WorldWideScience

Sample records for high bulk flow

  1. Void fraction in horizontal bulk flow boiling at high flow qualities

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Fancisco J.; Monne, Carlos [Dpto. de Ingenieria Mecanica, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain); Pascau, Antonio [Dpto. de Ciencia de los Materiales y Fluidos, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain)

    2008-04-15

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities ({<=}0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality ({<=}0.2). (author)

  2. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet

    Directory of Open Access Journals (Sweden)

    Satoshi Fukui, Yoshihiro Shoji, Jun Ogawa, Tetsuo Oka, Mitsugi Yamaguchi, Takao Sato, Manabu Ooizumi, Hiroshi Imaizumi and Takeshi Ohara

    2009-01-01

    Full Text Available We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  3. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    oligomerization, and leads to a high sugar accumulation in the phloem, even though the phloem is not symplasmically isolated, but well coupled by plasmodesmata (PD). Hence the mode polymer-trap mode is also designated active symplasmic loading. For woody angiosperms and gymnosperms an alternate loading mode...

  4. Bulk flow scaling for turbulent channel and pipe flows

    CERN Document Server

    Chen, Xi; She, Zhen-Su

    2016-01-01

    We report a theory deriving bulk flow scaling for canonical wall-bounded flows. The theory accounts for the symmetries of boundary geometry (flat plate channel versus circular pipe) by a variational calculation for a large-scale energy length, which characterizes its bulk flow scaling by a simple exponent, i.e. $m=4$ for channel and 5 for pipe. The predicted mean velocity shows excellent agreement with several dozen sets of quality empirical data for a wide range of the Reynolds number (Re), with a universal bulk flow constant $\\kappa\\approx0.45$. Predictions for dissipation and turbulent transport in the bulk flow are also given, awaiting data verification.

  5. Prospects for Detecting a Cosmic Bulk Flow

    Science.gov (United States)

    Rose, Benjamin; Garnavich, Peter M.; Mathews, Grant James

    2015-01-01

    The ΛCDM model is based upon a homogeneous, isotropic space-time leading to uniform expansion with random peculiar velocities caused by local gravitation perturbations. The Cosmic Microwave Background (CMB) radiation evidences a significant dipole moment in the frame of the Local Group. This motion is usually explained with the Local Group's motion relative to the background Hubble expansion. An alternative explanation, however, is that the dipole moment is the result of horizon-scale curvature remaining from the birth of space-time, possibly a result of quantum entanglement with another universe. This would appear as a single velocity (a bulk flow) added to all points in space. These two explanations differ observationally on cosmic distance scales (z > 0.1). There have been many differing attempts to detect a bulk flow, many with no detectable bulk flow but some with a bulk flow velocity as large as 1000 km/s. Here we report on a technique based upon minimizing the scatter around the expected cosine distribution of the Hubble redshift residuals with respect to angular distance on the sky. That is, the algorithm searches for a directional dependence of Hubble residuals. We find results consistent with most other bulk flow detections at z Type Ia Supernovae to be ~0.01, whereas the current error (~0.2.) is more than an order of magnitude too large for the detection of bulk flow beyond z~0.05.

  6. Continuous Flow - Cavity RingDown Spectroscopy Using a Novel Universal Interface for High-Precision Bulk 13C Analysis

    Science.gov (United States)

    Saad, Nabil; Richman, Bruce

    2010-05-01

    We have developed the world's first optical spectroscopy-based system for bulk stable isotope analysis of 13C. The system is based on a novel universal interface, named LIAISON, capable of coupling to almost any CO2-generating sample preparation front-end ranging from an elemental analyzer to any dissolved carbon analysis module, which are of significant use in geochemical, ecological and food authentication studies. In one specific application, we have coupled LIAISON to an elemental analyzer (EA) and to a cavity ring-down spectrometer (CRDS) for 13C isotopic analysis of adulterated honey samples. Another application was developed to analyze dissolved inorganic carbon in water samples. LIAISON is suited for handling a high-throughput sample analysis process by running three different gas handling operations in parallel: Admitting combustion gas from the EA into a first gas bellows, analyzing the previous sample collected into a second gas bellows with CRDS, and flushing and purging a third gas bellows in preparation for the upcoming sample collection operation. The sample-to-sample analysis time is 10 minutes and the operation is completely automated for the whole front-end auto-sampler tray capacity, requiring no operator intervention. The CRDS data are collected, tabulated and saved into an output text file. The memory effect between the USGS L-Glutamic acid standard at natural abundance and the moderately enriched USGS L-Glutamic acid standard is excluded by the selection of the adequate number and duration of flush and purge cycles of the gas sample bags. The system's proven accuracy was cross-checked with EA-IRMS and its achieved precision was typically less than 0.2 permil, including the 13C-enriched tested samples. The LIAISON-CRDS system presented here provides a fully automated solution for 13C bulk stable isotope analysis with unprecedented ease-of-use and possible field portability and application with the availability of a compact front-end. In

  7. Measuring Bulk Flows in Large Scale Surveys

    CERN Document Server

    Feldman, H A; Feldman, Hume A.; Watkins, Richard

    1993-01-01

    We follow a formalism presented by Kaiser to calculate the variance of bulk flows in large scale surveys. We apply the formalism to a mock survey of Abell clusters \\'a la Lauer \\& Postman and find the variance in the expected bulk velocities in a universe with CDM, MDM and IRAS--QDOT power spectra. We calculate the velocity variance as a function of the 1--D velocity dispersion of the clusters and the size of the survey.

  8. Diffusion and bulk flow in phloem loading

    DEFF Research Database (Denmark)

    Dölger, Julia; Rademaker, Hanna; Liesche, Johannes

    2014-01-01

    loading mechanism, active symplasmic loading, also called the polymer trap mechanism, where sucrose is transformed into heavier sugars, such as raffinose and stachyose, in the intermediary-type companion cells bordering the sieve elements in the minor veins of the phloem. Keeping the heavier sugars from......%-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all...

  9. Serrated plastic flow during nanoindentation of a bulk metallic glass

    NARCIS (Netherlands)

    Golovin, YI; Ivolgin, [No Value; Khonik, VA; Kitagawa, K; Tyurin, AI

    2001-01-01

    The results of nanoindentation tests of bulk glassy Pd40CU30Ni10P20 using a specially designed instrument with high time and spatial resolution are presented. Pronounced serrations of the indenter penetration depth are observed. The parameters of serrated flow (the number of serrations, their amplit

  10. Gravitational potential wells and the cosmic bulk flow

    CERN Document Server

    Kumar, Abhinav; Feldman, Hume A; Watkins, Richard

    2015-01-01

    The bulk flow is a volume average of the peculiar velocities and a useful probe of the mass distribution on large scales. The gravitational instability model views the bulk flow as a potential flow that obeys a Maxwellian Distribution. We use two N-body simulations, the LasDamas Carmen and the Horizon Run, to calculate the bulk flows of various sized volumes in the simulation boxes. Once we have the bulk flow velocities as a function of scale, we investigate the mass and gravitational potential distribution around the volume. We found that matter densities can be asymmetrical and difficult to detect in real surveys, however, the gravitational potential and its gradient may provide better tools to investigate the underlying matter distribution. This study shows that bulk flows are indeed potential flows and thus provides information on the flow sources. We also show that bulk flow magnitudes follow a Maxwellian distribution on scales $>10\\ h^{-1}$Mpc.

  11. On methods of estimating cosmological bulk flows

    CERN Document Server

    Nusser, Adi

    2015-01-01

    We explore similarities and differences between several estimators of the cosmological bulk flow, $\\bf B$, from the observed radial peculiar velocities of galaxies. A distinction is made between two theoretical definitions of $\\bf B$ as a dipole moment of the velocity field weighted by a radial window function. One definition involves the three dimensional (3D) peculiar velocity, while the other is based on its radial component alone. Different methods attempt at inferring $\\bf B$ for either of these definitions which coincide only for a constant velocity field. We focus on the Wiener Filtering (WF, Hoffman et al. 2015) and the Constrained Minimum Variance (CMV,Feldman et al. 2010) methodologies. Both methodologies require a prior expressed in terms of the radial velocity correlation function. Hoffman et al. compute $\\bf B$ in Top-Hat windows from a WF realization of the 3D peculiar velocity field. Feldman et al. infer $\\bf B$ directly from the observed velocities for the second definition of $\\bf B$. The WF ...

  12. Finsler geometric perspective on the bulk flow in the universe

    CERN Document Server

    Cahng, Zhe; Wang, Sai

    2013-01-01

    Astronomical observations showed that there exists a bulk flow with peculiar velocities in the universe, which contradicts with the (\\Lambda)CDM model. The bulk flow reveals that the observational universe is anisotropic at large scales. In this paper, we propose a "wind" scenario to the bulk flow. Under the influence of the "wind", the spacetime metric could become a Finsler structure. By resolving the null geodesic equation, we obtain the modified luminosity distance, which has a dipolar form at the leading order. Thus, the "wind" describes well the bulk flow. In addition, we perform a least-(\\chi^2) fit to the data of type Ia supernovae (SNe Ia) in the Union2.1 compilation. The peculiar velocity of the bulk flow has an upper limit (v_{bulk}\\lesssim 4000 \\rm{km/s}), which is compatible with all the existing observational values.

  13. Applications of bulk high-temperature superconductors

    Science.gov (United States)

    Hull, J. R.

    The development of high-temperature superconductors (HTS's) can be broadly generalized into thin-film electronics, wire applications, and bulk applications. We consider bulk HTS's to include sintered or crystallized forms that do not take the geometry of filaments or tapes, and we discuss major applications for these materials. For the most part applications may be realized with the HTS's cooled to 77 K, and the properties of the bulk HTS's are often already sufficient for commercial use. A non-exhaustive list of applications for bulk HTS's includes trapped field magnets, hysteresis motors, magnetic shielding, current leads, and magnetic bearings. These applications are briefly discussed in this paper.

  14. Bulk flow of halos in $\\Lambda$CDM simulation

    CERN Document Server

    Li, Ming; Gao, Liang; Jing, Yipeng; Yang, Xiaohu; Chi, Xuebin; Feng, Longlong; Kang, Xi; Lin, Weipeng; Shang, Guihua; Wang, Long; Zhao, Donghai; Zhang, Pengjie

    2012-01-01

    Analysis of the Pangu N-body simulation validates that bulk flow of halos follows Maxwellian distribution of which variance is consistent with prediction of linear perturbation theory of structure formation. We propose that consistency between observed bulk velocity and theories shall be examined at the effective scale as radius of spherical top-hat window function yielding the same smoothed velocity variance in linear theory as the sample window does. Then we compared some recently estimated bulk flows from observational samples with prediction of the $\\Lambda$CDM model we used, some results deviate the expectation at level of $\\sim 3\\sigma$ but the tension is not as severe as previously claimed. We disclose that bulk flow is weakly correlated with dipole of internal mass distribution, alignment angle between mass dipole and bulk flow has broad distribution but is peaked at $\\sim 30-50^\\circ$, meanwhile bulk flow shows little dependence on mass of halos used for estimation. In the simulation of box size $1h^...

