Layman, Rick R; Cody, Dianna D; Bhosale, Priya R

    2017-03-01

    Dual-energy CT imaging has many potential uses in abdominal imaging. It also has unique requirements for protocol creation depending on the dual-energy scanning technique that is being utilized. It also generates several new types of images which can increase the complexity of image creation and image interpretation. The purpose of this article is to review, for rapid switching and dual-source dual-energy platforms, methods for creating dual-energy protocols, different approaches for efficiently creating dual-energy images, and an approach to navigating and using dual-energy images at the reading station all using the example of a pancreatic multiphasic protocol. It will also review the three most commonly used types of dual-energy images: "workhorse" 120kVp surrogate images (including blended polychromatic and 70 keV monochromatic), high contrast images (e.g., low energy monochromatic and iodine material decomposition images), and virtual unenhanced images. Recent developments, such as the ability to create automatically on the scanner the most common dual-energy images types, namely new "Mono+" images for the DSDECT (dual-source dual-energy CT) platform will also be addressed. Finally, an approach to image interpretation using automated "hanging protocols" will also be covered. Successful dual-energy implementation in a high volume practice requires careful attention to each of these steps of scanning, image creation, and image interpretation.

  18. High resolution image reconstruction from projection of low resolution images differing in subpixel shifts

    Science.gov (United States)

    Mareboyana, Manohar; Le Moigne, Jacqueline; Bennett, Jerome

    2016-05-01

    In this paper, we demonstrate simple algorithms that project low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithms are very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. are used in projection. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML) algorithms. The algorithms are robust and are not overly sensitive to the registration inaccuracies.

  19. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    Science.gov (United States)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  20. High Speed Imaging of Diesel Fuel Sprays

    Science.gov (United States)

    Jackson, Ja'kira; Bittle, Joshua

    2016-11-01

    Fuel sprays primarily serve as methods for fuel distribution, fuel/air mixing, and atomization. In this research, a constant pressure flow rig vessel is being tested at various pressures and temperatures using n-heptane. The experiment requires two imaging techniques: color Schlieren and Mie-scatter. Schlieren captures density gradients in a spray which includes both liquid and vapor phases while Mie-scatter is only sensitive to the liquid phase of the fuel spray. Essentially, studies are mainly focused on extracting the liquid boundary from the Schlieren to possibly eliminate the need for acquiring the Mie-Scatter technique. Four test conditions (combination of low and high pressure and temperatures) are used in the application to attempt to find the liquid boundary independent of the Mie-scatter technique. In this pursuit the following methods were used: a color threshold, a value threshold, and the time variation in color. All methods provided some indication of the liquid region but none were able to capture the full liquid boundary as obtained by the Mie-scatter results. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  1. Holographic high-resolution endoscopic image recording

    Science.gov (United States)

    Bjelkhagen, Hans I.

    1991-03-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  2. High-resolution imaging using endoscopic holography

    Science.gov (United States)

    Bjelkhagen, Hans I.

    1990-08-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  3. Effect of Rhythmic Auditory Stimulation on Controlling Stepping Cadence of Individuals with Mental Retardation and Cerebral Palsy

    Science.gov (United States)

    Varsamis, Panagiotis; Staikopoulos, Konstantinos; Kartasidou, Lefkothea

    2012-01-01

    One of the purposes of Rhythmic Auditory Stimulation (RAS) is to improve the control of dysfunctional movement patterns. This study aimed to extend the line of research by focussing on secondary students with mental retardation and cerebral palsy. According to the study's assumption, cadence can be controlled through a stable and low signal…

  4. Translationen der Décadence : (Anti)Dekadenz und Regeneration in den iberischen Literaturen, Spanien - Katalonien - Portugal (1895-1914)

    NARCIS (Netherlands)

    Lang, S.G.M.

    2014-01-01

    Focussing on the continuity of French décadence on the Iberian Peninsula, the doctoral thesis proposes an analysis of narrative literatures in Spanish, Catalan and Portuguese from 1895 to 1914. Between the literary negotiation of aesthetic patterns and an ideological quest for national identity, it

  5. Color-Based Image Retrieval from High-Similarity Image Databases

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Carstensen, Jens Michael

    2003-01-01

    Many image classification problems can fruitfully be thought of as image retrieval in a "high similarity image database" (HSID) characterized by being tuned towards a specific application and having a high degree of visual similarity between entries that should be distinguished. We introduce...

  6. Color-Based Image Retrieval from High-Similarity Image Databases

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg

    Many image classification problems can fruitfully be thought of as image retrieval in a "high similarity image database" (HSID) characterized by being tuned towards a specific application and having a high degree of visual similarity between entries that should be distinguished. We introduce...

  7. Secrets of high-performance image display

    Science.gov (United States)

    Desormeaux, David A.

    1996-04-01

    Medical imaging companies have traditionally supplied the industry with image visualization solutions based on their own custom hardware designs. Today, more and more systems are being deployed using only off-the-shelf workstations. Two major factors are driving this change. First, workstations are delivering the functionality and performance required to replace custom hardware for an ever increasing subset of visualization techniques, while continuing to come down in cost. Second, cost pressures are forcing medical imaging companies to OEM the hardware platform and focus on what they do best -- delivering solutions to health care providers. This industry shift is challenging the workstation vendors to deliver the maximum inherent performance in their computer systems to medical imaging applications without locking the application into a specific vendor's hardware. Since extracting the maximum performance from a workstation is not always intuitively obvious and often requires vendor-specific tricks, the best way to deliver performance to an application is through an application programmer's interface (API). The Hewlett-Packard Image Visualization Library (HP-IVL) is such an API. It transparently delivers the maximum possible imaging performance on Hewlett-Packard workstations, while allowing significant portability between platforms. This paper describes the performance tricks and trade-offs made in the software implementation of HP's Image Visualization Library and how the HP Image Visualization Accelerator (HP-IVX) fits into the overall architecture.

  8. An integral design strategy combining optical system and image processing to obtain high resolution images

    Science.gov (United States)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  9. Effect of pedal cadence on mechanical power output and physiological variables

    Directory of Open Access Journals (Sweden)

    Jefferson da Silva Novaes

    2007-09-01

    Full Text Available The objective of this study was to compare the responses of the variables maximal power output (POmax, heart rate (HR, rating of perceived exertion (RPE, systolic blood pressure (SBP, diastolic blood pressure (DBP and double product (DP in the maximum reached load and during 60 and 90 rev.min-1 tests. The study sample consisted of 14 men (26.5 ± 3.5 years, 78.5 ± 7.8 kg and 178.1 ± 7.0 cm engaged in indoor cycling classes, who undertook two tests of maximum effort using Balke’s incremental protocol. The fi rst test (test60 consisted of a pedal cadence of 60 rev.min-1 throughout the test, until voluntary exhaustion or the appearance of signs or symptom limits. The second test (test90 was at a pedal cadence of 90 rev.min-1. There were no signifi cant difference between the cadences tested in terms of HRmax (test60: 189.7±12.0 beats.min-1; test90: 190.9±10.7 beats.min-1, RPEmax (test60: 20.0±0.3; test90: 20.0±1.0 or DBPmean (test60: 76.7±4.9 mmHg; test90: 79.1 ± 5.3 mmHg. On the other hand, the values of POmax (test60: 344.6±70.1 W; test90: 285.7±61.8 W, SBPmax (test60: 186.1±14.7 mmHg; test90: 202.1±21.5 mmHg and DPmax (test60: 35402.9±4431.7; test90: 38655.0±5270.5 were different. In relation to the behavior of the variables during the tests, there were signifi cant difference in HR between the tests up to a level of 225 W. It was observed that neither RPE or DBP indicated signifi cant difference in absolute power. There were only differences in SBP and DP between the cadences at 300 W absolute power. With this, it is clear that to carry out maximum tests, even in protocols that do not prescribe the pedal cadence, it appears thet a 60 rev.min-1 pedalling speed is indicated. ABSTRACT O objetivo deste estudo foi comparar as respostas das variáveis potência máxima (Pmax, freqüência cardíaca (FC, percepção de esforço (PE, pressão arterial sistólica (PAS, pressão arterial diastólica (PAD e duplo produto (DP na carga m

  10. NVST多通道高分辨观测系统软件设计%NVST Multi-Channel High-Resolution Imaging System

    Institute of Scientific and Technical Information of China (English)

    陈宇超; 金振宇; 杨磊

    2016-01-01

    1m太阳望远镜多通道高分辨成像系统是望远镜的重要终端设备之一, 目前由Hα通道(线心656. 283 nm)和TiO通道( 705. 8 nm)构成. 主要介绍了多通道高分辨观测系统软件的设计. 观测系统在功能上主要实现了Hα通道多波长点扫描观测模式, TiO通道多时间分辨率观测模式, 以及为满足多通道发展的需求, 如常规观测通道的增加以及探测器的更换等, 在系统架构上采用了松耦合的分布式分层结构.%The New Vacuum Solar Telescope is an 1-meter, ground-based telescope which offers the unparalleled performance to solar observations. One of the important instruments in the NVST is the multi-channel high-resolution imaging system, and in the system five main work wave length ranges, including Hα, TiO-band, G-band, Ca II (854. 2nm) and He I (1083. 0nm) are covered. Up to now, Hα and TiO-band channels are being used. The Hα channel is an arrow-band imaging system, equipped with a tunable Lyot filter. The interpretation of the narrow-band filtergram is difficult due to the crosstalk between the brightness and the Dopplershift modulation, therefore the observational system is required to perform the multi-offband observation in Hαchannel to obtain a scanned profile in order to get meaningful physical information. The TiO-band is abroad-band imaging system and uses a high-cadence CMOS. To achieve much higher cadence for some specific observations, it should support to decrease the FOV to increase the acquisition speed of the camera. However, the software provided by the camera manufacturedis failed to meet the observation need so that a new observational software system is constructed to satisfy the different observational needs in two channels. Taking the factors into account that another three channel will soon be added and high-cadence cameras will come into uses, the software architecture designed for NVST acquisition system should provide the scalability and the

  11. High-Speed FPGA Image Decoder Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA space imagery is gathered and transmitted back to earth in many formats. One of the newer formats is the lossy/lossless image format CCSDS (CCSDS 122.0-B-1),...

  12. Image encryption using high-dimension chaotic system

    Institute of Scientific and Technical Information of China (English)

    Sun Fu-Yan; Liu Shu-Tang; Lü Zong-Wang

    2007-01-01

    In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a new approach for image encryption based on a highdimensional chaotic map. The new scheme employs the Cat map to shuffle the positions, then to confuse the relationship between the cipher-image and the plain-image using the high-dimensional Lorenz chaotic map preprocessed. The results of experimental, statistical analysis and key space analysis show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.

  13. Generation of high-dynamic range image from digital photo

    Science.gov (United States)

    Wang, Ying; Potemin, Igor S.; Zhdanov, Dmitry D.; Wang, Xu-yang; Cheng, Han

    2016-10-01

    A number of the modern applications such as medical imaging, remote sensing satellites imaging, virtual prototyping etc use the High Dynamic Range Image (HDRI). Generally to obtain HDRI from ordinary digital image the camera is calibrated. The article proposes the camera calibration method based on the clear sky as the standard light source and takes sky luminance from CIE sky model for the corresponding geographical coordinates and time. The article considers base algorithms for getting real luminance values from ordinary digital image and corresponding programmed implementation of the algorithms. Moreover, examples of HDRI reconstructed from ordinary images illustrate the article.

  14. Investigation of Image Fusion Between High-Resolution Image and Multi-spectral Image

    Institute of Scientific and Technical Information of China (English)

    LI Pingxiang; WANG Zhijun

    2003-01-01

    On the basis of a thorough understanding of the physical characteristics of remote sensing image, this paper employs the theories of wavelet transform and signal sampling to develop a new image fusion algorithm. The algorithm has been successfully applied to the image fusion of SPOT PAN and TM of Guangdong province, China. The experimental results show that a perfect image fusion can be built up by using the image analytical solution and re-construction in the image frequency domain based on the physical characteristics of the image formation. The method has demonstrated that the results of the image fusion do not change spectral characteristics of the original image.

  15. Compact and mobile high resolution PET brain imager

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  16. High Dynamic Range Image Based on Multiple Exposure Time Synthetization

    Directory of Open Access Journals (Sweden)

    Yoshifumi Shimodaira

    2007-03-01

    Full Text Available High dynamic range of illumination may cause serious distortions and otherproblems in viewing and further processing of digital images. In this paper a new tonereproduction preprocessing algorithm is introduced which may help in developing hardly ornon-viewable features and content of the images. The method is based on the synthetizationof multiple exposure images from which the dense part, i.e. regions having the maximumlevel of detail are included in the output image. The resulted high quality HDR image makeseasier the information extraction and effectively supports the further processing of theimage.

  17. Evaluation of Metabolic Stress between Jumping at Different Cadences on the Digi-Jump Machine.

    Science.gov (United States)

    Lyons, Thomas S; Navalta, James W; Callahan, Zachary J

    The American College of Sports Medicine (ACSM) recommends that healthy adults achieve a minimum of thirty minutes of moderate intensity aerobic exercise five days per week. While cycling, walking, and jogging are commonly observed methods of achieving these recommendations, another option may be repetitive jumping. The purpose of this study was to examine the metabolic responses between repetitive jumping at a cadence of 120 jumps per minute (JPMs) vs. 100 JPMs when utilizing the Digi-Jump machine. Twenty-eight subjects completed two jumping trials, one at 120 JPMs and one at 100 JPMs. Subjects jumped until volitional exhaustion, or for a maximum of fifteen minutes. Oxygen uptake (VO2), heart rate (HR), respiratory exchange ratio (RER), and rating of perceived exertion (RPE) were assessed each minute of each exercise trial. RPE was differentiated, in that subjects reported perceived exertion of their total body, their upper-leg, and their lower leg. Results of this study indicated that there was no significant difference between the two trials for VO2, HR, or total body RPE. Differences were reported between trials for peak and average RER, with the 120 JPM trial eliciting a lower RER for both (peak: 1.08 ± .087 vs. 1.17 ± .1 p=.000; average: .99 ± .076 vs. 1.04 ± .098 p=.002), peak upper leg RPE (120: 15.29 ± 3.89 vs. 100: 16.75 ± 2.52 p=.022), and average lower leg RPE (120: 15.04 ± 2.55 vs. 100: 13.94 ± 2.02 p=.019). Also, there was a significant difference in exercise duration between the trials, with subjects able to exercise longer during the 120 JPM trial (12.4 ± 3.42 mins vs. 9.68 ± 4.31 mins p=.000). These data indicate that while the physiological stress may not be different between the two trials as indicated by VO2 and HR, the 120 JPM trial appears less strenuous as evidenced by RER values and by subjects' ability to exercise longer at that cadence.

  18. New developments in high speed MR imaging

    CERN Document Server

    Young, K

    2001-01-01

    The work presented in this thesis covers two areas of research; firstly, the measurement of myocardial perfusion using spin-labelling techniques and secondly design of gradient coils to limit neural stimulation. Chapter 1 gives an introduction to MRI in general and chapter 2 outlines the hardware used in MRI generally and refers more specifically to hardware used in this thesis. Chapter 3 describes techniques and methodology used in order to measure myocardial perfusion. Techniques aimed at tackling the problems faced with MR perfusion measurement were investigated, including ECG gating to prevent image misregistration and the use of spin-echo EPI, half-Fourier EPI and alteration of switch gradient frequency in order to improve image signal to noise ratio. A modified FAIR (Flow Sensitive Inversion Recovery) sequence was used to obtain an image series of a cross section of the myocardium. Average signal intensities from a selected ROI in the myocardium were obtained and the signal behaviour compared to a theor...

  19. Cadence Design of clock/calendar using 240*8 bit RAM using Verilog HDL

    Directory of Open Access Journals (Sweden)

    K.R.N.Karthik

    2013-06-01

    Full Text Available In the contrast of the modern day technology evolution the number of electronic components increasing on a system. New electronic control units (ECUs are not only dedicated to entertainment, but alsofor increasing safety and comfort. More and more mechanical connections are replaced by electronic ones to save energy and increase comfort and security. All these electronic devices need a way of exchanging information on a fast, reliable and robust way. As there was a tremendous change in the technology day by day mainly in the field of chip designing and the automation technology as due to this the clock speeds are also rapidly increasing along with this power measures are also increasing so to manage this situation we are moving towards the clock/calendar. The clock/calendar circuit based on 2048-bit static RAM organized as 256 words by 8 bits .Address and data are transferred serially via the two-line bidirectional I2C-bus The built in word address register is incremented automatically after each written of read data byte .Addressing pin A0 is used forprogramming the hard ware address .allowing the connection of two device to bus without additional hardware This total module can be used as a real time clock of adjustable frequencies and can also replace the purpose of the counters on the digital based applications This is designed in verilog using Xilinx and cadence 90nm inLINUX environment

  20. Montesquieu e la "décadence". Alcune annotazioni intorno ai "Romains"

    Directory of Open Access Journals (Sweden)

    Dileo Lucia

    2012-01-01

    Full Text Available Here I examine the issue of "décadence" in Montesquieu’s political philosophy, as it raises especially from "Considérations sur les Romains", as well as from some significant parts of L’Esprit des lois devoted to ancient Romans. The Roman case is important as it may offer an account of the author’s view of philosophy of history and of his conception of “general causes” that determine the progress, the preservation or the decline of societies and political institutions. It is also important as it involves Montesquieu’s theory of “good government”, that is both the ethical principles which the life of nations and institutions should be founded on, and the political argument of “mixed government”, a government in which political liberty is granted by a system of balance of powers that ensures the participation of each social and political force. The ancient Roman republic is an example of this kind of political system, and Roman imperialism was one of the main causes of its corruption. Even if the fate of the Roman empire cannot be easily explained – due to the role played by a complexity of different causes – following Montesquieu, we might say that its history especially tells us something extremely important about the necessity (and difficulty of equity in governing and, consequently, about the infinite dialectic of liberty and oppression.

  1. Simulation of High Quality Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Kortbek, Jacob; Nikolov, Svetoslav Ivanov

    2010-01-01

    This paper investigates if the influence on image quality using physical transducers can be simulated with an sufficient accuracy to reveal system performance. The influence is investigated in a comparative study between Synthetic Aperture Sequential Beamformation (SASB) and Dynamic Receive Focus...

  2. High sensitivity and high selectivity terahertz biomedical imaging

    Institute of Scientific and Technical Information of China (English)

    Seongsin M. Kim; William Baughman; David S. Wilbert; Lee Butler; Michael Bolus; Soner Balci; Patrick Kung

    2011-01-01

    We demonstrate two distinct emerging terahertz (THz) biomedical imaging techniques. One is based on the use of a new single frequency THz quantum cascade laser and the other is based on broadband THz time domain spectrocopy. The first method is employed to derive a metastasis lung tissue imaging at 3.7 THz with clear contrast between cancerous and healthy areas. The second approach is used to study an osseous tissue under several imaging modalities and achieve full THz spectroscopic imaging based on the frequency domain or on a fixed THz propagation time-delay. Sufficient contrast is achieved which facilitated the identification of regions with different cellular types and density compositions.%Terahertz (THz) imaging is a non-destructive,nonionizing imaging technology with potential applications in medicine,dentistry,pharmaceuticals,and homeland security[1-5].In these applications,THz biomedical imaging has become a particularly important and active field of research because of the potential for safer early screening of a disease.This will benefit the medical community tremendously and create considerable sociological impact.

  3. Complex pulsing schemes for high frame rate imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Fink, Mathias; Jensen, Jørgen Arendt

    2002-01-01

    High frame rate ultrasound imaging can be achieved by simultaneous transmission of multiple focused beams along different directions. However, image quality degrades by the interference among beams. An alternative approach is to transmit spherical waves of a basic short pulse with frequency coding...... with linear frequency modulation along the transducer elements, that cover the 70% fractional bandwidth of the 7 MHz transducer. The resulted images (after beamforming and matched filtering) show an axial resolution at the same order as in conventional pulse excitation and axial sidelobes down to -45 d......B. With the proposed imaging strategy of pulse train excitation, a whole image can be formed with only two emissions, making it possible to obtain high quality images at a frame rate of 20 to 25 times higher than that of conventional phased array imaging...

  4. Development of low read noise high conversion gain CMOS image sensor for photon counting level imaging

    Science.gov (United States)

    Seo, Min-Woong; Kawahito, Shoji; Kagawa, Keiichiro; Yasutomi, Keita

    2016-05-01

    A CMOS image sensor with deep sub-electron read noise and high pixel conversion gain has been developed. Its performance is recognized through image outputs from an area image sensor, confirming the capability of photoelectroncounting- level imaging. To achieve high conversion gain, the proposed pixel has special structures to reduce the parasitic capacitances around FD node. As a result, the pixel conversion gain is increased due to the optimized FD node capacitance, and the noise performance is also improved by removing two noise sources from power supply. For the first time, high contrast images from the reset-gate-less CMOS image sensor, with less than 0.3e- rms noise level, have been generated at an extremely low light level of a few electrons per pixel. In addition, the photon-counting capability of the developed CMOS imager is demonstrated by a measurement, photoelectron-counting histogram (PCH).

  5. High-resolution Image Reconstruction by Neural Network and Its Application in Infrared Imaging

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nan; JIN Wei-qi; SU Bing-hua

    2005-01-01

    As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information to the expanded images, and cannot improve resolution in deed. Multiframe-based techniques are effective ways for high-resolution image reconstruction, but their computation complexities and the difficulties in achieving image sequences limit their applications. An original method using an artificial neural network is proposed in this paper. Using the inherent merits in neural network, we can establish the mapping between high frequency components in low-resolution images and high-resolution images. Example applications and their results demonstrated the images reconstructed by our method are aesthetically and quantitatively (using the criteria of MSE and MAE) superior to the images acquired by common methods. Even for infrared images this method can give satisfactory results with high definition. In addition, a single-layer linear neural network is used in this paper, the computational complexity is very low, and this method can be realized in real time.

  6. Oxygenation, local muscle oxygen consumption and joint specific power in cycling: the effect of cadence at a constant external work rate.

    Science.gov (United States)

    Skovereng, Knut; Ettema, Gertjan; van Beekvelt, Mireille C P

    2016-06-01

    The present study investigates the effect of cadence on joint specific power and oxygenation and local muscle oxygen consumption in the vastus lateralis and vastus medialis in addition to the relationship between joint specific power and local muscle oxygen consumption (mVO2). Seventeen recreationally active cyclists performed 6 stages of constant load cycling using cadences of 60, 70, 80, 90, 100 and 110 rpm. Joint specific power was calculated using inverse dynamics and mVO2 and oxygenation were measured using near-infrared spectroscopy. Increasing cadence led to increased knee joint power and decreased hip joint power while the ankle joint was unaffected. Increasing cadence also led to an increased deoxygenation in both the vastus lateralis and vastus medialis. Vastus lateralis mVO2 increased when cadence was increased. No effect of cadence was found for vastus medialis mVO2. This study demonstrates a different effect of cadence on the mVO2 of the vastus lateralis and vastus medialis. The combined mVO2 of the vastus lateralis and medialis showed a linear increase with increasing knee joint specific power, demonstrating that the muscles combined related to power generated over the joint.

  7. Real-time computer treatment of THz passive device images with the high image quality

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  8. Motor ability of forelimb both on- and off-riding during walk and trot cadence of horse

    Science.gov (United States)

    Hyun, Seung-Hyun; Ryew, Che-Cheong

    2016-01-01

    The aim of this study was to investigate the motor ability of forelimb according to on- or off-riding during cadences (walk and trot) of horse. Horses and rider selected as subject consisted of total 37 heads of Jeju native horse and 1 female rider. The variables analyzed composed of 1 stride length, 1 step length, elapsed time of stance, elapsed time of swing, elapsed time of 1 step, and forward velocity (x-axis). Two-way analysis of variance of variables was employed for the statistical analysis with the level of significance set at 5% (Phorse’s analysis meant that there was very close relation among variables of rider’s weight-velocity-stride length-stride elapsed time. Next study will be necessary to analyze cadence variables added both stride length and rider’s weight for riding activity and rehabilitation during horse riding using Jeju native horse. PMID:26933662

  9. Correlating hemodynamic magnetic resonance imaging with high-field intracranial vessel wall imaging in stroke.

    Science.gov (United States)

    Langdon, Weston; Donahue, Manus J; van der Kolk, Anja G; Rane, Swati; Strother, Megan K

    2014-06-01

    Vessel wall magnetic resonance imaging at ultra-high field (7 Tesla) can be used to visualize vascular lesions noninvasively and holds potential for improving stroke-risk assessment in patients with ischemic cerebrovascular disease. We present the first multi-modal comparison of such high-field vessel wall imaging with more conventional (i) 3 Tesla hemodynamic magnetic resonance imaging and (ii) digital subtraction angiography in a 69-year-old male with a left temporal ischemic infarct.

  10. High performance deformable image registration algorithms for manycore processors

    CERN Document Server

    Shackleford, James; Sharp, Gregory

    2013-01-01

    High Performance Deformable Image Registration Algorithms for Manycore Processors develops highly data-parallel image registration algorithms suitable for use on modern multi-core architectures, including graphics processing units (GPUs). Focusing on deformable registration, we show how to develop data-parallel versions of the registration algorithm suitable for execution on the GPU. Image registration is the process of aligning two or more images into a common coordinate frame and is a fundamental step to be able to compare or fuse data obtained from different sensor measurements. E

  11. High speed imaging with CW THz for security

    Science.gov (United States)

    Song, Qian; Redo-Sanchez, Albert; Zhao, Yuejin; Zhang, Cunlin

    2008-12-01

    Continuous THz wave (CW THz) has been widely used in imaging field. But for security screening such as inspection at the airport, the speed of the imaging calls for an improvement since the former CW image systems which scan point to point could not satisfy. To increase the image speed, we proposed a fast CW THz image system in which a galvanometer is introduced for the first time. The galvanometer makes the coming beam reflected in different angles by vibrating at a certain frequency which can significantly decrease the image acquisition time compare to point scan THz imaging. A big hyperbolic polyethylene lens is also used in the system to collect all the beams on to the target. A Gunn oscillator and a corresponding Schottky diode are the source and detector respectively. The image we get has ideal resolution. And after image processing, the images looked not only clear but also realistic. The system has more practicality because it is designed in reflection geometry instead of transmission geometry. Moreover, the source and detector in our system do not as ponderous as gas laser which has been used in many THz imaging system previously. Example of measurements of weapons concealed behind the cloth and box are presented and discussed. A compact high speed THz imaging system is expectable which will have a widely application in security field.

  12. HIGH RESOLUTION IMAGE PROJECTION IN FREQUENCY DOMAIN FOR CONTINUOUS IMAGE SEQUENCE

    Directory of Open Access Journals (Sweden)

    M. Nagaraju Naik

    2010-09-01

    Full Text Available Unlike most other information technologies, which have enjoyed an exponential growth for the past several decades, display resolution has largely stagnated. Low display resolution has in turn limited the resolution of digital images. Scaling is a non-trivial process that involves a trade-off between efficiency, smoothness and sharpness. As the size of an image is increased, so the pixels, which comprise the image, become increasingly visible, making the image to appear soft. Super scalar representation of image sequence is limited due to image information present in low dimensional image sequence. To project a image frame sequence into high-resolution static or fractional scalingvalue, a scaling approach is developed based on energy spectral interpolation and frequency spectral interpolation techniques. To realize the frequency spectral resolution Cubic-B-Spline method is used.

  13. Walk Ratio (Step Length/Cadence) as a Summary Index of Neuromotor Control of Gait: Application to Multiple Sclerosis

    Science.gov (United States)

    Rota, Viviana; Perucca, Laura; Simone, Anna; Tesio, Luigi

    2011-01-01

    In healthy adults, the step length/cadence ratio [walk ratio (WR) in mm/(steps/min) and normalized for height] is known to be constant around 6.5 mm/(step/min). It is a speed-independent index of the overall neuromotor gait control, in as much as it reflects energy expenditure, balance, between-step variability, and attentional demand. The speed…

  14. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    Science.gov (United States)

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets.

  15. Stereo Vision-Based High Dynamic Range Imaging Using Differently-Exposed Image Pair

    Science.gov (United States)

    Park, Won-Jae; Ji, Seo-Won; Kang, Seok-Jae; Jung, Seung-Won; Ko, Sung-Jea

    2017-01-01

    In this paper, a high dynamic range (HDR) imaging method based on the stereo vision system is presented. The proposed method uses differently exposed low dynamic range (LDR) images captured from a stereo camera. The stereo LDR images are first converted to initial stereo HDR images using the inverse camera response function estimated from the LDR images. However, due to the limited dynamic range of the stereo LDR camera, the radiance values in under/over-exposed regions of the initial main-view (MV) HDR image can be lost. To restore these radiance values, the proposed stereo matching and hole-filling algorithms are applied to the stereo HDR images. Specifically, the auxiliary-view (AV) HDR image is warped by using the estimated disparity between initial the stereo HDR images and then effective hole-filling is applied to the warped AV HDR image. To reconstruct the final MV HDR, the warped and hole-filled AV HDR image is fused with the initial MV HDR image using the weight map. The experimental results demonstrate objectively and subjectively that the proposed stereo HDR imaging method provides better performance compared to the conventional method. PMID:28640235

  16. Stereo Vision-Based High Dynamic Range Imaging Using Differently-Exposed Image Pair

    Directory of Open Access Journals (Sweden)

    Won-Jae Park

    2017-06-01

    Full Text Available In this paper, a high dynamic range (HDR imaging method based on the stereo vision system is presented. The proposed method uses differently exposed low dynamic range (LDR images captured from a stereo camera. The stereo LDR images are first converted to initial stereo HDR images using the inverse camera response function estimated from the LDR images. However, due to the limited dynamic range of the stereo LDR camera, the radiance values in under/over-exposed regions of the initial main-view (MV HDR image can be lost. To restore these radiance values, the proposed stereo matching and hole-filling algorithms are applied to the stereo HDR images. Specifically, the auxiliary-view (AV HDR image is warped by using the estimated disparity between initial the stereo HDR images and then effective hole-filling is applied to the warped AV HDR image. To reconstruct the final MV HDR, the warped and hole-filled AV HDR image is fused with the initial MV HDR image using the weight map. The experimental results demonstrate objectively and subjectively that the proposed stereo HDR imaging method provides better performance compared to the conventional method.

  17. Color Sensitivity Multiple Exposure Fusion using High Dynamic Range Image

    Directory of Open Access Journals (Sweden)

    Varsha Borole

    2014-02-01

    Full Text Available In this paper, we present a high dynamic range imaging (HDRI method using a capturing camera image using normally exposure, over exposure and under exposure. We make three different images from a multiple input image using local histogram stretching. Because the proposed method generated three histogram-stretched images from a multiple input image, ghost artifacts that are the result of the relative motion between the camera and objects during exposure time, are inherently removed. Therefore, the proposed method can be applied to a consumer compact camera to provide the ghost artifacts free HDRI. Experiments with several sets of test images with different exposures show that the proposed method gives a better performance than existing methods in terms of visual results and computation time.

  18. High performance image processing of SPRINT

    Energy Technology Data Exchange (ETDEWEB)

    DeGroot, T. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    This talk will describe computed tomography (CT) reconstruction using filtered back-projection on SPRINT parallel computers. CT is a computationally intensive task, typically requiring several minutes to reconstruct a 512x512 image. SPRINT and other parallel computers can be applied to CT reconstruction to reduce computation time from minutes to seconds. SPRINT is a family of massively parallel computers developed at LLNL. SPRINT-2.5 is a 128-node multiprocessor whose performance can exceed twice that of a Cray-Y/MP. SPRINT-3 will be 10 times faster. Described will be the parallel algorithms for filtered back-projection and their execution on SPRINT parallel computers.

  19. Semantic-based high resolution remote sensing image retrieval

    Science.gov (United States)

    Guo, Dihua

    High Resolution Remote Sensing (HRRS) imagery has been experiencing extraordinary development in the past decade. Technology development means increased resolution imagery is available at lower cost, making it a precious resource for planners, environmental scientists, as well as others who can learn from the ground truth. Image retrieval plays an important role in managing and accessing huge image database. Current image retrieval techniques, cannot satisfy users' requests on retrieving remote sensing images based on semantics. In this dissertation, we make two fundamental contributions to the area of content based image retrieval. First, we propose a novel unsupervised texture-based segmentation approach suitable for accurately segmenting HRRS images. The results of existing segmentation algorithms dramatically deteriorate if simply adopted to HRRS images. This is primarily clue to the multi-texture scales and the high level noise present in these images. Therefore, we propose an effective and efficient segmentation model, which is a two-step process. At high-level, we improved the unsupervised segmentation algorithm by coping with two special features possessed by HRRS images. By preprocessing images with wavelet transform, we not only obtain multi-resolution images but also denoise the original images. By optimizing the splitting results, we solve the problem of textons in HRRS images existing in different scales. At fine level, we employ fuzzy classification segmentation techniques with adjusted parameters for different land cover. We implement our algorithm using real world 1-foot resolution aerial images. Second, we devise methodologies to automatically annotate HRRS images based on semantics. In this, we address the issue of semantic feature selection, the major challenge faced by semantic-based image retrieval. To discover and make use of hidden semantics of images is application dependent. One type of the semantics in HRRS image is conveyed by composite

  20. High resolution image reconstruction with constrained, total-variation minimization

    CERN Document Server

    Sidky, Emil Y; Duchin, Yuval; Ullberg, Christer; Pan, Xiaochuan

    2011-01-01

    This work is concerned with applying iterative image reconstruction, based on constrained total-variation minimization, to low-intensity X-ray CT systems that have a high sampling rate. Such systems pose a challenge for iterative image reconstruction, because a very fine image grid is needed to realize the resolution inherent in such scanners. These image arrays lead to under-determined imaging models whose inversion is unstable and can result in undesirable artifacts and noise patterns. There are many possibilities to stabilize the imaging model, and this work proposes a method which may have an advantage in terms of algorithm efficiency. The proposed method introduces additional constraints in the optimization problem; these constraints set to zero high spatial frequency components which are beyond the sensing capability of the detector. The method is demonstrated with an actual CT data set and compared with another method based on projection up-sampling.

  1. High-energy proton imaging for biomedical applications

    Science.gov (United States)

    Prall, M.; Durante, M.; Berger, T.; Przybyla, B.; Graeff, C.; Lang, P. M.; Latessa, C.; Shestov, L.; Simoniello, P.; Danly, C.; Mariam, F.; Merrill, F.; Nedrow, P.; Wilde, C.; Varentsov, D.

    2016-06-01

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. Tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics.

  2. Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity: A Pilot Study.

    Science.gov (United States)

    Ardic, Fusun; Göcer, Esra

    2016-03-01

    The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer.A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland-Altman analyses were performed to show the relationship and agreement between the results of 2 devices.Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P PEDO and YX200 pedometer in the Bland-Altman analysis.Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a desired speed.

  3. High Power Quantum Cascade Laser for Terahertz Imaging

    Science.gov (United States)

    2012-03-01

    integrated circuit (IC) (From [5]), and (b) THz transmission images through a bar of chocolate of HERSHEY brand. (From [6...THz transmission images through a bar of chocolate of HERSHEY brand. (From [6]). 5 Figure 4. Schematic of a transmission mode raster scan TDS...imaging, especially in a situation where the material under investigation is opaque or highly reflective to THz radiation. This technique is analogous

  4. High-Procession Eye Tracking Using Fundus Images

    Science.gov (United States)

    Mulligan, Jeffrey B.

    1996-01-01

    Fundus images provide high optical gain for eye movement tracking, i.e. large image displacements occur as a result of small eye rotations. Subpixel registration techniques can provide resolution better than 1 arc minute using images acquired with a CCD camera. Ocular torsion may also be estimated, with a precision of approximately 0.1 degree. This talk will discuss the software algorithms used to attain this performance.

  5. High-quality digital imaging of art in Europe

    Science.gov (United States)

    Martinez, Kirk

    1996-02-01

    In the past decade various museums and galleries around Europe have been developing digital imaging as a tool for archiving and analysis. Accurate digital images can replace the conventional film archives which are not stable or accurate but are the standard record of art. The digital archives open up new research possibilities as well as become resources for CD- ROM production, damage analysis, research and publishing. In the VASARI project new scanners were devised to produce colorimetric images directly from paintings using multispectral (six band) imaging. These can produce images in CIE Lab format with resolutions over 10 k multiplied by 10 k and have been installed in London, England; Munich, Germany; and Florence, Italy. They are based around a large stepper-motor controlled scanner moving a high resolution CCD camera to obtain patches of 3 k multiplied by 2 k pels which are mosaiced together. The scanners can also be used for infra-red imaging with a different camera. The MARC project produced a portable scan-back, RGB camera capable of similar output and techniques for calibrated printing. The Narcisse project produced a fast high resolution scanner for X-radiographs and film and many projects have worked on networking the growing number of image databases. This paper presents a survey of some key European projects, particularly those funded by the European Union, involved in high resolution and colorimetric imaging of art. The design of the new scanners and examples of the applications of these images are presented.

