WorldWideScience

Sample records for high burnup reactivity

  1. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    International Nuclear Information System (INIS)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L.; Saito, M.

    2003-01-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, 237 Np, 238 Pu, 231 Pa, 232 U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations

  2. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L. [Moscow Engineering Physics Institute (State University) (Russian Federation); Saito, M. [Tokyo Institute of Technology (Japan)

    2003-07-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, {sup 237}Np, {sup 238}Pu, {sup 231}Pa, {sup 232}U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations.

  3. DELIGHT-B/REDEL, point reactivity burnup code for high-temperature gas-cooled reactor cells

    International Nuclear Information System (INIS)

    Shindo, Ryuiti; Watanabe, Takashi.

    1977-03-01

    Code DELIGHT-2 was previously developed to analyze cell burnup characteristics and to produce few-group constants for core burnup calculation in high-temperature gas-cooled reactors. In the code, burnup dependency of the burnable poison, boron-10, is considered with the homogeneous model of space. In actuality, however, the burnable poison is used as homogeneous rods or uniform rods of small granular poison and graphite, to control the reactivity and power distribution. Precise analysis of the burnup characteristics is thus difficult because of the heterogeneity due to the configuration of poison rods. In cell burnup calculation, the DELIGHT-B, which is a modification of DELIGHT-2, takes into consideration this heterogeneous effect. The auxiliary code REDEL, a reduction of DELIGHT-B, used in combination with 3 dimensional diffusion code CITATION, is for core burnup calculation with the macro-scopic cross section model. (auth.)

  4. High burnup (41 - 61 GWd/tU) BWR fuel behavior under reactivity initiated accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takehiko; Kusagaya, Kazuyuki; Yoshinaga, Makio; Uetsuka, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    High burnup boiling water reactor (BWR) fuel was pulse irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity initiated accident (RIA) conditions. Temperature, deformation, failure, and fission gas release behavior under the simulated RIA condition was studied in the tests. Fuel failure due to pellet-cladding mechanical interaction (PCMI) did not occur in the tests with typical domestic BWR fuel at burnups up to 56 GWd/tU, because they had limited cladding embrittlement due to hydrogen absorption of about 100 ppm or less. However, the cladding failure occurred in tests with fuel at a burnup of 61 GWd/tU, in which the peak hydrogen content in the cladding was above 150 ppm. This type of failure was observed for the first time in BWR fuels. The cladding failure occurred at fuel enthalpies of 260 to 360 J/g (62 to 86 cal/g), which were higher than the PCMI failure thresholds decided by the Japanese Nuclear Safety Commission. From post-test examinations of the failed fuel, it was found that the crack in the BWR cladding progressed in a manner different from the one in PWR cladding failed in earlier tests, owing to its more randomly oriented hydride distribution. Because of these differences, the BWR fuel was judged to have failed at hydrogen contents lower than those of the PWR fuel. Comparison of the test results with code calculations revealed that the PCMI failure was caused by thermal expansion of pellets, rather than by the fission gas expansion in the pellets. The gas expansion, however, was found to cause large cladding hoop deformation later after the cladding temperature escalated. (author)

  5. High Burnup Effects Program

    International Nuclear Information System (INIS)

    Barner, J.O.; Cunningham, M.E.; Freshley, M.D.; Lanning, D.D.

    1990-04-01

    This is the final report of the High Burnup Effects Program (HBEP). It has been prepared to present a summary, with conclusions, of the HBEP. The HBEP was an international, group-sponsored research program managed by Battelle, Pacific Northwest Laboratories (BNW). The principal objective of the HBEP was to obtain well-characterized data related to fission gas release (FGR) for light water reactor (LWR) fuel irradiated to high burnup levels. The HBEP was organized into three tasks as follows: Task 1 -- high burnup effects evaluations; Task 2 -- fission gas sampling; and Task 3 -- parameter effects study. During the course of the HBEP, a program that extended over 10 years, 82 fuel rods from a variety of sources were characterized, irradiated, and then examined in detail after irradiation. The study of fission gas release at high burnup levels was the principal objective of the program and it may be concluded that no significant enhancement of fission gas release at high burnup levels was observed for the examined rods. The rim effect, an as yet unquantified contributor to athermal fission gas release, was concluded to be the one truly high-burnup effect. Though burnup enhancement of fission gas release was observed to be low, a full understanding of the rim region and rim effect has not yet emerged and this may be a potential area of further research. 25 refs., 23 figs., 4 tabs

  6. The role of grain boundary fission gases in high burn-up fuel under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Lemoine, F.; Papin, J.; Frizonnet, J.M.; Cazalis, B.; Rigat, H.

    2002-01-01

    In the frame of reactivity-initiated accidents (RIA) studies, the CABRI REP-Na programme is currently performed, focused on high burn-up UO 2 and MOX fuel behaviour. From 1993 to 1998, seven tests were performed with UO 2 fuel and three with MOX fuel. In all these tests, particular attention has been devoted to the role of fission gases in transient fuel behaviour and in clad loading mechanisms. From the analysis of experimental results, some basic phenomena were identified and a better understanding of the transient fission gas behaviour was obtained in relation to the fuel and clad thermo-mechanical evolution in RIA, but also to the initial state of the fuel before the transient. A high burn-up effect linked to the increasing part of grain boundary gases is clearly evidenced in the final gas release, which would also significantly contribute to the clad loading mechanisms. (authors)

  7. ABB high burnup fuel

    International Nuclear Information System (INIS)

    Andersson, S.; Helmersson, S.; Nilsson, S.; Jourdain, P.; Karlsson, L.; Limback, M.; Garde, A.M.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both PWR and BWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter proven to meet the 6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10 x 10 fuel, where ABB is the only vendor to date with batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of PWR and BWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its utility customers. This paper provides an overview of recent fuel performance and reliability experience at ABB. Selected development and validation activities for PWR and BWR fuel are presented, for which the ABB test facilities in Windsor (TF-2 loop, mechanical test laboratory) and Vaesteras (FRIGG, BURE) are essential. (authors)

  8. Reactivity loss validation of high burn-up PWR fuels with pile-oscillation experiments in MINERVE

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, P.; Vaglio-Gaudard, C.; Eschbach, R.; Di-Salvo, J.; Antony, M.; Pepino, A. [CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2012-07-01

    The ALIX experimental program relies on the experimental validation of the spent fuel inventory, by chemical analysis of samples irradiated in a PWR between 5 and 7 cycles, and also on the experimental validation of the spent fuel reactivity loss with bum-up, obtained by pile-oscillation measurements in the MINERVE reactor. These latter experiments provide an overall validation of both the fuel inventory and of the nuclear data responsible for the reactivity loss. This program offers also unique experimental data for fuels with a burn-up reaching 85 GWd/t, as spent fuels in French PWRs never exceeds 70 GWd/t up to now. The analysis of these experiments is done in two steps with the APOLLO2/SHEM-MOC/CEA2005v4 package. In the first one, the fuel inventory of each sample is obtained by assembly calculations. The calculation route consists in the self-shielding of cross sections on the 281 energy group SHEM mesh, followed by the flux calculation by the Method Of Characteristics in a 2D-exact heterogeneous geometry of the assembly, and finally a depletion calculation by an iterative resolution of the Bateman equations. In the second step, the fuel inventory is used in the analysis of pile-oscillation experiments in which the reactivity of the ALIX spent fuel samples is compared to the reactivity of fresh fuel samples. The comparison between Experiment and Calculation shows satisfactory results with the JEFF3.1.1 library which predicts the reactivity loss within 2% for burn-up of {approx}75 GWd/t and within 4% for burn-up of {approx}85 GWd/t. (authors)

  9. High burnup issues and modelling strategies

    International Nuclear Information System (INIS)

    Dutta, B.K.

    2005-01-01

    The performance of high burnup fuel is affected by a number of phenomena, such as, conductivity degradation, modified radial flux profile, fission gas release from high burnup structures, PCMI, burnup dependent thermo-mechanical properties, etc. The modelling strategies of some of these phenomena are available in literature. These can be readily incorporated in a fuel modelling performance code. The computer code FAIR has been developed in BARC over the years to evaluate the fuel performance at extended burnup and modelling of the fuel rods for advanced fuel cycles. The present paper deals with the high burnup issues in the fuel pins, their modelling strategies and results of the case studies specifically involving high burnup fuel. (author)

  10. Analysis of high burnup fuel safety issues

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development

  11. Analysis of high burnup fuel safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development.

  12. Development of high burnup nuclear fuel technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country

  13. Physical models for high burnup fuel

    International Nuclear Information System (INIS)

    Kanyukova, V.; Khoruzhii, O.; Likhanskii, V.; Solodovnikov, G.; Sorokin, A.

    2003-01-01

    In this paper some models of processes in high burnup fuel developed in Src of Russia Troitsk Institute for Innovation and Fusion Research are presented. The emphasis is on the description of the degradation of the fuel heat conductivity, radial profiles of the burnup and the plutonium accumulation, restructuring of the pellet rim, mechanical pellet-cladding interaction. The results demonstrate the possibility of rather accurate description of the behaviour of the fuel of high burnup on the base of simplified models in frame of the fuel performance code if the models are physically ground. The development of such models requires the performance of the detailed physical analysis to serve as a test for a correct choice of allowable simplifications. This approach was applied in the SRC of Russia TRINITI to develop a set of models for the WWER fuel resulting in high reliability of predictions in simulation of the high burnup fuel

  14. High burnup MOX fuel assembly

    International Nuclear Information System (INIS)

    Blanpain, P.; Brunel, L.

    1999-01-01

    From the outset, the MOX product was required to have the same performance as UO 2 in terms of burnup and operational flexibility. In fact during the first years the UO 2 managements could not be applied to MOX. The changeover to an AFA 2G type fuel allowed an improvement in NPP operational flexibility. The move to the AFA 3G design fuel will enable an increase in the burnup of the MOX assemblies to the level of the UO 2 ones ('MOX Parity' project). But the FRAMATOME fuel development objective does not stop at the obtaining of parity between the current MOX and UO 2 products: this parity must remain guaranteed and the MOX managements must evolve in the same way as the UO 2 managements. The goal of the MOX product development programmes underway with COGEMA and the CEA is the demonstration over the next 10 years of a fuel capable of reaching burnups of 70 GWD/T. The research programmes focus on the fission gas release aspect, with three issues explored: optimization of pellet microstructures and validation in experimental reactor ; build-up of experience feedback from fission gas release at elevated burnups in commercial reactors, both for current and experimental products; adaptation and qualification of the design models and tools, over the ranges and for the products concerned. The product arising from these development programmes should be offered on the market around 2010. While meeting safety requirements, it will cater for the needs of the utilities in terms of product reliability, personnel dosimetry and kWh output costs (increase in burnup, NPP maneuverability and availability, minimization of process waste). (authors)

  15. Reactivity effect of spent fuel due to spatial distributions for coolant temperature and burnup

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, T.; Yamane, Y. [Nagoya Univ., Dept. of Nuclear Engineering, Nagoya, Aichi (Japan); Suyama, K. [OECD/NEA, Paris (France); Mochizuki, H. [Japan Research Institute, Ltd., Tokyo (Japan)

    2002-03-01

    We investigated the reactivity effect of spent fuel caused by the spatial distributions of coolant temperature and burnup by using the integrated burnup calculation code system SWAT. The reactivity effect which arises from taking account of the spatial coolant temperature distribution increases as the average burnup increases, and reaches the maximum value of 0.69%{delta}k/k at 50 GWd/tU when the burnup distribution is concurrently considered. When the burnup distribution is ignored, the reactivity effect decreases by approximately one-third. (author)

  16. Burnup dependence of coolant void reactivity for ACR-1000 cell

    International Nuclear Information System (INIS)

    Le Tellier, R.; Marleau, G.; Hebert, A.; Roubstov, D.; Altiparmakov, D.; Irish, D.

    2008-01-01

    The Advanced Candu Reactor (ACR-1000) is light water cooled, fueled with enriched uranium and has a smaller lattice pitch than the Candu-6. As a result, the neutronic behavior of the ACR-1000 cell is expected to be somewhat different from that of the Candu-6 leading to a negative coolant void reactivity (CVR). Here we evaluate the CVR for the ACR-1000 cell using the lattice code DRAGON and compare our results with those obtained using the code WIMS-AECL. The differences observed between these two codes for the burnup dependence of the CVR is mainly explained in terms of the specific cell leakage model used by both codes. (authors)

  17. Alloy development for high burnup cladding (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    An overview on current alloy development for high burnup PWR fuel cladding is given. It is mainly based on literature data. First, the reasons for an increase of the current mean discharge burnup from 35 MWd / kg(U) to 70 MWd / kg(U) are outlined. From the material data, it is shown that a batch average burnup of 60-70 MWd / kg(U), as aimed by many fuel vendors, can not be achieved with stand (=ASTM-) Zry-4 cladding tubes without violating accepted design criteria. Specifically criteria which limit maximum oxide scale thickness and maximum hydrogen content, and to a less degree, maximum creep and growth rate, can not be achieved. The development potential of standard Zry-4 is shown. Even when taking advantage of this potential, it is shown that an 'improved' Zry-4 is reaching its limits when it achieves the target burnup. The behavior of some Zr alloys outside the ASTM range is shown, and the advantages and disadvantages of the 3 alloy groups (ZrSn+transition metals, ZrNb, ZrSnNb+transition metals) which are currently considered to have the development potential for high burnup cladding materials are depicted. Finally, conclusions are drawn. (author). 14 refs., 11 tabs., 82 figs.

  18. Nuclear fuels with high burnup: safety requirements

    International Nuclear Information System (INIS)

    Phuc Tran Dai

    2016-01-01

    Vietnam authorities foresees to build 3 reactors from Russian design (VVER AES 2006) by 2030. In order to prepare the preliminary report on safety analysis the Vietnamese Agency for Radioprotection and Safety has launched an investigation on the behaviour of nuclear fuels at high burnups (up to 60 GWj/tU) that will be those of the new plants. This study deals mainly with the behaviour of the fuel assemblies in case of loss of coolant (LOCA). It appears that for an average burnup of 50 GWj/tU and for the advanced design of the fuel assembly (cladding and materials) safety requirements are fulfilled. For an average burnup of 60 GWj/tU, a list of issues remains to be assessed, among which the impact of clad bursting or the hydrogen embrittlement of the advanced zirconium alloys. (A.C.)

  19. Fuel analysis code FAIR and its high burnup modelling capabilities

    International Nuclear Information System (INIS)

    Prasad, P.S.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    A computer code FAIR has been developed for analysing performance of water cooled reactor fuel pins. It is capable of analysing high burnup fuels. This code has recently been used for analysing ten high burnup fuel rods irradiated at Halden reactor. In the present paper, the code FAIR and its various high burnup models are described. The performance of code FAIR in analysing high burnup fuels and its other applications are highlighted. (author). 21 refs., 12 figs

  20. Comparison of scale/triton and helios burnup calculations for high burnup LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tittelbach, S.; Mispagel, T.; Phlippen, P.W. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany)

    2009-07-01

    The presented analyses provide information about the suitability of the lattice burnup code HELIOS and the recently developed code SCALE/TRITON for the prediction of isotopic compositions of high burnup LWR fuel. The accurate prediction of the isotopic inventory of high burnt spent fuel is a prerequisite for safety analyses in and outside of the reactor core, safe loading of spent fuel into storage casks, design of next generation spent fuel casks and for any consideration of burnup credit. Depletion analyses are performed with both burnup codes for PWR and BWR fuel samples which were irradiated far beyond 50 GWd/t within the LWR-PROTEUS Phase II project. (orig.)

  1. The Gd-isotopic fuel for high burnup in PWR's

    International Nuclear Information System (INIS)

    Dias, Marcio Soares; Mattos, João Roberto L. de; Andrade, Edison Pereira de

    2017-01-01

    Today, the discussion about the high burnup fuel is beyond the current fuel enrichment licensing and burnup limits. Licensing issues and material/design developments are again key features in further development of the LWR fuel design. Nevertheless, technological and economical solutions are already available or will be available in a short time. In order to prevent the growth of the technological gap, Brazil's nuclear sector needs to invest in the training of new human resources, in the access to international databases, and in the upgrading existing infrastructure. Experimental database and R&D infrastructure are essential components to support the autonomous development of Brazilian Nuclear Reactors, promoting the development of national technologies. The (U,Gd)O_2 isotopic fuel proposed by the CDTN's staff solve two main issues in the high burnup fuel, which are (1) the peak of reactivity resulting from the Gd-157 fast burnup, and (2) the peak of temperature in the (U,Gd)O_2 nuclear fuel resulting from detrimental effects in the thermal properties for gadolinia additions higher than 2%. A sustainable future can be envisaged for the nuclear energy. (author)

  2. CEA contribution to power plant operation with high burnup level

    International Nuclear Information System (INIS)

    1981-03-01

    High level burnup in PWR leads to investigate again the choices carried out in the field of fuel management. French CEA has studied the economic importance of reshuffling technique, cycle length, discharge burnup, and non-operation period between two cycles. Power plants operators wish to work with increased length cycles of 18 months instead of 12. That leads to control problems because the core reactivity cannot be controlled with the only soluble boron: moderator temperature coefficient must be negative. With such cycles, it is necessary to use burnable poisons and for economic reasons with a low penalty in end of cycle. CEA has studied the use of Gd 2 O 3 mixed with fuel or with inert element like Al 2 O 3 . Parametric studies of specific weights, efficacities relatively to the fuel burnup and the fuel enrichment have been carried out. Particular studies of 1 month cycles with Gd 2 O 3 have shown the possibility to control power distribution with a very low reactivity penalty in EOC. In the same time, in the 100 MW PWR-CAP, control reactivity has been made with large use of gadolinia in parallel with soluble boron for the two first cycles

  3. Application of reactivity method to MTR fuel burn-up measurement

    International Nuclear Information System (INIS)

    Zuniga, A.; Ravnik, M.; Cuya, R.

    2001-01-01

    Fuel element burn-up has been measured for the first time by reactivity method in a MTR reactor. The measurement was performed in RP-10 reactor of Peruvian Institute for Nuclear Energy (IPEN) in Lima. It is a pool type 10MW material testing reactor using standard 20% enriched uranium plate type fuel elements. A fresh element and an element with well defined burn-up were selected as reference elements. Several elements in the core were selected for burn-up measurement. Each of them was replaced in its original position by both reference elements. Change in excess reactivity was measured using control rod calibration curve. The burn-up reactivity worth of fuel elements was plotted as a function of their calculated burnup. Corrected burn-up values of the measured fuel elements were calculated using the fitting function at experimental reactivity for all elements. Good agreement between measured and calculated burn-up values was observed indicating that the reactivity method can be successfully applied also to MTR fuel element burn-up determination.(author)

  4. MTR fuel element burn-up measurements by the reactivity method

    International Nuclear Information System (INIS)

    Zuniga, A.; Cuya, T.R.; Ravnik, M.

    2003-01-01

    Fuel element burn-up was measured by the reactivity method in the 10 MW Peruvian MTR reactor RP-10. The main purpose of the experiment was testing the reactivity method for an MTR reactor as the reactivity method was originally developed for TRIGA reactors. The reactivity worth of each measured fuel element was measured in its original core position in order to measure the burn-up of the fuel elements that were part of the experimental core. The burn-up of each measured fuel element was derived by interpolating its reactivity worth from the reactivity worth of two reference fuel elements of known burn-up, whose reactivity worth was measured in the position of the measured fuel element. The accuracy of the method was improved by separating the reactivity effect of burn-up from the effect of the position in the core. The results of the experiment showed that the modified reactivity method for fuel element burn-up determination could be applied also to MTR reactors. (orig.)

  5. High Burnup Fuel Performance and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)

    2007-03-15

    The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.

  6. Numerical analysis and simulation of behavior of high burn-up PWR fuel pulse-irradiated in reactivity-initiated accident conditions

    International Nuclear Information System (INIS)

    Suzuki, M.; Sugiyama, T.; Udagawa, Y.; Nagase, F.; Fuketa, T.

    2010-01-01

    The four cases of the NSRR experiments, consisting of two room temperature tests and two high temperature tests, using high burn-up PWR fuel rods are analyzed by using the RANNS code to discuss the fuel behavior in hypothetical pulse-irradiation conditions, and the results are compared with metallography observations of ruptured claddings. The cladding rupture occurred by a shear sliding which starts from the tip of incipient crack generated in the hydride dense layer. The analyses reveal that the onset of shear sliding leading to cladding rupture can be closely associated with the stress intensity factor KI at the crack tip and local plastic strain evolution around the tip as well, and that these two factors depend also on the temperature of cladding. Simulation calculations on the basis of experimental conditions reveals that the cladding stress is dependent on the height and half-width of pulse power, and for the same integral enthalpy of pulse a larger half-width mitigates the severity of transient and decreases KI to allow plastic strain by temperature rise, thus failure possibility would be markedly decreased

  7. Burnup calculation in microcells of high conversion reactors

    International Nuclear Information System (INIS)

    Gomez, S.E.; Salvatore, M.; Patino, N.E.; Abbate, M.J.

    1991-01-01

    The development of high converter reactors (HCR) requires careful burnup calculations because their main goals are reach high discharge burnup levels (Up to 50 GWd/T) and a close to one conversion ratio. Then, it is necessary a revision of design elements used for this type of calculation. In this work, a burnup module (BUM) developed in order to use nuclear data directly from evaluated data files is presented; these was included in the AMPX system. (author)

  8. ABB PWR fuel design for high burnup

    International Nuclear Information System (INIS)

    Nilsson, S.; Jourdain, P.; Limback, M.; Garde, A.M.

    1998-01-01

    Corrosion, hydriding and irradiation induced growth of a based materials are important factors for the high burnup performance of PWR fuel. ABB has developed a number of Zr based alloys to meet the need for fuel that enables operation to elevated burnups. The materials include composition and processing optimised Zircaloy 4 (OPTIN TM ) and Zircaloy 2 (Zircaloy 2P), as well as advanced Zr based alloys with chemical compositions outside the composition specified for Zircaloy. The advanced alloys are either used as Duplex or as single component claddings. The Duplex claddings have an inner component of Zircaloy and an outer layer of Zr with small additions of alloying elements. ABB has furthermore improved the dimensional stability of the fuel assembly by developing stiffer and more bow resistant guide tubes while debris related fuel failures have been eliminated from ABB fuel by introducing the Guardian TM grid. Intermediate flow mixers that improve the thermal hydraulic performance and the dimensional stability of the fuel has also been developed within ABB. (author)

  9. Experimental programmes related to high burnup fuel

    International Nuclear Information System (INIS)

    Vasudeva Rao, P.R.; Vidhya, R.; Ananthasivan, K.; Srinivasan, T.G.; Nagarajan, K.

    2002-01-01

    The experimental programmes undertaken at IGCAR with regard to high burn-up fuels fall under the following categories: a) studies on fuel behaviour, b) development of extractants for aqueous reprocessing and c) development of non-aqueous reprocessing techniques. An experimental programme to measure the carbon potential in U/Pu-FP-C systems by methane-hydrogen gas equilibration technique has been initiated at IGCAR in order to understand the evolution of fuel and fission product phases in carbide fuel at high burn-up. The carbon potentials in U-Mo-C system have been measured by this technique. The free energies and enthalpies of formation of LaC 2 , NdC 2 and SmC 2 have been measured by measuring the vapor pressures of CO over the region Ln 2 O 3 -LnC 2 -C during the carbothermic reduction of Ln 2 O 3 by C. The decontamination from fission products achieved in fuel reprocessing depends strongly on the actinide loading of the extractant phase. Tri-n-butyl phosphate (TBP), presently used as the extractant, does not allow high loadings due to its propensity for third phase formation in the extraction of Pu(IV). A detailed study of the allowable Pu loadings in TBP and other extractants has been undertaken in IGCAR, the results of which are presented in this paper. The paper also describes the status of our programme to develop a non-aqueous route for the reprocessing of fast reactor fuels. (author)

  10. Full MOX high burn-up PWR

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu; Kugo, Teruhiko; Shimada, Shoichiro; Araya, Fumimasa; Ochiai, Masaaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    As a part of conceptual investigation on advanced light water reactors for the future, a light water reactor with the high burn-up of 100 GWd/t, the long cycle operation of 3 years and the full MOX core is being studied, aiming at the improvement on economical aspects, the reduction of the spent fuel production, the utilization of Plutonium and so forth. The present report summarizes investigation on PWR-type reactors. The core with the increased moderation of the moderator-to-fuel volume ratio of 2.6 {approx} 3.0 has been proposed be such a core that accomplishes requirements mentioned above. Through the neutronic and the thermo-hydrodynamic evaluation, the performances of the core have been evaluated. Also, the safety designing is underway considering the reactor system with the passive safety features. (author)

  11. Technological and licensing challenges for high burnup fuel

    International Nuclear Information System (INIS)

    Gross, H.; Urban, P.; Fenzlein, C.

    2002-01-01

    Deregulation of electricity markets is driving electricity prices downward as well in the U.S. as in Europe. As a consequence high burnup fuel will be demanded by utilities using either the storage or the reprocessing option. At a minimum, burnups consistent with the current political enrichment limit of 5 w/o will be required for both markets.Significant progress has been achieved in the past by Siemens in meeting the demands of utilities for increased fuel burnup. The technological challenges posed by the increased burnup are mainly related to the corrosion and hydrogen pickup of the clad, the high burnup properties of the fuel and the dimensional changes of the fuel assembly structure. Clad materials with increased corrosion resistance appropriate for high burnup have been developed. The high burnup behaviour of the fuel has been extensively investigated and the decrease of thermal conductivity with burnup, the rim effect of the pellet and the increase of fission gas release with burnup can be described, with good accuracy, in fuel rod computer codes. Advanced statistical design methods have been developed and introduced. Materials with increased corrosion resistance are also helpful controlling the dimensional changes of the fuel assembly structure. In summary, most of the questions about the fuel operational behaviour and reliability in the high burnup range have been solved - some of them are still in the process of verification - or the solutions are visible. This fact is largely acknowledged by regulators too. The main licensing challenges for high burnup fuel are currently seen for accident condition analyses, especially for RIA and LOCA. (author)

  12. High burnup models in computer code fair

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, B K; Swami Prasad, P; Kushwaha, H S; Mahajan, S C; Kakodar, A [Bhabha Atomic Research Centre, Bombay (India)

    1997-08-01

    An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ``Light water reactor fuel rod modelling code evaluation`` and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs.

  13. High burnup models in computer code fair

    International Nuclear Information System (INIS)

    Dutta, B.K.; Swami Prasad, P.; Kushwaha, H.S.; Mahajan, S.C.; Kakodar, A.

    1997-01-01

    An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ''Light water reactor fuel rod modelling code evaluation'' and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs

  14. Fission product model for BWR analysis with improved accuracy in high burnup

    International Nuclear Information System (INIS)

    Ikehara, Tadashi; Yamamoto, Munenari; Ando, Yoshihira

    1998-01-01

    A new fission product (FP) chain model has been studied to be used in a BWR lattice calculation. In attempting to establish the model, two requirements, i.e. the accuracy in predicting burnup reactivity and the easiness in practical application, are simultaneously considered. The resultant FP model consists of 81 explicit FP nuclides and two lumped pseudo nuclides having the absorption cross sections independent of burnup history and fuel composition. For the verification, extensive numerical tests covering over a wide range of operational conditions and fuel compositions have been carried out. The results indicate that the estimated errors in burnup reactivity are within 0.1%Δk for exposures up to 100GWd/t. It is concluded that the present model can offer a high degree of accuracy for FP representation in BWR lattice calculation. (author)

  15. Features of fuel performance at high fuel burnups

    International Nuclear Information System (INIS)

    Proselkov, V.N.; Scheglov, A.S.; Smirnov, A.V.; Smirnov, V.P.

    2001-01-01

    Some features of fuel behavior at high fuel burnups, in particular, initiation and development of rim-layer, increase in the rate of fission gas release from the fuel and increase in the inner gas pressure in the fuel rod are briefly described. Basing on the analysis of the data of post-irradiation examinations of fuel rods of WWER-440 working FA and CR fuel followers, that have been operated for five fuel cycles and got the average fuel burnup or varies as 50MW-day/kgU, a conclusion is made that the WWER-440 fuel burnup can be increased at least to average burnups of 55-58 MW-day/kgU per fuel assembly (Authors)

  16. Reactivity management and burn-up management on JRR-3 silicide-fuel-core

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Araki, Masaaki; Izumo, Hironobu; Kinase, Masami; Torii, Yoshiya; Murayama, Yoji

    2007-08-01

    On the conversion from uranium-aluminum-dispersion-type fuel (aluminide fuel) to uranium-silicon-aluminum-dispersion-type fuel (silicide fuel), uranium density was increased from 2.2 to 4.8 g/cm 3 with keeping uranium-235 enrichment of 20%. So, burnable absorbers (cadmium wire) were introduced for decreasing excess reactivity caused by the increasing of uranium density. The burnable absorbers influence reactivity during reactor operation. So, the burning of the burnable absorbers was studied and the influence on reactor operation was made cleared. Furthermore, necessary excess reactivity on beginning of operation cycle and the time limit for restart after unplanned reactor shutdown was calculated. On the conversion, limit of fuel burn-up was increased from 50% to 60%. And the fuel exchange procedure was changed from the six-batch dispersion procedure to the fuel burn-up management procedure. The previous estimation of fuel burn-up was required for the planning of fuel exchange, so that the estimation was carried out by means of past operation data. Finally, a new fuel exchange procedure was proposed for effective use of fuel elements. On the procedure, burn-up of spent fuel was defined for each loading position. The average length of fuel's staying in the core can be increased by two percent on the procedure. (author)

  17. Reactivity effect of spent fuel depending on burn-up history

    International Nuclear Information System (INIS)

    Hayashi, Takafumi; Suyama, Kenya; Nomura, Yasushi

    2001-06-01

    It is well known that a composition of spent fuel depends on various parameter changes throughout a burn-up period. In this study we aimed at the boron concentration and its change, the coolant temperature and its spatial distribution, the specific power, the operation mode, and the duration of inspection, because the effects due to these parameters have not been analyzed in detail. The composition changes of spent fuel were calculated by using the burn-up code SWAT, when the parameters mentioned above varied in the range of actual variations. Moreover, to estimate the reactivity effect caused by the composition changes, the criticality calculations for an infinite array of spent fuel were carried out with computer codes SRAC95 or MVP. In this report the reactivity effects were arranged from the viewpoint of what parameters gave more positive reactivity effect. The results obtained through this study are useful to choose the burn-up calculation model when we take account of the burn-up credit in the spent fuel management. (author)

  18. Modelling the high burnup UO2 structure in LWR fuel

    International Nuclear Information System (INIS)

    Lassmann, K.; Walker, C.T.; Laar, J. van de; Lindstroem, F.

    1995-01-01

    The concept of a burnup threshold for the formation of the high burnup UO 2 structure (HBS) is supported by experimental data, which also reveal that a transition zone exists between the normal UO 2 structure and the fully developed HBS. From the analysis of radial xenon profiles measured by EPMA a threshold burnup is obtained in the range 60-75 GW d/t U. The lower value is considered to be the threshold for the onset of the HBS and the higher value the threshold for the fully developed HBS. Xenon depletion in the transition zone and the fully developed HBS can be described by a simple model. At local burnups above 120 GW d/t U the xenon generated is in equilibrium with the xenon lost to the fission gas pores and the concentration does not fall below 0.25 wt%. The TRANSURANUS burnup model TUBRNP predicts reasonably well the penetration of the HBS and the associated xenon depletion up to a cross section average burnup of approximately 70 GW d/t U. (orig.)

  19. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  20. Achieving High Burnup Targets With Mox Fuels: Techno Economic Implications

    International Nuclear Information System (INIS)

    Clement Ravi Chandar, S.; Sivayya, D.N.; Puthiyavinayagam, P.; Chellapandi, P.

    2013-01-01

    For a typical MOX fuelled SFR of power reactor size, Implications due to higher burnup have been quantified. Advantages: – Improvement in the economy is seen upto 200 GWd/ t; Disadvantages: – Design changes > 150 GWd/ t bu; – Need for 8/ 16 more fuel SA at 150/ 200 GWd/ t bu; – Higher enrichment of B 4 C in CSR/ DSR at higher bu; – Reduction in LHR may be required at higher bu; – Structural material changes beyond 150 GWd/ t bu; – Reprocessing point of view-Sp Activity & Decay heat increase. Need for R & D is a must before increasing burnup. bu- refers burnup. Efforts to increase MOX fuel burnup beyond 200 GWd/ t may not be highly lucrative; • MOX fuelled FBR would be restricted to two or four further reactors; • Imported MOX fuelled FBRs may be considered; • India looks towards launching metal fuel FBRs in the future. – Due to high Breeding Ratio; – High burnup capability

  1. Advances in Metallic Fuels for High Burnup and Actinide Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, S. L.; Harp, J. M.; Chichester, H. J. M.; Fielding, R. S.; Mariani, R. D.; Carmack, W. J.

    2016-10-01

    Research and development activities on metallic fuels in the US are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is a desire to demonstrate a multifold increase in burnup potential. A number of metallic fuel design innovations are under investigation with a view toward significantly increasing the burnup potential of metallic fuels, since higher discharge burnups equate to lower potential actinide losses during recycle. Promising innovations under investigation include: 1) lowering the fuel smeared density in order to accommodate the additional swelling expected as burnups increase, 2) utilizing an annular fuel geometry for better geometrical stability at low smeared densities, as well as the potential to eliminate the need for a sodium bond, and 3) minor alloy additions to immobilize lanthanide fission products inside the metallic fuel matrix and prevent their transport to the cladding resulting in fuel-cladding chemical interaction. This paper presents results from these efforts to advance metallic fuel technology in support of high burnup and actinide transmutation objectives. Highlights include examples of fabrication of low smeared density annular metallic fuels, experiments to identify alloy additions effective in immobilizing lanthanide fission products, and early postirradiation examinations of annular metallic fuels having low smeared densities and palladium additions for fission product immobilization.

  2. Fission gas release from fuel at high burnup

    International Nuclear Information System (INIS)

    Meyer, R.O.; Beyer, C.E.; Voglewede, J.C.

    1978-03-01

    The release of fission gas from fuel pellets at high burnup is reviewed in the context of the safety analysis performed for reactor license applications. Licensing actions are described that were taken to correct deficient gas release models used in these safety analyses. A correction function, which was developed by the Nuclear Regulatory Commission staff and its consultants, is presented. Related information, which includes some previously unpublished data, is also summarized. The report thus provides guidance for the analysis of high burnup gas release in licensing situations

  3. Nuclear data propagation with burnup. Impact on SFR reactivity coefficients

    International Nuclear Information System (INIS)

    Buiron, Laurent; Plisson-Rieunier, Daniele

    2017-01-01

    For the next generation fast reactor design, the Generation IV International Forum (GIF) defined global objectives in terms of safety improvement, sustainability, waste minimization and non-proliferation. Among the possibilities studied at CEA, Sodium cooled Fast Reactor (SFR) are studied as potential industrial tools for next decade's deployment. Many efforts have been made in the last years to obtain advanced industrial core designs that comply with these goals. Concerning safety issues, particular efforts have been made in order to obtain core designs that can be resilient to accidental transients. The 'safety' level of such new designs is often characterized by their 'natural' behavior under unprotected transients such as loss of flow or hypothetical transient over power. Transient analysis needs several accurate neutronic input data such as reactivity coefficient and kinetic parameters. Beside estimation of the level of 'absolute' values, associated uncertainties have also to be evaluated for the whole set of relevant data. These estimations have to be performed for different core state such as end of cycle core for feedback coefficient. This means that uncertainties have to be obtained not only a fixed time but also have to be propagated all through irradiation. To do so, we need to couple Boltzman and Bateman equations at sensitivities level. The coupling process could be done with the help of the perturbation theory which gives adapted framework suited for deterministic calculation codes. This coupling is currently in progress in ERANOS code system. The actual implementation gives access to estimation of sensitivities for both reactivity coefficients and mass balance. After a brief theoretical description of Boltzman/Bateman coupling capabilities in ERANOS, the study presented in this paper focuses on sensitivity and uncertainties estimation for the main feedback coefficients involved in fast reactor transients: the

  4. Modelling of some high burnup phenomena in nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, K; Lindstroem, F; Massih, A R [ABB Atom AB, Vaesteraas (Sweden)

    1997-08-01

    In this paper the results of some modelling efforts carried out by ABB Atom to describe certain light water reactor fuel high burnup effects are presented. In particular the degradation of fuel thermal conductivity with burnup and its impact on fuel temperature is briefly discussed. The formation of a porous rim and its effect on a thermal fission gas release has been modelled and the model has been used to predict the release of pressurized water reactor fuel rods that were operated at low power densities. Furthermore, a mathematical model which combines the diffusion and re-solution controlled thermal release with grain boundary movement has been briefly described. The model is used to compare release with diffusion only and release caused by diffusion and grain boundary sweeping (due to grain growth). Finally, analytical expressions are obtained for the calculation of fuel stoichiometry as a function of burnup. (author). 20 refs, 10 figs, 1 tab.

  5. Ultrasonic measurement of high burn-up fuel elastic properties

    International Nuclear Information System (INIS)

    Laux, D.; Despaux, G.; Augereau, F.; Attal, J.; Gatt, J.; Basini, V.

    2006-01-01

    The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment

  6. Threshold burnup for recrystallization and model for rim porosity in the high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Lee, Byung Ho; Koo, Yang Hyun; Sohn, Dong Seong

    1998-01-01

    Applicability of the threshold burnup for rim formation was investigated as a function of temperature by Rest's model. The threshold burnup was the lowest in the intermediate temperature region, while on the other temperature regions the threshold burnup is higher. The rim porosity was predicted by the van der Waals equation based of the rim pore radius of 0.75μm and the overpressurization model on rim pores. The calculated centerline temperature is in good agreement with the measured temperature. However, more efforts seem to be necessary for the mechanistic model of the rim effect including rim growth with the fuel burnup

  7. M5TM alloy high burnup behavior and worldwide licensing

    International Nuclear Information System (INIS)

    Mardon, J.P.; Hoffmann, P.B.; Garner, G.L.

    2005-01-01

    The in-reactor behavior of advanced PWR Zirconium alloys at burnups equal to or below licensing limits has been widely reported. Specifically, the advanced alloy M5 has demonstrated impressive improvements over Zircaloy-4 for fuel rod cladding and fuel assembly structural components. To demonstrate superiority of the alloy at burnups beyond current licensing limits, M5 has been operated in PWR at burnups exceeding 71 GWd/tU in the United States and 78 GWd/tU in Europe. Two extensive irradiation programs have been performed in the United States to demonstrate alloy M5 performance beyond current licensing limits. Four M5 TM fuel rods were exposed to four 24-month cycles in a 15x15 reactor beginning in 1995. Additionally, one 17x17 lead assembly containing M5 fuel rods and guide tubes was operated for four 18-month cycles beginning from 1997. Post-irradiation examinations (PIE) performed after all four cycles in the 15x15 demonstration program revealed excellent performance in the licensed burnup and in the high burnup stages of the experience. Examination of the 4th cycle 17x17 assembly will be accomplished in two stages the first of which is scheduled for June 2005. Moreover, several irradiation campaigns have been performed in Europe in order to confirm the excellent M5 in-pile behavior in demanding PWRs irradiation conditions with regard to void fraction, heat flux, lithium content and temperature. Results from the high burnup fuel examinations verify that the excellent performance achieved up to 62 GWd/tU was continued into higher burnup. The results of high burnup PIE campaigns for European and American PWR's are presented in this paper. Measured performance indicators include fuel assembly dimensional stability parameters (assembly length, fuel rod length, assembly bow, fuel rod bow, fuel rod radial creep and spacer grid width), oxidation measurements (fuel rod and guide tube) and hydrogen pick-up data (fuel rod). In the framework of PCI studies, power ramp

  8. Investigation and basic evaluation for ultra-high burnup fuel cladding material

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Nagase, Fumihisa; Futakawa, Masatoshi; Kiuchi, Kiyoshi

    2001-03-01

    In ultra-high burnup of the power reactor, it is an essential problem to develop the cladding with excellent durability. First, development history and approach of the safety assessment of Zircaloy for the high burnup fuel were summarized in the report. Second, the basic evaluation and investigation were carried out on the material with high practicability in order to select the candidate materials for the ultra-high burnup fuel. In addition, the basic research on modification technology of the cladding surface was carried out from the viewpoint of the addition of safety margin as a cladding. From the development history of the zirconium alloy including the Zircaloy, it is hard to estimate the results of in-pile test from those of the conventional corrosion test (out-pile test). Therefore, the development of the new testing technology that can simulate the actual environment and the elucidation of the corrosion-controlling factor of the cladding are desired. In cases of RIA (Reactivity Initiated Accident) and LOCA (Loss of Coolant Accident), it seems that the loss of ductility in zirconium alloys under heavy irradiation and boiling of high temperature water restricts the extension of fuel burnup. From preliminary evaluation on the high corrosion-resistance materials (austenitic stainless steel, iron or nickel base superalloys, titanium alloy, niobium alloy, vanadium alloy and ferritic stainless steel), stabilized austenitic stainless steels with a capability of future improvement and high-purity niobium alloys with a expectation of the good corrosion resistance were selected as candidate materials of ultra-high burnup cladding. (author)

  9. The Gd-isotopic fuel for high burnup in PWR's

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Marcio Soares; Mattos, João Roberto L. de; Andrade, Edison Pereira de, E-mail: marciod@cdtn.br, E-mail: jrmattos@cdtn.br, E-mail: epa@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Today, the discussion about the high burnup fuel is beyond the current fuel enrichment licensing and burnup limits. Licensing issues and material/design developments are again key features in further development of the LWR fuel design. Nevertheless, technological and economical solutions are already available or will be available in a short time. In order to prevent the growth of the technological gap, Brazil's nuclear sector needs to invest in the training of new human resources, in the access to international databases, and in the upgrading existing infrastructure. Experimental database and R&D infrastructure are essential components to support the autonomous development of Brazilian Nuclear Reactors, promoting the development of national technologies. The (U,Gd)O{sub 2} isotopic fuel proposed by the CDTN's staff solve two main issues in the high burnup fuel, which are (1) the peak of reactivity resulting from the Gd-157 fast burnup, and (2) the peak of temperature in the (U,Gd)O{sub 2} nuclear fuel resulting from detrimental effects in the thermal properties for gadolinia additions higher than 2%. A sustainable future can be envisaged for the nuclear energy. (author)

  10. Evaluation of burnup credit for accommodating PWR spent nuclear fuel in high-capacity cask designs

    International Nuclear Information System (INIS)

    Wagner, John C.

    2003-01-01

    This paper presents an evaluation of the amount of burnup credit needed for high-density casks to transport the current U.S. inventory of commercial spent nuclear fuel (SNF) assemblies. A prototypic 32-assembly cask and the current regulatory guidance were used as bases for this evaluation. By comparing actual pressurized-water-reactor (PWR) discharge data (i.e., fuel burnup and initial enrichment specifications for fuel assemblies discharged from U.S. PWRs) with actinide-only-based loading curves, this evaluation finds that additional negative reactivity (through either increased credit for fuel burnup or cask design/utilization modifications) is necessary to accommodate the majority of SNF assemblies in high-capacity storage and transportation casks. The impact of varying selected calculational assumptions is also investigated, and considerable improvement in effectiveness is shown with the inclusion of the principal fission products (FPs) and minor actinides and the use of a bounding best-estimate approach for isotopic validation. Given sufficient data for validation, the most significant component that would improve accuracy, and subsequently enhance the utilization of burnup credit, is the inclusion of FPs. (author)

  11. Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup

    International Nuclear Information System (INIS)

    Kim, Jung Suk; Jeon, Young Shin; Park, Soon Dal; Ha, Yeong Keong; Song, Kyu Seok

    2015-01-01

    The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional 235 U burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using 233 U, 242 Pu, 150 Nd, and 133 Cs as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code

  12. Power ramp tests of high burnup BWR segment rods

    International Nuclear Information System (INIS)

    Hayashi, H.; Etoh, Y.; Tsukuda, Y.; Shimada, S.; Sakurai, H.

    2002-01-01

    Lead use assemblies (LUAs) of high burnup 8x8 fuel design for Japanese BWRs were irradiated up to 5 cycles in Fukushima Daini Nuclear Power Station No. 2 Unit. Segment rods were installed in LUAs and used for power ramp tests in Japanese Material Test Reactor (JMTR). Post irradiation examinations (PIEs) of segment rods were carried out at Nippon Nuclear Fuel Development Co., Ltd. before and after ramp tests. Maximum linear heat rates of LUAs were kept above 300 W/cm in the first cycle, above 250 W/cm in the second and third cycles and decreased to 200 W/cm in the fourth cycle and 80 W/cm in the fifth cycle. The integrity of high burnup 8x8 fuel was confirmed up to the bundle burnup of 48 GWd/t after 5 cycles of irradiation. Systematic and high quality data were collected through detailed PIEs. The main results are as follows. The oxide on the outer surface of cladding tubes was uniform and its thickness was less than 20 micro-meter after 5 cycles of irradiation and was almost independent of burnup. Hydrogen contents in cladding tubes were less than 150 ppm after 5 cycles of irradiation, although hydrogen contents increased during the fourth and fifth irradiation cycles. Mechanical properties of cladding tubes were on the extrapolated line of previous data up to 5 cycles of irradiation. Fission gas release rates were in the low level (mainly less than 6%) up to 5 cycles of irradiation due to the design to decrease pellet temperature. Pellet-cladding bonding layers were observed after the third cycle and almost full bonding was observed after the fifth cycle. Pellet volume increased with burnup in proportion to solid swelling rate up to the forth cycle. After the fifth cycle, slightly higher pellet swelling was confirmed. Power ramp tests were carried out and satisfactory performance of Zr-lined cladding tube was confirmed up to 60 GWd/t (segment average burnup). One segment rod irradiated for 3 cycles failed by a single step ramp test at terminal ramp power of 614 W

  13. Computation of classical triton burnup with high plasma temperature and current

    International Nuclear Information System (INIS)

    Batistoni, P.

    1990-09-01

    For comparison with experiment, the expected production of 14-MeV neutrons from the burnup of tritons produced in the d(d,t)p reaction must be computed. An effort was undertaken to compare in detail the computer codes used for this purpose at TFTR and JET. The calculation of the confined fraction of tritons by the different codes agrees to within a few percent. The high electron temperature in the experiments has raised the critical energy of the tritons that are slowing down to near or above the peak of the D-T reactivity, making the ion drag terms more important. When the different codes use the same slowing down formulas, the calculated burnup was within 6% for a case where orbit effects are expected to be small. Then results from codes with and without the effects of finite radial orbit excursions were compared for two test cases. For medium to high current discharges the finite radius effects are only of order 10%. A new version of the TFTR burnup code using an implicit Fokker-Planck solution was written to include the effects of energy diffusion and charge exchange. These effects change the time-integrated yields by only a few percent, but can significantly affect the instantaneous rates in time. Significant populations of hot ions can affect the fusion reactivity, and this effect was also studied. In particular, the d(d,p)t rate can be 10%--15% less than the d(d, 3 He)n rate which is usually used as a direct monitor of the triton source. Finally, a finite particle confinement time for the thermalized tritons can increase the apparent ''burn-up'' either if there is a high thermal deuteron temperature or if there exists a significant beam deuteron density

  14. Models for fuel rod behaviour at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Jernkvist, Lars O.; Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park, Uppsala (Sweden)

    2004-12-01

    This report deals with release of fission product gases and irradiation-induced restructuring in uranium dioxide nuclear fuel. Waterside corrosion of zirconium alloy clad tubes to light water reactor fuel rods is also discussed. Computational models, suitable for implementation in the FRAPCON-3.2 computer code, are proposed for these potentially life-limiting phenomena. Hence, an integrated model for the calculation or thermal fission gas release by intragranular diffusion, gas trapping in grain boundaries, irradiation-induced re-solution, grain boundary saturation, and grain boundary sweeping in UO{sub 2} fuel, under time varying temperature loads, is formulated. After a brief review of the status of thermal fission gas release modelling, we delineate the governing equations for the aforementioned processes. Grain growth kinetic modelling is briefly reviewed and pertinent data on grain growth of high burnup fuel obtained during power ramps in the Third Risoe Fission Gas Release Project are evaluated. Sample computations are performed, which clearly show the connection between fission gas release and gram growth as a function of time at different isotherms. Models are also proposed for the restructuring of uranium dioxide fuel at high burnup, the so-called rim formation, and its effect on fuel porosity build-up, fuel thermal conductivity and fission gas release. These models are assessed by use of recent experimental data from the High Burnup Rim Project, as well as from post irradiation examinations of high-burnup fuel, irradiated in power reactors. Moreover, models for clad oxide growth and hydrogen pickup in PWRs, applicable to Zircaloy-4, ZIRLO or M5 cladding, are formulated, based on recent in-reactor corrosion data for high-burnup fuel rods. Our evaluation of these data indicates that the oxidation rate of ZIRLO-type materials is about 20% lower than for standard Zircaloy-4 cladding under typical PWR conditions. Likewise, the oxidation rate of M5 seems to be

  15. Highlights on R and D work related to the achievement of high burnup with MOX fuel in commercial reactors

    International Nuclear Information System (INIS)

    Lippens, M.; Maldague, Th.; Basselier, J.; Boulanger, D.; Mertens, L.

    2000-01-01

    Part of the R and D work made at BELGONUCLEAIRE in the field of high burnup achievement with MOX fuel in commercial LWRs is made through lnternational Programmes. Special attention is given to the evolution with burnup of fuel neutronic characteristics and of in-reactor rod thermal-mechanical behaviour. Pu burning in MOX is characterized essentially by a drop of Pu 239 content. The other Pu isotopes have an almost unchanged concentration, due to internal breeding. The reactivity drop of MOX versus burnup is consequently much less pronounced than in UO 2 fuel. Concentration of minor actinides Am and Cm becomes significant with burnup increase. These nuclides start to play a role on total reactivity and in the helium production. The thermal-mechanical behaviour of MOX fuel rod is very similar to that of UO 2 . Some specificities are noticed. The better PCI resistance recognized to MOX fuel has recently been confirmed. Three PWR MOX segments pm-irradiated up to 58 GWd/tM were ramped at 100 W/cm.min respectively to 430-450-500 W/cm followed by a hold time of 24 hours. No segment failed. MOX and UO 2 fuels have different reactivities and operate thus at different powers. Moreover, radial distribution of power in MOX pellet is less depressed at high burnup than in UO 2 , leading to higher fuel central temperature for a same rating. The thermal conductivity of MOX fuel decreases with Pu content, typically 4% for 10% Pu. The combination of these three elements (power level, power profile, and conductivity) lead to larger FGR at high burnup compared to UO 2 . Helium production remains low compared to fission gas production (ratio < 0.2). As faster diffusing element, the helium fractional release is much higher than that of fission gas, leading to rod pressure increase comparable to the one resulting from fission gas. (author)

  16. Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit

    International Nuclear Information System (INIS)

    Wagner, J.C.

    2001-01-01

    This report proposes and documents a computational benchmark problem for the estimation of the additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor actinides in a burnup-credit storage/transport environment, relative to SNF compositions containing only the major actinides. The benchmark problem/configuration is a generic burnup credit cask designed to hold 32 pressurized water reactor (PWR) assemblies. The purpose of this computational benchmark is to provide a reference configuration for the estimation of the additional reactivity margin, which is encouraged in the U.S. Nuclear Regulatory Commission (NRC) guidance for partial burnup credit (ISG8), and document reference estimations of the additional reactivity margin as a function of initial enrichment, burnup, and cooling time. Consequently, the geometry and material specifications are provided in sufficient detail to enable independent evaluations. Estimates of additional reactivity margin for this reference configuration may be compared to those of similar burnup-credit casks to provide an indication of the validity of design-specific estimates of fission-product margin. The reference solutions were generated with the SAS2H-depletion and CSAS25-criticality sequences of the SCALE 4.4a package. Although the SAS2H and CSAS25 sequences have been extensively validated elsewhere, the reference solutions are not directly or indirectly based on experimental results. Consequently, this computational benchmark cannot be used to satisfy the ANS 8.1 requirements for validation of calculational methods and is not intended to be used to establish biases for burnup credit analyses

  17. Burnup credit applications in a high-capacity truck cask

    International Nuclear Information System (INIS)

    Boshoven, J.K.

    1993-01-01

    The use of burnup credit in the criticality safety analysis of the GA-4 Cask increases the cask's capacity from three spent fuel assemblies to four, resulting in reduced public and occupational risk and reduced life cycle costs. GA's criticality calculations for burnup credit, including the associated uncertainties and analytical bias, establish the minimum burnup required as a function of initial enrichment to maintain K eff ≤ 0.95 under any conceivable condition. The minimum burnup requirement as a function of initial enrichment has been determined to be 15,000 MWd/MTU for 3.5 wt% U-235 fuel, 20,000 MWd/MTU for 4.0 wt% U-235 fuel and 25,000 MWd/MTU for 4.5 wt% U-235 fuel. The minimum burnup requirement as a function of enrichment is well below the typical burnup levels seen in the current and projected spent fuel inventory. (J.P.N.)

  18. Measurement of burnup in FBR MOX fuel irradiated to high burnup

    International Nuclear Information System (INIS)

    Koyama, Shin-ichi; Osaka, Masahiko; Sekine, Takashi; Morozumi, Katsufumi; Namekawa, Takashi; Itoh, Masahiko

    2003-01-01

    The burnup of fuel pins in the subassemblies irradiated at the range from 0.003 to 13.28% FIMA in the JOYO MK-II core were measured by the isotope dilution analysis. For the measurement, 75 and 51 specimens were taken from the fuel pins of driver fuel and irradiation test subassemblies, respectively. The data of burnup could be obtained within an experimental error of 4%, and were compared with the ones calculated by 3-dimensional neutron diffusion codes MAGI and ESPRIT-J, which are used for JOYO core management system. Both data of burnup almost agree with each other within an error of 5%. For the fuel pins loaded at the outer region of the subassembly in the 4th row, which was adjacent to reflectors, however, some of the calculation results were 15% less at most than the measured values. It is suggested from the calculation by a Monte Carlo code MCNP-4A that this difference between the calculated and the measured data attribute from the softening of neutron flux in the region adjacent to the reflector. (author)

  19. Burnup credit applications in a high-capacity truck cask

    International Nuclear Information System (INIS)

    Boshoven, J.K.

    1992-09-01

    General Atomics (GA) has designed two legal weight truck (LWT) casks, the GA-4 and GA-9, to carry four pressurized-water-reactor (PWR) and nine boiling-water-reactor (BWR) fuel assemblies, respectively. GA plans to submit applications for certification to the US Nuclear Regulatory Commission (NRC) for the two casks in mid-1993. GA will include burnup credit analysis in the Safety Analysis Report for Packaging (SARP) for the GA-4 Cask. By including burnup credit in the criticality safety analysis for PWR fuels with initial enrichments above 3% U-235, public and occupation risks are reduced and cost savings are realized. The GA approach to burnup credit analysis incorporates the information produced in the US Department of Energy Burnup Credit Program. This paper describes the application of burnup credit to the criticality control design of the GA-4 Cask

  20. Calculation of effect of burnup history on spent fuel reactivity based on CASMO5

    International Nuclear Information System (INIS)

    Li Xiaobo; Xia Zhaodong; Zhu Qingfu

    2015-01-01

    Based on the burnup credit of actinides + fission products (APU-2) which are usually considered in spent fuel package, the effect of power density and operating history on k_∞ was studied. All the burnup calculations are based on the two-dimensional fuel assembly burnup program CASMO5. The results show that taking the core average power density of specified power plus a bounding margin of 0.0023 to k_∞, and taking the operating history of specified power without shutdown during cycle and between cycles plus a bounding margin of 0.0045 to k_∞ can meet the bounding principle of burnup credit. (authors)

  1. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  2. Oxide thickness measurement for monitoring fuel performance at high burnup

    International Nuclear Information System (INIS)

    Jaeger, M.A.; Van Swam, L.F.P.; Brueck-Neufeld, K.

    1991-01-01

    For on-site monitoring of the fuel performance at high burnup, Advanced Nuclear Fuels uses the linear scan eddy current method to determine the oxide thickness of irradiated Zircaloy fuel cans. Direct digital data acquisition methods are employed to collect the data on magnetic storage media. This field-proven methodology allows oxide thickness measurements and rapid interpretation of the data during the reactor outages and makes it possible to immediately reinsert the assemblies for the next operating cycle. The accuracy of the poolside measurements and data acquisition/interpretation techniques have been verified through hot cell metallographic measurements of rods previously measured in the fuel pool. The accumulated data provide a valuable database against which oxide growth models have been benchmarked and allow for effective monitoring of fuel performance. (orig.) [de

  3. Fuel and fuel cycles with high burnup for WWER reactors

    International Nuclear Information System (INIS)

    Chernushev, V.; Sokolov, F.

    2002-01-01

    The paper discusses the status and trends in development of nuclear fuel and fuel cycles for WWER reactors. Parameters and main stages of implementation of new fuel cycles will be presented. At present, these new fuel cycles are offered to NPPs. Development of new fuel and fuel cycles based on the following principles: profiling fuel enrichment in a cross section of fuel assemblies; increase of average fuel enrichment in fuel assemblies; use of refuelling schemes with lower neutron leakage ('in-in-out'); use of integrated fuel gadolinium-based burnable absorber (for a five-year fuel cycle); increase of fuel burnup in fuel assemblies; improving the neutron balance by using structural materials with low neutron absorption; use of zirconium alloy claddings which are highly resistant to irradiation and corrosion. The paper also presents the results of fuel operation. (author)

  4. Fuel performance at high burnup for water reactors

    International Nuclear Information System (INIS)

    1991-02-01

    The present meeting was scheduled by the International Atomic Energy Agency, upon proposal of the Members of the International Working Group on Water Reactor Fuel Performance and Technology. The purpose of this meeting was to review the ''state-of-the-art'' in the area of Fuel Performance at High Burnup for Water Reactors. Previous IAEA meetings on this topic were held in Mol in 1981 and 1984 and on related topics in Stockholm and Lyon in 1987. Fifty-five participants from 16 countries and two international organizations attended the meeting and 28 papers were presented and discussed. The papers were presented in five sub-sessions and during the meeting, working groups composed of the session chairmen and paper authors prepared the summary of each session with conclusions and recommendations for future work. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  5. BNFL assessment of methods of attaining high burnup MOX fuel

    International Nuclear Information System (INIS)

    Brown, C.; Hesketh, K.W.; Palmer, I.D.

    1998-01-01

    It is clear that in order to maintain competitiveness with UO 2 fuel, the burnups achievable in MOX fuel must be enhanced beyond the levels attainable today. There are two aspects which require attention when studying methods of increased burnups - cladding integrity and fuel performance. Current irradiation experience indicates that one of the main performance issues for MOX fuel is fission gas retention. MOX, with its lower thermal conductivity, runs at higher temperatures than UO 2 fuel; this can result in enhanced fission gas release. This paper explores methods of effectively reducing gas release and thereby improving MOX burnup potential. (author)

  6. The Width of High Burnup Structure in LWR UO2 Fuel

    International Nuclear Information System (INIS)

    Koo, Yang-Hyun; Lee, Byung-Ho; Oh, Jae-Yong; Sohn, Dong-Seong

    2007-01-01

    The measured data available in the open literature on the width of high burnup structure (HBS) in LWR UO 2 fuel were analyzed in terms of pellet average burnup, enrichment, and grain size. Dependence of the HBS width on pellet average burnup was shown to be divided into three regions; while the HBS width is governed by accumulation of fission damage (i.e., burnup) for burnup below 60 GWd/tU, it seems to be restricted to some limiting value of around 1.5 mm for burnup above 75 GWd/tU due to high temperature which might have caused extensive annealing of irradiation damage. As for intermediate burnup between 60 and 75 GWd/tU, although temperature would not have been so high as to induce extensive annealing, the microstructural damage could have been partly annealed, resulting in the reduction of the HBS width. It was found that both enrichment and grain size also affects the HBS width. However, as long as the pellet average burnup is lower than about 75 GWd/tU, the effect does not appear to be significant for the enrichment and grain size that are typically used in current LWR fuel. (authors)

  7. Detailed description and user`s manual of high burnup fuel analysis code EXBURN-I

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Saitou, Hiroaki

    1997-11-01

    EXBURN-I has been developed for the analysis of LWR high burnup fuel behavior in normal operation and power transient conditions. In the high burnup region, phenomena occur which are different in quality from those expected for the extension of behaviors in the mid-burnup region. To analyze these phenomena, EXBURN-I has been formed by the incorporation of such new models as pellet thermal conductivity change, burnup-dependent FP gas release rate, and cladding oxide layer growth to the basic structure of low- and mid-burnup fuel analysis code FEMAXI-IV. The present report describes in detail the whole structure of the code, models, and materials properties. Also, it includes a detailed input manual and sample output, etc. (author). 55 refs.