  15. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  16. Theoretical expectations for bulk flows in large scale surveys

    CERN Document Server

    Feldman, H A; Hume A Feldman; Richard Watkins

    1993-01-01

    We calculate the theoretical expectation for the bulk motion of a large scale survey of the type recently carried out by Lauer and Postman. Included are the effects of survey geometry, errors in the distance measurements, clustering properties of the sample, and different assumed power spectra. We consider the power spectrum calculated from the IRAS-QDOT survey, as well as spectra from hot + cold and standard cold dark matter models. We find that sparse sampling and clustering can lead to an unexpectedly large bulk flow, even in a very deep survey. Our results suggest that the expected bulk motion is inconsistent with that reported by Lauer and Postman at the 90-94% confidence level.

  17. Bulk flow and diffusion revisited, and clinical applications.

    Science.gov (United States)

    Reulen, Hans-J

    2010-01-01

    The first Klatzo-Lecture pays homage to an exceptional academician, scientist and teacher. The author spent nearly 1 year in Klatzo's laboratory at the NHI in Bethesda, and the first part of results presented here originate directly from this collaboration. It was shown that following cortical injury, movement of edema fluid into the tissue occurs by bulk flow, and that the driving force is a small tissue pressure gradient. Resolution of edema fluid is achieved by clearance into the ventricular and subarachnoid CSF, is enhanced in the presence of pressure gradients and is supported by re-absorption into capillaries. Using appropriate techniques, the formation rate as well as clearance of edema into CSF and tissue resorption could be determined in human brain metastases and malignant gliomas. Three examples of clinical applications based on the discussed mechanisms are presented: a. Fluorescence-guided surgery of gliomas is based on the accumulation of 5-ALA in tumour cells; there being enzymatically converted to PP-IX, a compound with deep red fluorescence. This fluorescence is used for the more accurate surgical removal of gliomas. b. Radioimmunotherapy of gliomas uses an anti-tenascin antibody, coupled with a nuclide, administered postoperatively into the tumour cavity, from where it diffuses into tissue, couples to the receptor at the glioma cells. Then the isotope destroys the tumour cells. c. Convection-enhanced delivery is based on the interstitial infusion of an appropriate cytotoxic drug into the white matter at low pressure. Thus, the method employs bulk flow, distributes a drug in a larger tissue volume and eventually achieves drug concentrations greater than systemic levels. Experimental studies and clinical results are presented for all three clinical applications.I am very grateful to Z. Czernicki and the organizing group for being offered the great honour of presenting the first Igor Klatzo Lecture. In this report first previous results of bulk flow

  18. 2MTF - V. Cosmography, β, and the residual bulk flow

    Science.gov (United States)

    Springob, Christopher M.; Hong, Tao; Staveley-Smith, Lister; Masters, Karen L.; Macri, Lucas M.; Koribalski, Bärbel S.; Jones, D. Heath; Jarrett, Tom H.; Magoulas, Christina; Erdoğdu, Pirin

    2016-02-01

    Using the Tully-Fisher relation, we derive peculiar velocities for the 2MASS Tully-Fisher survey and describe the velocity field of the nearby Universe. We use adaptive kernel smoothing to map the velocity field, and compare it to reconstructions based on the redshift space galaxy distributions of the 2MASS Redshift Survey (2MRS) and the IRAS Point Source Catalog Redshift Survey (PSCz). With a standard χ2 minimization fit to the models, we find that the PSCz model provides a better fit to the 2MTF velocity field data than does the 2MRS model, and provides a value of β in greater agreement with literature values. However, when we subtract away the monopole deviation in the velocity zero-point between data and model, the 2MRS model also produces a value of β in agreement with literature values. We also calculate the `residual bulk flow': the component of the bulk flow not accounted for by the models. This is ˜250 km s-1 when performing the standard fit, but drops to ˜150 km s-1 for both models when the aforementioned monopole offset between data and models is removed. This smaller number is more in line with theoretical expectations, and suggests that the models largely account for the major structures in the nearby Universe responsible for the bulk velocity.

  19. Bulk flow coupled to a viscous interfacial film sheared by a rotating knife edge

    Science.gov (United States)

    Raghunandan, Aditya; Rasheed, Fayaz; Hirsa, Amir; Lopez, Juan

    2015-11-01

    The measurement of the interfacial properties of highly viscous biofilms, such as DPPC (the primary component of lung surfactant), present on the surface of liquids (bulk phase) continues to attract significant attention. Most measurement techniques rely on shearing the interfacial film and quantifying its viscous response in terms of a surface (excess) viscosity at the air-liquid interface. The knife edge viscometer offers a significant advantage over other approaches used to study highly viscous films as the film is directly sheared by a rotating knife edge in direct contact with the film. However, accurately quantifying the viscous response is non-trivial and involves accounting for the coupled interfacial and bulk phase flows. Here, we examine the nature of the viscous response of water insoluble DPPC films sheared in a knife edge viscometer over a range of surface packing, and its influence on the strength of the coupled bulk flow. Experimental results, obtained via Particle Image Velocimetry in the bulk and at the surface (via Brewster Angle Microscopy), are compared with numerical flow predictions to quantify the coupling across hydrodynamic flow regimes, from the Stokes flow limit to regimes where flow inertia is significant. Supported by NNX13AQ22G, National Aeronautics and Space Administration.

  20. Microwave sensing of moisture content and bulk density in flowing grain

    Science.gov (United States)

    Moisture content and bulk density were determined from measurement of the dielectric properties of flowing wheat kernels at a single microwave frequency (5.8 GHz). The measuring system consisted of two high-gain microwave patch antennas mounted on opposite sides of rectangular chute and connected to...

  1. Bulk Flow and Shear Moments of the SFI++ Survey

    CERN Document Server

    Feldman, Hume A

    2008-01-01

    We find the nine bulk--flow and shear moments from the SFI++ survey, as well as for subsamples of group and field galaxies. We constrain the velocity power spectrum shape parameter $\\Gamma$ in linear theory using these moments. A likelihood function for $\\Gamma$ was found after marginalizing over the power spectrum amplitude $\\sigma_8\\Omega_m^{0.6}$ using constraints obtained from comparisons between redshift surveys and peculiar velocity data. We have estimated the velocity noise $\\sigma_*$ from the data to maximize the accuracy. We also performed a statistical analysis of the difference between the field and group catalogues and found that the results from each reflect the same underlying large scale flows. We found that we can constrain the power spectrum shape parameter to be $\\Gamma=0.15^{+0.18}_{-0.08}$ for the groups catalogue and $\\Gamma=0.09^{+0.04}_{-0.04}$ for the field galaxy catalogue in fair agreement with the value from WMAP.

  2. Interpreting new data on large scale bulk flows

    CERN Document Server

    Watkins, R; Watkins, Richard; Feldman, Hume

    1995-01-01

    We study the implications of a recent estimate of the bulk flow of a set of galaxies containing supernovae type Ia by Riess, Press, and Kirshner. We find that their results are quite consistent with power spectra from several currently popular models of structure formation, but that the sample is as yet too sparse to put significant constraints on the power spectrum. We compare this new result with that of Lauer and Postman, with which there is apparent disagreement. We find that for the power spectra we consider, the difference in window functions between the two samples used for the measurements results in a low level of expected correlation between the estimated bulk flows. We calculate a \\chi^2 for the two measurements taken together and find that their lack of agreement tends to disfavor spectra with excessive power on large scales, but not at a level sufficient to rule them out. A sample consisting of other SN type Ia's found in the Asiago catalog is used to study how the sensitivity of the method used ...

  3. 2MTF V. Cosmography, Beta, and the residual bulk flow

    CERN Document Server

    Springob, Christopher M; Staveley-Smith, Lister; Masters, Karen L; Macri, Lucas M; Koribalski, Baerbel S; Jones, D Heath; Jarrett, Tom H; Magoulas, Christina; Erdogdu, Pirin

    2015-01-01

    Using the Tully-Fisher relation, we derive peculiar velocities for the 2MASS Tully-Fisher Survey and describe the velocity field of the nearby Universe. We use adaptive kernel smoothing to map the velocity field, and compare it to reconstructions based on the redshift space galaxy distributions of the 2MASS Redshift Survey (2MRS) and the IRAS Point Source Catalog Redshift Survey (PSCz). With a standard $\\chi^2$ minimization fit to the models, we find that the PSCz model provides a better fit to the 2MTF velocity field data than does the 2MRS model, and provides a value of $\\beta$ in greater agreement with literature values. However, when we subtract away the monopole deviation in the velocity zeropoint between data and model, the 2MRS model also produces a value of $\\beta$ in agreement with literature values. We also calculate the `residual bulk flow': the component of the bulk flow not accounted for by the models. This is $\\sim 250$ km/s when performing the standard fit, but drops to $\\sim 150$ km/s for both...

  4. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow

    Science.gov (United States)

    Holter, Karl Erik; Kehlet, Benjamin; Devor, Anna; Sejnowski, Terrence J.; Dale, Anders M.; Omholt, Stig W.; Ottersen, Ole Petter; Nagelhus, Erlend Arnulf; Mardal, Kent-André; Pettersen, Klas H.

    2017-01-01

    The brain lacks lymph vessels and must rely on other mechanisms for clearance of waste products, including amyloid β that may form pathological aggregates if not effectively cleared. It has been proposed that flow of interstitial fluid through the brain’s interstitial space provides a mechanism for waste clearance. Here we compute the permeability and simulate pressure-mediated bulk flow through 3D electron microscope (EM) reconstructions of interstitial space. The space was divided into sheets (i.e., space between two parallel membranes) and tunnels (where three or more membranes meet). Simulation results indicate that even for larger extracellular volume fractions than what is reported for sleep and for geometries with a high tunnel volume fraction, the permeability was too low to allow for any substantial bulk flow at physiological hydrostatic pressure gradients. For two different geometries with the same extracellular volume fraction the geometry with the most tunnel volume had 36% higher permeability, but the bulk flow was still insignificant. These simulation results suggest that even large molecule solutes would be more easily cleared from the brain interstitium by diffusion than by bulk flow. Thus, diffusion within the interstitial space combined with advection along vessels is likely to substitute for the lymphatic drainage system in other organs. PMID:28847942

  5. Scaling laws and bulk-boundary decoupling in heat flow.

    Science.gov (United States)

    del Pozo, Jesús J; Garrido, Pedro L; Hurtado, Pablo I

    2015-03-01

    When driven out of equilibrium by a temperature gradient, fluids respond by developing a nontrivial, inhomogeneous structure according to the governing macroscopic laws. Here we show that such structure obeys strikingly simple scaling laws arbitrarily far from equilibrium, provided that both macroscopic local equilibrium and Fourier's law hold. Extensive simulations of hard disk fluids confirm the scaling laws even under strong temperature gradients, implying that Fourier's law remains valid in this highly nonlinear regime, with putative corrections absorbed into a nonlinear conductivity functional. In addition, our results show that the scaling laws are robust in the presence of strong finite-size effects, hinting at a subtle bulk-boundary decoupling mechanism which enforces the macroscopic laws on the bulk of the finite-sized fluid. This allows one to measure the marginal anomaly of the heat conductivity predicted for hard disks.