  6. High speed imaging - An important industrial tool

    Science.gov (United States)

    Moore, Alton; Pinelli, Thomas E.

    1986-01-01

    High-speed photography, which is a rapid sequence of photographs that allow an event to be analyzed through the stoppage of motion or the production of slow-motion effects, is examined. In high-speed photography 16, 35, and 70 mm film and framing rates between 64-12,000 frames per second are utilized to measure such factors as angles, velocities, failure points, and deflections. The use of dual timing lamps in high-speed photography and the difficulties encountered with exposure and programming the camera and event are discussed. The application of video cameras to the recording of high-speed events is described.

  7. Towards Adaptive High-Resolution Images Retrieval Schemes

    Science.gov (United States)

    Kourgli, A.; Sebai, H.; Bouteldja, S.; Oukil, Y.

    2016-10-01

    Nowadays, content-based image-retrieval techniques constitute powerful tools for archiving and mining of large remote sensing image databases. High spatial resolution images are complex and differ widely in their content, even in the same category. All images are more or less textured and structured. During the last decade, different approaches for the retrieval of this type of images have been proposed. They differ mainly in the type of features extracted. As these features are supposed to efficiently represent the query image, they should be adapted to all kind of images contained in the database. However, if the image to recognize is somewhat or very structured, a shape feature will be somewhat or very effective. While if the image is composed of a single texture, a parameter reflecting the texture of the image will reveal more efficient. This yields to use adaptive schemes. For this purpose, we propose to investigate this idea to adapt the retrieval scheme to image nature. This is achieved by making some preliminary analysis so that indexing stage becomes supervised. First results obtained show that by this way, simple methods can give equal performances to those obtained using complex methods such as the ones based on the creation of bag of visual word using SIFT (Scale Invariant Feature Transform) descriptors and those based on multi scale features extraction using wavelets and steerable pyramids.

  8. Towards Adaptive High-Resolution Images Retrieval Schemes

    Science.gov (United States)

    Kourgli, A.; Sebai, H.; Bouteldja, S.; Oukil, Y.

    2016-06-01

    Nowadays, content-based image-retrieval techniques constitute powerful tools for archiving and mining of large remote sensing image databases. High spatial resolution images are complex and differ widely in their content, even in the same category. All images are more or less textured and structured. During the last decade, different approaches for the retrieval of this type of images have been proposed. They differ mainly in the type of features extracted. As these features are supposed to efficiently represent the query image, they should be adapted to all kind of images contained in the database. However, if the image to recognize is somewhat or very structured, a shape feature will be somewhat or very effective. While if the image is composed of a single texture, a parameter reflecting the texture of the image will reveal more efficient. This yields to use adaptive schemes. For this purpose, we propose to investigate this idea to adapt the retrieval scheme to image nature. This is achieved by making some preliminary analysis so that indexing stage becomes supervised. First results obtained show that by this way, simple methods can give equal performances to those obtained using complex methods such as the ones based on the creation of bag of visual word using SIFT (Scale Invariant Feature Transform) descriptors and those based on multi scale features extraction using wavelets and steerable pyramids.

  9. High spatial resolution diffusion tensor imaging and its applications

    CERN Document Server

    Wang, J J

    2002-01-01

    Introduction Magnetic Resonance Imaging is at present the only imaging technique available to measure diffusion of water and metabolites in humans. It provides vital insights to brain connectivity and has proved to be an important tool in diagnosis and therapy planning in many neurological diseases such as brain tumour, ischaemia and multiple sclerosis. This project focuses on the development of a high resolution diffusion tensor imaging technique. In this thesis, the basic theory of diffusion tensor MR Imaging is presented. The technical challenges encountered during development of these techniques will be discussed, with proposed solutions. New sequences with high spatial resolution have been developed and the results are compared with the standard technique more commonly used. Overview The project aims at the development of diffusion tensor imaging techniques with a high spatial resolution. Chapter 2 will describe the basic physics of MRI, the phenomenon of diffusion and the measurement of diffusion by MRI...

  10. Design of UAV high resolution image transmission system

    Science.gov (United States)

    Gao, Qiang; Ji, Ming; Pang, Lan; Jiang, Wen-tao; Fan, Pengcheng; Zhang, Xingcheng

    2017-02-01

    In order to solve the problem of the bandwidth limitation of the image transmission system on UAV, a scheme with image compression technology for mini UAV is proposed, based on the requirements of High-definition image transmission system of UAV. The video codec standard H.264 coding module and key technology was analyzed and studied for UAV area video communication. Based on the research of high-resolution image encoding and decoding technique and wireless transmit method, The high-resolution image transmission system was designed on architecture of Android and video codec chip; the constructed system was confirmed by experimentation in laboratory, the bit-rate could be controlled easily, QoS is stable, the low latency could meets most applied requirement not only for military use but also for industrial applications.

  11. Density-based retrieval from high-similarity image databases

    DEFF Research Database (Denmark)

    Hansen, Michael Edberg; Carstensen, Jens Michael

    2004-01-01

    Many image classification problems can fruitfully be thought of as image retrieval in a "high similarity image database" (HSID) characterized by being tuned towards a specific application and having a high degree of visual similarity between entries that should be distinguished. We introduce...... a method for HSID retrieval using a similarity measure based on a linear combination of Jeffreys-Matusita distances between distributions of local (pixelwise) features estimated from a set of automatically and consistently defined image regions. The weight coefficients are estimated based on optimal...... retrieval performance. Experimental results on the difficult task of visually identifying clones of fungal colonies grown in a petri dish and categorization of pelts show a high retrieval accuracy of the method when combined with standardized sample preparation and image acquisition....

  12. High frame rate imaging based photometry

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West; Jørgensen, U. G.; Andersen, M. I.;

    2012-01-01

    in conventional CCDs, and new methods for handling these must be developed. We aim to investigate how the normal photometric reduction steps from conventional CCDs should be adjusted to be applicable to EMCCD data. One complication is that a bias frame cannot be obtained conventionally, as the output from...... an EMCCD is not normally distributed. Also, the readout process generates spurious charges in any CCD, but in EMCCD data, these charges are visible as opposed to the conventional CCD. Furthermore we aim to eliminate the photon waste associated with lucky imaging by combining this method with shift......-and-add. A simple probabilistic model for the dark output of an EMCCD is developed. Fitting this model with the expectation-maximization algorithm allows us to estimate the bias, readout noise, amplification, and spurious charge rate per pixel and thus correct for these phenomena. To investigate the stability...

  13. High Resolution Digital Imaging of Paintings: The Vasari Project.

    Science.gov (United States)

    Martinez, Kirk

    1991-01-01

    Describes VASARI (the Visual Art System for Archiving and Retrieval of Images), a project funded by the European Community to show the feasibility of high resolution colormetric imaging directly from paintings. The hardware and software used in the system are explained, storage on optical disks is described, and initial results are reported. (five…

  14. High Resolution Depth-Resolved Imaging From Multi-Focal Images for Medical Ultrasound

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Dalgarno, Paul A.; Greenaway, Alan H.

    2015-01-01

    An ultrasound imaging technique providing subdiffraction limit axial resolution for point sources is proposed. It is based on simultaneously acquired multi-focal images of the same object, and on the image metric of sharpness. The sharpness is extracted by image data and presents higher values...... for in-focus images. The technique is derived from biological microscopy and is validated here with simulated ultrasound data. A linear array probe is used to scan a point scatterer phantom that moves in depth with a controlled step. From the beamformed responses of each scatterer position the image...... calibration curves combined with the use of a maximum-likelihood algorithm is then able to estimate, with high precision, the depth location of any emitter fron each single image. Estimated values are compared with the ground truth demonstrating that an accuracy of 28.6 µm (0.13λ) is achieved for a 4 mm depth...

  15. Linearized inversion frameworks toward high-resolution seismic imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-01

    Seismic exploration utilizes controlled sources, which emit seismic waves that propagate through the earth subsurface and get reflected off subsurface interfaces and scatterers. The reflected and scattered waves are recorded by recording stations installed along the earth surface or down boreholes. Seismic imaging is a powerful tool to map these reflected and scattered energy back to their subsurface scattering or reflection points. Seismic imaging is conventionally based on the single-scattering assumption, where only energy that bounces once off a subsurface scatterer and recorded by a receiver is projected back to its subsurface position. The internally multiply scattered seismic energy is considered as unwanted noise and is usually suppressed or removed from the recorded data. Conventional seismic imaging techniques yield subsurface images that suffer from low spatial resolution, migration artifacts, and acquisition fingerprint due to the limited acquisition aperture, number of sources and receivers, and bandwidth of the source wavelet. Hydrocarbon traps are becoming more challenging and considerable reserves are trapped in stratigraphic and pinch-out traps, which require highly resolved seismic images to delineate them. This thesis focuses on developing and implementing new advanced cost-effective seismic imaging techniques aiming at enhancing the resolution of the migrated images by exploiting the sparseness of the subsurface reflectivity distribution and utilizing the multiples that are usually neglected when imaging seismic data. I first formulate the seismic imaging problem as a Basis pursuit denoise problem, which I solve using an L1-minimization algorithm to obtain the sparsest migrated image corresponding to the recorded data. Imaging multiples may illuminate subsurface zones, which are not easily illuminated by conventional seismic imaging using primary reflections only. I then develop an L2-norm (i.e. least-squares) inversion technique to image

  16. Stereoscopic high-speed imaging using additive colors

    Science.gov (United States)

    Sankin, Georgy N.; Piech, David; Zhong, Pei

    2012-04-01

    An experimental system for digital stereoscopic imaging produced by using a high-speed color camera is described. Two bright-field image projections of a three-dimensional object are captured utilizing additive-color backlighting (blue and red). The two images are simultaneously combined on a two-dimensional image sensor using a set of dichromatic mirrors, and stored for off-line separation of each projection. This method has been demonstrated in analyzing cavitation bubble dynamics near boundaries. This technique may be useful for flow visualization and in machine vision applications.

  17. High Capacity Secure Image Steganography Based on Contourlet Transform

    Directory of Open Access Journals (Sweden)

    Kolsoom Shahryari

    2013-09-01

    Full Text Available In this paper we propose an image steganography technique which embeds secret data without making explicit modifications to the image. The proposed method simultaneously provides both imperceptibility and undetectability. We decompose image by contourlet transform and determine nonsmooth regions. Embedding data in these regions cause less degradation in image quality. Contourlet sub-bands are divided into 3×3 blocks. Central coefficient of each block is considered for embedding if they belong to edgy regions. Experiments show that this method can achieve high embedding capacity while remains undetectable by Farid's universal steganalysis technique.

  18. Web-Based Image Viewer for Monitoring High-Definition Agricultural Images

    Science.gov (United States)

    Kobayashi, Kazuki; Toda, Shohei; Kobayashi, Fumitoshi; Saito, Yasunori

    This paper describes a Web-based image viewer which was developed to monitor high-definition agricultural images. In the cultivation of crops, physiological data and environmental data are important to increase crop yields. However, it is a burden for farmers to collect such data. Against this backdrop, the authors developed a monitoring system to automatically collect high-definition crop images, which can be viewed on a specialized Web-based image viewer. Users can easily observe detailed crop images over the Internet and easily find differences among the images. The authors experimentally installed the monitoring system in an apple orchard and observed the apples growing there. The system has been operating since August 11, 2009. In this paper, we confirm the ability of the monitoring system to perform detailed observations, including tracing the progress of a disease that affects the growth of an apple.

  19. Fusion: ultra-high-speed and IR image sensors

    Science.gov (United States)

    Etoh, T. Goji; Dao, V. T. S.; Nguyen, Quang A.; Kimata, M.

    2015-08-01

    Most targets of ultra-high-speed video cameras operating at more than 1 Mfps, such as combustion, crack propagation, collision, plasma, spark discharge, an air bag at a car accident and a tire under a sudden brake, generate sudden heat. Researchers in these fields require tools to measure the high-speed motion and heat simultaneously. Ultra-high frame rate imaging is achieved by an in-situ storage image sensor. Each pixel of the sensor is equipped with multiple memory elements to record a series of image signals simultaneously at all pixels. Image signals stored in each pixel are read out after an image capturing operation. In 2002, we developed an in-situ storage image sensor operating at 1 Mfps 1). However, the fill factor of the sensor was only 15% due to a light shield covering the wide in-situ storage area. Therefore, in 2011, we developed a backside illuminated (BSI) in-situ storage image sensor to increase the sensitivity with 100% fill factor and a very high quantum efficiency 2). The sensor also achieved a much higher frame rate,16.7 Mfps, thanks to the wiring on the front side with more freedom 3). The BSI structure has another advantage that it has less difficulties in attaching an additional layer on the backside, such as scintillators. This paper proposes development of an ultra-high-speed IR image sensor in combination of advanced nano-technologies for IR imaging and the in-situ storage technology for ultra-highspeed imaging with discussion on issues in the integration.

  20. High-resolution axial MR imaging of tibial stress injuries

    Directory of Open Access Journals (Sweden)

    Mammoto Takeo

    2012-05-01

    Full Text Available Abstract Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries.

  1. High-performance image processing on the desktop

    Science.gov (United States)

    Jordan, Stephen D.

    1996-04-01

    The suitability of computers to the task of medical image visualization for the purposes of primary diagnosis and treatment planning depends on three factors: speed, image quality, and price. To be widely accepted the technology must increase the efficiency of the diagnostic and planning processes. This requires processing and displaying medical images of various modalities in real-time, with accuracy and clarity, on an affordable system. Our approach to meeting this challenge began with market research to understand customer image processing needs. These needs were translated into system-level requirements, which in turn were used to determine which image processing functions should be implemented in hardware. The result is a computer architecture for 2D image processing that is both high-speed and cost-effective. The architectural solution is based on the high-performance PA-RISC workstation with an HCRX graphics accelerator. The image processing enhancements are incorporated into the image visualization accelerator (IVX) which attaches to the HCRX graphics subsystem. The IVX includes a custom VLSI chip which has a programmable convolver, a window/level mapper, and an interpolator supporting nearest-neighbor, bi-linear, and bi-cubic modes. This combination of features can be used to enable simultaneous convolution, pan, zoom, rotate, and window/level control into 1 k by 1 k by 16-bit medical images at 40 frames/second.

  2. RADIANCE DOMAIN COMPOSITING FOR HIGH DYNAMIC RANGE IMAGING

    Directory of Open Access Journals (Sweden)

    M.R. Renu

    2013-02-01

    Full Text Available High dynamic range imaging aims at creating an image with a range of intensity variations larger than the range supported by a camera sensor. Most commonly used methods combine multiple exposure low dynamic range (LDR images, to obtain the high dynamic range (HDR image. Available methods typically neglect the noise term while finding appropriate weighting functions to estimate the camera response function as well as the radiance map. We look at the HDR imaging problem in a denoising frame work and aim at reconstructing a low noise radiance map from noisy low dynamic range images, which is tone mapped to get the LDR equivalent of the HDR image. We propose a maximum aposteriori probability (MAP based reconstruction of the HDR image using Gibb’s prior to model the radiance map, with total variation (TV as the prior to avoid unnecessary smoothing of the radiance field. To make the computation with TV prior efficient, we extend the majorize-minimize method of upper bounding the total variation by a quadratic function to our case which has a nonlinear term arising from the camera response function. A theoretical justification for doing radiance domain denoising as opposed to image domain denoising is also provided.

  3. Towards wide-field high-resolution retinal imaging

    CERN Document Server

    Kellerer, Aglae

    2015-01-01

    Adaptive optical correction is an efficient technique to obtain high-resolution images of the retinal surface. A main limitation of adaptive optical correction, however, is the small size of the corrected image. For medical purposes it is important to increase the size of the corrected images. This can be done through composite imaging, but a major difficulty is then the introduction of reconstruction artifacts. Another approach is multi-conjugate adaptive optics. MCAO comes in two flavors. The star- oriented approach has been demonstrated on the eye and allows to increase the diameter of the corrected image by a factor of approximately 2-3. Difficulties in the tomographic reconstruction precludes the correction of larger fields. Here we have investigate the possibility to apply a layer-oriented MCAO approach to retinal imaging.

  4. High Volume Colour Image Processing with Massively Parallel Embedded Processors

    NARCIS (Netherlands)

    Jacobs, Jan W.M.; Bond, W.; Pouls, R.; Smit, Gerard J.M.; Joubert, G.R.; Peters, F.J.; Tirado, P.; Nagel, W.E.; Plata, O.; Zapata, E.

    2006-01-01

    Currently Oce uses FPGA technology for implementing colour image processing for their high volume colour printers. Although FPGA technology provides enough performance it, however, has a rather tedious development process. This paper describes the research conducted on an alternative implementation

  5. High Resolution, Range/Range-Rate Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Visidyne proposes to develop a design for a small, lightweight, high resolution, in x, y, and z Doppler imager to assist in the guidance, navigation and control...

  6. High Frame Rate Synthetic Aperture 3D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Holbek, Simon; Stuart, Matthias Bo

    2016-01-01

    3-D blood flow quantification with high spatial and temporal resolution would strongly benefit clinical research on cardiovascular pathologies. Ultrasonic velocity techniques are known for their ability to measure blood flow with high precision at high spatial and temporal resolution. However......, current volumetric ultrasonic flow methods are limited to one velocity component or restricted to a reduced field of view (FOV), e.g. fixed imaging planes, in exchange for higher temporal resolutions. To solve these problems, a previously proposed accurate 2-D high frame rate vector flow imaging (VFI......) technique is extended to estimate the 3-D velocity components inside a volume at high temporal resolutions (

  7. High speed intravascular photoacoustic imaging of atherosclerotic arteries (Conference Presentation)

    Science.gov (United States)

    Piao, Zhonglie; Ma, Teng; Qu, Yueqiao; Li, Jiawen; Yu, Mingyue; He, Youmin; Shung, K. Kirk; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2016-02-01

    Cardiovascular disease is the leading cause of death in the industrialized nations. Accurate quantification of both the morphology and composition of lipid-rich vulnerable atherosclerotic plaque are essential for early detection and optimal treatment in clinics. In previous works, intravascular photoacoustic (IVPA) imaging for detection of lipid-rich plaque within coronary artery walls has been demonstrated in ex vivo, but the imaging speed is still limited. In order to increase the imaging speed, a high repetition rate laser is needed. In this work, we present a high speed integrated IVPA/US imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A miniature catheter with 1.0 mm outer diameter was designed with a 200 μm multimode fiber and an ultrasound transducer with 45 MHz center frequency. The fiber was polished at 38 degree and enclosed in a glass capillary for total internal reflection. An optical/electrical rotary junction and pull-back mechanism was applied for rotating and linearly scanning the catheter to obtain three-dimensional imaging. Atherosclerotic rabbit abdominal aorta was imaged as two frame/second at 1725 nm. Furthermore, by wide tuning range of the laser wavelength from 1680 nm to 1770 nm, spectroscopic photoacoustic analysis of lipid-mimicking phantom and an human atherosclerotic artery was performed ex vivo. The results demonstrated that the developed IVPA/US imaging system is capable for high speed intravascular imaging for plaque detection.

  8. Image analysis benchmarking methods for high-content screen design.

    Science.gov (United States)

    Fuller, C J; Straight, A F

    2010-05-01

    The recent development of complex chemical and small interfering RNA (siRNA) collections has enabled large-scale cell-based phenotypic screening. High-content and high-throughput imaging are widely used methods to record phenotypic data after chemical and small interfering RNA treatment, and numerous image processing and analysis methods have been used to quantify these phenotypes. Currently, there are no standardized methods for evaluating the effectiveness of new and existing image processing and analysis tools for an arbitrary screening problem. We generated a series of benchmarking images that represent commonly encountered variation in high-throughput screening data and used these image standards to evaluate the robustness of five different image analysis methods to changes in signal-to-noise ratio, focal plane, cell density and phenotype strength. The analysis methods that were most reliable, in the presence of experimental variation, required few cells to accurately distinguish phenotypic changes between control and experimental data sets. We conclude that by applying these simple benchmarking principles an a priori estimate of the image acquisition requirements for phenotypic analysis can be made before initiating an image-based screen. Application of this benchmarking methodology provides a mechanism to significantly reduce data acquisition and analysis burdens and to improve data quality and information content.

  9. Image quality and high contrast improvements on VLT/NACO

    CERN Document Server

    Girard, Julien H V; Mawet, Dimitri; Kasper, Markus; Zins, Gérard; Neichel, Benoît; Kolb, Johann; Christiaens, Valentin; Tourneboeuf, Martin; 10.1117/12.925660

    2012-01-01

    NACO is the famous and versatile diffraction limited NIR imager and spectrograph with which ESO celebrated 10 years of Adaptive Optics at the VLT. Since two years a substantial effort has been put in to understanding and fixing issues that directly affect the image quality and the high contrast performances of the instrument. Experiments to compensate the non-common-path aberrations and recover the highest possible Strehl ratios have been carried out successfully and a plan is hereafter described to perform such measurements regularly. The drift associated to pupil tracking since 2007 was fixed in October 2011. NACO is therefore even better suited for high contrast imaging and can be used with coronagraphic masks in the image plane. Some contrast measurements are shown and discussed. The work accomplished on NACO will serve as reference for the next generation instruments on the VLT, especially those working at the diffraction limit and making use of angular differential imaging (i.e. SPHERE, VISIR, possibly ...

  10. High-Performance Image Synthesis for Radio Interferometry

    CERN Document Server

    Muscat, Daniel

    2014-01-01

    A radio interferometer indirectly measures the intensity distribution of the sky over the celestial sphere. Since measurements are made over an irregularly sampled Fourier plane, synthesising an intensity image from interferometric measurements requires substantial processing. Furthermore there are distortions that have to be corrected. In this thesis, a new high-performance image synthesis tool (imaging tool) for radio interferometry is developed. Implemented in C++ and CUDA, the imaging tool achieves unprecedented performance by means of Graphics Processing Units (GPUs). The imaging tool is divided into several components, and the back-end handling numerical calculations is generalised in a new framework. A new feature termed compression arbitrarily increases the performance of an already highly efficient GPU-based implementation of the w-projection algorithm. Compression takes advantage of the behaviour of oversampled convolution functions and the baseline trajectories. A CPU-based component prepares data ...

  11. Precision cosmology with time delay lenses: high resolution imaging requirements

    CERN Document Server

    Meng, Xiao-Lei; Agnello, Adriano; Auger, Matthew W; Liao, Kai; Marshall, Philip J

    2015-01-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as "Einstein Rings" in high resolution images. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope $\\gamma'$ of the...

  12. Color-Based Image Retrieval from High-Similarity Image Databases

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg

    Many image classification problems can fruitfully be thought of as image retrieval in a "high similarity image database" (HSID) characterized by being tuned towards a specific application and having a high degree of visual similarity between entries that should be distinguished. We introduce...... a method for HSID retrieval using a similarity measure based on a linear combination of Jeffreys-Matusita (JM) distances between distributions of color (and color derivatives) estimated from a set of automatically extracted image regions. The weight coefficients are estimated based on optimal retrieval...... performance. Experimental results on the difficult task of visually identifying clones of fungal colonies grown in a petri dish and categorization of pelts show a high retrieval accuracy of the method when combined with standardized sample preparation and image acquisition....

  13. Color-Based Image Retrieval from High-Similarity Image Databases

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Carstensen, Jens Michael

    2003-01-01

    Many image classification problems can fruitfully be thought of as image retrieval in a "high similarity image database" (HSID) characterized by being tuned towards a specific application and having a high degree of visual similarity between entries that should be distinguished. We introduce...... a method for HSID retrieval using a similarity measure based on a linear combination of Jeffreys-Matusita (JM) distances between distributions of color (and color derivatives) estimated from a set of automatically extracted image regions. The weight coefficients are estimated based on optimal retrieval...... performance. Experimental results on the difficult task of visually identifying clones of fungal colonies grown in a petri dish and categorization of pelts show a high retrieval accuracy of the method when combined with standardized sample preparation and image acquisition....

  14. Redskin Images. Roy Junior High School.

    Science.gov (United States)

    Reese, William M.

    The school and self-improvement programs instituted at Roy Junior High School include the development of a self-performance evaluative instrument, the incorporation of a daily 15-minute reading session, the encouragement of dance and movement education through use of visiting professionals, and implementation of a self-esteem improvement mechanism…

  15. High dimensional model representation (HDMR) with clustering for image retrieval

    Science.gov (United States)

    Karcılı, Ayşegül; Tunga, Burcu

    2017-01-01

    Image retrieval continues to hold an important place in today's extremely fast growing technology. In this field, the accurate image retrieval with high speed is critical. In this study, to achieve this important issue we developed a novel method with the help of High Dimensional Model Representation (HDMR) philosophy. HDMR is a decomposition method used to solve different scientific problems. To test the performance of the new method we used Columbia Object Image Library (COIL100) and obtained the encouraging results. These results are given in the findings section.

  16. High Dynamic Range Imaging by Perceptual Logarithmic Exposure Merging

    Directory of Open Access Journals (Sweden)

    Florea Corneliu

    2015-12-01

    Full Text Available In this paper we emphasize a similarity between the logarithmic type image processing (LTIP model and the Naka–Rushton model of the human visual system (HVS. LTIP is a derivation of logarithmic image processing (LIP, which further replaces the logarithmic function with a ratio of polynomial functions. Based on this similarity, we show that it is possible to present a unifying framework for the high dynamic range (HDR imaging problem, namely, that performing exposure merging under the LTIP model is equivalent to standard irradiance map fusion. The resulting HDR algorithm is shown to provide high quality in both subjective and objective evaluations.

  17. Advanced High Dynamic Range Imaging Theory and Practice

    CERN Document Server

    Banterle, Francesco

    2011-01-01

    Imaging techniques seek to simulate the array of light that reaches our eyes to provide the illusion of sensing scenes directly. Both photography and computer graphics deal with the generation of images. Both disciplines have to cope with the high dynamic range in the energy of visible light that human eyes can sense. Traditionally photography and computer graphics took different approaches to the high dynamic range problem. Work over the last ten years though has unified these disciplines and created powerful new tools for the creation of complex, compelling and realistic images. This book pr

  18. High speed global shutter image sensors for professional applications

    Science.gov (United States)

    Wu, Xu; Meynants, Guy

    2015-04-01

    Global shutter imagers expand the use to miscellaneous applications, such as machine vision, 3D imaging, medical imaging, space etc. to eliminate motion artifacts in rolling shutter imagers. A low noise global shutter pixel requires more than one non-light sensitive memory to reduce the read noise. But larger memory area reduces the fill-factor of the pixels. Modern micro-lenses technology can compensate this fill-factor loss. Backside illumination (BSI) is another popular technique to improve the pixel fill-factor. But some pixel architecture may not reach sufficient shutter efficiency with backside illumination. Non-light sensitive memory elements make the fabrication with BSI possible. Machine vision like fast inspection system, medical imaging like 3D medical or scientific applications always ask for high frame rate global shutter image sensors. Thanks to the CMOS technology, fast Analog-to-digital converters (ADCs) can be integrated on chip. Dual correlated double sampling (CDS) on chip ADC with high interface digital data rate reduces the read noise and makes more on-chip operation control. As a result, a global shutter imager with digital interface is a very popular solution for applications with high performance and high frame rate requirements. In this paper we will review the global shutter architectures developed in CMOSIS, discuss their optimization process and compare their performances after fabrication.

  19. Vortex Image Processing (VIP) package for high-contrast direct imaging

    Science.gov (United States)

    Gomez Gonzalez, C.; Absil, O.; Wertz, O.

    2016-05-01

    VIP is a Python instrument-agnostic toolbox featuring a flexible framework for reproducible and robust data reduction. VIP currently supports three high-contrast imaging observational techniques: angular, reference-star and multi-spectral differential imaging. The code can be downloaded from our git repository on Github: http://github.com/vortex-exoplanet/VIP

  20. The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments

    Science.gov (United States)

    Wilby, M. J.; Keller, C. U.; Snik, F.; Korkiakoski, V.; Pietrow, A. G. M.

    2017-01-01

    The raw coronagraphic performance of current high-contrast imaging instruments is limited by the presence of a quasi-static speckle (QSS) background, resulting from instrumental Non-Common Path Errors (NCPEs). Rapid development of efficient speckle subtraction techniques in data reduction has enabled final contrasts of up to 10-6 to be obtained, however it remains preferable to eliminate the underlying NCPEs at the source. In this work we introduce the coronagraphic Modal Wavefront Sensor (cMWS), a new wavefront sensor suitable for real-time NCPE correction. This combines the Apodizing Phase Plate (APP) coronagraph with a holographic modal wavefront sensor to provide simultaneous coronagraphic imaging and focal-plane wavefront sensing with the science point-spread function. We first characterise the baseline performance of the cMWS via idealised closed-loop simulations, showing that the sensor is able to successfully recover diffraction-limited coronagraph performance over an effective dynamic range of ±2.5 radians root-mean-square (rms) wavefront error within 2-10 iterations, with performance independent of the specific choice of mode basis. We then present the results of initial on-sky testing at the William Herschel Telescope, which demonstrate that the sensor is capable of NCPE sensing under realistic seeing conditions via the recovery of known static aberrations to an accuracy of 10 nm (0.1 radians) rms error in the presence of a dominant atmospheric speckle foreground. We also find that the sensor is capable of real-time measurement of broadband atmospheric wavefront variance (50% bandwidth, 158 nm rms wavefront error) at a cadence of 50 Hz over an uncorrected telescope sub-aperture. When combined with a suitable closed-loop adaptive optics system, the cMWS holds the potential to deliver an improvement of up to two orders of magnitude over the uncorrected QSS floor. Such a sensor would be eminently suitable for the direct imaging and spectroscopy of

  1. Information management for high content live cell imaging

    Directory of Open Access Journals (Sweden)

    White Michael RH

    2009-07-01

    Full Text Available Abstract Background High content live cell imaging experiments are able to track the cellular localisation of labelled proteins in multiple live cells over a time course. Experiments using high content live cell imaging will generate multiple large datasets that are often stored in an ad-hoc manner. This hinders identification of previously gathered data that may be relevant to current analyses. Whilst solutions exist for managing image data, they are primarily concerned with storage and retrieval of the images themselves and not the data derived from the images. There is therefore a requirement for an information management solution that facilitates the indexing of experimental metadata and results of high content live cell imaging experiments. Results We have designed and implemented a data model and information management solution for the data gathered through high content live cell imaging experiments. Many of the experiments to be stored measure the translocation of fluorescently labelled proteins from cytoplasm to nucleus in individual cells. The functionality of this database has been enhanced by the addition of an algorithm that automatically annotates results of these experiments with the timings of translocations and periods of any oscillatory translocations as they are uploaded to the repository. Testing has shown the algorithm to perform well with a variety of previously unseen data. Conclusion Our repository is a fully functional example of how high throughput imaging data may be effectively indexed and managed to address the requirements of end users. By implementing the automated analysis of experimental results, we have provided a clear impetus for individuals to ensure that their data forms part of that which is stored in the repository. Although focused on imaging, the solution provided is sufficiently generic to be applied to other functional proteomics and genomics experiments. The software is available from: fhttp://code.google.com/p/livecellim/

  2. Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

    2004-10-23

    Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to

  3. 40 MHz high-frequency ultrafast ultrasound imaging.

    Science.gov (United States)

    Huang, Chih-Chung; Chen, Pei-Yu; Peng, Po-Hsun; Lee, Po-Yang

    2017-06-01

    Ultrafast high-frame-rate ultrasound imaging based on coherent-plane-wave compounding has been developed for many biomedical applications. Most coherent-plane-wave compounding systems typically operate at 3-15 MHz, and the image resolution for this frequency range is not sufficient for visualizing microstructure tissues. Therefore, the purpose of this study was to implement a high-frequency ultrafast ultrasound imaging operating at 40 MHz. The plane-wave compounding imaging and conventional multifocus B-mode imaging were performed using the Field II toolbox of MATLAB in simulation study. In experiments, plane-wave compounding images were obtained from a 256 channel ultrasound research platform with a 40 MHz array transducer. All images were produced by point-spread functions and cyst phantoms. The in vivo experiment was performed from zebrafish. Since high-frequency ultrasound exhibits a lower penetration, chirp excitation was applied to increase the imaging depth in simulation. The simulation results showed that a lateral resolution of up to 66.93 μm and a contrast of up to 56.41 dB were achieved when using 75-angles plane waves in compounding imaging. The experimental results showed that a lateral resolution of up to 74.83 μm and a contrast of up to 44.62 dB were achieved when using 75-angles plane waves in compounding imaging. The dead zone and compounding noise are about 1.2 mm and 2.0 mm in depth for experimental compounding imaging, respectively. The structure of zebrafish heart was observed clearly using plane-wave compounding imaging. The use of fewer than 23 angles for compounding allowed a frame rate higher than 1000 frames per second. However, the compounding imaging exhibits a similar lateral resolution of about 72 μm as the angle of plane wave is higher than 10 angles. This study shows the highest operational frequency for ultrafast high-frame-rate ultrasound imaging. © 2017 American Association of Physicists in Medicine.

  4. CWICOM: A Highly Integrated & Innovative CCSDS Image Compression ASIC

    Science.gov (United States)

    Poupat, Jean-Luc; Vitulli, Raffaele

    2013-08-01

    The space market is more and more demanding in terms of on image compression performances. The earth observation satellites instrument resolution, the agility and the swath are continuously increasing. It multiplies by 10 the volume of picture acquired on one orbit. In parallel, the satellites size and mass are decreasing, requiring innovative electronic technologies reducing size, mass and power consumption. Astrium, leader on the market of the combined solutions for compression and memory for space application, has developed a new image compression ASIC which is presented in this paper. CWICOM is a high performance and innovative image compression ASIC developed by Astrium in the frame of the ESA contract n°22011/08/NLL/LvH. The objective of this ESA contract is to develop a radiation hardened ASIC that implements the CCSDS 122.0-B-1 Standard for Image Data Compression, that has a SpaceWire interface for configuring and controlling the device, and that is compatible with Sentinel-2 interface and with similar Earth Observation missions. CWICOM stands for CCSDS Wavelet Image COMpression ASIC. It is a large dynamic, large image and very high speed image compression ASIC potentially relevant for compression of any 2D image with bi-dimensional data correlation such as Earth observation, scientific data compression… The paper presents some of the main aspects of the CWICOM development, such as the algorithm and specification, the innovative memory organization, the validation approach and the status of the project.

  5. High Dynamic Range Processing for Magnetic Resonance Imaging

    Science.gov (United States)

    Sukerkar, Preeti A.; Meade, Thomas J.

    2013-01-01

    Purpose To minimize feature loss in T1- and T2-weighted MRI by merging multiple MR images acquired at different TR and TE to generate an image with increased dynamic range. Materials and Methods High Dynamic Range (HDR) processing techniques from the field of photography were applied to a series of acquired MR images. Specifically, a method to parameterize the algorithm for MRI data was developed and tested. T1- and T2-weighted images of a number of contrast agent phantoms and a live mouse were acquired with varying TR and TE parameters. The images were computationally merged to produce HDR-MR images. All acquisitions were performed on a 7.05 T Bruker PharmaScan with a multi-echo spin echo pulse sequence. Results HDR-MRI delineated bright and dark features that were either saturated or indistinguishable from background in standard T1- and T2-weighted MRI. The increased dynamic range preserved intensity gradation over a larger range of T1 and T2 in phantoms and revealed more anatomical features in vivo. Conclusions We have developed and tested a method to apply HDR processing to MR images. The increased dynamic range of HDR-MR images as compared to standard T1- and T2-weighted images minimizes feature loss caused by magnetization recovery or low SNR. PMID:24250788

  6. High dynamic range processing for magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Andy H Hung

    Full Text Available To minimize feature loss in T1- and T2-weighted MRI by merging multiple MR images acquired at different TR and TE to generate an image with increased dynamic range.High Dynamic Range (HDR processing techniques from the field of photography were applied to a series of acquired MR images. Specifically, a method to parameterize the algorithm for MRI data was developed and tested. T1- and T2-weighted images of a number of contrast agent phantoms and a live mouse were acquired with varying TR and TE parameters. The images were computationally merged to produce HDR-MR images. All acquisitions were performed on a 7.05 T Bruker PharmaScan with a multi-echo spin echo pulse sequence.HDR-MRI delineated bright and dark features that were either saturated or indistinguishable from background in standard T1- and T2-weighted MRI. The increased dynamic range preserved intensity gradation over a larger range of T1 and T2 in phantoms and revealed more anatomical features in vivo.We have developed and tested a method to apply HDR processing to MR images. The increased dynamic range of HDR-MR images as compared to standard T1- and T2-weighted images minimizes feature loss caused by magnetization recovery or low SNR.