  8. Simulation of High Burnup Structure in UO2 Using Potts Model

    International Nuclear Information System (INIS)

    Oh, Jae Yong; Koo, Yang Hyun; Lee, Byung Ho

    2009-01-01

    The evolution of a high burnup structure (HBS) in a light water reactor (LWR) UO 2 fuel was simulated using the Potts model. A simulation system for the Potts model was defined as a two-dimensional triangular lattice, for which the stored energy was calculated from both the irradiation damage of the UO 2 matrix and the formation of a grain boundary in the newly recrystallized small HBS grains. In the simulation, the evolution probability of the HBS is calculated by the system energy difference between before and after the Monte Carlo simulation step. The simulated local threshold burnup for the HBS formation was 62 MWd/kgU, consistent with the observed threshold burnup range of 60-80 MWd/kgU. The simulation revealed that the HBS was heterogeneously nucleated on the intergranular bubbles in the proximity of the threshold burnup and then additionally on the intragranular bubbles for a burnup above 86 MWd/kgU. In addition, the simulation carried out under a condition of no bubbles indicated that the bubbles played an important role in lowering the threshold burnup for the HBS formation, thereby enabling the HBS to be observed in the burnup range of conventional high burnup fuels

  9. Microstructural change and its influence on fission gas release in high burnup UO 2 fuel

    Science.gov (United States)

    Une, K.; Nogita, K.; Kashibe, S.; Imamura, M.

    1992-06-01

    The microstructural change of UO 2 fuel pellets (burnup: 6-83 GWd/t), base irradiated under LWR conditions, has been studied by detailed postirradiation examinations. The lattice parameter near the fuel rim in the irradiated UO 2 increased with burnup and appeared to become constant beyond about 50 GWd/t. This lattice dilation was mainly due to the accumulation of radiation induced point defects. Moreover, the dislocation density in the UO 2 matrix developed progressively with burnup, and eventually the tangled dislocations organized many sub-grain boundaries in the highest burnup fuel of 83 GWd/t. This sub-grain structure induced by accumulated radiation damage was compatible in appearance with SEM fractography results which revealed sub-divided grains of sub-micron size in as-fabricated grains. The influence of burnup on 85Kr release from the UO 2 fuels has been examined by means of a postirradiation annealing technique. The higher fractional release of high burnup fuels was mainly due to the burnup dependence of the fractional burst release evolved on temperature ramp. The fractional burst release was represented in terms of the square root of burnup from 6 to 83 GWd/t.

  10. High Burnup Fuel: Implications and Operational Experience. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2016-08-01

    This publication reports on the outcome of a technical meeting on high burnup fuel experience and economics, held in Buenos Aires, Argentina in 2013. The purpose of the meeting was to revisit and update the current operational experience and economic conditions associated with high burnup fuel. International experts with significant experience in experimental programmes on high burnup fuel discussed and evaluated physical limitations at pellet, cladding and structural component levels, with a wide focus including fabrication, core behaviour, transport and intermediate storage for most types of commercial nuclear power plants

  11. Fuel removing method for high burnup fuel and device therefor

    International Nuclear Information System (INIS)

    Terakado, Shogo; Owada, Isao; Kanno, Yoshio; Aizawa, Sakue; Yamahara, Takeshi.

    1993-01-01

    A through hole is perforated at the center of a fuel rod in a cladding tube by a diamond drill in a water vessel. Further, the through hole is enlarged by the diamond drill. A pellet removing tool is attached to a drill chuck instead of the diamond drill. Then, the thin cylindrical fuel pellet remaining on the inner surface of the cladding tube is removed by using a pellet removing tool while applying vibrations. Subsequently, a wire brush having a slightly larger diameter than that of the inner diameter of the cladding tube is attached to the drill chuck and rotated to finish the inner surface, so that a small amount of pellets remained on the inner surface of the cladding tube is removed. Pellet powders in the water vessel are collected and recovered to the water container. This can remove high burnup fuels which are firmly sticked to the cladding tube, without giving thermal or mechanical influences on the cladding tube. (I.N.)

  12. Test of calorimetry for high burn-up plutonium

    International Nuclear Information System (INIS)

    Beets, C.; Carchon, R.; Fettweis, P.

    1984-01-01

    In recent times, the interest of applying calorimetry for safeguards purpose is steadily increasing. Calorimetric measurements have been performed on a set of high burn-up (25000 MWd/t) Pu samples, ranging in mass between 60 g and 2.5 kg Pu, distributed as PuO 2 powder embedded in stainless steel containers. The powers produced by these containers ranged between 0.8 W and 36 W. The calorimeter used was the Mound 150 type, and the isotopics and the Am content have been determined earlier by mass spectroscopy, completed with α and γ counting, and were later verified by the same methods. Watts/gram measurements were made on twelve 60 g samples of the same plutonium lot to demonstrate the Pu elemental and isotopic homogeneity, and hence, its suitability for subsequent NDA experiments. These samples were also measured in a stacked way to fill up the mass and wattage gaps between 60 g (0.8W) and 1 kg (14W). Calorimetric assay values, obtained with both isotopic measurements are discussed

  13. Fission gas release from fuels at high burnup

    International Nuclear Information System (INIS)

    Kauffmann, Yves; Pointud, M.L.; Vignesoult, Nicole; Atabek, Rosemarie; Baron, Daniel.

    1982-04-01

    Determinations of residual gas concentrations by heating and by X microanalysis were respectively carried out on particles (TANGO program) and on sections of fuel rods, perfectly characterized as to fabrication and irradiation history. A threshold release temperature of 1250 0 C+-100 0 C was determined irrespective of the type of oxide and the irradiation history in the 18,000-45,000 MWdt -1 (U) specific burnup field. The overall analyses of gas released from the fuel rods show that, in the PWR operating conditions, the fraction released remains less than 1% up to a mean specific burnup of 35000 MWdt -1 (U). The release of gases should not be a limiting factor in the increase of specific burnups [fr

  14. Analyzing the BWR rod drop accident in high-burnup cores

    International Nuclear Information System (INIS)

    Diamond, D.J.; Neymotin, L.; Kohut, P.

    1995-01-01

    This study was undertaken for the US Nuclear Regulatory Commission to determine the fuel enthalpy during a rod drop accident (RDA) for cores with high burnup fuel. The calculations were done with the RAMONA-4B code which models the core with 3-dimensional neutron kinetics and multiple parallel coolant channels. The calculations were done with a model for a BWR/4 with fuel bundles having burnups up to 30 GWd/t and also with a model with bundle burnups to 60 GWd/t. This paper also discusses potential sources of uncertainty in calculations with high burnup fuel. One source is the ''rim'' effect which is the extra large peaking of the power distribution at the surface of the pellet. This increases the uncertainty in reactor physics and heat conduction models that assume that the energy deposition has a less peaked spatial distribution. Two other sources of uncertainty are the result of the delayed neutron fraction decreasing with burnup and the positive moderator temperature feedback increasing with burnup. Since these effects tend to increase the severity of the event, an RDA calculation for high burnup fuel will underpredict the fuel enthalpy if the effects are not properly taken into account. Other sources of uncertainty that are important come from the initial conditions chosen for the RDA. This includes the initial control rod pattern as well as the initial thermal-hydraulic conditions

  15. Simulation of integral local tests with high-burnup fuel

    International Nuclear Information System (INIS)

    Gyori, G.

    2011-01-01

    The behaviour of nuclear fuel under LOCA conditions may strongly depend on the burnup-dependent fuel characteristics, as it has been indicated by recent integral experiments. Fuel fragmentation and the associated fission gas release can influence the integral fuel behaviour, the rod rupture and the radiological release. The TRANSURANUS fuel performance code is a proper tool for the consistent simulation of burnup-dependent phenomena during normal operation and the thermo-mechanical behaviour of the fuel rod in a subsequent accident. The code has been extended with an empirical model for micro-cracking induced FGR and fuel fragmentation and verified against integral LOCA tests of international projects. (author)

  16. Analysis of the behavior under irradiation of high burnup nuclear fuels with the computer programs FRAPCON and FRAPTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Regis; Silva, Antonio Teixeira e, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The objective of this paper is to verify the validity and accuracy of the results provided by computer programs FRAPCON-3.4a and FRAPTRAN-1.4, used in the simulation process of the irradiation behavior of Pressurized Water Reactors (PWR) fuel rods, in steady-state and transient operational conditions at high burnup. To achieve this goal, the results provided by these computer simulations are compared with experimental data available in the database FUMEX III. Through the results, it was found that the computer programs used have a good ability to predict the operational behavior of PWR fuel rods in high burnup steady-state conditions and under the influence of Reactivity Initiated Accident (RIA). (author)

  17. JOYO MK-III performance test. Criticality test, excess reactivity measurement and burn-up coefficient measurement

    International Nuclear Information System (INIS)

    Maeda, Shigetaka; Sekine, Takashi; Kitano, Akihiro; Nagasaki, Hideaki

    2005-03-01

    The MK-III performance test began in June 2003 to fully characterize the upgraded core and heat transfer system of the experimental fast reactor JOYO. This paper describes the results of the approach to criticality, the excess reactivity evaluation and the burn-up coefficient measurement. In the approach to criticality test, the MK-III core achieved initial criticality at the control rod bank position of 412.8 mm on 14:03 July 2nd, 2003. Because the replacement of the outer two rows of reflector subassemblies with shielding subassemblies reduced the source range monitor signals by a factor of 3 at the same reactor power compared with those in the MK-II core, we measured the change of the monitor's response and determined the count rate 2x10 4 cps.' as an appropriate value judging the zero power criticality. In the excess reactivity evaluation, the zero power excess reactivity at 250degC was 2.99±0.10%Δk/kk' based on the measured critical rod bank position and the measured control rod worths. The predicted value by the JOYO core management code system HESTIA was 3.13±0.16%Δk/kk', showing good agreement with the measured value. The measured excess reactivity was within the safety requirement limit. In the burn-up coefficient measurement, the excess reactivity change versus the reactor burn-up was evaluated. The measurement method adopted was to measure the control rod positions during the rated power operation. A value of -2.12x10 -4 Δk/kk'/MWd was obtained as a measured burn-up coefficient. The value calculated by HESTIA was -2.12x10 -4 Δk/kk'/MWd, and it agreed well with the measured value. All technical safety requirements for MK-III core were satisfied and the calculation accuracy of the core management code system HESTIA was confirmed. (author)

  18. Mesoscopic approach to describe high burn-up fuel behaviour

    International Nuclear Information System (INIS)

    Kinoshita, M.

    1999-01-01

    The grain sub-division and the rim structure formation are new phenomena for LWR fuel engineering. The consequence of these are now under investigation in several international programs such as HBRP (High Burnup Rim Project) of CRIEPI, NFIR of EPRI, and EdF/CEA program in France. The theoretical understanding of this phenomenon is underway. Here, the process is peculiar in the following points; (1) majority of the domain of the material are changed to a new morphology after the restructuring, (2) the final size of the new grains is around 0.1 μm which is neither atomic scale nor macroscopic scale. (3) the morphology of the restructured domain indicates fractal like feature which indicates complex process is under-taken. From the first feature, the process is similar to phase transitions or metallographic transformations. However, as the crystallographic structure has no change before and after the restructuring, it is not the phase transition nor the transformation of atomic scale instability. The focus could be put on the material transport of mesoscopic scale which create the peculiar morphology. Indeed there are flows of energy and disturbances in crystallographic structure in nuclear materials on duty. Although the fission energy is 10 4 larger than the formation energy of the defects, thanks to the stability of the selected material, most of energy is thermalized without crystallographic instability. Little remained energy creates flows of disturbances and the new structure is a consequence of ordering process driven by these flows of disturbances. Therefore this phenomenon is a good example to study cooperative ordering process in physics of materials. This paper presents some of present understandings of the rim structure formation based on the mesoscopic mechanistic theories. Possible future development is also proposed (author) (ml)

  19. Thermal conductivity evaluation of high burnup mixed-oxide (MOX) fuel pellet

    International Nuclear Information System (INIS)

    Amaya, Masaki; Nakamura, Jinichi; Nagase, Fumihisa; Fuketa, Toyoshi

    2011-01-01

    The thermal conductivity formula of fuel pellet which contains the effects of burnup and plutonium (Pu) addition was proposed based on the Klemens' theory and reported thermal conductivities of unirradiated (U, Pu) O 2 and irradiated UO 2 pellets. The thermal conductivity of high burnup MOX pellet was formulated by applying a summation rule between phonon scattering parameters which show the effects of plutonium addition and burnup. Temperature of high burnup MOX fuel was evaluated based on the thermal conductivity integral which was calculated from the above-mentioned thermal conductivity formula. Calculated fuel temperatures were plotted against the linear heat rates of the fuel rods, and were compared with the fuel temperatures measured in a test reactor. Since both values agreed well, it was confirmed that the proposed thermal conductivity formula of MOX pellets is adequate.

  20. Plutonium isotopic composition of high burnup spent fuel discharged from light water reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    Highlights: → Pu isotopic composition of fuel affects FBR core nuclear characteristics very much. → Spent fuel compositions of next generation LWRs with burnup of 70 GWd/t were obtained. → Pu isotopic composition and amount in the spent fuel with 70 GWd/t were evaluated. → Spectral shift rods of high burnup BWR increases the fissile Pu fraction of spent fuel. → Wide fuel rod pitch of high burnup PWR lowers the fissile Pu fraction of spent fuel. - Abstract: The isotopic composition and amount of plutonium (Pu) in spent fuel from a high burnup boiling water reactor (HB-BWR) and a high burnup pressurized water reactor (HB-PWR), each with an average discharge burnup of 70 GWd/t, were estimated, in order to evaluate fast breeder reactor (FBR) fuel composition in the transition period from LWRs to FBRs. The HB-BWR employs spectral shift rods and the neutron spectrum is shifted through the operation cycle. The weight fraction of fissile plutonium (Puf) isotopes to the total plutonium in HB-BWR spent fuel after 5 years cooling is 62%, which is larger than that of conventional BWRs with average burnup of 45 GWd/t, because of the spectral shift operation. The amount of Pu produced in the HB-BWR is also larger than that produced in a conventional BWR. The HB-PWR uses a wider pitch 17 x 17 fuel rod assembly to optimize neutron slowing down. The Puf fraction of HB-PWR spent fuel after 5 years cooling is 56%, which is smaller than that of conventional PWRs with average burnup of 49 GWd/t, mainly because of the wider pitch. The amount of Pu produced in the HB-PWR is also smaller than that in conventional PWRs.

  1. Review of high burn-up RIA and LOCA database and criteria

    International Nuclear Information System (INIS)

    Vitanza, C.; Hrehor, M.

    2006-01-01

    This document is intended to provide regulators, their technical support organizations and industry with a concise review of existing fuel experimental data at RIA and LOCA conditions and considerations on how these data affect fuel safety criteria at increasing burn-up. It mostly addresses experimental results relevant to BWR and PWR fuel and it encompasses several contributions from the various experts that participated in the CSNI SEGFSM activities. It also covers the information presented at the joint CSNI/CNRA Topical Discussion on high burn-up fuel issues that took place on this subject in December 2004. The report is organized in the following way: the CABRI RIA database (14 tests), the NSRR database (26 tests) and other databases, RIA failure thresholds, comparison of failure thresholds for the HZP case, LOCA database ductility tests and quench tests, LOCA safety limit, provisional burn-up dependent criterion for Zr-4. The conclusions are as follows. On RIA, there is a well-established testing method and a significant and relatively consistent database from NSRR and Cabri tests, especially on high burn-up Zr-2 and Zr-4 cladding. It is encouraging that several correlations have been proposed for the RIA fuel failure threshold. Their predictions are compared and discussed in this paper for a representative PWR case. On LOCA, there are two different test methods, one based on ductility determinations and the other based on 'integral' quench tests. The LOCA database at high burn-up is limited to both testing methods. Ductility tests carried out with pre-hydrided non-irradiated cladding show a pronounced hydrogen effect. Data for actual high burn-up specimens are being gathered in various laboratories and will form the basis for a burn-up dependent LOCA limit. A provisional burn-up dependent criterion is discussed in the paper

  2. PIE and separate effect test of high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, S.K.; Kim, D.H.

    2005-01-01

    To investigate the performance of a high burnup UO 2 fuel, the highest burnup fuel assembly in KOREA was transported to the PIE facility in KAERI. It was a 17·17 fuel assembly irradiated at the Ulchin Unit 2 PWR. The peak fuel rod average burnup was about 57MWd/kgU and locally 65MWd/kgU. The general PIE was performed to investigate the fuel rod irradiation performance. Fission gas release, burnup, oxide thickness, hydrogen pickup, CRUD, and density change were measured by destructive of non-destructive test. Microstructure change, bubble and pore size distributions were observed by optical microscopy, SEM and EPMA. All generated and available PIE results were used to verify high burnup fuel performance code INFRA. Several rods were cut for additional separate effect test. For the high burnup fission gas release behaviour analysis, annealing apparatus were developed and installed in hot cell and preliminary test was performed. In addition to current apparatus new induction furnace will be installed in hot cell to investigate the high temperature and transient fission gas release behaviour. Ring tensile test was performed to analyze the material property degradation which caused by the oxidation and hydride, and additional mechanical tests will be performed. (Author)

  3. Technical Issues in the development of high burnup and long cycle fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Joo; Yang, Jae Ho; Oh, Jang Soo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Nam, Ik Hui [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Over the last half century, a nuclear fuel cycle, a fuel discharged burnup and a uranium enrichment of the LWR (Light Water Reactor) fuel have continuously increased. It was the efforts to reduce the LWR fuel cycle cost, and to make reactor operation more efficiently. Improved fuel and reactor performance contribute further to the reduction and management efficiency of spent fuels. The primary incentive for operating nuclear reactor fuel to higher burnup and longer cycle is the economic benefits. The fuel cycle costs could be reduced by extending fuel discharged burnup and fuel cycle length. The higher discharged burnup can increase the energy production per unit fuel mass or fuel assembly. The longer fuel cycle can increase reactor operation flexibility and reduce the fuel changing operation and the spent fuel management burden. The margin to storage capacity limits would be also increased because high burnup and long cycle fuel reduces the mass of spent fuels. However, increment of fuel burnup and cycle length might result in the acceleration of material aging consisting fuel assembly. Then, the safety and integrity of nuclear fuel will be degraded. Therefore, to simultaneously enhance the safety and economics of the LWR fuel through the fuel burnup and cycle extension, it is indispensable to develop the innovative nuclear fuel material concepts and technologies which can overcome degradation of fuel safety. New fuel research project to extend fuel discharged burnup and cycle length has been launched in KAERI. Main subject is to develop innovative LWR fuel pellets which can provide required fuel performance and safety at extended fuel burnup and cycle length. In order to achieve the mission, we need to know that what the impediments are and how to break through current limit of fuel pellet properties. In this study, the technical issues related to fuel pellets at high burnup were surveyed and summarized. We have collected the technical issues in the literatures

  4. Technical Issues in the development of high burnup and long cycle fuel pellets

    International Nuclear Information System (INIS)

    Kim, Dong Joo; Yang, Jae Ho; Oh, Jang Soo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Nam, Ik Hui

    2012-01-01

    Over the last half century, a nuclear fuel cycle, a fuel discharged burnup and a uranium enrichment of the LWR (Light Water Reactor) fuel have continuously increased. It was the efforts to reduce the LWR fuel cycle cost, and to make reactor operation more efficiently. Improved fuel and reactor performance contribute further to the reduction and management efficiency of spent fuels. The primary incentive for operating nuclear reactor fuel to higher burnup and longer cycle is the economic benefits. The fuel cycle costs could be reduced by extending fuel discharged burnup and fuel cycle length. The higher discharged burnup can increase the energy production per unit fuel mass or fuel assembly. The longer fuel cycle can increase reactor operation flexibility and reduce the fuel changing operation and the spent fuel management burden. The margin to storage capacity limits would be also increased because high burnup and long cycle fuel reduces the mass of spent fuels. However, increment of fuel burnup and cycle length might result in the acceleration of material aging consisting fuel assembly. Then, the safety and integrity of nuclear fuel will be degraded. Therefore, to simultaneously enhance the safety and economics of the LWR fuel through the fuel burnup and cycle extension, it is indispensable to develop the innovative nuclear fuel material concepts and technologies which can overcome degradation of fuel safety. New fuel research project to extend fuel discharged burnup and cycle length has been launched in KAERI. Main subject is to develop innovative LWR fuel pellets which can provide required fuel performance and safety at extended fuel burnup and cycle length. In order to achieve the mission, we need to know that what the impediments are and how to break through current limit of fuel pellet properties. In this study, the technical issues related to fuel pellets at high burnup were surveyed and summarized. We have collected the technical issues in the literatures

  5. Fuel rod behaviour at high burnup WWER fuel cycles

    International Nuclear Information System (INIS)

    Medvedev, A.; Bogatyr, S.; Kouznetsov, V.; Khvostov, G.; Lagovsky; Korystin, L.; Poudov, V.

    2003-01-01

    The modernisation of WWER fuel cycles is carried out on the base of complete modelling and experimental justification of fuel rods up to 70 MWd/kgU. The modelling justification of the reliability of fuel rod and fuel rod with gadolinium is carried out with the use of certified START-3 code. START-3 code has a continuous experimental support. The thermophysical and strength reliability of WWER-440 fuel is justified for fuel rod and pellet burnups 65 MWd/kgU and 74 MWd/U, accordingly. Results of analysis are demonstrated by the example of uranium-gadolinium fuel assemblies of second generation under 5-year cycle with a portion of 6-year assemblies and by the example of successfully completed pilot operation of 5-year cycle fuel assemblies during 6 years at unit 3 of Kolskaja NPP. The thermophysical and strength reliability of WWER-1000 fuel is justified for a fuel rod burnup 66 MWd/kgU by the example of fuel operation under 4-year cycles and 6-year test operation of fuel assemblies at unit 1 of Kalininskaya NPP. By the example of 5-year cycle at Dukovany NPP Unit 2 it was demonstrated that WWER fuel rod of a burnup 58 MWd/kgU ensure reliable operation under load following conditions. The analysis has confirmed sufficient reserves of Russian fuel to implement program of JSC 'TVEL' in order to improve technical and economical parameters of WWER fuel cycles

  6. Application of burnup credit concept to transport

    International Nuclear Information System (INIS)

    Futamura, Yoshiaki; Nakagome, Yoshihiro.

    1994-01-01

    For the design and safety assessment of the casks for transporting spent fuel, the fuel contained in them has been assumed to be new fuel. The reason is, it was difficult to evaluate the variation of the reactivity of fuel, and the research on the affecting factors and the method of measuring burnup were not much advanced. Recently, high burnup fuel has been adopted, and initial degree of enrichment rose. The research has been advanced for pursuing the economy of the casks for spent fuel, and burnup credit has become applicable to their design and safety assessment. As the result, the containing capacity increases by about 20%. When burnup credit is considered, it is necessary to confirm accurately the burnup of spent fuel. The burnup dependence of the concentration of fissile substances and neutron emissivity, the coolant void dependence of the concentration of fissile substances, and the relation of neutron multiplication rate with initial degree of enrichment or burnup are discussed. The conceptual design of casks considering burnup credit and its assessment, the merit, problem and the countermeasures to it when burnup credit is introduced are described. (K.I.)

  7. Proceedings of the technical committee on high conversion and high burnup reactors

    International Nuclear Information System (INIS)

    Shiroya, Seiji; Kanda, Keiji; Sekiya, Tamotsu

    1990-02-01

    The present issue is the proceedings of 'the Technical Committee on High Conversion and High Burnup Reactors' held at Kyoto University Research Reactor Institute (KURRI) on December 12 and 22, 1988. In this committee, members so much concerned with this theme were asked to report their recent accomplishment and activities. By such a program, the committee was intended to make a survey of future direction of research in this type of reactor. (J.P.N.)

  8. Evaluation of the characteristics of high burnup and high plutonium content mixed oxide (MOX) fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Two kinds of MOX fuel irradiation tests, i.e., MOX irradiation test up to high burnup and MOX having high plutonium content irradiation test, have been performed from JFY 2007 for five years in order to establish technical data concerning MOX fuel behavior during irradiation, which shall be needed in safety regulation of MOX fuel with high reliability. The high burnup MOX irradiation test consists of irradiation extension and post irradiation examination (PIE). The activities done in JFY 2011 are destructive post irradiation examination (D-PIE) such as EPMA and SIMS at CEA (Commissariat a l'Enegie Atomique) facility. Cadarache and PIE data analysis. In the frame of irradiation test of high plutonium content MOX fuel programme, MOX fuel rods with about 14wt % Pu content are being irradiated at BR-2 reactor and corresponding PIE is also being done at PIE facility (SCK/CEN: Studiecentrum voor Kernenergie/Centre d'Etude l'Energie Nucleaire) in Belgium. The activities done in JFY 2011 are non-destructive post irradiation examination (ND-PIE) and D-PIE and PIE data analysis. In this report the results of EPMA and SIMS with high burnup irradiation test and the result of gamma spectrometry measurement which can give FP gas release rate are reported. (author)

  9. Fission gas release and pellet microstructure change of high burnup BWR fuel

    International Nuclear Information System (INIS)

    Itagaki, N.; Ohira, K.; Tsuda, K.; Fischer, G.; Ota, T.

    1998-01-01

    UO 2 fuel, with and without Gadolinium, irradiated for three, five, and six irradiation cycles up to about 60 GWd/t pellet burnup in a commercial BWR were studied. The fission gas release and the rim effect were investigated by the puncture test and gas analysis method, OM (optical microscope), SEM (scanning electron microscope), and EPMA (electron probe microanalyzer). The fission gas release rate of the fuel rods irradiated up to six cycles was below a few percent; there was no tendency for the fission gas release to increase abruptly with burnup. On the other hand, microstructure changes were revealed by OM and SEM examination at the rim position with burnup increase. Fission gas was found depleted at both the rim position and the pellet center region using EPMA. There was no correlation between the fission gas release measured by the puncture test and the fission gas depletion at the rim position using EPMA. However, the depletion of fission gas in the center region had good correlation with the fission gas release rate determined by the puncture test. In addition, because the burnup is very large at the rim position of high burnup fuel and also due to the fission rate of the produced Pu, the Xe/Kr ratio at the rim position of high burnup fuel is close to the value of the fission yield of Pu. The Xe/Kr ratio determined by the gas analysis after the puncture test was equivalent to the fuel average but not to the pellet rim position. From the results, it was concluded that fission gas at the rim position was released from the UO 2 matrix in high burnup, however, most of this released fission gas was held in the porous structure and not released from the pellet to the free volume. (author)

  10. First steps towards modelling high burnup effect in UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    O` Carroll, C; Lassmann, K; Laar, J Van De; Walker, C T [CEC Joint Research Centre, Karlsruhe (Germany)

    1997-08-01

    High burnup initiates a process that can lead to major microstructural changes near the edge of the fuel: formation of subgrains, the loss of matrix fission gas and an increase in porosity. A consequence of this, is a decrease of thermal conductivity near the edge of the fuel which may be major implications for the performance of LWR fuels at higher burnup. The mechanism for the changes in grain structure, the apparent depletion of Xe and increase in porosity is associated with the high fission density at the fuel periphery. This is in turn due to the preferential capture of epithermal neutrons in the resonances of {sup 238}U. The new model TUBRNP predicts the radial burnup profile as a function of time together with the radial profile of plutonium. The model has been validated with data from LWR UO{sub 2} fuels with enrichments in the range 2 to 8.25% and burnups between 21 to 75 Gwd/t. It has been reported that at high burnup EPMA measures a sharp decrease in the concentration of Xe near the fuel surface. This loss of Xe is interpreted as a signal that the gas has been swept out of the original grains into pores: this ``missing`` Xe has been measured by XRF. It has been noted experimentally that the restructuring (Xe depletion and changes in grain structure) have an onset threshold local burnup in the region of 70 to 80 GWd/t: a specific value was taken for use in the model. For a given fuel TUBRNP predicts the local burnup profile, and the depth corresponding to the threshold value is taken to be the thickness of the Xe depleted region. The theoretical predictions have been compared with experimental data. The results are presented and should be seen as a first step in the development of a more detailed model of this phenomenon. (author). 22 refs, 9 figs, 2 tabs.

  11. High burnup, high power irradiation behavior of helium-bonded mixed carbide fuel pins

    International Nuclear Information System (INIS)

    Levine, P.J.; Nayak, U.P.; Boltax, A.

    1983-01-01

    Large diameter (9.4 mm) helium-bonded mixed carbide fuel pins were successfully irradiated in EBR-II to high burnup (12%) at high power levels (100 kW/m) with peak cladding midwall temperatures of 550 0 C. The wire-wrapped pins were clad with 0.51-mm-thick, 20% cold-worked Type 316 stainless steel and contained hyperstoichiometric (Usub(0.8)Pusub(0.2))C fuel covering the smeared density range from 75-82% TD. Post-irradiation examinations revealed: extensive fuel-cladding mechanical interaction over the entire length of the fuel column, 35% fission gas release at 12% burnup, cladding carburization and fuel restructuring. (orig.)

  12. Modelling of phenomena associated with high burnup fuel behaviour during overpower transients

    International Nuclear Information System (INIS)

    Sills, H.E.; Langman, V.J.; Iglesias, F.C.

    1995-01-01

    Phenomena of importance to the behaviour of high burnup fuel subjected to conditions of rapid overpower (i.e., LWR RIAs) include the change in cladding material properties due to irradiation, pellet-clad interaction (PCI) and 'rim' effects associated with the periphery of high burnup fuel. 'Rim' effects are postulated to be caused by changes in fuel morphology at high burnup. Typical discharge burnups for CANDU fuel are low compared to LWRs. Maximum linear ratings for CANDU fuel are higher than those for LWRs. However, under normal operating conditions, the Zircaloy-4 clad of the CANDU fuel is collapsed onto the fuel stack. Thus, the CANDU fuel performance codes model the transient behaviour of the fuel-to-clad interface and are capable of assessing the potential for pellet-clad mechanical interaction (PCMI) failures for a wide range of overpower conditions. This report provides a discussion of the modelling of the phenomena of importance to high burnup fuel behaviour during rapid overpower transients. (author)

  13. EPRI/DOE High-Burnup Fuel Sister Rod Test Plan Simplification and Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanson, B. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shimskey, R. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, N. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webster, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, P. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); MacFarlan, P. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billone, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Rose [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-15

    The EPRI/DOE High-Burnup Confirmatory Data Project (herein called the “Demo”) is a multi-year, multi-entity test with the purpose of providing quantitative and qualitative data to show if high-burnup fuel mechanical properties change in dry storage over a ten-year period. The Demo involves obtaining 32 assemblies of high-burnup PWR fuel of common cladding alloys from the North Anna Nuclear Power Plant, loading them in an NRC-licensed TN-32B cask, drying them according to standard plant procedures, and then storing them on the North Anna dry storage pad for ten years. After the ten-year storage time, the cask will be opened and the mechanical properties of the rods will be tested and analyzed.

  14. Lattice cell burnup calculation

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1977-01-01

    Accurate burnup prediction is a key item for design and operation of a power reactor. It should supply information on isotopic changes at each point in the reactor core and the consequences of these changes on the reactivity, power distribution, kinetic characters, control rod patterns, fuel cycles and operating strategy. A basic stage in the burnup prediction is the lattice cell burnup calculation. This series of lectures attempts to give a review of the general principles and calculational methods developed and applied in this area of burnup physics

  15. Review of Halden Reactor Project high burnup fuel data that can be used in safety analyses

    International Nuclear Information System (INIS)

    Wiesenack, W.

    1996-01-01

    The fuels and materials testing programmes carried out at the OECD Halden Reactor Project are aimed at providing data in support of a mechanistic understanding of phenomena, especially as related to high burnup fuel. The investigations are focused on identifying long term property changes, and irradiation techniques and instrumentation have been developed over the years which enable to assess fuel behaviour and properties in-pile. The fuel-cladding gap has an influence on both thermal and mechanical behaviour. Improved gap conductance due to gap closure at high exposure is observed even in the case of a strong contamination with released fission gas. On the other hand, pellet-cladding mechanical interaction, which is measured with cladding elongation detectors and diameter gauges, is re-established after a phase with less interaction and is increasing. These developments are exemplified with data showing changes of fuel temperature, hydraulic diameter and cladding elongation with burnup. Fuel swelling and cladding primary and secondary creep have been successfully measured in-pile. They provide data for, e.g., the possible cladding lift-off to be accounted for at high burnup. Fuel conductivity degradation is observed as a gradual temperature increase with burnup. This affects stored heat, fission gas release and temperature dependent fuel behaviour in general. The Halden Project's data base on fission gas release shows that the phenomenon is associated with an accumulation of gas atoms at the grain boundaries to a critical concentration before appreciable release occurs. This is accompanied by an increase of the surface-to-volume ratio measured in-pile in gas flow experiments. A typical observation at high burnup is also that a burst release of fission gas may occur during a power decrease. Gas flow and pressure equilibration experiments have shown that axial communication is severely restricted at high burnup

  16. Post Irradiation Examination Plan for High-Burnup Demonstration Project Sister Rods

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Rose [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    This test plan describes the experimental work to be implemented by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) to characterize high burnup (HBU) spent nuclear fuel (SNF) in conjunction with the High Burnup Dry Storage Cask Research and Development Project and serves to coordinate and integrate the multi-year experimental program to collect and develop data regarding the continued storage and eventual transport of HBU (i.e., >45 GWd/MTU) SNF. The work scope involves the development, performance, technical integration, and oversight of measurements and collection of relevant data, guided by analyses and demonstration of need.

  17. Recent developments of the TRANSURANUS code with emphasis on high burnup phenomena

    International Nuclear Information System (INIS)

    Lassmann, K.; Schubert, A.; Laar, J. van de; Vennix, C.W.H.M.

    2001-01-01

    TRANSURANUS is a computer program for the thermal and mechanical analysis of fuel rods in nuclear reactors, which is developed at the Institute for Transuranium Elements. The code is in use in several European organisations, both in research and industry. In the paper the recent developments are summarised: the burnup degradation of the fuel thermal conductivity as well as the effects of gadolinium on the radial power distribution and thermal conductivity. Fission gas release from the High Burnup Structure is discussed. Finally, a new numerical method is outlined that is able to treat the highly non-linear mechanical equations in transients (RIAs and LOCAs). (author)

  18. Fission-product burnup chain model for research reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Do; Gil, Choong Sup; Lee, Jong Tai [Korea Atomic Energy Research Inst., Daeduk (Republic of Korea)

    1990-12-01

    A new fission-product burnup chain model was developed for use in research reactor analysis capable of predicting the burnup-dependent reactivity with high precision over a wide range of burnup. The new model consists of 63 nuclides treated explicitly and one fissile-independent pseudo-element. The effective absorption cross sections for the preudo-element and the preudo-element yield of actinide nuclides were evaluated in the this report. The model is capable of predicting the high burnup behavior of low-enriched uranium-fueled research reactors.(Author).

  19. High Burnup Fuel Behaviour under LOCA Conditions as Observed in Halden Reactor Experiments

    International Nuclear Information System (INIS)

    Kolstad, E.; Wiesenack, W.; Oberlander, B.; Tverberg, T.

    2013-01-01

    In the context of assessing the validity of safety criteria for loss of coolant accidents with high burnup fuel, the OECD Halden Reactor Project has implemented an integral in-pile LOCA test series. In this series, fuel fragmentation and relocation, axial gas communication in high burnup rods as affected by gap closure and fuel- clad bonding, and secondary cladding oxidation and hydriding are of major interest. In addition, the data are being used for code validation as well as model development and verification. So far, nine tests with irradiated fuel segments (burnup 40-92 MW.d.kg -1 ) from PWR, BWR and VVER commercial nuclear power plants have been carried out. The in-pile measurements and the PIE results show a good repeatability of the experiments. The paper describes the experimental setup as well as the principal features and main results of these tests. Fuel fragmentation and relocation have occurred to varying degrees in these tests. The paper compares the conditions leading to the presence or absence of fuel fragmentation, e.g., burnup and loss of constraint. Axial gas flow is an important driving force for clad ballooning, fuel relocation and fuel expulsion. The experiments have provided evidence that such gas flow can be impeded in high burnup fuel with a potential impact on the ballooning and fuel dispersal. Although the results of the Halden LOCA tests are, to some extent, amplified by conditions and features deliberately introduced into the test series, the fuel behaviour identified in the Halden tests has an impact on the safety assessment of high burnup fuel and should give rise to improvements of the predictive capabilities of LOCA modelling codes. (author)

  20. High Cr ODS steels R and D for high burnup fuel cladding

    International Nuclear Information System (INIS)

    Kimura, A.; Kasada, R.; Kishimoto, H.; Iwata, N.; Cho, H.-S.; Toda, N.; Yutani, K.; Ukai, S.; Fujiwara, M.

    2007-01-01

    High-performance cladding materials is essential to realize highly efficient and high-burnup operation over 150 GWd/t of so called Generation IV nuclear energy systems, such as supercritical-water-cooled reactor (SCWR) and lead-cooled fast reactor (LFR). Oxide dispersion strengthening (ODS) ferritic/ martensitic steels, which contain 9-12%Cr, show rather high resistance to neutron irradiation embrittlement and high strength at elevated temperatures. However, their corrosion resistance is not good enough in SCW and in lead at high temperatures. High-Cr ODS steels have been developed to improve corrosion resistance. An increase in Cr content an addition resulted in a drastic improvement of corrosion resistance in SCW and in lead. On the contrary, high-Cr steels often show an enhancement of aging embrittlement as well as irradiation embrittlement. Anisotropy in tensile properties is another issue. In order to overwhelm these issues, surveillance tests of the material performance have been performed for high Cr-ODS steels produced by new processing technologies. It is demonstrated that the dispersion of nono-sized oxide particles in high density is effective to attain high-performance and high-Cr ODS steels have a high potential as fuel cladding materials for SCWR and LFR with high efficiency and high burnup. (authors)

  1. Burn-Up Determination by High Resolution Gamma Spectrometry: Fission Product Migration Studies

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R S; Blackadder, W H; Ronqvist, N

    1967-04-15

    The migration of solid fission products, in particular caesium and ruthenium, in high temperature oxide fuel can create a severe problem during the application of non-destructive burn-up methods employing gamma spectrometry, since caesium-137 is otherwise the most convenient long-lived burn-up monitor and ruthenium-106 can be used to distinguish between fissions in U-235 and Pu-239. As part of an experimental programme to develop burn-up methods, gamma scanning experiments have been performed on slices of irradiated UO{sub 2} pellets using a lithium-drifted germanium detector. The usefulness of the technique for migration studies has been demonstrated by comparing the fission product distribution curves across the specimen diameters with the microstructure of the specimens after polishing and etching.

  2. Development of high performance liquid chromatography for rapid determination of burn-up of nuclear fuels

    International Nuclear Information System (INIS)

    Joseph, M.; Karunasagar, D.; Saha, B.

    1996-01-01

    Burn-up an important parameter during evaluation of the performance of any nuclear fuel. Among the various techniques available, the preferred one for its determination is based on accurate measurement of a suitable fission product monitor and the residual heavy elements. Since isotopes of rare earth elements are generally used as burn-up monitors, conditions were standardized for rapid separation (within 15 minutes) of light rare earths using high performance liquid chromatography based on either anion exchange (Partisil 10 SAX) in methanol-nitric acid medium or by cation exchange on a reverse phase column (Spherisorb 5-ODS-2 or Supelcosil LC-18) dynamically modified with 1-octane sulfonate or camphor-10-sulfonic acid (β). Both these methods were assessed for separation of individual fission product rare earths from their mixtures. A new approach has been examined in detail for rapid assay of neodymium, which appears promising for faster and accurate measurement of burn-up. (author)

  3. Fission gas release from UO2 pellet fuel at high burn-up

    International Nuclear Information System (INIS)

    Vitanza, C.; Kolstad, E.; Graziani, U.

    1979-01-01

    Analysis of in-reactor measurements of fuel center temperature and rod internal pressure at the OECD Halden Reactor Project has led to the development of an empirical fission gas release model, which is described. The model originally derived from data obtained in the low and intermediate burn-up range, appears to give good predictions for rods irradiated to high exposures as well. PIE puncturing data from seven fuel rods, operated at relatively constant powers and peak center temperatures between 1900 and 2000 0 C up to approx. 40,000 MWd/t UO 2 , did not exhibit any burn-up enhancement on the fission gas release rate

  4. Preliminary neutronic design of high burnup OTTO cycle pebble bed reactor

    International Nuclear Information System (INIS)

    Setiadipura, T.; Zuhair; Irwanto, D.

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM) loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble. (author)

  5. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    T. Setiadipura

    2015-04-01

    Full Text Available The pebble bed type High Temperature Gas-cooled Reactor (HTGR is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble

  6. Basic evaluation on nuclear characteristics of BWR high burnup MOX fuel and core

    International Nuclear Information System (INIS)

    Nagano, M.; Sakurai, S.; Yamaguchi, H.

    1997-01-01

    MOX fuel will be used in existing commercial BWR cores as a part of reload fuels with equivalent operability, safety and economy to UO 2 fuel in Japan. The design concept should be compatible with UO 2 fuel design. High burnup UO 2 fuels are being developed and commercialized step by step. The MOX fuel planned to be introduced in around year 2000 will use the same hardware as UO 2 8 x 8 array fuel developed for a second step of UO 2 high burnup fuel. The target discharge exposure of this MOX fuel is about 33 GWd/t. And the loading fraction of MOX fuel is approximately one-third in an equilibrium core. On the other hand, it becomes necessary to minimize a number of MOX fuels and plants utilizing MOX fuel, mainly due to the fuel economy, handling cost and inspection cost in site. For the above reasons, it needed to developed a high burnup MOX fuel containing much Pu and a core with a large amount of MOX fuels. The purpose of this study is to evaluate basic nuclear fuel and core characteristics of BWR high burnup MOX fuel with batch average exposure of about 39.5 GWd/t using 9 x 9 array fuel. The loading fraction of MOX fuel in the core is within a range of about 50% to 100%. Also the influence of Pu isotopic composition fluctuations and Pu-241 decay upon nuclear characteristics are studied. (author). 3 refs, 5 figs, 3 tabs

  7. Development of base technology for high burnup PWR fuel improvement Volume 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Eun; Lee, Sang Hee; Bae, Seong Man [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Chung, Jin Gon; Chung, Sun Kyo; Kim, Sun Du [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Kim, Jae Won; Chung, Sun Kyo; Kim, Sun Du [Korea Nuclear Fuel Development Inst., Seoul (Korea, Republic of)

    1995-12-31

    Development of base technology for high burnup nuclear fuel -Development of UO{sub 2} pellet manufacturing technology -Improvement of fuel rod performance code -Improvement of plenum spring design -Study on the mechanical characteristics of fuel cladding -Organization of fuel failure mechanism Establishment of next stage R and D program (author). 226 refs., 100 figs.

  8. Choosing the optimum burnup

    International Nuclear Information System (INIS)

    Geller, L.; Goldstein, L.; Franks, W.A.

    1986-01-01

    This paper reviews some of the considerations utilities must evaluate when going to higher discharge burnups. The advantages and disadvantages of higher discharge burnups are described, as well as a consistent approach for evaluating optimum discharge burnup and its comparison to current practice. When an analysis is performed over the life of the plant, the design of the terminal cycles has significant impact on the lifetime savings from higher burnups. Designs for high burnup cycles have a greater average inventory value in the core. As one goes to higher burnup, there is a greater likelihood of discarding a larger value in unused fuel unless the terminal cycles are designed carefully. This effect can be large enough in some cases to wipe out the lifetime cost savings relative to operating with a higher discharge burnup cycle

  9. High burn-up structure in nuclear fuel: impact on fuel behavior - 4005

    International Nuclear Information System (INIS)

    Noirot, J.; Pontillon, Y.; Zacharie-Aubrun, I.; Hanifi, K.; Bienvenu, P.; Lamontagne, J.; Desgranges, L.

    2016-01-01

    When UO 2 and (U,Pu)O 2 fuels locally reach high burn-up, a major change in the microstructure takes place. The initial grains are replaced by thousands of much smaller grains, fission gases form micrometric bubbles and metallic fission products form precipitates. This occurs typically at the rim of the pellets and in heterogeneous MOX fuel Pu rich agglomerates. The high burn-up at the rim of the pellets is due to a high capture of epithermal neutrons by 238 U leading locally to a higher concentration of fissile Pu than in the rest of the pellet. In the heterogeneous MOX fuels, this rim effect is also active, but most of the high burn-up structure (HBS) formation is linked to the high local concentration of fissile Pu in the Pu agglomerates. This Pu distribution leads to sharp borders between HBS and non-HBS areas. It has been shown that the size of the new grains, of the bubbles and of the precipitates increase with the irradiation local temperatures. Other parameters have been shown to have an influence on the HBS initiation threshold, such as the irradiation density rate, the fuel composition with an effect of the Pu presence, but also of the Gd concentration in poisoned fuels, some of the studied additives, like Cr, and, maybe some of the impurities. It has been shown by indirect and direct approaches that HBS formation is not the main contributor to the increase of fission gas release at high burn-up and that the HBS areas are not the main source of the released gases. The impact of HBS on the fuel behavior during ramp on high burn-up fuels is still unclear. This short paper is followed by the slides of the presentation

  10. IFPE/TRIBULATION R1, Fuel Rod Behaviour at High Burnup

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    2002-01-01

    Description: The TRIBULATION (Tests Relative to High Burnup Limitations Arising Normally in LWRs) International Programme started in July 1980 and was organized jointly by BelgoNucleaire and the Nuclear Energy Centre at Mol (CEN/SCK) with the co-sponsorship of 14 participating organizations. The objectives of the programme were twofold. It was primarily a demonstration programme aimed at assessing the fuel rod behaviour at high burn-up, when an earlier transient had occurred in the power plant. The second objective was to investigate the behaviour of different fuel rod designs and manufacturers when subjected to a steady state irradiation history to high burn-up. The first objective was met by irradiating fuel rods under steady state conditions in the BR3 reactor and under transient conditions in BR2. The effect of the transient was determined by comparing data from 4 identical rods tested as follows: i) BR3 irradiation followed by PIE; ii) BR3 irradiation followed by BR2 transient then PIE; iii) BR3 irradiation followed by BR2 transient and re-irradiated in BR3 before PIE; iv) BR3 irradiation and continued BR3 irradiation to maximum burn-up before PIE. The Database contains data from 19 cases using rods fabricated by BelgoNucleaire (BN) (11) and Brown Boveri Reactor GmbH (BBR) (8)

  11. Simulation of the behaviour of nuclear fuel under high burnup conditions

    International Nuclear Information System (INIS)

    Soba, Alejandro; Lemes, Martin; González, Martin Emilio; Denis, Alicia; Romero, Luis

    2014-01-01

    Highlights: • Increasing the time of nuclear fuel into reactor generates high burnup structure. • We analyze model to simulate high burnup scenarios for UO 2 nuclear fuel. • We include these models in the DIONISIO 2.0 code. • Tests of our models are in very good agreement with experimental data. • We extend the range of predictability of our code up to 60 MWd/KgU average. - Abstract: In this paper we summarize all the models included in the latest version of the DIONISIO code related to the high burnup scenario. Due to the extension of nuclear fuels permanence under irradiation, physical and chemical modifications are developed in the fuel material, especially in the external corona of the pellet. The codes devoted to simulation of the rod behaviour under irradiation need to introduce modifications and new models in order to describe those phenomena and be capable to predict the behaviour in all the range of a general pressurized water reactor. A complex group of subroutines has been included in the code in order to predict the radial distribution of power density, burnup, concentration of diverse nuclides and porosity within the pellet. The behaviour of gadolinium as burnable poison also is modelled into the code. The results of some of the simulations performed with DIONISIO are presented to show the good agreement with the data selected for the FUMEX I/II/III exercises, compiled in the NEA data bank

  12. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  13. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  14. Reactivity and isotopic composition of spent PWR [pressurized-water-reactor] fuel as a function of initial enrichment, burnup, and cooling time

    International Nuclear Information System (INIS)

    Cerne, S.P.; Hermann, O.W.; Westfall, R.M.

    1987-10-01

    This study presents the reactivity loss of spent PWR fuel due to burnup in terms of the infinite lattice multiplications factor, k/sub ∞/. Calculations were performed using the SAS2 and CSAS1 control modules of the SCALE system. The k/sub ∞/ values calculated for all combinations of six enrichments, seven burnups, and five cooling times. The results are presented as a primary function of enrichment in both tabular and graphic form. An equation has been developed to estimate the tabulated values of k/sub ∞/'s by specifying enrichment, cooling time, and burnup. Atom densities for fresh fuel, and spent fuel at cooling times of 2, 10, and 20 years are included. 13 refs., 8 figs., 8 tabs

  15. Analysis of bubble pressure in the rim region of high burnup PWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yang Hyun; Lee, Byung Ho; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Bubble pressure in the rim region of high burnup PWR UO{sub 2} fuel has been modeled based on measured rim width, porosity and bubble density. Using the assumption that excessive bubble pressure in the rim is inversely proportional to its radius, proportionality constant is derived as a function of average pellet burnup and bubble radius. This approach is possible because the integration of the number of Xe atoms retained in the rim bubbles, which can be calculated as a function of bubble radius, over the bubble radius gives the total number of Xe atoms in the rim bubbles. Here the total number of Xe atoms in the rim bubbles can be derived from the measured Xe depletion fraction in the matrix and the calculated rim thickness. Then the rim bubble pressure is obtained as a function of fuel burnup and bubble size from the proportionality constant. Therefore, the present model can provide some useful information that would be required to analyze the behavior of high burnup PWR UO{sub 2} fuel under both normal and transient operating conditions. 28 refs., 9 figs. (Author)

  16. Properties of the high burnup structure in nuclear light water reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, Thierry; Rondinella, Vincenzo V.; Konings, Rudy J.M. [European Commission, Joint Research Centre, Karlsruhe (Germany). Directorate Nuclear Safety and Security; and others

    2017-07-01

    The formation of the high burnup structure (HBS) is possibly the most significant example of the restructuring processes affecting commercial nuclear fuel in-pile. The HBS forms at the relatively cold outer rim of the fuel pellet, where the local burnup is 2-3 times higher than the average pellet burnup, under the combined effects of irradiation and thermo-mechanical conditions determined by the power regime and the fuel rod configuration. The main features of the transformation are the subdivision of the original fuel grains into new sub-micron grains, the relocation of the fission gas into newly formed intergranular pores, and the absence of large concentrations of extended defects in the fuel matrix inside the subdivided grains. The characterization of the newly formed structure and its impact on thermo-physical or mechanical properties is a key requirement to ensure that high burnup fuel operates within the safety margins. This paper presents a synthesis of the main findings from extensive studies performed at JRC-Karlsruhe during the last 25 years to determine properties and behaviour of the HBS. In particular, microstructural features, thermal transport, fission gas behaviour, and thermo-mechanical properties of the HBS will be discussed. The main conclusion of the experimental studies is that the HBS does not compromise the safety of nuclear fuel during normal operations.

  17. A complete NUHOMS {sup registered} solution for storage and transport of high burnup spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bondre, J. [Transnuclear, Inc. (AREVA Group), Fremont, CA (United States)

    2004-07-01

    The discharge burnups of spent fuel from nuclear power plants keep increasing with plants discharging or planning to discharge fuel with burnups in excess of 60,000 MWD/MTU. Due to limited capacity of spent fuel pools, transfer of older cooler spent fuel from fuel pool to dry storage, and very limited options for transport of spent fuel, there is a critical need for dry storage of high burnup, higher heat load spent fuel so that plants could maintain their full core offload reserve capability. A typical NUHOMS {sup registered} solution for dry spent fuel storage is shown in the Figure 1. Transnuclear, Inc. offers two advanced NUHOMS {sup registered} solutions for the storage and transportation of high burnup fuel. One includes the NUHOMS {sup registered} 24PTH system for plants with 90.7 Metric Ton (MT) crane capacity; the other offers the higher capacity NUHOMS {sup registered} 32PTH system for higher crane capacity. These systems include NUHOMS {sup registered} - 24PTH and -32PTH Transportable Canisters stored in a concrete storage overpack (HSM-H). These canisters are designed to meet all the requirements of both storage and transport regulations. They are designed to be transported off-site either directly from the spent fuel pool or from the storage overpack in a suitable transport cask.

  18. Portable gamma-ray holdup and attributes measurements of high- and variable-burnup plutonium

    International Nuclear Information System (INIS)

    Wenz, T.R.; Russo, P.A.; Miller, M.C.; Menlove, H.O.; Takahashi, S.; Yamamoto, Y.; Aoki, I.

    1991-01-01

    High burnup-plutonium holdup has been assayed quantitatively by low resolution gamma-ray spectrometry. The assay was calibrated with four plutonium standards representing a range of fuel burnup and 241 Am content. Selection of a calibration standard based on its qualitative spectral similarity to gamma-ray spectra of the process material is partially responsible for the success of these holdup measurements. The spectral analysis method is based on the determination of net counts in a single spectral region of interest (ROI). However, the low-resolution gamma-ray assay signal for the high-burnup plutonium includes unknown amounts of contamination from 241 Am. For most needs, the range of calibration standards required for this selection procedure is not available. A new low-resolution gamma-ray spectral analysis procedure for assay of 239 Pu has been developed. The procedure uses the calculated isotope activity ratios and the measured net counts in three spectral ROIs to evaluate and remove the 241 Am contamination from the 239 Pu assay signal on a spectrum-by-spectrum basis. The calibration for the new procedure requires only a single plutonium standard. The procedure also provides a measure of the burnup and age attributes of holdup deposits. The new procedure has been demonstrated using portable gamma-ray spectroscopy equipment for a wide range of plutonium standards and has also been applied to the assay of 239 Pu holdup in a mixed oxide fuel fabrication facility. 10 refs., 5 figs., 3 tabs

  19. Correlation of waterside corrosion and cladding microstructure in high-burnup fuel and gadolinia rods

    International Nuclear Information System (INIS)

    Chung, H.M.

    1989-09-01

    Waterside corrosion of the Zircaloy cladding has been examined in high-burnup fuel rods from several BWRs and PWRs, as well as in 3 wt % gadolinia burnable poison rods obtained from a BWR. The corrosion behavior of the high-burnup rods was then correlated with results from a microstructural characterization of the cladding by optical, scanning-electron, and transmission-electron microscopy (OM, SEM, and TEM). OM and SEM examination of the BWR fuel cladding showed both uniform and nodular oxide layers 2 to 45 μm in thickness after burnups of 11 to 30 MWd/kgU. For one of the BWRs, which was operated at 307 degree C rather than the normal 288 degree C, a relatively thick (50 to 70 μm) uniform oxide, rather than nodular oxides, was observed after a burnup of 27 to 30 MWd/kgU. TEM characterization revealed a number of microstructural features that occurred in association with the intermetallic precipitates in the cladding metal, apparently as a result of irradiation-induced or -enhanced processes. The BWR rods that exhibited white nodular oxides contained large precipitates (300 to 700 nm in size) that were partially amorphized during service, indicating that a distribution of the large intermetallic precipitates is conductive to nodular oxidation. 23 refs., 9 figs

  20. Kinetic Monte Carlo Potts Model for Simulating a High Burnup Structure in UO2

    International Nuclear Information System (INIS)

    Oh, Jae-Yong; Koo, Yang-Hyun; Lee, Byung-Ho

    2008-01-01

    A Potts model, based on the kinetic Monte Carlo method, was originally developed for magnetic domain evolutions, but it was also proposed as a model for a grain growth in polycrystals due to similarities between Potts domain structures and grain structures. It has modeled various microstructural phenomena such as grain growths, a recrystallization, a sintering, and so on. A high burnup structure (HBS) is observed in the periphery of a high burnup UO 2 fuel. Although its formation mechanism is not clearly understood yet, its characteristics are well recognized: The HBS microstructure consists of very small grains and large bubbles instead of original as-sintered grains. A threshold burnup for the HBS is observed at a local burnup 60-80 Gwd/tM, and the threshold temperature is 1000-1200 .deg. C. Concerning a energy stability, the HBS can be created if the system energy of the HBS is lower than that of the original structure in an irradiated UO 2 . In this paper, a Potts model was implemented for simulating the HBS by calculating system energies, and the simulation results were compared with the HBS characteristics mentioned above

  1. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    International Nuclear Information System (INIS)

    Wagner, J.C.; DeHart, M.D.

    2000-01-01

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ''end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified

  2. Transient fission gas release from UO2 fuel for high temperature and high burnup

    International Nuclear Information System (INIS)

    Szuta, M.

    2001-01-01

    In the present paper it is assumed that the fission gas release kinetics from an irradiated UO 2 fuel for high temperature is determined by the kinetics of grain growth. A well founded assumption that Vitanza curve describes the change of uranium dioxide re-crystallization temperature and the experimental results referring to the limiting grain size presented in the literature are used to modify the grain growth model. Algorithms of fission gas release due to re-crystallization of uranium dioxide grains are worked out. The defect trap model of fission gas behaviour described in the earlier papers is supplemented with the algorithms. Calculations of fission gas release in function of time, temperature, burn-up and initial grain sizes are obtained. Computation of transient fission gas release in the paper is limited to the case where steady state of irradiation to accumulate a desired burn-up is performed below the temperature of re-crystallization then the subsequent step temperature increase follows. There are considered two kinds of step temperature increase for different burn-up: the final temperature of the step increase is below and above the re-crystallization temperature. Calculations show that bursts of fission gas are predicted in both kinds. The release rate of gas liberated for the final temperature above the re-crystallization temperature is much higher than for final temperature below the re-crystallization temperature. The time required for the burst to subside is longer due to grain growth than due to diffusion of bubbles and knock-out release. The theoretical results explain qualitatively the experimental data but some of them need to be verified since this sort of experimental data are not found in the available literature. (author)

  3. Analytical and numerical study of radiation effect up to high burnup in power reactor fuels

    International Nuclear Information System (INIS)

    Lemes, M; Denis, A; Soba, A

    2012-01-01

    In the present work the behavior of fuel pellets for power reactors in the high burnup range (average burnup higher than 50 MWd/kgHM) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup, as long as a new microstructure develops, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behaviour. The evolution of porosity in the high burnup structure (HBS) is assumed to be determinant of the retention capacity of the fission gases released by the matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Starting from several works published in the open literature, a model was developed to describe the behaviour and evolution of porosity at local burnup values ranging from 60 to 300 MWd/KgHM. The model is mathematically expressed by a system of non-linear differential equations that take into account the open and closed porosity, the interactions between pores and the free surface and phenomena like pore's coalescence and migration and gas venting. Interactions of different orders between open and closed pores, growth of pores radius by vacancies trapping, the evolution of the pores number density, the internal pressure and over pressure within the pores, the fission gas retained in the matrix and released to the free volume are analyzed. The results of the simulations performed in the present work are in excellent agreement with experimental data available in the open literature and with results calculated by other authors (author)

  4. Conservative axial burnup distributions for actinide-only burnup credit

    International Nuclear Information System (INIS)

    Kang, C.; Lancaster, D.