  6. Technical issues of a high-Tc superconducting bulk magnet

    Science.gov (United States)

    Fujimoto, Hiroyuki

    2000-06-01

    Superconducting magnets made of high-Tc superconductors are promising for industrial applications. It is well known that REBa2Cu3O7-x superconductors prepared by melt processes have a high critical current density, Jc, at 77 K and high magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger Jc in high magnetic fields and a much improved irreversibility field, Hirr, at 77 K. In this study, we discuss technical issues of a high-Tc superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future.

  7. High-rate squeezing process of bulk metallic glasses

    Science.gov (United States)

    Fan, Jitang

    2017-03-01

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials.

  8. Near-Earth bursty bulk flows and AE index

    Institute of Scientific and Technical Information of China (English)

    ZHANG LingQian; SHI JianKui; LIU ZhenXing; W BAUMJOHANN; MA ZhiWei; M. W. DUNLOP; C. CARR; H. REME

    2008-01-01

    With the 4-s resolution data of the magnetometer and the ion plasma analyzer on TC-1 from June to November of each year during the period of 2004-2006, we statistically analyzed the occurrence rate of both convective and field-aligned bursty flows (FABFs). A near-Earth bursty bulk flow (NEBBF) occurred during both the quiet time and substorm process. In general, the magnetic field and the plasma density began oscillating with the appearance of the NEBBF associated with a distinct increase of the AE index. The increase of AE index during the NEBBF was more than 100 nT in both quiet time and substorm process. The statistical analysis indicated that the occurrence rates of the FABFs were nearly the same in the dif-ferent stages of the AE index, but the occurrence rate of the NEBBFs was much higher in the growth stage of the AE index, indicating that the NEBBFs were di-rectly related to the growth and expansion phases of the substorm. The observa-tions suggested that the quite large number of BBFs from the mid magnetotail could enter into the near-Earth tail and play important role in triggering the sub-storm onset.

  9. Bulk flows and CMB dipole anisotropy in cosmological void models

    CERN Document Server

    Tomita, K

    1999-01-01

    The observational behavior of spherically symmetric inhomogeneous cosmological models is studied, which consist of inner and outer homogeneous regions connected by a shell or an intermediate self-similar region. It is assumed that the present matter density parameter in the inner region is smaller than that in the outer region, and the present Hubble parameter in the inner region is larger than that in the outer region. Then galaxies in the inner void-like region can be seen to have a bulk motion relative to matter in the outer region, when we observe them at a point O deviated from the center C of the inner region. Their velocity $v_p$ in the CD direction is equal to the difference of two Hubble parameters multiplied by the distance between C and O. It is found also that the velocity $v_d$ corresponding to CMB dipole anisotropy observed at O is by a factor $\\approx 10$ small compared with $v_p$. This behavior of $v_d$ and $v_p$ may explain the puzzling situation of the cosmic flow of cluster galaxies, when t...

  10. Probing bulk flow with nearby SNe Ia data

    CERN Document Server

    Appleby, Stephen; Johnson, Andrew

    2014-01-01

    We test the isotropy of the local Universe using low redshift Supernova data from various catalogs and the non-parametric method of smoothed residuals. Using a recently developed catalog which combines Supernova data from various surveys, we show that the isotropic hypothesis of a Universe with zero velocity perturbation can be rejected with moderate significance, with $p$-value $\\sim 0.07$ out to redshift $z < 0.045$. We estimate the direction of maximal anisotropy on the sky for various pre-existing catalogs and show that it remains relatively unaffected by the light curve fitting procedure. However the recovered direction is biased by the underlying distribution of data points on the sky. We estimate both the uncertainty and bias in the direction by creating mock data containing a randomly oriented bulk flow and using our method to reconstruct its direction. We conclude that the inhomogeneous nature of the data introduces a directional bias in galactic latitude of approximately $|\\Delta b_{\\rm max}| \\si...

  11. GALAXY CLUSTER BULK FLOWS AND COLLISION VELOCITIES IN QUMOND

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Harley; McGaugh, Stacy; Teuben, Peter [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Angus, G. W., E-mail: hkatz@astro.umd.edu, E-mail: stacy.mcgaugh@case.edu, E-mail: teuben@astro.umd.edu, E-mail: angus.gz@gmail.com [Astrophysics, Cosmology and Gravity Centre, University of Cape Town, Private Bag X3, Rondebosch 7700 (South Africa)

    2013-07-20

    We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in {Lambda}CDM simulations. The bulk motions of clusters attain {approx}1000 km s{sup -1} by low redshift, comparable to observations whereas {Lambda}CDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet Cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in {Lambda}CDM, potentially providing an explanation for ''pink elephants'' like El Gordo. However, it is not obvious that the cluster mass function can be recovered.

  12. Galaxy Cluster Bulk Flows and Collision Velocities in QUMOND

    CERN Document Server

    Katz, Harley; Teuben, Peter; Angus, G W

    2013-01-01

    We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in {\\Lambda}CDM simulations. The bulk motions of clusters attain about 1000 km/s by low redshift, comparable to observations whereas {\\Lambda}CDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in {\\Lambda}CDM, potentially providing an explanation for 'pink elephants' like El Gordo. However, it is not obvious that the cluster mass function can be recovered.

  13. Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions

    Science.gov (United States)

    Pham, Ngoc H.; Voronov, Roman S.; Tummala, Naga Rajesh; Papavassiliou, Dimitrios V.

    2014-03-01

    In this paper, bulk stress distributions in the pore space of columns packed with spheres are numerically computed with lattice Boltzmann simulations. Three different ideally packed and one randomly packed configuration of the columns are considered under Darcy flow conditions. The stress distributions change when the packing type changes. In the Darcy regime, the normalized stress distribution for a particular packing type is independent of the pressure difference that drives the flow and presents a common pattern. The three parameter (3P) log-normal distribution is found to describe the stress distributions in the randomly packed beds within statistical accuracy. In addition, the 3P log-normal distribution is still valid when highly porous scaffold geometries rather than sphere beds are examined. It is also shown that the 3P log-normal distribution can describe the bulk stress distribution in consolidated reservoir rocks like Berea sandstone.

  14. Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions.

    Science.gov (United States)

    Pham, Ngoc H; Voronov, Roman S; Tummala, Naga Rajesh; Papavassiliou, Dimitrios V

    2014-03-01

    In this paper, bulk stress distributions in the pore space of columns packed with spheres are numerically computed with lattice Boltzmann simulations. Three different ideally packed and one randomly packed configuration of the columns are considered under Darcy flow conditions. The stress distributions change when the packing type changes. In the Darcy regime, the normalized stress distribution for a particular packing type is independent of the pressure difference that drives the flow and presents a common pattern. The three parameter (3P) log-normal distribution is found to describe the stress distributions in the randomly packed beds within statistical accuracy. In addition, the 3P log-normal distribution is still valid when highly porous scaffold geometries rather than sphere beds are examined. It is also shown that the 3P log-normal distribution can describe the bulk stress distribution in consolidated reservoir rocks like Berea sandstone.

  15. 2MTF IV. A bulk flow measurement of the local Universe

    CERN Document Server

    Hong, Tao; Staveley-Smith, Lister; Scrimgeour, Morag I; Masters, Karen L; Macri, Lucas M; Koribalski, Bärbel S; Jones, D Heath; Jarrett, Tom H

    2014-01-01

    Using the 2MASS near-infrared photometry and high signal-to-noise HI 21-cm data from the Arecibo, Green Bank, Nancay, and Parkes telescopes, we calculate the redshift-independent distances and peculiar velocities of 2,018 bright inclined spiral galaxies over the whole sky. This project is part of the 2MASS Tully-Fisher survey (2MTF), aiming to map the galaxy peculiar velocity field within 100 h^{-1}Mpc, with an all-sky coverage apart from Galactic latitudes |b|< 5 deg. A \\chi^2 minimization method was adopted to analyze the Tully-Fisher peculiar velocity field in J, H and K bands, using a Gaussian filter. We combine information from the three wavebands, to provide bulk flow measurements of 310.9 +/- 33.9 km/s, 280.8 +/- 25.0 km/s, and 292.3 +/- 27.8 km/s at depths of 20 h^{-1}Mpc, 30 h^{-1}Mpc and 40 h^{-1}Mpc, respectively. Each of these bulk flow vectors points in a direction similar to those found by previous measurements. At each of the three depths, the bulk flow magnitude is consistent with predictio...

  16. Experimental and Numerical Analysis of the Bulk Flow Parameters Within an Arteriovenous Fistula.

    Science.gov (United States)

    Browne, Leonard D; Walsh, Michael T; Griffin, Philip

    2015-12-01

    The creation of an arteriovenous fistula for hemodialysis has been reported to generate unstable to turbulent flow behaviour. On the other hand, the vast majority of computational fluid dynamic studies of an arteriovenous fistula use low spatial and temporal resolutions resolution in conjunction with laminar assumptions to investigate bulk flow and near wall parameters. The objective of the present study is to investigate if adequately resolved CFD can capture instabilities within an arteriovenous fistula. An experimental model of a representative fistula was created and the pressure distribution within the model was analysed for steady inlet conditions. Temporal CFD simulations with steady inflow conditions were computed for comparison. Following this verification a pulsatile simulation was employed to assess the role of pulsatility on bulk flow parameters. High frequency fluctuations beyond 100 Hz were found to occupy the venous segment of the arteriovenous fistula under pulsatile conditions and the flow within the venous segment exhibited unstable behaviour under both steady and pulsatile inlet conditions. The presence of high frequency fluctuations may be overlooked unless adequate spatial and temporal resolutions are employed. These fluctuations may impact endothelial cell function and contribute to the cascade of events leading to aggressive intimal hyperplasia and the loss of functionality of the vascular access.

  17. Bulk viscosity-driven suppression of shear viscosity effects on the flow harmonics at RHIC

    CERN Document Server

    Noronha-Hostler, J; Grassi, F

    2014-01-01

    The interplay between shear and bulk viscosities on the flow harmonics, $v_n$'s, at RHIC is investigated using the newly developed relativistic 2+1 hydrodynamical code v-USPhydro that includes bulk and shear viscosity effects both in the hydrodynamic evolution and also at freeze-out. While shear viscosity is known to attenuate the flow harmonics, we find that the inclusion of bulk viscosity decreases the shear viscosity-induced suppression of the flow harmonics bringing them closer to their values in ideal hydrodynamical calculations. Depending on the value of the bulk viscosity to entropy density ratio, $\\zeta/s$, in the quark-gluon plasma, the bulk viscosity-driven suppression of shear viscosity effects on the flow harmonics may require a re-evaluation of the previous estimates of the shear viscosity to entropy density ratio, $\\eta/s$, of the quark-gluon plasma previously extracted by comparing hydrodynamic calculations to heavy ion data.