  7. Resource estimation in high performance medical image computing.

    Science.gov (United States)

    Banalagay, Rueben; Covington, Kelsie Jade; Wilkes, D M; Landman, Bennett A

    2014-10-01

    Medical imaging analysis processes often involve the concatenation of many steps (e.g., multi-stage scripts) to integrate and realize advancements from image acquisition, image processing, and computational analysis. With the dramatic increase in data size for medical imaging studies (e.g., improved resolution, higher throughput acquisition, shared databases), interesting study designs are becoming intractable or impractical on individual workstations and servers. Modern pipeline environments provide control structures to distribute computational load in high performance computing (HPC) environments. However, high performance computing environments are often shared resources, and scheduling computation across these resources necessitates higher level modeling of resource utilization. Submission of 'jobs' requires an estimate of the CPU runtime and memory usage. The resource requirements for medical image processing algorithms are difficult to predict since the requirements can vary greatly between different machines, different execution instances, and different data inputs. Poor resource estimates can lead to wasted resources in high performance environments due to incomplete executions and extended queue wait times. Hence, resource estimation is becoming a major hurdle for medical image processing algorithms to efficiently leverage high performance computing environments. Herein, we present our implementation of a resource estimation system to overcome these difficulties and ultimately provide users with the ability to more efficiently utilize high performance computing resources.

  8. Whole-animal imaging with high spatio-temporal resolution

    Science.gov (United States)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  9. Providing Internet Access to High-Resolution Lunar Images

    Science.gov (United States)

    Plesea, Lucian

    2008-01-01

    The OnMoon server is a computer program that provides Internet access to high-resolution Lunar images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of the Moon. The OnMoon server implements the Open Geospatial Consortium (OGC) Web Map Service (WMS) server protocol and supports Moon-specific extensions. Unlike other Internet map servers that provide Lunar data using an Earth coordinate system, the OnMoon server supports encoding of data in Moon-specific coordinate systems. The OnMoon server offers access to most of the available high-resolution Lunar image and elevation data. This server can generate image and map files in the tagged image file format (TIFF) or the Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. Full-precision spectral arithmetic processing is also available, by use of a custom SLD extension. This server can dynamically add shaded relief based on the Lunar elevation to any image layer. This server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  10. Providing Internet Access to High-Resolution Mars Images

    Science.gov (United States)

    Plesea, Lucian

    2008-01-01

    The OnMars server is a computer program that provides Internet access to high-resolution Mars images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of Mars. The OnMars server is an implementation of the Open Geospatial Consortium (OGC) Web Map Service (WMS) server. Unlike other Mars Internet map servers that provide Martian data using an Earth coordinate system, the OnMars WMS server supports encoding of data in Mars-specific coordinate systems. The OnMars server offers access to most of the available high-resolution Martian image and elevation data, including an 8-meter-per-pixel uncontrolled mosaic of most of the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) image collection, which is not available elsewhere. This server can generate image and map files in the tagged image file format (TIFF), Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. The OnMars server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  11. Ultra-High-Speed Image Signal Accumulation Sensor

    Directory of Open Access Journals (Sweden)

    Takeharu Goji Etoh

    2010-04-01

    Full Text Available Averaging of accumulated data is a standard technique applied to processing data with low signal-to-noise ratios (SNR, such as image signals captured in ultra-high-speed imaging. The authors propose an architecture layout of an ultra-high-speed image sensor capable of on-chip signal accumulation. The very high frame rate is enabled by employing an image sensor structure with a multi-folded CCD in each pixel, which serves as an in situ image signal storage. The signal accumulation function is achieved by direct connection of the first and the last storage elements of the in situ storage CCD. It has been thought that the multi-folding is achievable only by driving electrodes with complicated and impractical layouts. Simple configurations of the driving electrodes to overcome the difficulty are presented for two-phase and four-phase transfer CCD systems. The in situ storage image sensor with the signal accumulation function is named Image Signal Accumulation Sensor (ISAS.

  12. High-throughput microfluidic line scan imaging for cytological characterization

    Science.gov (United States)

    Hutcheson, Joshua A.; Powless, Amy J.; Majid, Aneeka A.; Claycomb, Adair; Fritsch, Ingrid; Balachandran, Kartik; Muldoon, Timothy J.

    2015-03-01

    Imaging cells in a microfluidic chamber with an area scan camera is difficult due to motion blur and data loss during frame readout causing discontinuity of data acquisition as cells move at relatively high speeds through the chamber. We have developed a method to continuously acquire high-resolution images of cells in motion through a microfluidics chamber using a high-speed line scan camera. The sensor acquires images in a line-by-line fashion in order to continuously image moving objects without motion blur. The optical setup comprises an epi-illuminated microscope with a 40X oil immersion, 1.4 NA objective and a 150 mm tube lens focused on a microfluidic channel. Samples containing suspended cells fluorescently stained with 0.01% (w/v) proflavine in saline are introduced into the microfluidics chamber via a syringe pump; illumination is provided by a blue LED (455 nm). Images were taken of samples at the focal plane using an ELiiXA+ 8k/4k monochrome line-scan camera at a line rate of up to 40 kHz. The system's line rate and fluid velocity are tightly controlled to reduce image distortion and are validated using fluorescent microspheres. Image acquisition was controlled via MATLAB's Image Acquisition toolbox. Data sets comprise discrete images of every detectable cell which may be subsequently mined for morphological statistics and definable features by a custom texture analysis algorithm. This high-throughput screening method, comparable to cell counting by flow cytometry, provided efficient examination including counting, classification, and differentiation of saliva, blood, and cultured human cancer cells.

  13. Embedded image enhancement for high-throughput cameras

    Science.gov (United States)

    Geerts, Stan J. C.; Cornelissen, Dion; de With, Peter H. N.

    2014-03-01

    This paper presents image enhancement for a novel Ultra-High-Definition (UHD) video camera offering 4K images and higher. Conventional image enhancement techniques need to be reconsidered for the high-resolution images and the low-light sensitivity of the new sensor. We study two image enhancement functions and evaluate and optimize the algorithms for embedded implementation in programmable logic (FPGA). The enhancement study involves high-quality Auto White Balancing (AWB) and Local Contrast Enhancement (LCE). We have compared multiple algorithms from literature, both with objective and subjective metrics. In order to objectively compare Local Contrast (LC), an existing LC metric is modified for LC measurement in UHD images. For AWB, we have found that color histogram stretching offers a subjective high image quality and it is among the algorithms with the lowest complexity, while giving only a small balancing error. We impose a color-to-color gain constraint, which improves robustness of low-light images. For local contrast enhancement, a combination of contrast preserving gamma and single-scale Retinex is selected. A modified bilateral filter is designed to prevent halo artifacts, while significantly reducing the complexity and simultaneously preserving quality. We show that by cascading contrast preserving gamma and single-scale Retinex, the visibility of details is improved towards the level appropriate for high-quality surveillance applications. The user is offered control over the amount of enhancement. Also, we discuss the mapping of those functions on a heterogeneous platform to come to an effective implementation while preserving quality and robustness.

  14. Compact high performance spectrometers using computational imaging

    Science.gov (United States)

    Morton, Kenneth; Weisberg, Arel

    2016-05-01

    Compressive sensing technology can theoretically be used to develop low cost compact spectrometers with the performance of larger and more expensive systems. Indeed, compressive sensing for spectroscopic systems has been previously demonstrated using coded aperture techniques, wherein a mask is placed between the grating and a charge coupled device (CCD) and multiple measurements are collected with different masks. Although proven effective for some spectroscopic sensing paradigms (e.g. Raman), this approach requires that the signal being measured is static between shots (low noise and minimal signal fluctuation). Many spectroscopic techniques applicable to remote sensing are inherently noisy and thus coded aperture compressed sensing will likely not be effective. This work explores an alternative approach to compressed sensing that allows for reconstruction of a high resolution spectrum in sensing paradigms featuring significant signal fluctuations between measurements. This is accomplished through relatively minor changes to the spectrometer hardware together with custom super-resolution algorithms. Current results indicate that a potential overall reduction in CCD size of up to a factor of 4 can be attained without a loss of resolution. This reduction can result in significant improvements in cost, size, and weight of spectrometers incorporating the technology.

  15. A High-Frequency High Frame Rate Duplex Ultrasound Linear Array Imaging System for Small Animal Imaging

    Science.gov (United States)

    Zhang, Lequan; Xu, Xiaochen; Hu, Changhong; Sun, Lei; Yen, Jesse T.; Cannata, Jonathan M.; Shung, K. Kirk

    2010-01-01

    High-frequency (HF) ultrasound imaging has been shown to be useful for non-invasively imaging anatomical structures of the eye and small animals in biological and pharmaceutical research, achieving superior spatial resolution. Cardiovascular research utilizing mice requires not only real-time B-scan imaging, but also ultrasound Doppler to evaluate both anatomy and blood flow of the mouse heart. This paper reports the development of a high frequency ultrasound duplex imaging system capable of both B-mode imaging and Doppler flow measurements, using a 64-element linear array. The system included a HF pulsed-wave Doppler module, a 32-channel HF B-mode imaging module, a PC with a 200 MS/s 14-bit A/D card, and real-time LabView software. A 50dB signal-to-noise ratio (SNR) and a depth of penetration of larger than 12 mm were achieved using a 35 MHz linear array with 50 μm pitch. The two-way beam widths were determined to be 165 μm to 260 μm and the clutter energy to total energy ratio (CTR) were 9.1 dB to 12 dB, when the array was electronically focused at different focal points at depths from 4.8 mm to 9.6 mm. The system is capable of acquiring real-time B-mode images at a rate greater than 400 frames per second (fps) for a 4.8 × 13 mm field of view, using a 30 MHz 64-element linear array with 100 μm pitch. Sample in vivo cardiac high frame rate images and duplex images of mouse hearts are shown to assess its current imaging capability and performance for small animals. PMID:20639149

  16. High resolution imaging of surface patterns of single bacterial cells

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Dominik; Wesner, Daniel [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Regtmeier, Jan, E-mail: jan.regtmeier@physik.uni-bielefeld.de [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Anselmetti, Dario [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany)

    2010-09-15

    We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.

  17. An improved dehazing algorithm of aerial high-definition image

    Science.gov (United States)

    Jiang, Wentao; Ji, Ming; Huang, Xiying; Wang, Chao; Yang, Yizhou; Li, Tao; Wang, Jiaoying; Zhang, Ying

    2016-01-01

    For unmanned aerial vehicle(UAV) images, the sensor can not get high quality images due to fog and haze weather. To solve this problem, An improved dehazing algorithm of aerial high-definition image is proposed. Based on the model of dark channel prior, the new algorithm firstly extracts the edges from crude estimated transmission map and expands the extracted edges. Then according to the expended edges, the algorithm sets a threshold value to divide the crude estimated transmission map into different areas and makes different guided filter on the different areas compute the optimized transmission map. The experimental results demonstrate that the performance of the proposed algorithm is substantially the same as the one based on dark channel prior and guided filter. The average computation time of the new algorithm is around 40% of the one as well as the detection ability of UAV image is improved effectively in fog and haze weather.

  18. High-scale discontinuity detection applied to Landsat images

    Science.gov (United States)

    Jones, Katharine J.

    1999-03-01

    Landsat image data were produced from a multispectral scanner on Landsat satellites. Vegetation indices are based on the distinctive rise in the reflectance of green vegetation: a wavelength increase from visible red to reflective infrared caused by the selective absorption of red light by chlorophyll for photosynthesis. The spectral bandwidth of different Landsat crops are uniquely different and provide a basis for High Scale Discontinuity Detection. High Scale Discontinuity Detection applied to Landsat cross sections (1D signals) detects boundaries between urban areas and agricultural areas and different crops. These boundaries will be used to reconstruct an image based on boundaries. This approach might be usefully applied to IR images, laser remote sensing or any image where vegetation changes abruptly because of altitude or moisture.

  19. Groundbased High-Definition Imaging of the Planet Mercury

    Science.gov (United States)

    Mendillo, M.; Baumgardner, J.; Wilson, J. K.

    2000-10-01

    New instrumentation has been developed for spectral imaging of Mercury's extended atmosphere. The approach depends upon simultaneous short-exposure images in white light and sodium, with the former used to select the frames for post-integration of the sodium images. The effects of atmospheric seeing are thus minimized by the combination of high-speed exposures and subsequent selective integration. The instrumentation consists of a long slit imaging Echelle spectrometer equipped with an image slicer and an imaging photon detector. A test of the white light component of the technique has yielded a best-to-date image of a portion of Mercury's surface not photographed during the Mariner 10 mission. The pilot observations were made at the Mt. Wilson Observatory on 29 August 1998. The optical images show Mercury's albedo features over the longitude range 270o-360o W. Spatially variable features are seen with a resolution of ~250 km. A bright feature in the northern hemisphere appears similar to the lunar crater Copernicus; three darker features are similar in appearance to lunar maria. There are no obvious relations of the white light albedo features to either radar maps or sodium bright spots reported in the literature.

  20. High Etendue Imaging Fourier Transform Spectrometer: initial results

    Science.gov (United States)

    Horton, Richard F.; Conger, Chris A.; Pelligrino, L. S.

    1997-10-01

    At the Denver meeting, last year, we presented the High Etendue Imaging Fourier Transform Spectrometer, (HEIFTS), theory and optical design. This device uses a new 'image plane interferometer' geometry to produce 'autocorrelation function modulation' in the image plane of a 2D imaging array, such that the phase offset of the modulation varies linearly across the image. As a 2D image is pushbroomed across the imaging, array, the record of an individual scene pixel is recorded for each autocorrelation phase offset. The 3D array of this data is processed to yield an 'autocorrelation function' data cube, which is Fourier transformed to yield a 'wavenumber' hyperspectral data curve. A phase I device has been demonstrated in the laboratory and initial results are presented. The significant increase in signal to noise ratio, which the HEIFTS optical design promises over conventional hyperspectral imaging schemes, has been simulated, and results will be discussed. A Phase II system is being prepared for initial field deployment, and will be described.

  1. High Performance Organ-Specific Nuclear Medicine Imagers.

    Science.gov (United States)

    Majewski, Stan

    2006-04-01

    One of the exciting applications of nuclear science is nuclear medicine. Well-known diagnostic imaging tools such as PET and SPECT (as well as MRI) were developed as spin-offs of basic scientific research in atomic and nuclear physics. Development of modern instrumentation for applications in particle physics experiments offers an opportunity to contribute to development of improved nuclear medicine (gamma and positron) imagers, complementing the present set of standard imaging tools (PET, SPECT, MRI, ultrasound, fMRI, MEG, etc). Several examples of new high performance imagers developed in national laboratories in collaboration with academia will be given to demonstrate this spin-off activity. These imagers are designed to specifically image organs such as breast, heart, head (brain), or prostate. The remaining and potentially most important challenging application field for dedicated nuclear medicine imagers is to assist with cancer radiation treatments. Better control of radiation dose delivery requires development of new compact in-situ imagers becoming integral parts of the radiation delivery systems using either external beams or based on radiation delivery by inserting or injecting radioactive sources (gamma, beta or alpha emitters) into tumors.

  2. High Performance Image Processing And Laser Beam Recording System

    Science.gov (United States)

    Fanelli, Anthony R.

    1980-09-01

    The article is meant to provide the digital image recording community with an overview of digital image processing, and recording. The Digital Interactive Image Processing System (DIIPS) was assembled by ESL for Air Force Systems Command under ROME AIR DEVELOPMENT CENTER's guidance. The system provides the capability of mensuration and exploitation of digital imagery with both mono and stereo digital images as inputs. This development provided for system design, basic hardware, software and operational procedures to enable the Air Force's System Command photo analyst to perform digital mensuration and exploitation of stereo digital images as inputs. The engineering model was based on state-of-the-art technology and to the extent possible off-the-shelf hardware and software. A LASER RECORDER was also developed for the DIIPS Systems and is known as the Ultra High Resolution Image Recorder (UHRIR). The UHRIR is a prototype model that will enable the Air Force Systems Command to record computer enhanced digital image data on photographic film at high resolution with geometric and radiometric distortion minimized.

  3. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  4. Holographic imaging of crowded fields: high angular resolution imaging with excellent quality at very low cost

    Science.gov (United States)

    Schödel, R.; Yelda, S.; Ghez, A.; Girard, J. H.; Labadie, L.; Rebolo, R.; Pérez-Garrido, A.; Morris, M. R.

    2013-02-01

    We present a method for speckle holography that is optimized for crowded fields. Its two key features are an iterative improvement of the instantaneous point spread functions (PSFs) extracted from each speckle frame and the (optional) simultaneous use of multiple reference stars. In this way, high signal-to-noise ratio and accuracy can be achieved on the PSF for each short exposure, which results in sensitive, high-Strehl reconstructed images. We have tested our method with different instruments, on a range of targets, and from the N[10 μm] to the I[0.9 μm] band. In terms of PSF cosmetics, stability and Strehl ratio, holographic imaging can be equal, and even superior, to the capabilities of currently available adaptive optics (AO) systems, particularly at short near-infrared to optical wavelengths. It outperforms lucky imaging because it makes use of the entire PSF and reduces the need for frame selection, thus, leading to higher Strehl and improved sensitivity. Image reconstruction a posteriori, the possibility to use multiple reference stars and the fact that these reference stars can be rather faint means that holographic imaging offers a simple way to image large, dense stellar fields near the diffraction limit of large telescopes, similar to, but much less technologically demanding than, the capabilities of a multiconjugate AO system. The method can be used with a large range of already existing imaging instruments and can also be combined with AO imaging when the corrected PSF is unstable.

  5. Cadence Xtreme Ⅲ Systems助设计团队采用硬件辅助验证

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Cadence设计系统公司目前宣布推出Cadence Incisive DesignTeam Xtreme Ⅲ Systems,这是Incisive功能验证平台中的Incisive Xtreme系列加速器/仿真器的新一代产品。充分考虑设计工程师需求,Xtreme Ⅲ Systems为精明的模拟设计师提供将硬件辅助验证的强大功能、速度与易用性相结合的系统。

  6. The image slicer for the Subaru Telescope High Dispersion Spectrograph

    CERN Document Server

    Tajitsu, Akito; Yamamuro, Tomoyasu

    2012-01-01

    We report on the design, manufacturing, and performance of the image slicer for the High Dispersion Spectrograph (HDS) on the Subaru Telescope. This instrument is a Bowen-Walraven type image slicer providing five 0.3 arcsec x 1.5 arcsec images with a resolving power of R= 110,000. The resulting resolving power and line profiles are investigated in detail, including estimates of the defocusing effect on the resolving power. The throughput in the wavelength range from 400 to 700 nm is higher than 80%, thereby improving the efficiency of the spectrograph by a factor of 1.8 for 0.7 arcsec seeing.

  7. Multispectral high-resolution hologram generation using orthographic projection images

    Science.gov (United States)

    Muniraj, I.; Guo, C.; Sheridan, J. T.

    2016-08-01

    We present a new method of synthesizing a digital hologram of three-dimensional (3D) real-world objects from multiple orthographic projection images (OPI). A high-resolution multiple perspectives of 3D objects (i.e., two dimensional elemental image array) are captured under incoherent white light using synthetic aperture integral imaging (SAII) technique and their OPIs are obtained respectively. The reference beam is then multiplied with the corresponding OPI and integrated to form a Fourier hologram. Eventually, a modified phase retrieval algorithm (GS/HIO) is applied to reconstruct the hologram. The principle is validated experimentally and the results support the feasibility of the proposed method.

  8. X-ray characterization of CMOS imaging detector with high resolution for fluoroscopic imaging application

    Science.gov (United States)

    Cha, Bo Kyung; Kim, Cho Rong; Jeon, Seongchae; Kim, Ryun Kyung; Seo, Chang-Woo; Yang, Keedong; Heo, Duchang; Lee, Tae-Bum; Shin, Min-Seok; Kim, Jong-Boo; Kwon, Oh-Kyung

    2013-12-01

    This paper introduces complementary metal-oxide semiconductor (CMOS) active pixel sensor (APS)-based X-ray imaging detectors with high spatial resolution for medical imaging application. In this study, our proposed X-ray CMOS imaging sensor has been fabricated by using a 0.35 μm 1 Poly 4 Metal CMOS process. The pixel size is 100 μm×100 μm and the pixel array format is 24×96 pixels, which provide a field-of-view (FOV) of 9.6 mm×2.4 mm. The 14.3-bit extend counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. Both thallium-doped CsI (CsI:Tl) and Gd2O2S:Tb scintillator screens were used as converters for incident X-rays to visible light photons. The optical property and X-ray imaging characterization such as X-ray to light response as a function of incident X-ray exposure dose, spatial resolution and X-ray images of objects were measured under different X-ray energy conditions. The measured results suggest that our developed CMOS-based X-ray imaging detector has the potential for fluoroscopic imaging and cone-beam computed tomography (CBCT) imaging applications.

  9. MARVIN : high speed 3D imaging for seedling classification

    NARCIS (Netherlands)

    Koenderink, N.J.J.P.; Wigham, M.L.I.; Golbach, F.B.T.F.; Otten, G.W.; Gerlich, R.J.H.; Zedde, van de H.J.

    2009-01-01

    The next generation of automated sorting machines for seedlings demands 3D models of the plants to be made at high speed and with high accuracy. In our system the 3D plant model is created based on the information of 24 RGB cameras. Our contribution is an image acquisition technique based on

  10. Exploring High-Achieving Students' Images of Mathematicians

    Science.gov (United States)

    Aguilar, Mario Sánchez; Rosas, Alejandro; Zavaleta, Juan Gabriel Molina; Romo-Vázquez, Avenilde

    2016-01-01

    The aim of this study is to describe the images that a group of high-achieving Mexican students hold of mathematicians. For this investigation, we used a research method based on the Draw-A-Scientist Test (DAST) with a sample of 63 Mexican high school students. The group of students' pictorial and written descriptions of mathematicians assisted us…

  11. A new partnership: joint ventures and high-tech imaging.

    Science.gov (United States)

    Rutherford, R M

    1987-01-01

    Today joint ventures are a viable option for acquiring high-tech, high-priced imaging equipment. In this article based on his RSNA Associated Sciences presentation, Mr. Rutherford discusses a variety of issues concerning joint ventures: planning, tax considerations, structure and the ethics question.

  12. High-resolution Imaging Techniques for the Assessment of Osteoporosis

    Science.gov (United States)

    Krug, Roland; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.

    2010-01-01

    Synopsis The importance of assessing the bone’s microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in a number of publications. The high spatial resolution required to resolve the bone’s microstructure in a clinically feasible scan time is challenging. Currently, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition Multidetector-CT has been used for high-resolution imaging of trabecular bone structure, however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements and recent developments in this emerging field. Details regarding imaging protocols as well as image post-processing methods for bone structure quantification are discussed. PMID:20609895

  13. Development of automatic image analysis methods for high-throughput and high-content screening

    NARCIS (Netherlands)

    Di, Zi

    2013-01-01

    This thesis focuses on the development of image analysis methods for ultra-high content analysis of high-throughput screens where cellular phenotype responses to various genetic or chemical perturbations that are under investigation. Our primary goal is to deliver efficient and robust image analysis

  14. Development of automatic image analysis methods for high-throughput and high-content screening

    NARCIS (Netherlands)

    Di, Zi

    2013-01-01

    This thesis focuses on the development of image analysis methods for ultra-high content analysis of high-throughput screens where cellular phenotype responses to various genetic or chemical perturbations that are under investigation. Our primary goal is to deliver efficient and robust image analysis

  15. Diffusion-Weighted Images Superresolution Using High-Order SVD.

    Science.gov (United States)

    Wu, Xi; Yang, Zhipeng; Hu, Jinrong; Peng, Jing; He, Peiyu; Zhou, Jiliu

    2016-01-01

    The spatial resolution of diffusion-weighted imaging (DWI) is limited by several physical and clinical considerations, such as practical scanning times. Interpolation methods, which are widely used to enhance resolution, often result in blurred edges. Advanced superresolution scanning acquires images with specific protocols and long acquisition times. In this paper, we propose a novel single image superresolution (SR) method which introduces high-order SVD (HOSVD) to regularize the patch-based SR framework on DWI datasets. The proposed method was implemented on an adaptive basis which ensured a more accurate reconstruction of high-resolution DWI datasets. Meanwhile, the intrinsic dimensional decreasing property of HOSVD is also beneficial for reducing the computational burden. Experimental results from both synthetic and real DWI datasets demonstrate that the proposed method enhances the details in reconstructed high-resolution DWI datasets and outperforms conventional techniques such as interpolation methods and nonlocal upsampling.

  16. High contrast two-photon imaging of fingermarks

    Science.gov (United States)

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-04-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples.

  17. Adaptive optics with pupil tracking for high resolution retinal imaging.

    Science.gov (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  18. Feature preserving compression of high resolution SAR images

    Science.gov (United States)

    Yang, Zhigao; Hu, Fuxiang; Sun, Tao; Qin, Qianqing

    2006-10-01

    Compression techniques are required to transmit the large amounts of high-resolution synthetic aperture radar (SAR) image data over the available channels. Common Image compression methods may lose detail and weak information in original images, especially at smoothness areas and edges with low contrast. This is known as "smoothing effect". It becomes difficult to extract and recognize some useful image features such as points and lines. We propose a new SAR image compression algorithm that can reduce the "smoothing effect" based on adaptive wavelet packet transform and feature-preserving rate allocation. For the reason that images should be modeled as non-stationary information resources, a SAR image is partitioned to overlapped blocks. Each overlapped block is then transformed by adaptive wavelet packet according to statistical features of different blocks. In quantifying and entropy coding of wavelet coefficients, we integrate feature-preserving technique. Experiments show that quality of our algorithm up to 16:1 compression ratio is improved significantly, and more weak information is reserved.

  19. High Speed Computational Ghost Imaging via Spatial Sweeping

    Science.gov (United States)

    Wang, Yuwang; Liu, Yang; Suo, Jinli; Situ, Guohai; Qiao, Chang; Dai, Qionghai

    2017-01-01

    Computational ghost imaging (CGI) achieves single-pixel imaging by using a Spatial Light Modulator (SLM) to generate structured illuminations for spatially resolved information encoding. The imaging speed of CGI is limited by the modulation frequency of available SLMs, and sets back its practical applications. This paper proposes to bypass this limitation by trading off SLM’s redundant spatial resolution for multiplication of the modulation frequency. Specifically, a pair of galvanic mirrors sweeping across the high resolution SLM multiply the modulation frequency within the spatial resolution gap between SLM and the final reconstruction. A proof-of-principle setup with two middle end galvanic mirrors achieves ghost imaging as fast as 42 Hz at 80 × 80-pixel resolution, 5 times faster than state-of-the-arts, and holds potential for one magnitude further multiplication by hardware upgrading. Our approach brings a significant improvement in the imaging speed of ghost imaging and pushes ghost imaging towards practical applications. PMID:28358010

  20. Development toward high-resolution X-ray phase imaging.

    Science.gov (United States)

    Momose, Atsushi

    2017-06-01

    Since the 1990s, the use of X-ray phase contrast has been extensively studied for imaging weakly absorbing objects consisting of low-Z elements such as biological soft tissues and polymers. The development of X-ray microscopy was also progressing during this time, although absorption contrast was only available. It was straightforward and important to develop phase-contrast X-ray microscopy. One characteristic in the development is that quantitative phase measurement is possible through the acquisition of phase-contrast images under a specific procedure, thanks to digital X-ray image detectors. Therefore, such a technique is called 'phase imaging' rather than phase-contrast imaging in this review. Highly sensitive three-dimensional phase imaging is feasible in combination with tomography. This article reviews the progress in X-ray phase imaging, especially with regards to X-ray microscopy. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, Pavel [JLAB; Douglas, David R. [JLAB; Legg, Robert A. [JLAB; Tennant, Christopher D. [JLAB

    2013-05-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  2. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, Pavel E. [JLAB; Douglas, David R. [JLAB

    2013-06-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  3. High definition 3D imaging lidar system using CCD

    Science.gov (United States)

    Jo, Sungeun; Kong, Hong Jin; Bang, Hyochoong

    2016-10-01

    In this study we propose and demonstrate a novel technique for measuring distance with high definition three-dimensional imaging. To meet the stringent requirements of various missions, spatial resolution and range precision are important properties for flash LIDAR systems. The proposed LIDAR system employs a polarization modulator and a CCD. When a laser pulse is emitted from the laser, it triggers the polarization modulator. The laser pulse is scattered by the target and is reflected back to the LIDAR system while the polarization modulator is rotating. Its polarization state is a function of time. The laser-return pulse passes through the polarization modulator in a certain polarization state, and the polarization state is calculated using the intensities of the laser pulses measured by the CCD. Because the function of the time and the polarization state is already known, the polarization state can be converted to time-of-flight. By adopting a polarization modulator and a CCD and only measuring the energy of a laser pulse to obtain range, a high resolution three-dimensional image can be acquired by the proposed three-dimensional imaging LIDAR system. Since this system only measures the energy of the laser pulse, a high bandwidth detector and a high resolution TDC are not required for high range precision. The proposed method is expected to be an alternative method for many three-dimensional imaging LIDAR system applications that require high resolution.

  4. High-speed particle image velocimetry near surfaces.

    Science.gov (United States)

    Lu, Louise; Sick, Volker

    2013-06-24

    Multi-dimensional and transient flows play a key role in many areas of science, engineering, and health sciences but are often not well understood. The complex nature of these flows may be studied using particle image velocimetry (PIV), a laser-based imaging technique for optically accessible flows. Though many forms of PIV exist that extend the technique beyond the original planar two-component velocity measurement capabilities, the basic PIV system consists of a light source (laser), a camera, tracer particles, and analysis algorithms. The imaging and recording parameters, the light source, and the algorithms are adjusted to optimize the recording for the flow of interest and obtain valid velocity data. Common PIV investigations measure two-component velocities in a plane at a few frames per second. However, recent developments in instrumentation have facilitated high-frame rate (>1 kHz) measurements capable of resolving transient flows with high temporal resolution. Therefore, high-frame rate measurements have enabled investigations on the evolution of the structure and dynamics of highly transient flows. These investigations play a critical role in understanding the fundamental physics of complex flows. A detailed description for performing high-resolution, high-speed planar PIV to study a transient flow near the surface of a flat plate is presented here. Details for adjusting the parameter constraints such as image and recording properties, the laser sheet properties, and processing algorithms to adapt PIV for any flow of interest are included.

  5. High-frequency ultrasonic imaging of thickly sliced specimens

    Science.gov (United States)

    Miyasaka, Chiaki; Tittmann, Bernhard R.; Chandraratna, Premindra A. N.

    2003-07-01

    It has been reported that a mechanical scanning reflection acoustic microscope (hereinafter called simply "SAM"), using high frequency ultrasonic tone-burst waves, can form a horizontal cross-sectional image (i.e., c-scan image) showing a highly resolved cellular structure of biological tissue. However, the tissue prepared for the SAM has been mostly a thinly sectioned specimen. In this study, the SAM images of specimens thickly sectioned from the tissue were analyzed. Optical and scanning acoustic microscopies were used to evaluate tissues of human small intestine and esophagus. For preparing thin specimens, the tissue was embedded in paraffin, and substantially sectioned at 5-10μm by the microtome. For optical microscopy, the tissue was stained with hematoxylin and eosin, and affixed onto glass substrates. For scanning acoustic microscopy, two types of specimens were prepared: thinly sectioned specimens affixed on the glass substrate, wherein the specimens were deparaffinized in xylene, but not stained, and thickely sectioned specimens. Images of the thick specimens obtained with frequency at 200 MHz revealed cellular structures. The morphology was very similar to that seen in the thinly sectioned specimens with optical and scanning acoustic microscopy. In addition, scanning electron microscopy was used to compare the images of biological tissue. An acoustic lens with frequency at 200 MHz permitted the imaging of surface and/or subsurface of microstructures in the thick sections of small intestine and esophagus.

  6. Magneto-optical system for high speed real time imaging

    Science.gov (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  7. High resolution ultrasound and photoacoustic imaging of single cells.

    Science.gov (United States)

    Strohm, Eric M; Moore, Michael J; Kolios, Michael C

    2016-03-01

    High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  8. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  9. Effect of cadence selection on peak power and time of power production in elite BMX riders: A laboratory based study.

    Science.gov (United States)

    Rylands, Lee P; Roberts, Simon J; Hurst, Howard T; Bentley, Ian

    2017-07-01

    The aims of this study were to analyse the optimal cadence for peak power production and time to peak power in bicycle motocross (BMX) riders. Six male elite BMX riders volunteered for the study. Each rider completed 3 maximal sprints at a cadence of 80, 100, 120 and 140 revs · min(-1) on a laboratory Schoberer Rad Messtechnik (SRM) cycle ergometer in isokinetic mode. The riders' mean values for peak power and time of power production in all 3 tests were recorded. The BMX riders produced peak power (1105 ± 139 W) at 100 revs · min(-1) with lower peak power produced at 80 revs · min(-1) (1060 ± 69 W, (F(2,15) = 3.162; P = .266; η(2) = 0.960), 120 revs · min(-1) (1077 ± 141 W, (F(2,15) = 4.348; P = .203; η(2) = 0.970) and 140 revs · min(-1) (1046 ± 175 W, (F(2,15) = 12.350; P = 0.077; η(2) = 0.989). The shortest time to power production was attained at 120 revs · min(-1) in 2.5 ± 1.07 s. Whilst a cadence of 80 revs · min(-1) (3.5 ± 0.8 s, (F(2,15) = 2.667; P = .284; η(2) = 0.800) 100 revs · min(-1) (3.00 ± 1.13 s, (F(2,15) = 24.832; P = .039; η(2) = 0.974) and 140 revs · min(-1) (3.50 ± 0.88 s, (F(2,15) = 44.167; P = .006; η(2) = 0.967)) all recorded a longer time to peak power production. The results indicate that the optimal cadence for producing peak power output and reducing the time to peak power output are attained at comparatively low cadences for sprint cycling events. These findings could potentially inform strength and conditioning training to maximise dynamic force production and enable coaches to select optimal gear ratios.

  10. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. (Los Alamos National Lab., NM (United States)); Levine, G.F. (California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services)

    1993-01-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  11. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. [Los Alamos National Lab., NM (United States); Levine, G.F. [California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services

    1993-05-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  12. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. [Los Alamos National Lab., NM (United States); Levine, G.F. [California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services

    1993-05-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  13. High resolution imaging with impulse based thermoacoustic tomography

    Science.gov (United States)

    Kellnberger, Stephan; Hajiaboli, Amir; Sergiadis, George; Razansky, Daniel; Ntziachristos, Vasilis

    2011-07-01

    Existing imaging modalities like microwave- or radiofrequency (RF) induced thermoacoustic tomography systems show the potential for resolving structures deep inside tissue due to the high penetration properties of RF. However, one of the major drawbacks of existing thermoacoustic tomography systems with pulse modulated carrier frequency excitation is the compromise between efficient signal generation and attainable spatial resolution. In order to overcome limitations of conventional thermoacoustic imaging methods, we herein present and experimentally validate our novel approach towards high resolution thermoacoustic tomography. Instead of carrier-frequency amplification, we utilize ultrahigh-energy electromagnetic impulses at nanosecond duration with near-field energy coupling, thus maintaining thermoacoustic signal strength without compromising spatial resolution. Preliminary experiments on highly absorbing objects, consisting of copper wires with characteristic sizes of ~100 μm, reveal the resolution performance which yields 160 μm. Furthermore, benefits like its cost effectiveness, simplicity and compactness with the potential application in small animal imaging as well as human body imaging show that thermoacoustic tomography with impulse excitation is a promising imaging modality which has a broad range of applications.

  14. High resolution surface plasmon microscopy for cell imaging

    Science.gov (United States)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  15. The Science Buffet: Exploring students' images of high school science

    Science.gov (United States)

    Giesbrecht, Justin Jacob

    Science curriculum reform documents, as well as research in science education, call for changes in how high school science is taught and learned. In spite of these calls for change, classroom practices are still dominated by traditional science instruction. In this thesis, I report the results of a study in which I disrupted the traditional discourses of teaching and learning high school science in order to explore students' images of science and the discursive practices that shape these images. By listening to students' accounts of their school science experiences, I sought to uncover some of the implicit images of science held by students and, in doing so, to bring a fresh perspective to teaching and learning and science education. Two classes of grade twelve students were asked to keep journals to tell the story of their experiences in the many activities and assignments of a physics course. Using the journal entries, eight students were identified and asked to participate in group interviews. The interviews expanded on the details of the students' experiences, providing deep insights into the student's images of science and how these images came to be. The students' comments and journal entries were used to create a narrative entitled, "The Science Buffet" which conveys a story of the data collected through this study. Through the metaphorical thread of a buffet table, this research text presents and interprets students' experiences in the physics course using such themes as Where's The Beef?, Who Wants Dessert?, and Can I Have A Doggie Bag Please? Findings of the study suggest that high school students often have clearly defined images of school science and what it means to learn. Unfortunately, however, these images of science and learning may not coincide with what we would expect (and desire) as teachers, thus providing some insight into resistance to change in school science classrooms.