    1997-11-01

    Unlike the fresh fuel approach, which assumes the initial isotopic compositions for criticality analyses, any burnup credit methodology must address the proper treatment of axial burnup distributions. A straightforward way of treating a given axial burnup distribution is to segment the fuel assembly into multiple meshes and to model each burnup mesh with the corresponding isotopic compositions. Although this approach represents a significant increase in modeling efforts compared to the uniform average burnup approach, it can adequately determine the reactivity effect of the axial burnup distribution. A major consideration is what axial burnup distributions are appropriate for use in light of many possible distributions depending on core operating conditions and histories. This paper summarizes criticality analyses performed to determine conservative axial burnup distributions. The conservative axial burnup distributions presented in this paper are included in the Topical Report on Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel Packages, Revision 1 submitted in May 1997 by the US Department of Energy (DOE) to the US Nuclear Regulatory Commission (NRC). When approved by NRC, the conservative axial burnup distributions may be used to model PWR spent nuclear fuel for the purpose of gaining actinide only burnup credit

  5. Draft evaluation of the frequency for gas sampling for the high burnup confirmatory data project

    Energy Technology Data Exchange (ETDEWEB)

    Stockman, Christine T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Alsaed, Halim A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-26

    This report fulfills the M3 milestone M3FT-15SN0802041, “Draft Evaluation of the Frequency for Gas Sampling for the High Burn-up Storage Demonstration Project” under Work Package FT-15SN080204, “ST Field Demonstration Support – SNL”. This report provides a technically based gas sampling frequency strategy for the High Burnup (HBU) Confirmatory Data Project. The evaluation of: 1) the types and magnitudes of gases that could be present in the project cask and, 2) the degradation mechanisms that could change gas compositions culminates in an adaptive gas sampling frequency strategy. This adaptive strategy is compared against the sampling frequency that has been developed based on operational considerations. Gas sampling will provide information on the presence of residual water (and byproducts associated with its reactions and decomposition) and breach of cladding, which could inform the decision of when to open the project cask.

  6. Effect of high burn-up and MOX fuel on reprocessing, vitrification and disposal of PWR and BWR spent fuels based on accurate burn-up calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, T.; Iwasaki, T.; Wada, K. [Tohoku Univ., Graduate School of Engineering, Dept. of Quantum Science and Energy Engineering, Sendai 980-8579 (Japan); Suyama, K. [Japan Atomic Energy Agency, Shirakata-Shirane 2-4, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2006-07-01

    To examine the procedures of the reprocessing, the vitrification and the geologic disposal, precise burn-up calculation for high burn-up and MOX fuels has been performed for not only PWR but also BWR by using SWAT and SWAT2 codes which are the integrated bum-up calculation code systems combined with the bum-up calculation code, ORIGEN2, and the transport calculation code, SRAC (the collision probability method) or MVP (the continuous energy Monte Carlo method), respectively. The calculation results shows that all of the evaluated items (heat generation and concentrations of Mo and Pt) largely increase and those significantly effect to the current procedures of the vitrification and the geologic disposal. The calculation result by SWAT2 confirms that the bundle calculation is required for BWR to be discussed about those effects in details, especially for the MOX fuel. (authors)

  7. Development of the CANDU high-burnup fuel design/analysis technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Sim, K. S.; Oh, D. J.; Park, J. H.; Jun, J. S.; Yoo, K. J.

    1997-08-01

    This report contains all the information related to the development of the CANDU advanced fuel, so-called CANFLEX-NU, which is composed of 43 elements with natural uranium fuel. Also, it contains the compatibility study of CANFLEX-RU which is considered as a CANDU high burnup fuel. This report describes the mechanical design, thermalhydraulic and safety evaluations of CANFLEX fuel bundle. (author). 38 refs., 24 tabs., 74 figs

  8. Development of the CANDU high-burnup fuel design/analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Ho Chun; Sim, K. S.; Oh, D. J.; Park, J. H.; Jun, J. S.; Yoo, K. J.

    1997-08-01

    This report contains all the information related to the development of the CANDU advanced fuel, so-called CANFLEX-NU, which is composed of 43 elements with natural uranium fuel. Also, it contains the compatibility study of CANFLEX-RU which is considered as a CANDU high burnup fuel. This report describes the mechanical design, thermalhydraulic and safety evaluations of CANFLEX fuel bundle. (author). 38 refs., 24 tabs., 74 figs.

  9. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Applications

    International Nuclear Information System (INIS)

    Arthur Motta; Yong Hwan Jeong; R.J. Comstock; G.S. Was; Y.S. Kim

    2006-01-01

    The objective of this collaboration between four institutions in the US and Korea is to demonstrate a technical basis for the improvement of the corrosion resistance of zirconium-based alloys in more extreme operating environments (such as those present in severe fuel duty, cycles high burnup, boiling, aggressive chemistry) and to investigate the feasibility (from the point of view of corrosion rate) of using advanced zirconium-based alloys in a supercritical water environment

  10. Evaluation of the Frequency for Gas Sampling for the High Burnup Confirmatory Data Project

    Energy Technology Data Exchange (ETDEWEB)

    Stockman, Christine T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Alsaed, Halim A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Marschman, Steven C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report provides a technically based gas sampling frequency strategy for the High Burnup (HBU) Confirmatory Data Project. The evaluation of: 1) the types and magnitudes of gases that could be present in the project cask and, 2) the degradation mechanisms that could change gas compositions culminates in an adaptive gas sampling frequency strategy. This adaptive strategy is compared against the sampling frequency that has been developed based on operational considerations.

  11. Impacts of the turbogenerator reactive operation in the nuclear fuel burnup

    International Nuclear Information System (INIS)

    Oliveira, Helio Ricardo V. de; Martinez, Aquilino S.

    2002-01-01

    The parameterization of the losses in a turbogenerator in function of an operation with the electrical system reactive allowed to model in a simple and exact way the equations that define and they quantify the additional of nuclear potency that it should be generated by a reactor, in order to maintain the commitment with the national system operator, that is, the electric active power contracted. starting from this additional of nuclear power it was modeled the additional burn up of the fuel elements, as well as the numbers of effective days to full power wasted. it was promoted a safety analysis and some limitations due to the reactive operation of the electrical system. inside of this context it was made a financial evaluation in which we ask some questions to companies and government organs in order to define what losses are acceptable and also the reason why we don't use other technician resources such as: increase of the electrical mesh, electrical power injection in strategic points, capacitor banks and increase of the number the electrical plants. (author)

  12. Behavior of high burnup fuel rod cladding during long-term dry storage in CASTOR casks

    International Nuclear Information System (INIS)

    Schaberg, A.; Spilker, H.; Goll, W.

    2000-01-01

    Short-time creep and rupture tests were performed to assess the strain potential of cladding of high burnt rods under conditions of dry storage. The tests comprised optimized Zr y-4 cladding samples from fuel rods irradiated to burnups of up to 64 MWd/kg U and were carried out at temperatures of 573 and 643 K at cladding stresses of about 400 and 600 MPa. The stresses, much higher than those occurring in a fuel rod, were chosen to reach circumferential elongations of about 2% within an envisaged testing time of 3-4 days. The creep tests were followed by a low temperature test at 423 K and 100 MPa to assess the long-term behavior of the cladding ductility especially with regard to the effect of a higher hydrogen content in the cladding due to the high burnup. The creep tests showed considerable uniform plastic elongations at these high burnups. It was demonstrated that around 600 K a uniform plastic strain of a least 2% is reached without cladding failure. The low temperature tests at 423 K for up to 5 days revealed no cladding failure under these conditions of reduced cladding ductility. It can be concluded that the increased hydrogen content has no adverse effect on cladding performance. (Authors)

  13. The adequacy of methods used for the approval of high burnup core loading

    International Nuclear Information System (INIS)

    Sonnenburg, H.G.

    2002-01-01

    New fuel assembly designs and new core loading strategies are foreseen by most utilities, optimising the use of nuclear fuel in nuclear power plants. Increasing the burn-up to high values above 50 MWd/kg affects the fuel and cladding conditions, which could have safety relevant consequences. It is the task of the safety authorities to assess the impact of these changes with respect to compliance with safety regulations. Usually this assessment is based on code analyses which contain models developed at a time when the burn-up was significantly lower. Because the high burn-up is accompanied with the development of new phenomena like the rim effect on fuel pellets, the codes' models need to be revised for the representation of these new phenomena. The objective of this paper is to present a review of the knowledge base of the fuel phenomena under high-burn-up conditions as seen from safety aspects. The safety relevant fuel rod phenomena will be discussed. It will further provide an assessment of the limitations of the methodologies so far applied in the context of LOCA and RIA transients. The recently started research activities in Germany to improve the methodologies will be presented. (author)

  14. Characterisation of high-burnup LWR fuel rods through gamma tomography

    International Nuclear Information System (INIS)

    Caruso, S.

    2007-01-01

    Current fuel management strategies for light water reactors (LWRs), in countries with high back-end costs, progressively extend the discharge burnup at the expense of increasing the 235 U enrichment of the fresh UO 2 fuel loaded. In this perspective, standard non-destructive assay techniques, which are very attractive because they are fast, cheap, and preserve the fuel integrity, in contrast to destructive approaches, require further validation when burnup values become higher than 50 GWd/t. This doctoral work has been devoted to the development and optimisation of non-destructive assay techniques based on gamma-ray emissions from irradiated fuel. It represents an important extension of the unique, high-burnup related database, generated in the framework of the LWR PROTEUS Phase II experiments. A novel tomographic measurement station has been designed and developed for the investigation of irradiated fuel rod segments. A unique feature of the station is that it allows both gamma-ray transmission and emission computerised tomography to be performed on single fuel rods. Four burnt UO 2 fuel rod segments of 400 mm length have been investigated, two with very high (52 GWd/t and 71 GWd/t) and two with ultra-high (91 GWd/t and 126 GWd/t) burnup. Several research areas have been addressed, as described below. The application of transmission tomography to spent fuel rods has been a major task, because of difficulties of implementation and the uniqueness of the experiments. The main achievements, in this context, have been the determination of fuel rod average material density (a linear relationship between density and burnup was established), fuel rod linear attenuation coefficient distribution (for use in emission tomography), and fuel rod material density distribution. The non-destructive technique of emission computerised tomography (CT) has been applied to the very high and ultra-high burnup fuel rod samples for determining their within-rod distributions of caesium and

  15. EPRI/DOE High Burnup Fuel Sister Pin Test Plan Simplification and Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanson, Brady [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billone, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Rose [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    The EPRI/DOE High Burnup Confirmatory Data Project (herein called the "Demo") is a multi-year, multi-entity confirmation demonstration test with the purpose of providing quantitative and qualitative data to show how high-burnup fuel ages in dry storage over a ten-year period. The Demo involves obtaining 32 assemblies of high-burnup PWR fuel of four common cladding alloys from the North Anna Nuclear Power Plant, drying them according to standard plant procedures, and then storing them in an NRC-licensed TN-3 2B cask on the North Anna dry storage pad for ten years. After the ten-year storage time, the cask will be opened and the rods will be examined for signs of aging. Twenty-five rods from assemblies of similar claddings, in-reactor placement, and burnup histories (herein called "sister rods") have been shipped from the North Anna Nuclear Power Plant and are currently being nondestructively tested at Oak Ridge National Laboratory. After the non-destructive testing has been completed for each of the twenty-five rods, destructive analysis will be performed at ORNL, PNNL, and ANL to obtain mechanical data. Opinions gathered from the expert interviews, ORNL and PNNL Sister Rod Test Plans, and numerous meetings has resulted in the Simplified Test Plan described in this document. Some of the opinions and discussions leading to the simplified test plan are included here. Detailed descriptions and background are in the ORNL and PNNL plans in the appendices . After the testing described in this simplified test plan h as been completed , the community will review all the collected data and determine if additional testing is needed.

  16. Investigation of research and development subjects for the Very High Burnup Fuel

    International Nuclear Information System (INIS)

    Hayashi, Kimio; Amano, Hidetoshi; Suzuki, Yasufumi; Furuta, Teruo; Nagase, Fumihisa; Suzuki, Masahide

    1993-06-01

    A concept of the Very High Burnup Fuel aiming at a maximum fuel assembly burnup of 100 GWd/t has been proposed in terms of burnup extension, utilization of Pu and transmutation of transuranium elements (TRU: Np, Am and Cm). The authors have investigated research and development (R and D) subjects of the fuel pellet and the cladding material of the Fuel. The present report describes the results on the fuel pellet. First, the chemical state of the Fuel and fission products (FP) was inferred through an FP-inventory and an equilibrium-thermodynamics calculations. Besides, knowledge obtained from post-irradiation examinations was surveyed. Next, an investigation was made on irradiation behavior of U/Pu mixed oxide (MOX) fuel with high enrichment of Pu, as well as on fission-gas release and swelling behavior of high burnup fuels. Reprocessibility of the Fuel, particularly solubility of the spent fuel, was also examined. As for the TRU-added fuel, material property data on TRU oxides were surveyed and summarized as a database. And the subjects on the production and the irradiation behavior were examined on the basis of experiences of MOX fuel production and TRU-added fuel irradiation. As a whole, the present study revealed the necessity of accumulating fundamental data and knowledge required for design and assessment of the fuel pellet, including the information on properties and irradiation performance of the TRU-added fuel. Finally, the R and D subjects were summarized, and a proposal was made on the way of development of the fuel pellet and cladding materials. (author)

  17. Cellular automata approach to investigation of high burn-up structures in nuclear reactor fuel

    International Nuclear Information System (INIS)

    Akishina, E.P.; Ivanov, V.V.; Kostenko, B.F.

    2005-01-01

    Micrographs of uranium dioxide (UO 2 ) corresponding to exposure times in reactor during 323, 953, 971, 1266 and 1642 full power days were investigated. The micrographs were converted into digital files isomorphous to cellular automata (CA) checkerboards. Such a representation of the fuel structure provides efficient tools for its dynamics simulation in terms of primary 'entities' imprinted in the micrographs. Besides, it also ensures a possibility of very effective micrograph processing by CA means. Interconnection between the description of fuel burn-up development and some exactly soluble models is ascertained. Evidences for existence of self-organization in the fuel at high burn-ups were established. The fractal dimension of microstructures is found to be an important characteristic describing the degree of radiation destructions

  18. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    International Nuclear Information System (INIS)

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs

  19. Micrographic study on distribution of fission products in high burn-up metallic alloy fuel

    International Nuclear Information System (INIS)

    Kolay, S.; Basu, M.; Das, D.

    2012-01-01

    One of the important mandates in the three-stage nuclear power generation programme of India is to utilize uranium-plutonium based alloy fuels in enabling shorter doubling time for breeding of the fissile isotopes ( 239 Pu and 233 U ) to be used in thorium based driver fuel in the third stage. Reported information shows the successful performance of alloy fuel with somewhat porous matrix in achieving 10-15 atom% burnup. The porosity and microstructure of these alloys are strongly dependent on their composition and phases present. Porosity also influences the extent of fuel swelling and gas release. So to assess fuel performance and fuel integrity under high burn-up condition it is essential to have knowledge about the new phases formed and their redistribution that occurs as a result of inter-diffusion and temperature gradient. This study addresses these issues taking the base alloy U-10 wt %Zr

  20. Influence of graphite discs, chamfers, and plenums on temperature distributions in high burnup fuel

    International Nuclear Information System (INIS)

    Ranger, A.; Tayal, M.; Singh, P.

    1990-04-01

    Previous studies have demonstrated the desirability to increase the fuel burnups in CANDU reactors from 7-9 GW.d/t to 21 GW.d/t. At high burnups, one consideration in fuel integrity is fission gas pressure, which is predicted to reach about 13 MPa. The gas pressure can be kept below the coolant pressure (about 10 MPa) via a variety of options such as bigger chamfers, deeper dishes, central hole, and plenums. However, it is important to address the temperature perturbations produced by the bigger chamfers and plenums which in turn, affect the gas pressure. Another consideration in fuel integrity is to reduce the likelihood of fuel failures via environmentally assisted cracking. Insertion of graphite discs between neighbouring pellets will lower the pellet temperatures, hence, lower fission gas release and lower expansion of the pellet. Therefore, it is desired to quantify the effect of graphite discs on pellet temperatures. Thermal analyses of different fuel element geometries: with and without chamfers, graphite discs, and plenums were performed. The results indicate that the two-dimensional distributions of temperatures due to the presence of chamfers, graphite discs, or plenums can have a significant impact on the integrity of high burnup fuel as we have been able to quantify in this paper

  1. A technique of melting temperature measurement and its application for irradiated high-burnup MOX fuels

    International Nuclear Information System (INIS)

    Namekawa, Takashi; Hirosawa, Takashi

    1999-01-01

    A melting temperature measurement technique for irradiated oxide fuels is described. In this technique, the melting temperature was determined from a thermal arrest on a heating curve of the specimen which was enclosed in a tungsten capsule to maintain constant chemical composition of the specimen during measurement. The measurement apparatus was installed in an alpha-tight steel box within a gamma-shielding cell and operated by remote handling. The temperature of the specimen was measured with a two-color pyrometer sighted on a black-body well at the bottom of the tungsten capsule. The diameter of the black-body well was optimized so that the uncertainties of measurement were reduced. To calibrate the measured temperature, two reference melting temperature materials, tantalum and molybdenum, were encapsulated and run before and after every oxide fuel test. The melting temperature data on fast reactor mixed oxide fuels irradiated up to 124 GWd/t were obtained. In addition, simulated high-burnup mixed oxide fuel up to 250 GWd/t by adding non-radioactive soluble fission products was examined. These data shows that the melting temperature decrease with increasing burnup and saturated at high burnup region. (author)

  2. Investigation of very high burnup UO{sub 2} fuels in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cappia, Fabiola

    2017-03-27

    Historically, the average discharge burnup of Light Water Reactor (LWR) fuel has increased almost continuously. On one side, increase in the average discharge burnup is attractive because it contributes to decrease part of the fuel cycle costs. On the other side, it raises the practical problem of predicting the performance, longevity and properties of reactor fuel elements upon accumulation of irradiation damage and fission products both during in-reactor operation and after discharge. Performance of the fuel and structural components of the core is one of the critical areas on which the economic viability and public acceptance of nuclear energy production hinges. Along the pellet radius, the fuel matrix is subjected to extremely heterogeneous alteration and damage, as a result of temperature and burnup gradients. In particular, in the peripheral region of LWR UO{sub 2} fuel pellets, when the local burnup exceeds 50-70 GWd/tHM, a microstructural transformation starts to take place, as a consequence of enhanced accumulation of radiation damage, fission products and limited thermal recovery. The newly formed structure is commonly named High Burnup Structure (HBS). The HBS is characterised by three main features: (a) formation of submicrometric grains from the original grains, (b) depletion of fission gas from the fuel matrix, (c) steep increase in the porosity, which retains most of the gas depleted from the fuel matrix. The last two aspects rose significant attention because of the important impact of the fission gas behaviour on integral fuel performance. The porosity increase controls the gas-driven swelling, worsening the cladding loading once the fuel-cladding gap is closed. Another concern is that the large retention of fission gas within the HBS could lead to significant release at high burnups through the degradation of thermal conductivity or contribute to fuel pulverisation during accidental conditions. Need of more experimental investigations about the

  3. Economic incentives and recommended development for commercial use of high burnup fuels in the once-through LWR fuel cycle

    International Nuclear Information System (INIS)

    Stout, R.B.; Merckx, K.R.; Holm, J.S.

    1981-01-01

    This study calculates the reduced uranium requirements and the economic incentives for increasing the burnup of current design LWR fuels from the current range of 25 to 35 MWD/Kg to a range of 45 to 55 MWD/Kg. The changes in fuel management strategies which may be required to accommodate these high burnup fuels and longer fuel cycles are discussed. The material behavior problems which may present obstacles to achieving high burnup or to license fuel are identified and discussed. These problems are presented in terms of integral fuel response and the informational needs for commercial and licensing acceptance. Research and development programs are outlined which are aimed at achieving a licensing position and commercial acceptance of high burnup fuels

  4. Modification in the FUDA computer code to predict fuel performance at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Das, M; Arunakumar, B V; Prasad, P N [Nuclear Power Corp., Mumbai (India)

    1997-08-01

    The computer code FUDA (FUel Design Analysis) participated in the blind exercises organized by the IAEA CRP (Co-ordinated Research Programme) on FUMEX (Fuel Modelling at Extended Burnup). While the code prediction compared well with the experiments at Halden under various parametric and operating conditions, the fission gas release and fission gas pressure were found to be slightly over-predicted, particularly at high burnups. In view of the results of 6 FUMEX cases, the main models and submodels of the code were reviewed and necessary improvements were made. The new version of the code FUDA MOD 2 is now able to predict fuel performance parameter for burn-ups up to 50000 MWD/TeU. The validation field of the code has been extended to prediction of thorium oxide fuel performance. An analysis of local deformations at pellet interfaces and near the end caps is carried out considering the hourglassing of the pellet by finite element technique. (author). 15 refs, 1 fig.

  5. Modification in the FUDA computer code to predict fuel performance at high burnup

    International Nuclear Information System (INIS)

    Das, M.; Arunakumar, B.V.; Prasad, P.N.

    1997-01-01

    The computer code FUDA (FUel Design Analysis) participated in the blind exercises organized by the IAEA CRP (Co-ordinated Research Programme) on FUMEX (Fuel Modelling at Extended Burnup). While the code prediction compared well with the experiments at Halden under various parametric and operating conditions, the fission gas release and fission gas pressure were found to be slightly over-predicted, particularly at high burnups. In view of the results of 6 FUMEX cases, the main models and submodels of the code were reviewed and necessary improvements were made. The new version of the code FUDA MOD 2 is now able to predict fuel performance parameter for burn-ups up to 50000 MWD/TeU. The validation field of the code has been extended to prediction of thorium oxide fuel performance. An analysis of local deformations at pellet interfaces and near the end caps is carried out considering the hourglassing of the pellet by finite element technique. (author). 15 refs, 1 fig

  6. Issues of high-burnup fuel for advanced nuclear reactors

    International Nuclear Information System (INIS)

    Belac, J.; Milisdoerfer, L.

    2004-12-01

    A brief description is given of nuclear fuels for Generation III+ and IV reactors, and the major steps needed for a successful implementation of new fuels in prospective types of newly designed power reactors are outlined. The following reactor types are discussed: gas cooled fast reactors, heavy metal (lead) cooled fast reactors, molten salt cooled reactors, sodium cooled fast reactors, supercritical water cooled reactors, and very high temperature reactors. The following are regarded as priority areas for future investigations: (i) spent fuel radiotoxicity; (ii) proliferation volatility; (iii) neutron physics characteristics and inherent safety element assessment; technical and economic analysis of the manufacture of advanced fuels; technical and economic analysis of the fuel cycle back end, possibilities of spent nuclear fuel reprocessing, storage and disposal. In parallel, work should be done on the validation and verification of analytical tools using existing and/or newly acquired experimental data. (P.A.)

  7. Behaviour of fission gas in the rim region of high burn-up UO2 fuel pellets with particular reference to results from an XRF investigation

    International Nuclear Information System (INIS)

    Mogensen, M.; Walker, C.T.

    1999-01-01

    XRF and EPMA results for retained xenon from Battelle's high burn-up effects program are re-evaluated. The data reviewed are from commercial low enriched BWR fuel with burn-ups of 44.8-54.9 GWd/tU and high enriched PWR fuel with burn-ups from 62.5 to 83.1 GWd/tU. It is found that the high burn-up structure penetrated much deeper than initially reported. The local burn-up threshold for the formation of the high burn-up structure in those fuels with grain sizes in the normal range lay between 60 and 75 GWd/tU. The high burn-up structure was not detected by EPMA in a fuel that had a grain size of 78 μm although the local burn-up at the pellet rim had exceeded 80 GWd/tU. It is concluded that fission gas had been released from the high burn-up structure in three PWR fuel sections with burn-ups of 70.4, 72.2 and 83.1 GWd/tU. In the rim region of the last two sections at the locations where XRF indicated gas release the local burn-up was higher than 75 GWd/tU. (orig.)

  8. Automatic determination of pressurized water reactor core loading patterns that maximize beginning-of-cycle reactivity within power-peaking and burnup constraints

    International Nuclear Information System (INIS)

    Hobson, G.H.; Turinsky, P.J.

    1986-01-01

    Computational capability has been developed to automatically determine a good estimate of the core loading pattern, which minimizes fuel cycle costs for a pressurized water reactor (PWR). Equating fuel cycle cost minimization with core reactivity maximization, the objective is to determine the loading pattern that maximizes core reactivity while satisfying power peaking, discharge burnup, and other constraints. The method utilizes a two-dimensional, coarse-mesh, finite difference scheme to evaluate core reactivity and fluxes for an initial reference loading pattern. First-order perturbation theory is applied to determine the effects of assembly shuffling on reactivity, power distribution, end-of-cycle burnup. Monte Carlo integer programming is then used to determine a near-optimal loading pattern within a range of loading patterns near the reference pattern. The process then repeats with the new loading pattern as the reference loading pattern and terminates when no better loading pattern can be determined. The process was applied with both reactivity maximization and radial power-peaking minimization as objectives. Results on a typical large PWR indicate that the cost of obtaining an 8% improvement in radial power-peaking margin is ≅2% in fuel cycle costs, for the reload core loaded without burnable poisons that was studied

  9. An empirical formulation to describe the evolution of the high burnup structure

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Martín; Soba, Alejandro; Denis, Alicia

    2015-01-15

    In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behavior. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behavior and progress of porosity at local burnup values ranging from 60 to 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in

  10. A semi-empirical model for the formation and depletion of the high burnup structure in UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pizzocri, D. [European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, PO Box 2340, 76125, Karlsruhe (Germany); Politecnico di Milano, Department of Energy, Nuclear Engineering Division, Via La Masa 34, 20156, Milan (Italy); Cappia, F. [European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, PO Box 2340, 76125, Karlsruhe (Germany); Technische Universität München, Boltzmannstraße 15, 85747, Garching bei München (Germany); Luzzi, L., E-mail: lelio.luzzi@polimi.it [Politecnico di Milano, Department of Energy, Nuclear Engineering Division, Via La Masa 34, 20156, Milan (Italy); Pastore, G. [Idaho National Laboratory, Fuel Modeling and Simulation Department, 2525 Fremont Avenue, 83415, Idaho Falls (United States); Rondinella, V.V.; Van Uffelen, P. [European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, PO Box 2340, 76125, Karlsruhe (Germany)

    2017-04-15

    In the rim zone of UO{sub 2} nuclear fuel pellets, the combination of high burnup and low temperature drives a microstructural change, leading to the formation of the high burnup structure (HBS). In this work, we propose a semi-empirical model to describe the formation of the HBS, which embraces the polygonisation/recrystallization process and the depletion of intra-granular fission gas, describing them as inherently related. For this purpose, we performed grain-size measurements on samples at radial positions in which the restructuring was incomplete. Based on these new experimental data, we infer an exponential reduction of the average grain size with local effective burnup, paired with a simultaneous depletion of intra-granular fission gas driven by diffusion. The comparison with currently used models indicates the applicability of the herein developed model within integral fuel performance codes. - Highlights: •Development of a new model for the formation and depletion of the high burnup structure. •New average grain-size measurements to support model development. •Formation threshold of the high burnup structure based on the concept of effective burnup. •Coupled description of grain recrystallization/polygonisation and depletion of intra-granular fission gas. •Model suitable for application in fuel performance codes.

  11. Automatic determination of pressurized water reactor core loading patterns which maximize end-of-cycle reactivity within power peaking and burnup constraints

    International Nuclear Information System (INIS)

    Hobson, G.H.

    1985-01-01

    An automated procedure for determining the optimal core loading pattern for a pressurized water reactor which maximizes end-of-cycle k/sub eff/ while satisfying constraints on power peaking and discharge burnup has been developed. The optimization algorithm combines a two energy group, two-dimensional coarse-mesh finite difference diffusion theory neutronics model to simulate core conditions, a perturbation theory approach to determine reactivity, flux, power and burnup changes as a function of assembly shuffling, and Monte Carlo integer programming to select the optimal loading pattern solution. The core examined was a typical Cycle 2 reload with no burnable poisons. Results indicate that the core loading pattern that maximizes end-of-cycle k/sub eff/ results in a 5.4% decrease in fuel cycle costs compared with the core loading pattern that minimizes the maximum relative radial power peak

  12. A simulation of the temperature overshoot observed at high burnup in annular fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Baron, D [Electricite de France, Moret-sur-Loing (France); Couty, J C [Electricite de France (EDF), 69 - Villeurbanne (France)

    1997-08-01

    Instrumented experiments have been carried out in recent years to calibrate and improve temperature calculations at high burnup in PWR nuclear fuel rods. The introduction of a thermocouple in the fuel stack allows the experiment to record the centre-line temperature all along the irradiation or re-irradiation. The results obtained on fresh fuel have not revealed any abnormal behavior as have observations done on high burnup rods. In this case, a sudden overshoot has been recorded on the thermocouple temperature above an average power threshold. Several hypotheses have been suggested. Only two seem to be acceptable: one in relation to an effect of grain decohesion, another based on a modification of fuel chemistry. The apparent reversibility of the phenomena when power decreases led us to prefer the first explanation. Indeed, the introduction of a thermocouple means that annular fuel pellets must be used. These are either initially manufactured with a central hole or drilled after base irradiation, using the ``RISOE`` technique. One must bear in mind that the use of such annular pellets drastically changes the crack pattern as irradiation proceeds. This is due to a different stress field which, combined with a weakening of the grain binding energy, leads to a partial grain decohesion on the inner face of the annular pellet. Modification of the grain binding energy is related to the presence of an increasing local population of gas bubbles and metallic precipitates at grain boundaries, as swelling creates intergranular local stresses which also could probably enhance the grain decohesion process. This grain decohesion concerns a 250 to 350 {mu}m depth and shows a narrow cracks network through which released fission gas can flow, temporarily pushing the resident helium gas out. The low conductivity of these gaseous fission products and the numerous gas layers created this way could partly explain the unexpected temperatures measured in high burnup fuels. (Abstract

  13. Fission gas release at high burn-up: beyond the standard diffusion model

    International Nuclear Information System (INIS)

    Landskron, H.; Sontheimer, F.; Billaux, M.R.

    2002-01-01

    At high burn-up standard diffusion models describing the release of fission gases from nuclear fuel must be extended to describe the experimental loss of xenon observed in the fuel matrix of the rim zone. Marked improvements of the prediction of integral fission gas release of fuel rods as well as of radial fission gas profiles in fuel pellets are achieved by using a saturation concept to describe fission gas behaviour not only in the pellet rim but also as an additional fission gas path in the whole pellet. (author)

  14. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burtseva, T. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  15. 3D core burnup studies in 500 MWe Indian prototype fast breeder reactor to attain enhanced core burnup

    International Nuclear Information System (INIS)

    Choudhry, Nakul; Riyas, A.; Devan, K.; Mohanakrishnan, P.

    2013-01-01

    Highlights: ► Enhanced burnup potential of existing prototype fast breeder reactor core is studied. ► By increasing the Pu enrichment, fuel burnup can be increased in existing PFBR core. ► Enhanced burnup increase economy and reduce load of fuel fabrication and reprocessing. ► Beginning of life reactivity is suppressed by increasing the number of diluents. ► Absorber rod worth requirements can be achieved by increasing 10 B enrichment. -- Abstract: Fast breeder reactors are capable of producing high fuel burnup because of higher internal breeding of fissile material and lesser parasitic capture of neutrons in the core. As these reactors need high fissile enrichment, high fuel burnup is desirable to be cost effective and to reduce the load on fuel reprocessing and fabrication plants. A pool type, liquid sodium cooled, mixed (Pu–U) oxide fueled 500 MWe prototype fast breeder reactor (PFBR), under construction at Kalpakkam is designed for a peak burnup of 100 GWd/t. This limitation on burnup is purely due to metallurgical properties of structural materials like clad and hexcan to withstand high neutron fluence, and not by the limitation on the excess reactivity available in the core. The 3D core burnup studies performed earlier for approach to equilibrium core of PFBR is continued to demonstrate the burnup potential of existing PFBR core. To increase the fuel burnup of PFBR, plutonium oxide enrichment is increased from 20.7%/27.7% to 22.1%/29.4% of core-1/core-2 which resulted in cycle length increase from 180 to 250 effective full power days (efpd), so that the peak fuel burnup increases from 100 to 134 GWd/t, keeping all the core parameters under allowed safety limits. Number of diluents subassemblies is increased from eight to twelve at beginning of life core to bring down the initial core excess reactivity. PFBR refueling is revised to accommodate twelve diluents. Increase of 10 B enrichment in control safety rods (CSRs) and diverse safety rods (DSRs

  16. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    International Nuclear Information System (INIS)

    Teague, Melissa C; Gorman, Brian P.; Miller, Brandon D; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel

  17. Thermal behaviour of high burnup PWR fuel under different fill gas conditions

    International Nuclear Information System (INIS)

    Tverberg, T.

    2001-01-01

    During its more than 40 years of existence, a large number of experiments have been carried out at the Halden Reactor Project focusing on different aspects related to nuclear reactor fuel. During recent years, the fuels testing program has mainly been focusing on aspects related to high burnup, in particular in terms of fuel thermal performance and fission gas release, and often involving reinstrumentation of commercially irradiated fuel. The paper describes such an experiment where a PWR rod, previously irradiated in a commercial reactor to a burnup of ∼50 MWd/kgUO 2 , was reinstrumented with a fuel central oxide thermocouple and a cladding extensometer together with a high pressure gas flow line, allowing for different fill gas compositions and pressures to be applied. The paper focuses on the thermal behaviour of such LWR rods with emphasis on how different fill gas conditions influence the fuel temperatures and gap conductance. Rod growth rate was also monitored during the irradiation in the Halden reactor. (author)

  18. FUNDAMENTAL MECHANISMS OF CORROSION OF ADVANCED LIGHT WATER REACTOR FUEL CLADDING ALLOYS AT HIGH BURNUP

    International Nuclear Information System (INIS)

    Lott, Randy G.

    2003-01-01

    OAK (B204) The corrosion behavior of nuclear fuel cladding is a key factor limiting the performance of nuclear fuel elements, improved cladding alloys, which resist corrosion and radiation damage, will facilitate higher burnup core designs. The objective of this project is to understand the mechanisms by which alloy composition, heat treatment and microstructure affect corrosion rate. This knowledge can be used to predict the behavior of existing alloys outside the current experience base (for example, at high burn-up) and predict the effects of changes in operation conditions on zirconium alloy behavior. Zirconium alloys corrode by the formation f a highly adherent protective oxide layer. The working hypothesis of this project is that alloy composition, microstructure and heat treatment affect corrosion rates through their effect on the protective oxide structure and ion transport properties. The experimental task in this project is to identify these differences and understand how they affect corrosion behavior. To do this, several microstructural examination techniques including transmission electron microscope (TEM), electrochemical impedance spectroscopy (EIS) and a selection of fluorescence and diffraction techniques using synchrotron radiation at the Advanced Photon Source (APS) were employed

  19. An investigation into fuel pulverization with specific reference to high burn-up LOCA

    International Nuclear Information System (INIS)

    Yagnik, Suresh; Turnbull, James; Noirot, Jean; Walker, Clive; Hallstadius, Lars; Waeckel, N.; Blanpain, P.

    2014-01-01

    To investigate the phenomenon of high burn-up fuel pellet material potentially disintegrating into powder under a rapid temperature transient, such as in a LOCA-type accident scenario, two independent scoping studies were commissioned. The first was to investigate the effect of hydrostatic restraint pressure on Fission Gas Release (FGR) from small samples of highly irradiated fuel (71 MWd/kgU) during a series of rapid temperature ramps. Experimentally, when the FGR increased rapidly during the temperature transients, the fuel was assumed to be 'pulverized', i.e., fragmented into powder. In the second series of experiments, laser heating of small samples was used to investigate the temperature at which fuel pulverization was initiated. Subsequent to fuel disintegration, there was always a spectrum of particle sizes present. The significance of this observation was recognized in the context of extended burn-up operation in commercial reactors. Based on the observation from these investigations, a fuel fragmentation threshold has been discussed and developed. We conclude that fuel disintegration could be of potential importance in limiting the performance and productive lifetime of nuclear fuel. However, since only fuel closely adjacent to ballooned or ruptured cladding would be released in a LOCA-type transient, expulsion of pulverized fuel from the ruptured fuel rod is not considered a safety issue; cooling of the defected assembly remains possible and there is no issue with respect to local criticality. (author)

  20. Modeling fission gas release in high burnup ThO2-UO2 fuel

    International Nuclear Information System (INIS)

    Long, Y.; Yuan, Y.; Pilat, E.E.; Rim, C.S.; Kazimi, M.S.

    2001-01-01

    A preliminary fission gas release model to predict the performance of thoria fuel using the FRAPCON-3 computer code package has been formulated. The following modeling changes have been made in the code: - Radial power/burnup distribution; - Thermal conductivity and thermal expansion; - Rim porosity and fuel density; - Diffusion coefficient of fission gas in ThO 2 -UO 2 fuel and low temperature fission gas release model. Due to its lower epithermal resonance absorption, thoria fuel experiences a much flatter distribution of radial fissile products and radial power distribution during operation as compared to uranian fuel. The rim effect and its consequences in thoria fuel, therefore, are expected to occur only at relatively high burnup levels. The enhanced conductivity is evident for ThO 2 , but for a mixture the thermal conductivity enhancement is small. The lower thermal fuel expansion tends to negate these small advantages. With the modifications above, the new version of FRAPCON-3 matched the measured fission gas release data reasonably well using the ANS 5.4 fission gas release model. (authors)

  1. Corrosion behaviour of Zircaloy 4 fuel cans for high burnup in EdF PWRs

    International Nuclear Information System (INIS)

    Blat, M.; Kerrec, O.; Bourgoin, J.; Vrignaud, E.; Amanrich, H.

    1994-01-01

    Uniform corrosion of fuel cladding could be a limitation for burn-up enhancement. First, the oxide thickness measured on fuel cladding for high burn-up has been compared to the prediction of the EDF code, CYRANO 2E. A comparative metallurgical characterization has been also performed on samples which were oxidized in pile and in autoclave. Then, laboratories studies have been launched for a better understanding of the corrosion mechanisms. A reflection was proposed on the two main theoretical concepts proposed for these mechanisms. Their kinetics could be controlled by transfers in liquid medium (electrolyte) or in solid medium (compact oxide). For the first topic, a nanoscopic characterization of the oxide is in progress, using Atomic Force Microscope. The first results are presented. In the second case, an electrochemical approach (impedance spectroscopy and voltametry) is developed in our laboratories. The obtained results could give some new keys in order to understand the influence of some parameters (alloys composition, coolant chemistry,...). (authors). 7 figs., 1 tab., 7 refs

  2. Analysis of UO2 fuel structure for low and high burn-up and its impact on fission gas release

    International Nuclear Information System (INIS)

    Szuta, M.; El-Koliel, M.S.

    1999-01-01

    During irradiation, uranium dioxide (UO 2 ) fuel undergo important restructuring mainly represented by densification and swelling, void migration, equiaxed grain growth, grain subdivision, and the formation of columnar grains. The purpose of this study is to obtain a comprehensive picture of the phenomenon of equiaxed grain growth in UO 2 ceramic material. The change of the grain size in high-density uranium dioxide as a function of temperature, initial grain size, time, and burnup is calculated. Algorithm of fission gas release from UO 2 fuel during high temperature irradiation at high burnup taking into account grain growth effect is presented. Theoretical results are compared with experimental data. (author)

  3. High-burnup/low-cooling-time fuel carrying capacity of the GA-4 and GA-9 spent fuel shipping casks

    International Nuclear Information System (INIS)

    Boshoven, J.K.; Hopf, J.E.

    1994-01-01

    In response to utilities' projected needs to ship higher burnup spent fuel, General Atomics (GA) has performed shielding and thermal analysis for the GA-4 and GA-9 legal weight shipping casks to determine the minimum cooling times for various burnup levels for fully loaded GA-4 and GA-9 casks and reduced payloads for the casks. Tables are provided in the paper which show the minimum cooling time for a given burnup and payload for each of the casks. The analyses show that the GA-4 and GA-9 casks can carry at least as many high-burnup and/or short-cooling-time spent fuel assemblies as present day shipping casks. In addition, the GA casks are able to carry at least twice as many assemblies as the present day shipping casks if the spent fuel burnup levels and/or cooling times are open-quotes coolerclose quotes or open-quotes as coolclose quotes as their design basis fuels. The increased shipping capacity for these more common open-quotes coolerclose quotes assemblies allows fewer shipments and therefore increases the efficiency and lowers predicted risks of the transport system

  4. High Frequency Acoustic Microscopy for the Determination of Porosity and Young's Modulus in High Burnup Uranium Dioxide Nuclear Fuel

    Science.gov (United States)

    Marchetti, Mara; Laux, Didier; Cappia, Fabiola; Laurie, M.; Van Uffelen, P.; Rondinella, V. V.; Wiss, T.; Despaux, G.

    2016-06-01

    During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile and to the hardness radial profile data obtained by Vickers micro-indentation.

  5. Systemization of burnup sensitivity analysis code. 2

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2005-02-01

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of criticality experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons; the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For

  6. A simulation of the temperature overshoot observed at high burnup in annular fuel pellets

    International Nuclear Information System (INIS)

    Baron, D.; Couty, J.C.

    1997-01-01

    Instrumented experiments have been carried out in recent years to calibrate and improve temperature calculations at high burnup in PWR nuclear fuel rods. The introduction of a thermocouple in the fuel stack allows the experiment to record the centre-line temperature all along the irradiation or re-irradiation. The results obtained on fresh fuel have not revealed any abnormal behavior as have observations done on high burnup rods. In this case, a sudden overshoot has been recorded on the thermocouple temperature above an average power threshold. Several hypotheses have been suggested. Only two seem to be acceptable: one in relation to an effect of grain decohesion, another based on a modification of fuel chemistry. The apparent reversibility of the phenomena when power decreases led us to prefer the first explanation. Indeed, the introduction of a thermocouple means that annular fuel pellets must be used. These are either initially manufactured with a central hole or drilled after base irradiation, using the ''RISOE'' technique. One must bear in mind that the use of such annular pellets drastically changes the crack pattern as irradiation proceeds. This is due to a different stress field which, combined with a weakening of the grain binding energy, leads to a partial grain decohesion on the inner face of the annular pellet. Modification of the grain binding energy is related to the presence of an increasing local population of gas bubbles and metallic precipitates at grain boundaries, as swelling creates intergranular local stresses which also could probably enhance the grain decohesion process. This grain decohesion concerns a 250 to 350 μm depth and shows a narrow cracks network through which released fission gas can flow, temporarily pushing the resident helium gas out. The low conductivity of these gaseous fission products and the numerous gas layers created this way could partly explain the unexpected temperatures measured in high burnup fuels. The purpose of

  7. Non-instrumented capsule design of HANARO irradiation test for the high burn-up large grain UO2 pellets

    International Nuclear Information System (INIS)

    Kim, D. H.; Lee, C. B.; Oh, D. S.

    2001-01-01

    Non-instrumented capsule was designed to irradiate the large grain UO 2 pellet developed for the high burn-up LWR fuel in the HANARO in-pile capsule. UO 2 pelletes will be irradiated up to the burn-up higher than 70 MWD/kgU in HANARO. To irradiate the UO 2 pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. In addition, to satisfy the safety criteria of HANARO such as prevention of ONB(Onset of Nucleate Boiling), fuel melting and wear damage of the capsule during the long term irradiation, design of the non-instrumented capsule was optimized

  8. Light a CANDLE. An innovative burnup strategy of nuclear reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi

    2005-11-01

    CANDLE is a new burnup strategy for nuclear reactors, which stands for Constant Axial Shape of Neutron Flux, Nuclide Densities and Power Shape During Life of Energy Production. When this candle-like burnup strategy is adopted, although the fuel is fixed in a reactor core, the burning region moves, at a speed proportionate to the power output, along the direction of the core axis without changing the spatial distribution of the number density of the nuclides, neutron flux, and power density. Excess reactivity is not necessary for burnup and the shape of the power distribution and core characteristics do not change with the progress of burnup. It is not necessary to use control rods for the control of the burnup. This booklet described the concept of the CANDLE burnup strategy with basic explanations of excess neutrons and its specific application to a high-temperature gas-cooled reactor and a fast reactor with excellent neutron economy. Supplementary issues concerning the initial core and high burnup were also referred. (T. Tanaka)

  9. Analysis of high burnup fuel behavior under control rod ejection accident in Korea standard nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Chan Bok; Lee, Chung Chan; Kim, Oh Hwan; Kim, Jong Jin

    1996-07-01

    Test results of high burnup fuel behavior under RIA(reactivity insertion accident) indicated that fuel might fail at the fuel enthalpy lower than that in the current fuel failure criteria was derived by the conservative assumptions and analysis of fuel failure mechanisms, and applied to the analysis of control rod ejection accident in the 1,000 MWe Korea standard PWR. Except that three dimensional core analysis was performed instead of conventional zero dimensional analysis, all the other conservative assumptions were kept. Analysis results showed that less than on percent of the fuel rods in the core has failed which was much less than the conventional fuel failure fraction, 9.8 %, even though a newly derived fuel failure criteria -Fuel failure occurs at the power level lower than that in the current fuel failure criteria. - was applied, since transient fuel rod power level was significantly decreased by analyzing the transient fuel rod power level was significantly decreased by analyzing the transient core three dimensionally. Therefore, it can be said that results of the radiological consequence analysis for the control rod ejection accident in the FSAR where fuel failure fraction was assumed 9.8 % is still bounding. 18 tabs., 48 figs., 39 refs. (Author)

  10. Development of a code and models for high burnup fuel performance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M; Kitajima, S [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1997-08-01

    First the high burnup LWR fuel behavior is discussed and necessary models for the analysis are reviewed. These aspects of behavior are the changes of power history due to the higher enrichment, the temperature feedback due to fission gas release and resultant degradation of gap conductance, axial fission gas transport in fuel free volume, fuel conductivity degradation due to fission product solution and modification of fuel micro-structure. Models developed for these phenomena, modifications in the code, and the benchmark results mainly based on Risoe fission gas project is presented. Finally the rim effect which is observe only around the fuel periphery will be discussed focusing into the fuel conductivity degradation and swelling due to the porosity development. (author). 18 refs, 13 figs, 3 tabs.

  11. Accident source terms for boiling water reactors with high burnup cores.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Powers, Dana Auburn; Leonard, Mark Thomas

    2007-11-01

    The primary objective of this report is to provide the technical basis for development of recommendations for updates to the NUREG-1465 Source Term for BWRs that will extend its applicability to accidents involving high burnup (HBU) cores. However, a secondary objective is to re-examine the fundamental characteristics of the prescription for fission product release to containment described by NUREG-1465. This secondary objective is motivated by an interest to understand the extent to which research into the release and behaviors of radionuclides under accident conditions has altered best-estimate calculations of the integral response of BWRs to severe core damage sequences and the resulting radiological source terms to containment. This report, therefore, documents specific results of fission product source term analyses that will form the basis for the HBU supplement to NUREG-1465. However, commentary is also provided on observed differences between the composite results of the source term calculations performed here and those reflected NUREG-1465 itself.

  12. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Application

    International Nuclear Information System (INIS)

    Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Jung, Y. H.; Bang, B. G.

    2006-08-01

    The systematic study was performed to develop the advanced corrosion-resistant Zr alloys for high burnup and Gen IV application. The corrosion behavior was significantly changed with the alloy composition and the corrosion environment. In general, the model alloys with a higher alloying elements showed a higher corrosion resistance. Among the model alloys tested in this study, Zr-10Cr-0.2Fe showed the best corrosion resistance regardless of the corrosion condition. The oxide on the higher corrosion-resistant alloy such as Zr-1.0Cr-0.2Fe consisted of mainly columnar grains, and it have a higher tetragonal phase stability. In comparison with other alloys being considered for the SCWR, the Zr alloys showed a lower corrosion rate than ferritic-martensitic steels. The results of this study imply that, at least from a corrosion standpoint, Zr alloys deserve consideration as potential cladding or structural materials in supercritical water cooled reactors

  13. IFPE/HBEP REV.1, Battelle's High Burn-Up Effects Programme for Fuel Performance

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    2002-01-01

    Description: It contains data from phase 2 and 3 on fabrication, dimensions, fuel and cladding properties and composition, reactor conditions and Post Irradiation Examination (PIE) data of the High Burn-up Effects Programme (HBEP) carried out at the Battelle North-west Laboratories. Each data set contains a full irradiation history with clad temperature and local power listed for each rod at 5, 10 or 12 axial zones as a function of cumulative time to the end of the given time interval over which the power has been constant. Data is provided for 45 rods from phase 2 and 36 rods from phase 3. The different rods have been manufactured by: ASEA/TVO, BN, BNFL, FBFC, FRA/CEA, GE, KWU/CE, WEC

  14. Burn-up measurements on nuclear reactor fuels using high performance liquid chromatography

    International Nuclear Information System (INIS)

    Sivaraman, N.; Subramaniam, S.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2002-01-01

    Burn-up measurements on thermal as well as fast reactor fuels were carried out using high performance liquid chromatography (HPLC). A column chromatographic technique using di-(2-ethylhexyl) phosphoric acid (HDEHP) coated column was employed for the isolation of lanthanides from uranium, plutonium and other fission products. Ion-pair HPLC was used for the separation of individual lanthanides. The atom percent fissions were calculated from the concentrations of the lanthanide (neodymium in the case of thermal reactor and lanthanum for the fast reactor fuels) and from uranium and plutonium contents of the dissolver solutions. The HPLC method was also used for determining the fractional fissions from uranium and plutonium for the thermal reactor fuel. (author)

  15. Microprobe study of fission product behavior in high-burnup HTR fuels

    International Nuclear Information System (INIS)

    Kleykamp, H.

    Electron microprobe analysis of irradiated coated particles with high burnup (greater than 50 percent fima) gives detailed information on the chemical state and the transport behavior of the fission products in UO 2 and UC 2 kernels and in the coatings. In oxide fuel kernels, metallic inclusions and ceramic precipitations are observed. The solubility behavior of the fission products in the fuel matrix has been investigated. Fission product inclusions could not be detected in carbide fuel kernels; post irradiation annealed UC 2 kernels, however, give information on the element combinations of some fission product phases. Corresponding to the chemical state in the kernel, Cs, Sr, Ba, Pd, Te and the rare earths are released easily and diffuse through the entire pyrocarbon coating. These fission products can be retained by a silicon carbide layer. The initial stage of a corrosive attack of the SiC coating by the fission products is evidenced

  16. New Fuel Alloys Seeking Optimal Solidus and Phase Behavior for High Burnup and TRU Burning

    International Nuclear Information System (INIS)

    Mariani, R.D.; Porter, D.L.; Kennedy, J.R.; Hayes, S.L.; Blackwood, V.S.; Jones, Z.S.; Olson, D.L.; Mishra, B.

    2015-01-01

    Recent modifications to fast reactor metallic fuels have been directed toward improving the melting and phase behaviors of the fuel alloy, for the purpose of ultra-high burnup and transuranic (TRU) burning. Improved melting temperatures increase the safety margin for uranium-based fast reactor fuel alloys, which is especially important for transuranic burning because the introduction of plutonium and neptunium acts to lower the alloy melting temperature. Improved phase behavior—single-phase, body-centered cubic—is desired because the phase is isotropic and the alloy properties are more predictable. An optimal alloy with both improvements was therefore sought through a comprehensive literature survey and theoretical analyses, and the creation and testing of some alloys selected by the analyses. Summarized here are those analyses, the impact of alloy modifications, and recent experimental results for selected pseudo-binary alloy systems that are hoped to accomplish the goals in a short timeframe. (author)

  17. Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  18. Nuclear criticality safety: general. 5. Reactivity Effect of Burnable Absorbers in Burnup Credit for the CASTOR X/32S Storage and Transport Cask

    International Nuclear Information System (INIS)

    Rombough, Charles T.; Lancaster, Dale B.; Diersch, Rudolf; Spilker, Harry

    2001-01-01

    When considering burnup credit in the licensing of storage and transportation casks, a significant effect is whether or not the burned fuel was depleted with burnable absorbers present. This paper presents the results of detailed calculations to quantitatively determine the burnable absorber effect for the CASTOR X/32S transport cask, which assumes burnup of the fuel in the criticality analysis. A radial view of the CASTOR X/32S cask is shown in Fig. 1. This is the actual plot of the geometry as modeled in KENO V.a. Note that there are no water-filled flux traps and the assemblies are tightly packed. This reduces the overall dimensions of the cask for a given number of fuel assemblies. Reactivity is held down by borated aluminum plates between the fuel assemblies and by placing absorber rod modules (ARMs) in the guide tubes of selected assemblies. If burnup of the fuel is not considered and the initial enrichment is 5.0 wt% 235 U, then 28 of the 32 fuel assemblies must contain an ARM to maintain a k eff 3 ; 4. moderator temperature of 604 K; 5. cooling time of 9.5 yr; 6. specific power of 60 W/g of U metal; 7. conservative axial and radial burnup shape distribution; 8. Westinghouse BP material containing 12.5 wt% B 4 C. Using the model described earlier, calculations were performed with varying numbers of BP fingers inserted for different exposure times. The results are shown in Tables I and II. The 1 s statistical error in these results is σ equals ±0.05%. Note that the BP finger and exposure effects decrease with fuel burnup and the effect is smaller when the cask contains ARMs. Conservatively combining the results from Tables I and II and interpolating, we can equate fewer BP fingers with longer BP exposure time as shown in Table III. The Table III results were checked by running the actual cases (for example, 20 BP fingers for 24 GWd/tonne exposure) to verify that the k eff 's for the cask were always less than the base-case values. These results can also be

  19. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao, E-mail: jiangh@ornl.gov; Wang, Jy-An John; Wang, Hong

    2016-12-01

    Highlights: • To investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on its dynamic performance. • Flexural rigidity, EI = M/κ, estimated from FEA results were benchmarked with SNF dynamic experimental results, and used to evaluate interface bonding efficiency. • Interface bonding efficiency can significantly dictate the SNF system rigidity and the associated dynamic performance. • With consideration of interface bonding efficiency and fuel cracking, HBU SNF fuel property was estimated with SNF static and dynamic experimental data. - Abstract: Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets to the clad, which results in a reduction in composite rod system flexural rigidity. Therefore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.

  20. A Critical Review of Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage

    International Nuclear Information System (INIS)

    Wagner, J.C.; Parks, C.V.

    2000-01-01

    This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing k inf estimates based on reactivity equivalent fresh fuel enrichment (REFFE) to k inf estimates using the actual spent fuel isotopics. Analyses of selected storage configurations common in PWR SFPs show that this practice yields nonconservative results (on the order of a few tenths of a percent) in configurations in which the spent fuel is adjacent to higher-reactivity assemblies (e.g., fresh or lower-burned assemblies) and yields conservative results in configurations in which spent fuel is adjacent to lower-reactivity assemblies (e.g., higher-burned fuel or empty cells). When the REFFE is determined based on unborated water moderation, analyses for storage conditions with soluble boron present reveal significant nonconservative results associated with the use of the REFFE. This observation is considered to be important, especially considering the recent allowance of credit for soluble boron up to 5% in reactivity. Finally, it is shown that the practice of equating the reactivity of spent fuel to fresh fuel is acceptable, provided the conditions for which the REFFE was determined remain unchanged. Determination of the REFFE for a reference configuration and subsequent use of the REFFE for different configurations violates the basis used for the determination of the REFFE and, thus, may lead to inaccurate, and possibly, nonconservative estimates of reactivity. A significant concentration (approx. 2000 ppm) of soluble boron is typically (but not necessarily required to be) present in PWR SFPs, of which only a portion (le 500 ppm) may be credited in safety analyses. Thus, a large subcritical margin currently exists that more than accounts for errors or uncertainties associated with the use of the REFFE

  1. Fuel element burnup measurements for the equilibrium LEU silicide RSG GAS (MPR-30) core under a new fuel management strategy

    International Nuclear Information System (INIS)

    Pinem, Surian; Liem, Peng Hong; Sembiring, Tagor Malem; Surbakti, Tukiran

    2016-01-01

    Highlights: • Burnup measurement of fuel elements comprising the new equilibrium LEU silicide core of RSG GAS. • The burnup measurement method is based on a linear relationship between reactivity and burnup. • Burnup verification was conducted using an in-house, in-core fuel management code BATAN-FUEL. • A good agreement between the measured and calculated burnup was confirmed. • The new fuel management strategy was confirmed and validated. - Abstract: After the equilibrium LEU silicide core of RSG GAS was achieved, there was a strong need to validate the new fuel management strategy by measuring burnup of fuel elements comprising the core. Since the regulatory body had a great concern on the safety limit of the silicide fuel element burnup, amongst the 35 burnt fuel elements we selected 22 fuel elements with high burnup classes i.e. from 20 to 53% loss of U-235 (declared values) for the present measurements. The burnup measurement method was based on a linear relationship between reactivity and burnup where the measurements were conducted under subcritical conditions using two fission counters of the reactor startup channel. The measurement results were compared with the declared burnup evaluated by an in-house in-core fuel management code, BATAN-FUEL. A good agreement between the measured burnup values and the calculated ones was found within 8% uncertainties. Possible major sources of differences were identified, i.e. large statistical errors (i.e. low fission counters’ count rates), variation of initial U-235 loading per fuel element and accuracy of control rod indicators. The measured burnup of the 22 fuel elements provided the confirmation of the core burnup distribution planned for the equilibrium LEU silicide core under the new fuel management strategy.

  2. Total surface area change of Uranium dioxide fuel in function of burn-up and its impact on fission gas release during neutron irradiation for small, intermediate and high burn-up

    International Nuclear Information System (INIS)

    Szuta, M.

    2011-01-01

    In the early published papers it was observed that the fractional fission gas release from the specimen have a tendency to increase with the total surface area of the specimen - a fairy linear relationship was indicated. Moreover it was observed that the increase of total surface area during irradiation occurs in the result of connection the closed porosity with the open porosity what in turn causes the increase of fission gas release. These observations let us surmise that the process of knock-out release is the most significant process of fission gas release since its quantity is proportional to the total surface area. Review of the experiments related to the increase of total surface area in function of burn-up is presented in the paper. For very high burn-up the process of grain sub-division (polygonization) occurs under condition that the temperature of irradiated fuel lies below the temperature of grain re-crystallization. Simultaneously with the process of polygonization, the increase in local porosity and the decrease in local density in function of burn-up occurs, which leads to the increase of total surface area. It is suggested that the same processes take place in the transformed fuel as in the original fuel, with the difference that the total surface area is so big that the whole fuel can be treated as that affected by the knock-out process. This leads to explanation of the experimental data that for very high burn-up (>120 MWd/kgU) the concentration of xenon is constant. An explanation of the grain subdivision process in function of burn-up in the 'athermal' rim region in terms of total surface area, initial grain size and knock-out release is undertaken. Correlation of the threshold burn-up, the local fission gas concentration, local total surface area, initial and local grain size and burn-up in the rim region is expected. (author)

  3. Burn-up Credit Criticality Safety Benchmark-Phase II-E. Impact of Isotopic Inventory Changes due to Control Rod Insertions on Reactivity and the End Effect in PWR UO2 Fuel Assemblies

    International Nuclear Information System (INIS)

    Neuber, Jens Christian; Tippl, Wolfgang; Hemptinne, Gwendoline de; Maes, Philippe; Ranta-aho, Anssu; Peneliau, Yannick; Jutier, Ludyvine; Tardy, Marcel; Reiche, Ingo; Kroeger, Helge; Nakata, Tetsuo; Armishaw, Malcom; Miller, Thomas M.

    2015-01-01

    The report describes the final results of the Phase II-E Burn-up Credit Criticality Benchmark conducted by the Expert Group on Burn-up Credit Criticality Safety. The objective of Phase II of the Burn-up Credit Criticality Safety programme is to study the impact of axial burn-up profiles of PWR UO 2 spent fuel assemblies on the reactivity of PWR UO 2 spent fuel assembly configurations. The objective of the Phase II-E benchmark was to study the impact of changes on the spent nuclear fuel isotopic composition due to control rod insertion during depletion on the reactivity and the end effect of spent fuel assemblies with realistic axial burn-up profiles for different control rod insertion depths ranging from 0 cm (no insertion) to full insertion (i.e. to the case that the fuel assemblies were exposed to control rod insertion over their full active length). For this purpose two axial burn-up profiles have been extracted from an AREVA-NP-GmbH-owned 17x17-(24+1) PWR UO 2 spent fuel assembly burn-up profile database. One profile has an average burn-up of 30 MWd/kg U, the other profile is related to an average burn-up of 50 MWd/kg U. Two profiles with different average burn-up values were selected because the shape of the burn-up profile is affected by the average burn-up and the end effect depends on the average burn-up of the fuel. The Phase II-E benchmark exercise complements the Phase II-C and Phase II-D benchmark exercises. In Phase II-D different irradiation histories were analysed using different control rod insertion histories during depletion as well as irradiation histories without control rod insertion. But in all the histories analysed a uniform distribution of the burn-up and hence a uniform distribution of the isotopic composition were assumed; and in all the histories including any usage of control rods full insertion of the control rods was assumed. In Phase II-C the impact of the asymmetry of axial burn-up profiles on the reactivity and the end effect of

  4. The use of burnup credit for spent fuel cask design

    International Nuclear Information System (INIS)

    Lake, W.H.