  18. Theoretical expectations for bulk flows in large-scale surveys

    Science.gov (United States)

    Feldman, Hume A.; Watkins, Richard

    1994-01-01

    We calculate the theoretical expectation for the bulk motion of a large-scale survey of the type recently carried out by Lauer and Postman. Included are the effects of survey geometry, errors in the distance measurements, clustering properties of the sample, and different assumed power spectra. We considered the power spectrum calculated from the Infrared Astronomy Satellite (IRAS)-QDOT survey, as well as spectra from hot + cold and standard cold dark matter models. We find that measurement uncertainty, sparse sampling, and clustering can lead to a much larger expectation for the bulk motion of a cluster sample than for the volume as a whole. However, our results suggest that the expected bulk motion is still inconsistent with that reported by Lauer and Postman at the 95%-97% confidence level.

  19. A flow cytometric technique for quantification and differentiation of bacteria in bulk tank milk

    DEFF Research Database (Denmark)

    Holm, C.; Mathiasen, T.; Jespersen, Lene

    2004-01-01

    AIMS: The present study describes a flow cytometric technique for quantification and differentiation of bacteria in bulk tank milk according to the main cause of elevated counts. METHODS AND RESULTS: A total of 75 Danish bulk tank milk samples exceeding the grading level of 3.0 x 10(4) CFU ml(-1)...

  20. Using measurements of the cosmic bulk flow to constrain f(R) Gravity

    Science.gov (United States)

    Seiler, Jacob; Parkinson, David

    2016-10-01

    As an alternate explanation for the cosmic acceleration, f(R) theories of gravity can predict an almost identical expansion history to standard Λ cold dark matter (ΛCDM), yet make very different predictions for the growth of cosmological structures. Measurements of the cosmic bulk flow provide a method for determining the strength of gravity over the history of structure formation. We use the modified gravity N-body code ECOSMOG to simulate dark matter particles and make predictions for the bulk flow magnitude in both ΛCDM and f(R) gravity. With the peculiar velocities output by ECOSMOG, we determine the bulk flow at depths ranging from 20 to 50 h-1Mpc, following the redshift and sky distribution of the 2MASS Tully-Fisher survey (2MTF). At each depth, we find that the ΛCDM and fR0 = 10-5 simulations produce bulk flow measurements that are consistent with ΛCDM predictions and the 2MTF survey at a 1σ level. We also find that adopting an f(R) strength of fR0 = 10-3 predict a much larger value for the bulk flow, which disagree with ΛCDM predictions at all depths considered. We conclude that fR0 must be constrained to a level no greater than 10-4 to agree with bulk flow measurements.

  1. Detected fluctuations in SDSS LRG magnitudes: Bulk flow signature or systematic?

    CERN Document Server

    Abate, Alexandra

    2011-01-01

    In this paper we search for a signature of a large scale bulk flow by looking for fluctuations in the magnitudes of distant LRGs. We take a sample of LRGs from the Sloan Digital Sky Survey with redshifts of z>0.08 over a contiguous area of sky. Neighboring LRG magnitudes are averaged together to find the fluctuation in magnitudes as a function of R.A.. The result is a fluctuation of a few percent in flux across roughly 100 degrees. The source of this fluctuation could be from a large scale bulk flow or a systematic in our treatment of the data set, or the data set itself. A bulk flow model is fitted to the observed fluctuation, and the three bulk flow parameters, its direction and magnitude: alpha_b, delta_b, v_b are constrained. We find that the bulk flow direction is consistent with the direction found by other authors, with alpha_b~180, delta_b~-50. The bulk flow magnitude however was found to be anomalously large with v_b>4000km/s. The LRG angular selection function cannot be sufficiently taken into accou...

  2. The respective roles of bulk friction and slip velocity during a granular mass flow

    Science.gov (United States)

    Staron, Lydie

    2016-04-01

    Catastrophic granular mass flows form an important natural hazard. Mitigation has motivated numerous studies on the properties of natural granular flows, and in particular, their ability to travel long distances away from the release point. The mobility of granular flows is commonly characterised through the definition of rheological properties and effective friction. Yet, it is widely accepted that the description in term of effective friction may include various lubrication effects, softening at the base of the flow and large slip velocities being a most likely one. In this case, flow bulk properties may obliterate the flow boundary conditions. In this contribution, we investigate how disentangling bulk properties from boundary conditions may improve our understanding of the flow. Using discrete simulations, we induce increasing slip velocities in different flow configurations. We show that increased mobility may be achieved without changing bulk properties. The results are interpreted in terms of a Robin-Navier slip condition and implemented in a continuum Navier-Stokes solver. We quantify the respective role of rheological bulk properties and boundary conditions in the general behaviour of a transient mass flow. We show that omitting the description of boundary conditions leads to misinterpretation of the flow properties. The outcome is discussed in terms of models reliability. References P.-Y. Lagrée et al, The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with the mu(I) rheology, J. Fluid Mech. 686, 378-408 (2011) L. Staron and E. Lajeunesse, Understanding how the volume affects the mobility of dry debris flows, Geophys. Res. Lett. 36, L12402 (2009) L. Staron, Mobility of long-runout rock flows: a discrete numerical investigation, Geophys. J. Int. 172, 455-463 (2008)

  3. Bulk Flows and End of the Dark Ages with the SKA

    CERN Document Server

    Maio, Umberto; Koopmans, Leon V E

    2015-01-01

    The early Universe is a precious probe of the birth of primordial objects, first star formation events and consequent production of photons and heavy elements. Higher-order corrections to the cosmological linear perturbation theory predicts the formation of coherent supersonic gaseous streaming motions at decoupling time. These bulk flows impact the gas cooling process and determine a cascade effect on the whole baryon evolution. By analytical estimates and N-body hydrodynamical chemistry numerical simulations including atomic and molecular evolution, gas cooling, star formation, feedback effects and metal spreading for individual species from different stellar populations according to the proper yields and lifetimes, we discuss the role of these primordial bulk flows at the end of the dark ages and their detectable impacts during the first Gyr in view of the upcoming SKA mission. Early bulk flows can inhibit molecular gas cooling capabilities, suppressing star formation, metal spreading and the abundance of ...

  4. Flow assignment model for quantitative analysis of diverting bulk freight from road to railway.

    Science.gov (United States)

    Liu, Chang; Lin, Boliang; Wang, Jiaxi; Xiao, Jie; Liu, Siqi; Wu, Jianping; Li, Jian

    2017-01-01

    Since railway transport possesses the advantage of high volume and low carbon emissions, diverting some freight from road to railway will help reduce the negative environmental impacts associated with transport. This paper develops a flow assignment model for quantitative analysis of diverting truck freight to railway. First, a general network which considers road transportation, railway transportation, handling and transferring is established according to all the steps in the whole transportation process. Then general functions which embody the factors which the shippers will pay attention to when choosing mode and path are formulated. The general functions contain the congestion cost on road, the capacity constraints of railways and freight stations. Based on the general network and general cost function, a user equilibrium flow assignment model is developed to simulate the flow distribution on the general network under the condition that all shippers choose transportation mode and path independently. Since the model is nonlinear and challenging, we adopt a method that uses tangent lines to constitute envelope curve to linearize it. Finally, a numerical example is presented to test the model and show the method of making quantitative analysis of bulk freight modal shift between road and railway.

  5. Cluster view of the plasma sheet boundary layer and bursty bulk flow connection

    Directory of Open Access Journals (Sweden)

    O. W. Lennartsson

    2009-04-01

    Full Text Available The high-latitude boundaries of the plasma sheet (PSBL are dynamic latitude zones of recurring and transient (minutes to tens of minutes earthward and magnetic field-aligned bursts of plasma, each being more or less confined in longitude as well, whose ionic component is dominated by protons with flux, energies and density that are consistent with a central plasma sheet (CPS source at varying distance (varying rates of energy time dispersion, sometimes as close as the ~19 RE Cluster apogees, or closer still. The arguably most plausible source consists of so called "bursty bulk flows" (BBFs, i.e. proton bulk flow events with large, positive and bursty GSE vx. Known mainly from CPS observations made at GSE x>−30 RE, the BBF type events probably take place much further downtail as well. What makes the BBFs an especially plausible source are (1 their earthward bulk flow, which helps explain the lack of distinctive latitudinal PSBL energy dispersion, and (2 their association with a transient strong increase of the local tail Bz component ("local dipolarization". The enhanced Bz provides intermittent access to higher latitudes for the CPS plasma, resulting in local density reductions in the tail midplane, as illustrated here by proton data from the Cluster CIS CODIF instruments. Another sign of kinship between the PSBL bursts and the BBFs is their similar spatial fine structure. The PSBL bursts have prominent filaments aligned along the magnetic field with transverse flux gradients that are often characterized by local ~10 keV proton gyroradii scale size (or even smaller, as evidenced by Cluster measurements. The same kind of fine structure is also found during Cluster near-apogee traversals of the tail midplane, as illustrated here and implied by recently published statistics on BBFs obtained with Cluster multipoint observations at varying satellite

  6. Using measurements of the cosmic bulk flow to constrain $f(R)$ Gravity

    CERN Document Server

    Seiler, Jacob

    2016-01-01

    As an alternative explanation for the cosmic acceleration, $f(R)$ theories of gravity can predict an almost identical expansion history to standard $\\Lambda$CDM, yet make very different predictions for the growth of cosmological structures. Measurements of the cosmic bulk flow provides a method for determining the strength of gravity over the history of structure formation. We use the modified gravity N-body code ECOSMOG to simulate dark matter particles and make predictions for the bulk flow magnitude in both $\\Lambda$CDM and $f(R)$ gravity. With the peculiar velocities output by ECOSMOG we determine the bulk flow at depths ranging from $20h^{-1}$Mpc to $50h^{-1}$Mpc, following the redshift and sky distribution of the 2MASS Tully-Fisher survey (2MTF). At each depth, we find that the $\\Lambda$CDM and $f_{R0} = 10^{-5}$ simulations produce bulk flow measurements that are consistent with $\\Lambda$CDM predictions and the 2MTF survey at a $1\\sigma$ level. We also find that adopting an $f(R)$ strength of $f_{R0} =...

  7. Controls on debris flow bulking in proglacial gully networks on Mount Rainier, WA

    Science.gov (United States)

    Legg, N. T.; Meigs, A.; Grant, G. E.; Kennard, P.