  16. High-performance VGA-resolution digital color CMOS imager

    Science.gov (United States)

    Agwani, Suhail; Domer, Steve; Rubacha, Ray; Stanley, Scott

    1999-04-01

    This paper discusses the performance of a new VGA resolution color CMOS imager developed by Motorola on a 0.5micrometers /3.3V CMOS process. This fully integrated, high performance imager has on chip timing, control, and analog signal processing chain for digital imaging applications. The picture elements are based on 7.8micrometers active CMOS pixels that use pinned photodiodes for higher quantum efficiency and low noise performance. The image processing engine includes a bank of programmable gain amplifiers, line rate clamping for dark offset removal, real time auto white balancing, per column gain and offset calibration, and a 10 bit pipelined RSD analog to digital converter with a programmable input range. Post ADC signal processing includes features such as bad pixel replacement based on user defined thresholds levels, 10 to 8 bit companding and 5 tap FIR filtering. The sensor can be programmed via a standard I2C interface that runs on 3.3V clocks. Programmable features include variable frame rates using a constant frequency master clock, electronic exposure control, continuous or single frame capture, progressive or interlace scanning modes. Each pixel is individually addressable allowing region of interest imaging and image subsampling. The sensor operates with master clock frequencies of up to 13.5MHz resulting in 30FPS. A total programmable gain of 27dB is available. The sensor power dissipation is 400mW at full speed of operation. The low noise design yields a measured 'system on a chip' dynamic range of 50dB thus giving over 8 true bits of resolution. Extremely high conversion gain result in an excellent peak sensitivity of 22V/(mu) J/cm2 or 3.3V/lux-sec. This monolithic image capture and processing engine represent a compete imaging solution making it a true 'camera on a chip'. Yet in its operation it remains extremely easy to use requiring only one clock and a 3.3V power supply. Given the available features and performance levels, this sensor will be

  17. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  18. CCD Astrophotography High-Quality Imaging from the Suburbs

    CERN Document Server

    Stuart, Adam

    2006-01-01

    This is a reference book for amateur astronomers who have become interested in CCD imaging. Those glorious astronomical images found in astronomy magazines might seem out of reach to newcomers to CCD imaging, but this is not the case. Great pictures are attainable with modest equipment. Adam Stuart’s many beautiful images, reproduced in this book, attest to the quality of – initially – a beginner’s efforts. Chilled-chip astronomical CCD-cameras and software are also wonderful tools for cutting through seemingly impenetrable light-pollution. CCD Astrophotography from the Suburbs describes one man’s successful approach to the problem of getting high-quality astronomical images under some of the most light-polluted conditions. Here is a complete and thoroughly tested program that will help every CCD-beginner to work towards digital imaging of the highest quality. It is equally useful to astronomers who have perfect observing conditions, as to those who have to observe from light-polluted city skies.

  19. Post-treatment imaging of high-grade gliomas

    Directory of Open Access Journals (Sweden)

    Darshana Sanghvi

    2015-01-01

    Full Text Available Current standard of care for treatment of newly diagnosed high grade gliomas is surgery followed by concomitant radiotherapy (RT and chemotherapy (CT with temozolomide (TMZ. Recently, bevacizumab, an anti - angiogenic agent has also been approved for treatment of recurrent gliomas. Baseline imaging after excision is optimally obtained in the first 24 hours. When baseline postoperative imaging is delayed beyond 24 hours, subacute hemorrhage, subacute ischemia and inflammation at the resection margins render differentiation from residual tumor challenging. Radiation necrosis is a well recognized entity and is differentiated from recurrence based on morphology on structural imaging, presence of lipid - lactate complexes with lack of choline on spectroscopy and low normalized cerebral blood volume (CBV ratios at perfusion imaging. Novel chemotherapies have lead to the occurrence of interesting but sometimes confusing post treatment imaging appearances including the phenomena of ′pseudoprogression′ and ′pseudoresponse′. Pseudoprogression refers to transient, self resolving focal enhancement mediated by TMZ-induced increased vascular permeability and local inflammatory response. Pathologically, these lesions do not have viable tumor. The lesions stabilize or regress without further treatment and are usually clinically asymptomatic. Pseudoresponse refers to rapid regression of enhancement, perfusion, mass effect and midline shift caused by the anti - angiogenic effect of bevacizumab. It is termed pseudoresponse since biological tumor persists as non-enhancing altered signal. It is important for radiologists to be aware of these entities seen on post treatment imaging of gliomas, as misinterpretation may lead to inappropriate management decisions and prognostication.

  20. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  1. Ultra-high-resolution small-animal SPECT imaging

    NARCIS (Netherlands)

    Have, F. van der

    2007-01-01

    The main subject of this thesis is the development of the first two in a series of dedicated ultra-high resolution Single Photon Emission Computed Tomography (SPECT) systems (U-SPECT-I and II) for the imaging of distributions of radio-isotope labeled tracers in small laboratory animals such as mice

  2. Optimal Phase Masks for High Contrast Imaging Applications

    Science.gov (United States)

    Ruane, Garreth J.

    2016-05-01

    Phase-only optical elements can provide a number of important functions for high-contrast imaging. This thesis presents analytical and numerical optical design methods for accomplishing specific tasks, the most significant of which is the precise suppression of light from a distant point source. Instruments designed for this purpose are known as coronagraphs. Here, advanced coronagraph designs are presented that offer improved theoretical performance in comparison to the current state-of-the-art. Applications of these systems include the direct imaging and characterization of exoplanets and circumstellar disks with high sensitivity. Several new coronagraph designs are introduced and, in some cases, experimental support is provided. In addition, two novel high-contrast imaging applications are discussed: the measurement of sub-resolution information using coronagraphic optics and the protection of sensors from laser damage. The former is based on experimental measurements of the sensitivity of a coronagraph to source displacement. The latter discussion presents the current state of ongoing theoretical work. Beyond the mentioned applications, the main outcome of this thesis is a generalized theory for the design of optical systems with one of more phase masks that provide precise control of radiation over a large dynamic range, which is relevant in various high-contrast imaging scenarios. The optimal phase masks depend on the necessary tasks, the maximum number of optics, and application specific performance measures. The challenges and future prospects of this work are discussed in detail.

  3. Vehicle Detection and Classification from High Resolution Satellite Images

    Science.gov (United States)

    Abraham, L.; Sasikumar, M.

    2014-11-01

    In the past decades satellite imagery has been used successfully for weather forecasting, geographical and geological applications. Low resolution satellite images are sufficient for these sorts of applications. But the technological developments in the field of satellite imaging provide high resolution sensors which expands its field of application. Thus the High Resolution Satellite Imagery (HRSI) proved to be a suitable alternative to aerial photogrammetric data to provide a new data source for object detection. Since the traffic rates in developing countries are enormously increasing, vehicle detection from satellite data will be a better choice for automating such systems. In this work, a novel technique for vehicle detection from the images obtained from high resolution sensors is proposed. Though we are using high resolution images, vehicles are seen only as tiny spots, difficult to distinguish from the background. But we are able to obtain a detection rate not less than 0.9. Thereafter we classify the detected vehicles into cars and trucks and find the count of them.

  4. Parallel preconditioners and high order elements for microwave imaging

    CERN Document Server

    Bonazzoli, M; Rapetti, F; Tournier, P -H

    2016-01-01

    This paper combines the use of high order finite element methods with parallel preconditioners of domain decomposition type for solving electromagnetic problems arising from brain microwave imaging. The numerical algorithms involved in such complex imaging systems are computationally expensive since they require solving the direct problem of Maxwell's equations several times. Moreover, wave propagation problems in the high frequency regime are challenging because a sufficiently high number of unknowns is required to accurately represent the solution. In order to use these algorithms in practice for brain stroke diagnosis, running time should be reasonable. The method presented in this paper, coupling high order finite elements and parallel preconditioners, makes it possible to reduce the overall computational cost and simulation time while maintaining accuracy.

  5. High-resolution SPECT for small-animal imaging

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency.

  6. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  7. High-frequency ultrasonic arrays for ocular imaging

    Science.gov (United States)

    Jaeger, M. D.; Kline-Schoder, R. J.; Douville, G. M.; Gagne, J. R.; Morrison, K. T.; Audette, W. E.; Kynor, D. B.

    2007-03-01

    High-resolution ultrasound imaging of the anterior portion of the eye has been shown to provide important information for sizing of intraocular lens implants, diagnosis of pathological conditions, and creation of detailed maps of corneal topography to guide refractive surgery. Current ultrasound imaging systems rely on mechanical scanning of a single acoustic element over the surface of the eye to create the three-dimensional information needed by clinicians. This mechanical scanning process is time-consuming and subject to errors caused by eye movement during the scanning period. This paper describes development of linear ultrasound imaging arrays intended to increase the speed of image acquisition and reduce problems associated with ocular motion. The arrays consist of a linear arrangement of high-frequency transducer elements designed to operate in the 50 - 75 MHz frequency range. The arrays are produced using single-crystal lithium niobate piezoelectric material, thin film electrodes, and epoxy-based acoustic layers. The array elements have been used to image steel test structures and bovine cornea.

  8. The V-SHARK high contrast imager at LBT

    Science.gov (United States)

    Pedichini, F.; Ambrosino, F.; Centrone, M.; Farinato, J.; Li Causi, G.; Pinna, E.; Puglisi, A.; Stangalini, M.; Testa, V.

    2016-08-01

    In the framework of the SHARK project the visible channel is a novel instrument synergic to the NIR channel and exploiting the performances of the LBT XAO at visible wavelengths. The status of the project is presented together with the design study of this innovative instrument optimized for high contrast imaging by means of high frame rate. Its expected results will be presented comparing the simulations with the real data of the "Forerunner" experiment taken at 630nm.

  9. Imaging with high Dynamic using an Ionization Chamber

    OpenAIRE

    Menk, Ralf-Hendrik; Amenitsch, Heinz; Arfelli, Fulvia; Bernstorff, Sigrid; Besch, Hans Juergen; Voltolina, Francesco

    2010-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. The combination between gas gain operations and integrating front-end electronics yields a dynamic range as high as eight to nine orders of magnitude. Therefore this device is well suitable for medical imaging or applications such as small angle x-ray scattering, where the requirements on the dynamic of the detector are exceptional high. Basically the describ...

  10. High dynamic range images for enhancing low dynamic range content

    OpenAIRE

    Banterle, Francesco; Dellepiane, Matteo; Scopigno, Roberto

    2011-01-01

    This poster presents a practical system for enhancing the quality of Low Dynamic Range (LDR) videos using High Dynamic Range (HDR) background images. Our technique relies on the assumption that the HDR information is static in the video footage. This assumption can be valid in many scenarios where moving subjects are the main focus of the footage and do not have to interact with moving light sources or highly reflective objects. Another valid scenario is teleconferencing via webcams, where th...

  11. High-speed optical frequency-domain imaging

    OpenAIRE

    Yun, S. H.; Tearney, G. J.; Boer; Iftimia, N. V.; Bouma, B. E.

    2003-01-01

    We demonstrate high-speed, high-sensitivity, high-resolution optical imaging based on optical frequency-domain interferometry using a rapidly-tuned wavelength-swept laser. We derive and show experimentally that frequency-domain ranging provides a superior signal-to-noise ratio compared with conventional time-domain ranging as used in optical coherence tomography. A high sensitivity of −110 dB was obtained with a 6 mW source at an axial resolution of 13.5 µm and an A-line rate of 15.7 kHz, rep...

  12. High Speed Optical Tomography System for Imaging Dynamic Transparent Media

    Science.gov (United States)

    McMackin, Lenore; Hugo, Ronald J.; Pierson, R. E.; Truman, C. R.

    1997-11-01

    We describe the design and operation of a high speed optical tomography system for measuring two-dimensional images of a dynamic phase object at a rate of 5 kHz. Data from a set of eight Hartmann wavefront sensors is back-projected to produce phase images showing the details of the inner structure of a heated air flow. The tomographic reconstructions have a spatial resolution of approximately 2.0 mm and can measure temperature variations across the flow with an accuracy of about 0.7 C. Series of animated reconstructions at different downstream locations illustrate the development of flow structure and the effect of acoustic flow forcing.

  13. Fast Impulse Noise Removal from Highly Corrupted Images

    CERN Document Server

    Hosseini, Hossein

    2011-01-01

    In this paper, we suggest a general model for the fixed-valued impulse noise and propose a two-stage method for high density noise suppression while preserving the image details. In the first stage, we apply an iterative impulse detector, exploiting the image entropy, to identify the corrupted pixels and then employ an Adaptive Iterative Mean filter (AIM) to restore them. The filter is adaptive in terms of the number of iterations, which is different for each noisy pixel, according to their Euclidean distance from the nearest uncorrupted pixel. Experimental results show that the AIM filter is fast and outperforms the best existing techniques in both objective and subjective performance measures.

  14. High-speed schlieren imaging of rocket exhaust plumes

    Science.gov (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  15. Haptic identification of raised-line drawings: high visuospatial imagers outperform low visuospatial imagers.

    Science.gov (United States)

    Lebaz, Samuel; Jouffrais, Christophe; Picard, Delphine

    2012-09-01

    It has been assumed (Lederman et al. 1990, Perception & psychophysics) that a visual imagery process is involved in the haptic identification of raised-line drawings of common objects. The finding of significant correlations between visual imagery ability and performance on picture-naming tasks was taken as experimental evidence in support of this assumption. However, visual imagery measures came from self-report procedures, which can be unreliable. The present study therefore used an objective measure of visuospatial imagery abilities in sighted participants and compared three groups of high, medium and low visuospatial imagers on their accuracy and response times in identifying raised-line drawings by touch. Results revealed between-group differences on accuracy, with high visuospatial imagers outperforming low visuospatial imagers, but not on response times. These findings lend support to the view that visuospatial imagery plays a role in the identification of raised-line drawings by sighted adults.

  16. ADVANCED MAGNETIC RESONANCE IMAGING OF CEREBRAL CAVERNOUS MALFORMATIONS: I. HIGH FIELD IMAGING OF EXCISED HUMAN LESIONS

    Science.gov (United States)

    Shenkar, Robert; Venkatasubramanian, Palamadai N.; Zhao, Jin-cheng; Batjer, H. Hunt; Wyrwicz, Alice M.; Awad, Issam A.

    2008-01-01

    Objectives We hypothesized that structural details would be revealed in cerebral cavernous malformations (CCMs) through the use of high field magnetic resonance (MR) and confocal microscopy, which have not been described previously. The structural details of CCMs excised from human patients were sought by examination with high field MR imaging, and correlated with confocal microscopy of the same specimens. Novel features of CCM structure are outlined, including methodological limitations, venues for future research and possible clinical implications. Methods CCM lesions excised from four patients were fixed in 2% paraformaldehyde and subjected to high resolution MR imaging at 9.4 or 14.1 Tesla by spin-echo and gradient recalled echo methods. Histological validation of angioarchitecture was conducted on thick sections of CCM lesions using fluorescent probes to endothelium under confocal microscopy. Results Images of excised human CCM lesions were acquired with proton density-weighted, T1-weighted, T2-weighted spin echo and T2*-weighted gradient-recalled echo MR. These images revealed large “bland” regions with thin walled caverns, and “honeycombed” regions with notable capillary proliferation and smaller caverns surrounding larger caverns. Proliferating capillaries and caverns of various sizes were also associated with the wall of apparent larger blood vessels in the lesions. Similar features were confirmed within thick sections of CCMs by confocal microscopy. MR relaxation times in different regions of interest suggested the presence of different states of blood breakdown products in areas with apparent angiogenic proliferative activity. Conclusions The high field MR imaging techniques demonstrate novel features of CCM angioarchitecture, visible at near histological resolution, including regions with apparently different biologic activity. These preliminary observations will motivate future research, correlating lesion biologic and clinical activity with

  17. Special issue on high-resolution optical imaging

    Science.gov (United States)

    Smith, Peter J. S.; Davis, Ilan; Galbraith, Catherine G.; Stemmer, Andreas

    2013-09-01

    The pace of development in the field of advanced microscopy is truly breath-taking, and is leading to major breakthroughs in our understanding of molecular machines and cell function. This special issue of Journal of Optics draws attention to a number of interesting approaches, ranging from fluorescence and imaging of unlabelled cells, to computational methods, all of which are describing the ever increasing detail of the dynamic behaviour of molecules in the living cell. This is a field which traditionally, and currently, demonstrates a marvellous interplay between the disciplines of physics, chemistry and biology, where apparent boundaries to resolution dissolve and living cells are viewed in ever more clarity. It is fertile ground for those interested in optics and non-conventional imaging to contribute high-impact outputs in the fields of cell biology and biomedicine. The series of articles presented here has been selected to demonstrate this interdisciplinarity and to encourage all those with a background in the physical sciences to 'dip their toes' into the exciting and dynamic discoveries surrounding cell function. Although single molecule super-resolution microscopy is commercially available, specimen preparation and interpretation of single molecule data remain a major challenge for scientists wanting to adopt the techniques. The paper by Allen and Davidson [1] provides a much needed detailed introduction to the practical aspects of stochastic optical reconstruction microscopy, including sample preparation, image acquisition and image analysis, as well as a brief description of the different variants of single molecule localization microscopy. Since super-resolution microscopy is no longer restricted to three-dimensional imaging of fixed samples, the review by Fiolka [2] is a timely introduction to techniques that have been successfully applied to four-dimensional live cell super-resolution microscopy. The combination of multiple high-resolution techniques

  18. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DEFF Research Database (Denmark)

    Makowska, Malgorzata G.; Kuhn, Luise Theil; Cleemann, Lars Nilausen

    2015-01-01

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible w...

  19. High-density scintillating glasses for a proton imaging detector

    Science.gov (United States)

    Tillman, I. J.; Dettmann, M. A.; Herrig, V.; Thune, Z. L.; Zieser, A. J.; Michalek, S. F.; Been, M. O.; Martinez-Szewczyk, M. M.; Koster, H. J.; Wilkinson, C. J.; Kielty, M. W.; Jacobsohn, L. G.; Akgun, U.

    2017-06-01

    High-density scintillating glasses are proposed for a novel proton-imaging device that can improve the accuracy of the hadron therapy. High-density scintillating glasses are needed to build a cost effective, compact calorimeter that can be attached to a gantry. This report summarizes the study on Europium, Terbium, and Cerium-doped scintillating glasses that were developed containing heavy elements such as Lanthanum, Gadolinium, and Tungsten. The density of the samples reach up to 5.9 g/cm3, and their 300-600 nm emission overlaps perfectly with the peak cathode sensitivity of the commercial photo detectors. The developed glasses do not require any special quenching and can be poured easily, which makes them a good candidate for production in various geometries. Here, the glass making conditions, preliminary tests on optical and physical properties of these scintillating, high-density, oxide glasses developed for a novel medical imaging application are reported.

  20. Black phosphorus photodetector for multispectral, high-resolution imaging.

    Science.gov (United States)

    Engel, Michael; Steiner, Mathias; Avouris, Phaedon

    2014-11-12

    Black phosphorus is a layered semiconductor that is intensely researched in view of applications in optoelectronics. In this letter, we investigate a multilayer black phosphorus photodetector that is capable of acquiring high-contrast (V > 0.9) images both in the visible (λVIS = 532 nm) as well as in the infrared (λIR = 1550 nm) spectral regime. In a first step, by using photocurrent microscopy, we map the active area of the device and we characterize responsivity and gain. In a second step, by deploying the black phosphorus device as a point-like detector in a confocal microsope setup, we acquire diffraction-limited optical images with submicron resolution. The results demonstrate the usefulness of black phosphorus as an optoelectronic material for hyperspectral imaging applications.

  1. High-resolution MR imaging of the normal rotator cuff.

    Science.gov (United States)

    Middleton, W D; Kneeland, J B; Carrera, G F; Cates, J D; Kellman, G M; Campagna, N G; Jesmanowicz, A; Froncisz, W; Hyde, J S

    1987-03-01

    The shoulders of six normal volunteers were imaged with high-resolution MR in the axial, sagittal, and coronal planes. An angled pair of counter-rotating current loop-gap resonators designed specifically for the shoulder was used as a local coil. All images were compared with corresponding cryomicrotome sections from cadaver shoulders. The rotator cuff was analyzed in detail. It appeared as a complex, heterogeneous band to tissue superficial to the humeral head. The areas of low signal intensity corresponded to the central tendons of the four rotator cuff muscles. These tendons could be distinguished from each other as well as from the intervening components of the cuff, which have a moderate intensity. We concluded that MR is capable of imaging the normal rotator cuff and of separating the various components. This may allow for improved precision in the diagnosis of rotator cuff disorders.

  2. High-resolution imaging methods in array signal processing

    DEFF Research Database (Denmark)

    Xenaki, Angeliki

    The purpose of this study is to develop methods in array signal processing which achieve accurate signal reconstruction from limited observations resulting in high-resolution imaging. The focus is on underwater acoustic applications and sonar signal processing both in active (transmit and receive...... in active sonar signal processing for detection and imaging of submerged oil contamination in sea water from a deep-water oil leak. The submerged oil _eld is modeled as a uid medium exhibiting spatial perturbations in the acoustic parameters from their mean ambient values which cause weak scattering......) and passive (only receive) mode. The study addresses the limitations of existing methods and shows that, in many cases, the proposed methods overcome these limitations and outperform traditional methods for acoustic imaging. The project comprises two parts; The first part deals with computational methods...

  3. A High Performance Image Authentication Algorithm on GPU with CUDA

    Directory of Open Access Journals (Sweden)

    Caiwei Lin

    2011-03-01

    Full Text Available There has been large amounts of research on image authentication method. Many of the schemes perform well in verification results; however, most of them are time-consuming in traditional serial manners. And improving the efficiency of authentication process has become one of the challenges in image authentication field today. In the future, it’s a trend that authentication system with the properties of high performance, real-time, flexible and ease for development. In this paper, we present a CUDA-based implementation of an image authentication algorithm with NVIDIA’s Tesla C1060 GPU devices. Comparing with the original implementation on CPU, our CUDA-based implementation works 20x-50x faster with single GPU device. And experiment shows that, by using two GPUs, the performance gains can be further improved around 1.2 times in contras to single GPU.

  4. High Resolution Image Correspondences for Video Post-Production

    Directory of Open Access Journals (Sweden)

    Marcus Magnor

    Full Text Available We present an algorithm for estimating dense image correspondences. Our versatile approach lends itself to various tasks typical for video post-processing, including image morphing, optical flow estimation, stereo rectification, disparity/depth reconstruction, and baseline adjustment. We incorporate recent advances in feature matching, energy minimization, stereo vision, and data clustering into our approach. At the core of our correspondence estimation we use Efficient Belief Propagation for energy minimization. While state-of-the-art algorithms only work on thumbnail-sized images, our novel feature downsampling scheme in combination with a simple, yet efficient data term compression, can cope with high-resolution data. The incorporation of SIFT (Scale-Invariant Feature Transform features into data term computation further resolves matching ambiguities, making long-range correspondence estimation possible. We detect occluded areas by evaluating the correspondence symmetry, we further apply Geodesic matting to automatically determine plausible values in these regions.

  5. High Resolution Image Correspondences for Video Post-Production

    Directory of Open Access Journals (Sweden)

    Marcus Magnor

    2012-12-01

    Full Text Available We present an algorithm for estimating dense image correspondences. Our versatile approach lends itself to various tasks typical for video post-processing, including image morphing, optical flow estimation, stereo rectification, disparity/depth reconstruction, and baseline adjustment. We incorporate recent advances in feature matching, energy minimization, stereo vision, and data clustering into our approach. At the core of our correspondence estimation we use Efficient Belief Propagation for energy minimization. While state-of-the-art algorithms only work on thumbnail-sized images, our novel feature downsampling scheme in combination with a simple, yet efficient data term compression, can cope with high-resolution data. The incorporation of SIFT (Scale-Invariant Feature Transform features into data term computation further resolves matching ambiguities, making long-range correspondence estimation possible. We detect occluded areas by evaluating the correspondence symmetry, we further apply Geodesic matting to automatically determine plausible values in these regions.

  6. Effect of Image Motion on Image Quality in the High Speed Camera

    Directory of Open Access Journals (Sweden)

    R. H. Dani

    1980-04-01

    Full Text Available The effects of image motion with aperture variation in a high speed camera have been described by Dubovic for special cases. In this paper a generalised approach based on the concept of transformation by two systems given by O'Neill is discussed.

  7. A high-resolution radio image of a young supernova

    Energy Technology Data Exchange (ETDEWEB)

    Bartel, N.; Rupen, M.P.; Shapiro, I.I. (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (USA)); Preston, R.A. (Jet Propulsion Lab., Pasadena, CA (USA)); Rius, A. (Universidad Complutense de Madrid (Spain). Inst. de Astronomia y Geodesia)

    1991-03-21

    Supernovae in our own Galaxy are so rare that images of their remnants can show only the late aftermath of an explosion that occurred anything from a few hundred to several tens of thousands of years ago. Young supernovae are seen frequently in other galaxies, but because they are more distant it has not been possible until now to obtain high-resolution images that would reveal details of the explosion and the immediate development of the ejected material. Here we present a very-long-baseline interferometric (VLBI) radio image of the bright supernova 1986J, which occurred in the galaxy NGC891 at a distance of {similar to}12 Mpc. No detailed image of any supernova or remnant has been obtained before so soon after the explosion. Our image shows a shell of emission with jet-like protrusions. Their analysis should advance our understanding of the dynamics of the expanding debris, the dissipation of energy into the surrounding circumstellar medium, and the evolution of the supernova into the remnant. (author).

  8. A programmable vision chip with high speed image processing

    Science.gov (United States)

    Dubois, Jérôme; Paindavoine, Michel; Ginhac, Dominique

    2008-11-01

    A high speed Analog VLSI Image acquisition and pre-processing system is described in this paper. A 64×64 pixel retina is used to extract the magnitude and direction of spatial gradients from images. So, the sensor implements some lowlevel image processing in a massively parallel strategy in each pixel of the sensor. Spatial gradients, various convolutions as Sobel filter or Laplacian are described and implemented on the circuit. The retina implements in a massively parallel way, at pixel level, some various treatments based on a four-quadrants multipliers architecture. Each pixel includes a photodiode, an amplifier, two storage capacitors and an analog arithmetic unit. A maximal output frame rate of about 10 000 frames per second with only image acquisition and 2000 to 5000 frames per second with image processing is achieved in a 0.35 μm standard CMOS process. The retina provides address-event coded output on three asynchronous buses, one output is dedicated to the gradient and both other to the pixel values. A prototype based on this principle, has been designed. Simulation results from Mentor GraphicsTMsoftware and AustriaMicrosystem Design kit are presented.

  9. Ultrasound-aided high-resolution biophotonic imaging

    Science.gov (United States)

    Wang, Lihong V.

    2003-10-01

    We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.

  10. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  11. The high resolution gamma imager (HRGI): a CCD based camera for medical imaging

    Science.gov (United States)

    Lees, John. E.; Fraser, George. W.; Keay, Adam; Bassford, David; Ott, Robert; Ryder, William

    2003-11-01

    We describe the High Resolution Gamma Imager (HRGI): a Charge Coupled Device (CCD) based camera for imaging small volumes of radionuclide uptake in tissues. The HRGI is a collimated, scintillator-coated, low cost, high performance imager using low noise CCDs that will complement whole-body imaging Gamma Cameras in nuclear medicine. Using 59.5 keV radiation from a 241Am source we have measured the spatial resolution and relative efficiency of test CCDs from E2V Technologies (formerly EEV Ltd.) coated with Gadox (Gd 2O 2S(Tb)) layers of varying thicknesses. The spatial resolution degrades from 0.44 to 0.6 mm and the detection efficiency increases (×3) as the scintillator thickness increases from 100 to 500 μm. We also describe our first image using the clinically important isotope 99mTc. The final HRGI will have intrinsic sub-mm spatial resolution (˜0.7 mm) and good energy resolution over the energy range 30-160 keV.

  12. High definition infrared spectroscopic imaging for lymph node histopathology.

    Directory of Open Access Journals (Sweden)

    L Suzanne Leslie

    Full Text Available Chemical imaging is a rapidly emerging field in which molecular information within samples can be used to predict biological function and recognize disease without the use of stains or manual identification. In Fourier transform infrared (FT-IR spectroscopic imaging, molecular absorption contrast provides a large signal relative to noise. Due to the long mid-IR wavelengths and sub-optimal instrument design, however, pixel sizes have historically been much larger than cells. This limits both the accuracy of the technique in identifying small regions, as well as the ability to visualize single cells. Here we obtain data with micron-sized sampling using a tabletop FT-IR instrument, and demonstrate that the high-definition (HD data lead to accurate identification of multiple cells in lymph nodes that was not previously possible. Highly accurate recognition of eight distinct classes - naïve and memory B cells, T cells, erythrocytes, connective tissue, fibrovascular network, smooth muscle, and light and dark zone activated B cells was achieved in healthy, reactive, and malignant lymph node biopsies using a random forest classifier. The results demonstrate that cells currently identifiable only through immunohistochemical stains and cumbersome manual recognition of optical microscopy images can now be distinguished to a similar level through a single IR spectroscopic image from a lymph node biopsy.

  13. High-speed digital phonoscopy images analyzed by Nyquist plots

    Science.gov (United States)

    Yan, Yuling

    2012-02-01

    Vocal-fold vibration is a key dynamic event in voice production, and the vibratory characteristics of the vocal fold correlate closely with voice quality and health condition. Laryngeal imaging provides direct means to observe the vocal fold vibration; in the past, however, available modalities were either too slow or impractical to resolve the actual vocal fold vibrations. This limitation has now been overcome by high-speed digital imaging (HSDI) (or high-speed digital phonoscopy), which records images of the vibrating vocal folds at a rate of 2000 frames per second or higher- fast enough to resolve a specific, sustained phonatory vocal fold vibration. The subsequent image-based functional analysis of voice is essential to better understanding the mechanism underlying voice production, as well as assisting the clinical diagnosis of voice disorders. Our primary objective is to develop a comprehensive analytical platform for voice analysis using the HSDI recordings. So far, we have developed various analytical approaches for the HSDI-based voice analyses. These include Nyquist plots and associated analysese that are used along with FFT and Spectrogram in the analysis of the HSDI data representing normal voice and specific voice pathologies.

  14. Radiation length imaging with high-resolution telescopes

    Science.gov (United States)

    Stolzenberg, U.; Frey, A.; Schwenker, B.; Wieduwilt, P.; Marinas, C.; Lütticke, F.

    2017-02-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length X/X0 profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the X/X0 imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of X/X0 imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of 100 million tracks at 4 GeV has been collected, which is sufficient to resolve complex material profiles on the 30 μm scale.

  15. High Contrast Imaging with the JWST NIRCAM Coronagraph

    Science.gov (United States)

    Green, Joseph J.; Beichman, Charles; Basinger, Scott A.; Horner, Scott; Meyer, Michael; Redding, David C.; Rieke, Marcia; Trauger, John T.

    2005-01-01

    Relative to ground-based telescopes, the James Webb Space Telescope (JWST) will have a substantial sensitivity advantage in the 2.2-5pm wavelength range where brown dwarfs and hot Jupiters are thought to have significant brightness enhancements. To facilitate high contrast imaging within this band, the Near-Infrared Camera (NIRCAM) will employ a Lyot coronagraph with an array of band-limited image-plane occulting spots. In this paper, we provide the science motivation for high contrast imaging with NIRCAM, comparing its expected performance to that of the Keck, Gemini and 30 m (TMT) telescopes equipped with Adaptive Optics systems of different capabilities. We then describe our design for the NIRCAM coronagraph that enables imaging over the entire sensitivity range of the instrument while providing significant operational flexibility. We describe the various design tradeoffs that were made in consideration of alignment and aberration sensitivities and present contrast performance in the presence of JWST's expected optical aberrations. Finally we show an example of a that can provide 10-5 companion sensitivity at sub-arcsecond separations.

  16. High-resolution SIT TV tube for subnanosecond image shuttering

    Science.gov (United States)

    Yates, G. J.; Vine, B. H.; Aeby, I.; Dunbar, D. L.; King, N. S. P.; Jaramillo, S. A.; Thayer, N. N.; Noel, B. W.

    1984-09-01

    A new ultrafast high-resolution image shutter tube with reasonable gain and shuttering efficiency has been designed and tested. The design uses a grid-gated silicon-intensified-target (SIT) image section and a high-speed focus projection and scan (FPS) vidicon read-out section in one envelope to eliminate resolution losses from external coupling. The design features low-gate-interface capacity, a high-conductivity shutter grid, and a segmented low-resistivity photocathode for optimum gating speed. Optical gate widths as short as 400 ps + or - 100 ps for full shuttering of the 25-mm-diam input window with spatial resolution as high as 15 1p/mm have been measured. Some design criteria, most of the electrical and optical performance data for several variations in the basic design, and a comparison (of several key response functions) with similarly tested 18- and 25-mm-diam proximity-focused microchannel-plate (MCP) image intensifier tubes (MCPTs) are included.

  17. Stellar Astrophysics Using Ultra-High Precision CCD Time Series Photometry

    Science.gov (United States)

    Howell, S.; Everett, M.; Huber, M.; Ciardi, D.; van Belle, G.

    2001-05-01

    Using time-series CCD photometry and a wide-field imager, we have extended the techniques of differential photometry to provide robust photometric precisions for each star over the entire field of view. Reaching photometric precisions of 2 milli-magnitudes, we produced high cadence light curves for over 12,000 stars at mid- and high galactic latitude. The fraction of stars seen to be variable is higher than the canonical wisdom, being 10-14 will present the details of our techniques, sample light curves, methods to access the data, and a summary of astrophysical uses of such high precision data.

  18. LOFAR tied-array imaging and spectroscopy of solar S bursts

    CERN Document Server

    Morosan, D E; Zucca, P; O'Flannagain, A; Fallows, R; Reid, H; Magdalenic, J; Mann, G; Bisi, M M; Kerdraon, A; Konovalenko, A A; MacKinnon, A L; Rucker, H O; Thide, B; Vocks, C; Alexov, A; Anderson, J; Asgekar, A; Avruch, I M; Bentum, M J; Bernardi, G; Bonafede, A; Breitling, F; Broderick, J W; Brouw, W N; Butcher, H R; Ciardi, B; de Geus, E; Eisloffel, J; Falcke, H; Frieswijk, W; Garrett, M A; Griessmeier, J; Gunst, A W; Hessels, J W T; Hoeft, M; Karastergiou, A; Kondratiev, V I; Kuper, G; van Leeuwen, J; McKay-Bukowski, D; McKean, J P; Munk, H; Orru, E; Paas, H; Pizzo, R; Polatidis, A G; Scaife, A M M; Sluman, J; Tasse, C; Toribio, M C; Vermeulen, R; Zarka, P

    2015-01-01

    Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims. Here, Low Frequency Array (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results. On 9 July 2013, over 3000 S bursts were ob...

  19. Characterizing pyrotechnic igniter output with high-speed schlieren imaging

    Science.gov (United States)

    Skaggs, M. N.; Hargather, M. J.; Cooper, M. A.

    2017-01-01

    Small-scale pyrotechnic igniter output has been characterized using a high-speed schlieren imaging system for observing critical features of the post-combustion flow. The diagnostic, with laser illumination, was successfully applied towards the quantitative characterization of the output from Ti/KClO_4 and TiH_{1.65}/KClO_4 pyrotechnic igniters. The high-speed image sequences showed shock motion, burned gas expansion, and particle motion. A statistical-based analysis methodology for tracking the full-field shock motion enabled straightforward comparisons across the experimental parameters of pyrotechnic material and initial density. This characterization of the mechanical energy of the shock front within the post-combustion environment is a necessary addition to the large body of literature focused on pyrotechnic combustion behavior within the powder bed. Ultimately, understanding the role that the combustion behavior has on the resulting multiphase environment is required for tailored igniter development and comparative performance assessments.