    1993-01-01

    A new generation of high capacity spent fuel transport casks is being developed by the U.S. Department of Energy (DOE) as part of the Federal Waste Management System (FWMS). Burnup credit, which recognizes the reduced reactivity of spent fuel is being used for these casks. Two cask designs being developed for DOE by Babcock and Wilcox and General Atomics use burnup credit. The cask designs must be certified by the U.S. Nuclear Regulatory Commission (NRC) if they are to be used in the FWMS. Certification of these casks by the NRC would not require any change in the NRC's transport regulations, and would be consistent with past practices. Furthermore, use of burnup credit casks appears to be consistent with current International Atomic Energy Agency (IAEA) rules and regulations. To support NRC certification, DOE has identified the technical issues related to burnup credit, and embarked on a development program to resolve them. (J.P.N.)

  5. The radial distribution of plutonium in high burnup UO2 fuels

    International Nuclear Information System (INIS)

    Lassmann, K.; O'Carroll, C.; Laar, J. van de; Walker, C.T.

    1994-01-01

    A new model (TUBRNP) is described which predicts the radial power density distribution as a function of burnup (and hence the radial burnup profile as a function of time) together with the radial profile of uranium and plutonium isotopes. Comparisons between measurements and the predictions of the TUBRNP model are made on fuels with enrichments in the range 2.9 to 8.25% and with burnups between 21 000 and 64 000 MWd/t. It is shown to be in excellent agreement with experimental measurements and is a marked improvement on earlier versions. (orig.)

  6. Approach for implementing burnup credit in high-capacity truck casks

    International Nuclear Information System (INIS)

    Boshoven, J.; Hopf, J.; Su, S.

    1991-01-01

    General Atomics (GA) will be submitting an application for certification to the US Nuclear Regulatory Commission (NRC) for the GA-4 and GA-9 Casks in 1992. To maintain a capacity of four pressurized-water-reactor (PWR) spent fuel assemblies, the GA-4 Cask uses burnup credit as part of the criticality control for the higher enrichments. Using the US Department of Energy (DOE) Burnup Credit Program as a basis, GA presents here an approach to burnup credit analysis to be included in the Safety Analysis Report for Packaging (SARP). 6 refs., 2 figs., 5 tabs

  7. Reactivity and neutron emission measurements of highly burnt PWR fuel rod samples

    International Nuclear Information System (INIS)

    Murphy, M.F.; Jatuff, F.; Grimm, P.; Seiler, R.; Brogli, R.; Meier, G.; Berger, H.-D.; Chawla, R.

    2006-01-01

    Fuel rods with burnup values beyond 50 GWd/t are characterised by relatively large amounts of fission products and a high abundance of major and minor actinides. Of particular interest is the change in the reactivity of the fuel as a function of burnup and the capability of modern codes to predict this change. In addition, the neutron emission from burnt fuel has important implications for the design of transport and storage facilities. Measurements have been made of the reactivity effects and the neutron emission rates of highly burnt uranium oxide and mixed oxide fuel rod samples coming from a pressurised water reactor (PWR). The reactivity measurements have been made in a PWR lattice in the PROTEUS zero-energy reactor moderated in turn with: water, a water and heavy water mixture and water containing boron. A combined transport flask and sample changer was used to insert the 400 mm long burnt fuel rod segments into the reactor. Both control rod compensation and reactor period methods were used to determine the reactivities of the samples. For the range of burnup values investigated, an interesting exponential relationship has been found between the neutron emission rate and the measured reactivity

  8. On the thermal conductivity of UO2 nuclear fuel at a high burn-up of around 100 MWd/kgHM

    International Nuclear Information System (INIS)

    Walker, C.T.; Staicu, D.; Sheindlin, M.; Papaioannou, D.; Goll, W.; Sontheimer, F.

    2006-01-01

    A study of the thermal conductivity of a commercial PWR fuel with an average pellet burn-up of 102 MWd/kgHM is described. The thermal conductivity data reported were derived from the thermal diffusivity measured by the laser flash method. The factors determining the fuel thermal conductivity at high burn-up were elucidated by investigating the recovery that occurred during thermal annealing. It was found that the thermal conductivity in the outer region of the fuel was much higher than it would have been if the high burn-up structure were not present. The increase in thermal conductivity is a consequence of the removal of fission products and radiation defects from the fuel lattice during recrystallisation of the fuel grains (an integral part of the formation process of the high burn-up structure). The gas porosity in the high burn-up structure lowers the increase in thermal conductivity caused by recrystallisation

  9. Preparation of computer codes for analyzing sensitivity coefficients of burnup characteristics (2) (Contract research, translated document)

    International Nuclear Information System (INIS)

    Hanaki, Hiroshi; Sanda, Toshio; Ohashi, Masahisa

    2008-10-01

    To develop nuclear design of LMFBR cores, they are important subjects of research and development to improve the accuracy in nuclear design of large LMFBR cores and to design highly efficient core more rationally. The adjusted nuclear cross-sections library has been made by being reflected the result of critical experiment of the JUPITER, etc. effectively as much as possible. And the distinct improvement of the accuracy in nuclear design of large LMFBR cores has been achieved. In the design of large LMFBR cores, however, it is important to accurately estimate not only nuclear characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. Therefore, it is thought to improve the prediction accuracy for burnup characteristics using many burnup data of 'Joyo' effectively. It is thought the best way to adjust cross sections using sensitivity coefficients of burnup characteristics to utilize burnup data of 'Joyo'. It is able to know the accuracy quantitatively for burnup characteristics of large LMFBR by analyzing the sensitivity coefficients. Therefore in this work computer codes for analyzing sensitivity coefficients of burnup characteristics had been prepared since 1992. In 1992 cross-section adjustment was done by using the data of 'Joyo' and the effect was studied. In this year the adequacy of the codes was studied with a view of applying of design of large LMFBR cores. The results are as follows: (1) The computer codes which could analyze sensitivity coefficients of burnup characteristics taking into consideration plural cycles and refueling were prepared, therefore it came of be able to adjust cross sections using burnup data and to estimate the accuracy for design of large LMFBR cores. The characteristics are not only burnup reactivity loss, breeding ratio but also number density, criticality, reactivity worth, reaction rate ratio, and reaction rate

  10. Influence of high burnup on the decay heat power of spent fuel at long-term storage

    International Nuclear Information System (INIS)

    Bergelson, B.; Gerasimov, A.; Tikhomirov, G.

    2005-01-01

    Development and application of advanced fuel with higher burnup is now in practice of NPP with light water reactors in an increasing number of countries. High burnup allows to decrease significantly consumption of uranium. However, spent fuel of this type contains increased amount of high active actinides and fission products in comparison with spent fuel of common-type burnup. Therefore extended time of storage, improved cooling system of the storage facility will be required along with more strong radiation protection during storage, transportation and processing. Calculated data on decay heat power of spent uranium fuel of light water VVER-1000 type reactor are discussed in the paper. Long-term storage of discharged fuel during 100000 years is considered. Calculations were made for burnups of 40-70 MW d/kg. In the initial 50-year period of storage, power of fission products is much higher than that of actinides. Power of gamma-radiation is mainly due to fission products. During subsequent storage power of fission products quickly decreases, the main contribution to the power is given by actinides rather than by fission products. (author)

  11. Comparison of the ENIGMA code with experimental data on thermal performance, stable fission gas and iodine release at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Killeen, J C [Nuclear Electric plc, Barnwood (United Kingdom)

    1997-08-01

    The predictions of the ENIGMA code have been compared with data from high burn-up fuel experiments from the Halden and RISO reactors. The experiments modelled were IFA-504 and IFA-558 from Halden and the test II-5 from the RISO power burnup test series. The code has well modelled the fuel thermal performance and has provided a good measure of iodine release from pre-interlinked fuel. After interlinkage the iodine predictions remain a good fit for one experiment, but there is significant overprediction for a second experiment (IFA-558). Stable fission gas release is also well modelled and the predictions are within the expected uncertainly band throughout the burn-up range. This report presents code predictions for stable fission gas release to 40GWd/tU, iodine release measurements to 50GWd/tU and thermal performance (fuel centre temperature) to 55GWd/tU. Fuel ratings of up to 38kW/m were modelled at the high burn-up levels. The code is shown to accurately or conservatively predict all these parameters. (author). 1 ref., 6 figs.

  12. Systemization of burnup sensitivity analysis code

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2004-02-01

    To practical use of fact reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoints of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor core 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, development of a analysis code for burnup sensitivity, SAGEP-BURN, has been done and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to user due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functionalities in the existing large system. It is not sufficient to unify each computational component for some reasons; computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For this

  13. Model for evolution of grain size in the rim region of high burnup UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hongxing, E-mail: xiaohongxing2003@163.com; Long, Chongsheng; Chen, Hongsheng

    2016-04-01

    The restructuring process of the high burnup structure (HBS) formation in UO{sub 2} fuel results in sub-micron size grains that accelerate the fission gas swelling, which will raise some concern over the safety of extended the nuclear fuel operation life in the reactor. A mechanistic and engineering model for evolution of grain size in the rim region of high burnup UO{sub 2} fuel based on the experimental observations of the HBS in the literature is presented. The model takes into account dislocations evolution under irradiation and the grain subdivision occur successively at increasing local burnup. It is assumed that the original driving force for subdivision of grain in the HBS of UO{sub 2} fuel is the production and accumulation of dislocation loops during irradiation. The dislocation loops can also be annealed through thermal diffusion when the temperature is high enough. The capability of this model is validated by the comparison with the experimental data of temperature threshold of subdivision, dislocation density and sub-grain size as a function of local burnup. It is shown that the calculated results of the dislocation density and subdivided grain size as a function of local burnup are in good agreement with the experimental results. - Highlights: • A model for evolution of dislocation density and grain size in HBS is proposed. • The dislocation can also be annealed when the temperature is high enough. • Original driving force for subdivision is mostly accumulation of dislocation loops. • The temperature threshold of the subdivision is predicted at 1300–1400 K.

  14. Critical assessment of the pore size distribution in the rim region of high burnup UO{sub 2} fuels

    Energy Technology Data Exchange (ETDEWEB)

    Cappia, F. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Department of Nuclear Engineering, Faculty of Mechanical Engineering, Technische Universität München, D-85748 Garching bei München (Germany); Pizzocri, D. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Nuclear Engineering Division, Energy Department, Politecnico di Milano, 20156 Milano (Italy); Schubert, A.; Van Uffelen, P.; Paperini, G.; Pellottiero, D. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Macián-Juan, R. [Department of Nuclear Engineering, Faculty of Mechanical Engineering, Technische Universität München, D-85748 Garching bei München (Germany); Rondinella, V.V., E-mail: Vincenzo.RONDINELLA@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany)

    2016-11-15

    A new methodology is introduced to analyse porosity data in the high burnup structure. Image analysis is coupled with the adaptive kernel density estimator to obtain a detailed characterisation of the pore size distribution, without a-priori assumption on the functional form of the distribution. Subsequently, stereological analysis is carried out. The method shows advantages compared to the classical approach based on the histogram in terms of detail in the description and accuracy within the experimental limits. Results are compared to the approximation of a log-normal distribution. In the investigated local burnup range (80–200 GWd/tHM), the agreement of the two approaches is satisfactory. From the obtained total pore density and mean pore diameter as a function of local burnup, pore coarsening is observed starting from ≈100 GWd/tHM, in agreement with a previous investigation. - Highlights: • A new methodology to analyse porosity is introduced. • The method shows advantages compared to the histogram. • Pore density and mean diameter data vs. burnup are presented. • Pore coarsening is observed starting from ≈100 GWd/tHM.

  15. Critical assessment of the pore size distribution in the rim region of high burnup UO_2 fuels

    International Nuclear Information System (INIS)

    Cappia, F.; Pizzocri, D.; Schubert, A.; Van Uffelen, P.; Paperini, G.; Pellottiero, D.; Macián-Juan, R.; Rondinella, V.V.

    2016-01-01

    A new methodology is introduced to analyse porosity data in the high burnup structure. Image analysis is coupled with the adaptive kernel density estimator to obtain a detailed characterisation of the pore size distribution, without a-priori assumption on the functional form of the distribution. Subsequently, stereological analysis is carried out. The method shows advantages compared to the classical approach based on the histogram in terms of detail in the description and accuracy within the experimental limits. Results are compared to the approximation of a log-normal distribution. In the investigated local burnup range (80–200 GWd/tHM), the agreement of the two approaches is satisfactory. From the obtained total pore density and mean pore diameter as a function of local burnup, pore coarsening is observed starting from ≈100 GWd/tHM, in agreement with a previous investigation. - Highlights: • A new methodology to analyse porosity is introduced. • The method shows advantages compared to the histogram. • Pore density and mean diameter data vs. burnup are presented. • Pore coarsening is observed starting from ≈100 GWd/tHM.

  16. Studies on the primary and secondary residues from the dissolution of high-burnup nuclear fuels

    International Nuclear Information System (INIS)

    Schmid, M.

    1986-01-01

    To clarify the composition of residues from the dissolution of high-burnup nuclear fuels a sample with a burnup of 4.5 GWd and a two year cooling period was studied with the help of REM-EDX. In a parallel experiment an inactive simulator of a solution was subjected to a similar chemical treatment. The residues which resulted from this were analysed analogously. As a result of the results the chemistry of the following compounds in HNO 3 were studied: MoO 3 , ZrMo 2 O 5 (OH) 2 x2H 2 O, the oxide of antimony as well as Sb 4 O 4 (OH) 2 (NO 3 ) 2 , PdO.xH 2 O, Ag 2 Se, Ag 2 Te, and CsTcO 4 . Of special interest here were the solubility and precipitation formation of these compounds as well as the influence of a high (ca. 1 mol/l) concentration of uranium on these characteristics. With high radiation doses to the simulated solution a radiolytical reduction of Pd 2+ was established and was studied more closely with pure Pd(NO 3 ) 2 solutions. In primary dissolution residues the presence of the radionuclides Ru-106, Ag-110m, Sb-125, Cs-134, and Cs-137 was γ-spectrometrically proven. The residue was made up primarily of an element combination of Mo and Ru. As other components Rh, Pd and Tc appear in an alloy as the so-called ε phase, which already has to be present in the fuel, because this phase was not exhibited in the similarly handled simulator. Zirconium molybdate was not identified in the real feed slurries, but was definitely present in the precipitation of the simulated feed solution. The analysis of the primary residues also showed pure zirconium particles, presumably from the zirconium alloy of the fuel cans, as well as undissolved fuel particles. The precipitation from the fuel solution was made up of agglomerates of the smallest particles of the ε phase, upon which silver halogenides were crystallized. Radiochemically reduced Pd was also found. (orig./RB) [de

  17. Experimental modeling of high burn-up structure in SIMFUEL with ion irradiation

    International Nuclear Information System (INIS)

    Baranov, V.; Isaenkova, M.; Lunev, A.; Tenishev, A.; Khlunov, A.

    2013-01-01

    Experiments are conducted to simulate high burn-up structure in accelerator conditions. Three ion irradiation schemes are used: 1. Xe 27+ 160 MeV up to 5x10 15 cm -2 (thermal spikes). 2. Xe 16+ 320 keV up to 1x10 17 cm -2 (collision cascades). 3. He + 20 keV up to 5,5x10 17 cm -2 (implantation stage). Structural characterization performed by scanning electron microscopy, X-ray analysis and atomic force microscopy revealed prominent grain refinement in case of Xe 27+ irradiation. Artificial energy variation for incident ions showed varying size of subgrains. At maximum energy of incident ions, subgrain size amounts ∼ 320 nm. Moving to the edge of irradiated region changes the size to ∼ 170 nm. Typical size of coherent scattering regions matches subgrain size for high-energy irradiation. Low-energy irradiation results in less significant structural changes: flaky structure at random sites for samples irradiated with low-energy xenon ions and bubble nucleation for helium irradiation. Dislocation density increases significantly, and it is shown that a single fluence dependence exists for low- and high-energy irradiation. (authors)

  18. Simulated LOCA Test and Characterization Study Related to High Burn-Up Issue

    International Nuclear Information System (INIS)

    Park, D. J.; Jung, Y. I.; Choi, B. K.; Park, S. Y.; Kim, H. G.; Park, J. Y.

    2012-01-01

    For the safety evaluation of fuel cladding during the injection of emergency core coolant, simulated Loss-of-coolant accident (LOCA) test was performed by using Zircaloy-4 fuel cladding samples. Zircaloy-4 tube samples with and without prehydring were oxidized in a steam environment with the test temperature of 1200 .deg. C. Prehydrided cladding was prepared from as-fabricated Zircaloy-4 to study the effects of hydrogen on mechanical properties of cladding during high temperature oxidation and quench conditions. In order to measure the ductility of the tube samples embrittled by quenching water, ring compression test was carried out by using 8 mm ring sample sectioned from oxidized tube sample and microstructural analysis was also performed after simulated LOCA test. The results showed that hydrogen increases oxygen solubility and pickup rate in the beta layer. This reduces ductility of prehydrided fuel cladding compared with as-fabricated cladding. Trend in ductility decrease for prehydrided sample under simulated LOCA condition was very similar with data obtained from tests conducted using irradiated high burn-up fuel claddings

  19. Mass spectrometric study of vaporization of (U,Pu)O2 fuel simulating high burnup

    International Nuclear Information System (INIS)

    Maeda, Atsushi; Ohmichi, Toshihiko; Fukushima, Susumu; Handa, Muneo

    1985-08-01

    The vaporization behavior of (U,Pu)O 2 fuel simulatig high burnup was studied in the temperature range of 1,573 -- 2,173 K by high temperature mass spectrometry. The phases in the simulated fuel were examined by X-ray microprobe analysis. The relationship between chemical form and vaporization behavior of simulated fission product elements was discussed. Pd, Sr, Ba, Ce and actinide-bearing vapor species were observed, and it was clarified that Pd vapor originated from metallic inclusion and Sr and Ce vapors, from mixed oxide fuel matrix. The vaporization behavior of the actinide elements was somewhat similar to that of hypostoichiometric mixed oxide fuel. The behavior of Ba-bearing vapor species changed markedly over about 2,000 K. From the determination of BaO vapor pressures over simulated fuel and BaZrO 3 , it was revealed thermodynamically that the transformation of the chemical form of Ba about 2,000 K, i.e., dissolution of BaZrO 3 phase into fuel matrix, might be the reason of the observed vapor pressure change. (author)

  20. SEM Characterization of the High Burn-up Microstructure of U-7Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Jian Gan; Brandon Miller; Adam Robinson; Pavel Medvedev; James Madden; Dan Wachs; M. Teague

    2014-04-01

    During irradiation, the microstructure of U-7Mo evolves until at a fission density near 5x1021 f/cm3 a high-burnup microstructure exists that is very different than what was observed at lower fission densities. This microstructure is dominated by randomly distributed, relatively large, homogeneous fission gas bubbles. The bubble superlattice has collapsed in many microstructural regions, and the fuel grain sizes, in many areas, become sub-micron in diameter with both amorphous fuel and crystalline fuel present. Solid fission product precipitates can be found inside the fission gas bubbles. To generate more information about the characteristics of the high-fission density microstructure, three samples irradiated in the RERTR-7 experiment have been characterized using a scanning electron microscope equipped with a focused ion beam. The FIB was used to generate samples for SEM imaging and to perform 3D reconstruction of the microstructure, which can be used to look for evidence of possible fission gas bubble interlinkage.

  1. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

  2. The AFA 3G fuel assembly: a proven design for high burnups

    International Nuclear Information System (INIS)

    Forat, C.; Florentin, F.

    1999-01-01

    The AFA 3G fuel assembly design is based on the wide experience gained with the AFA 2G fuel assembly. More than 9500 AFA 2G fuel assemblies have been loaded in different reactors, worldwide, reaching discharged burnups in the range of 45 - 55 GWd/tU. This experience confirmed the features of the AFA 2G, such as the grids and the vanes arrangement for thermal hydraulic performance, the concept of the fuel rod support within the grid which avoids any rod fretting or vibration phenomenon, the efficiency of the anti-debris device. The AFA 3G also relies on and benefits from the results of the world's largest R and D program, in-pile and out-of(pile testing by Framatome with EDF and CEA, with a special focus on corrosion-resistant fuel rod cladding. The AFA 3G exhibits the following enhancements: a reinforced structure, which improves resistance to assembly bow as well as its consequences in terms of RCCA insertion fuel handling and core physics obtained from: MONOBLOC TM guide thimbles, characterized by a thickened and enlarged tube and reinforced dash-pot; a hold down spring system which has been optimized to accommodate fuel assembly hydraulic lift-off forces and to meet the fuel assembly bow resistance requirement; widened recrystallized Zircaloy-4 spacer grids; a high resistance to corrosion due to the M5 TM Zirconium-Niobium-Oxygen alloy for the fuel rod cladding, which contributes also to the bow resistance of the fuel assembly; an enhanced thermal-hydraulic behavior promoted by well proven mixing vane array of AFA 2G spacer grids, combined with three additional Mid Span Mixing Grids; a very effective debris protection with the use of the TRAPPER TM bottom nozzle. With these improvements, the AFA 3G fuel assembly is able to reach discharge burnup of 60 GWd/tU with margins on important characteristics like corrosion behavior, assembly bow and thermal-hydraulic performance. The AFA 3G design is so convincing that major utilities have decided to shift their fuel

  3. IFPE/IFA-533, Fuel Thermal Behaviour at High Burnup, Halden Reactor

    International Nuclear Information System (INIS)

    Gyori, Cs.; Turnbull, J.A.

    1997-01-01

    Description: After twelve years irradiation in the Halden Boiling Water Reactor two fuel rods (Rod 807 and Rod 808) were re-instrumented with fuel centre thermocouples and reloaded into the reactor in order to investigate the fuel thermal behaviour at high burnup. The fuel rods were pre-irradiated with four other rods in the upper cluster of IFA-409 (IFA=Instrumented Fuel Assembly) from May 1973 to June 1985. After base irradiation the four neighbouring rods were re-instrumented with pressure transducers and ramp tested in IFA-535.5 and IFA-535.6 providing useful data about fission gas release (FGR) presented in the Fuel Performance Database as well (Ref. 1). The two rods re-instrumented with fuel centre thermocouples have been irradiated as IFA-533.2 from April 1992. As the irradiation history of IFA-533.2 in the first months was very similar to the history of the ramp tests, the fuel temperature and FGR data measured in the different IFAs can complement each other, although the fuel-cladding gap sizes were slightly different and due to re-instrumentation the internal gas conditions were also dissimilar

  4. Inner wall attack and its inhibition method for FBR fuel pin cladding at high burnup

    International Nuclear Information System (INIS)

    Xu Yongli; Long Bin; Li Jingang; Wan Jiaying

    1998-01-01

    The inner wall attack of the modified 316-Ti S.S. cladding tubes manufactured in China used FBR at 10at.% burnup was investigated by means of the out of pile simulation tests. The inner surface morphologies of the cladding tubes attached by fission products Cs, Te, I and Se at 700 deg. C under lower and high oxygen potentials were observed respectively, and the depth of attack was also measured. The burst strength, maximum circum expansion and the appearances of fracture were measured and observed respectively for the cladding tubes attacked by fission products. Based on the mechanism of FBR fuel cladding chemical interaction (FCCI), Cr, Zr and Nb were used as the oxygen absorbers respectively, in order to inhibit the inner wall attack of the cladding tubes. The corrosion morphologies and depth, the penetration depth of the fission products in the inner surface of the cladding tubes were detected. The inhibition effectiveness of the oxygen absorbers for the inner wall attack of the cladding tubes was evaluated. (author)

  5. Liquid-metal fast breeder reactor fuel rod performance and modeling at high burnup

    International Nuclear Information System (INIS)

    Verbeek, P.; Toebbe, H.; Hoppe, N.; Steinmetz, B.

    1978-01-01

    The fuel rod modeling codes IAMBUS and COMETHE were used in the analysis and interpretation of postirradiation examination results of mixed-oxide fuel pins. These codes were developed in the framework of the SNR-300 research and development (R and D) program at Interatom and Belgonucleaire, respectively. SNR-300 is a liquid-metal fast breeder reactor demonstration plant designed and presently constructed in consortial cooperation by Germany, Belgium, and the Netherlands. RAPSODIE I, the two-bundle irradiation experiment, was irradiated in the French test FBR RAPSODIE FORTISSIMO and is one of the key irradiation experiments within the SNR-300 R and D program. The comparison of code predictions with postirradiation examination results concentrates on clad diameter expansions, clad total axial elongations, fuel differential and total axial elongations, fuel restructuring, and fission gas release. Fuel rod modeling was considered in the light of benchmarking of the codes, and there was consideration of fuel rod design for operation at low and high burnup

  6. High-Burnup-Structure (HBS): Model Development in MARMOT for HBS Formation and Stability Under Radiation and High Temperature

    International Nuclear Information System (INIS)

    Ahmed, K.; Bai, X.; Zhang, Y.; Biner, B.

    2016-01-01

    A detailed phase field model for the formation of High Burnup Structure (HBS) was developed and implemented in MARMOT. The model treats the HBS formation as an irradiation-induced recrystallization. The model takes into consideration the stored energy associated with dislocations formed under irradiation. The accumulation of radiation damage, hence, increases the system free energy and triggers recrystallization. The increase in the free energy due to the formation of new grain boundaries is offset by the reduction in the free energy by creating dislocation-free grains at the expense of the deformed grains. The model was first used to study the growth of recrystallized flat and circular grains. The model results were shown to agree well with theoretical predictions. The case of HBS formation in UO2 was then investigated. It was found that a threshold dislocation density of (or equivalently a threshold burn-up of 33-40 GWd/t) is required for HBS formation at 1200K, which is in good agreement with theory and experiments. In future studies, the presence of gas bubbles and their effect on the formation and evolution of HBS will be considered.

  7. Modelling of pore coarsening in the high burn-up structure of UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Veshchunov, M.S.; Tarasov, V.I., E-mail: tarasov@ibrae.ac.ru

    2017-05-15

    The model for coalescence of randomly distributed immobile pores owing to their growth and impingement, applied by the authors earlier to consideration of the porosity evolution in the high burn-up structure (HBS) at the UO{sub 2} fuel pellet periphery (rim zone), was further developed and validated. Predictions of the original model, taking into consideration only binary impingements of growing immobile pores, qualitatively correctly describe the decrease of the pore number density with the increase of the fractional porosity, however notably underestimate the coalescence rate at high burn-ups attained in the outmost region of the rim zone. In order to overcome this discrepancy, the next approximation of the model taking into consideration triple impingements of growing pores was developed. The advanced model provides a reasonable consent with experimental data, thus demonstrating the validity of the proposed pore coarsening mechanism in the HBS.

  8. New Fuel Alloys Seeking Optimal Solidus and Phase Behavior for High Burnup and TRU Burning

    International Nuclear Information System (INIS)

    Blackwood, V.S.; Jones, Z.S.; Olson, D.L.; Mishra, B.; Mariani, R.D.; Porter, D.L.; Kennedy, J.R.; Hayes, S.L.

    2013-01-01

    Summary: • Pd will bind lanthanide fission products. • 2 wt% Pd in alloy is expected to allow 20 at% Heavy Metal burnup, 4 wt% Pd possibly 30-40 at% HM burnup. • For recycled fuel with some lanthanide carryover, palladium additive will also prevent premature FCCI. • Novel uranium alloy systems suitable for burning transuranics were identified. • U-Mo-Ti-Zr and U-W-Mo irradiations may perform comparably to U-10Zr, but the real tests needed must include Pu and Np for TRU burning. – Diffusion couples with alloys and Fe or cladding; – Irradiations

  9. Burnup determination of mass spectrometry for nuclear fuels

    International Nuclear Information System (INIS)

    Zhang Chunhua.

    1987-01-01

    The various methods currently being used in burnup determination of nuclear fuels are studied and reviewed. The mass spectrometry method of destructive testing is discussed emphatically. The burnup determination of mass spectrometry includes heavy isotopic abundance ratio method and isotope dilution mass spectrometry used as burnup indicator for the fission products. The former is applied to high burnup level, but the later to various burnup level. According to experiences, some problems which should be noticed in burnup determination of mass spectrometry are presented

  10. Fuel chemistry and pellet-clad interaction related to high burnup fuel. Proceedings of the technical committee

    International Nuclear Information System (INIS)

    2000-10-01

    The purpose of the meeting was to review new developments in clad failures. Major findings regarding the causes of clad failures are presented in this publication, with the main topics being fuel chemistry and fission product behaviour, swelling and pellet-cladding mechanical interaction, cladding failure mechanism at high burnup, thermal properties and fuel behaviour in off-normal conditions. This publication contains 17 individual presentations delivered at the meeting; each of them was indexed separately

  11. UO2 fuel behaviour at rod burn-ups up to 105 MWd/kgHM. A review of 10 years of high burn-up examinations commissioned by AREVA NP

    International Nuclear Information System (INIS)

    Goll, W.; Hoffmann, P.B.; Hellwig, C.; Sauser, W.; Spino, J.; Walker, C.T.

    2007-01-01

    Irradiation experience gained on fuel rods with burn-ups greater than 60 MWd/kgHM irradiated in the Nuclear Power Plant Goesgen, Switzerland, is described. Emphasis is placed on the fuel behaviour, which has been analysed by hot cell examinations at the Institute for Transuranium Elements and the Paul-Scherrer-Institute. Above 60 MWd/kgHM, the so-called high burn-up structure (HBS) forms and the fission gas release increases with burn-up and rod power. Examinations performed in the outer region of the fuel revealed that most if not all of the fission gas created was retained in the HBS, even at 25% porosity. Furthermore, the HBS has a relatively low swelling rate, greatly increased plasticity, and its thermal conductivity is higher than expected from the porosity. The post-irradiation examinations showed that the HBS has no detrimental effects on the performance of stationary irradiated PWR fuel irradiated to the high burn-ups that can be achieved with 5 wt% U-235 enrichment. On the contrary, the HBS results in fuel performance that is generally better than it would have been if the HBS had not formed. (orig.)

  12. Fission Gas Release in LWR Fuel Rods Exhibiting Very High Burn-Up

    DEFF Research Database (Denmark)

    Carlsen, H.

    1980-01-01

    Two UO2Zr BWR type test fuel rods were irradiated to a burn-up of about 38000 MWd/tUO2. After non-destructive characterization, the fission gas released to the internal free volume was extracted and analysed. The irradiation was simulated by means of the Danish fuel performance code WAFER-2, which...

  13. LWR high burn-up operation and MOX introduction. Fuel cycle performance from the viewpoint of waste management

    International Nuclear Information System (INIS)

    Inagaki, Yaohiro; Iwasaki, Tomohiko; Niibori, Yuichi; Sato, Seichi; Ohe, Toshiaki; Kato, Kazuyuki; Torikai, Seishi; Nagasaki, Shinya; Kitayama, Kazumi

    2009-01-01

    From the viewpoint of waste management, a quantitative evaluation of LWR nuclear fuel cycle system performance was carried out, considering both higher burn-up operation of UO 2 fuel coupled with the introduction of MOX fuel. A major parameter to quantify this performance is the number of high-level waste (HLW) glass units generated per GWd (gigawatt-day based on reactor thermal power generation before electrical conversion). This parameter was evaluated for each system up to a maximum burn-up of 70GWd/THM (gigawatt-day per ton of heavy metal) assuming current conventional reprocessing and vitrification conditions where the waste loading of glass is restricted by the heat generation rate, the MoO 3 content, or the noble metal content. The results showed that higher burn-up operation has no significant influence on the number of glass units generated per GWd for UO 2 fuel, though the number of glass units per THM increases linearly with burn-up and is restricted by the heat generation rate. On the other hand, the introduction of MOX fuel causes the number of glass units per GWd to double owing to the increase in the heat generation rate. An extended cooling period of the spent fuel prior to reprocessing effectively reduces the heat generation rate for UO 2 fuel, while a separation of minor actinides (Np, Am, and Cm) from the high-level waste provides additional reduction for MOX fuel. However, neither of these leads to a substantial reduction in the number of glass units, since the MoO 3 content or the noble metal content restricts the number of glass units rather than the heat generation rate. These results suggest that both the MoO 3 content and the noble metal content provide the key to reducing the amount of waste glass that is generated, leading to an overall improvement in fuel cycle system performance. (author)

  14. Advances in fuel pellet technology for improved performance at high burnup. Proceedings of a Technical Committee meeting

    International Nuclear Information System (INIS)

    1998-08-01

    The IAEA has recently completed two co-ordinated Research Programmes (CRPs) on The Development of Computer Models for Fuel Element Behaviour in Water Reactors, and on Fuel Modelling at Extended Burnup. Through these CRPs it became evident that there was a need to obtain data on fuel behaviour at high burnup. Data related o thermal behaviour, fission gas release and pellet to clad mechanical interaction were obtained and presented at the Technical Committee Meeting on Advances in Fuel Pellet Technology for Improved Performance at High Burnup which was recommended by the International Working Group on Fuel Performance and Technology (IWGFPT). The 34 papers from 10 countries are published in this proceedings and presented by a separate abstract. The papers were grouped in 6 sessions. First two sessions covered the fabrication of both UO 2 fuel and additives and MOX fuel. Sessions 3 and 4 covered the thermal behaviour of both types of fuel. The remaining two sessions dealt with fission gas release and the mechanical aspects of pellet to clad interaction

  15. Technological problems and counter-measures on equipment materials for reprocessing of high burnup fuels

    International Nuclear Information System (INIS)

    Kiuchi, K.; Kato, T.; Motooka, H.; Hamada, S.

    2002-01-01

    The reliability of structural materials is considered as one of the most important technological issues on the commercial reprocessing of high burnup fuels. The durability prediction study of equipment materials used in commercial purex process has been conducted in the JAERI. From the experimental results obtained by scaled mock-up tests and laboratory tests, the stress corrosion cracking (SCC) for a dissolvor made of zirconium and the trans-passive corrosion of heat transfer tubes for evaporators made of austenitic stainless steels have been clarified as critical issues on the reliability. The susceptibility to these failures increases with the amount of TRU and FP elements included in spent fuels, because Np, Pu, Ru, Pd act as strong oxidizers. As counter-measures against these problems, the development of the modified alloys is going on in the JAERI. It has been found that the intergranular corrosion resistance of stainless steels is possible to be completely improved by purifying the electron beam melting process and by modifying the metallographic structure. The other counter measure is to inhibit the trans-passive corrosion by addition of oxide film former elements such as W and Si. It has also been found that the susceptibility to SCC of Zr can be improved by addition of titanium. However, the addition of titanium decreases the corrosion resistance of Zr. We selected niobium alloys as alternative materials to zirconium. By addition of tungsten to the niobium, the corrosion resistance and the mechanical strength have been improved. This niobium alloy can be used in heavily corrosive nitric acid contaminated with fluorine. It is considered that the difference between corrosion resistance of Zr and Nb-alloys is attributed to the chemical stability of the oxide films (MO 2 on Zr and M 2 O 5 on Nb). (author)

  16. FY14 Status Report: CIRFT Testing Results on High Burnup UNF

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Jiang, Hao [ORNL

    2014-09-01

    The objective of this project is to perform a systematic study of SNF/UNF (spent nuclear fuel/or used nuclear fuel) integrity under simulated transportation environments by using hot cell testing technology developed recently at Oak Ridge National Laboratory (ORNL), CIRFT (Cyclic Integrated Reversible-Bending Fatigue Tester). Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmarking tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. With support from the US Department of Energy and the NRC, CIRFT testing has been continued. The CIRFT testing was conducted on three HBR rods (R3, R4, and R5), with two specimens failed and one specimen un-failed. The total number of cycles in the test of un-failed specimens went over 2.23 107; the test was stopped as because the specimen did not show any sign of failure. The data analysis on all the HBR SNF rods demonstrated that it is necessary to characterize the fatigue life of used fuel rods in terms of both the curvature amplitude and the maximum of absolute of curvature extremes. The latter is significant because the maxima of extremes signify the maximum of tensile stress of the outer fiber of the bending rod. So far, a large variety of hydrogen contents has been covered in the CIRFT testing on HBR rods. It has been shown that the load amplitude is the dominant factor that controls the lifetime of bending rods, but the hydrogen content also has an important effect on the lifetime attained, according to the load range tested.

  17. Analysis of reactivity worths of highly-burnt PWR fuel samples measured in LWR-PROTEUS Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Peter; Murphy, Michael F.; Jatuff, Fabian; Seiler, Rudolf [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2008-07-01

    The reactivity loss of PWR fuel with burnup has been determined experimentally by inserting fresh and highly-burnt fuel samples in a PWR test lattice in the framework of the LWR-PROTEUS Phase II programme. Seven UO{sub 2} samples irradiated in a Swiss PWR plant with burnups ranging from approx40 to approx120 MWd/kg and four MOX samples with burnups up to approx70 MWd/kg were oscillated in a test region constituted of actual PWR UO{sub 2} fuel rods in the centre of the PROTEUS zero-power experimental facility. The measurements were analyzed using the CASMO-4E fuel assembly code and a cross section library based on the ENDF/B-VI evaluation. The results show close proximity between calculated and measured reactivity effects and no trend for a deterioration of the quality of the prediction at high burnup. The analysis thus demonstrates the high accuracy of the calculation of the reactivity of highly-burnt fuel. (authors)

  18. Thermal property change of MOX and UO{sub 2} irradiated up to high burnup of 74 GWd/t

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Nobuo, E-mail: nakae-nobuo@jnes.go.jp [Japan Nuclear Energy Safety Organization (JNES), Toranomon Towers Office, 4-1-28, Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Akiyama, Hidetoshi; Miura, Hiromichi; Baba, Toshikazu; Kamimura, Katsuichiro [Japan Nuclear Energy Safety Organization (JNES), Toranomon Towers Office, 4-1-28, Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Kurematsu, Shigeru; Kosaka, Yuji [Nuclear Development Corporation (NDC), 622-12, Funaishikawa, Tokai-mura, Ibaraki 319-1111 (Japan); Yoshino, Aya; Kitagawa, Takaaki [Mitsubishi Nuclear Fuel Co., LTD. (MNF), 12-1, Yurakucho 1-Chome, Chiyoda-ku, Tokyo 100-0006 (Japan)

    2013-09-15

    Thermal property is important because it controls fuel behavior under irradiation. The thermal property change at high burnup of more than 70 GWd/t is examined. Two kinds of MOX fuel rods, which were fabricated by MIMAS and SBR methods, and one referenced UO{sub 2} fuel rod were used in the experiment. These rods were taken from the pre-irradiated rods (IFA 609/626, of which irradiation test were carried out by Japanese PWR group) and re-fabricated and re-irradiated in HBWR as IFA 702 by JNES. The specification of fuel corresponds to that of 17 × 17 PWR type fuel and the axially averaged linear heat rates (LHR) of MOX rods are 25 kW/m (BOL of IFA 702) and 20 kW/m (EOL of IFA 702). The axial peak burnups achieved are about 74 GWd/t for both of MOX and UO{sub 2}. Centerline temperature and plenum gas pressure were measured in situ during irradiation. The measured centerline temperature is plotted against LHR at the position where thermocouples are fixed. The slopes of MOX are corresponded to each other, but that of UO{sub 2} is higher than those of MOX. This implies that the thermal conductivity of MOX is higher than that of UO{sub 2} at high burnup under the condition that the pellet–cladding gap is closed during irradiation. Gap closure is confirmed by the metallography of the postirradiation examinations. It is understood that thermal conductivity of MOX is lower than that of UO{sub 2} before irradiation since phonon scattering with plutonium in MOX becomes remarkable. A phonon scattering with plutonium decreases in MOX when burnup proceeds. Thus, thermal conductivity of MOX becomes close to that of UO{sub 2}. A reverse phenomenon is observed at high burnup region. The phonon scattering with fission products such as Nd and Zr causes a degradation of thermal conductivity of burnt fuel. It might be speculated that this scattering effect causes the phenomenon and the mechanism is discussed here.

  19. Reduction on high level radioactive waste volume and geological repository footprint with high burn-up and high thermal efficiency of HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Fukaya, Yuji, E-mail: fukaya.yuji@jaea.go.jp; Nishihara, Tetsuo

    2016-10-15

    Highlights: • We evaluate the number of canisters and its footprint for HTGR. • We proposed new waste loading method for direct disposal of HTGR. • HTGR can significantly reduce HLW volume compared with LWR. - Abstract: Reduction on volume of High Level radioactive Waste (HLW) and footprint in a geological repository due to high burn-up and high thermal efficiency of High Temperature Gas-cooled Reactor (HTGR) has been investigated. A helium-cooled and graphite-moderated commercial HTGR was designed as a Gas Turbine High Temperature Reactor (GTHTR300), and that has particular features such as significantly high burn-up of approximately 120 GWd/t, high thermal efficiency around 50%, and pin-in-block type fuel. The pin-in-block type fuel was employed to reduce processed graphite volume in reprocessing. By applying the feature, effective waste loading method for direct disposal is proposed in this study. By taking into account these feature, the number of HLW canister generations and its repository footprint are evaluated by burn-up fuel composition, thermal calculation and criticality calculation in repository. As a result, it is found that the number of canisters and its repository footprint per electricity generation can be reduced by 60% compared with Light Water Reactor (LWR) representative case for direct disposal because of the higher burn-up, higher thermal efficiency, less TRU generation, and effective waste loading proposed in this study for HTGR. But, the reduced ratios change to 20% and 50% if the long term durability of LWR canister is guaranteed. For disposal with reprocessing, the number of canisters and its repository footprint per electricity generation can be reduced by 30% compared with LWR because of the 30% higher thermal efficiency of HTGR.

  20. Nuclear fuel behaviour modelling at high burnup and its experimental support. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-07-01

    The Technical Committee Meeting (TCM) included separate sessions on the specific topics of fuel thermal performance and fission product retention. On thermal performance, it is apparent that the capability exists to measure conductivity in high burnup fuel either by out-of-pile measurement or by instrumentation of test reactor rods. State-of-the-art modelling codes contain models for the conductivity degradation process, and hence adequate predictions of fuel temperature are achievable. Concerning fission product release, it is clear that many groups around the world are actively investigating the subject, with experimental and modelling programmes being pursued. However, a general consensus on the exact mechanisms of gas release and related gas bubble swelling has yet to emerge, even at medium burnup levels. Fission gas phenomena, not only the release to open volumes, but the whole sequence of processes taking place prior to this, need to be modelled in any modern fuel performance code. The presence of gaseous fission products may generate rapid fuel swelling during power transients, and this can cause PCI and rod failure. At high burnups, the quantity of released gases could give rise to pressures exceeding the safe limits. Modelling of pellet-cladding interaction (PCI) effects during transient operation is also an active area of study for many groups. In some situations a purely empirical approach to failure modelling can be justified, while for other applications a more detailed mechanistic approach is required. Another aspect of cladding modelling which was featured at the TCM concerned corrosion and hydriding. Although this issue can be the main life-limiting factor on fuel duty, it is apparent that modelling methods, and the experimental measurement techniques that underpin them, are adequate. A session was included on MOX fuel modelling. Substantial programmes of work, especially by the MOX vendors, appear to be underway to bring the level of understanding

  1. Summary report on the international comparison of NEACRP burnup benchmark calculations for high conversion light water reactor lattices

    International Nuclear Information System (INIS)

    Akie, Hiroshi; Ishiguro, Yukio; Takano, Hideki

    1988-10-01

    The results of the NEACRP HCLWR cell burnup benchmark calculations are summarized in this report. Fifteen organizations from eight countries participated in this benchmark and submitted twenty solutions. Large differences are still observed among the calculated values of void reactivities and conversion ratios. These differences are mainly caused from the discrepancies in the reaction rates of U-238, Pu-239 and fission products. The physics problems related to these results are briefly investigated in the report. In the specialists' meeting on this benchmark calculations held in April 1988, it was recommended to perform continuous energy Monte Carlo calculations in order to obtain reference solutions for design codes. The conclusions resulted from the specialists' meeting are also presented. (author)

  2. French analytic experiment on the high specific burnup of PWR fuels in normal conditions

    International Nuclear Information System (INIS)

    Bruet, M.; Atabek, R.; Houdaille, B.; Baron, D.

    1982-04-01

    Hydrostatic density determinations made on UO 2 pellets of different kinds irradiated in conditions representative of PWR conditions enable the internal swelling rate of the UO 2 to be ascertained. A mean value of 0.8% per 10 4 MWdt -1 (u) up to a specific burnup of 45000 MWdt -1 (u) may be deduced from this experimental basis. These results agree well with those obtained in the TANGO experiments in which UO 2 balls were irradiated in quasi isothermal conditions and without stress. Further, the open porosity of oxide closes progressively and the change in the total porosity is thus very limited (under 1% at 45000 MWdt -1 (u)). With respect to the swelling of the pellets the rise in the specific burnup would not appear therefore to be a problem. The behaviour of recrystallized zircaloy 4 claddings remains satisfactory with respect to creep and growth during irradiation [fr

  3. High burnup fuel onset conditions in dry storage. Prediction of EOL rod internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L.E.

    2015-07-01

    During dry storage, cladding resistance to failure can be affected by several degrading mechanisms like creep or hydrides radial reorientation. The driving force of these effects is the stress at which the cladding is submitted. The maximum stress in the cladding is determined by the end-of-reactor-life (EOL) rod internal pressure, PEOL, at the maximum temperature attained during dry storage. Thus, PEOL sets the initial conditions of storage for potential time-dependent changes in the cladding. Based on FRAPCON-3.5 calculations, the aim of this work is to analyse the PEOL of a PWR fuel rod irradiated to burnups greater than 60 GWd/tU, where limited information is available. In order to be conservative, demanding irradiation histories have been used with a peak linear power of 44 kW/m. FRAPCON-3.5 results show an increasing exponential trend of PEOL with burnup, from which a simple correlation has been derived. The comparison with experimental data found in the literature confirms the enveloping nature of the predicted curve. Based on that, a conservative prediction of cladding stress in dry storage has been obtained. The comparison with a critical stress threshold related to hydrides embrittlement seems to point out that this issue should not be a concern at burnups below 65 GWd/tU. (Author)

  4. Modelling of high burnup structure in UO2 fuel with the RTOP code

    International Nuclear Information System (INIS)

    Likhanskii, V.; Zborovskii, V.; Evdokimov, I.; Kanyukova, V.; Sorokin, A.

    2008-01-01

    The present work deals with self-consistent physical approach aimed to derive the criterion of fuel restructuring avoiding correlations. The approach is based on study of large over pressurized bubbles formation on dislocations, at grain boundaries and in grain volume. At first, stage of formation of bubbles non-destroyable by fission fragments is examined using consistent modelling of point defects and fission gas behavior near dislocation and in grain volume. Then, evolution of formed large non-destroyable bubbles is considered using results of the previous step as initial values. Finally, condition of dislocation loops punching by sufficiently large over pressurized bubbles is regarded as the criterion of fuel restructuring onset. In the present work consideration of large over pressurized bubbles evolution is applied to modelling of the restructuring threshold depending on temperature, burnup and grain size. Effect of grain size predicted by the model is in qualitative agreement with experimental observations. Restructuring threshold criterion as an analytical function of local burnup and fuel temperature is derived and compared with HBRP project data. To predict rim-layer width formation depending on fuel burnup and irradiation conditions the model is implemented into the mechanistic fuel performance code RTOP. Calculated dependencies give upper estimate for the width of restructured region. Calculations show that one needs to consider temperature distribution within pellet which depends on irradiation history in order to model rim-structure formation

  5. Experimental support of WWER-440 fuel reliability and serviceability at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A; Ivanov, V; Pnyushkin, A [Nauchno-Issledovatel` skij Inst. Atomnykh Reaktorov, Dimitrovgrad (Russian Federation); Tzibulya, V [AO Mashinostroitelnij Zavod Electrostal (Russian Federation); Kolosovsky, V; Bibilashvili, Yu [Vsesoyuznyj Nauchno-Issledovatel` skij Inst. Neorganicheskikh Materialov, Moscow (Russian Federation); Dubrovin, K [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    1994-12-31

    Results from post-reactor examination of two WWER-440 fuel assemblies spent at the Kola NPP Unit 3 during 4 and 5 fuel cycles are presented. The fuel assembly states and their serviceability allowance are estimated experimentally at the RIAR hot laboratory and studied by non-destructive and destructive methods. The following parameters are examined: fuel assembly overall dimensions change; fuel element diameter change; fuel element cladding corrosion and hydriding; fuel element cladding mechanical properties; fission gas release from fuel and gas pressure; fuel macro- and microstructure. it has been found that the maximum fuel burnup of fuel assemblies No. 1 and No.2 achieved is 58.3 and 64.0 MWd/kg, respectively. The mechanical fuel pellets-cladding interaction has been observed at the average fuel burnup above 45 MWd/kg that occurred with increasing the local cladding diameter at the areas of pellets end arrangement (bamboo stick). The gas release linearly increases at the range 2.7% per 10 MWd/kg within burnup of 43-60 MWd/kg. 9 figs., 3 refs.

  6. Increased burnup of fuel elements

    International Nuclear Information System (INIS)

    Ahlf, J.

    1983-01-01

    The specialists' group for fuel elements of the Kerntechnische Gesellschaft e.V. held a meeting on ''Increased Burnup of Fuel Elements'' on 9th and 10th of November 1982 at the GKSS Research Center Geesthacht. Most papers dealt with the problems of burnup increase of fuel elements for light water reactors with respect to fuel manufacturing, power plant operation and reprocessing. Review papers were given on the burnup limits for high temperature gas cooled reactors and sodium fast breeder reactors. The meeting ended with a presentation of the technical equipment of the hot laboratory of the GKSS and the programs which are in progress there. (orig.) [de

  7. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately.

  8. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    International Nuclear Information System (INIS)

    Monteleone, S.

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately

  9. Chemical analyses and calculation of isotopic compositions of high-burnup UO{sub 2} fuels and MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Tetsuo; Sasahara, Akihiro [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-08-01

    Chemical analysis activities of isotopic compositions of high-burnup UO{sub 2} fuels and MOX fuels in CRIEPI and calculation evaluation are reviewed briefly. C/E values of ORIGEN2, in which original libraries and JENDL-3.2 libraries are used, and other codes with chemical analysis data are reviewed and evaluated. Isotopic compositions of main U and Pu in fuels can be evaluated within 10% relative errors by suitable libraries and codes. Void ratio is effective parameter for C/E values in BWR fuels. JENDL-3.2 library shows remarkable improvement compared with original libraries in isotopic composition evaluations of FP nuclides. (author)

  10. Accident source terms for pressurized water reactors with high-burnup cores calculated using MELCOR 1.8.5.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Powers, Dana Auburn; Ashbaugh, Scott G.; Leonard, Mark Thomas; Longmire, Pamela

    2010-04-01

    In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in this study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs2MoO4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU

  11. Systemization of burnup sensitivity analysis code (2) (Contract research)

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2008-08-01

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant economic efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristic is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons: the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion

  12. Uranium and plutonium determinations for evaluation of high burnup fuel performance

    International Nuclear Information System (INIS)

    Heinrich, R.R.; Popek, R.J.; Bowers, D.L.; Essling, A.M.; Callis, E.L.; Persiani, P.J.

    1985-01-01

    Purpose of this work is to experimentally test computational methods being developed for reactor fuel operation. Described are the analytical techniques used in the determination of uranium and plutonium compositions on PWR fuel that has spanned five power cycles, culminating in 55,000 to 57,000 MWd/T burnup. Analyses have been performed on ten samples excised from selected sections of the fuel rods. Hot cell operations required the separation of fuel from cladding and the comminution of the fuel. These tasks were successfully accomplished using a SpectroMil, a ball pestle impact grinding and blending instrument manufactured by Chemplex Industries, Inc., Eastchester, New York. The fuel was dissolved using strong mineral acids and bomb dissolution techniques. Separation of the fuel from fission products was done by solvent (hexone) extraction. Fuel isotopic compositions and assays were determined by the mass spectrometric isotope dilution (MSID) method using NBS standards SRM-993 and SRM-996. Alpha spectrometry was used to determine the 238 Pu composition. Relative correlations of composition with burnup were obtained by gamma-ray spectrometry of selected fission products in the dissolved fuel

  13. Results of calculation of WWER-440 fuel rods (Kol`skaya-3 NPP) at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Scheglov, A; Proselkov, V [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation); Panin, M; Pitkin, Yu [Kol` skaya NPP, (Russian Federation); Tzibulya, V [AO Mashinostroitelnij Zavod Electrostal (Russian Federation)

    1994-12-31

    Thermal-physical characteristics of fuel rods of two fuel assemblies which were operated within 5 - 8 and 5 - 9 core fuel loadings of the Unit 3 of the Kol`skaya NPP are calculated. They have achieved deep burnup during 4-year (> 46 Mwd/kg U) and 5-year (> 48 Mwd/kg U) fuel cycle. Fuel assemblies have been unloaded off the reactor and subjected to a post-irradiation testing. PIN-mod2 code originally designed for modelling of WWER fuel rod behaviour in a quasi-steady-state operation is used. The average fuel rod in the fuel assembly and the fuel rod with maximum burnup are selected. The preliminary comparison of the calculation results with those of the post-irradiation examination shows a satisfactory agreement. On the basis of the results obtained in the post-irradiation experiments an improvement of the model for calculation of fission gas release and creep of the cladding is planned. The results of the analysis performed indicate that the fuel rod completely preserves its working ability; fuel temperature does not exceed 1300{sup o} C; fission gas release does not exceed 4%; maximum gas pressure inside the cladding at the end of campaign does not exceed 2 MPa. 2 tabs., 11 figs., 5 refs.

  14. International Atomic Energy Agency (IAEA) Activity on Technical Influence of High Burnup UOX and MOX Water Reactor Fuel on Spent Fuel Management

    International Nuclear Information System (INIS)

    Lovasic, Z.; Einziger, R.

    2009-01-01

    This paper briefly reviews the results of the International Atomic Energy Agency (IAEA) project investigating the influence of high burnup and mixed-oxide (MOX) fuels, from water power reactors, on spent fuel management. These data will provide information on the impacts, regarding spent fuel management, for those countries operating light-water reactors (LWR)s and heavy-water reactors (HWR)s with zirconium alloy-clad uranium dioxide (UOX) fuels, that are considering the use of higher burnup UOX or the introduction of reprocessing and MOX fuels. The mechanical designs of lower burnup UOX and higher burnup UOX or MOX fuel are very similar, but some of the properties (e.g., higher fuel rod internal pressures; higher decay heat; higher specific activity; and degraded cladding mechanical properties of higher burnup UOX and MOX spent fuels) may potentially significantly affect the behavior of the fuel after irradiation. These properties are reviewed. The effects of these property changes on wet and dry storage, transportation, reprocessing, re-fabrication of fuel, and final disposal were evaluated, based on regulatory, safety, and operational considerations. Political and strategic considerations were not taken into account since relative importance of technical, economic and strategic considerations vary from country to country. There will also be an impact of these fuels on issues like non-proliferation, safeguards, and sustainability, but because of the complexity of factors affecting those issues, they are only briefly discussed. Data gaps were also identified during this investigation. The pros and cons of using high burnup UOX or MOX, for each applicable issue in each stage of the back end of the fuel cycle, were evaluated and are discussed.. Although, in theory, higher burnup fuel and MOX fuels mean a smaller quantity of spent fuel, the potential need for some changes in design of spent fuel storage, transportation, handling, reprocessing, re-fabrication, and

  15. PWR AXIAL BURNUP PROFILE ANALYSIS

    International Nuclear Information System (INIS)

    J.M. Acaglione

    2003-01-01

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B andW 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001)

  16. Water reactor fuel element modelling at high burnup and its experimental support. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-08-01

    The Technical Committee Meeting on Fuel Element Modelling at High Burnup and its Experimental Support was recommended by the International Working Group on Fuel Performance and Technology (IWGFPT). Its subject had been touched on in many of the IAEA's activities; however for the first time modellers and experimentalists were brought together to have an exchange of views on the research under way and to identify areas where new knowledge is necessary to improve the safety, reliability and/or economics of nuclear fuel. The timely organization of this meeting in conjunction with the second meeting of the Co-ordinated Research Programme on Fuel Modelling at Extended Burnup, in short ''FUMEX'', allowed fruitful participation of representatives of developing countries which are only rarely exposed to such a scientific event. The thirty-nine papers presented covered the status of codes and experimental facilities and the main phenomena affecting the fuel during irradiation, namely: thermal fuel performance, clad corrosion and pellet-cladding interaction (PCI) and fission gas release (FGR). Refs, figs, tabs

  17. Water reactor fuel element modelling at high burnup and its experimental support. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The Technical Committee Meeting on Fuel Element Modelling at High Burnup and its Experimental Support was recommended by the International Working Group on Fuel Performance and Technology (IWGFPT). Its subject had been touched on in many of the IAEA`s activities; however for the first time modellers and experimentalists were brought together to have an exchange of views on the research under way and to identify areas where new knowledge is necessary to improve the safety, reliability and/or economics of nuclear fuel. The timely organization of this meeting in conjunction with the second meeting of the Co-ordinated Research Programme on Fuel Modelling at Extended Burnup, in short ``FUMEX``, allowed fruitful participation of representatives of developing countries which are only rarely exposed to such a scientific event. The thirty-nine papers presented covered the status of codes and experimental facilities and the main phenomena affecting the fuel during irradiation, namely: thermal fuel performance, clad corrosion and pellet-cladding interaction (PCI) and fission gas release (FGR). Refs, figs, tabs.

  18. Burn-Up Determination by High Resolution Gamma Spectrometry: Axial and Diametral Scanning Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R S; Blackadder, W H; Ronqvist, N

    1967-02-15

    In the gamma spectrometric determination of burn-up the use of a single fission product as a monitor of the specimen fission rate is subject to errors caused by activity saturation or, in certain cases, fission product migration. Results are presented of experiments in which all the resolvable gamma peaks in the fission product spectrum have been used to calculate the fission rate; these results form a pattern which reflect errors in the literature values of the gamma branching ratios, fission yields etc., and also represent a series of empirical correction factors. Axial and diametral scanning experiments on a long-irradiated low-enrichment fuel element are also described and demonstrate that it is possible to differentiate between fissions in U-235 and in Pu-239 respectively by means of the ratios of the Ru-106 activity to the activities of the other fission products.

  19. Corrosion performance of optimised and advanced fuel rod cladding in PWRs at high burnups

    International Nuclear Information System (INIS)

    Jourdain, P.; Hallstadius, L.; Pati, S.R.; Smith, G.P.; Garde, A.M.

    1997-01-01

    The corrosion behaviour both in-pile and out-of-pile for a number of cladding alloys developed by ABB to meet the current and future needs for fuel rod cladding with improved corrosion resistance is presented. The cladding materials include: 1) Zircaloy-4 (OPTIN) with optimised composition and processing and Zircaloy-2 optimised for Pressurised Water Reactors (PWR), (Zircaloy-2P), and 2) several alternative zirconium-based alloys with compositions outside the composition range for Zircaloys. The data presented originate from fuel rods irradiated in six PWRs to burnups up to about 66 MWd/kgU and from tests conducted in 360 o water autoclave. Also included are in-pile fuel rod growth measurements on some of the alloys. (UK)

  20. Change in geometrical parameters of WWER high burnup fuel rods under operational conditions and transient testing

    International Nuclear Information System (INIS)

    Kanashov, B.; Amosov, S.; Lyadov, G.; Markov, D.; Ovchinnikov, V; Polenok, V.; Smirnov, A.; Sukhikh, A.; Bek, E.; Yenin, A.; Novikov, V.