    2012-12-01

    Conversion of floodwaters to debris flows due to sediment bulking continues to be a poorly understood phenomenon. This study examines the initiation zone of a series of six debris flows that originated in proglacial areas of catchments on the flank of Mount Rainier during one storm in 2006. One-meter spatial resolution aerial photographs and LiDAR DEMs acquired before and after the storm reveal the lack of a single mass failure to explain the debris flow deposits. Rather, the imagery show appreciable gully widening along reaches up to approximately 1.5 km in length. Based on gully discharges estimated from rainfall rates and estimates of sediment contribution from gully wall width change, we find that the sediment volumes contributed from gully walls are sufficient to bulk floodwaters up to debris flow concentrations. Points in gullies where width change began (upstream limit) in 2006 have a power law trend (R2 = 0.58) in terms of slope-drainage area. Reaches with noticeable width change, which we refer to as bulking reaches (BR), plot along a similar trend with greater drainage areas and gentler slopes. We then extracted slope and drainage area of all proglacial drainage networks to examine differences in morphology between debris flow basins (DFB) and non-debris flow basins (NDFB), hypothesizing that DFB would have a greater portion of their drainage networks with similar morphology to BR than NDFB. A comparison of total network length with greater slope and area than BR reveals that the two basins types are not statistically different. Lengths of the longest reaches with greater slope and drainage area than the BR trend, however, are statistically longer in DFB than in the NDFBs (p<0.05). These results suggest that debris flow initiation by sediment bulking does not operate as a simple threshold phenomenon in slope-area space. Instead debris flow initiation via bulking depends upon slope, drainage area, and gully length. We suspect the dependence on length

  8. Push-Out Bond Strength of Restorations with Bulk-Fill, Flow, and Conventional Resin Composites

    Directory of Open Access Journals (Sweden)

    Rodrigo Vieira Caixeta

    2015-01-01

    Full Text Available The aim of this study was to evaluate the bond strengths of composite restorations made with different filler amounts and resin composites that were photoactivated using a light-emitting diode (LED. Thirty bovine incisors were selected, and a conical cavity was prepared in the facial surface of each tooth. All preparations were etched with Scotchbond Etching Gel, the Adper Scotchbond Multipurpose Plus adhesive system was applied followed by photoactivation, and the cavities were filled with a single increment of Filtek Z350 XT, Filtek Z350 XT Flow, or bulk-fill X-tra fil resin composite (n = 10 followed by photoactivation. A push-out test to determine bond strength was conducted using a universal testing machine. Data (MPa were submitted to Student’s t-test at a 5% significance level. After the test, the fractured specimens were examined using an optical microscope under magnification (10x. Although all three composites demonstrated a high prevalence of adhesive failures, the bond strength values of the different resin composites photoactivated by LED showed that the X-tra fil resin composite had a lower bond strength than the Filtek Z350 XT and Filtek Z350 XT Flow resin composites.

  9. Processing of bulk Bi-2223 high-temperature superconductor

    Directory of Open Access Journals (Sweden)

    Alexander Polasek

    2005-12-01

    Full Text Available The Bi2Sr2Ca2Cu3 O10+x (Bi-2223 is one of the main high temperature superconductors for applications. One of these applications is the Superconductor Fault Current Limiter (SCFCL, which is a very promising high temperature superconducting device. SCFCL's can be improved by using bulk superconductors with high critical currents, which requires a sufficiently dense and textured material. In the present work, a process for improving the microstructure of Bi-2223 bulk samples is investigated. Pressed precursor blocks are processed by sintering with a further partial melting step, in order to enhance the Bi-2223 grain texture and to healing cracks induced by pressing. In order to improve the microstructure, the precursor is mixed with silver powder before pressing. Samples with and without silver powder have been studied, with the aim of investigating the influence of silver on the microstructure evolution. The phase contents and the microstructure obtained have been analyzed through XRD and SEM/EDS. The electromagnetic characterization has been performed by Magnetic Susceptibility Analysis. We present and discuss the process and the properties of the superconducting blocks. High fractions of textured Bi-2223 grains have been obtained.

  10. How large grains increase bulk friction in bi-disperse granular chute flows

    Science.gov (United States)

    Staron, Lydie; Phillips, Jeremy C.

    2016-07-01

    In this contribution, we apply contact dynamics discrete simulations to explore how the mechanical properties of simple bi-dimensional granular chute flows are affected by the existence of two grain sizes. Computing partial stress tensors for the phases of small and large grains, we show that the phase of large grain exhibits a much larger shear strength than the phase of small grains. This difference translates in terms of the flow internal friction: adopting the μ (I) dependence to describe the flow frictional properties, we establish that the flow mean friction coefficient increases with the volume fraction of large grains. Hence, while the presence of large grains may induce lubrication in 3D unconfined flows due to the self-channelisation and levées formation, the effect of large grains on the bulk properties is to decrease the flow mobility.

  11. Cooling flow bulk motion corrections to the Sunyaev Zel'dovich effect

    CERN Document Server

    Koch, P M; Puy, D; Jetzer, Ph.

    2002-01-01

    We study the influence of converging cooling flow bulk motions on the Sunyaev-Zel'dovich (SZ) effect. To that purpose we derive a modified Kompaneets equation which takes into account the contribution of the accelerated electron media of the cooling flow inside the cluster frame. The additional term is different from the usual kinematic SZ-effect, which depends linearly on the velocity, whereas the contribution described here is quadratic in the macroscopic electron fluid velocity, as measured in the cluster frame. For clusters with a large cooling flow mass deposition rate and/or a small central electron density, it turns out that this effect becomes relevant.

  12. Observing bulk diamond spin coherence in high-purity nanodiamonds

    Science.gov (United States)

    Knowles, Helena S.; Kara, Dhiren M.; Atatüre, Mete

    2014-01-01

    Nitrogen-vacancy (NV) centres in diamond are attractive for research straddling quantum information science, nanoscale magnetometry and thermometry. Whereas ultrapure bulk diamond NVs sustain the longest spin coherence times among optically accessible spins, nanodiamond NVs exhibit persistently poor spin coherence. Here we introduce high-purity nanodiamonds accommodating record-long NV coherence times, >60 μs, observed through universal dynamical decoupling. We show that the main contribution to decoherence comes from nearby nitrogen impurities rather than surface states. We protect the NV spin free precession, essential to d.c. magnetometry, by driving solely these impurities into the motional narrowing regime. This extends the NV free induction decay time from 440 ns, longer than that in type Ib bulk diamond, to 1.27 μs, which is comparable to that in type IIa (impurity-free) diamond. These properties allow the simultaneous exploitation of both high sensitivity and nanometre resolution in diamond-based emergent quantum technologies.

  13. Melt processing of bulk high Tc superconductors and their application

    Science.gov (United States)

    Murakami, M.; Oyama, T.; Fujimoto, H.; Gotoh, S.; Yamaguchi, K.

    1991-03-01

    The authors report a melt-powder-melt-growth (MPMG) process which results in high Jc for bulk Y-Ba-Cu-O superconductors. The Y-Ba-Cu-O pellets or powders are melt quenched. The quenched plates are crushed into powder and mixed well. The powder is then compacted into desired shapes, remelted, and slowly cooled in a thermal gradient. When the starting composition is changed from the 1:2:3 stoichiometry toward the Y2BaCuO5(211) rich region, the 211 inclusions can be dispersed in the YBa2Cu3O(x) matrix, which contributes to increases in both flux pinning force and fracture toughness. A Jc value exceeding 3 x 108 A/sq m has been achieved at 77 K and 1 T. Another attractive feature of the MPMG process is that other components such as fine Ag powders can be added during solid-state mixing. Fine dispersion of Ag particles can effectively reduce the amount of cracking. MPMG-processed Y-Ba-Cu-O with Ag doping can levitate a mass of 3-kg at 1-mm height using a repulsive force against a 0.4-T magnet. A noncontacting rotation device such as a magnetic bearing can be made utilizing bulk high-Jc materials. A superconducting permanent magnet is also a promising candidate for future application. MPMG-processed Y-Ba-Cu-O can generate 0.25 T at 77 K.

  14. Convergence of electronic bands for high performance bulk thermoelectrics.

    Science.gov (United States)

    Pei, Yanzhong; Shi, Xiaoya; LaLonde, Aaron; Wang, Heng; Chen, Lidong; Snyder, G Jeffrey

    2011-05-01

    Thermoelectric generators, which directly convert heat into electricity, have long been relegated to use in space-based or other niche applications, but are now being actively considered for a variety of practical waste heat recovery systems-such as the conversion of car exhaust heat into electricity. Although these devices can be very reliable and compact, the thermoelectric materials themselves are relatively inefficient: to facilitate widespread application, it will be desirable to identify or develop materials that have an intensive thermoelectric materials figure of merit, zT, above 1.5 (ref. 1). Many different concepts have been used in the search for new materials with high thermoelectric efficiency, such as the use of nanostructuring to reduce phonon thermal conductivity, which has led to the investigation of a variety of complex material systems. In this vein, it is well known that a high valley degeneracy (typically ≤6 for known thermoelectrics) in the electronic bands is conducive to high zT, and this in turn has stimulated attempts to engineer such degeneracy by adopting low-dimensional nanostructures. Here we demonstrate that it is possible to direct the convergence of many valleys in a bulk material by tuning the doping and composition. By this route, we achieve a convergence of at least 12 valleys in doped PbTe(1-x)Se(x) alloys, leading to an extraordinary zT value of 1.8 at about 850 kelvin. Band engineering to converge the valence (or conduction) bands to achieve high valley degeneracy should be a general strategy in the search for and improvement of bulk thermoelectric materials, because it simultaneously leads to a high Seebeck coefficient and high electrical conductivity.

  15. Bulk Synthesis and Characterization of Ti3Al Nanoparticles by Flow-Levitation Method

    Directory of Open Access Journals (Sweden)

    Shanjun Chen

    2013-01-01

    Full Text Available A novel bulk synthesis method for preparing high pure Ti3Al nanoparticles was developed by flow-levitation method (FL. The Ti and Al vapours ascending from the high temperature levitated droplet were condensed by cryogenic Ar gas under atmospheric pressure. The morphology, crystalline structure, and chemical composition of Ti3Al nanoparticles were, respectively, investigated by transmission electron microscopy, X-ray diffraction, and inductively coupled plasma atomic emission spectrometry. The results indicated that the Ti3Al powders are nearly spherical-shaped, and the particle size ranges from several nanometers to 100 nm in diameter. Measurements of the d-spacing from X-ray (XRD and electron diffraction studies confirmed that the Ti3Al nanoparticles have a hexagonal structure. A thin oxidation coating of 2-3 nm in thickness was formed around the particles after exposure to air. Based on the XPS measurements, the surface coating of the Ti3Al nanoparticles is a mixture of Al2O3 and TiO2. The production rate of Ti3Al nanoparticles was estimated to be about 3 g/h. This method has a great potential in mass production of Ti3Al nanoparticles.

  16. High undercooling of bulk water during acoustic levitation

    Institute of Scientific and Technical Information of China (English)

    Lü; Yongjun(吕勇军); CAO; Chongde(曹崇德); WEI; Bingbo(魏炳波)

    2003-01-01

    The experiments on undercooling of acoustically levitated water drops with the radius of 5-8 mm are carried out, and the maximum undercooling of 24 K is obtained in such a containerless state. Various factors influencing the undercoolability of water under acoustic levitation are synthetically analyzed. The experimental results indicate that impurities tend to decrease the undercooling level, whereas the dominant factor is the effect of ultrasound. The stirring and cavitation effects of ultrasound tend to stimulate the nucleation of water and prevent further bulk undercooling in experiments. The stirring effect provides some extra energy fluctuation to overcome the thermodynamic barrier for nucleation. The local high pressure caused by cavitation effect increases the local undercooling in water and stimulates nucleation before the achievement of a large bulk undercooling. According to the cooling curves, the dendrite growth velocity of ice is estimated, which is in good agreement with the theoretical prediction at the lower undercooling. The theoretical calculation predicts a dendrite growth velocity of 0.23 m/s corresponding to the maximum undercooling of 24 K, at which the rapid solidification of ice occurs.