  20. High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues

    CERN Document Server

    Camp, Charles H; Heddleston, John M; Hartshorn, Christopher M; Walker, Angela R Hight; Rich, Jeremy N; Lathia, Justin D; Cicerone, Marcus T

    2014-01-01

    We have developed a coherent Raman imaging platform using broadband coherent anti-Stokes Raman scattering (BCARS) that provides an unprecedented combination of speed, sensitivity, and spectral breadth. The system utilizes a unique configuration of laser sources that probes the Raman spectrum over 3,000 cm$^{-1}$ and generates an especially strong response in the typically weak Raman "fingerprint" region through heterodyne amplification of the anti-Stokes photons with a large nonresonant background (NRB) while maintaining high spectral resolution of $<$ 13 cm$^{-1}$. For histology and pathology, this system shows promise in highlighting major tissue components in a non-destructive, label-free manner. We demonstrate high-speed chemical imaging in two- and three-dimensional views of healthy murine liver and pancreas tissues and interfaces between xenograft brain tumors and the surrounding healthy brain matter.

  1. Range Image Flow using High-Order Polynomial Expansion

    Science.gov (United States)

    2013-09-01

    give a special thanks to Dr. Steve Hobbs for his help with the high-order tensor calculations. MATLAB ® is a registered...that using multiple spatial scales and past information improve the final flow estimation, as we would expect. Also, we will port the MATLAB R...taken column- wise and diagonalized, and f is the range image data, taken column-wise. The values of these weights for a Velodyne R© and Odetic lidar

  2. IMPACT OF TONE MAPPING IN HIGH DYNAMIC RANGE IMAGE COMPRESSION

    OpenAIRE

    Narwaria, Manish; Perreira Da Silva, Matthieu; Le Callet, Patrick; Pépion, Romuald

    2014-01-01

    International audience; Tone mapping or range reduction is often used in High Dynamic Range (HDR) visual signal compression to take advantage of the existing image/video coding architectures. Thus, it is important to study the impact of tone mapping on the visual quality of decompressed HDR visual signals. To our knowledge, most of the existing studies focus only on the quality loss in the resultant low dynamic range (LDR) signal (obtained via tone mapping) and typically employ LDR displays f...

  3. Picosecond Semiconductor Lasers For Characterizing High-Speed Image Shutters

    Science.gov (United States)

    Pagano, T. S.; Janson, F. J.; Yates, G. J.; Jaramillo, S. A.

    1986-01-01

    A portable system that utilizes solid state electronic timing circuits and a pulsed semiconductor laser for characterizing the optical gate sequence of high-speed image shutters, including microchannel-plate intensifier tubes (MCPTs), and silicon-intensified target vidicons (SITVs), is described and compared to earlier methods of characterization. Gate sequences obtained using the system and streak camera data of the semiconductor laser pulse are presented, with a brief discussion of the electronic delay timing and avalanche circuits used in the system.

  4. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  5. Structure recognition from high resolution images of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela; Perciano, Talita; Krishnan, Harinarayan; Loring, Burlen; Bale, Hrishikesh; Parkinson, Dilworth; Sethian, James

    2015-01-05

    Fibers provide exceptional strength-to-weight ratio capabilities when woven into ceramic composites, transforming them into materials with exceptional resistance to high temperature, and high strength combined with improved fracture toughness. Microcracks are inevitable when the material is under strain, which can be imaged using synchrotron X-ray computed micro-tomography (mu-CT) for assessment of material mechanical toughness variation. An important part of this analysis is to recognize fibrillar features. This paper presents algorithms for detecting and quantifying composite cracks and fiber breaks from high-resolution image stacks. First, we propose recognition algorithms to identify the different structures of the composite, including matrix cracks and fibers breaks. Second, we introduce our package F3D for fast filtering of large 3D imagery, implemented in OpenCL to take advantage of graphic cards. Results show that our algorithms automatically identify micro-damage and that the GPU-based implementation introduced here takes minutes, being 17x faster than similar tools on a typical image file.

  6. High-contrast self-imaging with ordered optical elements

    CERN Document Server

    Naqavi, Ali; Rossi, Markus

    2016-01-01

    Creating arbitrary light patterns finds applications in various domains including lithography, beam shaping, metrology, sensing and imaging. We study the formation of high-contrast light patterns that are obtained by transmission through an ordered optical element based on self-imaging.By applying the phase-space method, we explain phenomena such as the Talbot and the angular Talbot effects. We show that the image contrast is maximum when the source is either a plane wave or a point source, and it has a minimum for a source with finite spatial extent. We compare these regimes and address some of their fundamental differences. Specifically, we prove that increasing the source divergence reduces the contrast for the plane wave illumination but increases it for the point source. Also, we show that to achieve high contrast with a point source, tuning the source size and its distance to the element is crucial.We furthermore indicate and explore the possibility of realizing highly complex light patterns by using a ...

  7. Photoacoustic lymphatic imaging with high spatial-temporal resolution

    Science.gov (United States)

    Martel, Catherine; Yao, Junjie; Huang, Chih-Hsien; Zou, Jun; Randolph, Gwendalyn J.; Wang, Lihong V.

    2014-11-01

    Despite its critical function in coordinating the egress of inflammatory and immune cells out of tissues and maintaining fluid balance, the causative role of lymphatic network dysfunction in pathological settings is still understudied. Engineered-animal models and better noninvasive high spatial-temporal resolution imaging techniques in both preclinical and clinical studies will help to improve our understanding of different lymphatic-related pathologic disorders. Our aim was to take advantage of our newly optimized noninvasive wide-field fast-scanning photoacoustic (PA) microcopy system to coordinately image the lymphatic vasculature and its flow dynamics, while maintaining high resolution and detection sensitivity. Here, by combining the optical-resolution PA microscopy with a fast-scanning water-immersible microelectromechanical system scanning mirror, we have imaged the lymph dynamics over a large field-of-view, with high spatial resolution and advanced detection sensitivity. Depending on the application, lymphatic vessels (LV) were spectrally or temporally differentiated from blood vessels. Validation experiments were performed on phantoms and in vivo to identify the LV. Lymphatic flow dynamics in nonpathological and pathological conditions were also visualized. These results indicate that our newly developed PA microscopy is a promising tool for lymphatic-related biological research.

  8. Shedding light on filovirus infection with high-content imaging.

    Science.gov (United States)

    Pegoraro, Gianluca; Bavari, Sina; Panchal, Rekha G

    2012-08-01

    Microscopy has been instrumental in the discovery and characterization of microorganisms. Major advances in high-throughput fluorescence microscopy and automated, high-content image analysis tools are paving the way to the systematic and quantitative study of the molecular properties of cellular systems, both at the population and at the single-cell level. High-Content Imaging (HCI) has been used to characterize host-virus interactions in genome-wide reverse genetic screens and to identify novel cellular factors implicated in the binding, entry, replication and egress of several pathogenic viruses. Here we present an overview of the most significant applications of HCI in the context of the cell biology of filovirus infection. HCI assays have been recently implemented to quantitatively study filoviruses in cell culture, employing either infectious viruses in a BSL-4 environment or surrogate genetic systems in a BSL-2 environment. These assays are becoming instrumental for small molecule and siRNA screens aimed at the discovery of both cellular therapeutic targets and of compounds with anti-viral properties. We discuss the current practical constraints limiting the implementation of high-throughput biology in a BSL-4 environment, and propose possible solutions to safely perform high-content, high-throughput filovirus infection assays. Finally, we discuss possible novel applications of HCI in the context of filovirus research with particular emphasis on the identification of possible cellular biomarkers of virus infection.

  9. Shedding Light on Filovirus Infection with High-Content Imaging

    Directory of Open Access Journals (Sweden)

    Rekha G. Panchal

    2012-08-01

    Full Text Available Microscopy has been instrumental in the discovery and characterization of microorganisms. Major advances in high-throughput fluorescence microscopy and automated, high-content image analysis tools are paving the way to the systematic and quantitative study of the molecular properties of cellular systems, both at the population and at the single-cell level. High-Content Imaging (HCI has been used to characterize host-virus interactions in genome-wide reverse genetic screens and to identify novel cellular factors implicated in the binding, entry, replication and egress of several pathogenic viruses. Here we present an overview of the most significant applications of HCI in the context of the cell biology of filovirus infection. HCI assays have been recently implemented to quantitatively study filoviruses in cell culture, employing either infectious viruses in a BSL-4 environment or surrogate genetic systems in a BSL-2 environment. These assays are becoming instrumental for small molecule and siRNA screens aimed at the discovery of both cellular therapeutic targets and of compounds with anti-viral properties. We discuss the current practical constraints limiting the implementation of high-throughput biology in a BSL-4 environment, and propose possible solutions to safely perform high-content, high-throughput filovirus infection assays. Finally, we discuss possible novel applications of HCI in the context of filovirus research with particular emphasis on the identification of possible cellular biomarkers of virus infection.

  10. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, Dimitar R, E-mail: stamov@jpk.com [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)

    2015-02-15

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  11. A dedicated high-resolution PET imager for plant sciences.

    Science.gov (United States)

    Wang, Qiang; Mathews, Aswin J; Li, Ke; Wen, Jie; Komarov, Sergey; O'Sullivan, Joseph A; Tai, Yuan-Chuan

    2014-10-07

    using soybean and wild type and mutant maize labeled with (11)CO2 produced high-quality dynamic PET images that reveal the translocation and distribution patterns of photoassimilates. This system can be used to provide an in vivo molecular and functional imaging capability for plant research.

  12. Ultra-high sensitivity imaging of cancer using SERRS nanoparticles

    Science.gov (United States)

    Kircher, Moritz F.

    2016-05-01

    "Surface-enhanced Raman spectroscopy" (SERS) nanoparticles have gained much attention in recent years for in silico, in vitro and in vivo sensing applications. Our group has developed novel generations of biocompatible "surfaceenhanced resonance Raman spectroscopy" (SERRS) nanoparticles as novel molecular imaging agents. Via rigorous optimization of the different variables contributing to the Raman enhancement, we were able to design SERRS nanoparticles with so far unprecedented sensitivity of detection under in vivo imaging conditions (femto-attomolar range). This has resulted in our ability to visualize, with a single nanoparticle, many different cancer types (after intravenous injection) in mouse models. The cancer types we have tested so far include brain, breast, esophagus, stomach, pancreas, colon, sarcoma, and prostate cancer. All mouse models used are state-of-the-art and closely mimic the tumor biology in their human counterparts. In these animals, we were able to visualize not only the bulk tumors, but importantly also microscopic extensions and locoregional satellite metastases, thus delineating for the first time the true extent of tumor spread. Moreover, the particles enable the detection of premalignant lesions. Given their inert composition they are expected to have a high chance for clinical translation, where we envision them to have an impact in various scenarios ranging from early detection, image-guidance in open or minimally invasive surgical procedures, to noninvasive imaging in conjunction with spatially offset (SESORS) Raman detection devices.

  13. High Throughput Multispectral Image Processing with Applications in Food Science.

    Science.gov (United States)

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  14. High content image cytometry in the context of subnuclear organization.

    Science.gov (United States)

    De Vos, W H; Van Neste, L; Dieriks, B; Joss, G H; Van Oostveldt, P

    2010-01-01

    The organization of proteins in space and time is essential to their function. To accurately quantify subcellular protein characteristics in a population of cells with regard for the stochasticity of events in a natural context, there is a fast-growing need for image-based cytometry. Simultaneously, the massive amount of data that is generated by image-cytometric analyses, calls for tools that enable pattern recognition and automated classification. In this article, we present a general approach for multivariate phenotypic profiling of individual cell nuclei and quantification of subnuclear spots using automated fluorescence mosaic microscopy, optimized image processing tools, and supervised classification. We demonstrate the efficiency of our analysis by determination of differential DNA damage repair patterns in response to genotoxic stress and radiation, and we show the potential of data mining in pinpointing specific phenotypes after transient transfection. The presented approach allowed for systematic analysis of subnuclear features in large image data sets and accurate classification of phenotypes at the level of the single cell. Consequently, this type of nuclear fingerprinting shows potential for high-throughput applications, such as functional protein assays or drug compound screening.

  15. High Throughput Multispectral Image Processing with Applications in Food Science.

    Directory of Open Access Journals (Sweden)

    Panagiotis Tsakanikas

    Full Text Available Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  16. High Throughput Multispectral Image Processing with Applications in Food Science

    Science.gov (United States)

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing’s outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples. PMID:26466349

  17. VIP: Vortex Image Processing Package for High-contrast Direct Imaging

    Science.gov (United States)

    Gomez Gonzalez, Carlos Alberto; Wertz, Olivier; Absil, Olivier; Christiaens, Valentin; Defrère, Denis; Mawet, Dimitri; Milli, Julien; Absil, Pierre-Antoine; Van Droogenbroeck, Marc; Cantalloube, Faustine; Hinz, Philip M.; Skemer, Andrew J.; Karlsson, Mikael; Surdej, Jean

    2017-07-01

    We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging. Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contrast data and image processing. In this paper, we describe the capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique. VIP implements functionalities for building high-contrast data processing pipelines, encompassing pre- and post-processing algorithms, potential source position and flux estimation, and sensitivity curve generation. Among the reference point-spread function subtraction techniques for ADI post-processing, VIP includes several flavors of principal component analysis (PCA) based algorithms, such as annular PCA and incremental PCA algorithms capable of processing big datacubes (of several gigabytes) on a computer with limited memory. Also, we present a novel ADI algorithm based on non-negative matrix factorization, which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results. We showcase the ADI capabilities of the VIP library using a deep sequence on HR 8799 taken with the LBTI/LMIRCam and its recently commissioned L-band vortex coronagraph. Using VIP, we investigated the presence of additional companions around HR 8799 and did not find any significant additional point source beyond the four known planets. VIP is available at http://github.com/vortex-exoplanet/VIP and is accompanied with Jupyter notebook tutorials illustrating the main functionalities of the library.

  18. Image Segmentation By Cluster Analysis Of High Resolution Textured SPOT Images

    Science.gov (United States)

    Slimani, M.; Roux, C.; Hillion, A.

    1986-04-01

    Textural analysis is now a commonly used technique in digital image processing. In this paper, we present an application of textural analysis to high resolution SPOT satellite images. The purpose of the methodology is to improve classification results, i.e. image segmentation in remote sensing. Remote sensing techniques, based on high resolution satellite data offer good perspectives for the cartography of littoral environment. Textural information contained in the pan-chromatic channel of ten meters resolution is introduced in order to separate different types of structures. The technique we used is based on statistical pattern recognition models and operates in two steps. A first step, features extraction, is derived by using a stepwise algorithm. Segmentation is then performed by cluster analysis using these extracted. features. The texture features are computed over the immediate neighborhood of the pixel using two methods : the cooccurence matrices method and the grey level difference statistics method. Image segmentation based only on texture features is then performed by pixel classification and finally discussed. In a future paper, we intend to compare the results with aerial data in view of the management of the littoral resources.

  19. Using high-power light emitting diodes for photoacoustic imaging

    DEFF Research Database (Denmark)

    Hansen, René Skov

    The preliminary result of using a high-power light emitting diode, LED, for photoacoustic imaging is presented. The pulsed light source is created by a 1Watt red Luxeon LED. The LED delivers light pulses with 25W peak power when supplied by 40A peak, 60ns wide current pulses. The phantom used...... for the experiment consists of a 3mm high x 5mm wide slice of green colored gelatine overlaid by a 3cm layer of colorless gelatine. The light pulses from the LED is focused on the green gelatine. The photoacoustic response from the green gelatine is detected by a single transducer on the opposite (top) surface...

  20. Signal Conditioning in Process of High Speed Imaging

    Directory of Open Access Journals (Sweden)

    Libor Hargas

    2015-01-01

    Full Text Available The accuracy of cinematic analysis with camera system depends on frame rate of used camera. Specific case of cinematic analysis is in medical research focusing on microscopic objects moving with high frequencies (cilia of respiratory epithelium. The signal acquired by high speed video acquisition system has very amount of data. This paper describes hardware parts, signal condition and software, which is used for image acquiring thru digital camera, intelligent illumination dimming hardware control and ROI statistic creation. All software parts are realized as virtual instruments.

  1. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution.

    Science.gov (United States)

    Stamov, Dimitar R; Stock, Erik; Franz, Clemens M; Jähnke, Torsten; Haschke, Heiko

    2015-02-01

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. GravityCam: wide-field, high-resolution imaging and high-speed photometry instrument

    Science.gov (United States)

    MacKay, Craig; Dominik, Martin; Steele, Iain

    2016-08-01

    The limits to the angular resolution achievable with conventional ground-based telescopes are unchanged over 70 years. Atmospheric turbulence limits image quality to typically 1 arcsec in practice. We have developed a new concept of ground-based imaging instrument called GravityCam capable of delivering significantly sharper images from the ground than is normally possible without adaptive optics. The acquisition of visible images at high speed without significant noise penalty has been made possible by advances in optical and near IR imaging technologies. Images are recorded at high speed and then aligned before combination and can yield a 3-5 fold improvement in image resolution. Very wide survey fields are possible with widefield telescope optics. We describe GravityCam and detail its application to accelerate greatly the rate of detection of Earth size planets by gravitational microlensing. GravityCam will also improve substantially the quality of weak shear studies of dark matter distribution in distant clusters of galaxies. The microlensing survey will also provide a vast dataset for asteroseismology studies. In addition, GravityCam promises to generate a unique data set that will help us understand of the population of the Kuiper belt and possibly the Oort cloud.

  3. High-speed atomic force microscopy: imaging and force spectroscopy.

    Science.gov (United States)

    Eghiaian, Frédéric; Rico, Felix; Colom, Adai; Casuso, Ignacio; Scheuring, Simon

    2014-10-01

    Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding.

  4. High temporal resolution functional MRI using parallel echo volumar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F. [CEA Saclay, DSV, I2BM, Neurospin, F-91191 Gif Sur Yvette (France); Le Roux, P. [GEHC, Buc (France); Dehaine-Lambertz, G. [Unite INSERM 562, Gif Sur Yvette (France)

    2008-07-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  5. High-sensitive scanning laser magneto-optical imaging system.

    Science.gov (United States)

    Murakami, Hironaru; Tonouchi, Masayoshi

    2010-01-01

    A high-sensitive scanning laser magneto-optical (MO) imaging system has been developed. The system is mainly composed of a laser source, galvano meters, and a high-sensitive differential optical-detector. Preliminary evaluation of system performance by using a Faraday indicator with a Faraday rotation coefficient of 3.47 x 10(-5) rad/microm Oe shows a magnetic sensitivity of about 5 microT, without any need for accumulation or averaging processing. Using the developed MO system we have succeeded in the fast and quantitative imaging of a rotationally symmetric magnetic field distribution around an YBa(2)Cu(3)O(7-delta) (YBCO) strip line applied with dc-biased current, and also succeeded in the detection of quantized fine signals corresponding to magnetic flux quantum generation in a superconducting loop of an YBCO Josephson vortex flow transistor. Thus, the developed system enables us not only to do fast imaging and local signal detection but also to directly evaluate both the strength and direction of a magnetic signal.

  6. High-resolution three-dimensional imaging with compress sensing

    Science.gov (United States)

    Wang, Jingyi; Ke, Jun

    2016-10-01

    LIDAR three-dimensional imaging technology have been used in many fields, such as military detection. However, LIDAR require extremely fast data acquisition speed. This makes the manufacture of detector array for LIDAR system is very difficult. To solve this problem, we consider using compress sensing which can greatly decrease the data acquisition and relax the requirement of a detection device. To use the compressive sensing idea, a spatial light modulator will be used to modulate the pulsed light source. Then a photodetector is used to receive the reflected light. A convex optimization problem is solved to reconstruct the 2D depth map of the object. To improve the resolution in transversal direction, we use multiframe image restoration technology. For each 2D piecewise-planar scene, we move the SLM half-pixel each time. Then the position where the modulated light illuminates will changed accordingly. We repeat moving the SLM to four different directions. Then we can get four low-resolution depth maps with different details of the same plane scene. If we use all of the measurements obtained by the subpixel movements, we can reconstruct a high-resolution depth map of the sense. A linear minimum-mean-square error algorithm is used for the reconstruction. By combining compress sensing and multiframe image restoration technology, we reduce the burden on data analyze and improve the efficiency of detection. More importantly, we obtain high-resolution depth maps of a 3D scene.

  7. Limiting liability via high-resolution image processing

    Science.gov (United States)

    Greenwade, L. E.; Overlin, Trudy K.

    1997-01-01

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as 'evidence ready,' even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  8. Wide-Field-of-View, High-Resolution, Stereoscopic Imager

    Science.gov (United States)

    Prechtl, Eric F.; Sedwick, Raymond J.

    2010-01-01

    A device combines video feeds from multiple cameras to provide wide-field-of-view, high-resolution, stereoscopic video to the user. The prototype under development consists of two camera assemblies, one for each eye. One of these assemblies incorporates a mounting structure with multiple cameras attached at offset angles. The video signals from the cameras are fed to a central processing platform where each frame is color processed and mapped into a single contiguous wide-field-of-view image. Because the resolution of most display devices is typically smaller than the processed map, a cropped portion of the video feed is output to the display device. The positioning of the cropped window will likely be controlled through the use of a head tracking device, allowing the user to turn his or her head side-to-side or up and down to view different portions of the captured image. There are multiple options for the display of the stereoscopic image. The use of head mounted displays is one likely implementation. However, the use of 3D projection technologies is another potential technology under consideration, The technology can be adapted in a multitude of ways. The computing platform is scalable, such that the number, resolution, and sensitivity of the cameras can be leveraged to improve image resolution and field of view. Miniaturization efforts can be pursued to shrink the package down for better mobility. Power savings studies can be performed to enable unattended, remote sensing packages. Image compression and transmission technologies can be incorporated to enable an improved telepresence experience.

  9. Spacecraft design project: High temperature superconducting infrared imaging satellite

    Science.gov (United States)

    1991-01-01

    The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

  10. High-resolution quantitative imaging of the substantia nigra.

    Science.gov (United States)

    Trujillo, Paula; Smith, Alex K; Summers, Paul E; Mainardi, Luca M; Cerutti, Sergio; Smith, Seth A; Costa, Antonella

    2015-01-01

    There is a growing interest in identifying neuroimaging-based biomarkers for Parkinson's disease (PD), a progressive neurodegenerative disorder in which the major pathologic substrate is the loss of pigmented dopaminergic neurons in the substantia nigra (SN). Recently, an MRI technique dubbed "neuromelanin-sensitive MRI" (NM-MRI), has been found to provide notable contrast between the SN and surrounding brain tissues with potential applications as biomarker of PD. The contrast in NM-MRI has been associated with magnetization transfer (MT) effects, and thus the goal of this study was to characterize the impact of MT on NM-MRI, and to demonstrate the feasibility of performing quantitative MT (qMT) imaging in human SN. The results of this study demonstrate that high-resolution rapid qMT imaging of the SN can be reliably obtained within reasonable scan times, thereby can be translatable into clinical practice.

  11. High angular resolution diffusion imaging with stimulated echoes

    DEFF Research Database (Denmark)

    Lundell, Henrik; Alexander, Daniel C; Dyrby, Tim B

    2014-01-01

    other than the diffusion gradients in the STEAM sequence contribute much greater diffusion weighting than in PGSE and lead to a disrupted experimental design. Here, we introduce a simple compensation to the STEAM acquisition that avoids the orientational bias and disrupted experiment design...... that these gradient pulses can otherwise produce. The compensation is simple to implement by adjusting the gradient vectors in the diffusion pulses of the STEAM sequence, so that the net effective gradient vector including contributions from diffusion and other gradient pulses is as the experiment intends. High...... angular resolution diffusion imaging (HARDI) data were acquired with and without the proposed compensation. The data were processed to derive standard diffusion tensor imaging (DTI) maps, which highlight the need for the compensation. Ignoring the other gradient pulses, a bias in DTI parameters from STEAM...

  12. Building identification from very high-resolution satellite images

    Science.gov (United States)

    Lhomme, Stephane

    Urbanisation still remains one of the main problems worldwide. The extent and rapidity of the urban growth induce a number of socio-economic and environmental conflicts everywhere. In order to reduce these problems, urban planners need to integrate spatial information in planning tools. Actually high expectations are made on Very High Spatial Resolution imagery (VHSR). These high-spatial resolution images are available at a reasonable price and due to short revisit periods, they offer a high degree of actuality. However, interpretation methods seem not to be adapted to this new type of images. The aim of our study is to develop a new method for semi-automatic building extraction with VHSR. The different steps performed to achieve our objective are each presented in a chapter. In the first chapter, the general context of our research is described with the definition of our objective. After a short historical review of urbanisation, we focus on urban growth and associated problems. In the following we discuss the possible contributions of geography to reduce these problems. After discussing concepts, theories and methodologies of geographical analysis in urban areas, we present existing general urban planning tools. Finally, we show the special interest of our study that is due to a growing need to integrate spatial information in these decision support tools. In the second chapter we verify the possibility of reaching our objective by analysing the technical characteristics of the images, the noise and the distortions which affect the images. Quality and interpretability of the studied image is analysed in order to show the capacity of these image to represent urban objects as close to reality as possible. The results confirm the potential of VHSR Imagery for urban objects analysis. The third chapter deal with the preliminary steps necessary for the elaboration of our method of building extraction. First, we evaluate the quality of the Sherbrooke Ikonos image

  13. High-resolution NMR imaging of the hand

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, H.; Lucas, D.

    1986-12-01

    With high spatial resolution guaranteed, NMR imaging allows to simultaneously make visible the complex osseous, chondral, and ligamentous structures of the hand. The examinations reported on were made with a 1.0 Tesla Magnetom using a special surface coil so as to achieve cut heights of 3-4 mm and an in-plane resolution of 0.5 mm. In addition to normal test persons, 29 patients were examined who had pseudoarthrosis of the os naviculare, lunatomalacia, rheumatic arthritis, or bone and soft-tissue tumors. Comparison with X-ray radiography or bone scintiscans showed that NMR imaging is capable of demonstrating localisation and extension of bone marrow or bone joint abnormalities at an earlier stage.

  14. Improving a DWT-based compression algorithm for high image-quality requirement of satellite images

    Science.gov (United States)

    Thiebaut, Carole; Latry, Christophe; Camarero, Roberto; Cazanave, Grégory

    2011-10-01

    Past and current optical Earth observation systems designed by CNES are using a fixed-rate data compression processing performed at a high-rate in a pushbroom mode (also called scan-based mode). This process generates fixed-length data to the mass memory and data downlink is performed at a fixed rate too. Because of on-board memory limitations and high data rate processing needs, the rate allocation procedure is performed over a small image area called a "segment". For both PLEIADES compression algorithm and CCSDS Image Data Compression recommendation, this rate allocation is realised by truncating to the desired rate a hierarchical bitstream of coded and quantized wavelet coefficients for each segment. Because the quantisation induced by truncation of the bit planes description is the same for the whole segment, some parts of the segment have a poor image quality. These artefacts generally occur in low energy areas within a segment of higher level of energy. In order to locally correct these areas, CNES has studied "exceptional processing" targeted for DWT-based compression algorithms. According to a criteria computed for each part of the segment (called block), the wavelet coefficients can be amplified before bit-plane encoding. As usual Region of Interest handling, these multiplied coefficients will be processed earlier by the encoder than in the nominal case (without exceptional processing). The image quality improvement brought by the exceptional processing has been confirmed by visual image analysis and fidelity criteria. The complexity of the proposed improvement for on-board application has also been analysed.

  15. Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging.

    Science.gov (United States)

    Yeh, Fang-Cheng; Verstynen, Timothy D

    2016-01-01

    Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions.

  16. Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging

    Science.gov (United States)

    Yeh, Fang-Cheng; Verstynen, Timothy D.

    2016-01-01

    Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions. PMID:27683539

  17. Precision cosmology with time delay lenses: High resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  18. Exploring Planetary System Evolution Through High-Contrast Imaging

    Science.gov (United States)

    Esposito, Thomas; Fitzgerald, Michael P.; Kalas, Paul; Graham, James R.; Millar-Blanchaer, Max; Gpies Team

    2015-01-01

    Direct imaging of circumstellar disks provides unique information about planetary system construction and evolution. Several hundred nearby main-sequence stars are known to host debris disks, which are produced by mutual collisions of orbiting planetesimals during a phase thought to coincide with terrestrial planet formation. Therefore, detection of the dust in such systems through scattered near-infrared starlight offers a view of the circumstellar environment during the epoch of planet assembly. We have used ground-based coronagraphic angular differential imaging (ADI) with Keck NIRC2 and Gemini Planet Imager (GPI) to investigate disk structures that may act as signposts of planets. ADI and its associated image processing algorithms (e.g., LOCI) are powerful tools for suppressing the stellar PSF and quasistatic speckles that can contaminate disk signal. However, ADI PSF-subtraction also attenuates disk surface brightness in a spatially- and parameter-dependent manner, thereby biasing photometry and compromising inferences regarding the physical processes responsible for the dust distribution. To account for this disk "self-subtraction," we developed a novel technique to forward model the disk structure and compute a self-subtraction map for a given ADI-processed image. Applying this method to NIRC2 near-IR imaging of the HD 32297 debris disk, we combined the high signal-to-noise ratio (S/N) of ADI data with unbiased photometry to measure midplane curvature in the edge-on disk and a break in the disk's radial brightness profile. Such a break may indicate the location of a planetesimal ring that is a source of the light-scattering micron-sized grains. For the HD 61005 debris disk, we examined similar data together with GPI 1.6-micron polarization data and detected the dust ring's swept-back morphology, brightness asymmetry, stellocentric offset, and inner clearing. To study the physical mechanism behind these features, we explored how eccentricity and mutual

  19. Arecibo imaging of compact high-velocity clouds

    CERN Document Server

    Burton, W B; Chengalur, J N

    2001-01-01

    Ten isolated compact high-velocity clouds (CHVCs) of the type cataloged by Braun & Burton (1999) have been imaged with the Arecibo telescope and were found to have a nested core/halo morphology. We argue that a combination of high-resolution filled-aperture and synthesis data is crucial to determining the intrinsic properties of the CHVCs. We identify the halos as Warm Neutral Medium surrounding one or more cores in the Cool Neutral Medium phase. These halos are clearly detected and resolved by the Arecibo filled-aperture imaging, which reaches a limiting sensitivity (1 sigma) of N_H about 2x10^17 cm^-2 over the typical 70 km/s linewidth at zero intensity. The FWHM linewidth of the halo gas is found to be 25 km/s, consistent with a WNM thermal broadening within 10^4 K gas. Substantial asymmetries are found at high N_H (>10^18.5 cm^-2) levels in 60% of our sample. A high degree of reflection-symmetry is found at low N_H (<10^18.5 cm^-2) in all sources studied at these levels. The column-density profiles...

  20. High resolution SPM imaging of organic molecules with functionalized tips

    Science.gov (United States)

    Jelínek, Pavel

    2017-08-01

    One of the most remarkable and exciting achievements in the field of scanning probe microscopy (SPM) in the last years is the unprecedented sub-molecular resolution of both atomic and electronic structures of single molecules deposited on solid state surfaces. Despite its youth, the technique has already brought many new possibilities to perform different kinds of measurements, which cannot be accomplished by other techniques. This opens new perspectives in advanced characterization of physical and chemical processes and properties of molecular structures on surfaces. Here, we discuss the history and recent progress of the high resolution imaging with a functionalized probe by means of atomic force microscopy (AFM), scanning tunnelling microscopy (STM) and inelastic electron tunneling spectroscopy (IETS). We describe the mechanisms responsible for the high-resolution AFM, STM and IETS-STM contrast. The complexity of this technique requires new theoretical approaches, where a relaxation of the functionalized probe is considered. We emphasise the similarities of the mechanism driving high-resolution SPM with other imaging methods. We also summarise briefly significant achievements and progress in different branches. Finally we provide brief perspectives and remaining challenges of the further refinement of these high-resolution methods.

  1. High resolution imaging of vascular function in zebrafish.

    Directory of Open Access Journals (Sweden)

    Simon C Watkins

    Full Text Available RATIONALE: The role of the endothelium in the pathogenesis of cardiovascular disease is an emerging field of study, necessitating the development of appropriate model systems and methodologies to investigate the multifaceted nature of endothelial dysfunction including disturbed barrier function and impaired vascular reactivity. OBJECTIVE: We aimed to develop and test an optimized high-speed imaging platform to obtain quantitative real-time measures of blood flow, vessel diameter and endothelial barrier function in order to assess vascular function in live vertebrate models. METHODS AND RESULTS: We used a combination of cutting-edge optical imaging techniques, including high-speed, camera-based imaging (up to 1000 frames/second, and 3D confocal methods to collect real time metrics of vascular performance and assess the dynamic response to the thromboxane A(2 (TXA(2 analogue, U-46619 (1 µM, in transgenic zebrafish larvae. Data obtained in 3 and 5 day post-fertilization larvae show that these methods are capable of imaging blood flow in a large (1 mm segment of the vessel of interest over many cardiac cycles, with sufficient speed and sensitivity such that the trajectories of individual erythrocytes can be resolved in real time. Further, we are able to map changes in the three dimensional sizes of vessels and assess barrier function by visualizing the continuity of the endothelial layer combined with measurements of extravasation of fluorescent microspheres. CONCLUSIONS: We propose that this system-based microscopic approach can be used to combine measures of physiologic function with molecular behavior in zebrafish models of human vascular disease.

  2. The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and recreational cyclists.

    Science.gov (United States)

    Sanderson, D J; Hennig, E M; Black, A H

    2000-03-01

    The aim of this study was to determine the response of cyclists to manipulations of cadence and power output in terms of force application and plantar pressure distribution. Two groups of cyclists, 17 recreational and 12 competitive, rode at three nominal cadences (60, 80, 100 rev x min(-1)) and four power outputs (100, 200, 300, 400 W) while simultaneous force and in-shoe pressure data were collected. Two piezoelectric triaxial force transducers mounted in the right pedal measured components of the pedal force and orientation, and a discrete transducer system with 12 transducers recorded the in-shoe pressures. Force application was characterized by calculating peak resultant and peak effective pedal forces and positive and negative impulses. In-shoe pressures were analysed as peak pressures and as the percent relative load. The force data showed no significant group effect but there was a cadence and power main effect. The impulse data showed a significant three-way interaction. Increased cadence resulted in a decreased positive impulse, while increased power output resulted in an increased impulse. The competitive group produced less positive impulse but the difference became less at higher cadences. Few between-group differences were found in pressure, notable only in the pressure under the first metatarsal region. This showed a consistent pattern of in-shoe pressure distribution, where the primary loading structures were the first metatarsal and hallux. There was no indication that pressure at specific sites influenced the pedal force application. The absence of group differences indicated that pressure distribution was not the result of training, but reflected the intrinsic relationship between the foot, the shoe and the pedal.

  3. Progress Toward A Very High Angular Resolution Imaging Spectrometer (VERIS)

    Science.gov (United States)

    Korendyke, Clarence M.; Vourlidas, A.; Landi, E.; Seely, J.; Klimchuck, J.

    2007-07-01

    Recent imaging at arcsecond (TRACE) and sub-arcsecond (VAULT) spatial resolution clearly show that structures with fine spatial scales play a key role in the physics of the upper solar atmosphere. Both theoretical and observational considerations point to the importance of small spatial scales, impulsive energy release, strong dynamics, and extreme plasma nonuniformity. Fundamental questions regarding the nature, structure, properties and dynamics of loops and filamentary structures in the upper atmosphere have been raised. To address these questions, we are developing a next generation, VEry high angular Resolution Imaging Spectrometer (VERIS) as a sounding rocket instrument. VERIS will obtain the necessary high spatial resolution, high fidelity measurements of plasma temperatures, densities and velocities. With broad simultaneous temperature coverage, the VERIS observations will directly address unresolved issues relating to interconnections of various temperature solar plasmas. VERIS will provide the first ever subarcsecond spectra of transition region and coronal structures. It will do so with a sufficient spectral resolution of to allow centroided Doppler velocity determinations to better than 3 km/s. VERIS uses a novel two element, normal incidence optical design with highly reflective EUV coatings to access a spectral range with broad temperature coverage (0.03-15 MK) and density-sensitive line ratios. Finally, in addition to the spectra, VERIS will simultaneously obtain spectrally pure slot images (10x150 arcsec) in the +/-1 grating orders, which can be combined to make instantaneous line-of-sight velocity maps with 8km/s accuracy over an unprecedented field of view. The VERIS program is beginning the second year of its three year development cycle. All design activities and reviews are complete. Fabrication of all major components has begun. Brassboard electronics cards have been fabricated, assembled and tested. The paper presents the essential scientific

  4. High Res at High Speed: Automated Delivery of High-Resolution Images from Digital Library Collections

    Science.gov (United States)

    Westbrook, R. Niccole; Watkins, Sean

    2012-01-01

    As primary source materials in the library are digitized and made available online, the focus of related library services is shifting to include new and innovative methods of digital delivery via social media, digital storytelling, and community-based and consortial image repositories. Most images on the Web are not of sufficient quality for most…

  5. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    Science.gov (United States)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  6. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu; Xiao-Bi Xie

    2008-06-08

    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super

  7. High resolution AMS imaging of radiocarbon in biomedical applications

    Science.gov (United States)

    Jiang, Z. X.; Bronk Ramsey, C.; Hedges, R. E. M.; Somogyi, P.; Roberts, J. D. B.; Cowey, A.