    2001-01-01

    The paper discusses changes in fuel rods geometric parameters as result of operation conditions and burnups. The degree of geometry variability of fuel rods, cladding and column is one of the most important characteristics affecting fuel serviceability. On the other hand, changes in fuel rod geometric parameters influence fuel temperature, fission gas release, fuel-to-cladding stress strained state as well as the degree of interaction with FA skeleton elements and skeleton rigidity. Change in fuel-to-cladding gap is measured using compression technique. The axial distribution of fuel-to-cladding gap demonstrates the largest decrease of the gap in the region 500 to 2000 mm from the bottom of the fuel rod (WWER-440) and in the region of 500 to 3000 mm for WWER-1000. The cladding material creep in WWER fuel rods together with the radiation growth results in fuel rod cladding elongation. A set of transient tests for spent WWER-440 and WWER-1000 fuel rods carried out in SSC RIAR during a period 1995-1999, with the aim to estimate the changes in geometric parameters of FRs. The estimation of changes in outer diameter of cladding and fuel column and fuel-to-cladding gap are performed in transient conditions (changes in linear power range of 180 to 400 W/cm) for both WWER-440 and WWER-1000. WWER-440 fuel rods having the same burnup and close fuel-cladding contact before testing are subjected to considerable hoop cladding strain in testing up to 300 W/cm. But the hoop strain does not grow due to the structural changes in fuel column and decrease in central hole diameter occurred when the power is higher

  1. Methods for acquiring data in power ramping experiments with WWER fuel rods at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Bobrov, S N; Grachev, A F; Ovchinnikov, V A; Poliakov, I S; Matveev, N P [Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Novikov, V V [Institute of Inorganic Materials, Moscow (Russian Federation)

    1997-08-01

    A programme on in-pile test which involve fuel burnup up to 60 MWd/kg and up to 12 fuel rods in the experimental rig is considered. Testing methods with reference to the MIR-M1 reactor are reported. Power ramping regime can be realized either by an increase of the total reactor capacity or by displacement of the nearest to the experimental cell control rods or by combination of these two ways. A total thermal capacity of the fuel rod cluster is determined by means of the thermal balance technique. The thermal capacity of each separate fuel rod can be estimated from the distribution of their relative activity within the accuracy range 5-10%. The important condition for this procedure is to keep the initial distribution of the fuel rod heating during power ramping. Means of instrumentation are described. They are standard detectors of loop facilities and transducers installed both in the irradiation rigs and fuel rods. Different ways of processing data on the fuel rod loss of integrity are reported. When the time of fuel rod loss of tightness is placed in correspondence with its capacity, processing can be made either on the maximum fuel rod heat load or on that at crack location. The information acquired in the experiments on the burnup values, heat rating distribution, kinetics of fission product gas emission, fuel rod elongation, fuel rod diameter changes, crack availability and fission products migration is used for the development and verification of calculation codes. (author). 1 ref., 4 figs, 1 tab.

  2. Development of a method for xenon determination in the microstructure of high burn-up nuclear fuel[Dissertation 17527

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, M. I

    2008-07-01

    In nuclear fuel, in approximately one quarter of the fissions, one of the two formed fission products is gaseous. These are mainly the noble gases xenon and krypton with isotopes of xenon contributing up to 90% of the product gases. These noble fission gases do not combine with other species, and have a low solubility in the normally used uranium oxide matrix. They can be dissolved in the fuel matrix or precipitate in nanometer-sized bubbles within the fuel grain, in micrometer-sized bubbles at the grain boundaries, and a fraction also precipitates in fuel pores, coming from fuel fabrication. A fraction of the gas can also be released into the plenum of the fuel rod. With increasing fission, and therefore burn-up, the ceramic fuel material experiences a transformation of its structure in the 'cooler' rim region of the fuel. A subdivision occurs of the original fuel grains of few microns size into thousands of small grains of sub-micron sizes. Additionally, larger pores are formed, which also leads into an increasing porosity in the fuel rim, called high burn-up structure. In this structure, only a small fraction of the fission gas remains in the matrix, the major quantity is said to accumulate in these pores. Because of this accumulation, the knowledge of the quantities of gas within these pores is of major interest in consideration to burn-up, fuel performance and especially for safety issues. In case of design based accidents, i.e. rapidly increasing temperature transients, the behavior of the fuel has to be estimated. Various analytical techniques have been used to determine the Xe concentration in nuclear fuel samples. The capabilities of EPMA (Electron Probe Micro-Analyser) and SIMS (Secondary Ion Mass Spectrometry) have been studied and provided some qualitative information, which has been used for determining Xe-matrix concentrations. First approaches combining these two techniques to estimate pore pressures have been recently reported. However

  3. Development of a method for xenon determination in the microstructure of high burn-up nuclear fuel

    International Nuclear Information System (INIS)

    Horvath, M. I.

    2008-01-01

    In nuclear fuel, in approximately one quarter of the fissions, one of the two formed fission products is gaseous. These are mainly the noble gases xenon and krypton with isotopes of xenon contributing up to 90% of the product gases. These noble fission gases do not combine with other species, and have a low solubility in the normally used uranium oxide matrix. They can be dissolved in the fuel matrix or precipitate in nanometer-sized bubbles within the fuel grain, in micrometer-sized bubbles at the grain boundaries, and a fraction also precipitates in fuel pores, coming from fuel fabrication. A fraction of the gas can also be released into the plenum of the fuel rod. With increasing fission, and therefore burn-up, the ceramic fuel material experiences a transformation of its structure in the 'cooler' rim region of the fuel. A subdivision occurs of the original fuel grains of few microns size into thousands of small grains of sub-micron sizes. Additionally, larger pores are formed, which also leads into an increasing porosity in the fuel rim, called high burn-up structure. In this structure, only a small fraction of the fission gas remains in the matrix, the major quantity is said to accumulate in these pores. Because of this accumulation, the knowledge of the quantities of gas within these pores is of major interest in consideration to burn-up, fuel performance and especially for safety issues. In case of design based accidents, i.e. rapidly increasing temperature transients, the behavior of the fuel has to be estimated. Various analytical techniques have been used to determine the Xe concentration in nuclear fuel samples. The capabilities of EPMA (Electron Probe Micro-Analyser) and SIMS (Secondary Ion Mass Spectrometry) have been studied and provided some qualitative information, which has been used for determining Xe-matrix concentrations. First approaches combining these two techniques to estimate pore pressures have been recently reported. However, relevant Xe

  4. A study of fuel failure behavior in high burnup HTGR fuel. Analysis by STRESS3 and STAPLE codes

    International Nuclear Information System (INIS)

    Martin, David G.; Sawa, Kazuhiro; Ueta, Shouhei; Sumita, Junya

    2001-05-01

    In current high temperature gas-cooled reactors (HTGRs), Tri-isotropic coated fuel particles are employed as fuel. In safety design of the HTGR fuels, it is important to retain fission products within particles so that their release to primary coolant does not exceed an acceptable level. From this point of view, the basic design criteria for the fuel are to minimize the failure fraction of as-fabricated fuel coating layers and to prevent significant additional fuel failures during operation. This report attempts to model fuel behavior in irradiation tests using the U.K. codes STRESS3 and STAPLE. Test results in 91F-1A and HRB-22 capsules irradiation tests, which were carried out at the Japan Materials Testing Reactor of JAERI and at the High Flux Isotope Reactor of Oak Ridge National Laboratory, respectively, were employed in the calculation. The maximum burnup and fast neutron fluence were about 10%FIMA and 3 x 10 25 m -2 , respectively. The fuel for the irradiation tests was called high burnup fuel, whose target burnup and fast neutron fluence were higher than those of the first-loading fuel of the High Temperature Engineering Test Reactor. The calculation results demonstrated that if only mean fracture stress values of PyC and SiC are used in the calculation it is not possible to predict any particle failures, by which is meant when all three load bearing layers have failed. By contrast, when statistical variations in the fracture stresses and particle specifications are taken into account, as is done in the STAPLE code, failures can be predicted. In the HRB-22 irradiation test, it was concluded that the first two particles which had failed were defective in some way, but that the third and fourth failures can be accounted for by the pressure vessel model. In the 91F-1A irradiation test, the result showed that 1 or 2 particles had failed towards the end of irradiation in the upper capsule and no particles failed in the lower capsule. (author)

  5. Thermomechanical behavior and modeling of zircaloy cladding tubes from an unirradiated state to high burn-up

    International Nuclear Information System (INIS)

    Schaeffler-Le Pichon, I.; Geyer, P.; Bouffioux, P.

    1997-01-01

    Creep laws are nowadays commonly used to simulate the fuel rod response to the solicitations it faces during its life. These laws are sufficient for describing the base operating conditions (where only creep appears), but they have to be improved for power ramp conditions (where hardening and relaxation appear). The modification due to a neutronic irradiation of the thermomechanical behavior of stress-relieved Zircaloy 4 fuel tubes that have been analysed for five different fluences ranging from a non-irradiated material to a material for which the combustion rate was very high is presented. In the second part, a viscoplastic model able to simulate, for different isotherms, out-of-flux anisotropic mechanical behavior of the cladding tubes irradiated until high burn-up is proposed. Finally, results of numerical simulations show the ability of the model to reproduce the totality of the thermomechanical experiments. (author)

  6. Computer modelling of the WWER fuel elements under high burnup conditions by the computer codes PIN-W and RODQ2D

    International Nuclear Information System (INIS)

    Valach, M.; Zymak, J.; Svoboda, R.

    1997-01-01

    This paper presents the development status of the computer codes for the WWER fuel elements thermomechanical behavior modelling under high burnup conditions at the Nuclear Research Institute Rez. The accent is given on the analysis of the results from the parametric calculations, performed by the programmes PIN-W and RODQ2D, rather than on their detailed theoretical description. Several new optional correlations for the UO2 thermal conductivity with degradation effect caused by burnup were implemented into the both codes. Examples of performed calculations document differences between previous and new versions of both programmes. Some recommendations for further development of the codes are given in conclusion. (author). 6 refs, 9 figs

  7. Computer modelling of the WWER fuel elements under high burnup conditions by the computer codes PIN-W and RODQ2D

    Energy Technology Data Exchange (ETDEWEB)

    Valach, M; Zymak, J; Svoboda, R [Nuclear Research Inst. Rez plc, Rez (Czech Republic)

    1997-08-01

    This paper presents the development status of the computer codes for the WWER fuel elements thermomechanical behavior modelling under high burnup conditions at the Nuclear Research Institute Rez. The accent is given on the analysis of the results from the parametric calculations, performed by the programmes PIN-W and RODQ2D, rather than on their detailed theoretical description. Several new optional correlations for the UO2 thermal conductivity with degradation effect caused by burnup were implemented into the both codes. Examples of performed calculations document differences between previous and new versions of both programmes. Some recommendations for further development of the codes are given in conclusion. (author). 6 refs, 9 figs.

  8. FEMAXI-7 analysis on behavior of medium and high burnup BWR fuels during base-irradiation and power ramp

    Energy Technology Data Exchange (ETDEWEB)

    Ogiyanagi, Jin, E-mail: ohgiyanagi.jin@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Hanawa, Satoshi; Suzuki, Motoe; Nagase, Fumihisa [Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Two power ramp experiments of BWR fuels were analyzed by FEMAXI-7 code. Black-Right-Pointing-Pointer Calculated FGR and cladding deformation showed reasonable agreement with PIE data. Black-Right-Pointing-Pointer High temperature FGR could be predicted by the enhanced Turnbull FG diffusion constant. Black-Right-Pointing-Pointer Local PCMI model in the code could reasonably predict cladding ridging deformation. - Abstract: Irradiation behavior of medium and high burnup BWR fuels during base-irradiation and subsequent power ramp test is analyzed by a fuel performance code FEMAXI-7. The code has a 1.5-D cylindrical geometry (4 axial segments) to have a coupled solution of thermal analysis and FEM mechanical analysis. Two kinds of target fuels are selected; one was subjected to a power ramp test in the DR3 reactor at RISO after the base-irradiation in a commercial BWR, and the other was subjected to the power ramp test in the DR3 reactor after the base-irradiation in the Halden boiling water reactor. The calculated values such as fission gas release after the base-irradiation and a cladding diameter profile before and after the ramp test show a reasonable agreement with measured data. In addition, the calculated ridging deformation of the cladding before and after the ramp test, which is obtained by using a local pellet-cladding mechanical interaction (PCMI) analysis geometry in FEMAXI-7, is compared with the measured data, and it is found that the FEMAXI-7 code is applicable to the local PCMI analysis of medium and high burnup rods under normal operation and power ramp conditions.

  9. Investigation of high burnup structures in uranium dioxide applying cellular automata: algorithms and codes

    International Nuclear Information System (INIS)

    Akishina, E.P.; Kostenko, B.F.; Ivanov, V.V.

    2003-01-01

    A new method of research in spatial structures that result from uranium dioxide burning in nuclear reactors of modern atomic plants is suggested. The method is based on the presentation of images of the mentioned structures in the form of the working field of a cellular automaton (CA). First, it has allowed one to extract some important quantitative characteristics of the structures directly from the micrographs of the uranium fuel surface. Secondly, the CA has been found out to allow one to formulate easily the dynamics of the evolution of the studied structures in terms of such micrograph elements as spots, spots' boundaries, cracks, etc. Relation has been found between the dynamics and some exactly solvable models of the theory of cellular automata, in particular, the Ising model and the vote model. This investigation gives a detailed description of some CA algorithms which allow one to perform the fuel surface image processing and to model its evolution caused by burnup or chemical etching. (author)

  10. A contribution to the understanding of the high burn-up structure formation in nuclear fuels

    International Nuclear Information System (INIS)

    Jonnet, J.

    2007-01-01

    An increase of the discharge burn-up of UO 2 nuclear fuels in the light water reactors results in the appearance of a change of microscopic structure, called HBS. Although well characterised experimentally, important points on the mechanisms of its formation remain to be cleared up. In order to answer these questions, a study of the contribution of the dislocation-type defects was conducted. In a first part, a calculation method of the stress field associated with periodic configurations of dislocations was developed. The method was applied to the cases of edge dislocation pile-up and wall, for which an explicit expression of the internal stress potential was obtained. Through the study of other examples of dislocation configurations, it was highlighted that this method also allows the calculation of any periodic dislocation configuration. In a second part, the evolution of interstitial-type dislocation loops was studied in UO 2 fuel samples doped with 10% in mass of alpha emitters. The experimental loop size distributions were obtained for these samples stored during 4 and 7 years at room temperature. Kinetic equations are proposed in order to study the influence of the resolution process of interstitials from a loop back to the matrix due to an impact with the recoil atom 234 U, as well as the coalescence of two interstitial loops that can diffuse by a volume mechanism. The application of the model shows that the two processes must be considered in the study of the evolution of radiation damage. (author)

  11. On the rate determining step in fission gas release from high burn-up water reactor fuel during power transients

    International Nuclear Information System (INIS)

    Walker, C.T.; Mogensen, M.

    1987-01-01

    The radial distribution of grain boundary gas in a PWR and a BWR fuel is reported. The measurements were made using a new approach involving X-ray fluorescence analysis and electron probe microanalysis. In both fuels the concentration of grain boundary gas was much higher than hitherto suspected. The gas was mainly contained in the bubble/pore structure. The factors that determined the fraction of gas released from the grains and the level of gas retention on the grain boundaries are identified and discussed. The variables involved are the local fuel stoichiometry, the amount of open porosity, the magnitude of the local compressive hydrostatic stress and the interaction of metallic precipitates with gas bubbles on the grain faces. It is concluded that under transient conditions the interlinkage of gas bubbles on the grain faces and the subsequent formation of grain edge tunnels is the rate determining step for gas release; at least when high burn-up fuel is involved. (orig.)

  12. Analysis of Corrosion Residues Collected from the Aluminum Basket Rails of the High-Burnup Demonstration Cask.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    On September, 2015, an inspection was performed on the TN-32B cask that will be used for the high-burnup demonstration project. During the survey, wooden cribbing that had been placed within the cask eleven years earlier to prevent shifting of the basket during transport was removed, revealing two areas of residue on the aluminum basket rails, where they had contacted the cribbing. The residue appeared to be a corrosion product, and concerns were raised that similar attack could exist at more difficult-to-inspect locations in the canister. Accordingly, when the canister was reopened, samples of the residue were collected for analysis. This report presents the results of that assessment, which determined that the corrosion was due to the presence of the cribbing. The corrosion was associated with fungal material, and fungal activity likely contributed to an aggressive chemical environment. Once the cask has been cleaned, there will be no risk of further corrosion.

  13. Accident Source Terms for Pressurized Water Reactors with High-Burnup Cores Calculated using MELCOR 1.8.5.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Goldmann, Andrew; Kalinich, Donald A.; Powers, Dana A.

    2016-12-01

    In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in this study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs 2 MoO 4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU

  14. Effects of thermal-hydraulic feedback on burnup modeling of the deep burn modular high temperature reactor (DB-MHR)

    International Nuclear Information System (INIS)

    Bei, Yea; Wen, Wua; Di, Yuna; Stubbins, J.F.; Venneri, F.

    2007-01-01

    The Deep-Burn concept investigates the use of commercial high temperature gas-cooled reactors such as modular helium reactors (DB-MHR) to transmute spent fuel from light water reactors (LWRs). An essential feature of this technology is the fabrication of spent fuel into TRISO particles with full transuranic composition to achieve very extensive destruction levels (deep-burn) in a one-pass fuel cycle. Due to the strong temperature influence on the cross sections of transuranics, the coupling between temperature and neutronics is very important to be able to simulate realistic operations of the deep burn reactor. In this study, detailed simulations of the DB-MHR operation are performed with a Monte Carlo code system (MCNP-5 + ORIGEN-2.2 + MONTEBURNS-2 for neutronics calculations), POKE code (General Atomics, for thermohydraulics calculations) and NJOY-99 code (for processing nuclear data libraries), called MHRBURNS. Resulting power densities of fuel blocks (from neutronics calculations) are provided as input to the POKE code, which in turn, calculates new temperature distributions. The temperature distributions obtained from POKE are used to update the MCNP input, and NJOY is called to process new nuclear cross sections based on appropriate temperatures. These steps are repeated to calculate the entire burnup performance of the system. In this preliminary study only the feedback on graphite temperature is taken into account. It is observed that the temperature feedback results show a 200 K higher temperature and thus a slight difference in 237 Np and 239 Pu destruction rates, although the overall burnup rates remain the same

  15. Burnup performance of rock-like oxide (ROX) fuel in small pebble bed reactor with accumulative fuel loading scheme

    International Nuclear Information System (INIS)

    Simanullang, Irwan Liapto; Obara, Toru

    2017-01-01

    Highlights: • Burnup performance using ROX fuel in PBR with accumulative fuel loading scheme was analyzed. • Initial excess reactivity was suppressed by reducing 235 U enrichment in the startup condition. • Negative temperature coefficient was achieved in all condition of PBR with accumulative fuel loading scheme using ROX fuel. • Core lifetime of PBR with accumulative fuel loading scheme using ROX fuel was shorter than with UO 2 fuel. • In PBR with accumulative fuel loading scheme using ROX fuel, achieved discharged burnup can be as high as that for UO 2 fuel. - Abstract: The Japan Atomic Energy Agency (JAEA) has proposed rock-like oxide (ROX) fuel as a new, once-through type fuel concept. Here, burnup performance using ROX fuel was simulated in a pebble bed reactor with an accumulative fuel loading scheme. The MVP-BURN code was used to simulate the burnup calculation. Fuel of 5 g-HM/pebble with 20% 235 U enrichment was selected as the optimum composition. Discharged burnup could reach up to 218 GWd/t, with a core lifetime of about 8.4 years. However, high excess reactivity occurred in the initial condition. Initial fuel enrichment was therefore reduced from 20% to 4.65% to counter the initial excess reactivity. The operation period was reduced by the decrease of initial fuel enrichment, but the maximum discharged burnup was 198 GWd/t. Burnup performance of ROX fuel in this reactor concept was compared with that of UO 2 fuel obtained previously. Discharged burnup for ROX fuel in the PBR with an accumulative fuel loading scheme was as high as UO 2 fuel. Maximum power density could be lowered by introducing ROX fuel compared to UO 2 fuel. However, PBR core lifetime was shorter with ROX fuel than with UO 2 fuel. A negative temperature coefficient was achieved for both UO 2 and ROX fuels throughout the operation period.

  16. Corrosion studies with high burnup light water reactor fuel. Release of nuclides into simulated groundwater during accumulated contact time of up to two years

    Energy Technology Data Exchange (ETDEWEB)

    Zwicky, Hans-Urs (Zwicky Consulting GmbH, Remigen (Switzerland)); Low, Jeanett; Ekeroth, Ella (Studsvik Nuclear AB, Nykoeping (Sweden))

    2011-03-15

    In the framework of comprehensive research work supporting the development of a Swedish concept for the disposal of highly radioactive waste and spent fuel, Studsvik has performed a significant number of spent fuel corrosion studies under a variety of different conditions. These experiments, performed between 1990 and 2002, covered a burnup range from 27 to 49 MWd/kgU, which was typical for fuel to be disposed at that time. As part of this work, the so called Series 11 tests were performed under oxidising conditions in synthetic groundwater with fuel samples from a rod irradiated in the Ringhals 1 Boiling Water Reactor (BWR). In the meantime, Swedish utilities tend to increase the discharge burnup of fuel operated in their reactors. This means that knowledge of spent fuel corrosion performance has to be extended to higher burnup as well. Therefore, a series of experiments has been started at Studsvik, aiming at extending the data base acquired in the Series 11 corrosion tests to higher burnup fuel. Fuel burnup leads to complex and significant changes in the composition and properties of the fuel. The transformed microstructure, which is referred to as the high burnup structure or rim structure in the outer region of the fuel, consists of small grains of submicron size and a high concentration of pores of typical diameter 1 to 2 mum. This structure forms in UO{sub 2} fuel at a local burnup above 50 MWd/kgU, as long as the temperature is below 1,000-1,100 deg C. The high burnup at the pellet periphery is the consequence of plutonium build-up by neutron capture in 238U followed by fission of the formed plutonium. The amount of fission products in the fuel increases more or less linearly with burnup, in contrast to alpha emitting actinides that increase above average. As burnup across a spent fuel pellet is not uniform, but increases towards the periphery, the radiation field is also larger at the pellet surface. At the same time, it is easier for water to access the

  17. Corrosion studies with high burnup light water reactor fuel. Release of nuclides into simulated groundwater during accumulated contact time of up to two years

    International Nuclear Information System (INIS)

    Zwicky, Hans-Urs; Low, Jeanett; Ekeroth, Ella

    2011-03-01

    In the framework of comprehensive research work supporting the development of a Swedish concept for the disposal of highly radioactive waste and spent fuel, Studsvik has performed a significant number of spent fuel corrosion studies under a variety of different conditions. These experiments, performed between 1990 and 2002, covered a burnup range from 27 to 49 MWd/kgU, which was typical for fuel to be disposed at that time. As part of this work, the so called Series 11 tests were performed under oxidising conditions in synthetic groundwater with fuel samples from a rod irradiated in the Ringhals 1 Boiling Water Reactor (BWR). In the meantime, Swedish utilities tend to increase the discharge burnup of fuel operated in their reactors. This means that knowledge of spent fuel corrosion performance has to be extended to higher burnup as well. Therefore, a series of experiments has been started at Studsvik, aiming at extending the data base acquired in the Series 11 corrosion tests to higher burnup fuel. Fuel burnup leads to complex and significant changes in the composition and properties of the fuel. The transformed microstructure, which is referred to as the high burnup structure or rim structure in the outer region of the fuel, consists of small grains of submicron size and a high concentration of pores of typical diameter 1 to 2 μm. This structure forms in UO 2 fuel at a local burnup above 50 MWd/kgU, as long as the temperature is below 1,000-1,100 deg C. The high burnup at the pellet periphery is the consequence of plutonium build-up by neutron capture in 238 U followed by fission of the formed plutonium. The amount of fission products in the fuel increases more or less linearly with burnup, in contrast to alpha emitting actinides that increase above average. As burnup across a spent fuel pellet is not uniform, but increases towards the periphery, the radiation field is also larger at the pellet surface. At the same time, it is easier for water to access the

  18. Instant release of fission products in leaching experiments with high burn-up nuclear fuels in the framework of the Euratom project FIRST- Nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Lemmens, K., E-mail: klemmens@sckcen.be [Waste and Disposal Expert Group, Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); González-Robles, E.; Kienzler, B. [Karlsruhe Institute of Technology Institute for Nuclear Waste Disposal (KIT-INE), PO Box 3640, D-76021 Karlsruhe (Germany); Curti, E. [Laboratory for Waste Management, Nuclear Energy and Safety Dept., Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Serrano-Purroy, D. [European Commission, DG Joint Research Centre - JRC, Directorate G - Nuclear Safety & Security, Department G.III, PO Box 2340, D-76125 Karlsruhe (Germany); Sureda, R.; Martínez-Torrents, A. [CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Roth, O. [Studsvik, Nuclear AB, 611 82 Nyköping (Sweden); Slonszki, E. [Magyar Tudományos Akadémia Energiatudományi Kutatóközpont (MTA EK), PO Box 49, H-1525 Budapest (Hungary); Mennecart, T. [Waste and Disposal Expert Group, Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); Günther-Leopold, I. [Laboratory for Waste Management, Nuclear Energy and Safety Dept., Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Hózer, Z. [Magyar Tudományos Akadémia Energiatudományi Kutatóközpont (MTA EK), PO Box 49, H-1525 Budapest (Hungary)

    2017-02-15

    The instant release of fission products from high burn-up UO{sub 2} fuels and one MOX fuel was investigated by means of leach tests. The samples covered PWR and BWR fuels at average rod burn-up in the range of 45–63 GWd/t{sub HM} and included clad fuel segments, fuel segments with opened cladding, fuel fragments and fuel powder. The tests were performed with sodium chloride – bicarbonate solutions under oxidizing conditions and, for one test, in reducing Ar/H{sub 2} atmosphere. The iodine and cesium release could be partially explained by the differences in sample preparation, leading to different sizes and properties of the exposed surface areas. Iodine and cesium releases tend to correlate with FGR and linear power rating, but the scatter of the data is significant. Although the gap between the fuel and the cladding was closed in some high burn-up samples, fissures still provide possible preferential transport pathways. - Highlights: • Leach tests were performed to study the instant release of fission products from high burn-up UO{sub 2} fuels and one MOX fuel. • In these tests, the fission gas release given by the operator was a pessimistic estimator of the iodine and cesium release. • Iodine and cesium release is proportional to linear power rating beyond 200 W cm{sup −1}. • Closure of the fuel-cladding gap at high burn-up slows down the release. • The release rate decreases following an exponential equation.

  19. Alternative Zr alloys with irradiation resistant precipitates for high burnup BWR application

    International Nuclear Information System (INIS)

    Garzarolli, F.; Ruhmann, H.; Van Swan, L.

    2002-01-01

    In the core of BWRs, the second-phase particles (SPP) of Zircaloy-2 and Zircaloy-4, the Zr(FeCr) 2 and the Zr 2 (FeNi) phase, release Fe and dissolve. The degree of dissolution depends on initial size and fluence. These SPP, however, are important for the corrosion behavior of Zircaloy. Zircaloy shows an increase of corrosion at a certain burnup, depending on the initial SPP size and fast neutron fluence. Only Zr alloys with irradiation resistant SPP avoid this type of increased corrosion completely. Two types of irradiation resistant materials were considered. One is a Zr-Sn-Fe alloy containing the Zr 3 Fe phase, which is irradiation resistant under BWR conditions. The other material is a Zr-Sn-Nb alloy containing the irradiation resistant β-Nb phase. In-BWR tests have shown that a Sn content of >0.8% is mandatory to minimize the nodular corrosion. Two prototypes of irradiation resistant alloys, Zr1.3Sn0.25-0.3 Fe and Zr1Sn2-3Nb, were irradiated in a BWR for 1372 days to a fast fluence of 9 x 10 21 n/cm 2 (E > 1 MeV). These irradiation tests showed that Zr1.3Sn0.25-0.3 Fe has a little lower resistance against nodular corrosion than optimized LTP (Low Temperature Process) Zircaloy-2/4 and revealed that Zr1Sn2-3Nb is superior to LTP Zircaloy-2/4 with respect to nodular and shadow corrosion resistance. The BWR corrosion resistance of Zr1Sn2-3Nb depends on heat treatment. The lowest corrosion was observed with material fabricated completely in the α-range, but also material manufactured in the lower (α+β)-range exhibits low corrosion. Material fabricated in the upper (α+β)-range showed a somewhat higher corrosion, a corrosion behavior similar to LTP Zircaloy-2/4. As far as final annealing is concerned, a long time annealing at 540 deg C is superior to a standard recrystallization treatment (e.g., at 580 deg C), which still leads to a corrosion behavior that is better than stress relieved Zr1Sn2-3Nb. Zr1Sn2-3Nb is resistant to shadow corrosion, when fabricated

  20. Instant release fraction and matrix release of high burn-up UO{sub 2} spent nuclear fuel: Effect of high burn-up structure and leaching solution composition

    Energy Technology Data Exchange (ETDEWEB)

    Serrano-Purroy, D., E-mail: Daniel.serrano-purroy@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Clarens, F.; Gonzalez-Robles, E. [CTM Centre Tecnologic, Avda. Bases de Manresa 1, 08240 Barcelona (Spain); Glatz, J.P.; Wegen, D.H. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Pablo, J. de [CTM Centre Tecnologic, Avda. Bases de Manresa 1, 08240 Barcelona (Spain); Department of Chemical Engineering, Universitat Politecnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Casas, I.; Gimenez, J. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Martinez-Esparza, A. [ENRESA, C/Emilio Vargas 7, 28043 Madrid (Spain)

    2012-08-15

    Two weak points in Performance Assessment (PA) exercises regarding the alteration of Spent Nuclear Fuel (SNF) are the contribution of the so-called Instant Release Fraction (IRF) and the effect of High Burn-Up Structure (HBS). This manuscript focuses on the effect of HBS in matrix (long term) and instant release of a Pressurised Water Reactor (PWR) SNF irradiated in a commercial reactor with a mean Burn-Up (BU) of 60 GWd/tU. In order to study the HBS contribution, two samples from different radial positions have been prepared. One from the centre of the SNF, labelled CORE, and one from the periphery, enriched with HBS and labelled OUT. Static leaching experiments have been carried out with two synthetic leaching solutions: bicarbonate (BIC) and Bentonitic Granitic Groundwater (BGW), and in all cases under oxidising conditions. IRF values have been calculated from the determined Fraction of Inventory in Aqueous Phase (FIAP). In all studied cases, some radionuclides (RN): Rb, Sr and Cs, have shown higher release rates than uranium, especially at the beginning of the experiment, and have been considered as IRF. Redox sensitive RN like Mo and Tc have been found to dissolve slightly faster than uranium and further studies might be needed to confirm if they can also be considered part of the IRF. Most of the remaining studied RN, mainly actinides and lanthanides, have been found to dissolve congruently with the uranium matrix. Finally, Zr, Ru and Rh presented lower release rates than the matrix. Higher matrix release has been determined for CORE than for OUT samples showing that the formation of HBS might have a protective effect against the oxidative corrosion of the SNF. On the contrary, no significant differences have been observed between the two studied leaching solutions (BIC and BGW). Two different IRF contributions have been determined. One corresponding to the fraction of inventory segregated in the external open grain boundaries, directly available to water and

  1. Fuel temperature prediction during high burnup HTGR fuel irradiation test. US-JAERI irradiation test for HTGR fuel

    International Nuclear Information System (INIS)

    Sawa, Kazuhiro; Fukuda, Kousaku; Acharya, R.

    1995-01-01

    This report describes the preirradiation thermal analysis of the HRB-22 capsule designed for an irradiation test in a removable beryllium position of the High Flux Isotope Reactor(HFIR) at Oak Ridge National Laboratory. This test is being carried out under Annex 2 of the Arrangement between the U.S. Department of Energy and the Japan Atomic Energy Research Institute on Cooperation in Research and Development regarding High-Temperature Gas-cooled Reactors. The fuel used in the test is an advanced type. The advanced fuel was designed aiming at burnup of about 10%FIMA(% fissions per initial metallic atom) which was higher than that of the first charge fuel for the High Temperature Engineering Test Reactor(HTTR) and was produced in Japan. CACA-2, a heavy isotope and fission product concentration calculational code for experimental irradiation capsules, was used to determine time-dependent fission power for the fuel compacts. The Heat Engineering and Transfer in Nine Geometries(HEATING) code was used to solve the steady-state heat conduction problem. The diameters of the graphite fuel body, which contains the fuel compacts, and of the primary pressure vessel were determined such that the requirements of running the fuel compacts at an average temperature less than 1250degC and of not exceeding a maximum fuel temperature of 1350degC were met throughout the four cycles of irradiation. The detail design of the capsule was carried out based on this analysis. (author)

  2. Analysis of effects of pellet-cladding bonding on trapping of the released fission gases in high burnup KKL BWR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Brankov, Vladimir [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne (Switzerland); Khvostov, Grigori; Mikityuk, Konstantin [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Pautz, Andreas [Laboratory for Reactor Physics and Systems Behaviour at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne (Switzerland); Restani, Renato; Abolhassani, Sousan [Laboratory for Nuclear Materials at the Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Ledergerber, Guido [Kernkraftwerk Leibstadt, 5325 Leibstadt (Switzerland); Wiesenack, Wolfgang [Institutt for Energiteknikk - OECD Halden Reactor Project, Os Allé 5, 1777 Halden (Norway)

    2016-08-15

    Highlights: • Explanation for the scatter in measured fission gas release in high-BU BWR fuel rods. • Partial fuel-clad bond layer formation in high-BU BWR fuel. • Hypothesis for fission gas trapping facilitated by the pellet-cladding bond layer. • Correlation between burnup asymmetry and the quantity of trapped fission gas. • Implications of the trapped FG in LOCA transient. - Abstract: The first part of the paper presents results of a numerical analysis of the fuel behavior during base irradiation in the Kernkraftwerk Leibstadt Boiling Water Reactor (KKL BWR) using EPRI’s FALCON code coupled to GRSW-A – an advanced model for fuel swelling and fission gas release. Post-irradiation examinations conducted at the Paul Scherrer Institute’s (PSI) hot laboratory gave evidence of a distinct circumferential non-uniformity of local burnup at pellet surfaces. For several fuel samples, intact pellet-cladding bonding areas on the high burnup sides of the pellets at high burnup above ∼70 MWd/kgU were observed. It is hypothesized that a part of the fission gases, which are expected to be released by those areas, can be trapped and do not reach the rod plenum. In this paper, a simple approach to modeling of fission gas trapping is employed which reveals a potential correlation between the position of the rod within the fuel assembly (and therefore the degree of circumferential burnup non-uniformity) and the degree of fission gas trapping. A model is suggested to correlate the amount of locally trapped gas with the integral of the local contact pressure and the degree of circumferential burnup non-uniformity. The model is calibrated with available measurements of FGR from rod puncturing at the level of the plenums. In future work, the hypothesis about the axial distribution of trapped fission gas will be extrapolated to the Loss-Of-Coolant Accident (LOCA) analysis as an attempt to explain the fission gas release observed in some samples fabricated from

  3. Relationship between changes in the crystal lattice strain and thermal conductivity of high burnup UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, Masaki, E-mail: amaya.masaki@jaea.go.j [Fuel Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Nakamura, Jinichi; Fuketa, Toyoshi [Fuel Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kosaka, Yuji [Nuclear Development Corporation, 622-12, Funaishikawa, Tokai-mura, Naka-gun, Ibaraki 319-1111 (Japan)

    2010-01-01

    Two kinds of disk-shaped UO{sub 2} samples (4 mm in diameter and 1 mm in thickness) were irradiated in a test reactor up to about 60 and 130 GWd/t, respectively. The microstructures of the samples were investigated by means of optical microscopy, scanning electron microscopy/ electron probe micro-analysis (SEM/EPMA) and micro-X-ray diffractometry. The measured lattice parameters tended to be considerably smaller than the reported values, and the typical cauliflower structure which is often observed in high burnup fuel pellet is hardly seen in these samples. Thermal diffusivities of the samples were also measured by using a laser flash method, and their thermal conductivities were evaluated by multiplying the heat capacity of unirradiated UO{sub 2} and sample densities. While the thermal conductivities of sample 2 showed recovery after being annealed at 1500 K, those of sample 4 were not clearly observed even after being annealed at 1500 K. These trends suggest that the amount of accumulated irradiation-induced defects depends on the irradiation condition of each sample. From the comparison of the changes in the lattice parameter and strain energy density before and after the thermal diffusivity measurements, it is likely that the thermal conductivity recovery in the temperature region from 1200 to 1500 K is related to the migration of dislocation.

  4. Applying burnable poison particles to reduce the reactivity swing in high temperature reactors with batch-wise fuel loading

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Dam, H. van; Hagen, T.H.J.J. van der

    2003-01-01

    Burnup calculations have been performed on a standard HTR fuel pebble with a radius of 3 cm containing 9 g of 8% enriched uranium and burnable poison particles (BPP) made of B 4 C highly enriched in 10 B. The radius of the BPP and the number of particles per fuel pebble have been varied to find the flattest reactivity-to-time curve. It was found that for a k∞ of 1.1, a reactivity swing as low as 2% can be obtained when each fuel pebble contains about 1070 BPP with a radius of 75 μm. For coated BPP that consist of a graphite kernel with a radius of 300 μm covered with a B 4 C burnable poison layer, a similar value for the reactivity swing can be obtained. Cylindrical particles seem to perform worse. In general, the modification of the geometry of BPP is an effective means to tailor the reactivity curve of HTRs

  5. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, M. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); Laux, D. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France); Cappia, F. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Technische Universitaet Muenchen, Department of Nuclear Engineering, Boltzmannstrasse 15, 85747 Garching bei Munchen (Germany); Laurie, M.; Van Uffelen, P.; Rondinella, V.V. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Despaux, G. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France)

    2015-07-01

    During irradiation UO{sub 2} nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO{sub 2} pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO{sub 2} pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  6. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Marchetti, M.; Laux, D.; Cappia, F.; Laurie, M.; Van Uffelen, P.; Rondinella, V.V.; Despaux, G.

    2015-01-01

    During irradiation UO 2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO 2 pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO 2 pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  7. 'CANDLE' burnup regime after LWR regime

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Nagata, Akito

    2008-01-01

    CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) burnup strategy can derive many merits. From safety point of view, the change of excess reactivity along burnup is theoretically zero, and the core characteristics, such as power feedback coefficients and power peaking factor, are not changed along burnup. Application of this burnup strategy to neutron rich fast reactors makes excellent performances. Only natural or depleted uranium is required for the replacing fuels. About 40% of natural or depleted uranium undergoes fission without the conventional reprocessing and enrichment. If the LWR produced energy of X Joules, the CANDLE reactor can produce about 50X Joules from the depleted uranium left at the enrichment facility for the LWR fuel. If we can say LWRs have produced energy sufficient for full 20 years, we can produce the energy for 1000 years by using the CANDLE reactors with depleted uranium. We need not mine any uranium ore, and do not need reprocessing facility. The burnup of spent fuel becomes 10 times. Therefore, the spent fuel amount per produced energy is also reduced to one-tenth. The details of the scenario of CANDLE burnup regime after LWR regime will be presented at the symposium. (author)

  8. Implementation of burnup credit in spent fuel management systems

    International Nuclear Information System (INIS)

    Dyck, H.P.

    2001-01-01

    Improved calculational methods allow one to take credit for the reactivity reduction associated with fuel burnup. This means reducing the analysis conservatism while maintaining an adequate safety margin. The motivation for using burnup credit in criticality safety applications is based on economic considerations and additional benefits contributing to public health and safety and resource conservation. Interest in the implementation of burnup credit has been shown by many countries. In 1997, the International Atomic Energy Agency (IAEA) started a task to monitor the implementation of burnup credit in spent fuel management systems, to provide a forum to exchange information, to discuss the matter and to gather and disseminate information on the status of national practices of burnup credit implementation in the Member States. The task addresses current and future aspects of burnup credit. This task was continued during the following years. (author)

  9. Recent observations at the post-irradiation examination of low-enriched U-Mo miniplates irradiated to high burn-up

    International Nuclear Information System (INIS)

    Hofman, G.L.; Kim, Y.S.; Finlay, M.R.; Snelgrove, J.L.; Hayes, S.L.; Meyer, M.K.; Clark, C.R.

    2003-01-01

    High-density dispersion fuel experiment, RERTR-4, was removed from the Advanced Test Reactor (ATR) after reaching a peak U-235 burnup of ∼80% and is presently undergoing postirradiation examination at the ANL Alpha-Gamma Hot Cell Facility. This test consists of 32 mini fuel plates of which 27 were fabricated with nominally 6 and 8 g cm -3 atomized and machined uranium alloy powders containing 6.5 wt% to 10 wt% molybdenum. In addition, two miniplates contained solid U-10wt%Mo foils. Recent results of the postirradiation examination and analysis of RERTR-4 in conjunction with data from a companion test performed to 50% burnup, RERTR-5, are presented. (author)

  10. Effects of pellet-to-cladding gap design parameters on the reliability of high burnup PWR fuel rods under steady state and transient conditions

    International Nuclear Information System (INIS)

    Tas, Fatma Burcu; Ergun, Sule

    2013-01-01

    Highlights: • Fuel performance of a typical Pressurized Water Reactor rod is analyzed. • Steady state fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • Transient fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • The optimum pellet to cladding gap thickness and gap gas pressure values of the simulated fuel are determined. • The effects of pellet to cladding gap design parameters on nuclear fuel reliability are examined. - Abstract: As an important improvement in the light water nuclear reactor operations, the nuclear fuel burnup rate is increased in recent decades and this increase causes heavier duty for the nuclear fuel. Since the high burnup fuel is exposed to very high thermal and mechanical stresses and since it operates in an environment with high radiation for about 18 month cycles, it carries the risk of losing its integrity. In this study; it is aimed to determine the effects of pellet–cladding gap thickness and gap pressure on reliability of high burnup nuclear fuel in Pressurized Water Reactors (PWRs) under steady state operation conditions and suggest optimum values for the examined parameters only and validate these suggestions for a transient condition. In the presented study, fuel performance was analyzed by examining the effects of pellet–cladding gap thickness and gap pressure on the integrity of high burnup fuels. This work is carried out for a typical Westinghouse type PWR fuel. The steady state conditions were modeled and simulated with FRAPCON-3.4a steady state fuel performance code and the FRAPTRAN-1.4 fuel transient code was used to calculate transient fuel behavior. The analysis included the changes in the important nuclear fuel design limitations such as the centerline temperature, cladding stress, strain and oxidation with the change in pellet–cladding gap thickness and initial pellet–cladding gap gas

  11. The FUBR-1B experiment, irradiation of lithium ceramics to high burnups under large temperature gradients

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Knight, R.C.; Densley, P.J.; Pember, L.A.; Johnson, C.E.; Poeppel, R.B.; Yang, L.

    1985-01-01

    Solid breeder materials used for supplying the tritium for fueling fusion power reactors will be required to withstand a variety of severe environmental conditions such as irradiation damage, thermal stresses and chemical reactions while continuing to produce tritium and not interfering with other essential components in the complex blanket region. In the FUBR-1B experiment several solid breeder candidates are being subjected to the most hostile conditions foreseen in a fusion reactor's blanket. Some material, such as Li 2 O, Li 8 ZrO 6 , and Li 4 SiO 4 , possess high lithium atom densities which are reflected in high tritium breeding ratios. Other material, such as LiAlO 2 and Li 2 ZrO 3 , appear to have exceptional irradiation stability. Verifying the magnitude of these differences will allow national selection between design options

  12. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    OpenAIRE

    Setiadipura, T; Irwanto, D; Zuhair, Zuhair

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor ...

  13. Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plant (FUWAC)

    International Nuclear Information System (INIS)

    2011-10-01

    This report presents the results of the Coordinated Research Project (CRP) on Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plants (FUWAC, 2006-2009). It provides an overview of the results of the investigations into the current state of water chemistry practice and concerns in the primary circuit of water cooled power reactors including: corrosion of primary circuit materials; deposit composition and thickness on the fuel; crud induced power shift; fuel oxide growth and thickness; radioactivity buildup in the reactor coolant system (RCS). The FUWAC CRP is a follow-up to the DAWAC CRP (Data Processing Technologies and Diagnostics for Water Chemistry and Corrosion Control in Nuclear Power Plants 2001-2005). The DAWAC project improved the data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (NPPs). With the improved methods for controlling and monitoring water chemistry now available, it was felt that a review of the principles of water chemistry management should be undertaken in the light of new materials, more onerous operating conditions, emergent issues such as CIPS, also known as axial offset anomaly (AOA) and the ageing of operating power plant. In the framework of this CRP, water chemistry specialists from 16 nuclear utilities and research organizations, representing 15 countries, exchanged experimental and operational data, models and insights into water chemistry management. The CD-ROM attached to this IAEA-TECDOC includes the report itself, detailed progress reports of three Research Coordination Meetings (RCMs) (Annexes I-III) and the reports and presentations made during the project by the participants.

  14. PLUTON: A Three-Group Model for the Radial Distribution of Plutonium, Burnup, and Power Profiles in Highly Irradiated LWR Fuel Rods

    International Nuclear Information System (INIS)

    Lemehov, Sergei; Nakamura, Jinichi; Suzuki, Motoe

    2001-01-01

    A three-group model (PLUTON) is described, which predicts the power density distribution, plutonium buildup, and burnup profiles across the fuel pellet radius as a function of in-pile time and parameters characterizing the type of reactor system with respect to fuel temperature and changes of density during the irradiation period. The PLUTON model is a part of two fuel performance codes (ASFAD and FEMAXI-V), which provide all necessary input for this model, mainly local temperatures and fuel matrix density across the radius. Comparisons between measurements and predictions of the PLUTON model are made on fuels with enrichments in the range 2.9 to 8.25% and with burnup between 21 000 and 64 000 MWd/t. It is shown that the PLUTON predictions are in good agreement with measurements as well as with predictions of the well-known TUBRNP model. The proposed model is flexibly applicable for all types of light water reactor (LWR) fuels, including mixed oxide, and for fuel tested in the Organization for Economic Corporation and Development's Halden heavy water reactor. The PLUTON three-group model is based on analytical (theoretical) consideration of neutron absorption in a resonant region of the fuel in its apparent form. It makes the model more flexible in comparison with the semi-empirical TUBRNP one-group model and allows the physically based model analysis of commercial LWR-type fuels at high burnup as well as analysis of experimental fuel rods tested in the Halden heavy water reactor, which is one of the main test reactors in the world. The differences in fuel behavior in the Halden reactor in terms of burnup distribution and plutonium buildup can be more clearly understood with the PLUTON model

  15. Isotopic analyses and calculation by use of JENDL-3.2 for high burn-up UO2 and MOX spent fuels

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Matsumura, Tetsuo; Nicolaou, G.; Betti, M.; Walker, C.T.

    1997-01-01

    The post irradiation examinations (PIE) were carried out for high burn-up UO 2 spent fuel (3.8%U235, average burn-up:60GWd/t) and mixed oxide (MOX) spent fuel (5.07%Pu, average burn-up:45GWd/t). The PIE includes, a) isotopic analysis, b) electron probe microanalysis (EPMA) in pellet cross section and so on. The results of isotopic analyses and EPMA were compared with ORIGEN2/82 and VIM-BURN calculation results. In VIM-BURN calculation, the nuclear data of actinides were proceeded from new data file, JENDL-3.2. The sensitivities of power history and moderator density to nuclides composition were investigated by VIM-BURN calculation and consequently power history mainly effected on Am241 and Am242m and moderator density effected on fissile nuclides. From EPMA results of U and Pu distribution in pellet, VIM-BURN calculation showed reasonable distribution in pellet cross section. (author)

  16. Isotopic analyses and calculation by use of JENDL-3.2 for high burn-up UO{sub 2} and MOX spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sasahara, Akihiro; Matsumura, Tetsuo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Nicolaou, G.; Betti, M.; Walker, C.T.

    1997-03-01

    The post irradiation examinations (PIE) were carried out for high burn-up UO{sub 2} spent fuel (3.8%U235, average burn-up:60GWd/t) and mixed oxide (MOX) spent fuel (5.07%Pu, average burn-up:45GWd/t). The PIE includes, (a) isotopic analysis, (b) electron probe microanalysis (EPMA) in pellet cross section and so on. The results of isotopic analyses and EPMA were compared with ORIGEN2/82 and VIM-BURN calculation results. In VIM-BURN calculation, the nuclear data of actinides were proceeded from new data file, JENDL-3.2. The sensitivities of power history and moderator density to nuclides composition were investigated by VIM-BURN calculation and consequently power history mainly effected on Am241 and Am242m and moderator density effected on fissile nuclides. From EPMA results of U and Pu distribution in pellet, VIM-BURN calculation showed reasonable distribution in pellet cross section. (author)

  17. Fission gas induced fuel swelling in low and medium burnup fuel during high temperature transients

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1980-01-01

    The behavior of light water reactor fuel elements under postulated accident conditions is being studied by the EG and G Idaho, Inc., Thermal Fuels Behavior Program for the Nuclear Regulatory Commission. As a part of this program, unirradiated and previously irradiated, pressurized-water-reactor type fuel rods were tested under power-cooling-mismatch (PCM) conditions in the Power Burst Facility (PBF). During these integral in-reactor experiments, film boiling was produced on the fuel rods which created high fuel and cladding temperatures. Fuel rod diameters increased in the film boiling region to a greater extent for irradiated rods than for unirradiated rods. The purpose of the study was to investigate and assess the fuel swelling which caused the fuel rod diameter increases and to evaluate the ability of an analytical code, the Gas Release and Swelling Subroutine - Steady-State and Transient (GRASS-SST), to predict the results

  18. Fission gas induced fuel swelling in low and medium burnup fuel during high temperature transients. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Vinjamuri, K.

    1980-01-01

    The behavior of light water reactor fuel elements under postulated accident conditions is being studied by the EG and G Idaho, Inc., Thermal Fuels Behavior Program for the Nuclear Regulatory Commission. As a part of this program, unirradiated and previously irradiated, pressurized-water-reactor type fuel rods were tested under power-cooling-mismatch (PCM) conditions in the Power Burst Facility (PBF). During these integral in-reactor experiments, film boiling was produced on the fuel rods which created high fuel and cladding temperatures. Fuel rod diameters increased in the film boiling region to a greater extent for irradiated rods than for unirradiated rods. The purpose of the study was to investigate and assess the fuel swelling which caused the fuel rod diameter increases and to evaluate the ability of an analytical code, the Gas Release and Swelling Subroutine - Steady-State and Transient (GRASS-SST), to predict the results.

  19. A microcomputer program for coupled cycle burnup calculations

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Downar, T.J.; Taylor, E.L.

    1986-01-01

    A program, designated BRACC (Burnup, Reactivity, And Cycle Coupling), has been developed for fuel management scoping calculations, and coded in the BASIC language in an interactive format for use with microcomputers. BRACC estimates batch and cycle burnups for sequential reloads for a variety of initial core conditions, and permits the user to specify either reload batch properties (enrichment, burnable poison reactivity) or the target cycle burnup. Most important fuel management tactics (out-in or low-leakage loading, coastdown, variation in number of assemblies charged) can be simulated

  20. OREST, LWR Burnup Simulation Using Program HAMMER and ORIGEN

    International Nuclear Information System (INIS)

    Hesse, Ulrich; Sieberer, Johann

    2006-01-01

    1 - Description of program or function: In OREST, the 1-dimensional lattice code HAMMER and the isotope generation and depletion code ORIGEN are directly coupled for burnup simulation in light-water reactor fuels (GRS recommended). Additionally heavy water and graphite moderated systems can be calculated. New version differs from the previous version in the following features: An 84-group-library LIB84 for up to 200 isotopes is used to update the 3-group -POISON-XS. LIB84 uses the same energy boundaries as THERMOS and HAMLET in . In this way, high flexibility is achieved in very different reactor models. The coupling factor between THERMOS and HAMLET is now directly transferred from HAMMER to THERES and omits the equation 4 (see page 6 of the manual). Sandwich-reactor fuel reactivity and burnup calculations can be started with NGEOM = 1. Thorium graphite reactivity and burnup calculations can be started with NLIBE = 1. High enriched U-235 heavy water moderated reactivity and burnup calculations can be started. HAMLET libraries in for U-235, U-236, U-238, Np-237, Pu-238, Pu-239, Pu-240, Pu-242, Am-241, Am-243 and Zirconium are updated using resonance parameters. NEA-1324/04: A new version of the module hamme97.f has replaced the old one. 2 - Method of solution: For the user-defined irradiation history, an input data processor generates program loops over small burnup steps for the main codes HAMMER and ORIGEN. The user defined assembly description is transformed to an equivalent HAMMER fuel cell. HAMMER solves the integral neutron transport equation in a four-region cylindrical or sandwiched model with reflecting boundaries and runs with fuel power calculated rod temperatures. ORIGEN runs with HAMMER-calculated cross sections and neutron spectra and calculates isotope concentrations during burnup by solving the buildup-, depletion- and decay-chain equations. An output data processor samples the outputs of the program modules and generates tabular works for the

  1. High-resolution CT of airway reactivity

    International Nuclear Information System (INIS)

    Herold, C.J.; Brown, R.H.; Hirshman, C.A.; Mitzner, W.; Zerhouni, E.A.

    1990-01-01

    Assessment of airway reactivity has generally been limited to experimental nonimaging models. This authors of this paper used high-resolution CT (HRCT) to evaluate airway reactivity and to calculate airway resistance (Raw) compared with lung resistance (RL). Ten anesthetized and ventilated dogs were investigated with HRCT (10 contiguous 2-mm sections through the lower lung lobes) during control state, following aerosol histamine challenge, and following posthistamine hyperinflation. The HRCT scans were digitized, and areas of 10 airways per dog (diameter, 1-10 mm) were measured with a computer edging process. Changes in airway area and Raw (calculated by 1/[area] 2 ) were measured. RL was assessed separately, following the same protocol. Data were analyzed by use of a paired t-test with significance at p < .05

  2. Status of burnup credit implementation in Switzerland

    International Nuclear Information System (INIS)

    Grimm, P.

    1998-01-01

    Burnup credit is currently not used for the storage of spent fuel in the reactor pools in Switzerland, but credit is taken for integral burnable absorbers. Interest exists to take credit of burnup in future for the storage in a central away-from-reactor facility presently under construction. For spent fuel transports to foreign reprocessing plants the regulations of the receiving countries must be applied in addition to the Swiss licensing criteria. Burnup credit has been applied by one Swiss PWR utility for such transports in a consistent manner with the licensing practice in the receiving countries. Measurements of reactivity worths of small spent fuel samples in a Swiss zero-power research reactor are at an early stage of planning. (author)

  3. Appropriate burnup measurements for transportation burnup credit

    International Nuclear Information System (INIS)

    Lancaster, D.; Fuentes, E.

    1997-01-01

    This paper addresses two of the measurement specifications used in analyzing spent fuel packages to gain burnup credit. The philosophy and calculation of rejection criteria and measurement accuracy are discussed. Any assembly for which the declared measured value and reactor record value deviate by more than 10% will be rejected. Measurement accuracy requirements are established for dependent and independent systems. The requirements have been tested and are achievable, ensuring safe operation without extra cost. 6 refs

  4. COGEMA/TRANSNUCLEAIRE's experience with burnup credit

    International Nuclear Information System (INIS)

    Chanzy, Y.; Guillou, E.

    1998-01-01

    Facing a continuous increase in the fuel enrichments, COGEMA and TRANSNUCLEAIRE have implemented step by step a burnup credit programme to improve the capacity of their equipment without major physical modification. Many authorizations have been granted by the French competent authority in wet storage, reprocessing and transport since 1981. As concerns transport, numerous authorizations have been validated by foreign competent authorities. Up to now, those authorizations are restricted to PWR Fuel type assemblies made of enriched uranium. The characterization of the irradiated fuel and the reactivity of the systems are evaluated by calculations performed with well qualified French codes developed by the CEA (French Atomic Energy Commission): CESAR as a depletion code and APPOLO-MORET as a criticality code. The authorizations are based on the assurance that the burnup considered is met on the least irradiated part of the fuel assemblies. Besides, the most reactive configuration is calculated and the burnup credit is restricted to major actinides only. This conservative approach allows not to take credit for any axial profile. On the operational side, the procedures have been reevaluated to avoid misloadings and a burnup verification is made before transport, storage and reprocessing. Depending on the level of burnup credit, it consists of a qualitative (go/no-go) verification or of a quantitative measurement. Thus the use of burnup credit is now a common practice in France and Germany and new improvements are still in progress: extended qualifications of the codes are made to enable the use of six selected fission products in the criticality evaluations. (author)

  5. Development of high-strength aluminum alloys for basket in transport and storage cask for high burn-up spent fuel

    International Nuclear Information System (INIS)

    Maeguchi, T.; Sakaguchi, Y.; Kamiwaki, Y.; Ishii, M.; Yamamoto, T.

    2004-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has developed high-strength borated aluminum alloys (high-strength B-Al alloys), suitable for application to baskets in transport and storage casks for high burn-up spent fuels. Aluminum is a suitable base material for the baskets due to its low density and high thermal conductivity. The aluminum basket would reduce weight of the cask, and effectively release heat generated by spent fuels. MHI had already developed borated aluminum alloys (high-toughness B-Al alloy), and registered them as ASME Code Case ''N-673''. However, there has been a strong demand for basket materials with higher strength in the case of MSF (Mitsubishi Spent Fuel) casks for high-burn up spent fuels, since the basket is required to stand up to higher stress at higher temperature. The high-strength basket material enables the design of a compact cask under a limitation of total size and weight. MHI has developed novel high-strength B-Al alloys which meet these requirements, based on a new manufacturing process. The outline of mechanical and metallurgical characteristics of the high-strength B-Al alloys is described in this paper

  6. Determination of Fission Gas Inclusion Pressures in High Burnup Nuclear Fuel using Laser Ablation ICP-MS combined with SEM/EPMA and Optical Microscopy

    International Nuclear Information System (INIS)

    Horvath, Matthias I.; Guenther-Leopold, Ines; Kivel, Niko; Restani, Renato; Guillong, Marcel; Izmer, Andrei; Hellwig, Christian; Guenther, Detlef

    2008-01-01

    In approximately 20% of all fissions at least one of the fission products is gaseous. These are mainly xenon and krypton isotopes contributing up to 90% by the xenon isotopes. Upon reaching a burn-up of 60 - 75 GWd/tHM a so called High Burnup Structure (HBS) is formed in the cooler rim of the fuel. In this region a depletion of the noble fission gases (FG) in the matrix and an enrichment of FG in μm-sized pores can be observed. Recent calculations show that in these pores the pressure at room temperature can be as large as 30 MPa. The knowledge of the FG pressure in pores is important to understand the high burn-up fuel behavior under accident conditions (i.e. RIA or LOCA). With analytical methods routinely used for the characterization of solid samples, i.e. Electron Probe Micro Analysis (EPMA), Secondary Ion Mass Spectrometry (SIMS), the quantification of gaseous inclusions is very difficult to almost impossible. The combination of a laser ablation system (LA) with an inductively coupled plasma mass spectrometer (ICP-MS) offers a powerful tool for quantification of the gaseous pore inventory. This method offers the advantages of high spatial resolution with laser spot sizes down to 10 μm and low detection limits. By coupling with scanning electron microscopy (SEM) for the pore size distribution, EPMA for the FG inventory in the fuel matrix and optical microscopy for the LA-crater sizes, the pressures in the pores and porosity was calculated. As a first application of this calibration technique for gases, measurements were performed on pressurized water reactor (PWR) fuel with a rod average of 105 GWd/tHM to determine the local FG pressure distribution. (authors)

  7. Whole core burnup calculations using 'MCNP'

    International Nuclear Information System (INIS)

    Haran, O.; Shaham, Y.