  17. High-field flux mapping of (RE)BCO bulk superconductors-Development of an in situ scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Withnell, T.D. [Superconductivity Group, Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)], E-mail: tdw25@cantab.net; Hari-Babu, N.; Ganney, I.; Dennis, A.; Cardwell, D.A. [Superconductivity Group, Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2008-06-15

    Flux mapping of Y-Ba-Cu-O (YBCO) melt-processed, bulk high-temperature superconductors (HTS) is used to visualise the profile of trapped magnetic field on a magnetised sample and to measure the extent of current flow, and hence field penetration, within the bulk microstructure. Grain structure and defects below the sample surface are observed non-destructively by this technique. This paper outlines the design, development and construction of a novel, in situ Hall scanning system using an 8 T magnet and variable temperature insert (VTI). This system is then used to characterise the field trapping properties of bulk samples for different applied field history.

  18. Development of fabrication technique of bulk high superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Won; Kim, Chang Joong; Kim, Ki Baik; Lee, Ho Jin; Lee, Hee Gyoun; Kwon, Sun Chil

    1997-05-01

    In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBCO bulk superconductor with high mechanical strength and critical current density. In this project, plastic extrusion and melt process techniques were studied. The components materials for the current lead and the flywheel application were fabricated and their characteristics were investigated from the view point of microstructure and phase formation during heat treatment process. (author). 64 refs., 59 figs.

  19. Polymerization shrinkage and depth of cure of bulk-fill resin composites and highly filled flowable resin.

    Science.gov (United States)

    Jang, J-H; Park, S-H; Hwang, I-N

    2015-01-01

    The aim of this study was to evaluate the polymerization behavior and depth of cure (DOC) of recently introduced resin composites for posterior use: highly filled flowable composite and composites for bulk fill. A highly filled flowable (G-aenial Universal Flo [GUF]), two bulk-fill flowables (Surefil SDR Flow [SDR] and Venus Bulk fill [VBF]), and a bulk-fill nonflowable composite (Tetric N-Ceram Bulk fill [TBF]) were compared with two conventional composites (Tetric Flow [TF], Filtek Supreme Ultra [FS]). Linear polymerization shrinkage and polymerization shrinkage stress were each measured with custom-made devices. To evaluate DOC, the composite specimen was prepared using a mold with a hole of 4 mm depth and 4 mm internal diameter. The hole was bulk filled with each of the six composites and light cured for 20 seconds, followed by 24 hours of water storage. The surface hardness was measured on the top and the bottom using a Vickers microhardness (HV) indenter. The linear polymerization shrinkage of the composite specimens after photo-initiation decreased in the following order: TF and GUF > VBF > SDR > FS and TBF (pcomposite groups decreased in the following order: GUF > TF and VBF > SDR > FS and TBF (pflowable (GUF) revealed limitations in polymerization shrinkage and DOC. Bulk-fill flowables (SDR and VBF) were properly cured in 4-mm bulk, but they shrank more than the conventional nonflowable composite. A bulk-fill nonflowable (TBF) showed comparable shrinkage to the conventional nonflowable composite, but it was not sufficiently cured in the 4-mm bulk.

  20. Bulk synthesis of monodisperse magnetic FeNi3 nanopowders by flow levitation method.

    Science.gov (United States)

    Chen, Shanjun; Chen, Yan; Kang, Xiaoli; Li, Song; Tian, Yonghong; Wu, Weidong; Tang, Yongjian

    2013-10-01

    In this work, a novel bulk synthesis method for monodisperse FeNi3 nanoparticles was developed by flow levitation method (FL). The Fe and Ni vapours ascending from the high temperature levitated droplet was condensed by cryogenic Ar gas under atmospheric pressure. X-ray diffraction was used to identify and characterize the crystal phase of prepared powders exhibiting a FeNi3 phase. The morphology and size of nanopowders were observed by transmission electron microscopy (TEM). The chemical composition of the nanoparticles was determined with energy dispersive spectrometer (EDS). The results indicated that the FeNi3 permalloy powders are nearly spherical-shaped with diameter about 50-200 nm. Measurement of the magnetic property of nanopowders by a superconducting quantum interference device (SQUID, Quantum Design MPMS-7) showed a symmetric hysteresis loop of ferromagnetic behavior with coercivity of 220 Oe and saturation magnetization of 107.17 emu/g, at 293 K. At 5 K, the obtained saturation magnetization of the sample was 102.16 emu/g. The production rate of FeNi3 nanoparticles was estimated to be about 6 g/h. This method has great potential in mass production of FeNi3 nannoparticles.

  1. Serrated flow behaviors of a Zr-based bulk metallic glass by nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, L.; Jiao, Z. M.; Ma, S. G.; Wang, Z. H., E-mail: qiaojunwei@gmail.com, E-mail: wangzhihua@tyut.edu.cn [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Qiao, J. W., E-mail: qiaojunwei@gmail.com, E-mail: wangzhihua@tyut.edu.cn [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2014-02-28

    Instrumented nanoindentation tests were used to investigate the mechanical properties of Zr{sub 52.5}Cu{sub 17.9}Ni{sub 14.6}Al{sub 10}Ti{sub 5} bulk metallic glass. The corresponding loading strain rates were ranged from 0.002 s{sup −1}, 0.02 s{sup −1} to 0.2 s{sup −1}. Plastic flow of this material exhibited remarkable serrations at low strain rates and increasingly became weakening until disappearance with increasing indentation strain rate, implying strong rate sensitivity. A significant pile-up around the indents was observed through atomic force microscopy, which suggested a highly localized plastic deformation. Mechanism governing the deformation was tentatively discussed in terms of the increasing process of free volume with a negligible temperature rise under low strain rate, which well explained the declining trend of elastic modulus and hardness with an increase of indentation depth.

  2. Wildfire-related debris-flow generation through episodic progressive sediment-bulking processes, western USA

    Science.gov (United States)

    Cannon, S.H.; Gartner, J.E.; Parrett, C.; Parise, M.; ,

    2003-01-01

    Debris-flow initiation processes on hillslopes recently burned by wildfire differ from those generally recognized on unburned, vegetated hillslopes. These differences result from fire-induced changes in the hydrologic response to rainfall events. In this study, detailed field and aerial photographic mapping, observations, and measurements of debris-flow events from three sites in the western U.S. are used to describe and evaluate the process of episodic progressive sediment bulking of storm runoff that leads to the generation of post-wildfire debris flows. Our data demonstrate the effects of material credibility, sediment availability on hillslopes and in channels, the degree of channel confinement, the formation of continuous channel incision, and the upslope contributing area and its gradient on the generation of flows and the magnitude of the response are demonstrated. ?? 2003 Millpress.

  3. Coherent $\\rho^0$ photoproduction in bulk matter at high energies

    CERN Document Server

    Couderc, Elsa

    2009-01-01

    The momentum transfer $\\Delta k$ required for a photon to scatter from a target and emerge as a $\\rho^0$ decreases as the photon energy $k$ rises. For $k>3\\times10^{14}$ eV, $\\Delta k$ is small enough that the interaction cannot be localized to a single nucleus. At still higher energies, photons may coherently scatter elastically from bulk matter and emerge as a $\\rho^0$, in a manner akin to kaon regeneration. Constructive interference from the different nuclei coherently raises the cross section and the interaction probability rises linearly with energy. At energies above $10^{23}$ eV, coherent conversion is the dominant process; photons interact predominantly as $\\rho^0$. We compute the coherent scattering probabilities in slabs of lead, water and rock, and discuss the implications of the increased hadronic interaction probabilities for photons on ultra-high energy shower development.

  4. Fracture characteristics of bulk metallic glass under high speed impact

    Institute of Scientific and Technical Information of China (English)

    Sun Bao-Ru; Zhan Zai-Ji; Liang Bo; Zhang Rui-Jun; Wang Wen-Kui

    2012-01-01

    High speed impact experiments of rectangular plate-shaped Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass(BMG)were performed using a two-stage light gas gun.Under spherical shock waves with impact velocities ranging from 0.503 km/s to 4.917 km/s,obvious traces of laminated spallation at the back(free)surface and melting(liquid droplets)at the impact point were observed.The angles about 0°,17°,36°,and 90° to the shocking direction were shown in the internal samples because of the interaction between the compressive shock waves and the rarefaction waves.The compressive normal stress was found to induce the consequent temperature rise in the core of the shear band.

  5. Coherent rho 0 photoproduction in bulk matter at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Couderc, Elsa; Klein, Spencer

    2009-01-09

    The momentum transfer {Delta}k required for a photon to scatter from a target and emerge as a {rho}{sup 0} decreases as the photon energy k rises. For k > 3 x 10{sup 14} eV, {Delta}k is small enough that the interaction cannot be localized to a single nucleus. At still higher energies, photons may coherently scatter elastically from bulk matter and emerge as a {rho}{sup 0}, in a manner akin to kaon regeneration. Constructive interference from the different nuclei coherently raises the cross section and the interaction probability rises linearly with energy. At energies above 10{sup 23} eV, coherent conversion is the dominant process; photons interact predominantly as {rho}{sup 0}. We compute the coherent scattering probabilities in slabs of lead, water and rock, and discuss the implications of the increased hadronic interaction probabilities for photons on ultra-high energy shower development.

  6. Factors affecting characterization of bulk high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J.R. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-11-01

    Three major factors affect the characterization of bulk high-temperature superconductors in terms of their levitation properties during interaction with permanent magnets. First, the appropriate parameter for the permanent magnet is internal magnetization, not the value of the magnetic field measured at the magnet`s surface. Second, although levitation force grows with superconductor thickness and surface area, for a given permanent magnet size, comparison of levitation force between samples is meaningful when minimum values are assigned to the superconductor size parameters. Finally, the effect of force creep must be considered when time-averaging the force measurements. In addition to levitational force, the coefficient of friction of a levitated rotating permanent magnet may be used to characterize the superconductor.

  7. High performance bulk thermoelectrics via a panoscopic approach

    Directory of Open Access Journals (Sweden)

    Jiaqing He

    2013-05-01

    Full Text Available One of the intellectual challenges for next generation thermoelectric materials revolves around the synthesis and fabrication of hierarchically organized microstructures that do not appreciably compromise the innate high power factor of the chosen thermoelectric system, but significantly reduce lattice thermal conductivity to enhance the overall figure of merit, ZT. An effective emerging strategy is to introduce nanostructures into bulk thermoelectric materials, which allow for diverse phonon scattering mechanisms to reduce thermal conductivity. In this review, we present key examples to show the intricate but tractable relationship across all relevant length-scales between various microstructural attributes (point, line, interfacial and mesoscale defects; as well as associated elastic and plastic strain and lattice thermal conductivity in systems based on PbTe matrices. We emphasize the need for an overarching panoscopic approach that enables specific design strategies for the next generation of thermoelectric materials.