    1997-03-01

    Radiocarbon has been an important labelling element in biological metabolism studies. By interfacing an accelerator mass spectrometer (AMS) with a scanning microprobe secondary ion source, we have imaged the uptake of radiocarbon labelled metabolic or neurotransmitter amino acids by neurons and glial cells of rats and gerbils at high resolution (1 micron), high sensitivity and in a short time. The biological samples are prepared and sectioned serially at 0.5 μm thickness using standard histological procedures. The adjacent sections to those used for AMS imaging were either immunolabelled with antibodies to GABA to reveal GABA-containing cells, or stained with toluidine blue to visualise every cell. Therefore, the distribution of radiocarbon revealed by AMS could be matched to that of the cells. By simultaneously measuring the 14C, 13C and 12C signals, we can demonstrate that the localised peaks of radiocarbon could be readily identified and matched to GABA-immunopositive neurons and glial cells by aligning the radiocarbon deficient blood vessels with the vessels in the adjacent histologically stained section. The results revealed the selective uptake of the neurotransmitter, GABA and that of metabolic amino acid, leucine. The technique compares favourably with high resolution autoradiography and provides great potential for improving the analysis of molecular interactions in and between cells.

  8. Modeling first impressions from highly variable facial images.

    Science.gov (United States)

    Vernon, Richard J W; Sutherland, Clare A M; Young, Andrew W; Hartley, Tom

    2014-08-12

    First impressions of social traits, such as trustworthiness or dominance, are reliably perceived in faces, and despite their questionable validity they can have considerable real-world consequences. We sought to uncover the information driving such judgments, using an attribute-based approach. Attributes (physical facial features) were objectively measured from feature positions and colors in a database of highly variable "ambient" face photographs, and then used as input for a neural network to model factor dimensions (approachability, youthful-attractiveness, and dominance) thought to underlie social attributions. A linear model based on this approach was able to account for 58% of the variance in raters' impressions of previously unseen faces, and factor-attribute correlations could be used to rank attributes by their importance to each factor. Reversing this process, neural networks were then used to predict facial attributes and corresponding image properties from specific combinations of factor scores. In this way, the factors driving social trait impressions could be visualized as a series of computer-generated cartoon face-like images, depicting how attributes change along each dimension. This study shows that despite enormous variation in ambient images of faces, a substantial proportion of the variance in first impressions can be accounted for through linear changes in objectively defined features.

  9. A dedicated high resolution PET imager for plant sciences

    CERN Document Server

    Wang, Qiang; Li, Ke; Wen, Jie; Komarov, Sergey; O'Sullivan, Joseph A; Tai, Yuan-Chuan

    2014-01-01

    PET provides in vivo molecular and functional imaging capability that is crucial to studying the interaction of plant with changing environment at the whole-plant level. We have developed a dedicated plant PET imager that features high spatial resolution, housed in a fully controlled environment provided by a plant growth chamber (PGC). The system currently contains two types of detector modules: 84 microPET R4 block detectors with 2.2 mm crystals to provide a large detecting area; and 32 Inveon block detectors with 1.5 mm crystals to provide higher spatial resolution. Outputs of the four microPET block detectors in a modular housing are concatenated by a custom printed circuit board to match the output characteristics of an Inveon detector. All the detectors are read out by QuickSilver electronics. The detector modules are configured to full rings with a 15 cm diameter trans-axial field of view (FOV) for dynamic tomographic imaging of small plants. Potentially, the Inveon detectors can be reconfigured to qua...

  10. a Spatio-Spectral Camera for High Resolution Hyperspectral Imaging

    Science.gov (United States)

    Livens, S.; Pauly, K.; Baeck, P.; Blommaert, J.; Nuyts, D.; Zender, J.; Delauré, B.

    2017-08-01

    Imaging with a conventional frame camera from a moving remotely piloted aircraft system (RPAS) is by design very inefficient. Less than 1 % of the flying time is used for collecting light. This unused potential can be utilized by an innovative imaging concept, the spatio-spectral camera. The core of the camera is a frame sensor with a large number of hyperspectral filters arranged on the sensor in stepwise lines. It combines the advantages of frame cameras with those of pushbroom cameras. By acquiring images in rapid succession, such a camera can collect detailed hyperspectral information, while retaining the high spatial resolution offered by the sensor. We have developed two versions of a spatio-spectral camera and used them in a variety of conditions. In this paper, we present a summary of three missions with the in-house developed COSI prototype camera (600-900 nm) in the domains of precision agriculture (fungus infection monitoring in experimental wheat plots), horticulture (crop status monitoring to evaluate irrigation management in strawberry fields) and geology (meteorite detection on a grassland field). Additionally, we describe the characteristics of the 2nd generation, commercially available ButterflEYE camera offering extended spectral range (475-925 nm), and we discuss future work.

  11. ERIS: the exoplanet high-resolution image simulator for CHARIS

    Science.gov (United States)

    Limbach, Mary Anne; Groff, Tyler D.; Kasdin, N. J.; Brandt, Timothy; Mede, Kyle; Loomis, Craig; Hayashi, Masahiko; Takato, Naruhisa

    2014-07-01

    ERIS is an image simulator for CHARIS, the high-contrast exoplanet integral field spectrograph (IFS) being built at Princeton University for the Subaru telescope. We present here the software design and implementation of the ERIS code. ERIS simulates CHARIS FITS images and data cubes that are used for developing the data reduction pipeline and verifying the expected CHARIS performance. Components of the software include detailed models of the light source (such as a star or exoplanet), atmosphere, telescope, adaptive optics systems (AO188 and SCExAO), CHARIS IFS and the Hawaii2-RG infrared detector. Code includes novel details such as the phase errors at the lenslet array, optical wavefront error maps and pinholes for reducing crosstalk, just to list a few. The details of the code as well as several simulated images are presented in this paper. This IFS simulator is critical for the CHARIS data analysis pipeline development, minimizing troubleshooting in the lab and on-sky and the characterization of crosstalk.

  12. Stochastic optimal phase retrieval algorithm for high-contrast imaging

    Science.gov (United States)

    Give'on, Amir; Kasdin, N. Jeremy; Vanderbei, Robert J.; Spergel, David N.; Littman, Michael G.; Gurfil, Pini

    2003-12-01

    The Princeton University Terrestrial Planet Finder (TPF) has been working on a novel method for direct imaging of extra solar planets using a shaped-pupil coronagraph. The entrance pupil of the coronagraph is optimized to have a point spread function (PSF) that provides the suppression level needed at the angular separation required for detection of extra solar planets. When integration time is to be minimized, the photon count at the planet location in the image plane is a Poisson distributed random process. The ultimate limitation of these high-dynamic-range imaging systems comes from scattering due to imperfections in the optical surfaces of the collecting system. The first step in correcting the wavefront errors is the estimation of the phase aberrations. The phase aberration caused by these imperfections is assumed to be a sum of two-dimensional sinusoidal functions. Its parameters are estimated using a global search with a genetic algorithm and a local optimization with the BFGS quasi-Newton method with a mixed quadratic and cubic line search procedure.

  13. High-energy x-ray imaging spectrometer (HEXIS)

    Science.gov (United States)

    Matteson, James L.; Gruber, Duane E.; Heindl, William A.; Pelling, Michael R.; Peterson, Laurence E.; Rothschild, Richard E.; Skelton, Robert E.; Hink, Paul L.; Slavis, Kimberly R.; Binns, W. Robert

    1998-11-01

    HEXIS is a MIDEX-class mission concept for x-ray astronomy. Its objectives are to improve our knowledge of the high energy x-ray sky by increasing the number of sources above 20 keV to > 2,000, discovering transient sources such as x-ray novae and gamma-ray bursts, and making spectral and temporal studies of the sources. With mission life > 3 years, a 1-year all-sky survey sensitivity of approximately 0.3 mCrab, and continuous monitoring of the entire visible sky, HEXIS will provide unprecedented capabilities. Source positions will be determined to accuracies of a few arcmin or better. Spectra will be determined with an energy resolution of a few keV and source variability will be studied on time scales from CZT detectors operating from approximately 5 keV to 200 keV. Detector planes are built with 41 cm(superscript 2) CZT detector modules which employ crossed-strip readout to obtain a pixel size of 0.5 mm. Nine modules are grouped in a 369 cm(superscript 2) array for each imager. In the past 2 years significant progress has been made on techniques requires for HEXIS: position-sensitive CZT detectors and ASIC readout, coded mask imaging, and background properties at balloon altitudes. Scientific and technical details of HEXIS are presented together with result form tests of detectors and a coded mask imager.

  14. A novel highly parallel algorithm for linearly unmixing hyperspectral images

    Science.gov (United States)

    Guerra, Raúl; López, Sebastián.; Callico, Gustavo M.; López, Jose F.; Sarmiento, Roberto

    2014-10-01

    Endmember extraction and abundances calculation represent critical steps within the process of linearly unmixing a given hyperspectral image because of two main reasons. The first one is due to the need of computing a set of accurate endmembers in order to further obtain confident abundance maps. The second one refers to the huge amount of operations involved in these time-consuming processes. This work proposes an algorithm to estimate the endmembers of a hyperspectral image under analysis and its abundances at the same time. The main advantage of this algorithm is its high parallelization degree and the mathematical simplicity of the operations implemented. This algorithm estimates the endmembers as virtual pixels. In particular, the proposed algorithm performs the descent gradient method to iteratively refine the endmembers and the abundances, reducing the mean square error, according with the linear unmixing model. Some mathematical restrictions must be added so the method converges in a unique and realistic solution. According with the algorithm nature, these restrictions can be easily implemented. The results obtained with synthetic images demonstrate the well behavior of the algorithm proposed. Moreover, the results obtained with the well-known Cuprite dataset also corroborate the benefits of our proposal.

  15. High resolution fluorescent bio-imaging with electron beam excitation.

    Science.gov (United States)

    Kawata, Yoshimasa; Nawa, Yasunori; Inami, Wataru

    2014-11-01

    16/DFU090F1F1DFU090F1Fig. 1.(a) Optical setup of EXA microscpe, and observation results of of living MARCO-expressing CHO cells with (b) EXA microscope and (c) phase contrast microscope. We proposed the EXA microscope as a technique with high spatial resolution beyond the diffraction limit of light. A spatial resolution greater than 100 nm was achieved for the EXA microscope and the dynamic behavior of moving nanoparticles in water was observed by time lapse imaging. We also demonstrated luminescence image of living cells in culture solution without any treatments.

  16. Highly stable organic fluorescent nanorods for living- cell imaging

    Institute of Scientific and Technical Information of China (English)

    Minhuan Lan[1,3; Jinfeng Zhang[1,3; Xiaoyue Zhu[1; Pengfei Wang[2; Xianfeng Chen[1; Chun-Sing Lee[1; Wenjun Zhang[1

    2015-01-01

    Metal-free, organic-dye-based fluorescent nanorods were fabricated through a simple solvent-exchange procedure. The as-prepared nanorods exhibit low toxicity to living cells and excellent photostability. Furthermore, they are stable in solutions of various pHs and high ionic strength and in solutions with interfering metal ions. Compared with the free DPP-Br molecules in THF, these nanorods exhibit larger Stokes shift, broader absorption spectra, and greatly improved photostability. We successfully demonstrated the application of the nanorods, including their aforementioned beneficial characteristics, as a good fluorescence probe for bio-imaging.

  17. High-revolution gamma-ray imaging from the moon

    Science.gov (United States)

    Mahoney, William A.

    1990-01-01

    An observatory is suggested for exploiting unique lunar features to perform sensitive, subarcsecond cosmic X-ray and gamma-ray imaging. The observatory would be built in an evolutionary manner and would eventually include several different position-sensitive detector systems which together would cover a broad energy range and address a wide variety of astrophysical problems. High angular resolution would be obtained by using a mobile crane on the flat lunar mare regions to move a coded aperture mask for source tracking with detector/mask separations of up to 5 kilometers.

  18. High-speed image matching with coaxial holographic optical correlator

    Science.gov (United States)

    Ikeda, Kanami; Watanabe, Eriko

    2016-09-01

    A computation speed of more than 100 Gbps is experimentally demonstrated using our developed ultrahigh-speed optical correlator. To verify this high computation speed practically, the computation speeds of our optical correlator and conventional digital image matching are quantitatively compared. We use a population count function that achieves the fastest calculation speed when calculating binary matching by a central processing unit (CPU). The calculation speed of the optical correlator is dramatically faster than that using a CPU (2.40 GHz × 4) and 16 GB of random access memory, especially when the calculation data are large-scale.

  19. What Images Reveal: a Comparative Study of Science Images between Australian and Taiwanese Junior High School Textbooks

    Science.gov (United States)

    Ge, Yun-Ping; Unsworth, Len; Wang, Kuo-Hua; Chang, Huey-Por

    2017-07-01

    From a social semiotic perspective, image designs in science textbooks are inevitably influenced by the sociocultural context in which the books are produced. The learning environments of Australia and Taiwan vary greatly. Drawing on social semiotics and cognitive science, this study compares classificational images in Australian and Taiwanese junior high school science textbooks. Classificational images are important kinds of images, which can represent taxonomic relations among objects as reported by Kress and van Leeuwen (Reading images: the grammar of visual design, 2006). An analysis of the images from sample chapters in Australian and Taiwanese high school science textbooks showed that the majority of the Taiwanese images are covert taxonomies, which represent hierarchical relations implicitly. In contrast, Australian classificational images included diversified designs, but particularly types with a tree structure which depicted overt taxonomies, explicitly representing hierarchical super-ordinate and subordinate relations. Many of the Taiwanese images are reminiscent of the specimen images in eighteenth century science texts representing "what truly is", while more Australian images emphasize structural objectivity. Moreover, Australian images support cognitive functions which facilitate reading comprehension. The relationships between image designs and learning environments are discussed and implications for textbook research and design are addressed.

  20. High-speed binary CMOS image sensor using a high-responsivity MOSFET-type photodetector

    Science.gov (United States)

    Choi, Byoung-Soo; Jo, Sung-Hyun; Bae, Myunghan; Choi, Pyung; Shin, Jang-Kyoo

    2015-03-01

    In this paper, a complementary metal oxide semiconductor (CMOS) binary image sensor based on a gate/body-tied (GBT) MOSFET-type photodetector is proposed. The proposed CMOS binary image sensor was simulated and measured using a standard CMOS 0.18-μm process. The GBT MOSFET-type photodetector is composed of a floating gate (n+- polysilicon) tied to the body (n-well) of the p-type MOSFET. The size of the active pixel sensor (APS) using GBT photodetector is smaller than that of APS using the photodiode. This means that the resolution of the image can be increased. The high-gain GBT photodetector has a higher photosensitivity compared to the p-n junction photodiode that is used in a conventional APS. Because GBT has a high sensitivity, fast operation of the binary processing is possible. A CMOS image sensor with the binary processing can be designed with simple circuits composed of a comparator and a Dflip- flop while a complex analog to digital converter (ADC) is not required. In addition, the binary image sensor has low power consumption and high speed operation with the ability to switch back and forth between a binary mode and an analog mode.

  1. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Ozcan, Aydogan, E-mail: ozcan@ucla.edu [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Bioengineering Department, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095 (United States)

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  2. Magnetic resonance imaging and spectroscopy at ultra high fields

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Thomas

    2009-06-23

    The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were

  3. HIgh b-value and high Resolution Integrated Diffusion (HIBRID) imaging.

    Science.gov (United States)

    Fan, Qiuyun; Nummenmaa, Aapo; Polimeni, Jonathan R; Witzel, Thomas; Huang, Susie Y; Wedeen, Van J; Rosen, Bruce R; Wald, Lawrence L

    2017-02-07

    The parameter selection for diffusion MRI experiments is dominated by the "k-q tradeoff" whereby the Signal to Noise Ratio (SNR) of the images is traded for either high spatial resolution (determined by the maximum k-value collected) or high diffusion sensitivity (effected by b-value or the q vector) but usually not both. Furthermore, different brain regions (such as gray matter and white matter) likely require different tradeoffs between these parameters due to the size of the structures to be visualized or the length-scale of the microstructure being probed. In this case, it might be advantageous to combine information from two scans - a scan with high q but low k (high angular resolution in diffusion but low spatial resolution in the image domain) to provide maximal information about white matter fiber crossing, and one low q but high k (low angular resolution but high spatial resolution) for probing the cortex. In this study, we propose a method, termed HIgh b-value and high Resolution Integrated Diffusion (HIBRID) imaging, for acquiring and combining the information from these two complementary types of scan with the goal of studying diffusion in the cortex without compromising white matter fiber information. The white-gray boundary and pial surface obtained from anatomical scans are incorporated as prior information to guide the fusion. We study the complementary advantages of the fused datasets, and assess the quality of the HIBRID data compared to either alone.

  4. An Acoustic Charge Transport Imager for High Definition Television

    Science.gov (United States)

    Hunt, William D.; Brennan, Kevin; May, Gary; Glenn, William E.; Richardson, Mike; Solomon, Richard

    1999-01-01

    This project, over its term, included funding to a variety of companies and organizations. In addition to Georgia Tech these included Florida Atlantic University with Dr. William E. Glenn as the P.I., Kodak with Mr. Mike Richardson as the P.I. and M.I.T./Polaroid with Dr. Richard Solomon as the P.I. The focus of the work conducted by these organizations was the development of camera hardware for High Definition Television (HDTV). The focus of the research at Georgia Tech was the development of new semiconductor technology to achieve a next generation solid state imager chip that would operate at a high frame rate (I 70 frames per second), operate at low light levels (via the use of avalanche photodiodes as the detector element) and contain 2 million pixels. The actual cost required to create this new semiconductor technology was probably at least 5 or 6 times the investment made under this program and hence we fell short of achieving this rather grand goal. We did, however, produce a number of spin-off technologies as a result of our efforts. These include, among others, improved avalanche photodiode structures, significant advancement of the state of understanding of ZnO/GaAs structures and significant contributions to the analysis of general GaAs semiconductor devices and the design of Surface Acoustic Wave resonator filters for wireless communication. More of these will be described in the report. The work conducted at the partner sites resulted in the development of 4 prototype HDTV cameras. The HDTV camera developed by Kodak uses the Kodak KAI-2091M high- definition monochrome image sensor. This progressively-scanned charge-coupled device (CCD) can operate at video frame rates and has 9 gm square pixels. The photosensitive area has a 16:9 aspect ratio and is consistent with the "Common Image Format" (CIF). It features an active image area of 1928 horizontal by 1084 vertical pixels and has a 55% fill factor. The camera is designed to operate in continuous mode

  5. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Science.gov (United States)

    Watson, Alan M; Rose, Annika H; Gibson, Gregory A; Gardner, Christina L; Sun, Chengqun; Reed, Douglas S; Lam, L K Metthew; St Croix, Claudette M; Strick, Peter L; Klimstra, William B; Watkins, Simon C

    2017-01-01

    Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  6. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Makowska, Małgorzata G., E-mail: malg@dtu.dk [Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde 4000 (Denmark); European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Theil Kuhn, Luise; Cleemann, Lars N. [Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde 4000 (Denmark); Lauridsen, Erik M. [Xnovo Technology ApS, Galoche Alle 15, Køge 4600 (Denmark); Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Tremsin, Anton S. [Space Sciences Laboratory, University of California at Berkeley, Berkeley, California 94720 (United States); Grosse, Mirco [Institute for Applied Material Research, Karlsruhe Institute of Technology, Karlsruhe DE-76021 (Germany); Morgano, Manuel [Paul Scherrer Institut, Villigen PSI CH-5232 (Switzerland); Kabra, Saurabh [ISIS, Rutherford Appleton Laboratory, Chilton OX11 0QX (United Kingdom); Strobl, Markus [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden)

    2015-12-15

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  7. Signal processing for high speed underwater acoustic transmission of image

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiqing; ZHU Min; WANG Junwei; HUANG Haiyun; YANG Bo; XU Lijun; ZHAO Liang

    2009-01-01

    A signal processing method for high-speed underwater acoustic transmission of image is presented. It has two parts. Part 1 introduces signal processing for underwater acoustic coherent communication. Part 1 includes 3 technical points. (1) Doppler shift compensation.Chirp signals are inserted between data packages. A correlation process between two copy correlation functions gives more accurate estimation of the mean Doppler shift. Then it could be compensated by resampling the data. In adaptive decision feedback equalizer (DFE) an adaptive phase compensator with fast self-optimized least mean square (FOLMS) adaptation algorithm is utilized resulting in better motion tolerance than compensators with 2nd order Phase-Lock Loop algorithm. The performance of the combination of mean Doppler shift compensation and adaptive phase compensator is quite good. (2) A diversity combiner (DC) used in advance of equalizer. Both combiner and adaptive DFE are based on FOLMS adaptation algorithm. This results in reduced computation complexity and better performance. (3) Cascaded equalizer and Turbo-Trellis Coded Modulation (TCM) decoder and the iteration algorithm. A new bitsymbol converter based on Soft Output Viterbi Algorithm (SOVA) is studied. Comparing with the traditional decision, coding and mapping algorithm, the new converter can reduce Bit Error Rate(BER) by nearly 2 orders. Part 2 is mainly around a robust image compression algorithm. Based on Discrete wavelet transform and fixed length coding, a robust compression algorithm for acoustic image is studied. The algorithm includes 4 technical points. (1) Utilizes CDF9/7 wavelet bases to transform the images. (2) Analyses the energy distribution of subband coefficients. Suitable transformation layer number is 3. (3) Applies different quantization steps to different subbands in accordance with their energy distribution. (4) Uses fixed length coding to prevent error propagation. The results show the algorithm achieves a balance

  8. High Resolution 3D Radar Imaging of Comet Interiors

    Science.gov (United States)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  9. High resolution Ceres HAMO atlas derived from Dawn FC images

    Science.gov (United States)

    Roatsch, Thomas; Kersten, Elke; Matz, Klaus-Dieter; Preusker, Frank; Scholten, Frank; Jaumann, Ralf; Raymond, Carol A.; Russell, Chris T.

    2016-04-01

    Introduction: NASA's Dawn spacecraft entered the orbit of dwarf planet Ceres in March 2015, and will characterize the geology, elemental and mineralogical composition, topography, shape, and internal structure of Ceres. One of the major goals of the mission is a global mapping of Ceres. Data: The Dawn mission was mapping Ceres in HAMO (High Altitude Mapping Orbit, 1475 km altitude) between August and October 2015. The framing camera took about 2,600 clear filter images with a resolution of about 140 m/pixel during these cycles. The images were taken with different viewing angles and different illumination conditions. We selected images from one cycle (cycle #1) for the mosaicking process to have similar viewing and illumination conditions. Very minor gaps in the coverage were filled with a few images from cycle #2. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the targets. Both, improved orientation and a high-resolution shape model, are provided by stereo processing (bundle block adjustment) of the HAMO stereo image dataset [3]. Ceres's HAMO shape model was used for the calculation of the ray intersection points while the map projection itself was done onto the reference sphere of Ceres with a radius of 470 km. The final step is the controlled mosaicking) of all images to a global mosaic of Ceres, the so-called basemap. Ceres map tiles: The Ceres atlas was produced in a scale of 1:750,000 and consists of 15 tiles that conform to the quadrangle scheme proposed by Greeley and Batson [4]. A map scale of 1:750,000 guarantees a mapping at the highest available Dawn resolution in HAMO. The individual tiles were extracted from the global mosaic and reprojected. Nomenclature: The Dawn team proposed 81 names for geological features. By international

  10. Quantitative Image Analysis Techniques with High-Speed Schlieren Photography

    Science.gov (United States)

    Pollard, Victoria J.; Herron, Andrew J.

    2017-01-01

    Optical flow visualization techniques such as schlieren and shadowgraph photography are essential to understanding fluid flow when interpreting acquired wind tunnel test data. Output of the standard implementations of these visualization techniques in test facilities are often limited only to qualitative interpretation of the resulting images. Although various quantitative optical techniques have been developed, these techniques often require special equipment or are focused on obtaining very precise and accurate data about the visualized flow. These systems are not practical in small, production wind tunnel test facilities. However, high-speed photography capability has become a common upgrade to many test facilities in order to better capture images of unsteady flow phenomena such as oscillating shocks and flow separation. This paper describes novel techniques utilized by the authors to analyze captured high-speed schlieren and shadowgraph imagery from wind tunnel testing for quantification of observed unsteady flow frequency content. Such techniques have applications in parametric geometry studies and in small facilities where more specialized equipment may not be available.

  11. Fluorescence and image guided resection in high grade glioma.

    Science.gov (United States)

    Panciani, Pier Paolo; Fontanella, Marco; Schatlo, Bawarjan; Garbossa, Diego; Agnoletti, Alessandro; Ducati, Alessandro; Lanotte, Michele

    2012-01-01

    The extent of resection in high grade glioma is increasingly been shown to positively effect survival. Nevertheless, heterogeneity and migratory behavior of glioma cells make gross total resection very challenging. Several techniques were used in order to improve the detection of residual tumor. Aim of this study was to analyze advantages and limitations of fluorescence and image guided resection. A multicentric prospective study was designed to evaluate the accuracy of each method. Furthermore, the role of 5-aminolevulinc acid and neuronavigation were reviewed. Twenty-three patients harboring suspected high grade glioma, amenable to complete resection, were enrolled. Fluorescence and image guides were used to perform surgery. Multiple samples were obtained from the resection cavity of each lesion according to 5-ALA staining positivity and boundaries as delineated by neuronavigation. All samples were analyzed by a pathologist blinded to the intra-operative labeling. Decision-making based on fluorescence showed a sensitivity of 91.1% and a specificity of 89.4% (pimage-guided resection accuracy was low (sensitivity: 57.8%; specificity: 57.4%; p=0.346). We observed that the sensitivity of 5-ALA can be improved by the combined use of neuronavigation, but this leads to a significant reduction in specificity. Thus, the use of auxiliary techniques should always be subject to critical skills of the surgeon. We advocate a large-scale study to further improve the assessment of multimodal approaches.

  12. High performance coronagraphy for direct imaging of exoplanets

    Directory of Open Access Journals (Sweden)

    Guyon O.

    2011-07-01

    Full Text Available Coronagraphy has recently been an extremely active field of research, with several high performance concepts proposed, and several new coronagraphs tested in laboratories and telescopes. Coronagraph concepts can be grouped in a few broad categories: Lyot-type coronagraphs, pupil apodization and nulling interferometers. Among existing coronagraph concepts, several approach the fundamental performance limit imposed by the physical nature of light. To achieve their full potential, coronagraphs require exquisite wavefront control and calibration. This has been, and still is, the main bottleneck for the scientifically productive use of coronagraphs on ground-based telescopes. New and promising wavefront sensing techniques suitable for high contrast imaging have however been developed in the last few years and are started to be realized in laboratories. I will review some of these enabling technologies, and show that coronagraphs are now ready for “prime time” on existing and future telescopes.

  13. Trapped ion imaging with a high numerical aperture spherical mirror

    Energy Technology Data Exchange (ETDEWEB)

    Shu, G; Dietrich, M R; Kurz, N; Blinov, B B, E-mail: shugang@u.washington.ed [Department of Physics, University of Washington, Seattle, WA 98105-1560 (United States)

    2009-08-14

    Efficient collection and analysis of trapped ion qubit fluorescence is essential for robust qubit state detection in trapped ion quantum computing schemes. We discuss simple techniques of improving photon collection efficiency using high numerical aperture (N.A.) reflective optics. To test these techniques we placed a spherical mirror with an effective N.A. of about 0.9 inside a vacuum chamber in the vicinity of a linear Paul trap. We demonstrate stable and reliable trapping of single barium ions, in excellent agreement with our simulations of the electric field in this setup. While a large N.A. spherical mirror introduces significant spherical aberration, the ion image quality can be greatly improved by a specially designed aspheric corrector lens located outside the vacuum system. Our simulations show that the spherical mirror/corrector design is an easy and cost-effective way to achieve high photon collection rates when compared to a more sophisticated parabolic mirror setup.

  14. High Contrast Imaging Testbed for the Terrestrial Planet Finder Coronagraph

    Science.gov (United States)

    Lowmman, Andrew E.; Trauger, John T.; Gordon, Brian; Green, Joseph J.; Moody, Dwight; Niessner, Albert F.; Shi, Fang

    2004-01-01

    The Terrestrial Planet Finder (TPF) mission is planning to launch a visible coronagraphic space telescope in 2014. To achieve TPF science goals, the coronagraph must have extreme levels of wavefront correction (less than 1 Angstrom rms over controllable spatial frequencies) and stability to get the necessary suppression of diffracted starlight (approximately l0(exp -10)) contrast at an angular separation approximately 4 (lamda)/D). TPF Coronagraph's primary platform for experimentation is the High Contrast Imaging Testbed, which will provide laboratory validation of key technologies as well as demonstration of a flight-traceable approach to implementation. Precision wavefront control in the testbed is provided by a high actuator density deformable mirror. Diffracted light control is achieved through use of occulting or apodizing masks and stops. Contrast measurements will establish the technical feasibility of TPF requirements, while model and error budget validation will demonstrate implementation viability. This paper describes the current testbed design, development approach, and recent experimental results.

  15. High-speed imaging polarimetry using liquid crystal modulators

    Directory of Open Access Journals (Sweden)

    Ambs P.

    2010-06-01

    Full Text Available This paper deals with dynamic polarimetric imaging techniques. The basics of modern polarimetry have been known for one and a half century, but no practical high-speed implementation providing the full polarization information is currently available. Various methods are reviewed which prove to be a trade-off between the complexity of the optical set-up and the amount of polarimetric information they provide (ie the number of components of the Stokes vector. Techniques using liquid crystal devices, incepted in the late 1990's, are emphasized. Optical set-ups we implemented are presented. We particularly focus on high-speed techniques (i.e. faster than 200 Hz using ferroelectric liquid crystal devices.

  16. High resolution magnetic imaging: MicroSQUID Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hasselbach, K; Ladam, C; Dolocan, V O; Hykel, D; Crozes, T [Institut Neel, CNRS et Universite Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Schuster, K [Institut de RadioAstronomie Millimetrique 300 rue de la Piscine, Domaine Universitaire F-38406 Saint Martin d' Heres (France); Mailly, D [Laboratoire de Photonique et de Nanostructures, CNRS, Site Alcatel de Marcoussis Route de Nozay F-91460 Marcoussis (France)], E-mail: klaus.hasselbach@grenoble.cnrs.fr

    2008-02-01

    Magnetic imaging at the micrometer scale with high sensitivity is a challenge difficult to be met. Magnetic force microscopy has a very high spatial resolution but is limited in magnetic resolution. Hall probe microscopy is very powerful but sensor fabrication at the one micron scale is difficult and effects due to discreteness of charge appear in the form of significant 1/f noise. SQUID microscopy is very powerful, having high magnetic resolution, but spatial resolution is usually of the order of 10 {mu}m. The difficulties lay mostly in an efficient way to couple flux to the sensor. The only way to improve spatial resolution is to place the probe close to the very edge of the support, thus maximising coupling and spatial resolution. If there has been found a way to bring close the tip, there must be also found a reliable a way to maintain distance during scanning. We want to present recent improvements on scanning microsquid microscopy: Namely the improved fabrication of microSQUID tips using silicon micro machining and the precise positioning of the micrometer diameter microSQUID loop by electron beam lithography. The microSQUID is a microbridge DC SQUID, with two opposite microbridges. The constrictions are patterned by high-resolution e-beam lithography and have a width of 20 nm and a length of about 100 nm. The distance control during scanning is obtained by integrating the microSQUID sensor with a piezoelectric tuning fork acting as a force sensor allowing to control height and even topographic imaging. The detector is placed in a custom built near field microscope and the sample temperature can be varied between 0.1 Kelvin and 10 K. The microscope is used to study magnetic flux structures in unconventional superconductors and will be used to observe thermal domains in superconducting detectors in the voltage state.

  17. Statistical properties of superflares on solar-type stars based on the Kepler 1-min cadence data

    CERN Document Server

    Maehara, Hiroyuki; Notsu, Yuta; Notsu, Shota; Honda, Satoshi; Nogami, Daisaku; Shibata, Kazunari

    2016-01-01

    We searched for superflares on solar-type stars using the Kepler short-cadence (1-min sampling) data in order to detect superflares with short duration. We found 187 superflares on 23 solar-type stars whose bolometric energy ranges from the order of $10^{32}$ erg to $10^{36}$ erg. Using these new data combined with the results from the data with 30-min sampling, we found the occurrence frequency ($dN/dE$) of superflares as a function of flare energy ($E$) shows the power-law distribution ($dN/dE \\propto E ^{-\\alpha}$) with $\\alpha=1.5$ for $10^{33}

  18. High Resolution Ultrasonographic Evaluation of the Gallbladder: Value of Advanced Imaging Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Young; Choi, Byung Ihn; Han, Joon Koo; Lee, Jeong Min; Kim, Se Hyung; Choi, Jin Young; Kim, Su Jin [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-12-15

    A prospective study to determine the role of compound imaging, speckle reduction imaging and tissue harmonic imaging techniques in high-resolution gallbladder ultrasound examination. Gallbladders in 39 patients were examined with conventional imaging, compound imaging, compound imaging combined with speckle reduction imaging, and compound imaging combined with harmonic imaging techniques, using 7- to 10-MHz linear array transducer. The overall image qualities, sharpness of the anterior wall, depiction of the wall layers, and degree of internal artifact were evaluated. In cases of a gallbladder lesion, its conspicuity, margin sharpness, and intensity of posterior shadowing were evaluated. Two radiologists independently evaluated each image and graded each finding with a four-part scale. The Wilcoxon signs rank test was used. Compound imaging technique provided better results than conventional imaging technique in all categories except the intensity of posterior shadowing of gallstone (p < 0.01). Compound imaging technique well depicted the gallbladder wall layers in 34 of 39 cases and depicted them better than conventional ultrasonography in 31 of 39 cases. Compound imaging also improved conspicuity and margin sharpness of the lesions. Combined use of compound imaging and speckle reduction imaging technique did not provide better results than compound imaging. Combined use of compound imaging and harmonic imaging provided better overall image quality and fewer internal artifacts than compound imaging (p < 0.05). Compound imaging technique was superior to conventional imaging in evaluating gallbladder and its lesion with high frequency transducer. Combined use of compound imaging and harmonic imaging was helpful to enhance overall image quality and reduce artifacts

  19. Imaging with high Dynamic using an Ionization Chamber

    CERN Document Server

    Menk, Ralf-Hendrik; Arfelli, Fulvia; Bernstorff, Sigrid; Besch, Hans Juergen; Voltolina, Francesco

    2010-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. The combination between gas gain operations and integrating front-end electronics yields a dynamic range as high as eight to nine orders of magnitude. Therefore this device is well suitable for medical imaging or applications such as small angle x-ray scattering, where the requirements on the dynamic of the detector are exceptional high. Basically the described detector is an ionization chamber adapted to fan beam geometry with an active area of 192 cm and a pitch of the anode strips of 150 micrometer. In the vertical direction beams as high as 10 mm can be accepted. Every read-out strip is connected to an analogue integrating electronics channel realized in a custom made VLSI chip. A MicroCAT structure utilized as a shielding grid enables frame rates as high as 10kHz. The high dynamic range observed stems from the fact that the MicroCAT enables active electron amplification ...

  20. Radio Synthesis Imaging - A High Performance Computing and Communications Project

    Science.gov (United States)

    Crutcher, Richard M.