    1996-01-01

    Core parameters such as the reactivity, the power distribution and different reactivity coefficients calculated in simulations play an important role in the nuclear reactor handling. Operational safety margins are decided upon, based on the calculated parameters. Thus, the ability to accurately calculate those parameters is of uppermost importance. Such ability exists for fresh cores, using the Monte-Carlo method. The change in the core parameters that results from the core burnup is nowadays calculated within transport codes that simplifies the transport process by using approximations such as the diffusion approximation. The inaccuracy in the burned core parameters arising from the use of such approximations is hard to quantify, leading to an increased gap between the operational routines and the safety limits. A Monte Carlo transport code that caries out accurate static calculations in three dimensional geometries using continuous-energy neutron cross-section data such as the MCNP can be used to generate accurate reaction rates for burnup purposes. Monte Carlo method is statistical by nature, so that the reaction rates calculated will be accurate only to a certain known extent. The purpose of this work was to create a burnup routine that uses the capabilities of the Monte Carlo based MCNP code. It should be noted that burnup using Monte Carlo has been reported in the literatures, but this work is the result of an independent effort (authors)

  8. Whole core burnup calculations using `MCNP`

    Energy Technology Data Exchange (ETDEWEB)

    Haran, O; Shaham, Y [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    Core parameters such as the reactivity, the power distribution and different reactivity coefficients calculated in simulations play an important role in the nuclear reactor handling. Operational safety margins are decided upon, based on the calculated parameters. Thus, the ability to accurately calculate those parameters is of uppermost importance. Such ability exists for fresh cores, using the Monte-Carlo method. The change in the core parameters that results from the core burnup is nowadays calculated within transport codes that simplifies the transport process by using approximations such as the diffusion approximation. The inaccuracy in the burned core parameters arising from the use of such approximations is hard to quantify, leading to an increased gap between the operational routines and the safety limits. A Monte Carlo transport code that caries out accurate static calculations in three dimensional geometries using continuous-energy neutron cross-section data such as the MCNP can be used to generate accurate reaction rates for burnup purposes. Monte Carlo method is statistical by nature, so that the reaction rates calculated will be accurate only to a certain known extent. The purpose of this work was to create a burnup routine that uses the capabilities of the Monte Carlo based MCNP code. It should be noted that burnup using Monte Carlo has been reported in the literatures, but this work is the result of an independent effort (authors).

  9. Extended fuel swelling models and ultra high burn-up fuel behavior of U–Pu–Zr metallic fuel using FEAST-METAL

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydın, E-mail: karahan@alum.mit.edu [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-215, Cambridge, MA 02139 (United States); Andrews, Nathan C., E-mail: nandrews@mit.edu [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-215, Cambridge, MA 02139 (United States)

    2013-05-15

    Highlights: ► Improved fuel swelling models in phase structure dependent form. ► A probabilistic verification exercise for the open porosity formation threshold. ► Satisfactory validation effort for available EBR-II database. ► Ultra high burn-up behavior of U–6Zr fuel with 60% smear density fuel. -- Abstract: Computational models in FEAST-METAL U–Pu–Zr metallic fuel behavior code have been upgraded to improve fission gas, solid fission product swelling, and pore sintering behavior in a microstructure dependent form. First, fission gas bubble growth is modeled by selecting small and large bubble groups according to a fixed number of gas atoms per bubble group. Small bubbles nucleated at phase boundaries grow via gas migration and turn into large bubbles. Furthermore, bubble morphology for each phase structure is captured by selecting the number of atoms per bubble and the shape of the bubbles in a phase dependent form. The gas diffusion coefficients for the single gamma phase and effective dual (α + δ) and (β + γ) phase structures are modeled separately, using the activation energy of the corresponding phase structure. In this study, it is found that pressure sintering of the interconnected porosity in dual phases should be less effective than the reference model in order to match clad strain and fission gas release behavior. In addition to these improvements, a probabilistic approach is taken to verify the fission gas-swelling threshold at which interconnected porosity begins. This fracture problem is treated as a function of critical crack length formed via bubble coalescence. It was found that a 10% gas-swelling threshold is appropriate for a wide range of gas bubble sizes. The new version of FEAST-METAL predicts the burn-up, smear density, and axial variation of the clad hoop strain and fission gas release behavior satisfactorily for selected test pins under EBR-II conditions. The code is used to predict ultra-high burn-up U–Pu–6Zr vented

  10. Extended fuel swelling models and ultra high burn-up fuel behavior of U–Pu–Zr metallic fuel using FEAST-METAL

    International Nuclear Information System (INIS)

    Karahan, Aydın; Andrews, Nathan C.

    2013-01-01

    Highlights: ► Improved fuel swelling models in phase structure dependent form. ► A probabilistic verification exercise for the open porosity formation threshold. ► Satisfactory validation effort for available EBR-II database. ► Ultra high burn-up behavior of U–6Zr fuel with 60% smear density fuel. -- Abstract: Computational models in FEAST-METAL U–Pu–Zr metallic fuel behavior code have been upgraded to improve fission gas, solid fission product swelling, and pore sintering behavior in a microstructure dependent form. First, fission gas bubble growth is modeled by selecting small and large bubble groups according to a fixed number of gas atoms per bubble group. Small bubbles nucleated at phase boundaries grow via gas migration and turn into large bubbles. Furthermore, bubble morphology for each phase structure is captured by selecting the number of atoms per bubble and the shape of the bubbles in a phase dependent form. The gas diffusion coefficients for the single gamma phase and effective dual (α + δ) and (β + γ) phase structures are modeled separately, using the activation energy of the corresponding phase structure. In this study, it is found that pressure sintering of the interconnected porosity in dual phases should be less effective than the reference model in order to match clad strain and fission gas release behavior. In addition to these improvements, a probabilistic approach is taken to verify the fission gas-swelling threshold at which interconnected porosity begins. This fracture problem is treated as a function of critical crack length formed via bubble coalescence. It was found that a 10% gas-swelling threshold is appropriate for a wide range of gas bubble sizes. The new version of FEAST-METAL predicts the burn-up, smear density, and axial variation of the clad hoop strain and fission gas release behavior satisfactorily for selected test pins under EBR-II conditions. The code is used to predict ultra-high burn-up U–Pu–6Zr vented

  11. Status of burnup credit for transport of SNF in the United States

    International Nuclear Information System (INIS)

    Parks, C.V.; Wagner, J.C.

    2004-01-01

    Allowing credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transportation, and disposal of spent nuclear fuel (SNF) while maintaining a subcritical margin sufficient to establish an adequate safety basis. This paper reviews the current status of burnup credit applied to the design and transport of SNF casks in the United States. The existing U.S. regulatory guidance on burnup credit is limited to pressurized-water-reactor (PWR) fuel and to allowing credit only for actinides in the SNF. By comparing loading curves against actual SNF discharge data for U.S. reactors, the potential benefits that can be realized using the current regulatory guidance with actinide-only burnup credit are illustrated in terms of the inventory allowed in high-capacity casks and the concurrent reduction in SNF shipments. The additional benefits that might be realized by extending burnup credit to credit for select fission products are also illustrated. The curves show that, although fission products in SNF provide a small decrease in reactivity compared with actinides, the additional negative reactivity causes the SNF inventory acceptable for transportation to increase from roughly 30% to approximately 90% when fission products are considered. A savings of approximately $150M in transport costs can potentially be realized for the planned inventory of the repository. Given appropriate experimental data to support code validation, a realistic best-estimate analysis of burnup credit that includes validated credit for fission products is the enhancement that will yield the most significant impact on future transportation plans

  12. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    International Nuclear Information System (INIS)

    2011-01-01

    ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost

  13. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Enercon Services, Inc.

    2011-03-14

    ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost

  14. IFPE/IFA-597.3, centre-line temperature, fission gas release and clad elongation at high burn-up (60-62 MWd/kg)

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    2003-01-01

    Description: The fuel segments for the high burn-up integral rod behaviour test IFA-597 were taken from fuel rod 33-25065, which was irradiated in the Ringhals 1 BWR for approximately 12 years. The irradiation of this rod and its sibling rod 33-25046 was performed in two stages. During the first irradiation, 1980 to 1986, the rods were part of Ringhals assembly 6477 and an approximate rod averaged burn-up of 31 MWd/kg UO 2 was reached. The rods were then placed into fuel assembly 9902 for a second period of irradiation from 1986 to 1992. The location of the fuel rods 33-25065 and 33-25046 in this assembly were in positions 9902/D and 9902/E4 respectively. A final rod averaged burn-up of 52 MWd/kg UO 2 was achieved. The burn-up at the location of the Halden segments was estimated as 59 MWd/kg UO 2 , well beyond the formation of High Burn-up Structure (Hobs) formation at the pellet rim. At the rim, the burn-up was estimated as 130 MWd/kg UO 2 . After commercial irradiation, PIE was performed at Studsvik. Inner and outer clad oxide thickness measurements were 42 and 5 microns respectively. The measured cold rod diameter varied between 12.20 and 12.25 mm, thus only a small amount of creep-down had occurred from the original diameter of 12.25 mm. Cold gap measurements were taken by diametral compression of the clad onto the fuel. The stiffness changes twice during these measurements, the first (relocated gap) associated with the onset of pellet fragment movement, the second (compressed gap) when the fragments are together and the pellet is compressed. For these rods, the compressed diametral gap was measured as 30 microns. This is in agreement with the pellet and cladding being in contact during the final irradiation cycle, i.e., at ∼12 kW/m. FGR measurements were made after puncturing and values of 2.5%-3.3% were calculated from the extracted gas. The uncertainty is due to different methods of calculation. Ceramography showed a normal crack pattern and no evidence of

  15. Burnup credit in Spain

    International Nuclear Information System (INIS)

    Conde, J.M.; Recio, M.

    2001-01-01

    The status of development of burnup credit for criticality safety analyses in Spain is described in this paper. Ongoing activities in the country in this field, both national and international, are resumed. Burnup credit is currently being applied to wet storage of PWR fuel, and credit to integral burnable absorbers is given for BWR fuel storage. It is envisaged to apply burnup credit techniques to the new generation of transport casks now in the design phase. The analysis methodologies submitted for the analyses of PWR and BWR fuel wet storage are outlined. Analytical activities in the country are described, as well as international collaborations in this field. Perspectives for future research and development of new applications are finally resumed. (author)

  16. Neutronics performances study of silicon carbide as an inert matrix to achieve very high burn-up for light water reactor fuels

    International Nuclear Information System (INIS)

    Chabert, C.; Coulon-Picard, E.; Pelletier, M.

    2007-01-01

    In order to extend the actual limits of light water reactors, the Cea has put emphasis on the exploration of major fuel innovations that would allow us to increase the competitiveness, the safety and flexibility, while keeping the standard PWR environment. Different fuel concepts have been chosen and are actually studied to evaluate their advantages and drawbacks. The objectives of these new fuels are to increase the safety performances and to achieve a very high burn-up. One concept is a CERCER fuel with silicon carbide (SiC) as an inert matrix devoted to reduce the fuel temperature at nominal conditions. Besides the investigation of the neutronic performance, analyses on the thermomechanical performances, the fuel fabrication, the fuel reprocessing and economic aspects have been performed. This paper presents particularly neutronic results obtained for the CERCER fuel. The results show that a very high burn-up, a high safety performance and a better competitiveness cannot be achieved with this fuel concept. (authors)

  17. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Science.gov (United States)

    Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander

    2017-09-01

    Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  18. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Directory of Open Access Journals (Sweden)

    Ternovykh Mikhail

    2017-01-01

    Full Text Available Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  19. TRIGA criticality experiment for testing burn-up calculations

    International Nuclear Information System (INIS)

    Persic, Andreja; Ravnik, Matjaz; Zagar, Tomaz

    1999-01-01

    A criticality experiment with partly burned TRIGA fuel is described. 20 wt % enriched standard TRIGA fuel elements initially containing 12 wt % U are used. Their average burn-up is 1.4 MWd. Fuel element burn-up is calculated in 2-D four group diffusion approximation using TRIGLAV code. The burn-up of several fuel elements is also measured by reactivity method. The excess reactivity of several critical and subcritical core configurations is measured. Two core configurations contain the same fuel elements in the same arrangement as were used in the fresh TRIGA fuel criticality experiment performed in 1991. The results of the experiment may be applied for testing the computer codes used for fuel burn-up calculations. (author)

  20. LOCA testing of high burnup PWR fuel in the HBWR. Additional PIE on the cladding of the segment 650-5

    Energy Technology Data Exchange (ETDEWEB)

    Oberlaender, B.C.; Espeland, M.; Jenssen, H.K.

    2008-07-01

    IFA-650.5, a test with pre-irradiated fuel in the Halden Project LOCA test series, was conducted on October 23rd, 2006. The fuel rod had been used in a commercial PWR and had a high burnup, 83 MWd/kgU. Experimental arrangements of the fifth test were similar to the preceding LOCA tests. The peak cladding temperature (PCT) level was higher than in the third and fourth tests, 1050 C. A peak temperature close to the target was achieved and cladding burst occurred at approx. 750 C. Within the joint programme framework of the Halden Project PIE was done, consisting of gamma scanning, visual inspection, neutron-radiography, hydrogen analysis and metallography / ceramography. An additional extensive PIE including metallography, hydrogen analysis, and hardness measurements of cross-sections at seven axial elevations was done. It was completed to study the high burnup and LOCA induced effects on the Zr-4 cladding, namely the migration of oxygen into the cladding from the inside surface, the cladding distension, and the burst (author)(tk)

  1. A comparative study to investigate burnup in research reactor fuel using two independent experimental methods

    International Nuclear Information System (INIS)

    Iqbal, M.; Mehmood, T.; Ayazuddin, S.K.; Salahuddin, A.; Pervez, S.

    2001-01-01

    Two independent experimental methods have been used for the comparative study of fuel burnup measurement in low enriched uranium, plate type research reactor. In the first method a gamma ray activity ratio method was employed. An experimental setup was established for gamma ray scanning using prior calibrated high purity germanium detector. The computer software KORIGEN gave the theoretical support. In the second method reactivity difference technique was used. At the same location in the same core configuration the fresh and burned fuel element's reactivity worth was estimated. For theoretical estimated curve, group cross-sections were generated using computer code WIMS-D/4, and three dimensional modeling was made by computer code CITATION. The measured burnup of different fuel elements using these methods were found to be in good agreement

  2. The effect of fuel burnup and dispersed water intrusion on the criticality of spent high-level nuclear fuel in a geologic repository

    International Nuclear Information System (INIS)

    Culbreth, W.G.; Zielinski, P.R.

    1994-01-01

    Studies of the spent fuel waste package have been conducted through the use of a Monte-Carlo neutron simulation program to determine the ability of the fuel to sustain a chain reaction. These studies have included fuel burnup and the effect of water mists on criticality. Results were compared with previous studies. In many criticality studies of spent fuel waste packages, fresh fuel with an enrichment as high as 4.5% is used as the conservative (worst) case. The actual spent fuel has a certain amount of burnup that decreases the concentration of fissile uranium and increases the amount of radionuclides present. The LWR Radiological Data Base from OCRWM has been used to determine the relative radionuclide ratios and KENO 5.1 was used to calculate values of the effective multiplication factor, k eff . Spent fuel is not capable of sustaining a chain reaction unless a suitable moderator, such as water, is present. A completely flooded container has been treated as the worst case for criticality. Results of a previous report that demonstrated that k eff actually peaked at a water-to-mixture ratio of 13% were analyzed for validity. In the present study, these results did not occur in the SCP waste package container

  3. Impacts of the turbogenerator reactive operation in the nuclear fuel burnup; Impactos da operacao reativa do turbogerador na queima do combustivel nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Helio Ricardo V. de; Martinez, Aquilino S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    The parameterization of the losses in a turbogenerator in function of an operation with the electrical system reactive allowed to model in a simple and exact way the equations that define and they quantify the additional of nuclear potency that it should be generated by a reactor, in order to maintain the commitment with the national system operator, that is, the electric active power contracted. starting from this additional of nuclear power it was modeled the additional burn up of the fuel elements, as well as the numbers of effective days to full power wasted. it was promoted a safety analysis and some limitations due to the reactive operation of the electrical system. inside of this context it was made a financial evaluation in which we ask some questions to companies and government organs in order to define what losses are acceptable and also the reason why we don't use other technician resources such as: increase of the electrical mesh, electrical power injection in strategic points, capacitor banks and increase of the number the electrical plants. (author)

  4. Triton burnup in JET

    International Nuclear Information System (INIS)

    Chipsham, E.; Jarvis, O.N.; Sadler, G.

    1989-01-01

    Triton burnup measurements have been made at JET using time-integrated copper activation and time-resolved silicon detector techniques. The results confirm the classical nature of both the confinement and the slowing down of the 1 MeV tritons in a plasma. (author) 8 refs., 3 figs

  5. High burnup performance of an advanced oxide fuel assembly in FFTF [Fast Flux Test Facility] with ferritic/martensitic materials

    International Nuclear Information System (INIS)

    Bridges, A.E.; Saito, G.H.; Lovell, A.J.; Makenas, B.J.

    1986-05-01

    An advanced oxide fuel assembly with ferritic/martensitic materials has successfully completed its sixth cycle of irradiation in the FFTF, reaching a peak pellet burnup greater than 100 MWd/KgM and a peak fast fluence greater than 15 x 10 22 n/cm 2 . The cladding, wire-wrap, and duct material for the ACO-1 test assembly is the ferritic/martensitic alloy, HT9, which was chosen for use in long-lifetime fuel assemblies because of its good nominal temperature creep strength and low swelling rate. Valuable experience on the performance of HT9 materials has been gained from this test, advancing our quest for long-lifetime fuel. Pertinent data, obtained from the ACO-1 test assembly, will support the irradiation of the Core Demonstration Experiment in FFTF

  6. Immune reactivity after high-dose irradiation

    International Nuclear Information System (INIS)

    Gassmann, W.; Wottge, H.U.; von Kolzynski, M.; Mueller-Ruchholtz, W.

    1986-01-01

    Immune reactivity after total-body irradiation was investigated in rats using skin graft rejection as the indicator system. After sublethal irradiation with 10.5 Gy (approximately 50% lethality/6 weeks) the rejection of major histocompatibility complex allogeneic skin grafts was delayed significantly compared with nonirradiated control animals (28 versus 6.5 days). In contrast, skin grafts were rejected after 7.5 days in sublethally irradiated animals and 7 days in lethally irradiated animals if additional skin donor type alloantigens--namely, irradiated bone marrow cells--were given i.v. either simultaneously or with a delay of not more than 24 hr after the above conditioning regimen. These reactions were alloantigen-specific. They were observed in six different strain combinations with varying donors and recipients. Starting on day 2 after irradiation, i.v. injection of bone marrow gradually lost its effectivity and skin grafts were no longer rejected with uniform rapidity; skin donor marrow given on days 4 or 8 did not accelerate skin graft rejection at all. These data show that for approximately 1-2 days after high-dose total-body irradiation rats are still capable of starting a vigorous immune reaction against i.v.-injected alloantigens. The phenomenon of impaired rejection of skin grafted immediately after high-dose irradiation appears to result from the poor accessibility of skin graft alloantigens during the early postirradiation phase when vascularization of the grafted skin is insufficient

  7. Benefits of actinide-only burnup credit for shutdown PWRs

    International Nuclear Information System (INIS)

    Lancaster, D.; Fuentes, E.; Kang, C.; Rivard, D.

    1998-02-01

    Owners of PWRs that are shutdown prior to resolution of interim storage or permanent disposal issues have to make difficult decisions on what to do with their spent fuel. Maine Yankee is currently evaluating multiple options for spent fuel storage. Their spent fuel pool has 1,434 assemblies. In order to evaluate the value to a utility of actinide-only burnup credit, analysis of the number of canisters required with and without burnup credit was made. In order to perform the analysis, loading curves were developed for the Holtec Hi-Star 100/MPC-32. The MPC-32 is hoped to be representative of future burnup credit designs from many vendors. The loading curves were generated using the actinide-only burnup credit currently under NRC review. The canister was analyzed for full loading (32 assemblies) and with partial loadings of 30 and 28 assemblies. If no burnup credit is used the maximum capacity was assumed to be 24 assemblies. this reduced capacity is due to the space required for flux traps which are needed to sufficiently reduce the canister reactivity for the fresh fuel assumption. Without burnup credit the 1,343 assemblies would require 60 canisters. If all the fuel could be loaded into the 32 assembly canisters only 45 canisters would be required. Although the actinide-only burnup credit approach is very conservative, the total number of canisters required is only 47 which is only two short of the minimum possible number of canisters. The utility is expected to buy the canister and the storage overpack. A reasonable cost estimate for the canister plus overpack is $500,000. Actinide-only burnup credit would save 13 canisters and overpacks which is a savings of about $6.5 million. This savings is somewhat reduced since burnup credit requires a verification measurement of burnup. The measurement costs for these assemblies can be estimated as about $1 million. The net savings would be $5.5 million

  8. Fuel and fuel pin behaviour in a high burnup fast breeder fuel subassembly: Results of destructive post-irradiation examinations of the KNK II/1 fuel subassembly NY-205

    International Nuclear Information System (INIS)

    Patzer, G.

    1991-05-01

    The report gives a summarizing overview of the design characteristics, of the irradiation history and of the results of the destructive post-irradiation examinations of the fuel pins of the high-burnup fuel subassembly NY-205 of the KNK II first core. This element was operated for about 10 years and reached a maximum local burnup of 175 MWd/kg(HM) and a maximum neutron dose of 67 dpa-NRT. The main design data of this subassembly agree with those of the SNR 300 Mark-Ia, and it reached more than twice of the burnup and a similar neutron dose as foreseen for the SNR 300 fuel subassemblies [de

  9. PLUTON: Three-group neutronic code for burnup analysis of isotope generation and depletion in highly irradiated LWR fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Lemehov, Sergei E; Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-08-01

    PLUTON is a three-group neutronic code analyzing, as functions of time and burnup, the change of radial profiles, together with average values, of power density, burnup, concentration of trans-uranium elements, plutonium buildup, depletion of fissile elements, and fission product generation in water reactor fuel rod with standard UO{sub 2}, UO{sub 2}-Gd{sub 2}O{sub 3}, inhomogeneous MOX, and UO{sub 2}-ThO{sub 2}. The PLUTON code, which has been designed to be run on Windows PC, has adopted a theoretical shape function of neutron attenuation in pellet, which enables users to perform a very fast and accurate calculation easily. The present code includes the irradiation conditions of the Halden Reactor which gives verification data for the code. The total list of trans-uranium elements included in the calculations consists of {sub 92}U{sup 233-239}, {sub 93}Np{sup 237-239}, {sub 94}Pu{sup 238-243}, {sub 95}Am{sup 241-244} (including isomers), and {sub 96}Cm{sup 242-245}. Poisoning fission products are represented by {sub 54}Xe{sup 131,133,135}, {sub 48}Cd{sup 113}, {sub 62}Sm{sup 149,151,152}, {sub 64}Gd{sup 154-160}, {sub 63}Eu{sup 153,155}, {sub 36}Kr{sup 83,85}, {sub 42}Mo{sup 95}, {sub 43}Tc{sup 99}, {sub 45}Rh{sup 103}, {sub 47}Ag{sup 109}, {sub 53}I{sup 127,129,131}, {sub 55}Cs{sup 133}, {sub 57}La{sup 139}, {sub 59}Pr{sup 141}, {sub 60}Nd{sup 143-150}, {sub 61}Pm{sup 147}. Fission gases and volatiles included in the code are {sub 36}Kr{sup 83-86}, {sub 54}Xe{sup 129-136}, {sub 52}Te{sup 125-130}, {sub 53}I{sup 127-131}, {sub 55}Cs{sup 133-137}, and {sub 56}Ba{sup 135-140}. Verification has been performed up to 83 GWd/tU, and a satisfactory agreement has been obtained. (author)

  10. Axial gas transport and loss of pressure after ballooning rupture of high burn-up fuel rods subjected to LOCA conditions

    International Nuclear Information System (INIS)

    Wiesenack, Wolfgang; Oberlaender, Barbara; Kekkonen, Laura

    2008-01-01

    The OECD Halden Reactor Project has implemented integral in-pile tests on issues related to fuel behaviour under LOCA conditions. In this test series, the interaction of bonded fuel and cladding, the behaviour of fragmented fuel around the ballooning area, and the axial gas communication in high burn-up rods as affected by gap closure and fuel-clad bonding are of major interest for the investigations. In the Halden reactor tests, the decay heat is simulated by a low level of nuclear heating, in contrast to the heating conditions implemented in hot laboratory set-ups, and the thermal expansion of fuel and cladding relative to each other is more similar to the real event. The paper deals with observations regarding the loss of rod pressure following the rupture of the cladding. In the majority of the tests conducted so far, the rod pressure dropped practically instantaneously as a consequence of ballooning rupture, while one test showed a remarkably slow pressure loss. The slow loss of pressure in this test was analysed, showing that the 'hydraulic diameter' of the rod over an un-distended upper part was about 30 - 35 μm which is typical of high burn-up fuel at hot-standby conditions. The 'plug' of fuel restricts the gas flow from the plenum through the fuel column and thus limits the availability of high pressure gas for driving the ballooning. This observation is relevant for the analysis of the behaviour of a full length fuel rod under LOCA conditions since restricted gas flow may influence bundle blockage and the number of failures. (authors)

  11. Modelling the radial distribution of the inventory of U and Pu isotopes in PWR fuel rods at high burnup

    International Nuclear Information System (INIS)

    Furlano, L.; Marino, A.C.

    2015-01-01

    Nowadays trends on nuclear reactors are to take advantage of a more efficient use of the fuels. In this way, goals like decreasing the volume of radioactive wastes, increasing life time in the reactor, extended burnup and accident-tolerance fuels are taken as the principal guidelines for the design and construction for actual nuclear fuels. The development of tools and the capability of prediction of the behaviour of nuclear fuels under irradiation let us design and improve the new demanding conditions without neglecting the security and economics. In this way, the study of the evolution and details of the fissile material of the fuel in particular the 235 U inventory evolution and the 239 Pu production and evolution are demanding conditions. We implemented the PILR code, based on the RAPID model, for the radial distribution of U and Pu radioisotopes. The aim of this work is to determine production and disappearance of Pu and U isotopes during the irradiation of commercial and experimental fuel rods. (author)

  12. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 1: Plenary session; High burnup fuel; Containment and structural aging

    International Nuclear Information System (INIS)

    Monteleone, S.

    1997-01-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This first volume is divided into 3 sections: plenary session; high burnup fuel; and containment and structural aging. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  13. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 1: Plenary session; High burnup fuel; Containment and structural aging

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1997-01-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This first volume is divided into 3 sections: plenary session; high burnup fuel; and containment and structural aging. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  14. Evaluation of Thermal Creep and Hydride Re-orientation Properties of High Burnup Spent Fuel Cladding under Long Term Dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Kamimura, K [JNES (Japan)

    2012-07-01

    In Japan, spent fuels will be reprocessed as recyclable energy source at a reprocessing plant. The first commercial plant is under-constructing and will start operation in 2008. It is necessary that spent fuels should be stored in the independent interim storage facilities (ISF) until reprocessing. Utilities plan the operation of the first ISF in 2010. JNES has a mission to support the safety body by researching the data of technical standard and regulation. Investigating of spent fuel integrity during long term dry storage is one of them. The objectives are: 1) Evaluation of the effects of material design changes on creep properties of high burnup spent fuel cladding; 2) Evaluation of the effects of alloy elements and texture of irradiated Zircaloy on hydride re-orientation properties and the effects of radial hydrides on cladding mechanical properties; 3) Evaluation of the effects of temperature on irradiation hardening recovery.

  15. Fuel rod analysis to respond to high burnup and demanding loading requirements. Probabilistic methodology recovers design margins narrowed by degrading fuel thermal conductivity and progressing FGR

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, R; Heins, L; Sontheimer, F [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-08-01

    The proof that fuel rods will safely withstand all loads arising from inpile service conditions is generally achieved through the assessment of a number of design criteria by using a conservative analysis methodology in conjunction with design limits ``on the safe side``. The classical approach is the application of a fuel rod code to the Worst Case which is defined by the combination of most unfavorable conditions and assumptions with respect to the criterion under consideration. As it is evident that the deterministic construction of such Worst Cases imply an (unknown but) intuitively very high degree of conservatism, it is not surprising that this will develop to cause problems the more demanding fuel insertion conditions have to be anticipated (increased burnup, high efficiency loading schemes, etc.). A certain relief can be gained form cautious revisions of single design limits based on grown performance experience. But this increase of knowledge allows as well to change the established deterministic ``go/no-go`` conception into a better differentiating assessment methodology by which the quantification of the implied conservatism and the remaining design margins is possible: the Probabilistic Design Methodology (PDM). Principles and elements of the PDM are described. An essential prerequisite is a best-estimate fuel rod code which incorporates the latest state of knowledge about potential performance limiting phenomena (e.g. burnup degradation of fuel oxide thermal conductivity) as Siemens/KWU`s CARO-E does. An example is given how input distributions for rod data and model parameters transfer into a frequency distribution of maximum rod internal pressure, and indications are given how this is to be interpreted in view of a probabilistically re-formulated design criterion. The PDM provides a realistic conservative assessment of design criteria and will thus recover design margins for increasingly aggravated loading conditions. (author). 9 refs, 9 figs, 2 tabs.

  16. The effect of dissolved hydrogen on the dissolution of {sup 233}U doped UO{sub 2}(s) high burn-up spent fuel and MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Carbol, P [Inst. for Transuranium Elements, Karlsruhe (Germany); Spahiu, K [and others

    2005-03-01

    In this report the results of the experimental work carried out in a large EU-research project (SFS, 2001-2004) on spent fuel stability in the presence of various amounts of near field hydrogen are presented. Studies of the dissolution of {sup 233}U doped UO{sub 2}(s) simulating 'old' spent fuel were carried out as static leaching tests, autoclave tests with various hydrogen concentrations and electrochemical tests. The results of the leaching behaviour of a high burn-up spent fuel pellet in 5 M NaCl solutions in the presence of 3.2 bar H{sub 2} pressure and of MOX fuel in dilute synthetic groundwater under 53 bar H{sub 2} pressure are also presented. In all the experimental studies carried out in this project, a considerable effect of hydrogen in the dissolution rates of radioactive materials was observed. The experimental results obtained in this project with a-doped UO{sub 2}, high burn-up spent fuel and MOX fuel together with literature data give a reliable background to use fractional alteration/dissolution rates for spent fuel of the order of 10{sup -6}/yr - 10{sup -8}/yr with a recommended value of 4x10{sup -7}/yr for dissolved hydrogen concentrations above 10{sup -3} M and Fe(II) concentrations typical for European repository concepts. Finally, based on a review of the experimental data and available literature data, potential mechanisms of the hydrogen effect are also discussed. The work reported in this document was performed as part of the Project SFS of the European Commission 5th Framework Programme under contract no FIKW-CT-2001-20192 SFS. It represents the deliverable D10 of the experimental work package 'Key experiments using a-doped UO{sub 2} and real spent fuel', coordinated by SKB with the participation of ITU, FZK-INE, ENRESA, CIEMAT, ARMINES-SUBATECH and SKB.

  17. Fuel rod analysis to respond to high burnup and demanding loading requirements. Probabilistic methodology recovers design margins narrowed by degrading fuel thermal conductivity and progressing FGR

    International Nuclear Information System (INIS)

    Eberle, R.; Heins, L.; Sontheimer, F.

    1997-01-01

    The proof that fuel rods will safely withstand all loads arising from inpile service conditions is generally achieved through the assessment of a number of design criteria by using a conservative analysis methodology in conjunction with design limits ''on the safe side''. The classical approach is the application of a fuel rod code to the Worst Case which is defined by the combination of most unfavorable conditions and assumptions with respect to the criterion under consideration. As it is evident that the deterministic construction of such Worst Cases imply an (unknown but) intuitively very high degree of conservatism, it is not surprising that this will develop to cause problems the more demanding fuel insertion conditions have to be anticipated (increased burnup, high efficiency loading schemes, etc.). A certain relief can be gained form cautious revisions of single design limits based on grown performance experience. But this increase of knowledge allows as well to change the established deterministic ''go/no-go'' conception into a better differentiating assessment methodology by which the quantification of the implied conservatism and the remaining design margins is possible: the Probabilistic Design Methodology (PDM). Principles and elements of the PDM are described. An essential prerequisite is a best-estimate fuel rod code which incorporates the latest state of knowledge about potential performance limiting phenomena (e.g. burnup degradation of fuel oxide thermal conductivity) as Siemens/KWU's CARO-E does. An example is given how input distributions for rod data and model parameters transfer into a frequency distribution of maximum rod internal pressure, and indications are given how this is to be interpreted in view of a probabilistically re-formulated design criterion. The PDM provides a realistic conservative assessment of design criteria and will thus recover design margins for increasingly aggravated loading conditions. (author). 9 refs, 9 figs, 2 tabs

  18. The effect of dissolved hydrogen on the dissolution of 233U doped UO2(s) high burn-up spent fuel and MOX fuel

    International Nuclear Information System (INIS)

    Carbol, P.; Spahiu, K.

    2005-03-01

    In this report the results of the experimental work carried out in a large EU-research project (SFS, 2001-2004) on spent fuel stability in the presence of various amounts of near field hydrogen are presented. Studies of the dissolution of 233 U doped UO 2 (s) simulating 'old' spent fuel were carried out as static leaching tests, autoclave tests with various hydrogen concentrations and electrochemical tests. The results of the leaching behaviour of a high burn-up spent fuel pellet in 5 M NaCl solutions in the presence of 3.2 bar H 2 pressure and of MOX fuel in dilute synthetic groundwater under 53 bar H 2 pressure are also presented. In all the experimental studies carried out in this project, a considerable effect of hydrogen in the dissolution rates of radioactive materials was observed. The experimental results obtained in this project with a-doped UO 2 , high burn-up spent fuel and MOX fuel together with literature data give a reliable background to use fractional alteration/dissolution rates for spent fuel of the order of 10 -6 /yr - 10 -8 /yr with a recommended value of 4x10 -7 /yr for dissolved hydrogen concentrations above 10 -3 M and Fe(II) concentrations typical for European repository concepts. Finally, based on a review of the experimental data and available literature data, potential mechanisms of the hydrogen effect are also discussed. The work reported in this document was performed as part of the Project SFS of the European Commission 5th Framework Programme under contract no FIKW-CT-2001-20192 SFS. It represents the deliverable D10 of the experimental work package 'Key experiments using a-doped UO 2 and real spent fuel', coordinated by SKB with the participation of ITU, FZK-INE, ENRESA, CIEMAT, ARMINES-SUBATECH and SKB

  19. Preliminary Content Evaluation of the North Anna High Burn-Up Sister Fuel Rod Segments for Transportation in the 10-160B and NAC-LWT

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-09

    The U.S. Department of Energy’s (DOE’s) Used Fuel Disposition Campaign (UFDC) Program has transported high-burnup nuclear sister fuel rods from a commercial nuclear power plant for purposes of evaluation and testing. The evaluation and testing of high-burnup used nuclear fuel is integral to DOE initiatives to collect information useful in determining the integrity of fuel cladding for future safe transportation of the fuel, and for determining the effects of aging, on the integrity of UNF subjected to extended storage and subsequent transportation. The UFDC Program, in collaboration with the U.S. Nuclear Regulatory Commission and the commercial nuclear industry, has obtained individual used nuclear fuel rods for testing. The rods have been received at Oak Ridge National Laboratory (ORNL) for both separate effects testing (SET) and small-scale testing (SST). To meet the research objectives, testing on multiple 6 inch fuel rod pins cut from the rods at ORNL will be performed at Pacific Northwest National Laboratory (PNNL). Up to 10 rod equivalents will be shipped. Options were evaluated for multiple shipments using the 10-160B (based on 4.5 rod equivalents) and a single shipment using the NAC-LWT. Based on the original INL/Virginia Power transfer agreement, the rods are assumed to 152 inches in length with a 0.374-inch diameter. This report provides a preliminary content evaluation for use of the 10-160B and NAC-LWT for transporting those fuel rod pins from ORNL to PNNL. This report documents the acceptability of using these packagings to transport the fuel segments from ORNL to PNNL based on the following evaluations: enrichment, A2 evaluation, Pu-239 FGE evaluation, heat load, shielding (both gamma and neutron), and content weight/structural evaluation.

  20. Parametric neutronic analyses related to burnup credit cask design

    International Nuclear Information System (INIS)

    Parks, C.V.

    1989-01-01

    The consideration of spent fuel histories (burnup credit) in the design of spent fuel shipping casks will result in cost savings and public risk benefits in the overall fuel transportation system. The purpose of this paper is to describe the depletion and criticality analyses performed in conjunction with and supplemental to the referenced analysis. Specifically, the objectives are to indicate trends in spent fuel isotopic composition with burnup and decay time; provide spent fuel pin lattice values as a function of burnup, decay time, and initial enrichment; demonstrate the variation of k eff for infinite arrays of spent fuel assemblies separated by generic cask basket designs (borated and unborated) of varying thicknesses; and verify the potential cask reactivity margin available with burnup credit via analysis with generic cask models

  1. Fission product margin in burnup credit analyses

    International Nuclear Information System (INIS)

    Finck, P.J.; Stenberg, C.G.

    1998-01-01

    The US Department of Energy (DOE) is currently working toward the licensing of a methodology for using actinide-only burnup credit for the transportation of spent nuclear fuel (SNF). Important margins are built into this methodology. By using comparisons with a representative experimental database to determine bias factors, the methodology ensures that actinide concentrations and worths are estimated conservatively; furthermore, the negative net reactivity of certain actinides and all fission products (FPs) is not taken into account, thus providing additional margin. A future step of DOE's effort might aim at establishing an actinide and FP burnup credit methodology. The objective of this work is to establish the uncertainty to be applied to the total FP worth in SNF. This will serve two ends. First, it will support the current actinide-only methodology by demonstrating the margin available from FPs. Second, it will identify the major contributions to the uncertainty and help set priorities for future work

  2. Diametral strain of fast reactor MOX fuel pins with austenitic stainless steel cladding irradiated to high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Uwaba, Tomoyuki, E-mail: uwaba.tomoyuki@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan); Ito, Masahiro; Maeda, Koji [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan)

    2011-09-30

    Highlights: > We evaluated diametral strain of fast reactor MOX fuel pins irradiated to 130 GWd/t. > The strain was due to cladding void swelling and irradiation creep. > The irradiation creep was caused by internal gas pressure and PCMI. > The PCMI was associated with pellet swelling by rim structure or by cesium uranate. > The latter effect tended to increase the cumulative damage fraction of the cladding. - Abstract: The C3M irradiation test, which was conducted in the experimental fast reactor, 'Joyo', demonstrated that mixed oxide (MOX) fuel pins with austenitic steel cladding could attain a peak pellet burnup of about 130 GWd/t safely. The test fuel assembly consisted of 61 fuel pins, whose design specifications were similar to those of driver fuel pins of a prototype fast breeder reactor, 'Monju'. The irradiated fuel pins exhibited diametral strain due to cladding void swelling and irradiation creep. The cladding irradiation creep strain were due to the pellet-cladding mechanical interaction (PCMI) as well as the internal gas pressure. From the fuel pin ceramographs and {sup 137}Cs gamma scanning, it was found that the PCMI was associated with the pellet swelling which was enhanced by the rim structure formation or by cesium uranate formation. The PCMI due to cesium uranate, which occurred near the top of the MOX fuel column, significantly affected cladding hoop stress and thermal creep, and the latter effect tended to increase the cumulative damage fraction (CDF) of the cladding though the CDF indicated that the cladding still had some margin to failure due to the creep damage.

  3. [Reactive collisions of high-temperature systems

    International Nuclear Information System (INIS)

    Graff, M.M.

    1990-01-01

    The object of this research is to study reactivity at superthermal collision energies using a fast neutral beam that is generated by photodetachment. Systems scheduled for initial study include basic oxygen-hydrogen reactions. Unfortunately, we can not yet report realization of this goal, but during this funding period we have made advances that are anticipated to lead to successful measurements during the next year. The parameters described below refer to the model system O + H 2 → OH + H. The basic design involves the collision of fast neutrals, created by photodetachment of the corresponding negative molecular ion, with a stable reactant gas in a collision cell. Products are detected by ionization and mass analysis. We are equipped to study rotational effects on reactivity by comparing results for rotational levels J = 0 and 1 of H 2 . Highlights during the funding period are given in this report

  4. Actinide and Xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D.L.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  5. Actinide and xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D. L.; Sailor, W. C.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  6. Actinide and Xenon reactivity effects in ATW high flux systems

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, M. [Univ. of Virginia, Charlottesville, VA (United States); Olson, K.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1995-10-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides.

  7. Determination of the burn-up of TRIGA fuel elements by calculation with new TRIGLAV program

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.

    1996-01-01

    The results of fuel element burn-up calculations with new TRIGLAV program are presented. TRIGLAV program uses two dimensional model. Results of calculation are compared to results calculated with program, which uses one dimensional model. The results of fuel element burn-up measurements with reactivity method are presented and compared with the calculated results. (author)

  8. SOURCE OF BURNUP VALUES FOR COMMERCIAL SPENT NUCLEAR FUEL ASSEMBLIES

    International Nuclear Information System (INIS)

    BSC

    2004-01-01

    , initial 235 U enrichment, and time of discharge from the reactor as well as the assigned burnup, but the distribution. of burnup axially along the assembly length is not provided. The axial burnup profile is maintained within acceptable bounds by the operating conditions of the nuclear reactor and is calculated during preparations to reload a reactor, but the actual burnup profile is not measured. The axial burnup profile is important to the determination of the reactivity of a waste package, so a conservative evaluation of the calculated axial profiles for a large database of SNF has been performed. The product of the axial profile evaluation is a profile that is conservative. Thus, there is no need for physical measurement of the axial profile. The assembly identifier is legible on each SNF assembly and the utility records provide the associated characteristics of the assembly. The conservative methodologies used to determine the criticality loading curve for a waste package provide sufficient margin so that criticality safety is assured for preclosure operations even in the event of a misload. Consideration of misload effects for postclosure time periods is provided by the criticality Features, Events, and Processes (FEPs) analysis. The conservative approaches used to develop and apply the criticality loading curve are thus sufficiently robust that the utility assigned burnup is an adequate source of burnup values, and additional means of verification of assigned burnup through physical measurements are not needed

  9. Oxygen stoichiometry shift of irradiated LWR-fuels at high burn-ups: Review of data and alternative interpretation of recently published results

    International Nuclear Information System (INIS)

    Spino, J.; Peerani, P.

    2008-01-01

    The available oxygen potential data of LWR-fuels by the EFM-method have been reviewed and compared with thermodynamic data of equivalent simulated fuels and mixed oxide systems, combined with the analysis of lattice parameter data. Up to burn-ups of 70-80 GWd/tM the comparison confirmed traditional predictions anticipating the fuels to remain quasi stoichiometric along irradiation. However, recent predictions of a fuel with average burn-up around 100 GWd/tM becoming definitely hypostoichiometric were not confirmed. At average burn-ups around 80 GWd/tM and above, it is shown that the fuels tend to acquire progressively slightly hyperstoichiometric O/M ratios. The maximum derived O/M ratio for an average burn-up of 100 GWd/tM lies around 2.001 and 2.002. Though slight, the stoichiometry shift may have a measurable accelerating impact on fission gas diffusion and release

  10. OECD/NEA burnup credit calculational criticality benchmark Phase I-B results

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.; Parks, C.V. [Oak Ridge National Lab., TN (United States); Brady, M.C. [Sandia National Labs., Las Vegas, NV (United States)

    1996-06-01

    In most countries, criticality analysis of LWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. This assumption has led to the design of widely spaced and/or highly poisoned storage and transport arrays. If credit is assumed for fuel burnup, initial enrichment limitations can be raised in existing systems, and more compact and economical arrays can be designed. Such reliance on the reduced reactivity of spent fuel for criticality control is referred to as burnup credit. The Burnup Credit Working Group, formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods agree to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods agree within 11% about the average for all fission products studied. Most deviations are less than 10%, and many are less than 5%. The exceptions are Sm 149, Sm 151, and Gd 155.

  11. OECD/NEA burnup credit calculational criticality benchmark Phase I-B results

    International Nuclear Information System (INIS)

    DeHart, M.D.; Parks, C.V.; Brady, M.C.

    1996-06-01

    In most countries, criticality analysis of LWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. This assumption has led to the design of widely spaced and/or highly poisoned storage and transport arrays. If credit is assumed for fuel burnup, initial enrichment limitations can be raised in existing systems, and more compact and economical arrays can be designed. Such reliance on the reduced reactivity of spent fuel for criticality control is referred to as burnup credit. The Burnup Credit Working Group, formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods agree to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods agree within 11% about the average for all fission products studied. Most deviations are less than 10%, and many are less than 5%. The exceptions are Sm 149, Sm 151, and Gd 155

  12. Development of a numerical experimentation method for thermal hydraulics design and evaluation of high burn-up and innovative fuel pins

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Misawa, Takeharu; Baglietto, Emilio; Sorokin, A.P.; Maekawa, Isamu; Ohshima, Hiroyuki; Yamaguchi, Akira

    2003-03-01

    A method of large scale direct numerical simulation of turbulent flows in a high burn-up fuel pin bundle is proposed to evaluate wall shear stress and temperature distributions on the pin surfaces as well as detailed coolant velocity and temperature distributions inside subchannels under various thermal hydraulic conditions. This simulation is aimed at providing a tool to confirm margins to thermal hydraulics design limits of the nuclear fuels and at the same time to be used in design-by-analysis approaches. The method will facilitate thermal hydraulic design of high performance LMFR core fuels characterized by high burn-up, ultra long life, high reliable and safe performances, easiness of operation and maintenance, minimization of radio active wastes, without much relying on such empirical approach as hot spot factor and sub-factors, and above all the high cost mock up experiments. A pseudo direct numerical simulation of turbulence (DNS) code is developed, first on the Cartesian coordinates and then on the curvilinear boundary fit coordinates that enables us to reproduce thermal hydraulics phenomena in such a complicated flow channel as subchannels in a nuclear fuel pin assembly. The coordinate transformation is evaluated and demonstrated to yield correct physical quantities by carrying out computations and comparisons with experimental data with respect to the distributions of various physical quantities and turbulence statistics for fluid flow and heat transfers in various kinds of simple flow channel geometry. Then the boundary fitted pseudo DNS for flows inside an infinite pin array configuration is carried out and compared with available detailed experimental data. In parallel similar calculations are carried out using a commercial code STAR-CD to cross-check the DNS performances. As a results, the pseudo DNS showed reasonable comparisons with experiments as well as the STAR-CD results. Importance of the secondary flow influences is emphasized on the momentum

  13. Optimisation of water chemistry to ensure reliable water reactor fuel performance at high burnup and in ageing plant (FUWAC): an International Atomic Energy Agency coordinated research project

    Energy Technology Data Exchange (ETDEWEB)

    Killeen, J.C. [International Atomic Energy Agency, Vienna (Austria); Nordmann, F. [Advanced Nuclear Technology International Europe AB, Beauchamp (France); Schunk, J. [Paks NPP (Hungary); Vonkova, K. [Nuclear Research Inst., Rez (Czech Republic)

    2010-07-01

    The IAEA project 'Optimisation of Water Chemistry to ensure Reliable Water Reactor Fuel Performance at High Burnup and in Aging Plant' (FUWAC) was initiated with the objectives of monitoring, maintaining and optimising water chemistry regimes in primary circuits of water cooled power reactors, taking into account high burnup operation, mixed cores and plant aging, including following issues and remedies. This report provides some highlights of the work undertaken by the project participants. Clad oxidation studies have been undertaken and include operational data from the South Ukraine WWER where no corrosion problems have been seen on either Westinghouse ZIRLO™ or Russian alloy E110 fuel cladding. Work on the Russian alloy E110 showed that potassium in the coolant is preferable to lithium for mitigating fuel cladding oxidation. Studies on crud behaviour in PWR have shown a dependence on crud thickness and pHT. The nature and mechanisms for boron deposition in fuel cladding cruds have been investigated which is the root cause of crud induced power shifts (CIPS). Operational experience at French PWRs shows no difference in the CIPS behaviour between units with Alloy 600 or 690 steam generators, whilst Korean experience provides information on the Ni/Fe ratio on fuel cladding crud and the occurrence of CIPS. Coolant additions have been studied, for example in BWR units using zinc addition, crud is more tenacious. Zinc is also added to PWR units, mainly for dose rate control and in some cases for PWSCC mitigation of Alloy 600. At low levels there has been no clear evidence of any effect of zinc on CIPS, but there is a benefit on fuel oxidation. It is suggested that zinc addition should be considered where there is SG replacement or fuel core management modification. One possibility for the elimination of fuel crud is decontamination. Such an operation is time consuming, expensive, includes several risks of corrosion and induces a large quantity of

  14. Fuel element burnup determination in HEU-LEU mixed TRIGA research reactor core

    International Nuclear Information System (INIS)

    Zagar, Tomaz; Ravnik, Matjaz

    2000-01-01

    This paper presents the results of a burnup calculations and burnup measurements for TRIGA FLIP HEU fuel elements and standard TRIGA LEU fuel elements used simultaneously in small TRIGA Mark II research reactor in Ljubljana, Slovenija. The fuel element burnup for approximately 15 years of operation was calculated with two different in house computer codes TRIGAP and TRIGLAV (both codes are available at OECD NEA Data Bank). The calculation is performed in one-dimensional radial geometry in TRIGAP and in two-dimensional (r,φ) geometry in TRIGLAV. Inter-comparison of results shows important influence of in-core water gaps, irradiation channels and mixed rings on burnup calculation accuracy. Burnup of 5 HEU and 27 LEU fuel elements was also measured with reactivity method. Measured and calculated burnup values are inter-compared for these elements (author)

  15. A PWR Thorium Pin Cell Burnup Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.

    2000-05-01

    As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.

  16. Burnup credit effect on proposed cask payloads

    International Nuclear Information System (INIS)

    Hall, I.K.

    1989-01-01

    The purpose of the Cask Systems Development Program (CSDP) is to develop a variety of cask systems which will allow safe and economical movement of commercial spent nuclear fuel and high-level waste from the generator to the Federal repository or Monitored Retrievable Storage (MRS) facility. Program schedule objectives for the initial phase of the CSDP include the development of certified spent fuel cask systems by 1995 to support Office of Civilian Radioactive Waste Management shipments from the utilities beginning in the late 1990s. Forty-nine proposals for developing a family of spent fuel casks were received and comparisons made. General conclusions that can be drawn from the comparisons are that (1) the new generation of casks will have substantially increased payloads in comparison to current casks, and (2) an even greater payload increase may be achievable with burnup credit. The ranges in the payload estimates do not allow a precise separation of the payload increase attributable to the proposed allowance of fuel burnup credit, as compared wilt the no-burnup-credit case. The beneficial effects of cask payload increases on overall costs and risks of transporting spent fuel are significant; therefore further work aimed toward taking advantage of burnup credit is warranted

  17. The effect of dissolved hydrogen on the dissolution of {sup 233}U doped UO{sub 2}(s) high burn-up spent fuel and MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Carbol, P. [Inst. for Transuranium Elements, Karlsruhe (Germany); Spahiu, K. (ed.) [and others

    2005-03-01

    In this report the results of the experimental work carried out in a large EU-research project (SFS, 2001-2004) on spent fuel stability in the presence of various amounts of near field hydrogen are presented. Studies of the dissolution of {sup 233}U doped UO{sub 2}(s) simulating 'old' spent fuel were carried out as static leaching tests, autoclave tests with various hydrogen concentrations and electrochemical tests. The results of the leaching behaviour of a high burn-up spent fuel pellet in 5 M NaCl solutions in the presence of 3.2 bar H{sub 2} pressure and of MOX fuel in dilute synthetic groundwater under 53 bar H{sub 2} pressure are also presented. In all the experimental studies carried out in this project, a considerable effect of hydrogen in the dissolution rates of radioactive materials was observed. The experimental results obtained in this project with a-doped UO{sub 2}, high burn-up spent fuel and MOX fuel together with literature data give a reliable background to use fractional alteration/dissolution rates for spent fuel of the order of 10{sup -6}/yr - 10{sup -8}/yr with a recommended value of 4x10{sup -7}/yr for dissolved hydrogen concentrations above 10{sup -3} M and Fe(II) concentrations typical for European repository concepts. Finally, based on a review of the experimental data and available literature data, potential mechanisms of the hydrogen effect are also discussed. The work reported in this document was performed as part of the Project SFS of the European Commission 5th Framework Programme under contract no FIKW-CT-2001-20192 SFS. It represents the deliverable D10 of the experimental work package 'Key experiments using a-doped UO{sub 2} and real spent fuel', coordinated by SKB with the participation of ITU, FZK-INE, ENRESA, CIEMAT, ARMINES-SUBATECH and SKB.

  18. Disposal criticality analysis methodology's principal isotope burnup credit

    International Nuclear Information System (INIS)

    Doering, T.W.; Thomas, D.A.

    2001-01-01

    This paper presents the burnup credit aspects of the United States Department of Energy Yucca Mountain Project's methodology for performing criticality analyses for commercial light-water-reactor fuel. The disposal burnup credit methodology uses a 'principal isotope' model, which takes credit for the reduced reactivity associated with the build-up of the primary principal actinides and fission products in irradiated fuel. Burnup credit is important to the disposal criticality analysis methodology and to the design of commercial fuel waste packages. The burnup credit methodology developed for disposal of irradiated commercial nuclear fuel can also be applied to storage and transportation of irradiated commercial nuclear fuel. For all applications a series of loading curves are developed using a best estimate methodology and depending on the application, an additional administrative safety margin may be applied. The burnup credit methodology better represents the 'true' reactivity of the irradiated fuel configuration, and hence the real safety margin, than do evaluations using the 'fresh fuel' assumption. (author)

  19. Broadband and High power Reactive Jamming Resilient Wireless Communication

    Science.gov (United States)

    2017-10-21

    Broadband and High -power Reactive Jamming Resilient Wireless Communication The views, opinions and/or findings contained in this report are those of... available in extremely hostile environments, where FHSS and DSSS are completely defeated by a broadband and high -power reactive jammer. b. Wireless...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS

  20. Highly reactive light-dependent monoterpenes in the Amazon

    Science.gov (United States)

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-01

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissions of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.

  1. Fabrication and characterization of 6Li-enriched Li2TiO3 pebbles for a high Li-burnup irradiation test

    International Nuclear Information System (INIS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2006-10-01

    Lithium titanate (Li 2 TiO 3 ) pebbles are considered to be a candidate material of tritium breeders for fusion reactor from viewpoints of easy tritium release at low temperatures (about 300degC) and chemical stability. In the present study, trial fabrication tests of 6 Li-enriched Li 2 TiO 3 pebbles of 1mm in diameter were carried out by a wet process with a dehydration reaction, and characteristics of the 6 Li-enriched Li 2 TiO 3 pebbles were evaluated for preparation of a high Li-burnup test in a testing reactor. Powder of 96at% 6 Li-enriched Li 2 TiO 3 was prepared by a solid state reaction, and two kinds of 6 Li-enriched Li 2 TiO 3 pebbles, namely un-doped and TiO 2 -doped Li 2 TiO 3 pebbles, were fabricated by the wet process. Based on results of the pebble fabrication tests, two kinds of 6 Li-enriched Li 2 TiO 3 pebbles were successfully fabricated with target values (density: 80-85%T.D., grain size: 2 TiO 3 pebbles was a satisfying value of about 1.05. Contact strength of these pebbles was about 6300MPa, which was almost the same as that of the Li 2 TiO 3 pebbles with natural Li. (author)

  2. Development of a FBR fuel bundle-duct interaction analysis code-BAMBOO. Analysis model and verification by Phenix high burn-up fuel subassemblies

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ito, Masahiro; Ukai, Shigeharu

    2005-01-01

    The bundle-duct interaction analysis code ''BAMBOO'' has been developed for the purpose of predicting deformation of a wire-wrapped fuel pin bundle of a fast breeder reactor (FBR). The BAMBOO code calculates helical bowing and oval-distortion of all the fuel pins in a fuel subassembly. We developed deformation models in order to precisely analyze the irradiation induced deformation by the code: a model to analyze fuel pin self-bowing induced by circumferential gradient of void swelling as well as thermal expansion, and a model to analyze dispersion of the orderly arrangement of a fuel pin bundle. We made deformation analyses of high burn-up fuel subassemblies in Phenix reactor and compared the calculated results with the post irradiation examination data of these subassemblies for the verification of these models. From the comparison we confirmed that the calculated values of the oval-distortion and bowing reasonably agreed with the PIE results if these models were used in the analysis of the code. (author)

  3. Stress intensity factor at the tip of cladding incipient crack in RIA-simulating experiments for high-burnup PWR fuels

    International Nuclear Information System (INIS)

    Udagawa, Yutaka; Suzuki, Motoe; Sugiyama, Tomoyuki; Fuketa, Toyoshi

    2009-01-01

    RIA-simulating experiments for high-burnup PWR fuels have been performed in the NSRR, and the stress intensity factor K 1 at the tip of cladding incipient crack has been evaluated in order to investigate its validity as a PCMI failure threshold under RIA conditions. An incipient crack depth was determined by observation of metallographs. The maximum hydride-rim thickness in the cladding of the test fuel rod was regarded as the incipient crack depth in each test case. Hoop stress in the cladding periphery during the pulse power transient was calculated by the RANNS code. K 1 was calculated based on crack depth and hoop stress. According to the RANNS calculation, PCMI failure cases can be divided into two groups: failure in the elastic phase and failure in the plastic phase. In the former case, elastic deformation was predominant around the incipient crack at failure time. K 1 is available only in this case. In the latter, plastic deformation was predominant around the incipient crack at failure time. Failure in the elastic phase never occurred when K 1 was less than 17 MPa m 1/2 . For failure in the plastic phase, the plastic hoop strain of the cladding periphery at failure time clearly showed a tendency to decrease with incipient crack depth. The combination of K 1 , for failure in the elastic phase, and plastic hoop strain at failure, for failure in the plastic phase, can be an effective index of PCMI failure under RIA conditions. (author)

  4. Long-term safety of radioactive waste disposal: Chemical reaction of fabricated and high burnup spent UO2 fuel with saline brines. Final report

    International Nuclear Information System (INIS)

    Grambow, B.; Casas, I.; Pablo, J. de; Gimenez, J.; Torrero, M.E.

    1996-03-01

    This is the final report of a large EU-research project on spent fuel stability in saline repository environments. Static dissolution experiments with high burnup spent fuel samples and unirradiated UO 2 were performed for about two years in anaerobic NaCl solutions and deionized water with and without container material (iron) being present. Experiments performed at 25 and 150 C gave similar results. Dissolution rates were similar to those measured in the Swedish, or Canadian program for granite media. Rates are strongly influenced by the specific sample surface area, probably related to the mass balance of consumption and production of radiolytic oxidants. In the competition between the oxidizing effect of radiolysis and the reducing effect of iron, the metal corrosion process dominates. Processes controlling radionuclide release are matrix dissolution, solubility, coprecipitation sorption phenomena and colloid formation. In the absence of iron release rates of Sr90, Tc99, Np237, Sb125 and at low reaction progress Ru106 were controlled by matrix dissolution whereas concentrations of tetra-, hexa-, and trivalent actinides (U, Pu, Am, Cm) were controlled by solubility or coprecipitation. The presence of iron did effectively reduce the rates of fuel dissolution and the concentration of many, though not all radionuclides. Solubilities of U were similar for uniradiated UO 2 and for spent fuel both in the case of oxidizing and reducing conditions. In contrast, due to the effect of radiolysis, reaction rates of spent fuel were higher than UO 2 dissolution rates. (orig.) [de

  5. Long-Term Dry Storage of High Burn-Up Spent Pressurized Water Reactor (PWR) Fuel in TAD (Transportation, Aging, and Disposal) Containers

    International Nuclear Information System (INIS)

    Hwang, Yong Soo

    2008-12-01

    A TAD canister, in conjunction with specially-designed over-packs can accomplish the functions of transportation, aging, and disposal (TAD) in the management of spent nuclear fuel (SNF). Industrial dry cask systems currently available for SNF are licensed for storage-only or for dual-purpose (i.e., storage and transportation). By extending the function to include the indefinite storage and perhaps, eventual geologic disposal, the TAD canister would have to be designed to enhance, among others, corrosion resistance, thermal stability, and criticality-safety control. This investigative paper introduces the use of these advanced iron-based, corrosion-resistant materials for SNF transportation, aging, and disposal.The objective of this investigative project is to explore the interest that KAERI would research and develop its specific SAM coating materials for the TAD canisters to satisfy the requirements of corrosion-resistance, thermal stability, and criticality-controls for long-term dry storage of high burn-up spent PWR fuel

  6. Computational and experimental analysis of causes for local deformation of research reactor U-Mo fuel pin claddings in case of high burn-ups

    International Nuclear Information System (INIS)

    Popov, V.V.; Khmelevsky, M.Ya.; Lukichev, V.A.; Golosov, O.A.