  8. The dependence of Pi2 waveforms on periodic velocity enhancements within bursty bulk flows

    Directory of Open Access Journals (Sweden)

    K. R. Murphy

    2011-03-01

    Full Text Available Pi2s are a category of Ultra Low Frequency (ULF waves associated with the onset of magnetic substorms. Recent work has suggested that the deceleration of bulk plasma flows in the central plasmasheet, known as bursty bulk flows (BBFs, are able to directly-drive Pi2 oscillations. Some of these studies have further shown evidence that there is a one-to-one correlation between Pi2 magnetic waveforms observed on the ground and periodic peaks in flow velocity within the BBF, known as flow bursts. Utilising a favourable conjunction between the Geotail spacecraft and the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA magnetometer array on 31 May 1998, we examine the causality of the link between BBF flow bursts and Pi2 waveforms. Using a series of analytical tests in both the time and frequency domains, we find that while the Pi2 and BBF waveforms are very similar, the ground response for this event occurs prior to the observed flow enhancements in the magnetotail. We conclude that during this specific case study the temporal variations of the flow bursts within the BBF are not directly-driving the observed ground-based Pi2 waveforms, despite the fact that a visual inspection of both time-series might initially suggest that there is a causal relationship. We postulate that rather than there being a direct causal relation, the similar waveforms observed in both Pi2s and BBFs may result from temporal variations in a common source for both the BBFs and the Pi2s, such as magnetic reconnection in the tail, this source modulating both the Pi2 and BBF at the same frequency.

  9. Molecular weight dependence of surface flow near the bulk glass transition temperature

    Science.gov (United States)

    Chai, Yu; Salez, Thomas; Benzaquen, Michael; Raphael, Elie; Forrest, James A.

    2014-03-01

    We present the study on molecular weight dependent sub-Tg surface dynamics of polymer thin films by using the Nano-step experiment [McGraw et al. Soft Matter 7, 7832 (2011)]. By varying the molecular weight, we are able to probe the surface dynamics of the free surface below Tg with the polymer size comparable to the surface depth. In particular, we define and use a correlation function to compare measured and calculated profiles to analyze the transition from the bulk flow to flow restricted to the surface region. Surprisingly, even for the polymers with Mw = 22,000 surface flow is still observed below the bulk Tg value. A numerical simulation of random walk is used to find the fraction of polymer of which all of the polymer segments are located in the free surface region. The simulation results indicate that there are still a significant fraction of polymer molecules where all segments are in the near free surface region. These molecules can undergo flow consistent with the experimental results.

  10. Bulk sound velocity of porous materials at high pressures

    Institute of Scientific and Technical Information of China (English)

    耿华运; 吴强; 谭华; 蔡灵仓; 经福谦

    2002-01-01

    A correction of Walsh's method for bulk sound velocity calculation for shocked porous materials is accomplishedbased on the Wu-Jing thermodynamic equation of state. The corrected bulk velocities for solid and porous sampleswith low porosities are in good agreement with the corresponding experimental data published previously. On the basisof this corrected equation, the influence of thermoelectrons on the bulk velocity of shocked materials is discussed indetail at pressures of 50, 70 and 200 GPa. Some interesting phenomena are revealed, which seem to be the uniquefeatures of a dynamic-pressure-loading process and could not be found in static experiments.

  11. Memory effect in the high-temperature superconducting bulks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xing-Yi, E-mail: zhangxingyi@lzu.edu.cn; Zhou, Jun; Zhou, You-He

    2013-12-15

    Highlights: •Effects of temperature cycles on levitation force relaxation are investigated. •Memory effect of the YBCO bulks is observed in experiments. •With an increase of temperature, memory of the superconductor is gradually lost. -- Abstract: We present an experimental investigation of the relaxation of vertical force components in a high-temperature superconducting levitation system with different temperature cycle processes. For a selected ambient temperature (T{sub 1}) of the system, the experimental results show that the relaxations of the levitation forces are strongly dependent on the initial temperature. When the sample was submitted to temperature jumps around T{sub 1}, the sample temperature was regulated at T{sub 2}, and there were two cases of the experiments, ΔT = T{sub 2} − T{sub 1} < 0 (negative temperature cycle) and ΔT > 0 (positive temperature cycle). It was found that in the case of negative temperature cycle, the superconducting samples have memory effect. And for the positive temperature cycle, with the experimental temperature increase, the memory effect of samples is gradually losing. Additionally, with the increase of temperature, the influences of the negative and positive temperature cycle on the levitation force relaxation are unsymmetrical. All the results are interpreted by using the characteristics of the free energy ‘ground’ plot of the Spin-glasses qualitatively.

  12. Influence of inlet and bulk noise on Rayleigh-Bénard convection with lateral flow.

    Science.gov (United States)

    Jung, D; Lücke, M; Szprynger, A

    2001-05-01

    Spatiotemporal properties of convective fluctuations and of their correlations are investigated theoretically in the vicinity of the threshold for onset of convection in the presence of a lateral through-flow using the full linearized equations of fluctuating hydrodynamics. The effect of external forcing by inlet boundary conditions on the downstream evolution of convective fields is separated from the effect of internal bulk thermal forcing with the use of spatial Laplace transformations. They show how the spatial variation of fluctuations and of their correlations are governed by the six spatial characteristic exponents of the field equations.

  13. Influence of High Harmonics of Magnetic Fields on Trapped Magnetic Fluxes in HTS Bulk

    Science.gov (United States)

    Yamagishi, K.; Miyagi, D.; Tsukamoto, O.

    Various kinds of HTS bulk motors are proposed and have been developed. Generally, those motors are driven by semiconductor inverters and currents fed to the armature windings contain high harmonics. Therefore, the bulks are exposed to high harmonics magnetic fields and AC losses are produced in the bulks. The AC losses deteriorate the efficiency of the motors and cause temperature rise of the bulks which decrease the trapped magnetic fluxes of the bulks. Usually, electro-magnetic shielding devices are inserted between the bulks and armature windings. However, the shielding devices degrade compactness of the motors. Therefore, it is important to have knowledge of the influence of the high harmonics magnetic fields on the AC losses and trapped magnetic fluxes of the bulk for optimum design of the shielding devices. In this work, the authors experimentally study the influence of high harmonics magnetic fields.

  14. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions

    DEFF Research Database (Denmark)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen;

    2014-01-01

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks...... (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D...... of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets...

  15. High-precision Mg isotopic systematics of bulk chondrites

    Science.gov (United States)

    Schiller, Martin; Handler, Monica R.; Baker, Joel A.

    2010-08-01

    Variations of the mass-independent abundance of 26Mg ( δ26Mg*) and stable Mg ( δ25Mg) isotope composition of chondrites are important because they constrain the homogeneity of 26Al and Mg isotopes in the proto-planetary disc and the validity of the short-lived 26Al-to- 26Mg chronometer applied to meteorites. We present high-precision Mg isotope data and Al/Mg ratios of chondrites representing nearly all major chondrite classes, including a step-leaching experiment on the CM2 chondrite Murchison. δ26Mg* variations in leachates of Murchison representing acid soluble material are ≤ 30 times smaller than reported for neutron-rich isotopes of Ti and Cr and do not reveal resolvable deficits in δ26Mg* (-0.002 to + 0.118‰). Very small variations in δ26Mg* anomalies in bulk chondrites (-0.006 to + 0.019‰) correlate with increasing 27Al/ 24Mg ratios and δ50Ti, reflecting the variable presence of calcium-aluminium-rich inclusions (CAIs) in some types of carbonaceous chondrites. Similarly, release of radiogenic 26Mg produced by 26Al decay from CAI material in the step-leaching of Murchison best explains the high δ26Mg* observed in the last, aggressive, leaching steps of this experiment. Overall, the observed variations in δ26Mg* are small and potential differences beyond that which result from the presence of CAI-like material cannot be detected within the analytical uncertainties of this study (± 0.004‰). The results do not allow radical heterogeneity of 26Al (≥±30%) or measurable Mg nucleosynthetic heterogeneity (≥±0.005‰) to have existed on a planetesimal scale in the proto-planetary disc. Combined with published δ26Mg* data for CAIs, the bulk chondrite data yield a precise initial ( 26Al/ 27Al) 0 = (5.21 ± 0.06) × 10 -5 and δ26Mg* = -0.0340 ± 0.0016‰ for the Solar System. However, it is not possible with the currently available data to determine with certainty whether CAIs and the material from which planetesimals accreted including

  16. High mechanical Q-factor measurements on silicon bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Nawrodt, R; Zimmer, A; Koettig, T; Schwarz, C; Heinert, D; Hudl, M; Neubert, R; Thuerk, M; Nietzsche, S; Vodel, W; Seidel, P [Friedrich-Schiller-Universitaet, Institut fuer Festkoerperphysik, Helmholtzweg 5, D-07743 Jena (Germany); Tuennermann, A [Friedrich-Schiller-Universitaet, Institut fuer Angewandte Physik, Max-Wien-Platz 1, D-07743 Jena (Germany)], E-mail: ronny.nawrodt@uni-jena.de

    2008-07-15

    Future gravitational wave detectors will be limited by different kinds of noise. Thermal noise from the coatings and the substrate material will be a serious noise contribution within the detection band of these detectors. Cooling and the use of a high mechanical Q-factor material as a substrate material will reduce the thermal noise contribution from the substrates. Silicon is one of the most interesting materials for a third generation cryogenic detector. Due to the fact that the coefficient of thermal expansion vanishes at 18 and 125 K the thermoelastic contribution to the thermal noise will disappear. We present a systematic analysis of the mechanical Q-factor at low temperatures between 5 and 300 K on bulk silicon (100) samples which are boron doped. The thickness of the cylindrical samples is varied between 6, 12, 24, and 75mm with a constant diameter of 3 inches. For the 75mm substrate a comparison between the (100) and the (111) orientation is presented. In order to obtain the mechanical Q-factor a ring-down measurement is performed. Thus, the substrate is excited to resonant vibrations by means of an electrostatic driving plate and the subsequent ring-down is recorded using a Michelson-like interferometer. The substrate itself is suspended as a pendulum by means of a tungsten wire loop. All measurements are carried out in a special cryostat which provides a temperature stability of better than 0.1K between 5 and 300K during the experiment. The influence of the suspension on the measurements is experimentally investigated and discussed. At 5.8K a highest Q-factor of 4.5 x 10{sup 8} was achieved for the 14.9 kHz mode of a silicon (100) substrate with a diameter of 3 inches and a thickness of 12 mm.

  17. Turbulent Taylor-Couette flow over riblets: drag reduction and the effect of bulk fluid rotation

    Science.gov (United States)

    Greidanus, A. J.; Delfos, R.; Tokgoz, S.; Westerweel, J.