    The National Science Foundation has funded a five-year High Performance Computing and Communications project at the National Center for Supercomputing Applications (NCSA) for the direct implementation of several of the computing recommendations of the Astronomy and Astrophysics Survey Committee (the "Bahcall report"). This paper is a summary of the project goals and a progress report. The project will implement a prototype of the next generation of astronomical telescope systems - remotely located telescopes connected by high-speed networks to very high performance, scalable architecture computers and on-line data archives, which are accessed by astronomers over Gbit/sec networks. Specifically, a data link has been installed between the BIMA millimeter-wave synthesis array at Hat Creek, California and NCSA at Urbana, Illinois for real-time transmission of data to NCSA. Data are automatically archived, and may be browsed and retrieved by astronomers using the NCSA Mosaic software. In addition, an on-line digital library of processed images will be established. BIMA data will be processed on a very high performance distributed computing system, with I/O, user interface, and most of the software system running on the NCSA Convex C3880 supercomputer or Silicon Graphics Onyx workstations connected by HiPPI to the high performance, massively parallel Thinking Machines Corporation CM-5. The very computationally intensive algorithms for calibration and imaging of radio synthesis array observations will be optimized for the CM-5 and new algorithms which utilize the massively parallel architecture will be developed. Code running simultaneously on the distributed computers will communicate using the Data Transport Mechanism developed by NCSA. The project will also use the BLANCA Gbit/s testbed network between Urbana and Madison, Wisconsin to connect an Onyx workstation in the University of Wisconsin Astronomy Department to the NCSA CM-5, for development of long

  1. Sunspot seismology: accounting for magnetohydrodynamic wave processes using imaging spectropolarimetry

    CERN Document Server

    Rajaguru, S P

    2012-01-01

    The effects of acoustic wave absorption, mode conversion and transmission by a sunspot on the helioseismic inferences are widely discussed, but yet accounting for them has proved difficult for lack of a consistent framework within helioseismic modelling. Here, following a discussion of problems and issues that the near-surface magnetohydrodynamics hosts through a complex interplay of radiative transfer, measurement issues, and MHD wave processes, I present some possibilities entirely from observational analyses based on imaging spectropolarimetry. In particular, I present some results on wave evolution as a function of observation height and inclination of magnetic field to the vertical, derived from a high-cadence imaging spectropolarimetric observation of a sunspot and its surroundings using the instrument IBIS (NSO/Sac Peak, USA). These observations were made in magnetically sensitive (Fe I 6173 A) and insensitive (Fe I 7090 A) upper photospheric absorption lines. Wave travel time contributions from within...

  2. High speed measurement of corn seed viability using hyperspectral imaging

    Science.gov (United States)

    Ambrose, Ashabahebwa; Kandpal, Lalit Mohan; Kim, Moon S.; Lee, Wang-Hee; Cho, Byoung-Kwan

    2016-03-01

    Corn is one of the most cultivated crops all over world as food for humans as well as animals. Optimized agronomic practices and improved technological interventions during planting, harvesting and post-harvest handling are critical to improving the quantity and quality of corn production. Seed germination and vigor are the primary determinants of high yield notwithstanding any other factors that may play during the growth period. Seed viability may be lost during storage due to unfavorable conditions e.g. moisture content and temperatures, or physical damage during mechanical processing e.g. shelling, or over heating during drying. It is therefore vital for seed companies and farmers to test and ascertain seed viability to avoid losses of any kind. This study aimed at investigating the possibility of using hyperspectral imaging (HSI) technique to discriminate viable and nonviable corn seeds. A group of corn samples were heat treated by using microwave process while a group of seeds were kept as control group (untreated). The hyperspectral images of corn seeds of both groups were captured between 400 and 2500 nm wave range. Partial least squares discriminant analysis (PLS-DA) was built for the classification of aged (heat treated) and normal (untreated) corn seeds. The model showed highest classification accuracy of 97.6% (calibration) and 95.6% (prediction) in the SWIR region of the HSI. Furthermore, the PLS-DA and binary images were capable to provide the visual information of treated and untreated corn seeds. The overall results suggest that HSI technique is accurate for classification of viable and non-viable seeds with non-destructive manner.

  3. High-Resolution Imaging of Asteroids/Satellites with AO

    Science.gov (United States)

    Merline, William

    2012-02-01

    We propose to make high-resolution observations of asteroids using AO, to measure size, shape, and pole position (spin vectors), and/or to search for satellites. We have demonstrated that AO imaging allows determination of the pole/dimensions in 1 or 2 nights on a single target, rather than the years of observations with lightcurve inversion techniques that only yield poles and axial ratios, not true dimensions. Our new technique (KOALA) combines AO imaging with lightcurve and occultation data for optimum size/shape determinations. We request that LGS be available for faint targets, but using NGS AO, we will measure several large and intermediate asteroids that are favorably placed in spring/summer of 2012 for size/shape/pole. Accurately determining the volume from the often-irregular shape allows us to derive densities to much greater precision in cases where the mass is known, e.g., from the presence of a satellite. We will search several d! ozen asteroids for the presence of satellites, particularly in under-studied populations, particularly NEOs (we have recently achieved the first-ever optical image of an NEO binary [Merline et al. 2008b, IAUC 8977]). Satellites provide a real-life lab for testing collisional models. We will search for satellites around special objects at the request of lightcurve observers, and we will make a search for debris in the vicinity of Pluto, in support of the New Horizons mission. Our shape/size work requires observations over most of a full rotation period (typically several hours).

  4. High resolution mm-VLBI imaging of Cygnus A

    CERN Document Server

    Boccardi, Bia; Bach, Uwe; Ros, Eduardo; Zensus, J Anton

    2015-01-01

    At a distance of 249 Mpc ($z$=0.056), Cygnus A is the only powerful FR II radio galaxy for which a detailed sub-parsec scale imaging of the base of both jet and counter-jet can be obtained. Observing with VLBI at millimeter wavelengths is fundamental for this object, as it uncovers those regions which appear self-absorbed or free-free absorbed by a circumnuclear torus at longer wavelengths. We performed 7 mm Global VLBI observations, achieving ultra-high resolution imaging on scales down to 90 $\\mu$as. This resolution corresponds to a linear scale of only $\\sim$400 Schwarzschild radii. We studied the transverse structure of the jets through a pixel-based analysis, and kinematic properties of the main emission features by modeling the interferometric visibilities with two-dimensional Gaussian components. Both jets appear limb-brightened, and their opening angles are relatively large ($\\phi_\\mathrm {j}\\sim 10^{\\circ}$). The flow is observed to accelerate within the inner-jet up to scales of $\\sim$1 pc, while lo...

  5. Label-free high-throughput imaging flow cytometry

    Science.gov (United States)

    Mahjoubfar, A.; Chen, C.; Niazi, K. R.; Rabizadeh, S.; Jalali, B.

    2014-03-01

    Flow cytometry is an optical method for studying cells based on their individual physical and chemical characteristics. It is widely used in clinical diagnosis, medical research, and biotechnology for analysis of blood cells and other cells in suspension. Conventional flow cytometers aim a laser beam at a stream of cells and measure the elastic scattering of light at forward and side angles. They also perform single-point measurements of fluorescent emissions from labeled cells. However, many reagents used in cell labeling reduce cellular viability or change the behavior of the target cells through the activation of undesired cellular processes or inhibition of normal cellular activity. Therefore, labeled cells are not completely representative of their unaltered form nor are they fully reliable for downstream studies. To remove the requirement of cell labeling in flow cytometry, while still meeting the classification sensitivity and specificity goals, measurement of additional biophysical parameters is essential. Here, we introduce an interferometric imaging flow cytometer based on the world's fastest continuous-time camera. Our system simultaneously measures cellular size, scattering, and protein concentration as supplementary biophysical parameters for label-free cell classification. It exploits the wide bandwidth of ultrafast laser pulses to perform blur-free quantitative phase and intensity imaging at flow speeds as high as 10 meters per second and achieves nanometer-scale optical path length resolution for precise measurements of cellular protein concentration.

  6. An assessment of high-power light-emitting diodes for high frame rate schlieren imaging

    Science.gov (United States)

    Willert, Christian E.; Mitchell, Daniel M.; Soria, Julio

    2012-08-01

    The feasibility of using high-power light-emitting diodes (LED) as a light source for high frame rate schlieren imaging is investigated. Continuous sequences of high-intensity light pulses are achieved by overdriving the LED with current pulses up to a factor of ten beyond its specifications. In comparison to commonly used pulsed light sources such as gas discharge lamps and pulsed lasers, the pulsed LED has several attractive advantages: the pulse-to-pulse intensity variation is on the same order of magnitude as the detector (camera) noise permitting quantitative intensity measurements. The LED's narrow emission bandwidth reduces chromatic abberations, yet it is spectrally wide enough to prevent the appearance of speckle and diffraction effects in the images. Most importantly, the essentially lag-free light emission within tens of nanoseconds of the applied current pulse allows the LED to be operated at varying frequencies (i.e., asynchronously), which generally is not possible with neither lasers nor discharge lamps. The pulsed LED source, driven by a simple driver circuit, is demonstrated on two schlieren imaging setups. The first configuration visualizes the temporal evolution of shock structures and sound waves of an under-expanded jet that is impinging on a rigid surface at frame rates of 500 kHz to 1 MHz. In a second application, long sequences of several thousand high-resolution images are acquired on a free jet at a frame rate of 1 kHz. The low-intensity fluctuation and large sample number allow a reliable computation of two-point correlation data from the image sequences.

  7. The ZIMPOL high contrast imaging polarimeter for SPHERE: polarimetric high contrast commissioning results

    Science.gov (United States)

    Roelfsema, Ronald; Bazzon, Andreas; Schmid, Hans Martin; Pragt, Johan; Govaert, Alain; Gisler, Daniel; Dominik, Carsten; Baruffolo, Andrea; Beuzit, Jean-Luc; Costille, Anne; Dohlen, Kjetil; Downing, Mark; Elswijk, Eddy; de Haan, Menno; Hubin, Norbert; Kasper, Markus; Keller, Christoph; Lizon, Jean-Louis; Mouillet, David; Pavlov, Alexey; Puget, Pascal; Salasnich, Bernardo; Sauvage, Jean-Francois; Wildi, Francois

    2016-07-01

    SPHERE (Spectro-Polarimetric High-contrast Exoplanet Research) is a second generation VLT instrument aimed at the direct detection of exo-planets. It has received its first light in May 2014. ZIMPOL (Zurich Imaging Polarimeter) is the imaging polarimeter subsystem of the SPHERE instrument. It's capable of both high accuracy and high sensitivity polarimetry but can also be used as a classical imager. It is located behind an extreme AO system and a stellar coronagraph. ZIMPOL operates at visible wavelengths which is best suited to detect the very faint reflected and hence polarized visible light from extra solar planets. During the SPHERE fourth commissioning period (October 2014) we have made deep coronagraphic observations of the bright star alpha Gru (mR = 1.75) to assess the high contrast polarimetric performance of SPHERE-ZIMPOL. We have integrated on the target for a total time of about 45 minutes during the meridian transit in the Very Broad Band filter (600 - 900 nm) with a classical Lyot coronagraph with 3 λ/D radius focal mask. We reduce the data by a combination of Polarized Background subtraction, Polarimetric Differential Imaging (PDI) and Angular Differential Imaging (ADI). We reach contrasts of 10-6 and 10-7 at a radial distances of respectively 7 and 14 lambda/D from the PSF core. At these radial distances we are respectively a factor of 10 and 2 above the photon noise limit. We discuss our results by considering the temporal and spatial speckle behavior close to the PSF core in combination with low order polarimetric aberrations.

  8. Photothermal Microscopy for High Sensitivity and High Resolution Absorption Contrast Imaging of Biological Tissues

    Directory of Open Access Journals (Sweden)

    Jun Miyazaki

    2017-04-01

    Full Text Available Photothermal microscopy is useful to visualize the distribution of non-fluorescence chromoproteins in biological specimens. Here, we developed a high sensitivity and high resolution photothermal microscopy with low-cost and compact laser diodes as light sources. A new detection scheme for improving signal to noise ratio more than 4-fold is presented. It is demonstrated that spatial resolution in photothermal microscopy is up to nearly twice as high as that in the conventional widefield microscopy. Furthermore, we demonstrated the ability for distinguishing or identifying biological molecules with simultaneous muti-wavelength imaging. Simultaneous photothermal and fluorescence imaging of mouse brain tissue was conducted to visualize both neurons expressing yellow fluorescent protein and endogenous non-fluorescent chromophores.

  9. A multi-channel high time resolution detector for high content imaging

    CERN Document Server

    Lapington, J S; Miller, G M; Ashton, T J R; Jarron, P; Despeisse, M; Powolny, F; Howorth, J; Milnes, J

    2009-01-01

    Medical imaging has long benefited from advances in photon counting detectors arising from space and particle physics. We describe a microchannel plate-based detector system for high content (multi-parametric) analysis, specifically designed to provide a step change in performance and throughput for measurements in imaged live cells and tissue for the ‘omics’. The detector system integrates multi-channel, high time resolution, photon counting capability into a single miniaturized detector with integrated ASIC electronics, comprising a fast, low power amplifier discriminator and TDC for every channel of the discrete pixel electronic readout, and achieving a pixel density improvement of order two magnitudes compared with current comparable devices. The device combines high performance, easy reconfigurability, and economy within a compact footprint. We present simulations and preliminary measurements in the context of our ultimate goals of 20 ps time resolution with multi-channel parallel analysis (1024 chan...

  10. High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images

    Science.gov (United States)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2016-09-01

    The Dawn spacecraft Framing Camera (FC) acquired over 2400 clear filter images of Ceres with a resolution of about 140 m/pixel during the six cycles in the High Altitude Mapping Orbit (HAMO) phase between August 18 and October 21, 2015. We ortho-rectified the images from the first cycle and produced a global, high-resolution, controlled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 15 tiles mapped at a scale of 1:750,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page

  11. High definition ultrasound imaging for battlefield medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, K.S.; Morimoto, A.K.; Kozlowski, D.M.; Krumm, J.C.; Dickey, F.M. [Sandia National Labs., Albuquerque, NM (United States); Rogers, B; Walsh, N. [Texas Univ. Health Science Center, San Antonio, TX (United States)

    1996-06-23

    A team has developed an improved resolution ultrasound system for low cost diagnostics. This paper describes the development of an ultrasound based imaging system capable of generating 3D images showing surface and subsurface tissue and bone structures. We include results of a comparative study between images obtained from X-Ray Computed Tomography (CT) and ultrasound. We found that the quality of ultrasound images compares favorably with those from CT. Volumetric and surface data extracted from these images were within 7% of the range between ultrasound and CT scans. We also include images of porcine abdominal scans from two different sets of animal trials.

  12. WISH: Wide-field Imaging Durvayor for High-redshift

    Science.gov (United States)

    Yamada, Toru

    2015-08-01

    We introduce the concept and current status of WISH project and discuss the science cases. WISH is a proposed space science mission for JAXA, which is dedicated for the deep and wide-field near-infrared imaging surveys. The mission contains the 1.5m cooled telescope as well as the imager with the FoV of ~850 square arcmin. The main goal of WISH is to detect and study galaxies at z=8-15 in the earliest history of structure formation in the universe. The key feature is to conduct WISH Ultra Deep Survey, which images in total of 100 square degrees in 6 broad-band filters at 0.9-4.5 micron down to 28AB magnitude. While more than 10^5 galaxies at z=8-9, 10^4 galaxies at z=11-12 will be detected, WISH-UDS is designed to constrain UV luminosity function at z=15. Depending on the models of the earliest evolution history, 1-1000 galaxies at z~15 (~100 galaxies for the moderate cases) will be detected. The UV spectral properties as well as the clustering properties of galaxies at z=8-15 can be studied as well; UV slope can be measured up to z=15, and the stellar and dark-matter-halo masses can be obtained up to z=9. WISH UDS can provide excellent opportunities for studying SNe at high redshift. Up to ~7000 type Ia SNe at z>1 can be detected and the distance modulus can be constrained with the precision of 0.9-1.5% at z>1.5. More than 100 Super Luminous SNe at z>6, and 10 SLSN at z>10 can also be detected, which allow us to study the earliest history of massive star formation in the universe. WISH imaging surveys as well as WISHSpec, which is an optional parallel-operation simple IFU spectrograph, also provide unique opportunities in various astronomical fields. WISH mission proposal was submitted to JAXA in February 2015 for the first down selection of JAXA Large Strategic Science Mission targeting the launch date in 2020-22. International collaborations including SAO (G.Fazio et al.), LAM (D. Burgarella et al.) and Canada (M.Sawicki et al.) are also actively coordinated.

  13. High-throughput Identification of Phage-derived Imaging Agents

    Directory of Open Access Journals (Sweden)

    Kimberly A. Kelly

    2006-01-01

    Full Text Available The use of phage-displayed peptide libraries is a powerful method for selecting peptides with desired binding properties. However, the validation and prioritization of “hits” obtained from this screening approach remains challenging. Here, we describe the development and testing of a new analysis method to identify and display hits from phage-display experiments and high-throughput enzyme-linked immunosorbent assay screens. We test the method using a phage screen against activated macrophages to develop imaging agents with higher specificity for active disease processes. The new methodology should be useful in identifying phage hits and is extendable to other library screening methods such as small-molecule and nanoparticle libraries.

  14. High-Throughput Screening Using Fourier-Transform Infrared Imaging

    Directory of Open Access Journals (Sweden)

    Erdem Sasmaz

    2015-06-01

    Full Text Available Efficient parallel screening of combinatorial libraries is one of the most challenging aspects of the high-throughput (HT heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst studies, including various optical, mass-spectrometry, and gas-chromatography techniques. Of these, rapid-scanning Fourier-transform infrared (FTIR imaging is one of the fastest and most versatile screening techniques. Here, the new design of the 16-channel HT reactor is presented and test results for its accuracy and reproducibility are shown. The performance of the system was evaluated through the oxidation of CO over commercial Pd/Al2O3 and cobalt oxide nanoparticles synthesized with different reducer-reductant molar ratios, surfactant types, metal and surfactant concentrations, synthesis temperatures, and ramp rates.

  15. High-resolution multiphoton imaging of tumors in vivo.

    Science.gov (United States)

    Wyckoff, Jeffrey; Gligorijevic, Bojana; Entenberg, David; Segall, Jeffrey; Condeelis, John

    2011-10-01

    Analysis of the individual steps in metastasis is crucial if insights at the molecular level are to be linked to the cell biology of cancer. A technical hurdle to achieving the analysis of the individual steps of metastasis is the fact that, at the gross level, tumors are heterogeneous in both animal models and patients. Human primary tumors show extensive variation in all properties ranging from growth and morphology of the tumor through tumor-cell density in the blood and formation and growth of metastases. Methods capable of the direct visualization and analysis of tumor-cell behavior at single-cell resolution in vivo have become crucial in advancing the understanding of mechanisms of metastasis, the definition of microenvironment, and the markers related to both. This article discusses the use of high-resolution multiphoton imaging of tumors (specifically breast tumors in mice) in vivo.

  16. Monitoring of vegetation coverage based on high-resolution images

    Institute of Scientific and Technical Information of China (English)

    Zhang Li; Li Li-juan; Liang Li-qiao; Li Jiu-yi

    2007-01-01

    Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software,Definiens Professional 5,a new method for calculating vegetation coverage based on high-resolution images(aerial photographs or near-surface photography)is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediatc scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.

  17. Novel Efficient De-blocking Method for Highly Compressed Images

    Institute of Scientific and Technical Information of China (English)

    SHI Min; YI Qing-ming; YANG Liang

    2007-01-01

    Due to coarse quantization,block-based discrete cosine transform(BDCT) compression methods usually suffer from visible blocking artifacts at the block boundaries.A novel efficient de-blocking method in DCT domain is proposed.A specific criterion for edge detection is given,one-dimensional DCT is applied on each row of the adjacent blocks and the shifted block in smooth region,and the transform coefficients of the shifted block are modified by weighting the average of three coefficients of the block.Mean square difference of slope criterion is used to judge the efficiency of the proposed algorithm.Simulation results show that the new method not only obtains satisfactory image quality,but also maintains high frequency information.

  18. Sensitivity of IFM/GAIM-GM Model to High-cadence Kp and F10.7 Input

    Science.gov (United States)

    2014-03-27

    GPS satellites ( UCAR , 2013). The 21 Figure 6. GPS TEC observation 300 km pierce points. Locations of individual 300 km pierce points (blue...2009). University Corporation for Atmospheric Research ( UCAR ). “FORMOSAT-3/COSMIC(COSMIC-1) Science Mission.” (6 December 2013). http

  19. Effects of eccentric cycling and endurance training versus low cadence cycling and endurance training on muscle strength and cycling performance in trained individuals

    OpenAIRE

    Eidsheim, Hedda Øyeflaten

    2016-01-01

    Background: Recent studies have shown a positive effect of concurrent strength and endurance training on performance in cycling. Still, few studies have investigated the effect of eccentric cycling (ECC) and low cadence cycling (LCC) on muscle strength and determinants of cycling performance. Aim: Compare the effect of concurrent ECC and endurance training with concurrent LCC and endurance training on strength development, muscle thickness, and cycling performance in trained...

  20. High resolution retinal image restoration with wavefront sensing and self-extracted filtering

    Science.gov (United States)

    Yang, Shuyu; Erry, Gavin; Nemeth, Sheila; Mitra, Sunanda; Soliz, Peter

    2005-04-01

    Diagnosis and treatment of retinal diseases such as diabetic retinopathy commonly rely on a clear view of the retina. The challenge in obtaining high quality retinal image lies in the design of the imaging system that can reduce the strong aberrations of the human eye. Since the amplitudes of human eye aberrations decrease rapidly as the aberration order goes up, it is more cost-effective to correct low order aberrations with adaptive optical devices while process high order aberrations through image processing. A cost effective fundus imaging device that can capture high quality retinal images with 2-5 times higher resolution than conventional retinal images has been designed [1]. This imager improves image quality by attaching complementary adaptive optical components to a conventional fundus camera. However, images obtained with the high resolution camera are still blurred due to some uncorrected aberrations as well as defocusing resulting from non-isoplanatic effect. Therefore, advanced image restoration algorithms have been employed for further improvement in image quality. In this paper, we use wavefront-based and self-extracted blind deconvolution techniques to restore images captured by the high resolution fundus camera. We demonstrate that through such techniques, pathologies that are critical to retinal disease diagnosis but not clear or not observable in the original image can be observed clearly in the restored images. Image quality evaluation is also used to finalize the development of a cost-effective, fast, and automated diagnostic system that can be used clinically.

  1. High spatial resolution and high contrast optical speckle imaging with FASTCAM at the ORM

    CERN Document Server

    Labadie, L; Femenia, B; Villo, Isidro; Diaz-Sanchez, A; Oscoz, A; Lopez, R; Perez-Prieto, J; Perez-Garrido, A; Hildebrandt, S R; Bejar-Sanchez, V; Piqueras, J; Rodriguez, L F; 10.1117/12.857998

    2010-01-01

    In this paper, we present an original observational approach, which combines, for the first time, traditional speckle imaging with image post-processing to obtain in the optical domain diffraction-limited images with high contrast (1e-5) within 0.5 to 2 arcseconds around a bright star. The post-processing step is based on wavelet filtering an has analogy with edge enhancement and high-pass filtering. Our I-band on-sky results with the 2.5-m Nordic Telescope (NOT) and the lucky imaging instrument FASTCAM show that we are able to detect L-type brown dwarf companions around a solar-type star with a contrast DI~12 at 2" and with no use of any coronographic capability, which greatly simplifies the instrumental and hardware approach. This object has been detected from the ground in J and H bands so far only with AO-assisted 8-10 m class telescopes (Gemini, Keck), although more recently detected with small-class telescopes in the K band. Discussing the advantage and disadvantage of the optical regime for the detecti...

  2. A high temperature seeding technique for particle image velocimetry

    Science.gov (United States)

    Wernet, Mark P.; Hadley, Judith A.

    2016-12-01

    Non-intrusive measurements of gas velocities via particle image velocimetry (PIV) or laser Doppler velocimetry (LDV) requires entraining particles into the flow field. There are many techniques and materials available for seeding gas phase flows. However, when the flow temperatures exceed 200 °C, the available options for seed materials becomes limited. In high temperature applications refractory seed materials are required. The established technique for seeding flows with metal oxide powders is via fluidized beds by themselves or in combination with cyclone separators. These systems are fraught with problems which limit their ability to provide consistent, uniform flow seeding. In this work, we describe a technique for reliably introducing metal oxide particles into high temperature flows. The employment of pH stabilization techniques typically used to obtain stable dispersions in ceramic processing can provide a source of seed material for high temperature air flows. By pH stabilizing submicron alumina particles in ethanol, a stable dispersion is obtained which when atomized, produces a high quality aerosol. Commercial grade alumina is used with a moderate size distribution. The technique is not limited to alumina/ethanol and is also demonstrated with an alumina/H2O system. Other ceramic powders in other polar solvents can also be used once their point of zero charge (pHpzc) of the powder in the solvent has been determined. We present an example of the pH stabilized dispersions applied to a very challenging high temperature supersonic flow and a particle dynamics analysis across a shock.

  3. High-Resolution MR Imaging with Strong Local "surface" Gradient Coils, and, Optimization of Spgr Techniques for Functional MR Imaging.

    Science.gov (United States)

    Jin, Haoran

    In this thesis we discuss two specific topics in magnetic resonance imaging. The first concerns the technical requirements of high resolution MR imaging. Unique local "surface" gradient coils have been designed, constructed, integrated with a whole body MR imaging system, and used to acquire MR images demonstrating higher spatial resolution in three dimensions. The novel gradient coil design generates a strong linear gradient-field in three dimensions near the planar surface of the coil assembly for high resolution MR skin imaging. The rise times of the gradient coils were measured to be less than 250 mus, allowing rapid gradient coil switching. No significant eddy current effects have been found on the images. Images of a phantom and human skin with a field of view 3 cm by 3 cm and matrix size of 512 x 384 were obtained, corresponding to an in-plane resolution of 58 by 78 mu m. The resulting images represent a significant improvement in limiting spatial resolution compared to conventional MR images. The second topic of this thesis is functional MR imaging (FMRI). Functional MR imaging is based on the concept that neural activity in the cerebral cortex causes an increase in blood flow and a decrease in capillary deoxyhemoglobin concentrations, producing a signal enhancement in T2 ^*-weighted pulse sequences. The magnetic susceptibility of blood changes the oxygenation, changing the local T2^*. Spoiled gradient echo (SPGR) techniques both theoretically and experimentally have been optimized for functional MRI of human motor cortex. Experimental measurements have been performed and compared with the theoretical optimizations of signal to noise ratios of subtracted SPGR imaging. The experimental data are in good agreement with theoretical calculations. An FMRI of motor cortex stimulation with more than 5% intensity change has been observed using optimized techniques. Post imaging processing has been employed for displaying signal changes in the functional MR imaging.

  4. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu, Xiao-Bi Xie, Thorne Lay

    2005-06-06

    In this project, we develop new theories and methods for multi-domain one-way wave-equation based propagators, and apply these techniques to seismic modeling, seismic imaging, seismic illumination and model parameter estimation in 3D complex environments. The major progress of this project includes: (1) The development of the dual-domain wave propagators. We continue to improve the one-way wave-equation based propagators. Our target is making propagators capable of handling more realistic velocity models. A wide-angle propagator for transversely isotropic media with vertically symmetric axis (VTI) has been developed for P-wave modeling and imaging. The resulting propagator is accurate for large velocity perturbations and wide propagation angles. The thin-slab propagator for one-way elastic-wave propagation is further improved. With the introduction of complex velocities, the quality factors Qp and Qs have been incorporated into the thin-slab propagator. The resulting viscoelastic thin-slab propagator can handle elastic-wave propagation in models with intrinsic attenuations. We apply this method to complex models for AVO modeling, random media characterization and frequency-dependent reflectivity simulation. (2) Exploring the Information in the Local Angle Domain. Traditionally, the local angle information can only be extracted using the ray-based method. We develop a wave-equation based technique to process the local angle domain information. The approach can avoid the singularity problem usually linked to the high-frequency asymptotic method. We successfully apply this technique to seismic illumination and the resulting method provides a practical tool for three-dimensional full-volume illumination analysis in complex structures. The directional illumination also provides information for angle-domain imaging corrections. (3) Elastic-Wave Imaging. We develop a multicomponent elastic migration method. The application of the multicomponent one-way elastic propagator

  5. An imager with added value for the Solar Orbiter mission

    Science.gov (United States)

    Harra, L. K.; Kankelborg, C. C.; Thomas, R. J.; Fox, J. L.; Winter, B.

    Our current ways of observing the Sun with spectrometers and imagers are limited. With a slit spectrometer, we require time to build up a 2-D image which results in temporal blurring. When we use a traditional imager, we have no ability to measure and detect line-of-sight flows or to discriminate contributions from gas at different temperatures in the imager passband, causing spectral confusion of the images. For Solar Orbiter, the combination of an exciting new viewpoint of the Sun, and the best resolution of the corona ever seen, means that we require the best time cadence and velocity information that we can get. The spatial resolution expected from the imager on Solar Orbiter will reach approximately 70 km. At such a resolution in the corona, we expect to see the fundamental magnetic flux tubes, which are predicted to have high velocities. This is also the scale at which we will be able to search for evidence basic physical processes such as magnetic reconnection. We will describe the design of an imager that gives not only high quality images, but also provides simultaneous information about plasma flows and temperature. A prototype instrument is being flown on a NASA sounding rocket next year. The concept will be described, along with some methods of extracting the spectroscopic information.

  6. A STUDY OF HIGH FRAME RATE ULTRASONIC IMAGING WITH LIMITED DIFFRACTION BEAMS

    Institute of Scientific and Technical Information of China (English)

    刘立庄; 卞正中; 姚斌

    2003-01-01

    Objective To investigate a new class of solutions to the isotropic/homogeneous scalar wave equation, which termed limited diffraction beams and realize ultrasonic 3D imaging. Methods Limited diffraction beams were derived. We performed the study of 3D pulse-echo imaging with limited diffraction array beam. To obtain high frame rate images, a single plane wave pulse (broadband) was transmitted with the arrays. Echoes received with the same arrays were processed with Fourier method to construct 3D images. Results Compared with traditional pulse-echo imaging, this method has a larger depth of field, high frame rate, and high signal-to-noise ratio. Conclusion The new method has prospect of high frame rate 3D imaging. In addition, the imaging system based this method is easily implemented and has high quality image.

  7. High Resolution Linear Polarimetric Imaging for the Event Horizon Telescope

    CERN Document Server

    Chael, Andrew A; Narayan, Ramesh; Doeleman, Sheperd S; Wardle, John F C; Bouman, Katherine L

    2016-01-01

    Images of the linear polarization of synchrotron radiation around Active Galactic Nuclei (AGN) identify their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest resolution polarimetric images of AGN are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that uses only bispectrum measurements that are immune to atmospheric phase corruption with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7- and 3-mm wavelength quasar observat...

  8. Using Spatially Varying Pixels Exposures and Bayer-covered Photosensors for High Dynamic Range Imaging

    CERN Document Server

    Konnik, Mikhail V

    2008-01-01

    The method of a linear high dynamic range imaging using solid-state photosensors with Bayer colour filters array is provided in this paper. Using information from neighbour pixels, it is possible to reconstruct linear images with wide dynamic range from the oversaturated images. Bayer colour filters array is considered as an array of neutral filters in a quasimonochromatic light. If the camera's response function to the desirable light source is known then one can calculate correction coefficients to reconstruct oversaturated images. Reconstructed images are linearized in order to provide a linear high dynamic range images for optical-digital imaging systems. The calibration procedure for obtaining the camera's response function to the desired light source is described. Experimental results of the reconstruction of the images from the oversaturated images are presented for red, green, and blue quasimonochromatic light sources. Quantitative analysis of the accuracy of the reconstructed images is provided.

  9. High Accuracy Near-infrared Imaging Polarimetry with NICMOS

    CERN Document Server

    Batcheldor, D; Hines, D C; Schmidt, G D; Axon, D J; Robinson, A; Sparks, W; Tadhunter, C

    2008-01-01

    The findings of a nine orbit calibration plan carried out during HST Cycle 15, to fully determine the NICMOS camera 2 (2.0 micron) polarization calibration to high accuracy, are reported. Recently Ueta et al. and Batcheldor et al. have suggested that NICMOS possesses a residual instrumental polarization at a level of 1.2-1.5%. This would completely inhibit the data reduction in a number of GO programs, and hamper the ability of the instrument to perform high accuracy polarimetry. We obtained polarimetric calibration observations of three polarimetric standards at three spacecraft roll angles separated by ~60deg. Combined with archival data, these observations were used to characterize the residual instrumental polarization in order for NICMOS to reach its full potential of accurate imaging polarimetry at p~1%. Using these data, we place an 0.6% upper limit on the instrumental polarization and calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetri...

  10. The Kaye effect revisited: High speed imaging of leaping shampoo

    Science.gov (United States)

    Versluis, Michel; Blom, Cock; van der Meer, Devaraj; van der Weele, Ko; Lohse, Detlef

    2003-11-01

    When a visco-elastic fluid such as shampoo or shower gel is poured onto a flat surface the fluid piles up forming a heap on which rather irregular combinations of fluid buckling, coiling and folding are observed. Under specific conditions a string of fluid leaps from the heap and forms a steady jet fed by the incoming stream. Momentum transfer of the incoming jet, combined with the shear-thinning properties of the fluid, lead to a spoon-like dimple in the highly viscous fluid pool in which the jet recoils. The jet can be stable for several seconds. This effect is known as the Kaye effect. In order to reveal its mechanism we analyzed leaping shampoo through high-speed imaging. We studied the jet formation, jet stability and jet disruption mechanisms. We measured the velocity of both the incoming and recoiled jet, which was found to be thicker and slower. By inclining the surface on which the fluid was poured we observed jets leaping at upto five times.

  11. Analysis of high-speed digital phonoscopy pediatric images

    Science.gov (United States)

    Unnikrishnan, Harikrishnan; Donohue, Kevin D.; Patel, Rita R.

    2012-02-01

    The quantitative characterization of vocal fold (VF) motion can greatly enhance the diagnosis and treatment of speech pathologies. The recent availability of high-speed systems has created new opportunities to understand VF dynamics. This paper presents quantitative methods for analyzing VF dynamics with high-speed digital phonoscopy, with a focus on expected VF changes during childhood. A robust method for automatic VF edge tracking during phonation is introduced and evaluated against 4 expert human observers. Results from 100 test frames show a subpixel difference between the VF edges selected by algorithm and expert observers. Waveforms created from the VF edge displacement are used to created motion features with limited sensitivity to variations of camera resolution on the imaging plane. New features are introduced based on acceleration ratios of critical points over each phonation cycle, which have the potential for studying issues related to impact stress. A novel denoising and hybrid interpolation/extrapolation scheme is also introduced to reduce the impact of quantization errors and large sampling intervals relative to the phonation cycle. Features extracted from groups of 4 adults and 5 children show large differences for features related to asymmetry between the right and left fold and consistent differences for impact acceleration ratio.

  12. High-Contrast NIR Polarization Imaging of MWC480

    Science.gov (United States)

    McElwain, M. W.; Kusakabe, N.; Hashimoto, J.; Kudo, T.; Kandori, R.; Miyama, S.; Morino, J.-I.; Suto, H.; Suzuki, R.; Tamura, M.; Grady, C. A.; Sitko, M. L.; Werren, C.; Day, A. N.; Beerman, C.; Iye, M.; Lynch, D. K.; Russell, R. W.; Brafford, S. M.

    2012-01-01

    One of the key predictions of modeling from the IR excess of Herbig Ae stars is that for protoplanetary disks, where significant grain growth and settling has occurred, the dust disk has flattened to the point that it can be partially or largely shadowed by the innermost material at or near the dust sublimation radius. When the self-shadowing has already started, the outer disk is expected to be detected in scattered light only in the exceptional cases that the scale height of the dust disk at the sublimation radius is smaller than usual. High-contrast imaging combined with the IR spectral energy distribution allow us to measure the degree of flattening of the disk, as well as to determine the properties of the outer disk. We present polarimetric differential imaging in H band obtained with Subaru/HiCIAO of one such system, MWC 480. The HiCIAO data were obtained at a historic minimum of the NIR excess. The disk is detected in scattered light from 0".2-1"0 (27.4-137 AU). Together with the marginal detection of the disk from 1998 February 24 by HST / NICMOS, our data constrain the opening half angle for the disk to lie between 1.3 <= Theta <=2.2 deg. When compared with similar measures in CO for the gas disk from the literature, the dust disk subtends only approx 30% of the gas disk scale height (H/R approx 0. 03). Such a dust disk is a factor of 5-7 flatter than transitional disks, which have structural signatures that giant planets have formed.

  13. High Speed and Area Efficient 2D DWT Processor based Image Compression" Signal & Image Processing

    CERN Document Server

    Kaur, Sugreev

    2011-01-01

    This paper presents a high speed and area efficient DWT processor based design for Image Compression applications. In this proposed design, pipelined partially serial architecture has been used to enhance the speed along with optimal utilization and resources available on target FPGA. The proposed model has been designed and simulated using Simulink and System Generator blocks, synthesized with Xilinx Synthesis tool (XST) and implemented on Spartan 2 and 3 based XC2S100-5tq144 and XC3S500E-4fg320 target device. The results show that proposed design can operate at maximum frequency 231 MHz in case of Spartan 3 by consuming power of 117mW at 28 degree/c junction temperature. The result comparison has shown an improvement of 15% in speed.

  14. A VLSI Processor Design of Real-Time Data Compression for High-Resolution Imaging Radar

    Science.gov (United States)

    Fang, W.

    1994-01-01

    For the high-resolution imaging radar systems, real-time data compression of raw imaging data is required to accomplish the science requirements and satisfy the given communication and storage constraints. The Block Adaptive Quantizer (BAQ) algorithm and its associated VLSI processor design have been developed to provide a real-time data compressor for high-resolution imaging radar systems.