    2005-01-01

    Post-reactor investigations of (U-Mo) fuel pins irradiated in the IVV-2M reactor have allowed to determine: the change in a fuel pin volume; the dimensions and the kind of the local deformation of fuel pin claddings; the amount of gases released under the cladding from the fuel composition, the thickness and appearance of the interaction layer of between the (U-Mo) particles and aluminium as a matrix material. The computational analysis of the stressed-strained state of fuel pins has shown that the major contribution to the increase of the fuel pin volume is made by the fuel swelling caused by the solid products of fission being formed in the process of operation. The emergence of the (U-Mo) fuel-aluminium matrix interaction layers around the (U-Mo) particles results in formation and evolution of lamination cavities inside the fuel composition under the joint action of the pressure of process gases and gaseous fission products. In case of high burn-up a local bulge of a fuel pin cladding is being formed in the fuel lamination area caused by the pressure of gases in the presence of creep in the fuel pin cladding material. The computational results relating to the local strain in a research reactor (U-Mo) fuel pin are in a good accordance with the results of the post-reactor investigations. (author)

  7. Development of methods for burn-up calculations for LWR's

    International Nuclear Information System (INIS)

    Jaschik, W.

    1978-01-01

    This method is based on all burn-up depending data, namely particle densities and neutron spectra, being available in a burn-up library. This one is created by means of a small number of cell burn-up calculations which can easily be carried out and in which the heterogeneous cell structure and self-shielding effects can explicitly be accounted for. Then the cluster burn-up is simulated by adequate correlation of the burn-up data. The advantage of this method is given by - an exact determination of the real spectrum distribution in the individual fuel element clusters; - an exact determination of the burn-up related spectrum variations for each fuel rod and for each burn-up value obtained; - accounting for heterogeneity of the fuel rod cells and the self-shielding in the fuel; high accuracy of the results of a comparably low effort and - simple handling by largely automating the process of computation. Programed realization was achieved by establishing the RSYST modules ABRAJA, MITHOM, and SIMABB and their implementation within the code system. (orig./HP) [de

  8. Research on burnup physics

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1974-07-01

    One of the major problems in burnup studies is the reasonably fast and accurate calculation of the space-and-energy dependent neutron flux and reaction rates for realistic power reactor fuel geometries and compositions, and its optimal integration in the global reactor calculations. The scope of the present research was to develop improved methods trying to satisfy the above requirements. In the epithermal region, simple and efficient approximation is proposed which allows the analytical solution for the space dependence of the spherical harmonics flux moments, and hence the derivation of the recurrence relations between he flux moments at successive lethargy pivotal points. A new matrix formalism to invert the coefficient matrix of band structure resulted in a reduce computer time and memory demands. The research on epithermal region is finalized in computing programme SPLET, which calculates the space-lethargy distribution of the spherical harmonics neutron flux moments, and the related integral quantities as reaction rates and resonance integrals. For partial verification of the above methods a Monte Carlo procedure was developed. Using point-wise representation of variables, a flexible and fast convergent integral transport method SEPT i developed. Expanding the neutron source and flux in finite series of arbitrary polynomials, the space-and-energy dependent integral transport equation is transformed into a general linear algebraic form, which is solved numerically. A simple and efficient procedure for deriving multipoint equations and constructing matrix is proposed and examined, and no unwanted oscillations were noticed. The energy point method was combined with the spherical harmonics method as well. A multi zone few-group program SPECTAR for global reactor calculations was developed. For testing, the flux distribution, neutron leakage and effective multiplication factor for the PWR reactor of the power station San Onofre were calculated. In order to verify

  9. Implementation of burnup credit in spent fuel management systems. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    1998-04-01

    The criticality safety analysis of spent fuel systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system's reactivity. Improved calculational methods allows one to take credit for the reactivity reduction associated with fuel burnup, hence reducing the analysis conservatism while maintaining an adequate criticality safety margin. Motivation for using burnup credit in criticality safety applications is generally based on economic considerations. Although economics may be a primary factor in deciding to use burnup credit, other benefits may be realized. Many of the additional benefits of burnup credit that are not strictly economic, may be considered to contribute to public health and safety, and resource conservation and environmental quality. Interest in the implementation of burnup credit has been shown by many countries. A summary of the information gathered by the IAEA about ongoing activities and regulatory status of burnup credit in different countries is included. Burnup credit implementation introduces new parameters and effects that should be addressed in the criticality analysis (e.g., axial and radial burnup shapes, fuel irradiation history, and others). Analysis of these parameters introduces new variations as well as the uncertainties, that should be considered in the safety assessment of the system. Also, the need arises to validate the isotopic composition that results from a depletion calculation, as well as to extend the current validation range of criticality codes to cover spent fuel. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Methods and procedures used in different countries are described in this report

  10. Implementation of burnup credit in spent fuel management systems. Proceedings of an advisory group meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The criticality safety analysis of spent fuel systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system`s reactivity. Improved calculational methods allows one to take credit for the reactivity reduction associated with fuel burnup, hence reducing the analysis conservatism while maintaining an adequate criticality safety margin. Motivation for using burnup credit in criticality safety applications is generally based on economic considerations. Although economics may be a primary factor in deciding to use burnup credit, other benefits may be realized. Many of the additional benefits of burnup credit that are not strictly economic, may be considered to contribute to public health and safety, and resource conservation and environmental quality. Interest in the implementation of burnup credit has been shown by many countries. A summary of the information gathered by the IAEA about ongoing activities and regulatory status of burnup credit in different countries is included. Burnup credit implementation introduces new parameters and effects that should be addressed in the criticality analysis (e.g., axial and radial burnup shapes, fuel irradiation history, and others). Analysis of these parameters introduces new variations as well as the uncertainties, that should be considered in the safety assessment of the system. Also, the need arises to validate the isotopic composition that results from a depletion calculation, as well as to extend the current validation range of criticality codes to cover spent fuel. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Methods and procedures used in different countries are described in this report. Refs, figs, tabs.

  11. End effects in the criticality analysis of burnup credit casks

    International Nuclear Information System (INIS)

    Brady, M.C.; Parks, C.V.

    1990-01-01

    A study to evaluate the effect of axially dependent burnup on k eff has been performed as part of an effort to qualify procedures to be used in establishing burnup credit in shipping cask design and certification. This study was performed using a generic 31-element modular cast-iron cask (wall thickness 33.1 cm) with a 1-cm-thick borated stainless-steel basket for reactivity control. Fuel isotopics used here are those of the 17 x 17 Westinghouse assemblies from the North Anna Unit 1 reactor. Virginia Power (VP) provided detailed spatial isotopics for the fuel assemblies in-core at beginning-of-cycle 5 (BOC-5) as generated from their PDQ analyses. Twenty-two axial planes were defined in the original VP data. The isotopics used in this study were for a 3.41 initial wt % 235 U and an average burnup of 31.5 GWd/MTU

  12. Role of measurement systems in burnup credit operations

    International Nuclear Information System (INIS)

    Ewing, R.I.; Sanders, T.L.

    1991-01-01

    Spent fuel transport casks designed using burnup credit have increased payloads that may greatly reduce the number of shipments required to transport spent fuel from reactor sites to repositories. Burnup credit is obtained by applying the reduced reactivity of spent fuel to considerations of nuclear criticality in the design of transport casks. Although it does not appear to be possible to directly measure the criticality of spent fuel assemblies, measurements can be employed to ensure that the only assemblies loaded into a cask have the characteristics appropriate to that cask design. An effective on-site measurement system must be matched to the characteristics of the spent fuel cask design and to the inventory of spent fuel. For operation reasons the system should be simple, accurate, efficient, and easily calibrated. This paper is part of a study to examine the effects of the spent fuel inventory in the U.S. on the selection of measurement systems useful in burnup credit operations

  13. A burn-up module coupling to an AMPX system

    International Nuclear Information System (INIS)

    Salvatore Duque, M.; Gomez, S.E.; Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.

    1990-01-01

    The Reactors and Neutrons Division of the Bariloche Atomic Center uses the AMPX system for the study of high conversion reactors (HCR). Such system allows to make neutronic calculations from the nuclear data library (ENDF/B-IV). The Nuclear Engineering career of the Balseiro Institute developed and implemented a burn-up module at a μ-cell level (BUM: Burn-up Module) which agrees with the requirement to be coupled to the AMPX system. (Author) [es

  14. Status of burnup credit implementation and research in Switzerland

    International Nuclear Information System (INIS)

    Grimm, P.

    2001-01-01

    Burnup credit has recently been approved by the Swiss licensing authority for the spent-fuel storage pool of a PWR plant for fuel exceeding the originally licensed initial enrichment. The criticality safety assessment is based on a configuration consisting of a small number (approximately a reload batch) of fresh assemblies surrounded by assemblies having a burnup corresponding to the minimum value in the top 1 m section after one cycle of irradiation. The allowable initial enrichment in this configuration is about 0.5% higher than for all fresh fuel. A central storage facility for all types of radioactive wastes from Switzerland, including cask storage of spent fuel assemblies is being commissioned presently. The first applications for licenses for casks to be used in this facility have been submitted. Credit for burnup has not been requested in these applications (conforming to the original licenses of the casks in their countries of origin), but utilities are interested in burnup credit for fuel with higher initial enrichments. Reactivity worth measurements as well as chemical assays of spent fuel samples in the LWR-PROTEUS facility at PSI are in detailed planning currently. The experiments, scheduled to start in 2001, will be performed in cooperation with the Swiss utilities and their fuel vendors. Although the focus of interest of these partners is on validation of in-core fuel management tools, the same experiments are also applicable to burnup credit, and contacts with further potential partners interested in this field are underway. (author)

  15. High-Pressure Liquid Chromatography of Irradiated Nuclear Fue - Separation of Neodymium for Burn-up Determination

    DEFF Research Database (Denmark)

    Larsen, N. R.

    1979-01-01

    Neodymium is separated from solutions of spent nuclear fuel by high-pressure liquid chromatography in methanol-nitric acid-water media using an anion-exchange column. Chromatograms obtained by monitoring at 280 nm, illustrate the difficulties especially with the fission product ruthenium in nuclear...

  16. Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plant (FUWAC). Additional Information

    International Nuclear Information System (INIS)

    2011-10-01

    This report presents the results of the Coordinated Research Project (CRP) on Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plants (FUWAC, 2006-2009). It provides an overview of the results of the investigations into the current state of water chemistry practice and concerns in the primary circuit of water cooled power reactors including: corrosion of primary circuit materials; deposit composition and thickness on the fuel; crud induced power shift; fuel oxide growth and thickness; radioactivity buildup in the reactor coolant system (RCS). The FUWAC CRP is a follow-up to the DAWAC CRP (Data Processing Technologies and Diagnostics for Water Chemistry and Corrosion Control in Nuclear Power Plants 2001-2005). The DAWAC project improved the data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (NPPs). With the improved methods for controlling and monitoring water chemistry now available, it was felt that a review of the principles of water chemistry management should be undertaken in the light of new materials, more onerous operating conditions, emergent issues such as CIPS, also known as axial offset anomaly (AOA) and the ageing of operating power plant. In the framework of this CRP, water chemistry specialists from 16 nuclear utilities and research organizations, representing 15 countries, exchanged experimental and operational data, models and insights into water chemistry management. This CD-ROM attached to the printed IAEA-TECDOC includes the report itself, detailed progress reports of three Research Coordination Meetings (RCMs) (Annexes I-III) and the reports and presentations made during the project by the participants.

  17. Deep Reactive Ion Etching for High Aspect Ratio Microelectromechanical Components

    DEFF Research Database (Denmark)

    Jensen, Søren; Yalcinkaya, Arda Deniz; Jacobsen, S.

    2004-01-01

    A deep reactive ion etch (DRIE) process for fabrication of high aspect ratio trenches has been developed. Trenches with aspect ratios exceeding 20 and vertical sidewalls with low roughness have been demonstrated. The process has successfully been used in the fabrication of silicon-on-insulator (SOI...

  18. Sophistication of burnup analysis system for fast reactor

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hirai, Yasushi; Hyoudou, Hideaki; Tatsumi, Masahiro

    2010-02-01

    Improvement on prediction accuracy for neutronics property of fast reactor cores is one of the most important study domains in terms of both achievement of high economical plant efficiency based on reasonably advanced designs and increased reliability and safety margins. In former study, considerable improvement on prediction accuracy in neutronics design has been achieved in the development of the unified constants library as a fruit of a series of critical experiments such as JUPITER in application of the reactor constant adjustments. For design of fast reactor cores, however, improvement of not only static properties but also burnup properties is very important. For such purpose, it is necessary to improve the prediction accuracy on burnup properties using actual burnup data of 'JOYO' and 'MONJU', experimental and prototype fast reactors. Recently, study on effective burnup method for minor actinides becomes important theme. However, there is a problem that analysis work tends to become inefficient for lack of functionality suitable for analysis of composition change due to burnup since the conventional analysis system is targeted to critical assembly systems. Therefore development of burnup analysis system for fast reactors with modularity and flexibility is being done that would contribute to actual core design work and improvement of prediction accuracy. In the previous research, we have developed a prototype system which has functions of performing core and burnup calculations using given constant files (PDS files) and information based on simple and easy user input data. It has also functions of fuel shuffling which is indispensable for production systems. In the present study, we implemented functions for cell calculations and burnup calculations. With this, whole steps in analysis can be carried out with only this system. In addition, we modified the specification of user input to improve the convenience of this system. Since implementations being done so

  19. Borylnitrenes: electrophilic reactive intermediates with high reactivity towards C-H bonds.

    Science.gov (United States)

    Bettinger, Holger F; Filthaus, Matthias

    2010-12-21

    Borylnitrenes (catBN 3a and pinBN 3b; cat = catecholato, pin = pinacolato) are reactive intermediates that show high tendency towards insertion into the C-H bonds of unactivated hydrocarbons. The present article summarizes the matrix isolation investigations that were aimed at identifying, characterizing and investigating the chemical behaviour of 3a by spectroscopic means, and of the experiments in solution and in the gas phase that were performed with 3b. Comparison with the reactivity reported for difluorovinylidene 1a in solid argon indicates that 3a shows by and large similar reactivity, but only after photochemical excitation. The derivative 3b inserts into the C-H bonds of hydrocarbon solvents in high yields and thus allows the formation of primary amines, secondary amines, or amides from "unreactive" hydrocarbons. It can also be used for generation of methylamine or methylamide from methane in the gas phase at room temperature. Remaining challenges in the chemistry of borylnitrenes are briefly summarized.

  20. Improvements for Monte Carlo burnup calculation

    Energy Technology Data Exchange (ETDEWEB)

    Shenglong, Q.; Dong, Y.; Danrong, S.; Wei, L., E-mail: qiangshenglong@tsinghua.org.cn, E-mail: d.yao@npic.ac.cn, E-mail: songdr@npic.ac.cn, E-mail: luwei@npic.ac.cn [Nuclear Power Inst. of China, Cheng Du, Si Chuan (China)

    2015-07-01

    Monte Carlo burnup calculation is development trend of reactor physics, there would be a lot of work to be done for engineering applications. Based on Monte Carlo burnup code MOI, non-fuel burnup calculation methods and critical search suggestions will be mentioned in this paper. For non-fuel burnup, mixed burnup mode will improve the accuracy of burnup calculation and efficiency. For critical search of control rod position, a new method called ABN based on ABA which used by MC21 will be proposed for the first time in this paper. (author)

  1. Fuel burnup analysis for the Moroccan TRIGA research reactor

    International Nuclear Information System (INIS)

    El Bakkari, B.; El Bardouni, T.; Nacir, B.; El Younoussi, C.; Boulaich, Y.; Boukhal, H.; Zoubair, M.

    2013-01-01

    Highlights: ► A fuel burnup analysis of the 2 MW TRIGA MARK II Moroccan research reactor was established. ► Burnup calculations were done by means of the in-house developed burnup code BUCAL1. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► The reactor life time was found to be 3360 MW h considering full power operating conditions. ► Power factors and fluxes of the in-core irradiation positions are strongly affected by burnup. -- Abstract: The fundamental advantage and main reason to use Monte Carlo methods for burnup calculations is the possibility to generate extremely accurate burnup dependent one group cross-sections and neutron fluxes for arbitrary core and fuel geometries. Yet, a set of values determined for a material at a given position and time remains accurate only in a local region, in which neutron spectrum and flux vary weakly — and only for a limited period of time, during which changes of the local isotopic composition are minor. This paper presents the approach of fuel burnup evaluation used at the Moroccan TRIGA MARK II research reactor. The approach is essentially based upon the utilization of BUCAL1, an in-house developed burnup code. BUCAL1 is a FORTRAN computer code designed to aid in analysis, prediction, and optimization of fuel burnup performance in nuclear reactors. The code was developed to incorporate the neutron absorption reaction tally information generated directly by MCNP5 code in the calculation of fissioned or neutron-transmuted isotopes for multi-fueled regions. The fuel cycle length and changes in several core parameters such as: core excess reactivity, control rods position, fluxes at the irradiation positions, axial and radial power factors and other parameters are estimated. Besides, this study gives valuable insight into the behavior of the reactor and will ensure better utilization and operation of the reactor during its life-time and it will allow the establishment of

  2. Review of Technical Studies in the United States in Support of Burnup Credit Regulatory Guidance

    International Nuclear Information System (INIS)

    Wagner, John C.; Parks, Cecil V.; Mueller, Don; Gauld, Ian C.

    2010-01-01

    Taking credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transport, disposal, and reprocessing of spent nuclear fuel (SNF) while maintaining sufficient subcritical margin to establish an adequate safety basis. Consequently, there continues to be considerable interest in the United States (U.S.), as well as internationally, in the increased use of burnup credit in SNF operations, particularly related to storage, transport, and disposal of commercial SNF. This interest has motivated numerous technical studies related to the application of burnup credit, both domestically and internationally, as well as the design of SNF storage, transport and disposal systems that rely on burnup credit for maintaining subcriticality. Responding to industry requests and needs, the U.S. Nuclear Regulatory Commission (NRC) initiated a burnup credit research program in 1999, with support from the Oak Ridge National Laboratory (ORNL), to develop regulatory guidance and the supporting technical bases for allowing and expanding the use of burnup credit in pressurized-water reactor SNF storage and transport applications. Although this NRC research program has not been continuous since its inception, considerable progress has been achieved in many key areas in terms of increased understanding of relevant phenomena and issues, availability of relevant information and data, and subsequently updated regulatory guidance for expanded use of burnup credit. This paper reviews technical studies performed by ORNL for the U.S. NRC burnup credit research program. Examples of topics include reactivity effects associated with reactor operating characteristics, fuel assembly characteristics, burnable absorbers, control rods, spatial burnup distributions, cooling time, and assembly misloading; methods and data for validation of isotopic composition predictions; methods and data for validation of criticality calculations; and

  3. Monte Carlo burnup simulation of the TAKAHAMA-3 benchmark experiment

    International Nuclear Information System (INIS)

    Dalle, Hugo M.

    2009-01-01

    High burnup PWR fuel is currently being studied at CDTN/CNEN-MG. Monte Carlo burnup code system MONTEBURNS is used to characterize the neutronic behavior of the fuel. In order to validate the code system and calculation methodology to be used in this study the Japanese Takahama-3 Benchmark was chosen, as it is the single burnup benchmark experimental data set freely available that partially reproduces the conditions of the fuel under evaluation. The burnup of the three PWR fuel rods of the Takahama-3 burnup benchmark was calculated by MONTEBURNS using the simplest infinite fuel pin cell model and also a more complex representation of an infinite heterogeneous fuel pin cells lattice. Calculations results for the mass of most isotopes of Uranium, Neptunium, Plutonium, Americium, Curium and some fission products, commonly used as burnup monitors, were compared with the Post Irradiation Examinations (PIE) values for all the three fuel rods. Results have shown some sensitivity to the MCNP neutron cross-section data libraries, particularly affected by the temperature in which the evaluated nuclear data files were processed. (author)

  4. Optimum Discharge Burnup and Cycle Length for PWRs

    International Nuclear Information System (INIS)

    Secker, Jeffrey R.; Johansen, Baard J.; Stucker, David L.; Ozer, Odelli; Ivanov, Kostadin; Yilmaz, Serkan; Young, E.H.

    2005-01-01

    This paper discusses the results of a pressurized water reactor fuel management study determining the optimum discharge burnup and cycle length. A comprehensive study was performed considering 12-, 18-, and 24-month fuel cycles over a wide range of discharge burnups. A neutronic study was performed followed by an economic evaluation. The first phase of the study limited the fuel enrichments used in the study to 235 U consistent with constraints today. The second phase extended the range of discharge burnups for 18-month cycles by using fuel enriched in excess of 5 wt%. The neutronic study used state-of-the-art reactor physics methods to accurately determine enrichment requirements. Energy requirements were consistent with today's high capacity factors (>98%) and short (15-day) refueling outages. The economic evaluation method considers various component costs including uranium, conversion, enrichment, fabrication and spent-fuel storage costs as well as the effect of discounting of the revenue stream. The resulting fuel cycle costs as a function of cycle length and discharge burnup are presented and discussed. Fuel costs decline with increasing discharge burnup for all cycle lengths up to the maximum discharge burnup considered. The choice of optimum cycle length depends on assumptions for outage costs

  5. Fuel burn-up distribution and transuranic nuclide contents produced at the first cycle operation of AP1000

    International Nuclear Information System (INIS)

    Jati Susilo; Jupiter Sitorus Pane

    2016-01-01

    AP1000 reactor core was designed with nominal power of 1154 MWe (3415 MWth), operated within life time of 60 years and cycle length of 18 months. For the first cycle, the AP1000 core uses three kinds of UO 2 enrichment, they are 2.35 w/o, 3.40 w/o and 4.45 w/o. Absorber materials such as ZrB 2 , Pyrex and Boron solution are used to compensate the excess reactivity at the beginning of cycle. In the core, U-235 fuels are burned by fission reaction and produce energy, fission products and new neutron. Because of the U-238 neutron absorption reaction, the high level radioactive waste of heavy nuclide transuranic such as Pu, Am, Cm and Np are also generated. They have a very long half life. The purpose of this study is to evaluate the result of fuel burn-up distribution and heavy nuclide transuranic contents produced by AP1000 at the end of first cycle operation (EOFC). Calculation of ¼ part of the AP1000 core in the 2 dimensional model has been done using SRAC2006 code with the module of COREBN/HIST. The input data called the table of macroscopic cross section, is calculated using module of PIJ. The result shows that the maximum fuel assembly (FA) burn-up is 27.04 GWD/MTU, that is still lower than allowed maximum burn-up of 62 GWD/MTU. Fuel loading position at the center/middle of the core will produce bigger burn-up and transuranic nuclide than one at the edges the of the core. The use of IFBA fuel just give a small effect to lessen the fuel burn-up and transuranic nuclide production. (author)

  6. Electrospray Ionization Mass Spectrometric Analysis of Highly Reactive Glycosyl Halides

    Directory of Open Access Journals (Sweden)

    Lajos Kovács

    2012-07-01

    Full Text Available Highly reactive glycosyl chlorides and bromides have been analysed by a routine mass spectrometric method using electrospray ionization and lithium salt adduct-forming agents in anhydrous acetonitrile solution, providing salient lithiated molecular ions [M+Li]+, [2M+Li]+ etc. The role of other adduct-forming salts has also been evaluated. The lithium salt method is useful for accurate mass determination of these highly sensitive compounds.

  7. The research on burnup characteristic of doping burnable poison in PWR

    International Nuclear Information System (INIS)

    Qiang Shenglong; Qin Dong; Chai Xiaoming; Yao Dong

    2014-01-01

    In PWR core design, burnable poisons are usually used for reactive compensation and power flatten. The choice of burnable poisons and how to match burnup would be the key-points for a long-life core design. We study the burnup character of doping burnable poisons (such as natural element, manual nuclide and soluble boron) in the PWR by the core burnup code MOI based on Monte Carlo method. The results show that Hf, Er and Eu doping burnable poison would be applicable for the nuclear design research on the long-life PWR core. (authors)

  8. Preparation of data relevant to ''Equivalent Uniform Burnup'' and Equivalent Initial Enrichment'' for burnup credit evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasushi; Okuno, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Murazaki, Minoru [Tokyo Nuclear Service Inc., Tokyo (Japan)

    2001-11-01

    Based on the PWR spent fuel composition data measured at JAERI, two kinds of simplified methods such as ''Equivalent Uniform Burnup'' and ''Equivalent Initial Enrichment'' have been introduced. And relevant evaluation curves have been prepared for criticality safety evaluation of spent fuel storage pool and transport casks, taking burnup of spent fuel into consideration. These simplified methods can be used to obtain an effective neutron multiplication factor for a spent fuel storage/transportation system by using the ORIGEN2.1 burnup code and the KENO-Va criticality code without considering axial burnup profile in spent fuel and other various factors introducing calculated errors. ''Equivalent Uniform Burnup'' is set up for its criticality analysis to be reactivity equivalent with the detailed analysis, in which the experimentally obtained isotopic composition together with a typical axial burnup profile and various factors such as irradiation history are considered on the conservative side. On the other hand, Equivalent Initial Enrichment'' is set up for its criticality analysis to be reactivity equivalent with the detailed analysis such as above when it is used in the so called fresh fuel assumption. (author)

  9. Determination of curie content and 134/137cesium ratios by gamma spectroscopy of high burnup plutonium-aluminum fuel assemblies

    International Nuclear Information System (INIS)

    Haggard, D.L.; Tanner, J.E.

    1997-06-01

    Nondestructive assay (NDA) gamma spectroscopy techniques were used to measure 134/137 Cs ratios on nine PuAl Mark 42 fuel assemblies. The purpose of the ratio measurement was to confirm theoretical burnup calculations. 134/137 Cs ratios were determined from the measured activity based on corrected net peak area counts for the 605 keV peak from 134 Cs and the 662 keV peak from 137 Cs/ 137m Ba. Assembly No. 2 134/137 Cs ratio measured on 4-15-92 was 0.19. The measured 134/137 Cs ratio was decay corrected to be 2.11 on 8-1-84 based on the half lives of 134 Cs and 137 Cs. The measured 134/137 Cs ratio range was 1.90--2.14 for all nine assemblies. These measured values compare to a theoretical ratio of 1.7 on 8-1-84 determined by burnup calculations. Total cesium curie content was also requested and determined using the NDA direct measurements. Gamma spectral data were measured on the nine sectioned Mark 42 fuel assemblies. Measured cesium curie content, decay corrected to 8-1-84, ranged from 18170--24480 curies of 134 Cs and 8620--11646 curies of 137 Cs. Theoretical cesium curie content of 8-1-84 was 15200 curies 134 Cs and 8973 curies 137 Cs. Direct assay cesium ratio is 12% to 26% higher than the predicted ratio of 1.7. The measured 134 Cs data indicate between 20%--61% more activity than that predicted by the burnup code, whereas the measured 137 Cs activity is between 4% less to 30% more than the predicted activity. This information may be used to address issues concerning criticality safety, storage, and shipping of this type of material

  10. Determination of curie content and {sup 134/137}cesium ratios by gamma spectroscopy of high burnup plutonium-aluminum fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, D.L.; Tanner, J.E.

    1997-06-01

    Nondestructive assay (NDA) gamma spectroscopy techniques were used to measure {sup 134/137}Cs ratios on nine PuAl Mark 42 fuel assemblies. The purpose of the ratio measurement was to confirm theoretical burnup calculations. {sup 134/137}Cs ratios were determined from the measured activity based on corrected net peak area counts for the 605 keV peak from {sup 134}Cs and the 662 keV peak from {sup 137}Cs/{sup 137m}Ba. Assembly No. 2 {sup 134/137}Cs ratio measured on 4-15-92 was 0.19. The measured {sup 134/137}Cs ratio was decay corrected to be 2.11 on 8-1-84 based on the half lives of {sup 134}Cs and {sup 137}Cs. The measured {sup 134/137}Cs ratio range was 1.90--2.14 for all nine assemblies. These measured values compare to a theoretical ratio of 1.7 on 8-1-84 determined by burnup calculations. Total cesium curie content was also requested and determined using the NDA direct measurements. Gamma spectral data were measured on the nine sectioned Mark 42 fuel assemblies. Measured cesium curie content, decay corrected to 8-1-84, ranged from 18170--24480 curies of {sup 134}Cs and 8620--11646 curies of {sup 137}Cs. Theoretical cesium curie content of 8-1-84 was 15200 curies {sup 134}Cs and 8973 curies {sup 137}Cs. Direct assay cesium ratio is 12% to 26% higher than the predicted ratio of 1.7. The measured {sup 134}Cs data indicate between 20%--61% more activity than that predicted by the burnup code, whereas the measured {sup 137}Cs activity is between 4% less to 30% more than the predicted activity. This information may be used to address issues concerning criticality safety, storage, and shipping of this type of material.

  11. Burnup credit feasibility for BWR spent fuel shipments

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1990-01-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent of fuel casks used for transportation and storage. Analyses 1 have shown the feasibility estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This paper summarizes the extension of the previous PWR feasibility assessments to boiling water reactor (BWR) fuel. As with the PWR analysis, the purpose was not verification of burnup credit (see ref. 2 for ongoing work in this area) but a reasonable assessment of the feasibility and potential gains from its use in BWR applications. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. The method includes characterization of a typical pin-cell spectrum, using a one-dimensional (1-D) model of a BWR assembly. The calculated spectrum allows burnup-dependent few-group material constants to be generated. Point depletion methods were then used to obtain the time-varying characteristics of the fuel. These simple methods were validated, where practical, with multidimensional methods. 6 refs., 1 tab

  12. Burn-up TRIGA Mark II benchmark experiment

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Zagar, T.

    1998-01-01

    Different reactor codes are used for calculations of reactor parameters. The accuracy of the programs is tested through comparison of the calculated values with the experimental results. Well-defined and accurately measured benchmarks are required. The experimental results of reactivity measurements, fuel element reactivity worth distribution and fuel-up measurements are presented in this paper. The experiments were performed with partly burnt reactor core. The experimental conditions were well defined, so that the results can be used as a burn-up benchmark test case for a TRIGA Mark II reactor calculations.(author)

  13. Full Core Burn-up Calculation at JRR-3 with MVP-BURN

    International Nuclear Information System (INIS)

    Komeda, Masao; Yamamoto, Kazuyoshi; Kusunoki, Tsuyoshi

    2008-01-01

    Research reactors use a burnable poison to suppress an excess reactivity in the beginning of reactor lifetime. The JRR-3 (Japan Research Reactor No.3) has used cadmium wires of radius 0.02 cm as a burnable poison. This report describes burn-up calculations of plate fuel models and full core models with MVP-BURN, which is a burn-up calculation code using Monte Carlo method and has been developed in JAEA (Japan Atomic Energy Agency). As the results of calculations of plate models, between a model composed of one burn-up region along the radius direction and a model composed of a few burn-up regions along the radius direction, the effective absorption cross section of 113 Cd has had different tendency on reaching approximate 40. day (10000 MWd/t). And as results of calculations of full core model, it has been indicated that k eff is almost same till approximate 80. day (22000 MWd/t) between a model composed of one burn-up region along the vertical direction and a model composed of a few burn-up regions along the vertical direction. However difference of 113 Cd burn-up becomes pronounced and each k eff makes a difference after 80. day. (authors)

  14. Burnup measurements of leader fuel elements

    International Nuclear Information System (INIS)

    Henriquez, C; Navarro, G; Pereda, C

    2000-01-01

    Some time ago the CCHEN authorities decided to produce a set of 50 low enrichment fuel elements. These elements were produced in the PEC (Fuel Elements Plant), located at CCHEN offices in Lo Aguirre. These new fuel elements have basically the same geometrical characteristics of previous ones, which were British and made with raw material from the U.S. The principal differences between our fuel elements and the British ones is the density of fissile material, U-235, which was increased to compensate the reduction in enrichment. Last year, the Fuel Elements Plant (PEC) delivered the shipment's first four (4) fuel elements, called leaders, to the RECH1. A test element was delivered too, and the complete set was introduced into the reactor's nucleus, following the normal routine, but performing a special follow-up on their behavior inside the nucleus. This experimental element has only one outside fuel plate, and the remaining (15) structural plates are aluminum. In order to study the burnup, the test element was taken out of the nucleus, in mid- November 1999, and left to decay until June 2000, when it was moved to the laboratory (High Activity Cell), to start the burnup measurements, with a gamma spectroscopy system. This work aims to show the results of these measurements and in addition to meet the following objectives: (a) Visual test of the plate's general condition; (b) Sipping test of fission products; (c) Study of burn-up distribution in the plate; (d) Check and improve the calculus algorithm; (e) Comparison of the results obtained from the spectroscopy with the ones from neutron calculus

  15. Burn-up calculation of different thorium-based fuel matrixes in a thermal research reactor using MCNPX 2.6 code

    Directory of Open Access Journals (Sweden)

    Gholamzadeh Zohreh

    2014-12-01

    Full Text Available Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. Neutronic parameters for three different thorium fuel matrices loaded separately in the modelled thermal core have been investigated. 233U, 235U and 239Pu isotopes have been used as fissile element in the thorium oxide fuel, separately. Burn-up of three different fuels has been calculated at 1 MW constant power. 135X and 149Sm concentration variations have been studied in the modelled core during 165 days burn-up. Burn-up of thorium oxide enriched with 233U resulted in the least 149Sm and 135Xe productions and net fissile production of 233U after 165 days. The negative fuel, coolant and void reactivity of the used fuel assures safe operation of the modelled thermal core containing (233U-Th O2 matrix. Furthermore, utilisation of thorium breeder fuel demonstrates several advantages, such as good neutronic economy, 233U production and less production of long-lived α emitter high radiotoxic wastes in biological internal exposure point of view

  16. Method of reactivity control in pressure tube reactor

    International Nuclear Information System (INIS)

    Fukumura, Nobuo.

    1988-01-01

    Purpose: To provide a method of controlling reactivity in a pressure tube reactor at high conversion ratio intended for high burn-up degree. Method: Control tubes are inserted in heavy water moderator. Light water is filled in the tubes at the initial burning stage. Along with the advance of the burning, the light water is gradually removed and replaced with gases of less reactive nuclear reactivity with neutrons such as air or gaseous carbon dioxide. The tubes are made of less neutron absorbing material such as aluminum. By filling light water, infinite multiplication factor is reduced to suppress the reactivity at the initial burning stage. As light water is gradually removed and replaced with air, etc., it provides an effect like that elimination of heavy water moderator to increase the conversion ratio. Accordingly, nuclear fission materials are produced additionally by so much to extend the burn-up degree. In this way, it can provide excellent effect in realizing high burn-up ratio and high conversion ratio. (Kamimura, M.)

  17. Comparison of analysis methods for burnup credit applications

    International Nuclear Information System (INIS)

    Sanders, T.L.; Brady, M.C.; Renier, J.P.; Parks, C.V.

    1989-01-01

    The current approach used for the development and certification of spent fuel storage and transport casks requires an assumption of fresh fuel isotopics in the criticality safety analysis. However, it has been shown that there is a considerable reactivity reduction when the isotopics representative of the depleted (or burned) fuel are used in a criticality analysis. Thus, by taking credit for the burned state of the fuel (i.e., burnup credit), a cask designer could achieve a significant increase in payload. Accurate prediction of k eff for spent fuel arrays depends both on the criticality safety analysis and the prediction of the spent fuel isotopics via a depletion analysis. Spent fuel isotopics can be obtained from detailed multidimensional reactor analyses, e.g. the code PDQ, or from point reactor burnup models. These reactor calculations will help verify the adequacy of the isotopics and determine Δk eff biases for various analysis assumptions (with and without fission products, actinide absorbers, burnable poison rods, etc.). New software developed to interface PDQ multidimensional isotopics with KENO V.a reactor and cask models is described. Analyses similar to those performed for the reactor cases are carried out with a representative burnup credit cask model using the North Anna fuel. This paper presents the analysis methodology that has been developed for evaluating the physics issues associated with burnup credit. It is applicable in the validation and characterization of fuel isotopics as well as in determining the influence of various analysis assumptions in terms of δk eff . The methodology is used in the calculation of reactor restart criticals and analysis of a typical burnup credit cask

  18. A new kind high-reliability digital reactivity meter

    International Nuclear Information System (INIS)

    Shen Feng; Jiang Zongbing

    2001-01-01

    The paper introduces a new kind of high-reliability Digital Reactivity Meter developed by the DRM developing group in designing department of Nuclear Power Institute of China. The meter has two independent measure channels, which can be set as either master-slave structure or working independently. This structure will ensure that the meter can continually fulfill its online measure task under the condition of single failure with it. It provides a solution for the conflict between nuclear station's extreme demand in DRM's reliability and instability of computer's business software platform. The instrument reaches both advance and reliability by covering a lot of kinds of complex functions in data process and display

  19. Modelling of thermal mechanical behaviour of high burn-Up VVER fuel at power transients with special emphasis on the impact of fission gas induced swelling of fuel pellets

    International Nuclear Information System (INIS)

    Novikov, V.; Medvedev, A.; Khvostov, G.; Bogatyr, S.; Kuzetsov, V.; Korystin, L.

    2005-01-01

    This paper is devoted to the modelling of unsteady state mechanical and thermo-physical behaviour of high burn-up VVER fuel at a power ramp. The contribution of the processes related to the kinetics of fission gas to the consequences of pellet-clad mechanical interaction is analysed by the example of integral VVER-440 rod 9 from the R7 experimental series, with a pellet burn-up in the active part at around 60 MWd/kgU. This fuel rod incurred ramp testing with a ramp value ΔW 1 ∼ 250 W/cm in the MIR research reactor. The experimentally revealed residual deformation of the clad by 30-40 microns in the 'hottest' portion of the rod, reaching a maximum linear power of up to 430 W/cm, is numerically justified on the basis of accounting for the unsteady state swelling and additional degradation of fuel thermal conductivity due to temperature-induced formation and development of gaseous porosity within the grains and on the grain boundaries. The good prediction capability of the START-3 code, coupled with the advanced model of fission gas related processes, with regard to the important mechanical (residual deformation of clad, pellet-clad gap size, central hole filling), thermal physical (fission gas release) and micro-structural (profiles of intra-granular concentration of the retained fission gas and fuel porosity across a pellet) consequences of the R7 test is shown. (authors)

  20. TRIGA fuel element burnup determination by measurement and calculation

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Persic, A.; Jeraj, R.

    2000-01-01

    To estimate the accuracy of the fuel element burnup calculation different factors influencing the calculation were studied. To cover different aspects of burnup calculations, two in-house developed computer codes were used in calculations. The first (TRIGAP) is based on a one-dimensional two-group diffusion approximation, and the second (TRIGLAV) is based on a two-dimensional four-group diffusion equation. Both codes use WIMSD program with different libraries forunit-cell cross section data calculation. The burnup accumulated during the operating history of the TRIGA reactor at Josef Stefan Institute was calculated for all fuel elements. Elements used in the core during this period were standard SS 8.5% fuel elements, standard SS 12% fuel elements and highly enriched FLIP fuel elements. During the considerable period of operational history, FLIP and standard fuel elements were used simultaneously in mixed cores. (authors)

  1. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Dias, Raphael Mejias

    2016-01-01

    This work studies the modifications implemented over successive versions in the empirical models of the computer program FRAPCON used to simulate the steady state irradiation performance of Pressurized Water Reactor (PWR) fuel rods under high burnup condition. In the study, the empirical models present in FRAPCON official documentation were analyzed. A literature study was conducted on the effects of high burnup in nuclear fuels and to improve the understanding of the models used by FRAPCON program in these conditions. A steady state fuel performance analysis was conducted for a typical PWR fuel rod using FRAPCON program versions 3.3, 3.4, and 3.5. The results presented by the different versions of the program were compared in order to verify the impact of model changes in the output parameters of the program. It was observed that the changes brought significant differences in the results of the fuel rod thermal and mechanical parameters, especially when they evolved from FRAPCON-3.3 version to FRAPCON-3.5 version. Lower temperatures, lower cladding stress and strain, lower cladding oxide layer thickness were obtained in the fuel rod analyzed with the FRAPCON-3.5 version. (author)

  2. Consequences of the increase of burnup on the fuel

    International Nuclear Information System (INIS)

    Melin, P.; Lavoine, O.; Houdaille, B.

    1986-04-01

    The examinations carried out on the FRAGEMA fuel of EDF reactors show its good behavior in service. The results of research and development programs developed by EDF, FGA and the CEA show that this fuel can be irradiated up to a high burnup, and allow to point out the axies of research to improve still the performance of the product in a more and more soliciting environment (increase of power and burnup coupled with load following). Among the solutions considered, there are the design and fabrication adjustments (geometry, initial pressurization), more fundamental changes concerning fuel cans and fuel pellets, which need still research and development programs [fr

  3. Reactivity control system of the high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Sawahata, Hiroaki; Iyoku, Tatsuo; Nakazawa, Toshio

    2004-01-01

    The reactivity control system of the high temperature engineering test reactor (HTTR) consists of a control rod system and a reserve shutdown system. During normal operation, reactivity is controlled by the control rod system, which consists of 32 control rods (16 pairs) and 16 control rod drive mechanisms except for the case when the center control rods are removed to perform an irradiation test. In an unlikely event that the control rods fail to be inserted, reserve shutdown system is provided to insert pellets of neutron-absorbing material into the core. Alloy 800H is chosen for the metallic parts of the control rods. Because the maximum temperature of the control rods reaches about 900 deg. C at reactor scrams, structural design guideline and design material data on Alloy 800H are needed for the high temperature design. The design guideline for the HTTR control rod is based on ASME Code Case N-47-21. Design material data is also determined and shown in this paper. Observing the guideline, temperature and stress analysis were conducted; it can be confirmed that the target life of the control rods of 5 years can be achieved. Various tests conducted for the control rod system and the reserve shutdown system are also described

  4. Quadratic reactivity fuel cycle model

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1985-01-01

    For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau 2 as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau 2 in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper

  5. Burnup credit activities in the United States

    International Nuclear Information System (INIS)

    Lake, W.H.; Thomas, D.A.; Doering, T.W.

    2001-01-01

    This report covers progress in burnup credit activities that have occurred in the United States of America (USA) since the International Atomic Energy Agency's (IAEA's) Advisory Group Meeting (AGM) on Burnup Credit was convened in October 1997. The Proceeding of the AGM were issued in April 1998 (IAEA-TECDOC-1013, April 1998). The three applications of the use of burnup credit that are discussed in this report are spent fuel storage, spent fuel transportation, and spent fuel disposal. (author)

  6. Device for measuring a burnup degree

    International Nuclear Information System (INIS)

    Ito, Toshiaki; Goto, Seiichiro

    1979-01-01

    Purpose: To measure the burnup degree at high efficiency and accuracy. Constitution: The outer metal wall of fuel assemblies is heated under gamma radiation with long half life gamma rays in inverse proportion to the burnup degree and issues infrared radiation in proportion to the intensity of the gamma rays. An image pick-up tube is opposed to one surface of the fuel assemblies to detect the radiated infrared rays. Since the output signal from the pick-up tube is subjected to the absorptive damping by the distance between the pick-up tube and the fuel assembly, as well as water filled in the gap therebetween, it is corrected through a main amplifier comprising a signal correction circuit composed of a characteristic section inverse to the absorption property and a characteristic section inverse to the square of the distance. The corrected output signal is displayed on a display unit such as CRT or recorded in a film or a magnetic tape. (Furukawa, Y.)

  7. Burnup credit implementation plan and preparation work at JAERI

    International Nuclear Information System (INIS)

    Nomura, Y.; Itahara, K.

    2001-01-01

    Application of the burnup credit concept is considered to be very effective to the design of spent fuel transport and storage facilities. This technology is all the more important when considering construction of the intermediate spent fuel storage facility, which is to be commissioned by 2010 due to increasing amount of accumulated spent fuel in Japan. Until reprocessing and recycling all the spent fuel arising, they will be stored as an energy stockpile until such time as they can be reprocessed. On the other hand, the burnup credit has been partly taken into account for the spent fuel management at Rokkasho Reprocessing Plant, which is to be commissioned in 2005. They have just finished the calibration tests for their burnup monitor with initially accepted several spent fuel assemblies. Because this monitoring system is employed with highly conservative safety margin, it is considered necessary to develop the more rational and simplified method to confirm burnup of spent fuel. A research program has been instituted to improve the present method employed at the spent fuel management system for the Spent Fuel Receiving and Storage Pool of Rokkasho Reprocessing Plant. This program is jointly performed by Japan Nuclear Fuel Limited (JNFL) and JAERI.This presentation describes the current status of spent fuel accumulation discharged from PWR and BWR in Japan and the recent incentive to introduce burnup credit into design of spent fuel storage and transport facilities. This also includes the content of the joint research program initiated by JNFL and JAERI. The relevant study has been continued at JAERI. The results by these research programs will be included in the Burnup Credit Guide Original Version compiled by JAERI. (author)

  8. Optimization of TRU burnup in modular helium reactor

    International Nuclear Information System (INIS)

    Yonghee, Kim; Venneri, F.

    2007-01-01

    An optimization study of a single-pass TRU (transuranic) deep-burn (DB) has been performed for a block-type MHR (Modular Helium Reactor) proposed by General Atomics. Assuming a future equilibrium scenario of advanced LWRs, a high-burnup TRU vector is considered: 50 GWD/MTU and 5-year cooling. For 3-D equilibrium cores, the performance analysis is done by using a continuous energy Monte Carlo depletion code MCCARD. The core optimization is performed from the viewpoints of the core configuration, fuel management, TRISO fuel specification, and neutron spectrum. With regard to core configuration, two annular cores are investigated in terms of the neutron economy. A conventional radial shuffling scheme of fuel blocks is compared with an axial block shuffling strategy in terms of the fuel burnup and core power distributions. The impact of the kernel size of TRISO fuel is evaluated and a diluted kernel, instead of a conventional concentrated kernel, is introduced to maximize the TRU burnup by reducing the self-shielding effects of TRISO fuels. A higher graphite density is evaluated in terms of the fuel burnup. In addition, it is shown that the core power distribution can be effectively controlled by zoning of the packing fraction of TRISO fuels. We also have shown that a long-cycle DB-MHR core can be designed by using a small batch size for fuel reloading, at the expense of a marginal decrease of the TRU discharge burnup. Depending on the fuel management scheme, fuel specifications, and core parameters, the TRU burnup in an optimized DB-MHR core is over 60% in a single-pass irradiation campaign. (authors)

  9. Phenomena and parameters important to burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Dehart, M.D.; Wagner, J.C.

    2001-01-01

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water- reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given. (author)

  10. Burnup credit for storage and transportation casks

    International Nuclear Information System (INIS)

    Wells, A.H.

    1988-01-01

    The application of burnup credit to storage and transportation cask licensing results in a significant improvement in cask capacity and an associated reduction of the cost per kilogram of uranium in the cask contents. The issues for licensing with burnup credit deal primarily with the treatment of fission product poisons and methods of verification of burnup during cask operations. Other issues include benchmarking of cross-section sets and codes and the effect of spatial variation of burnup within an assembly. The licensing of burnup credit for casks will be complex, although the criticality calculations are not themselves difficult. Attention should be directed to the use of fission product poisons and the uncertainties that they introduce. Verification of burnup by measurements will remove some of the concerns for criticality safety. Calculations for burnup credit casks should consider rod-to-rod and axial variations of burnup, as well as variability of burnable poisons it they are used in the assembly. In spite of the complexity of cask burnup credit licensing issues, these issues appear to be resolvable within the current state of the art of criticality safety

  11. Non destructive assay of nuclear LEU spent fuels for burnup credit application

    International Nuclear Information System (INIS)

    Lebrun, A.; Bignan, G.

    2001-01-01

    Criticality safety analysis devoted to spent fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as Burnup credit. To be used, Burnup credit involves obtaining evidence of the reactivity loss with a Burnup measurement. Many non destructive assays (NDA) based on neutron as well as on gamma ray emissions are devoted to spent fuel characterization. Heavy nuclei that compose the fuels are modified during irradiation and cooling. Some of them emit neutrons spontaneously and the link to Burnup is a power link. As a result, burn-up determination with passive neutron measurement is extremely accurate. Some gamma emitters also have interesting properties in order to characterize spent fuels but the convenience of the gamma spectrometric methods is very dependent on characteristics of spent fuel. In addition, contrary to the neutron emission, the gamma signal is mostly representative of the peripheral rods of the fuels. Two devices based on neutron methods but combining different NDA methods which have been studied in the past are described in detail: 1. The PYTHON device is a combination of a passive neutron measurement, a collimated total gamma measurement, and an online depletion code. This device, which has been used in several Nuclear Power Plants in western Europe, gives the average Burnup within a 5% uncertainty and also the extremity Burnup, 2. The NAJA device is an automatic device that involves three nuclear methods and an online depletion code. It is designed to cover the whole fuel assembly panel (Active Neutron Interrogation, Passive Neutron

  12. Improvements on burnup chain model and group cross section library in the SRAC system

    International Nuclear Information System (INIS)

    Akie, Hiroshi; Okumura, Keisuke; Takano, Hideki; Ishiguro, Yukio; Kaneko, Kunio.

    1992-01-01

    Data and functions of the cell burnup calculation of the SRAC system were revised to improve mainly the accuracy of the burnup calculation of high conversion light water reactors (HCLWRs). New burnup chain models were developed in order to treat fission products (FPs) and actinide nuclides in detail. Group cross section library, SRACLIB-JENDL2, was generated based on JENDL-2 nuclear data file. In generating this library, emphasis was placed on FPs and actinides. Also revised were the data such as the average energy release per fission for various actinides. These improved data were verified by performing the burnup analysis of PWR spent fuels. Some new functions were added to the SRAC system for the convenience to yield macroscopic cross sections used in the core burnup process. (author)

  13. Assessment of US NRC fuel rod behavior codes to extended burnup

    International Nuclear Information System (INIS)

    Laats, E.T.; Croucher, D.W.; Haggag, F.M.

    1982-01-01

    The purpose of this paper is to report the status of assessing the capabilities of the NRC fuel rod performance codes for calculating extended burnup rod behavior. As part of this effort, a large spectrum of fuel rod behavior phenomena was examined, and the phenomena deemed as being influential during extended burnup operation were identified. Then, the experiment data base addressing these identified phenomena was examined for availability and completeness at extended burnups. Calculational capabilities of the NRC's steady state FRAPCON-2 and transient FRAP-T6 fuel rod behavior codes were examined for each of the identified phenomenon. Parameters calculated by the codes were compared with the available data base, and judgments were made regarding model performance. Overall, the FRAPCON-2 code was found to be moderately well assessed to extended burnups, but the FRAP-T6 code cannot be adequately assessed until more transient high burnup data are available

  14. The removal of reactive dyes using high-ash char

    Directory of Open Access Journals (Sweden)

    Moreira R.F.P.M.

    2001-01-01

    Full Text Available The thermodynamics and kinetics of adsorption of reactive dyes on high-ash char was studied. Equilibrium data were obtained using the static method with controlled agitation at temperatures in the range of 30 to 60ºC. The Langmuir isotherm model was used to describe the equilibrium of adsorption, and the equilibrium parameters, R L, in the range of 0 to 1 indicate favorable adsorption. The amount of dye adsorbed increased as temperature increased from 30 to 40ºC, but above 40ºC the increase in temperature resulted in a decrease in the amount of dye adsorbed. The kinetic data presented are for controlled agitation at 50 rpm and constant temperature with dye concentrations in the range of 10 ppm to50 ppm. The film mass transfer coefficient, Kf, and the effective diffusivity inside the particle, De, were fitted to the experimental data. The results indicate that internal diffusion governs the adsorption rate.

  15. Determination of burn-up of irradiated nuclear fuels using mass spectrometry

    International Nuclear Information System (INIS)

    Jagadish Kumar, S.; Telmore, V.M.; Shah, R.V.; Sasi Bhushan, K.; Paul, Sumana; Kumar, Pranaw; Rao, Radhika M.; Jaison, P.G.

    2017-01-01

    Burn-up defined as the atom percent fission, is a vital parameter used for assessing the performance of nuclear fuel during its irradiation in the reactor. Accurate data on the actinide isotopes are also essential for the reliable accountability of nuclear materials and for nuclear safeguards. Both destructive and non-destructive methods are employed in the post-irradiation analysis for the burn-up measurements. Though non-destructive methods are preferred from the point view of remote handling of irradiated fuels with high radioactivity, they do not provide the high accuracy as achieved by the chemical analysis methods. Thus destructive radiochemical and chemical analyses are still the established reference methods for accurate and reliable burn-up determination of irradiated nuclear fuels. In the destructive method, burn-up of irradiated nuclear fuel is determined by correlating the amount of a fission product formed during irradiation with that of heavy elements. Thus the destructive experimental determination of burn-up involves the dissolution of irradiated fuel samples followed by the separation and determination of heavy elements and fission product(s) to be used as burn-up monitor(s). Another approach for the experimental determination of burn-up is based on the changes in the abundances of the heavy element isotopes. A widely accepted method for burn-up determination is based on stable "1"4"8Nd and "1"3"9La as burn-up monitors. Several properties such as non-volatility, nearly same yields for thermal fissions of "2"3"5U and "2"3"9Pu etc justifies the selection of "1"4"8Nd as a burn-up monitor

  16. The CEA-FRAGEMA ramp test programme for the study of the effect of power cycling on PCI at high burn-up

    International Nuclear Information System (INIS)

    Joseph, J.; Atabek, R.; Trotabas, M.

    1983-01-01

    The ramp test programme developed jointly by FRAGEMA and CEA is presented. Today, more than thirty PWR fuel rods have been ramp-tested in experimental reactors SILOE and OSIRIS. Nineteen fuel rods, named 'PRISCA', were base irradiated in BR3 and twelve fuel rods have been refabricated in hot cell by the FABRICE technique. The average fuel burn-up lies between 11 GWd.tU -1 and 46 GWd.tU -1 . In the major cases, the flux profile, during ramp-test, was decentred with respect to the base irradiated flux, and allows to obtain much more information than with a centred flux profile. The failure threshold was established under a set of more than thirty fuel rods of various designs. In particular, the post irradiation examinations allow to locate all rupture locations and thus to define precisely the threshold condition for failure of fuel rods. As an example, the results obtained in the PRISCA 109 experiments are presented. The refabricated fuel rods FABRICE behave identically, with regard to PCI, rather than PRISCA rods. An example of load follow transient in a PWR reactor is presented, and indicates any risk of failure due to PCI. (author)

  17. FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup

    International Nuclear Information System (INIS)

    Berna, G.A.; Beyer, G.A.; Davis, K.L.; Lanning, D.D.

    1997-12-01

    FRAPCON-3 is a FORTRAN IV computer code that calculates the steady-state response of light water reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, and deformation of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (1) heat conduction through the fuel and cladding, (2) cladding elastic and plastic deformation, (3) fuel-cladding mechanical interaction, (4) fission gas release, (5) fuel rod internal gas pressure, (6) heat transfer between fuel and cladding, (7) cladding oxidation, and (8) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat-transfer correlations. The codes' integral predictions of mechanical behavior have not been assessed against a data base, e.g., cladding strain or failure data. Therefore, it is recommended that the code not be used for analyses of cladding stress or strain. FRAPCON-3 is programmed for use on both mainframe computers and UNIX-based workstations such as DEC 5000 or SUN Sparcstation 10. It is also programmed for personal computers with FORTRAN compiler software and at least 8 to 10 megabytes of random access memory (RAM). The FRAPCON-3 code is designed to generate initial conditions for transient fuel rod analysis by the FRAPTRAN computer code (formerly named FRAP-T6)

  18. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 2: Human reliability analysis and human performance evaluation; Technical issues related to rulemakings; Risk-informed, performance-based initiatives; High burn-up fuel research

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues related to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research

  19. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 2: Human reliability analysis and human performance evaluation; Technical issues related to rulemakings; Risk-informed, performance-based initiatives; High burn-up fuel research

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues related to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  20. Challenges in the application of burn-up credit to the criticality safety of the THORP reprocessing plant

    International Nuclear Information System (INIS)

    Mayson, R.T.H.; Gunston, K.J.

    1999-01-01

    Since 1991 BNFL has made a significant investment in the development of the burn-up credit method and the application to its operations. It has recently demonstrated that using this method for the THORP dissolvers, it is possible to justify operating safety with reduced neutron poison concentrations and this has now been submitted to the regulators. The continued challenges the criticality safety community is facing are to show that we are not reducing safety levels because we are using burn-up credit. The burn-up credit method that has been developed can be summarized as follows. It consists of performing reactivity calculations for irradiated fuel using compositions generated by and inventory prediction code, generally in order to determine the limiting burn-up required for that fuel in a particular environment. In addition, it has always been envisaged that a confirmatory measurement of burn-up would be required to be made prior to certain operations such as the sharing of fuel into a dissolver. The burn-up credit method therefore relies upon three key components of inventory prediction, reactivity calculation code and the quantification and verification of burn-up. (J.P.N.)

  1. Criterion for burn-up conditions in gas-cooled cryogenic current leads

    International Nuclear Information System (INIS)

    Bejan, A.; Cluss, E.M. Jr.

    1976-01-01

    Superconducting magnets are energized through helium vapour-cooled cryogenic current leads operating at high ratios of current to mass flow. The high current operation where lead temperature, runaway, and eventual burn-up are likely to occur is investigated. A simple criterion for estimating the burn-up operation conditions (current, mass flow) for a given lead geometry (cross-sectional area, length, heat exchanger area) is presented. This article stresses the role played by the available heat exchanger area in avoiding burn-up at high ratios of current to mass flow. (author)

  2. A Criticality Evaluation of the GBC-32 Dry Storage Cask in PWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyoungju; Park, Kwangheon; Hong, Ser Gi [Kyung Hee Univ., Yongin (Korea, Republic of)

    2015-05-15

    The current criticality safety evaluation assumes the only unirradiated fresh fuels with the maximum enrichment in a dry storage cask (DSC) for conservatism without consideration of the depletion of fissile nuclides and the generation of neutron-absorbing fission products. However, the large conservatism leads to the significant increase of the storage casks required. Thus, the application of burnup credit which takes credit for the reduction of reactivity resulted from fuel depletion can increase the capacity in storage casks. On the other hand, the burnup credit application introduces lots of complexity into a criticality safety analysis such as the accurate estimation of the isotopic inventories and the burnup of UNFs and the validation of the criticality calculation. The criticality evaluation with an effect of burnup credit was performed for the DSC of GBC-32 by using SCALE 6.1/STARBUCS. keff values were calculated as a function of burnup and cooling time for four initial enrichments of 2, 3, 4, and 5 wt. % 235U. The values were calculated for the burnup range of 0 to 60,000 MWD/MTU, in increments of 10,000 MWD/MTU, and for five cooling times of 0, 5, 10, 20, and 40 years.

  3. Development of burnup methods and capabilities in Monte Carlo code RMC

    International Nuclear Information System (INIS)

    She, Ding; Liu, Yuxuan; Wang, Kan; Yu, Ganglin; Forget, Benoit; Romano, Paul K.; Smith, Kord

    2013-01-01

    Highlights: ► The RMC code has been developed aiming at large-scale burnup calculations. ► Matrix exponential methods are employed to solve the depletion equations. ► The Energy-Bin method reduces the time expense of treating ACE libraries. ► The Cell-Mapping method is efficient to handle massive amounts of tally cells. ► Parallelized depletion is necessary for massive amounts of burnup regions. -- Abstract: The Monte Carlo burnup calculation has always been a challenging problem because of its large time consumption when applied to full-scale assembly or core calculations, and thus its application in routine analysis is limited. Most existing MC burnup codes are usually external wrappers between a MC code, e.g. MCNP, and a depletion code, e.g. ORIGEN. The code RMC is a newly developed MC code with an embedded depletion module aimed at performing burnup calculations of large-scale problems with high efficiency. Several measures have been taken to strengthen the burnup capabilities of RMC. Firstly, an accurate and efficient depletion module called DEPTH has been developed and built in, which employs the rational approximation and polynomial approximation methods. Secondly, the Energy-Bin method and the Cell-Mapping method are implemented to speed up the transport calculations with large numbers of nuclides and tally cells. Thirdly, the batch tally method and the parallelized depletion module have been utilized to better handle cases with massive amounts of burnup regions in parallel calculations. Burnup cases including a PWR pin and a 5 × 5 assembly group are calculated, thereby demonstrating the burnup capabilities of the RMC code. In addition, the computational time and memory requirements of RMC are compared with other MC burnup codes.