  15. Color imaging of Mars by the High Resolution Imaging Science Experiment (HiRISE)

    Science.gov (United States)

    Delamere, W.A.; Tornabene, L.L.; McEwen, A.S.; Becker, K.; Bergstrom, J.W.; Bridges, N.T.; Eliason, E.M.; Gallagher, D.; Herkenhoff, K. E.; Keszthelyi, L.; Mattson, S.; McArthur, G.K.; Mellon, M.T.; Milazzo, M.; Russell, P.S.; Thomas, N.

    2010-01-01

    HiRISE has been producing a large number of scientifically useful color products of Mars and other planetary objects. The three broad spectral bands, coupled with the highly sensitive 14 bit detectors and time delay integration, enable detection of subtle color differences. The very high spatial resolution of HiRISE can augment the mineralogic interpretations based on multispectral (THEMIS) and hyperspectral datasets (TES, OMEGA and CRISM) and thereby enable detailed geologic and stratigraphic interpretations at meter scales. In addition to providing some examples of color images and their interpretation, we describe the processing techniques used to produce them and note some of the minor artifacts in the output. We also provide an example of how HiRISE color products can be effectively used to expand mineral and lithologic mapping provided by CRISM data products that are backed by other spectral datasets. The utility of high quality color data for understanding geologic processes on Mars has been one of the major successes of HiRISE. ?? 2009 Elsevier Inc.

  16. Optimized Plane Wave Imaging for Fast and High-Quality Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2016-01-01

    This paper presents a method for optimizing parameters affecting the image quality in plane wave imaging. More specifically, the number of emissions and steering angles is optimized to attain the best images with the highest frame rate possible. The method is applied to a specific problem, where ...

  17. High Resolution Multispectral Flow Imaging of Cells with Extended Depth of Field Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is the development the extended depth of field (EDF) or confocal like imaging capabilities of a breakthrough multispectral high resolution imaging flow...

  18. High Resolution Multispectral Flow Imaging of Cells with Extended Depth of Field Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is the development the extended depth of field (EDF) or confocal like imaging capabilities of a breakthrough multispectral high resolution imaging flow...

  19. Ultrasound versus high field magnetic resonance imaging in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Tan, York Kiat; Østergaard, Mikkel; Bird, Paul;

    2014-01-01

    Over the past decade there have been significant advances in the field of musculoskeletal imaging, especially in the application of ultrasound (US) and magnetic resonance imaging (MRI) to the management of rheumatoid arthritis (RA). Both modalities offer significant advantages over the previous...... standards of clinical examination and radiography, and allow direct visualisation of both joint inflammation and structural damage. Although measuring similar pathology, each of these imaging tools has its own benefits and limitations; understanding these will help researchers and clinicians to determine...

  20. Change detection in very high resolution multisensor optical images

    Science.gov (United States)

    Solano Correa, Yady T.; Bovolo, Francesca; Bruzzone, Lorenzo

    2014-10-01

    This work aims at developing an approach to the detection of changes in multisensor multitemporal VHR optical images. The main steps of the proposed method are: i) multisensor data homogenization; and ii) change detection in multisensor multitemporal VHR optical images. The proposed approach takes advantage of: the conversion to physical quantities suggested by Pacifici et. al.1 , the framework for the design of systems for change detection in VHR images presented by Bruzzone and Bovolo2 and the framework for unsupervised change detection presented by Bovolo and Bruzzone3. Multisensor data homogenization is achieved during pre-processing by taking into account differences in both radiometric and geometric dimensions. Whereas change detection was approached by extracting proper features from multisensor images such that they result to be comparable (at a given level of abstraction) even if extracted from images acquired by different sensors. In order to illustrate the results, a data set made up of a QuickBird and a WorldView-2 images - acquired in 2006 and 2010 respectively - over an area located in the Trentino region of Italy were used. However, the proposed approach is thought to be exportable to multitemporal images coming from passive sensors other than the two mentioned above. The experimental results obtained on the QuickBird and WorlView-2 image pair are accurate. Thus opening to further experiments on multitemporal images acquired by other sensors.

  1. A high-resolution radio image of a young supernova

    Science.gov (United States)

    Bartel, N.; Rupen, M. P.; Shapiro, I. I.; Preston, R. A.; Rius, A.

    1991-01-01

    A VLBI radio images of the bright supernova 1986J, which occurred in the galaxy NGC891 at a distance of about 12 Mpc, is presented. No detailed image of any supernova or remnant has been obtained before so soon after the explosion. The image shows a shell of emission with jetlike protrusions. Analysis of the images should advance understanding of the dynamics of the expanding debris, the dissipation of energy into the surrounding circumstellar medium, and the evolution of the supernova into the remnant.

  2. Production of High-Resolution Remote Sensing Images for Navigation Information Infrastructures

    Institute of Scientific and Technical Information of China (English)

    WANG Zhijun; Djemel Ziou; Costas Armenakis

    2004-01-01

    This paper introduces the image fusion approach of multi-resolution analysis-based intensity modulation (MRAIM) to produce the high-resolution multi-spectral images from high-resolution panchromatic image and low-resolution multi-spectral images for navigation information infrastructure. The mathematical model of image fusion is derived according to the principle of remote sensing image formation. It shows that the pixel values of a high-resolution multi-spectral images are determined by the pixel values of the approximation of a high-resolution panchromatic image at the resolution level of low-resolution multi-spectral images, and in the pixel valae computation the M-band wavelet theory and the à trous algorithm are then used. In order to evaluate the MRAIM approach, an experiment has been carried out on the basis of the IKONOS 1 m panchromatic image and 4 m multi-spectral images. The result demonstrates that MRAIM image fusion approach gives promising fusion results and it can be used to produce the high-resolution remote sensing images required for navigation information infrastructures.

  3. Real-time portal imaging devices operating on high-pressure gaseous electronic principles

    Science.gov (United States)

    Giakos, George C.; Richardson, Donna B.; Ghotra, P.; Pillai, Bindu; Seetharaman, Lakshmi; Passalaqua, Anthony M.; DiBianca, Frank A.; Endorf, Robert J.; Devidas, Sreenivas

    1995-05-01

    A novel real-time portal imaging scanning detector, based on high-pressure gaseous electronics principles and operating up to 60 atmospheres, is presented and the predicted performance of this detector is analyzed. The idea is to utilize high pressure gaseous electronics imaging detectors operating in the saturation regime, aimed at improving image performance characteristics in real time portal imaging. As a result, beam localization errors are controlled, identified and corrected accurately and the patient radiotherapy treatment becomes more effective.

  4. High-throughput label-free image cytometry and image-based classification of live Euglena gracilis

    Science.gov (United States)

    Lei, Cheng; Ito, Takuro; Ugawa, Masashi; Nozawa, Taisuke; Iwata, Osamu; Maki, Masanori; Okada, Genki; Kobayashi, Hirofumi; Sun, Xinlei; Tiamsak, Pimsiri; Tsumura, Norimichi; Suzuki, Kengo; Di Carlo, Dino; Ozeki, Yasuyuki; Goda, Keisuke

    2016-01-01

    We demonstrate high-throughput label-free single-cell image cytometry and image-based classification of Euglena gracilis (a microalgal species) under different culture conditions. We perform it with our high-throughput optofluidic image cytometer composed of a time-stretch microscope with 780-nm resolution and 75-Hz line rate, and an inertial-focusing microfluidic device. By analyzing a large number of single-cell images from the image cytometer, we identify differences in morphological and intracellular phenotypes between E. gracilis cell groups and statistically classify them under various culture conditions including nitrogen deficiency for lipid induction. Our method holds promise for real-time evaluation of culture techniques for E. gracilis and possibly other microalgae in a non-invasive manner. PMID:27446699

  5. Using Adobe Acrobat to create high-resolution line art images.

    Science.gov (United States)

    Woo, Hyoun Sik; Lee, Jeong Min

    2009-08-01

    The purpose of this article is to introduce a method for using Adobe Acrobat to make high-resolution and high-quality line art images. High-resolution and high-quality line art images for radiology journal submission can be generated using Adobe Acrobat as a steppingstone, and the customized PDF conversion settings can be used for converting hybrid images, including both bitmap and vector components.

  6. High speed image space parallel processing for computer-generated integral imaging system.

    Science.gov (United States)

    Kwon, Ki-Chul; Park, Chan; Erdenebat, Munkh-Uchral; Jeong, Ji-Seong; Choi, Jeong-Hun; Kim, Nam; Park, Jae-Hyeung; Lim, Young-Tae; Yoo, Kwan-Hee

    2012-01-16

    In an integral imaging display, the computer-generated integral imaging method has been widely used to create the elemental images from a given three-dimensional object data. Long processing time, however, has been problematic especially when the three-dimensional object data set or the number of the elemental lenses are large. In this paper, we propose an image space parallel processing method, which is implemented by using Open Computer Language (OpenCL) for rapid generation of the elemental images sets from large three-dimensional volume data. Using the proposed technique, it is possible to realize a real-time interactive integral imaging display system for 3D volume data constructed from computational tomography (CT) or magnetic resonance imaging (MRI) data.

  7. A Blind High-Capacity Wavelet-Based Steganography Technique for Hiding Images into other Images

    Directory of Open Access Journals (Sweden)

    HAMAD, S.

    2014-05-01

    Full Text Available The flourishing field of Steganography is providing effective techniques to hide data into different types of digital media. In this paper, a novel technique is proposed to hide large amounts of image data into true colored images. The proposed method employs wavelet transforms to decompose images in a way similar to the Human Visual System (HVS for more secure and effective data hiding. The designed model can blindly extract the embedded message without the need to refer to the original cover image. Experimental results showed that the proposed method outperformed all of the existing techniques not only imperceptibility but also in terms of capacity. In fact, the proposed technique showed an outstanding performance on hiding a secret image whose size equals 100% of the cover image while maintaining excellent visual quality of the resultant stego-images.

  8. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    Directory of Open Access Journals (Sweden)

    Victor Lawrence

    2012-07-01

    Full Text Available Electro-optic (EO image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF of a uniform detector array and the incoherent optical transfer function (OTF of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1 inverse filter-based IR image transformation; (2 EO image edge detection; (3 registration; and (4 blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  9. Modelling high arctic percent vegetation cover using field digital images and high resolution satellite data

    Science.gov (United States)

    Liu, Nanfeng; Treitz, Paul

    2016-10-01

    In this study, digital images collected at a study site in the Canadian High Arctic were processed and classified to examine the spatial-temporal patterns of percent vegetation cover (PVC). To obtain the PVC of different plant functional groups (i.e., forbs, graminoids/sedges and mosses), field near infrared-green-blue (NGB) digital images were classified using an object-based image analysis (OBIA) approach. The PVC analyses comparing different vegetation types confirmed: (i) the polar semi-desert exhibited the lowest PVC with a large proportion of bare soil/rock cover; (ii) the mesic tundra cover consisted of approximately 60% mosses; and (iii) the wet sedge consisted almost exclusively of graminoids and sedges. As expected, the PVC and green normalized difference vegetation index (GNDVI; (RNIR - RGreen)/(RNIR + RGreen)), derived from field NGB digital images, increased during the summer growing season for each vegetation type: i.e., ∼5% (0.01) for polar semi-desert; ∼10% (0.04) for mesic tundra; and ∼12% (0.03) for wet sedge respectively. PVC derived from field images was found to be strongly correlated with WorldView-2 derived normalized difference spectral indices (NDSI; (Rx - Ry)/(Rx + Ry)), where Rx is the reflectance of the red edge (724.1 nm) or near infrared (832.9 nm and 949.3 nm) bands; Ry is the reflectance of the yellow (607.7 nm) or red (658.8 nm) bands with R2's ranging from 0.74 to 0.81. NDSIs that incorporated the yellow band (607.7 nm) performed slightly better than the NDSIs without, indicating that this band may be more useful for investigating Arctic vegetation that often includes large proportions of senescent vegetation throughout the growing season.

  10. Workshop on Non-Imaging Cherenkov at High Energy

    CERN Document Server

    2013-01-01

    The non-Imaging Cherenkov air shower measurement technique holds great promise in furthering our understanding the Knee-to-Ankle region of the cosmic ray spectrum. In particular, this technique offers a unique way to determine the evolution of the cosmic ray nuclear composition, and an example is given by the recent spectrum results of the Tunka Collaboration. With this in mind, we are organizing a workshop, to be held at the University of Utah, to bring together the various practitioners of this cosmic ray measurement technique to share simulations, analyses, detector designs, and past experimental results amongst the community. The workshop will also be in support of our effort, NICHE, to extend the reach of the TA/TALE detector systems down to the Knee. We anticipate that the workshop will result in a white paper on the scientific importance of these high-energy cosmic ray measurements and on using the Cherenkov technique to accomplish them. Our goal is to have contributions from members of the previous ge...

  11. Image-guided high dose rate endorectal brachytherapy.

    Science.gov (United States)

    Devic, Slobodan; Vuong, Té; Moftah, Belal; Evans, Michael; Podgorsak, Ervin B; Poon, Emily; Verhaegen, Frank

    2007-11-01

    Fractionated high dose rate endorectal brachytherapy (HDR-EBT) using CT-based treatment planning is an alternative method for preoperative down-sizing and down-staging of advanced rectal adeno-carcinomas. The authors present an image guidance procedure that was developed to ensure daily dose reproducibility for the four brachytherapy treatment fractions. Since the applicator might not be placed before each treatment fraction inside the rectal lumen in the same manner as it was placed during the 3D CT volume acquisition used for treatment planning, there is a shift along the catheter axis that may have to be performed. The required shift is determined by comparison of a daily radiograph with the treatment planning digitally-reconstructed radiograph (DRR). A procedure is developed for DRR reconstruction from the 3D data set used for the treatment planning, and two possible daily longitudinal shifts are illustrated: above and below the planning dose distribution. The authors also describe the procedure for rotational alignment illustrated on a clinical case. Reproduction of the treatment planned dose distribution on a daily basis is crucial for the success of fractionated 3D based brachytherapy treatments. Due to the cylindrical symmetry of the applicator used for preoperative HDR-EBT, two types of adjustments are necessary: applicator rotation and dwell position shift along the applicator's longitudinal axis. The impact of the longitudinal applicator shift prior to treatment delivery for 62 patients treated in our institution is also assessed.

  12. High Energy Solar Spectroscopic Imager (HESSI) Team Investigations

    Science.gov (United States)

    Emslie, A. Gordon

    1998-01-01

    This report covers activities on the above grant for the period through the end of September 1997. The work originally proposed to be performed under a three-year award was converted at that time to a two-year award for the remainder of the period, and is now funded under award NAGS-4027 through Goddard Space Flight Center. The P.I. is a co-investigator on the High Energy Solar Spectroscopic Imager (HESSI) team, selected as a Small-Class Explorer (SNMX) mission in 1997. He has also been a participant in the Space Physics Roadmap Planning Group. Our research has been strongly influenced by the NASA mission opportunities related to these activities. The report is subdivided into four sections, each dealing with a different aspect of our research within this guiding theme. Personnel involved in this research at UAH include the P.I. and graduate students Michele Montgomery and Amy Winebarger. Much of the work has been carried out in collaboration with investigators at other institutions, as detailed below. Attachment: Laser wakefield acceleration and astrophysical applications.

  13. High resolution Doppler imager on the Upper Atmosphere Research Satellite

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, W.R.; Hays, P.B.; Grassl, H.J.; Gell, D.A.; Burrage, M.D.; Marshall, A.R.; Ortland, D.A. [Univ. of Michigan, Ann Arbor, MI (United States)

    1994-12-31

    The High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite has been providing measurements of the wind field in the stratosphere, mesosphere and lower thermosphere since November 1991. Examination of various calibration data indicates the instrument has remained remarkably stable since launch. The instrument has a thermal drift of about 30 m/s/{degree}C (slightly dependent on wavelength) and a long-term temporal drift that has amounted to about 80 m/s since launch. These effects are removed in the data processing leaving an uncertainty in the instrument stability of {minus}2 nVs. The temperature control of the instrument has improved significantly since launch as a new method was implemented. The initial temperature control held the instrument temperature at about {+-}1{degree}C. The improved method, which holds constant the temperature of the optical bench instead of the radiator, keeps the instrument temperature at about 0.2{degree}C. The calibrations indicate very little change in the sensitivity of the instrument. The detector response has shown no degradation and the optics have not changed their transmittance.

  14. "Observing and Analyzing" Images From a Simulated High Redshift Universe

    CERN Document Server

    Morgan, Robert J; Scannapieco, Evan; Thacker, Robert J

    2015-01-01

    We investigate the high-redshift evolution of the restframe UV-luminosity function (LF) of galaxies via hydrodynamical cosmological simulations, coupled with an emulated observational astronomy pipeline that provides a direct comparison with observations. We do this by creating mock images and synthetic galaxy catalogs of approximately 100 square arcminute fields from the numerical model at redshifts ~ 4.5 to 10.4. We include the effects of dust extinction and the point spread function (PSF) for the Hubble WFC3 camera for comparison with space observations. We also include the expected zodiacal background to predict its effect on space observations, including future missions such as the James Webb Space Telescope (JWST). When our model catalogs are fitted to Schechter function parameters, we predict that the faint-end slope alpha of the LF evolves as alpha = -1.16 - 0.12 z over the redshift range z ~ 4.5 to 7.7, in excellent agreement with observations from e.g., Hathi et al. (2010). However, for redshifts z ...

  15. High resolution near-infrared imaging of submillimeter galaxies

    CERN Document Server

    Aguirre, Paula; Menanteau, Felipe; Lutz, Dieter; Tacconi, Linda J

    2013-01-01

    We present F110W (~J) and F160W (~H) observations of ten submillimeter galaxies (SMGs) obtained with the Hubble Space Telescope's (HST's) NICMOS camera. Our targets have optical redshifts in the range 2.20imaging and/or previous dynamical evidence we identify five SMGs as multiple sources, which we interpret as merging systems. Additionally, we calculate morphological parameters asymmetry (A) and Gini coefficient (G); thanks to our sample's limited redshift range we recover the trend that multiple-component, merger-like morphologies are reflected in high...

  16. High contrast imaging at the LBT: the LEECH exoplanet imaging survey

    CERN Document Server

    Skemer, Andrew J; Esposito, Simone; Skrutskie, Michael F; Defrere, Denis; Bailey, Vanessa; Leisenring, Jarron; Apai, Daniel; Biller, Beth; Bonnefoy, Mickael; Brandner, Wolfgang; Buenzli, Esther; Close, Laird; Crepp, Justin; De Rosa, Robert J; Desidera, Silvano; Eisner, Josh; Fortney, Jonathan; Henning, Thomas; Hofmann, Karl-Heinz; Kopytova, Taisiya; Maire, Anne-Lise; Males, Jared R; Millan-Gabet, Rafael; Morzinski, Katie; Oza, Apurva; Patience, Jenny; Rajan, Abhijith; Rieke, George; Schertl, Dieter; Schlieder, Joshua; Su, Kate; Vaz, Amali; Ward-Duong, Kimberly; Weigelt, Gerd; Woodward, Charles E; Zimmerman, Neil

    2014-01-01

    In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its $\\sim$130-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4-meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reduce the telescope's overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L' (3.8 $\\mu$m), as opposed to the shorter wavelength near-infrared bands (1-2.4 $\\mu$m) of other surveys. This portion of the spectrum offers deep mass sensitivity, especially around nearby adolescent ($\\sim$0.1-1 Gyr) stars. LEECH's contrast is competitive with other extreme adaptive optics systems, while providing an alternative survey strategy. Additionally, LEECH is characterizing known exoplanetary systems with observations from 3-5$\\mu$m in preparation for JWST.

  17. High-efficiency FRET-enhanced photoacoustic probes for in vivo tumor imaging

    Science.gov (United States)

    Qin, Huan; Liu, Liming

    2017-01-01

    Photoacoustic imaging can provide high-resolution and high-contrast image under unprecedented depth compared with pure optical imaging techniques by making use of laser-induced ultrasound waves. Although a series of absorption-enhanced optical contrast agents for photoacoustic imaging were developed, the probe with fully conversion from absorbed light energy to acoustic energy has not been achieved so far. Here we develop a high-efficiency photoacoustic probes with fluorescence resonance energy transfer (FRET) effect for enhancement of nonradiative energy. Graphene oxide (GO) binding optical dyes (GO-dyes) were achieved to show highly fluorescence quenching and violently increased photoacoustic signal intensity. GO-dyes were constructed and testified for multi-spectral photoacoustic imaging. As a representative probe, GO-Cy7 nanoparticles were used to validate the feasibility of photoacoustic tumor molecular imaging in vivo. Our work demonstrated a new approach to construct high-efficiency FRET-enhanced multi-spectrum probes for photoacoustic molecular imaging.

  18. Space-time encoding for high frame rate ultrasound imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanssis; Jensen, Jørgen Arendt

    2002-01-01

    Frame rate in ultrasound imaging can be dramatically increased by using sparse synthetic transmit aperture (STA) beamforming techniques. The two main drawbacks of the method are the low signal-to-noise ratio (SNR) and the motion artifacts, that degrade the image quality. In this paper we propose ...

  19. Very high resolution satellite data: New challenges in image analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    with the exception that a ground-based view covers the entire optical range from 400 to 700 nm while satellite images will be wavelength-specific. Although the images will not surpass details observed by a human eye, they will, in principle, be comparable with aerial...

  20. Detection of vascular morphology by high frequency intravascular ultrasonic imaging

    NARCIS (Netherlands)

    W.J. Gussenhoven (Wilhelmina Johanna); G.S. Madretsma (Guno); H. Pieterman; S.H.K. The (Salem); L. Wenguang; F.C. van Egmond (F.); N. Bom (Klaas)

    1991-01-01

    textabstractThis study was designed to validate the potential clinical utility of intravascular ultrasonic imaging in vitro and in vivo. In vitro studies were performed to assess the accuracy of dimensional and morphological information. In vitro images of human vessels (n = 75) demonstrated that le

  1. Detection of vascular morphology by high frequency intravascular ultrasonic imaging

    NARCIS (Netherlands)

    W.J. Gussenhoven (Wilhelmina Johanna); G.S. Madretsma (Guno); H. Pieterman; S.H.K. The (Salem); L. Wenguang; F.C. van Egmond (F.); N. Bom (Klaas)

    1991-01-01

    textabstractThis study was designed to validate the potential clinical utility of intravascular ultrasonic imaging in vitro and in vivo. In vitro studies were performed to assess the accuracy of dimensional and morphological information. In vitro images of human vessels (n = 75) demonstrated that le

  2. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging

    Science.gov (United States)

    Kuijten, Maayke M. P.; Hannah Degeling, M.; Chen, John W.; Wojtkiewicz, Gregory; Waterman, Peter; Weissleder, Ralph; Azzi, Jamil; Nicolay, Klaas; Tannous, Bakhos A.

    2015-11-01

    Liposomes are spherical, self-closed structures formed by lipid bilayers that can encapsulate drugs and/or imaging agents in their hydrophilic core or within their membrane moiety, making them suitable delivery vehicles. We have synthesized a new liposome containing gadolinium-DOTA lipid bilayer, as a targeting multimodal molecular imaging agent for magnetic resonance and optical imaging. We showed that this liposome has a much higher molar relaxivities r1 and r2 compared to a more conventional liposome containing gadolinium-DTPA-BSA lipid. By incorporating both gadolinium and rhodamine in the lipid bilayer as well as biotin on its surface, we used this agent for multimodal imaging and targeting of tumors through the strong biotin-streptavidin interaction. Since this new liposome is thermosensitive, it can be used for ultrasound-mediated drug delivery at specific sites, such as tumors, and can be guided by magnetic resonance imaging.

  3. High-resolution adaptive imaging of a single atom

    Science.gov (United States)

    Wong-Campos, J. D.; Johnson, K. G.; Neyenhuis, B.; Mizrahi, J.; Monroe, C.

    2016-09-01

    Optical imaging systems are used extensively in the life and physical sciences because of their ability to non-invasively capture details on the microscopic and nanoscopic scales. Such systems are often limited by source or detector noise, image distortions and human operator misjudgement. Here, we report a general, quantitative method to analyse and correct these errors. We use this method to identify and correct optical aberrations in an imaging system for single atoms and realize an atomic position sensitivity of ˜0.5 nm Hz-1/2 with a minimum uncertainty of 1.7 nm, allowing the direct imaging of atomic motion. This is the highest position sensitivity ever measured for an isolated atom and opens up the possibility of performing out-of-focus three-dimensional particle tracking, imaging of atoms in three-dimensional optical lattices or sensing forces at the yoctonewton (10-24 N) scale.

  4. Progress toward high resolution EUV spectroscopy

    Science.gov (United States)

    Korendyke, C.; Doschek, G. A.; Warren, H.; Young, P. R.; Chua, D.; Hassler, D. M.; Landi, E.; Davila, J. M.; Klimchuck, J.; Tun, S.; DeForest, C.; Mariska, J. T.; Solar C Spectroscopy Working Group; LEMUR; EUVST Development Team

    2013-07-01

    HIgh resolution EUV spectroscopy is a critical instrumental technique to understand fundamental physical processes in the high temperature solar atmosphere. Spectroscopic observations are used to measure differential emission measure, line of sight and turbulent flows, plasma densities and emission measures. Spatially resolved, spectra of these emission lines with adequate cadence will provide the necessary clues linking small scale structures with large scale, energetic solar phenomena. The necessary observations to determine underlying physical processes and to provide comprehensive temperature coverage of the solar atmosphere above the chromosphere will be obtained by the proposed EUVST instrument for Solar C. This instrument and its design will be discussed in this paper. Progress on the VEry high Resolution Imaging Spectrograph (VERIS) sounding rocket instrument presently under development at the Naval Research Laboratory will also be discussed.

  5. High contrast optical imaging methods for image guided laser ablation of dental caries lesions

    OpenAIRE

    LaMantia, Nicole R.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel

    2014-01-01

    Laser based methods are well suited for automation and can be used to selectively remove dental caries to minimize the loss of healthy tissues and render the underlying enamel more resistant to acid dissolution. The purpose of this study was to determine which imaging methods are best suited for image-guided ablation of natural non-cavitated carious lesions on occlusal surfaces. Multiple caries imaging methods were compared including near-IR and visible reflectance and quantitative light fluo...

  6. WAHRSIS: A Low-cost, High-resolution Whole Sky Imager With Near-Infrared Capabilities

    CERN Document Server

    Dev, Soumyabrata; Lee, Yee Hui; Winkler, Stefan

    2016-01-01

    Cloud imaging using ground-based whole sky imagers is essential for a fine-grained understanding of the effects of cloud formations, which can be useful in many applications. Some such imagers are available commercially, but their cost is relatively high, and their flexibility is limited. Therefore, we built a new daytime Whole Sky Imager (WSI) called Wide Angle High-Resolution Sky Imaging System. The strengths of our new design are its simplicity, low manufacturing cost and high resolution. Our imager captures the entire hemisphere in a single high-resolution picture via a digital camera using a fish-eye lens. The camera was modified to capture light across the visible as well as the near-infrared spectral ranges. This paper describes the design of the device as well as the geometric and radiometric calibration of the imaging system.

  7. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    Science.gov (United States)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  8. Scalable High-Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning.

    Science.gov (United States)

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C; Shen, Dinggang

    2016-07-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked autoencoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework, image registration experiments were conducted on 7.0-T brain MR images. In all experiments, the results showed that the new image registration framework consistently demonstrated more accurate registration results when compared to state of the art.

  9. Scalable High Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning

    Science.gov (United States)

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C.

    2015-01-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data,, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked auto-encoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework image registration experiments were conducted on 7.0-tesla brain MR images. In all experiments, the results showed the new image registration framework consistently demonstrated more accurate registration results when compared to state-of-the-art. PMID:26552069

  10. Next Generation Seismic Imaging; High Fidelity Algorithms and High-End Computing

    Science.gov (United States)

    Bevc, D.; Ortigosa, F.; Guitton, A.; Kaelin, B.

    2007-05-01

    uniquely powerful computing power of the MareNostrum supercomputer in Barcelona to realize the promise of RTM, incorporate it into daily processing flows, and to help solve exploration problems in a highly cost-effective way. Uniquely, the Kaleidoscope Project is simultaneously integrating software (algorithms) and hardware (Cell BE), steps that are traditionally taken sequentially. This unique integration of software and hardware will accelerate seismic imaging by several orders of magnitude compared to conventional solutions running on standard Linux Clusters.

  11. Towards Building High Performance Medical Image Management System for Clinical Trials.

    Science.gov (United States)

    Wang, Fusheng; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel

    2011-01-01

    Medical image based biomarkers are being established for therapeutic cancer clinical trials, where image assessment is among the essential tasks. Large scale image assessment is often performed by a large group of experts by retrieving images from a centralized image repository to workstations to markup and annotate images. In such environment, it is critical to provide a high performance image management system that supports efficient concurrent image retrievals in a distributed environment. There are several major challenges: high throughput of large scale image data over the Internet from the server for multiple concurrent client users, efficient communication protocols for transporting data, and effective management of versioning of data for audit trails. We study the major bottlenecks for such a system, propose and evaluate a solution by using a hybrid image storage with solid state drives and hard disk drives, RESTful Web Services based protocols for exchanging image data, and a database based versioning scheme for efficient archive of image revision history. Our experiments show promising results of our methods, and our work provides a guideline for building enterprise level high performance medical image management systems.

  12. Single photon imaging at ultra-high resolution

    Science.gov (United States)

    Bellazzini, R.; Spandre, G.; Minuti, M.; Brez, A.; Baldini, L.; Latronico, L.; Omodei, N.; Sgrò, C.; Bregeon, J.; Razzano, M.; Pinchera, M.; Tremsin, A.; McPhate, J.; Vallerga, J. V.; Siegmund, O.

    2008-06-01

    We present a detection system capable of imaging both single photon/positive ion and multiple coincidence photons/positive ions with extremely high spatial resolution. In this detector the photoelectrons excited by the incoming photons are multiplied by microchannel plate(s) (MCP). The process of multiplication is spatially constrained within an MCP pore, which can be as small as 4 μm for commercially available MCPs. An electron cloud originated by a single photoelectron is then encoded by a pixellated custom analog ASIC consisting of 105 K charge sensitive pixels of 50 μm in size arranged on a hexagonal grid. Each pixel registers the charge with an accuracy of electrons rms. Computation of the event centroid from the readout charges results in an accurate event position. A large number of simultaneous photons spatially separated by ˜0.4 mm can be detected simultaneously allowing multiple coincidence operation for the experiments where a large number of incoming photons/positive ions have to be detected simultaneously. The experimental results prove that the spatial resolution of the readout system itself is ˜3 μm FWHM enabling detection resolution better than 6 μm for the small pore MCPs. An attractive feature of the detection system is its capability to register the timing of each incoming photon/positive ion (in single photon detection mode) or of the first incoming particle (for the multiple coincidence detection) with an accuracy of ˜130 ps FWHM. There is also virtually no dark count noise in the detection system making it suitable for low count rate applications.

  13. High Resolution Seismic Imaging of the Brawley Seismic Fault Zone

    Science.gov (United States)

    Goldman, M.; Catchings, R. D.; Rymer, M. J.; Lohman, R. B.; McGuire, J. J.; Sickler, R. R.; Criley, C.; Rosa, C.

    2011-12-01

    In March 2010, we acquired a series of high-resolution P-wave seismic reflection and refraction data sets across faults in the Brawley seismic zone (BSZ) within the Salton Sea Geothermal Field (SSGF). Our objectives were to determine the dip, possible structural complexities, and seismic velocities within the BSZ. One dataset was 3.4 km long trending east-west, and consisted of 334 shots recorded by a 2.4 km spread of 40 hz geophones placed every 10 meters. The spread was initially laid out from the first station at the eastern end of the profile to roughly 2/3 into the profile. After about half the shots, the spread was shifted from roughly 1/3 into the profile to the last station at the western end of the profile. P-waves were generated by Betsy-Seisgun 'shots' spaced every 10 meters. Initial analysis of first breaks indicate near-surface velocities of ~500-600 meters/sec, and deeper velocities of around 2000 meters/sec. Preliminary investigation of shot gathers indicate a prominent fault that extends to the ground surface. This fault is on a projection of the Kalin fault from about 40 m to the south, and broke the surface down to the west with an approximately north-south strike during a local swarm of earthquakes in 2005 and also slipped at the surface in association with the 2010 El Mayor-Cucapah earthquake in Baja California. The dataset is part of the combined Obsidian Creep data set, and provides the most detailed, publicly available subsurface images of fault structures in the BSZ and SSGF.

  14. High resolution adaptive imaging of a single atom

    CERN Document Server

    Wong-Campos, J D; Neyenhuis, B; Mizrahi, J; Monroe, C

    2015-01-01

    We report the optical imaging of a single atom with nanometer resolution using an adaptive optical alignment technique that is applicable to general optical microscopy. By decomposing the image of a single laser-cooled atom, we identify and correct optical aberrations in the system and realize an atomic position sensitivity of $\\approx$ 0.5 nm/$\\sqrt{\\text{Hz}}$ with a minimum uncertainty of 1.7 nm, allowing the direct imaging of atomic motion. This is the highest position sensitivity ever measured for an isolated atom, and opens up the possibility of performing out-of-focus 3D particle tracking, imaging of atoms in 3D optical lattices or sensing forces at the yoctonewton (10$^{-24}$ N) scale.

  15. A new compact, high sensitivity neutron imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Caillaud, T.; Landoas, O.; Briat, M.; Rosse, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L. [CEA, DAM, DIF,F-91297 Arpajon (France); Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Park, H. S.; Robey, H. F.; Amendt, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (10{sup 9}-10{sup 10} neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 Multiplication-Sign 10{sup 10}. The resolution of this image was 54 {mu}m and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.

  16. Adaptive optics technology for high-resolution retinal imaging.

    Science.gov (United States)

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2012-12-27

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  17. Adaptive Optics Technology for High-Resolution Retinal Imaging

    Directory of Open Access Journals (Sweden)

    Giuseppe Lombardo

    2012-12-01

    Full Text Available Adaptive optics (AO is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  18. Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Ogata, Yoshimune [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu [Radiotracer Imaging Group, Japan Atomic Energy Agency (Japan)

    2015-03-21

    After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since {sup 137}Cs and {sup 134}Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from {sup 137}Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm {sup 137}Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq {sup 137}Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a {sup 137}Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.

  19. High-frequency ex vivo ultrasound imaging of the auditory system.

    NARCIS (Netherlands)

    Brown, J.A.; Torbatian, Z.; Adamson, R.B.; Wijhe, R. Van; Pennings, R.J.E.; Lockwood, G.R.; Bance, M.L.

    2009-01-01

    A 50MHz array-based imaging system was used to obtain high-resolution images of the ear and auditory system. This previously described custom built imaging system (Brown et al. 2004a, 2004b; Brown and Lockwood 2005) is capable of 50 microm axial resolution, and lateral resolution varying from 80

  20. Hypertelescopes: The Challenge of Direct Imaging at High Resolution

    Science.gov (United States)

    Labeyrie, A.

    2013-03-01

    Sparse optical interferometric arrays of many apertures can produce direct images in the densified-pupil mode, also called "hypertelescope" mode. Pending the introduction of adaptive optics for cophasing, indirect images can also be reconstructed with speckle imaging techniques. But adaptive phasing is preferable, when a sufficiently bright guide star is available. Several wave sensing techniques, by-products of those used on monolithic telescopes for some of them, are potentially usable. For cophased direct images of very faint sources in the absence of a natural guide star, a modified form of the Laser Guide Star techniques demonstrated on conventional and segmented telescopes is described. Preliminary testing in laboratory suggests further investigation. Recorded images, assumed co-phased, are also improvable post-detection with optical aperture-synthesis techniques such as Earth rotation synthesis, where data from successive exposures are combined incoherently. Nevertheless, the gain becomes modest if hundreds of sub-apertures are used. Image deconvolution techniques are also applicable, if suitably modified as demonstrated by Aime et al. (2012), and Mary (2012). Their modified deconvolution algorithms can extend the Direct Imaging Field (also called Clean Field) of hypertelescopes. More sub-apertures at given collecting area, implying that their size is reduced, improve the direct-imaging performance. The predictable trend thus favors systems combining hundreds of sub-apertures of modest size, if workable designs can be evolved. One such design, the "Ubaye Hypertelescope" entering the initial testing phase in the southern Alps, has a fixed spherical meta-mirror with a 57 m effective aperture, expandable to 200 m. Preliminary results suggest that larger versions, whether spherical or active paraboloidal, can reach a kilometric aperture size at terrestrial sites having a suitable concave topography. In space, hypertelescope meta-apertures spanning up to 100 000