  4. Issues for effective implementation of burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Wagner, J.C.

    2001-01-01

    In the United States, burnup credit has been used in the criticality safety evaluation for storage pools at pressurized water reactors (PWRs) and considerable work has been performed to lay the foundation for use of burnup credit in dry storage and transport cask applications and permanent disposal applications. Many of the technical issues related to the basic physics phenomena and parameters of importance are similar in each of these applications. However, the nuclear fuel cycle in the United States has never been fully integrated and the implementation of burnup credit to each of these applications is dependent somewhat on the specific safety bases developed over the history of each operational area. This paper will briefly review the implementation status of burnup credit for each application area and explore some of the remaining issues associated with effective implementation of burnup credit. (author)

  5. A simplified burnup calculation strategy with refueling in static molten salt reactor

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Gupta, Anurag; Krishnani, P.D.

    2015-01-01

    Molten Salt Reactors, by nature can be refuelled and reprocessed online. Thus, a simulation methodology has to be developed which can consider online refueling and reprocessing aspect of the reactor. To cater such needs a simplified burnup calculation strategy to account for refueling and removal of molten salt fuel at any desired burnup has been identified in static molten salt reactor in batch mode as a first step of way forward. The features of in-house code ITRAN has been explored for such calculations. The code also enables us to estimate the reactivity introduced in the system due to removal of any number of considered nuclides at any burnup. The effect of refueling fresh fuel and removal of burned fuel has been studied in batch mode with in-house code ITRAN. The effect of refueling and burnup on change in reactivity per day has been analyzed. The analysis of removal of 233 Pa at a particular burnup has been carried out. The similar analysis has been performed for some other nuclides also. (author)

  6. Possibilities of achieving non-positive void reactivity effect in fast sodium-cooled reactors with increased self-protection

    International Nuclear Information System (INIS)

    Alekseev, P.N.; Zverkov, Yu.A.; Morozov, A.G.; Orlov, V.V.; Slesarev, I.S.; Subbotin, S.A.

    1989-01-01

    The problems of self-protection inhancement for the liquid-metal cooled fast reactors with intra-assembly heterogeneity of the core are studied. Possible approaches to arrangement of such reactors with various powers characterized by high levels of coolant natural circulation, minimum reactivity changes during fuel burn-up and non-positive void effect of reactivity are found. 10 refs.; 11 figs

  7. Sophistication of burnup analysis system for fast reactor (2)

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hirai, Yasushi; Tatsumi, Masahiro

    2010-10-01

    Improvement on prediction accuracy for neutronics characteristics of fast reactor cores is one of the most important study domains in terms of both achievement of high economical plant efficiency based on reasonably advanced designs and increased reliability and safety margins. In former study, considerable improvement on prediction accuracy in neutronics design has been achieved in the development of the unified cross-section set as a fruit of a series of critical experiments such as JUPITER in application of the reactor constant adjustments. For design of fast reactor cores improvement of not only static characteristics but also burnup characteristics is very important. For such purpose, it is necessary to improve the prediction accuracy on burnup characteristics using actual burnup data of 'JOYO' and 'MONJU', experimental and prototype fast reactors. Recently, study on effective burnup method for minor actinides becomes important theme. However, there is a problem that analysis work tends to become inefficient for lack of functionality suitable for analysis of composition change due to burnup since the conventional analysis system is targeted to critical assembly systems. Therefore development of burnup analysis system for fast reactors with modularity and flexibility is being done that would contribute to actual core design work and improvement of prediction accuracy. In the previous study, we have developed a prototype system which has functions of performing core and burnup calculations using given constant files (PDS files) and information based on simple and easy user input data. It has also functions of fuel shuffling which is indispensable for power reactor analysis systems. In the present study, by extending the prototype system, features for handling of control rods and energy collapse of group constants have been designed and implemented. Computational results from the present analysis system are stored into restart files which can be accessible by

  8. Allergic contact dermatitis due to highly reactive halogenated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, F C; Ive, F A

    1983-11-01

    Ten cases of dermatitis in a fine organic chemicals plant are reported. These cases were all due to exposure to chemical compounds with reactive bromine or chlorine atoms. This type of chemical is always extremely irritant, but evidence is put forward to suggest that these cases were the result of allergic sensitization. Chemicals with reactive halogen atoms should always be handled with extreme care and patch testing should be approached with caution.

  9. Regulatory status of burnup credit for dry storage and transport of spent nuclear fuel in the United States

    International Nuclear Information System (INIS)

    Carlson, D.E.

    2001-01-01

    During 1999, the Spent Fuel Project Office of the U.S. Nuclear Regulatory Commission (NRC) introduced technical guidance for allowing burnup credit in the criticality safety analysis of casks for transporting or storing spent fuel from pressurized water reactors. This paper presents the recommendations embodied by the current NRC guidance, discusses associated technical issues, and reviews information needs and industry priorities for expanding the scope and content of the guidance. Allowable analysis approaches for burnup credit must account for the fuel irradiation variables that affect spent fuel reactivity, including the axial and horizontal variation of burnup within fuel assemblies. Consistent with international transport regulations, the burnup of each fuel assembly must be verified by pre-loading measurements. The current guidance limits the credited burnup to no more than 40 GWd/MTU and the credited cooling time to five years, imposes a burnup offset for fuels with initial enrichments between 4 and 5 wt% 235U, does not include credit for fission products, and excludes burnup credit for damaged fuels and fuels that have used burnable absorbers. Burnup credit outside these limits may be considered when adequately supported by technical information beyond that reviewed to-date by the NRC staff. The guidance further recommends that residual subcritical margins from the neglect of fission products, and any other nuclides not credited in the licensing-basis analysis, be estimated for each cask design and compared against estimates of the maximum reactivity effects associated with remaining computational uncertainties and potentially nonconservative modeling assumptions. The NRC's Office of Nuclear Regulatory Research is conducting a research program to help develop the technical information needed for refining and expanding the evolving guidance. Cask vendors have announced plans to submit the first NRC license applications for burnup credit later this year

  10. Value of burnup credit beyond actinides

    International Nuclear Information System (INIS)

    Lancaster, D.; Fuentes, E.; Kang, Chi.

    1997-01-01

    DOE has submitted a topical report to the NRC justifying burnup credit based only on actinide isotopes (U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241). When this topical report is approved, it will allow a great deal of the commercial spent nuclear fuel to be transported in significantly higher capacity casks. A cost savings estimate for shipping fuel in 32 assembly (burnup credit) casks as opposed to 24 assembly (non-burnup credit) casks was previously presented. Since that time, more detailed calculations have been performed using the methodology presented in the Actinide-Only Burnup Credit Topical Report. Loading curves for derated casks have been generated using actinide-only burnup credit and are presented in this paper. The estimates of cost savings due to burnup credit for shipping fuel utilizing 32, 30, 28, and 24 assembly casks where only the 24 assembly cask does not burnup credit have been created and are discussed. 4 refs., 2 figs

  11. Benefits of the delta K of depletion benchmarks for burnup credit validation

    International Nuclear Information System (INIS)

    Lancaster, D.; Machiels, A.

    2012-01-01

    Pressurized Water Reactor (PWR) burnup credit validation is demonstrated using the benchmarks for quantifying fuel reactivity decrements, published as 'Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty,' EPRI Report 1022909 (August 2011). This demonstration uses the depletion module TRITON available in the SCALE 6.1 code system followed by criticality calculations using KENO-Va. The difference between the predicted depletion reactivity and the benchmark's depletion reactivity is a bias for the criticality calculations. The uncertainty in the benchmarks is the depletion reactivity uncertainty. This depletion bias and uncertainty is used with the bias and uncertainty from fresh UO 2 critical experiments to determine the criticality safety limits on the neutron multiplication factor, k eff . The analysis shows that SCALE 6.1 with the ENDF/B-VII 238-group cross section library supports the use of a depletion bias of only 0.0015 in delta k if cooling is ignored and 0.0025 if cooling is credited. The uncertainty in the depletion bias is 0.0064. Reliance on the ENDF/B V cross section library produces much larger disagreement with the benchmarks. The analysis covers numerous combinations of depletion and criticality options. In all cases, the historical uncertainty of 5% of the delta k of depletion ('Kopp memo') was shown to be conservative for fuel with more than 30 GWD/MTU burnup. Since this historically assumed burnup uncertainty is not a function of burnup, the Kopp memo's recommended bias and uncertainty may be exceeded at low burnups, but its absolute magnitude is small. (authors)

  12. Development of continuous energy Monte Carlo burn-up calculation code MVP-BURN

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Nakagawa, Masayuki; Sasaki, Makoto

    2001-01-01

    Burn-up calculations based on the continuous energy Monte Carlo method became possible by development of MVP-BURN. To confirm the reliably of MVP-BURN, it was applied to the two numerical benchmark problems; cell burn-up calculations for High Conversion LWR lattice and BWR lattice with burnable poison rods. Major burn-up parameters have shown good agreements with the results obtained by a deterministic code (SRAC95). Furthermore, spent fuel composition calculated by MVP-BURN was compared with measured one. Atomic number densities of major actinides at 34 GWd/t could be predicted within 10% accuracy. (author)

  13. Burnup verification using the FORK measurement system

    International Nuclear Information System (INIS)

    Ewing, R.I.

    1994-01-01

    Verification measurements may be used to help ensure nuclear criticality safety when burnup credit is applied to spent fuel transport and storage systems. The FORK measurement system, designed at Los Alamos National Laboratory for the International Atomic Energy Agency safeguards program, has been used to verify reactor site records for burnup and cooling time for many years. The FORK system measures the passive neutron and gamma-ray emission from spent fuel assemblies while in the storage pool. This report deals with the application of the FORK system to burnup credit operations based on measurements performed on spent fuel assemblies at the Oconee Nuclear Station of Duke Power Company

  14. Burnup effect on nuclear fuel cycle cost using an equilibrium model

    International Nuclear Information System (INIS)

    Youn, S. R.; Kim, S. K.; Ko, W. I.

    2014-01-01

    The degree of fuel burnup is an important technical parameter to the nuclear fuel cycle, being sensitive and progressive to reduce the total volume of process flow materials and eventually cut the nuclear fuel cycle costs. This paper performed the sensitivity analysis of the total nuclear fuel cycle costs to changes in the technical parameter by varying the degree of burnups in each of the three nuclear fuel cycles using an equilibrium model. Important as burnup does, burnup effect was used among the cost drivers of fuel cycle, as the technical parameter. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once Through Cycle(PWR-OT), PWR-MOX Recycle, Pyro-SFR Recycle. These fuel cycles are most likely to be adopted in the foreseeable future. As a result of the sensitivity analysis on burnup effect of each three different nuclear fuel cycle costs, PWR-MOX turned out to be the most influenced by burnup changes. Next to PWR-MOX cycle, in the order of Pyro-SFR and PWR-OT cycle turned out to be influenced by the degree of burnup. In conclusion, the degree of burnup in the three nuclear fuel cycles can act as the controlling driver of nuclear fuel cycle costs due to a reduction in the volume of spent fuel leading better availability and capacity factors. However, the equilibrium model used in this paper has a limit that time-dependent material flow and cost calculation is impossible. Hence, comparative analysis of the results calculated by dynamic model hereafter and the calculation results using an equilibrium model should be proceed. Moving forward to the foreseeable future with increasing burnups, further studies regarding alternative material of high corrosion resistance fuel cladding for the overall

  15. MTR core loading pattern optimization using burnup dependent group constants

    Directory of Open Access Journals (Sweden)

    Iqbal Masood

    2008-01-01

    Full Text Available A diffusion theory based MTR fuel management methodology has been developed for finding superior core loading patterns at any stage for MTR systems, keeping track of burnup of individual fuel assemblies throughout their history. It is based on using burnup dependent group constants obtained by the WIMS-D/4 computer code for standard fuel elements and control fuel elements. This methodology has been implemented in a computer program named BFMTR, which carries out detailed five group diffusion theory calculations using the CITATION code as a subroutine. The core-wide spatial flux and power profiles thus obtained are used for calculating the peak-to-average power and flux-ratios along with the available excess reactivity of the system. The fuel manager can use the BFMTR code for loading pattern optimization for maximizing the excess reactivity, keeping the peak-to-average power as well as flux-ratio within constraints. The results obtained by the BFMTR code have been found to be in good agreement with the corresponding experimental values for the equilibrium core of the Pakistan Research Reactor-1.

  16. Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX

    International Nuclear Information System (INIS)

    Gohar, Y.; Zhong, Z.; Talamo, A.

    2009-01-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is ∼375 kW including the fission power of ∼260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the electrons and the

  17. Manufacturing Data Uncertainties Propagation Method in Burn-Up Problems

    Directory of Open Access Journals (Sweden)

    Thomas Frosio

    2017-01-01

    Full Text Available A nuclear data-based uncertainty propagation methodology is extended to enable propagation of manufacturing/technological data (TD uncertainties in a burn-up calculation problem, taking into account correlation terms between Boltzmann and Bateman terms. The methodology is applied to reactivity and power distributions in a Material Testing Reactor benchmark. Due to the inherent statistical behavior of manufacturing tolerances, Monte Carlo sampling method is used for determining output perturbations on integral quantities. A global sensitivity analysis (GSA is performed for each manufacturing parameter and allows identifying and ranking the influential parameters whose tolerances need to be better controlled. We show that the overall impact of some TD uncertainties, such as uranium enrichment, or fuel plate thickness, on the reactivity is negligible because the different core areas induce compensating effects on the global quantity. However, local quantities, such as power distributions, are strongly impacted by TD uncertainty propagations. For isotopic concentrations, no clear trends appear on the results.

  18. Validating analysis methodologies used in burnup credit criticality calculations

    International Nuclear Information System (INIS)

    Brady, M.C.; Napolitano, D.G.

    1992-01-01

    The concept of allowing reactivity credit for the depleted (or burned) state of pressurized water reactor fuel in the licensing of spent fuel facilities introduces a new challenge to members of the nuclear criticality community. The primary difference in this analysis approach is the technical ability to calculate spent fuel compositions (or inventories) and to predict their effect on the system multiplication factor. Isotopic prediction codes are used routinely for in-core physics calculations and the prediction of radiation source terms for both thermal and shielding analyses, but represent an innovation for criticality specialists. This paper discusses two methodologies currently being developed to specifically evaluate isotopic composition and reactivity for the burnup credit concept. A comprehensive approach to benchmarking and validating the methods is also presented. This approach involves the analysis of commercial reactor critical data, fuel storage critical experiments, chemical assay isotopic data, and numerical benchmark calculations

  19. Burnup analysis of the power reactor, 2

    International Nuclear Information System (INIS)

    Ezure, Hideo

    1975-09-01

    In burnup analysis of JPDR-1 with FLARE, it was found to have problems. The program FLORA was developed for solution of the problems. By their bench mark tests FLORA was found to be useful for three-dimensional thermal-hydro-dynamic analysis of BWRs. It was applied to analysis of the burnup of JPDR-1. The input data and option of FLORA were corrected on referring to the results of gammer probe tests for JPDR-1. The void, source and burnup distributions were calculated each month during the operation. The burnup distribution in three assemblies revealed by a destructive test agrees better with that by FLORA than by FLARE. It was shown that the distortion of power distribution around the control rods by FLORA was smaller and closer to that by the gammer probe tests than by FLARE, and the connector of fuel assemblies and the plugs in the reflector had much influence on the power distribution. (auth.)

  20. A criticality analysis of the GBC-32 dry storage cask with Hanbit nuclear power plant unit 3 fuel assemblies from the viewpoint of burnup credit

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyung Ju; Kim, Do Yeon; Park, Kwang Heon; Hong, Ser Gi [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)

    2016-06-15

    Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that keff values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.

  1. Peer Relations and Peer Deviance as Predictors of Reactive and Proactive Aggression among High School Girls

    Science.gov (United States)

    Uz Bas, Asli; Öz Soysal, Fatma Selda

    2016-01-01

    This study aimed to investigate associations between reactive and proactive aggression and peer relations and peer deviance among high school girls. A total of 442 high school students participated in this study. Reactive-Proactive Aggression Questionnaire, the Peer Relations Scale, and the Peer Deviance Scale were used to collect data. Results…

  2. Burnup calculation code system COMRAD96

    International Nuclear Information System (INIS)

    Suyama, Kenya; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu.

    1997-06-01

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, 'Cross Section Treatment', 'Generation and Depletion Calculation', and 'Post Process'. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the γ Spectrum on a terminal. This report is the general description and user's manual of COMRAD96. (author)

  3. Burnup calculation code system COMRAD96

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu

    1997-06-01

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, `Cross Section Treatment`, `Generation and Depletion Calculation`, and `Post Process`. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the {gamma} Spectrum on a terminal. This report is the general description and user`s manual of COMRAD96. (author)

  4. Fission gas release and fuel rod chemistry related to extended burnup

    International Nuclear Information System (INIS)

    1993-04-01

    The purpose of the meeting was to review the state of the art in fission gas release and fuel rod chemistry related to extended burnup. The meeting was held in a time when national and international programmes on water reactor fuel irradiated in experimental reactors were still ongoing or had reached their conclusion, and when lead test assemblies had reached high burnup in power reactors and been examined. At the same time, several out-of-pile experiments on high burnup fuel or with simulated fuel were being carried out. As a result, significant progress has been registered since the last meeting, particularly in the evaluation of fuel temperature, the degradation of the global thermal conductivity with burnup and in the understanding of the impact on fission gas release. Fifty five participants from 16 countries and one international organization attended the meeting. 28 papers were presented. A separate abstract was prepared for each of the papers. Refs, figs, tabs and photos

  5. Burn-up credit applications for UO2 and MOX fuel assemblies in AREVA/COGEMA

    International Nuclear Information System (INIS)

    Toubon, H.; Riffard, C.; Batifol, M.; Pelletier, S.

    2003-01-01

    For the last seven years, AREVA/COGEMA has been implementing the second phase of its burn-up credit program (the incorporation of fission products). Since the early nineties, major actinides have been taken into account in criticality analyses first for reprocessing applications, then for transport and storage of fuel assemblies Next year (2004) COGEMA will take into account the six main fission products (Rh103, Cs133, Nd143, Sm149, Sm152 and Gd155) that make up 50% of the anti-reactivity of all fission products. The experimental program will soon be finished. The new burn-up credit methodology is in progress. After a brief overview of BUC R and D program and COGEMA's application of the BUC, this paper will focus on the new burn-up measurement for UO2 and MOX fuel assemblies. It details the measurement instrumentation and the measurement experiments on MOX fuels performed at La Hague in January 2003. (author)

  6. Insertion material for controlling reactivity

    International Nuclear Information System (INIS)

    Baba, Iwao.

    1994-01-01

    Moderators and a group of suspended materials having substantially the same density as the moderator are sealed in a hollow rod vertically inserted to a fuel assembly. Specifically, the group of suspended materials is adapted to have a density changing stepwise from density of the moderator at the exit temperature of the reactor core to that at the inlet temperature of the reactor core. Reactivity is selectively controlled for a portion of high power and a portion of high reactivity by utilizing the density of the moderator and the distribution of the density. That is, if the power distribution is flat, the density of the moderators changes at a constant rate over the vertical direction of the reactor core and the suspended materials stay at a portion of the same density, to form a uniform distribution. Further, upon reactor shutdown, since the liquid temperature of the moderators is lowered and the density is increased, all of beads are collected at the upper portion to remove water at the upper portion of the reactor core of low burnup degree thereby selectively controlling the reactivity at a portion of high power and a portion of high reactivity. (N.H.)

  7. Calculation study of the WWER-440 fuel performance for extended burnup

    International Nuclear Information System (INIS)

    Kujal, J.; Pazdera, F.; Barta, O.

    1984-01-01

    The results of preliminary calculational study of extended burnup cycling schemes impact on WWER-440 fuel performance are presented. Two high burnup schemes were proposed with three and four cycles, resp. Comparison was made with three cycle reference case. The thermal mechanical analysis was performed with PIN and RELA codes. The values of rod internal pressure, fuel centerline temperatures and fuel-cladding gap are expressed as function of power history. (author)

  8. Nuclear Energy Research Initiative. Development of a Stabilized Light Water Reactor Fuel Matrix for Extended Burnup

    International Nuclear Information System (INIS)

    BD Hanson; J Abrefah; SC Marschman; SG Prussin

    2000-01-01

    The main objective of this project is to develop an advanced fuel matrix capable of achieving extended burnup while improving safety margins and reliability for present operations. In the course of this project, the authors improve understanding of the mechanism for high burnup structure (HBS) formation and attempt to design a fuel to minimize its formation. The use of soluble dopants in the UO 2 matrix to stabilize the matrix and minimize fuel-side corrosion of the cladding is the main focus

  9. Numerical Simulations of High Reactivity Gasoline Fuel Sprays under Vaporizing and Reactive Conditions

    KAUST Repository

    Mohan, Balaji; Jaasim, Mohammed; Ahmed, Ahfaz; Hernandez Perez, Francisco; Sim, Jaeheon; Roberts, William L.; Sarathy, Mani; Im, Hong G.

    2018-01-01

    Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3]. For reacting cases, a comparison of PRF and KAUST multi-component surrogate (KMCS) mechanism was done to obtain good agreement with the experimental ignition delay. From this study, some recommendations were proposed for GCI combustion modelling framework using gasoline like fuels.

  10. Numerical Simulations of High Reactivity Gasoline Fuel Sprays under Vaporizing and Reactive Conditions

    KAUST Repository

    Mohan, Balaji

    2018-04-03

    Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3]. For reacting cases, a comparison of PRF and KAUST multi-component surrogate (KMCS) mechanism was done to obtain good agreement with the experimental ignition delay. From this study, some recommendations were proposed for GCI combustion modelling framework using gasoline like fuels.

  11. Isotopic validation for PWR actinide-only burnup credit using Yankee Rowe data

    International Nuclear Information System (INIS)

    1997-11-01

    Safety analyses of criticality control systems for transportation packages include an assumption that the spent nuclear fuel (SNF) loaded into the package is fresh or unirradiated. In other words, the spent fuel is assumed to have its original, as-manufactured U-235 isotopic content. The ''fresh fuel'' assumption is very conservative since the potential reactivity of the nuclear fuel is substantially reduced after being irradiated in the reactor core. The concept of taking credit for this reduction in nuclear fuel reactivity due to burnup of the fuel, instead of using the fresh fuel assumption in the criticality safety analysis, is referred to as ''Burnup Credit.'' Burnup credit uses the actual physical composition of the fuel and accounts for the net reduction of fissile material and the buildup of neutron absorbers in the fuel as it is irradiated. Neutron absorbers include actinides and other isotopes generated as a result of the fission process. Using only the change in actinide isotopes in the burnup credit criticality analysis is referred to as ''Actinide-Only Burnup Credit.'' The use of burnup credit in the design of criticality control systems enables more spent fuel to be placed in a package. Increased package capacity results in a reduced number of storage, shipping and disposal containers for a given number of SNF assemblies. Fewer shipments result in a lower risk of accidents associated with the handling and transportation of spent fuel, thus reducing both radiological and nonradiological risk to the public. This paper describes the modeling and the results of comparison between measured and calculated isotopic inventories for a selected number of samples taken from a Yankee Rowe spent fuel assembly

  12. Comparative study on plutonium and MA recycling in equilibrium burnup and standard burnup of PWR

    International Nuclear Information System (INIS)

    Waris, Abdul; Kurniadi, Rizal; Su'ud, Zaki; Permana, Sidik

    2005-01-01

    The equilibrium burnup model is a powerful method since its can handle all possible generated nuclides in any nuclear system. Moreover, this method is a simple time independent method. Hence the equilibrium burnup method could be very useful for evaluating and forecasting the characteristics of any nuclear fuel cycle, even the strange one, e.g. all nuclides are confined in the reactor. However, this method needs to be verified since the method is not a standard tool. The present study aimed to compare the characteristics of plutonium recycling and plutonium and minor actinides (MA) recycling in PWR with the equilibrium burnup and the standard burnup. In order to become more comprehensive study, an influence of moderator-to-fuel volume ratio (MFR) changes by changing the pin-pitch of fuel cell has been evaluated. The MFR ranges from 0.5 to 4.0. For the equilibrium burnup we used equilibrium cell-burnup code. We have employed 1368 nuclides in the equilibrium calculation with 129 of them are heavy metals (HMs). For standard burnup, SRAC2002 code has been utilized with 26 HMs and 66 fission products (FPs). The JENDL 3.2 library has been employed for both burnup schemes. The uranium, plutonium and MA vector, which resulted from the equilibrium burnup are directly used as fuel input composition for the standard burnup calculation. Both burnup results demonstrate that plutonium recycling and plutonium and MA recycling can be conducted safer in tight lattice core. They are also show the similar trend in neutron spectrum, which become harder with the increasing number of recycled heavy nuclides as well as the decreasing of the MFR values. However, there are some discrepancy on the effective multiplication factor and the conversion ratio, especially for the reactor core for MFR ≥ 2.0. (author)

  13. Criticality reference benchmark calculations for burnup credit using spent fuel isotopics

    International Nuclear Information System (INIS)

    Bowman, S.M.

    1991-04-01

    To date, criticality analyses performed in support of the certification of spent fuel casks in the United States do not take credit for the reactivity reduction that results from burnup. By taking credit for the fuel burnup, commonly referred to as ''burnup credit,'' the fuel loading capacity of these casks can be increased. One of the difficulties in implementing burnup credit in criticality analyses is that there have been no critical experiments performed with spent fuel which can be used for computer code validation. In lieu of that, a reference problem set of fresh fuel critical experiments which model various conditions typical of light water reactor (LWR) transportation and storage casks has been identified and used in the validation of SCALE-4. This report documents the use of this same problem set to perform spent fuel criticality benchmark calculations by replacing the actual fresh fuel isotopics from the experiments with six different sets of calculated spent fuel isotopics. The SCALE-4 modules SAS2H and CSAS4 were used to perform the analyses. These calculations do not model actual critical experiments. The calculated k-effectives are not supposed to equal unity and will vary depending on the initial enrichment and burnup of the calculated spent fuel isotopics. 12 refs., 11 tabs

  14. Past experience and future needs for the use of burnup credit in LWR fuel storage

    International Nuclear Information System (INIS)

    Boyd, W.A.; Wrights, G.N.

    1987-01-01

    To achieve improved fuel economics and reduce the amount of fuel discharged annually, utilities are engaging in fuel management strategies that will achieve higher discharge burnups for their fuel assemblies. Although burnup credit methodologies have been developed and spent-fuel racks have been licensed, burnup credit fuel storage racks are not the answer for all utilities. Off-site and out-of-pool spent-fuel storage may be more appropriate. This is leading to the development of dry spent-fuel storage and shipping casks. Cask designs with spent-fuel storage capability between 20 and 32 assemblies are being developed by several vendors. The US Dept. of Energy is also funding work by VEPCO. Westinghouse is currently licensing its dry storage cask, developing a shipping cask for the domestic market, and is involved in a joint venture to develop a cask for the international market. Although methods of taking credit for fuel burnup in spent-fuel storage racks have been developed and licensed, use of these methods on dry spent-fuel storage and shipping casks can lead to new issues. These issues arise because the excess reactivity margin that is inherent in a burnup credit spent-fuel storage rack criticality analysis will not be available in a dry cask analysis

  15. Experimental and theoretical burnup investigations on model arrangements with solid burnable poisons

    International Nuclear Information System (INIS)

    Ahlf, J.; Anders, D.; Greim, L.; Knoth, J.; Kolb, M.; Mittelstaedt, B.; Mueller, A.; Schwenke, H.

    1975-01-01

    It is the scope of the two experiments here to improve the methods for computation and measurement as well as the experimental technique appropriate to predict the burnable poison rod burn-up with sufficient accuracy. In the first experiment two nine-rod bundles in a 3 x 3 arrangement are irradiated during several irradiation periods in the research reactor Geesthacht. Each bundle consists of eight outer rods containing fuel and one inner rod containing poison (B 10 or Cd 113). The burn-up of the fuel and the burnable poison is measured by non-destructive methods after each irradiation period and then compared with results of a burn-up calculation. In the second experiment two poison rods with different cadmium concentrations and one rod containing boron are irradiated during several irradiation periods in the research reactor Geesthacht. The burn-up is determined after each irradiation period by reactivity measurements and its result compared to computed effective absorption cross-sections of the rods by aid of a calibration curve. For both experiments the experimental and theoretical results for the poison burn-up are found to be within the error limits of the measurements. (orig.) [de

  16. Experimental and theoretical investigations on solid burnable poison burnup of model arrangements

    International Nuclear Information System (INIS)

    Ahlf, J.; Anders, D.; Greim, L.; Knoth, J.; Kolb, M.; Mittelstaedt, B.; Mueller, A.; Schwenke, H.

    1975-01-01

    It is the scope of the two experiments reported here to improve the methods for computation and measurement as well as the experimental technique appropriate to predict the burnable poison rod burn-up with sufficient accuracy. In the first experiment two nine-rod bundles in a 3 x 3 arrangement are irradiated during several irradiation periods in the research reactor Geesthacht. Each bundle consists of eight outer rods containing fuel and one inner rod containing poison (B 10 or Cd 113). The burn-up of the fuel and the burnable poison is measured by non-destructive methods after each irradiation period and then compared with results of a burn-up calculation. In the second experiment two poison rods with different cadmium concentrations and one rod containing boron are irradiated during several irradiation periods in the research reactor Geesthacht. The burn-up is determined after each irradiation period by reactivity measurements and its result compared to computed effective absorption cross-sections of the rods by aid of a calibration curve. For both experiments the experimental and theoretical results for the poison burn-up are found to be within the error limits of the measurements. (orig.) [de

  17. High throughput assay for evaluation of reactive carbonyl scavenging capacity.

    Science.gov (United States)

    Vidal, N; Cavaille, J P; Graziani, F; Robin, M; Ouari, O; Pietri, S; Stocker, P

    2014-01-01

    Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  18. High throughput assay for evaluation of reactive carbonyl scavenging capacity

    Directory of Open Access Journals (Sweden)

    N. Vidal

    2014-01-01

    Full Text Available Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  19. Burnup calculations for cadmium. A case study for HFR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pijlgroms, B.J.; Sciolla, C.M

    2000-09-11

    This report describes the pre-design burnup calculations performed for a cadmium shielded high fluence irradiation experiment in the HFR. The very high absorption cross section in cadmium causes problems in the calculations for two different reasons. Firstly, because of the large reaction rates the assumption that the flux and the cross sections remain piecewise constant is no longer true. Therefore the correct solution can only be obtained when using extremely small time steps which leads to excessive computing times. Secondly, the self-shielding in the cadmium becomes complete (black absorber) causing the depletion to progress in a shell-wise manner. As a consequence the depletion evolves nearly linear instead of exponential with time. Because of this the depletion codes are used in a regime for which these have not been designed leading to a systematic error. The analysis shows however that a good estimate for the burnup time can be obtained by extrapolation from calculations with practically sized time steps and a correction is derived to compensate the systematic error. The calculations were done using the OCTOPUS burnup code system, including the 3-D Monte-Carlo spectrum code MCNP-4B and the depletion code FISPACT-4.2. Verifications were performed with the WIMS code system. The first part of the report describes the study of the cadmium burnup calculations for a shielded steel sample with the emphasis on analyzing the requirements for obtaining the correct solution. The second part describes the time-dependent power production calculations with the steel replaced by lithium containing ceramic material such as to be used in the 'High Fluence Irradiation of Ceramics for Fusion' (HICU) experiment. 12 refs.

  20. Advances in applications of burnup credit to enhance spent fuel transportation, storage, reprocessing and disposition. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2007-05-01

    Given a trend towards higher burnup power reactor fuel, the IAEA began an active programme in burnup credit (BUC) with major meetings in 1997 (IAEA-TECDOC-1013), 2000 (IAEA-TECDOC-1241) and 2002 (IAEA-TECDOC-1378) exploring worldwide interest in using BUC in spent fuel management systems. This publication contains the proceedings of the IAEA's 4th major BUC meeting, held in London. Sixty participants from 18 countries addressed calculation methodology, validation and criticality, safety criteria, procedural compliance with safety criteria, benefits of BUC applications, and regulatory aspects in BUC. This meeting encouraged the IAEA to continue its activities on burnup credit including dissemination of related information, given the number of Member States having to deal with increased spent fuel quantities and extended durations. A 5th major meeting on burnup credit is planned 2008. Burnup credit is a concept that takes credit for the reduced reactivity of fuel discharged from the reactor to improve loading density of irradiated fuel assemblies in storage, transportation, and disposal applications, relative to the assumption of fresh fuel nuclide inventories in loading calculations. This report has described a general four phase approach to be considered in burnup credit implementation. Much if not all of the background research and data acquisition necessary for successful burnup credit development in preparation for licensing has been completed. Many fuel types, facilities, and analysis methods are encompassed in the public knowledge base, such that in many cases this guidance will provide a means for rapid development of a burnup credit program. For newer assembly designs, higher enrichment fuels, and more extensive nuclide credit, additional research and development may be necessary, but even this work can build on the foundation that has been established to date. Those, it is hoped that this report will serve as a starting point with sufficient reference to

  1. Improvement of computer programs 'BAMBOO' and 'ASFRE-IV' for coupling analysis of deformation and thermal-hydraulics in a high burn-up fuel subassembly of fast reactor

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ohshima, Hiroyuki; Imai, Yasutomo

    2003-04-01

    A simulation system of a deformed fuel subassembly is being developed for the structure integrity of high burn-up wire-spacer-type fuel subassemblies of sodium-cooled fast breeder reactors. This report describes a computer program improvement work for coupling analyses of deformation and thermal-hydraulics in a fuel subassembly as part of the simulation system development. In this work, a function of data conversion as an interface between a bundle deformation analysis program BAMBOO and a thermal hydraulic analysis program ASFRE-IV was incorporated to each program. BAMBOO was improved to accept the coolant temperature data from ASFRE-IV and to offer bundle deformation data to ASFRE-IV. ASFRE-IV was also improved to offer the coolant temperature data to BAMBOO and to obtain the bundle deformation data from BAMBOO. Improved BAMBOO and ASFRE-IV were applied to an analysis of 169-pin bundle for the program verification. It was confirmed that the coupling analysis gave the physically reasonable results on both deformation and thermal hydraulic behaviors in the fuel subassembly. (author)

  2. [Reactive collisions of high-temperature systems]: Progress report

    International Nuclear Information System (INIS)

    Graff, M.M.

    1988-01-01

    We are developing an experiment to study the reactive collisions of systems with large activation barriers or endothermicities. The basis design involves the collision of fast radicals with a stable reactant gas (hydrogen) in a collision cell. Initially, products will be detected by ionization and mass analysis. Later, laser-induced fluorescence will be used to probe internal states of products. Studies will include an investigation of rotational effects by comparing results for rotational levels J = O and 1 of molecular hydrogen. 2 figs

  3. Calculation of pellet radial power distributions with a Monte Carlo burnup code

    International Nuclear Information System (INIS)

    Suzuki, Motomu; Yamamoto, Toru; Nakata, Tetsuo

    2010-01-01

    The Japan Nuclear Energy Safety Organization (JNES) has been working on an irradiation test program of high-burnup MOX fuel at Halden Boiling Water Reactor (HBWR). MOX and UO 2 fuel rods had been irradiated up to about 64 GWd/t (rod avg.) as a Japanese utilities research program (1st phase), and using those fuel rods, in-situ measurement of fuel pellet centerline temperature was done during the 2nd phase of irradiation as the JNES test program. As part of analysis of the temperature data, power distributions in a pellet radial direction were analyzed by using a Monte Carlo burnup code MVP-BURN. In addition, the calculated results of deterministic burnup codes SRAC and PLUTON for the same problem were compared with those of MVP-BURN to evaluate their accuracy. Burnup calculations with an assembly model were performed by using MVP-BURN and those with a pin cell model by using SRAC and PLUTON. The cell pitch and, therefore, fuel to moderator ratio in the pin cell calculation was determined from the comparison of neutron energy spectra with those of MVP-BURN. The fuel pellet radial distributions of burnup and fission reaction rates at the end of the 1st phase irradiation were compared between the three codes. The MVP-BURN calculation results show a large peaking in the burnup and fission rates in the pellet outer region for the UO 2 and MOX pellets. The SRAC calculations give very close results to those of the MVP-BURN. On the other hand, the PLUTON calculations show larger burnup for the UO 2 and lower burnup for the MOX pellets in the pellet outer region than those of MVP-BURN, which lead to larger fission rates for the UO 2 and lower fission rates for the MOX pellets, respectively. (author)

  4. BEAVRS full core burnup calculation in hot full power condition by RMC code

    International Nuclear Information System (INIS)

    Liu, Shichang; Liang, Jingang; Wu, Qu; Guo, JuanJuan; Huang, Shanfang; Tang, Xiao; Li, Zeguang; Wang, Kan

    2017-01-01

    Highlights: • TMS and thermal scattering interpolation were developed to treat cross sections OTF. • Hybrid coupling system was developed for HFP burnup calculation of BEAVRS benchmark. • Domain decomposition was applied to handle memory problem of full core burnup. • Critical boron concentration with burnup by RMC agrees with the benchmark results. • RMC is capable of multi-physics coupling for simulations of nuclear reactors in HFP. - Abstract: Monte Carlo method can provide high fidelity neutronics analysis of different types of nuclear reactors, owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. However, nuclear reactors are complex systems with multi-physics interacting and coupling. MC codes can couple with depletion solver and thermal-hydraulics (T/H) codes simultaneously for the “transport-burnup-thermal-hydraulics” coupling calculations. MIT BEAVRS is a typical “transport-burnup-thermal-hydraulics” coupling benchmark. In this paper, RMC was coupled with sub-channel code COBRA, equipped with on-the-fly temperature-dependent cross section treatment and large-scale detailed burnup calculation based on domain decomposition. Then RMC was applied to the full core burnup calculations of BEAVRS benchmark in hot full power (HFP) condition. The numerical tests show that domain decomposition method can achieve the consistent results compared with original version of RMC while enlarging the computational burnup regions. The results of HFP by RMC agree well with the reference values of BEAVRS benchmark and also agree well with those of MC21. This work proves the feasibility and accuracy of RMC in multi-physics coupling and lifecycle simulations of nuclear reactors.

  5. Deuterides of light elements: low-temperature thermonuclear burn-up and applications to thermonuclear fusion problems

    International Nuclear Information System (INIS)

    Frolov, A.M.; Smith, V.H.; Smith, G.T.

    2002-01-01

    Thermonuclear burn-up and thermonuclear applications are discussed for a number of deuterides and DT hydrides of light elements. These deuterides and corresponding DT hydrides are often used as thermonuclear fuels or components of such fuels. In fact, only for these substances thermonuclear energy gain exceeds (at some densities and temperatures) the bremsstrahlung loss and other high-temperature losses, i.e., thermonuclear burn-up is possible. Herein, thermonuclear burn-up in these deuterides and DT hydrides is considered in detail. In particular, a simple method is proposed to determine the critical values of the burn-up parameter x c for these substances and their mixtures at different temperatures and densities. The results for equimolar DT mixtures coincide quite well with the results of previous calculations. Also, the natural or Z limit is determined for low-temperature thermonuclear burn-up in the deuterides of light elements. (author)

  6. Integrated burnup calculation code system SWAT

    International Nuclear Information System (INIS)

    Suyama, Kenya; Hirakawa, Naohiro; Iwasaki, Tomohiko.

    1997-11-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. It enables us to analyze the burnup problem using neutron spectrum depending on environment of irradiation, combining SRAC which is Japanese standard thermal reactor analysis code system and ORIGEN2 which is burnup code widely used all over the world. SWAT makes effective cross section library based on results by SRAC, and performs the burnup analysis with ORIGEN2 using that library. SRAC and ORIGEN2 can be called as external module. SWAT has original cross section library on based JENDL-3.2 and libraries of fission yield and decay data prepared from JNDC FP Library second version. Using these libraries, user can use latest data in the calculation of SWAT besides the effective cross section prepared by SRAC. Also, User can make original ORIGEN2 library using the output file of SWAT. This report presents concept and user's manual of SWAT. (author)

  7. The Coordination of calculation and experimental procedures in the determination of high-negative reactivities

    International Nuclear Information System (INIS)

    Pinegin, A.A.; Tsyganov, S.V.

    1999-01-01

    Usually three sources of information about the value of inserted negative reactivity (ρ) are used: dynamical experiment with reactimeters, solution of conventionally critical problems, and dynamical calculation of the process of reactivity insertion with the reactimer model. Each of them gives they own estimation of ρ. The discrepancy between these estimation could be significant, particularly noticeable in dissymmetric insertion of perturbation. The paper discusses origin of problems of estimation high negative reactivity with reactivity meter. Authors believe that correct method of high negative reactivity estimation have to include three dimensional dynamic core model for taking to account spatial effect. Moreover, some special process, such a removal of delayed neutron emitters, change in the fraction of delayed neutrons, inner source etc. (Authors)

  8. The coordination of calculation and experimental procedures in the determination of high-negative reactivities

    International Nuclear Information System (INIS)

    Pinegin, A.A.; Tsyganov, S.V.

    1999-01-01

    Usually three sources of information about the value of inserted negative reactivity (ρ) are used: dynamical experiment with reactimeters, solution of conventionally critical problems, and dynamical calculation of the process of reactivity insertion with the reactimeter model. Each of them gives they own estimation of ρ. The discrepancy between these estimations could be significant, particularly noticeable in dissymmetric insertion of perturbation. Origin of problems of estimation high negative reactivity is discussed using the reactivity meter. A correct method of high negative reactivity estimation have to include three dimensional dinamic core model for taking to account spatial effect. Moreover, some special processes, such as removal of delayed neutron emitters, change in the fraction of delayed neutrons, inner sources are considered etc. (author)

  9. Observations on the CANDLE burn-up in various geometries

    International Nuclear Information System (INIS)

    Seifritz, W.

    2007-01-01

    We have looked at all geometrical conditions under which an auto catalytically propagating burnup wave (CANDLE burn-up) is possible. Thereby, the Sine Gordon equation finds a new place in the burn-up theory of nuclear fission reactors. For a practical reactor design the axially burning 'spaghetti' reactor and the azimuthally burning 'pancake' reactor, respectively, seem to be the most promising geometries for a practical reactor design. Radial and spherical burn-waves in cylindrical and spherical geometry, respectively, are principally impossible. Also, the possible applicability of such fission burn-waves on the OKLO-phenomenon and the GEOREACTOR in the center of Earth, postulated by Herndon, is discussed. A fast CANDLE-reactor can work with only depleted uranium. Therefore, uranium mining and uranium-enrichment are not necessary anymore. Furthermore, it is also possible to dispense with reprocessing because the uranium utilization factor is as high as about 40%. Thus, this completely new reactor type can open a new era of reactor technology

  10. Advanced fuel cycles and burnup increase of WWER-440 fuel

    International Nuclear Information System (INIS)

    Proselkov, V.; Saprykin, V.; Scheglov, A.

    2003-01-01

    Analyses of operational experience of 4.4% enriched fuel in the 5-year fuel cycle at Kola NPP Unit 3 and fuel assemblies with Uranium-Gadolinium fuel at Kola NPP Unit 4 are made. The operability of WWER-440 fuel under high burnup is studied. The obtained results indicate that the fuel rods of WWER-440 assemblies intended for operation within six years of the reviewed fuel cycle totally preserve their operability. Performed analyses have demonstrated the possibility of the fuel rod operability during the fuel cycle. 12 assemblies were loaded into the reactor unit of Kola 3 in 2001. The predicted burnup in six assemblies was 59.2 MWd/kgU. Calculated values of the burnup after operation for working fuel assemblies were ∼57 MWd/kgU, for fuel rods - up to ∼61 MWd/kgU. Data on the coolant activity, specific activity of the benchmark iodine radionuclides of the reactor primary circuit, control of the integrity of fuel rods of the assemblies that were operated for six years indicate that not a single assembly has reached the criterion for the early discharge

  11. Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation

    International Nuclear Information System (INIS)

    Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

    2015-01-01

    Highlights: • We propose a new numerical solution of matrix exponential in burn-up depletion calculations. • The depletion calculation with extremely short half-lived nuclides can be done numerically stable with this method. • The computational time is shorter than the other conventional methods. - Abstract: Nuclear fuel burn-up depletion calculations are essential to compute the nuclear fuel composition transition. In the burn-up calculations, the matrix exponential method has been widely used. In the present paper, we propose a new numerical solution of the matrix exponential, a Mini-Max Polynomial Approximation (MMPA) method. This method is numerically stable for burn-up matrices with extremely short half-lived nuclides as the Chebyshev Rational Approximation Method (CRAM), and it has several advantages over CRAM. We also propose a multi-step calculation, a computational time reduction scheme of the MMPA method, which can perform simultaneously burn-up calculations with several time periods. The applicability of these methods has been theoretically and numerically proved for general burn-up matrices. The numerical verification has been performed, and it has been shown that these methods have high precision equivalent to CRAM

  12. Computer programs for TRIGA calibration, burnup evaluation, and bookkeeping

    International Nuclear Information System (INIS)

    Nelson, George W.

    1978-01-01

    Several computer programs have been developed at the University of Arizona to assist the direction and operation of the TRIGA Reactor Laboratory. The programs fall into the following three categories: 1. Programs for calculation of burnup of each fuel element in the reactor core, for maintaining an inventory of fuel element location and fissile content at any time, and for evaluation of the reactivity effects of burnup or proposed fuel element rearrangement in the core. 2. Programs for evaluation, function fitting, and tabulation of control rod measurements. 3. Bookkeeping programs to summarize and tabulate reactor runs and irradiations according to time, energy release, purpose, responsible party, etc. These summarized data are reported in an annual operating report for the facility. The use of these programs has saved innumerable hours of repetitious work, assuring more accurate, objective results, and requiring a minimum of effort to repeat calculations when input data are modified. The programs are written in FORTRAN-IV, and have been used on a CDC-6400 computer. (author)

  13. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-08-01

    Full Text Available This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI combustion, stratification controlled premixed charge compression ignition (PCCI combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts with the charge reactivity controlled HCCI combustion, and the works on HCCI fuelled with both high cetane number fuels, such as DME and n-heptane, and high octane number fuels, such as methanol, natural gas, gasoline and mixtures of gasoline/alcohols, are reviewed and discussed. Since single fuel cannot meet the reactivity requirements under different loads to control the combustion process, the studies related to concentration stratification and dual-fuel charge reactivity controlled HCCI combustion are then presented, which have been shown to have the potential to achieve effective combustion control. The efforts of using both mixture and thermal stratifications to achieve the auto-ignition and combustion control are also discussed. Thereafter, both charge reactivity and mixture stratification are then applied to control the combustion process. The potential and capability of thermal-atmosphere controlled compound combustion mode and dual-fuel reactivity controlled compression ignition (RCCI/highly premixed charge combustion (HPCC mode to achieve clean and high efficiency combustion are then presented and discussed. Based on these results and discussions, combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixtures stratification in the whole operating range is proposed.

  14. HIGH PREVALENCE OF REACTIVE ARTHRITIS IN RUSSIA: OVERDIAGNOSIS OR REALITY?

    Directory of Open Access Journals (Sweden)

    R. M. Balabanova

    2015-01-01

    Full Text Available Reactive arthritis (ReA is one of the types of spondyloarthritis. According to the statistics reports by the Ministry of Health of Russia, the prevalence of ReA in 2013 was 42.8 per 100,000 adult population, 99, and 172.4 per 100,000 children aged 0–14 and 15–17 years, respectively. There is a wide scatter of ReA detection rates in both the federal districts and subjects of the Russian Federation, which may be associated with both the spread of sexually transmitted infections, asymptomatic trigger Chlamydia infection, and overdiagnosis of ReA.

  15. Parallel GPU implementation of PWR reactor burnup

    International Nuclear Information System (INIS)

    Heimlich, A.; Silva, F.C.; Martinez, A.S.

    2016-01-01

    Highlights: • Three GPU algorithms used to evaluate the burn-up in a PWR reactor. • Exhibit speed improvement exceeding 200 times over the sequential. • The C++ container is expansible to accept new nuclides chains. - Abstract: This paper surveys three methods, implemented for multi-core CPU and graphic processor unit (GPU), to evaluate the fuel burn-up in a pressurized light water nuclear reactor (PWR) using the solutions of a large system of coupled ordinary differential equations. The reactor physics simulation of a PWR reactor spends a long execution time with burnup calculations, so performance improvement using GPU can imply in better core design and thus extended fuel life cycle. The results of this study exhibit speed improvement exceeding 200 times over the sequential solver, within 1% accuracy.

  16. Burnup credit in a dry storage module

    International Nuclear Information System (INIS)

    Thornton, J.R.

    1989-01-01

    Comparison of spent fuel storage expansion options available to Oconee Nuclear Station revealed that dry storage could be economically competitive with transshipment and rod consolidation. Economic competitiveness, however, mandated large unit capacity while existing cask handling facilities at Oconee severely limited size and weight. The dry storage concept determined to best satisfy these conflicting criteria is a 24 pressurized water reactor (PWR) fuel assembly capacity NUTECH Horizontal Modular Storage (NUHOMS) system. The Oconee version of the NUHOMS system takes advantage of burnup credit in demonstrating criticality safety. The burnup credit criticality analysis was performed by Duke Power Company's Design Engineering Department. This paper was prepared to summarize the criticality control design features employed in the Oconee NUHOMS-24P DSC basket and to describe the incentives for pursuing a burnup credit design. Principal criticality design parameters, criteria, and analysis methodology are also presented

  17. Nuclear fuel burn-up economy

    International Nuclear Information System (INIS)

    Matausek, M.

    1984-01-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  18. The octopus burnup and criticality code system

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L.; Kuijper, J.C. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Leege, P.F.A. de

    1996-09-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)

  19. The OCTOPUS burnup and criticality code system

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kuijper, J.C. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.

    1996-06-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.).

  20. The octopus burnup and criticality code system

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de.

    1996-01-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)

  1. The OCTOPUS burnup and criticality code system

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de

    1996-06-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.)

  2. Triton burnup in JET - profile effects

    International Nuclear Information System (INIS)

    Jarvis, O.N.; Conroy, S.W.; Marcus, F.B.; Sadler, G.J.; Belle, P. van

    1991-01-01

    Measurements of the 14 MeV neutron emission from triton burnup show that the 14 MeV emission profile shadows closely the 2,5 MeV profile but after a delay corresponding to the triton slowing down time. The slightly greater width of the 14 MeV neutron profile is a consequence of the finite Larmor radius of the tritons. It has not so far been possible to identify unambiguously any effects on the triton burnup that are attributable to sawtooth crashes. Finally, the time dependence of the triton profile indicates that the triton diffusion coefficient is very small ( 2 /s). (author) 4 refs., 3 figs

  3. Effect of fissile isotope burnup on criticality safety for stored disintegrated fuel rods

    International Nuclear Information System (INIS)

    Heaberlin, S.W.; Selby, G.P.

    1978-09-01

    If the fuel rods were to disintegrate and water added, a criticality could occur in a 13-in. PWR canister with fresh fuel enriched to 3.5 wt % 235 U. The question is, ''If credit could be taken for burnup, could this indicate a subcritical condition.'' In attempting to answer this question, a series of calculations were performed. A set of isotopic concentrations were generated for 5,000, 10,000, 15,000, and 20,000 MWD/MTU burnup levels. Four reflector materials, water, concrete and two types of soil, were considered. Results indicate that allowing credit for fissile isotope burnup does not completely remove the concern for criticality safety in the event of rod disintegration. Reactivities which are ''subcritical'' (k/sub eff/ = 0.95) would not occur for three of the four reflector materials at even the 20,000 MWD/MTU burnup level in the 13-in. canister. The water reflected canister would achieve the k/sub eff/ = 0.95 level near 18,000 MWD/MTU. A smaller canister could be postulated. If a quarter inch gap is allowed, a Westinghouse 17 x 17 PWR assembly requires a 12 1 / 4 inch diameter canister. For such a canister with water reflection the ''subcritical'' (k/sub eff/ = 0.95) level would be reached near 15,000 MWD/MTU. The soil reflected canisters would reach this level between 18,000 and 19,000 MWD/MTU. Considering the difficulties in taking credit for burnup, such modest gains in apparent safety are not encouraging. This situation might be improved, however, if credit were also taken for neutron absorption by fission product poisons produced during burnup. It is strongly recommended that other approaches to a solution of the criticality safety problem be considered

  4. Determination of fissile fraction in MOX (mixed U + Pu oxides) fuels for different burnup values

    International Nuclear Information System (INIS)

    Ozdemir, Levent; Acar, Banu Bulut; Zabunoglu, Okan H.

    2011-01-01

    When spent Light Water Reactor fuels are processed by the standard Purex method of reprocessing, plutonium (Pu) and uranium (U) in spent fuel are obtained as pure and separate streams. The recovered Pu has a fissile content (consisting of 239 Pu and 241 Pu) greater than 60% typically (although it mainly depends on discharge burnup of spent fuel). The recovered Pu can be recycled as mixed-oxide (MOX) fuel after being blended with a fertile U makeup in a MOX fabrication plant. The burnup that can be obtained from MOX fuel depends on: (1) isotopic composition of Pu, which is closely related to the discharge burnup of spent fuel from which Pu is recovered; (2) the type of fertile U makeup material used (depleted U, natural U, or recovered U); and (3) fraction of makeup material in the mix (blending ratio), which in turn determines the total fissile fraction of MOX. Using the Non-linear Reactivity Model and the code MONTEBURNS, a step-by-step procedure for computing the total fissile content of MOX is introduced. As was intended, the resulting expression is simple enough for quick/hand calculations of total fissile content of MOX required to reach a desired burnup for a given discharge burnup of spent fuel and for a specified fertile U makeup. In any case, due to non-fissile (parasitic) content of recovered Pu, a greater fissile fraction in MOX than that in fresh U is required to obtain the same burnup as can be obtained by the fresh U fuel.

  5. K-infinite trends with burnup, enrichment, and cooling time for BWR fuel assemblies

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1998-08-01

    This report documents the work performed by ORNL for the Yucca Mountain project (YMP) M and O contractor, Framatome Cogema Fuels. The goal of this work was to obtain k inf values for infinite arrays of flooded boiling-water-reactor (BWR) fuel assemblies as a function of various burnup/enrichment and cooling-time combinations. These scenarios simulate expected limiting criticality loading conditions (for a given assembly type) for drift emplacements in a repository. Upon consultation with the YMP staff, a Quad Cities BWR fuel assembly was selected as a baseline assembly. This design consists of seven axial enrichment zones, three of which contain natural uranium oxide. No attempt was made to find a bounding or even typical assembly design due to the wide variety in fuel assembly designs necessary for consideration. The current work concentrates on establishing a baseline analysis, along with a small number of sensitivity studies which can be expected later if desired. As a result of similar studies of this nature, several effects are known to be important in the determination of the final k inf for spent fuel in a cask-like geometry. For a given enrichment there is an optimal burnup: for lower burnups, excess energy (and corresponding excess reactivity) is present in the fuel assembly; for larger burnups, the assembly is overburned and essentially driven by neighboring fuel assemblies. The majority of the burnup/enrichment scenarios included in this study were for some near-optimum burnup/enrichment combinations as determined from Energy Information Administration (EIA) data. Several calculations were performed for under- and over-burned fuel to show these effects

  6. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports

  7. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports.

  8. Estimation of burnup with cesium isotopes based on gamma-scanning of a instrumented fuel capsule(02F-11K) in hot-cell

    International Nuclear Information System (INIS)

    Song, Ung Sup; Kim, Hee Moon; Park, Dae Gyu; Paik, Seung Je; Lee, Hong Gi; Choo, Yong Sun; Hong Kwon Pyo

    2004-01-01

    Many experimental inspection have been performed to obtain the burnup of fuel. In the case, chemical analysis were popular with high reliability. High radioactivity of fuel was severe problem during destructive procedure. Afterward, many researchers have studied calculation of burnup using gamma detector as the non-destructive method. methodologies of gamma-scanning test have been developed as well as higher accuracy of detector. Generally, Cs-137 and Cs-134 are standard isotopes for long-term cooling spent fuel to estimate burnup, because atomic ratio of them follows the linearity with burnup

  9. Burnup verification tests with the FORK measurement system-implementation for burnup credit

    International Nuclear Information System (INIS)

    Ewing, R.I.

    1994-01-01

    Verification measurements may be used to help ensure nuclear criticality safety when burnup credit is applied to spent fuel transport and storage systems. The FORK system measures the passive neutron and gamma-ray emission from spent fuel assemblies while in the storage pool. It was designed at Los Alamos National Laboratory for the International Atomic Energy Agency safeguards program and is well suited to verify burnup and cooling time records at commercial Pressurized Water Reactor (PWR) sites. This report deals with the application of the FORK system to burnup credit operations

  10. A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Makmal, T. [The Unit of Nuclear Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105 (Israel); Nuclear Physics and Engineering Division, Soreq Nuclear Research Center, Yavne 81800 (Israel); Aviv, O. [Radiation Safety Division, Soreq Nuclear Research Center, Yavne 81800 (Israel); Gilad, E., E-mail: gilade@bgu.ac.il [The Unit of Nuclear Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105 (Israel)

    2016-10-21

    A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections. - Highlights: • Simple, inexpensive, safe and flexible experimental setup that can be quickly deployed. • Experimental results are thoroughly corroborated against ORIGEN2 burnup code. • Experimental uncertainty of 9% and 5% deviation between measurements and simulations. • Very high burnup MTR fuel element is examined, with 60% depletion of {sup 235}U. • Impact of highly irregular irradiation regime on burnup evaluation is studied.

  11. Establishment of Technical Collaboration basis between Korea and France for the development of severe accident assessment computer code under high burnup condition

    International Nuclear Information System (INIS)

    Kim, H. D.; Kim, D. H.; Park, S. Y.; Park, J. H.

    2005-10-01

    This project was performed by KAERI in the frame of construction of the international cooperative basis on the nuclear energy. This was supported from MOST under the title of 'Establishment of Technical Collaboration basis between Korea and France for the development of severe accident assessment computer code under high burn up condition'. The current operating NPP are converting the burned fuel to the wasted fuel after burn up of 40 GWD/MTU. But in Korea, burn up of more than 60 GWD/MTU will be expected because of the high fuel efficiency but also cost saving for storing the wasted fuel safely. The domestic research for the purpose of developing the fuel and the cladding that can be used under the high burn up condition up to 100 GWD/MTU is in progress now. But the current computer code adopts the model and the data that are valid only up to the 40 GWD/MTU at most. Therefore the current model could not take into account the phenomena that may cause differences in the fission product release behavior or in the core damage process due to the high burn up operation (more than 40 GWD/MTU). To evaluate the safety of the NPP with the high burn up fuel, the improvement of current severe accident code against the high burn up condition is an important research item. Also it should start without any delay. Therefore, in this study, an expert group was constructed to establish the research basis for the severe accident under high burn up conditions. From this expert group, the research items regarding the high burn up condition were selected and identified through discussion and technical seminars. Based on these selected items, the meeting between IRSN and KAERI to find out the cooperative research items on the severe accident under the high burn up condition was held in the IRSN headquater in Paris. After the meeting, KAERI and IRSN agreed to cooperate with each other on the selected items, and to co-host the international seminar, and to develop the model and to

  12. The Impact of Operating Parameters and Correlated Parameters for Extended BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William B. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Applicants for certificates of compliance for spent nuclear fuel (SNF) transportation and dry storage systems perform analyses to demonstrate that these systems are adequately subcritical per the requirements of Title 10 of the Code of Federal Regulations (10 CFR) Parts 71 and 72. For pressurized water reactor (PWR) SNF, these analyses may credit the reduction in assembly reactivity caused by depletion of fissile nuclides and buildup of neutron-absorbing nuclides during power operation. This credit for reactivity reduction during depletion is commonly referred to as burnup credit (BUC). US Nuclear Regulatory Commission (NRC) staff review BUC analyses according to the guidance in the Division of Spent Fuel Storage and Transportation Interim Staff Guidance (ISG) 8, Revision 3, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks.

  13. Achieving high