    2015-05-01

    A Taylor-Couette facility was used to measure the drag reduction of a riblet surface on the inner cylinder. The drag on the surfaces of the inner and outer cylinders is determined from the measured torque when the cylinders are in exact counter-rotation. The three velocity components in the instantaneous flow field were obtained by tomographic PIV and indicate that the friction coefficients are strongly influenced by the flow regimes and structures. The riblet surface changes the friction at the inner-cylinder wall, which generates an average bulk fluid rotation. A simple model is proposed to distinguish drag changes due to the rotation effect and the riblet effect, as a function of the measured drag change and shear Reynolds number . An uncorrected maximum drag reduction of 5.3 % was found at that corresponds to riblet spacing Reynolds number . For these conditions, the model predicts an azimuthal bulk velocity shift of 1.4 %, which is confirmed by PIV measurements. This shift indicates a drag change due to a rotation effect of -1.9 %, resulting in a net maximum drag reduction of 3.4 %. The results correspond well with earlier reported results and demonstrate that the Taylor-Couette facility is a suitable and accurate measurement tool to characterize the drag performance of surfaces.

  18. Void asymmetries in the cosmic web: a mechanism for bulk flows

    CERN Document Server

    Bland-Hawthorn, Joss

    2014-01-01

    Bulk flows of galaxies moving with respect to the cosmic microwave background are well established observationally and seen in the most recent LCDM simulations. With the aid of an idealised Gadget-2 simulation, we show that void asymmetries in the cosmic web can exacerbate local bulk flows of galaxies. The Cosmicflows-2 survey, which has mapped in detail the 3D structure of the Local Universe, reveals that the Local Group resides in a "local sheet" of galaxies that borders a "local void" with a diameter of about 40 Mpc. The void is emptying out at a rate of 16 km/s/Mpc. In a co-moving frame, the Local Sheet is found to be moving away from the Local Void at ~ 260 km/s. Our model shows how asymmetric collapse due to unbalanced voids on either side of a developing sheet or wall can lead to a systematic movement of the sheet. We conjectured that asymmetries could lead to a large-scale separation of dark matter and baryons, thereby driving a dependence of galaxy properties with environment, but we do not find any ...

  19. Void asymmetries in the cosmic web: a mechanism for bulk flows

    Science.gov (United States)

    Bland-Hawthorn, J.; Sharma, S.

    2016-10-01

    Bulk flows of galaxies moving with respect to the cosmic microwave background are well established observationally and seen in the most recent ΛCDM simulations. With the aid of an idealised Gadget-2 simulation, we show that void asymmetries in the cosmic web can exacerbate local bulk flows of galaxies. The {\\it Cosmicflows-2} survey, which has mapped in detail the 3D structure of the Local Universe, reveals that the Local Group resides in a ``local sheet'' of galaxies that borders a ``local void'' with a diameter of about 40 Mpc. The void is emptying out at a rate of 16 km s-1 Mpc-1. In a co-moving frame, the Local Sheet is found to be moving away from the Local Void at ~ 260 km s-1. Our model shows how asymmetric collapse due to unbalanced voids on either side of a developing sheet or wall can lead to a systematic movement of the sheet. We conjectured that asymmetries could lead to a large-scale separation of dark matter and baryons, thereby driving a dependence of galaxy properties with environment, but we do {\\it not} find any evidence for this effect.

  20. Measuring cosmic bulk flows with Type Ia Supernovae from the Nearby Supernova Factory

    CERN Document Server

    Feindt, U; Kowalski, M; Aldering, G; Antilogus, P; Aragon, C; Bailey, S; Baltay, C; Bongard, S; Buton, C; Canto, A; Cellier-Holzem, F; Childress, M; Chotard, N; Copin, Y; Fakhouri, H K; Gangler, E; Guy, J; Kim, A; Nugent, P; Nordin, J; Paech, K; Pain, R; Pecontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigault, M; Runge, K; Saunders, C; Scalzo, R; Smadja, G; Tao, C; Thomas, R C; Weaver, B A; Wu, C

    2013-01-01

    Context. Our Local Group of galaxies appears to be moving relative to the Cosmic Microwave Background with the source of the peculiar motion still uncertain. While in the past this has been studied mostly using galaxies as distance indicators, the weight of type Ia supernovae (SNe Ia) has increased recently with the continuously improving statistics of available low-redshift supernovae. Aims. We measured the bulk flow in the nearby universe (0.015 < z < 0.1) using 117 SNe Ia observed by the Nearby Supernova Factory, as well as the Union2 compilation of SN Ia data already in the literature. Methods. The bulk flow velocity was determined from SN data binned in redshift shells by including a coherent motion (dipole) in a cosmological fit. Additionally, a method of spatially smoothing the Hubble residuals was used to verify the results of the dipole fit. To constrain the location and mass of a potential mass concentration (e.g. the Shapley Supercluster) responsible for the peculiar motion, we fit a Hubble l...

  1. Vibrationally-Fluidized Granular Flows: Impact and Bulk Velocity Measurements Compared with Discrete Element and Continuum Models

    Science.gov (United States)

    Hashemnia, Kamyar

    A new laser displacement probe was developed to measure the impact velocities of particles within vibrationally-fluidized beds. The sensor output was also used to measure bulk flow velocity along the probe window and to provide a measure of the media packing. The displacement signals from the laser sensors were analyzed to obtain the probability distribution functions of the impact velocity of the particles. The impact velocity was affected by the orientation of the laser probe relative to the bulk flow velocity, and the density and elastic properties of the granular media. The impact velocities of the particles were largely independent of their bulk flow speed and packing density. Both the local impact and bulk flow velocities within a tub vibratory finisher were predicted using discrete element modelling (DEM) and compared to the measured values for spherical steel media. It was observed that the impact and bulk flow velocities were relatively insensitive to uncertainties in the contact coefficients of friction and restitution. It was concluded that the predicted impact and bulk flow velocities were dependent on the number of layers in the model. Consequently, the final DE model mimicked the key aspects of the experimental setup, including the submerged laser sensor. The DE method predictions of both impact velocity and bulk flow velocity were in reasonable agreement with the experimental measurements, with maximum differences of 20% and 30%, respectively. Discrete element modeling of granular flows is effective, but requires large numerical models. In an effort to reduce computational effort, this work presents a finite element (FE) continuum model of a vibrationally-fluidized granular flow. The constitutive equations governing the continuum model were calibrated using the discrete element method (DEM). The bulk flow behavior of the equivalent continuum media was then studied using both Lagrangian and Eulerian FE formulations. The bulk flow velocities predicted

  2. High-energy photoemission spectroscopy for investigating bulk electronic structures of strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Sekiyama, Akira, E-mail: sekiyama@mp.es.osaka-u.ac.jp [Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka (Japan); SPring-8/RIKEN, Sayo 679-5148, Hyogo (Japan)

    2016-04-15

    Progress of high-energy photoemission spectroscopy for investigating the bulk electronic structures of strongly correlated electron systems is reviewed. High-resolution soft X-ray photoemission has opened the door for revealing the bulk strongly correlated spectral functions overcoming the surface contributions. More bulk-sensitive hard X-ray photoemission spectroscopy (HAXPES) enables us to study the electronic structure with negligible surface contribution. The recent development of the polarization-dependent HAXPES is also described in this short review.

  3. Superconducting Bulk Magnets: Very High Trapped Fields and Cracking

    OpenAIRE

    Gruss, S; Fuchs, G.; Krabbes, G.; Verges, P.; Stover, G.; Muller, K. -H.; Fink, J; L. Schultz

    2001-01-01

    Improved trapped fields are reported for bulk melt-textured YBa2Cu3O7-x (YBCO) material in the temperature range between 20 K and 50 K. Trapped fields up to 12.2 T were obtained at 22 K on the surface of single YBCO disks (with Ag and Zn additions). In YBCO mini-magnets, maximum trapped fields of 16 T (at 24 K) and of 11.2 T (at 47 K) were achieved using (Zn + Ag) and Zn additions, respectively. In all cases, the YBCO disks were encapsulated in steel tubes in order to reinforce the material a...

  4. MBE Growth of High Quality GaAsN Bulk Layers

    Science.gov (United States)

    2001-06-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013162 TITLE: MBE Growth of High Quality GaAsN Bulk Layers DISTRIBUTION...17p St Petersburg, Russia, June 18-22, 2001 ©O 2001 loffe Institute MBE growth of high quality GaAsN bulk layers A. R. Kovsht:, J. Y. Chit, J. S

  5. Speed from light: growth rate and bulk flow at z ˜ 0.1 from improved SDSS DR13 photometry

    Science.gov (United States)

    Feix, M.; Branchini, E.; Nusser, A.

    2017-06-01

    Observed galaxy luminosities (derived from redshifts) hold information on the large-scale peculiar velocity field in the form of spatially correlated scatter, which allows for bounds on bulk flows and the growth rate of matter density perturbations using large galaxy redshift surveys. We apply this luminosity approach to galaxies from the recent SDSS Data Release 13. Our goal is twofold. First, we take advantage of the recalibrated photometry to identify possible systematic errors relevant to our previous analysis of earlier data. Second, we seek improved constraints on the bulk flow and the normalized growth rate fσ8 at z ˜ 0.1. Our results confirm the robustness of our method. Bulk flow amplitudes, estimated in two redshift bins with 0.02 z1 z2 generation photometric catalogues.

  6. Cosmic Flows on 100 Mpc/h Scales: Standardized Minimum Variance Bulk Flow, Shear and Octupole Moments

    CERN Document Server

    Feldman, Hume A; Hudson, Michael J

    2009-01-01

    The low order moments of the large scale peculiar velocity field are sensitive probes of the matter density fluctuations on very large scales. However, peculiar velocity surveys have varying spatial distributions of tracers, and so the moments estimated are hard to model and thus are not directly comparable between surveys. In addition, the sparseness of typical proper distance surveys can lead to aliasing of small scale power into what is meant to be a probe of the largest scales. Here we extend our previous optimization analysis of the bulk flow to include the shear and octupole moments where velocities are weighted to give an optimal estimate of the moments of an idealized survey, with the variance of the difference between the estimate and the actual flow being minimized. These "minimum variance" (MV) estimates can be designed to calculate the moments on a particular scale with minimal sensitivity to small scale power, and thus different surveys can be directly compared. The MV moments were also designed ...

  7. High-performance flexible thin-film transistors exfoliated from bulk wafer.

    Science.gov (United States)

    Zhai, Yujia; Mathew, Leo; Rao, Rajesh; Xu, Dewei; Banerjee, Sanjay K

    2012-11-14

    Mechanically flexible integrated circuits (ICs) have gained increasing attention in recent years with emerging markets in portable electronics. Although a number of thin-film-transistor (TFT) IC solutions have been reported, challenges still remain for the fabrication of inexpensive, high-performance flexible devices. We report a simple and straightforward solution: mechanically exfoliating a thin Si film containing ICs. Transistors and circuits can be prefabricated on bulk silicon wafer with the conventional complementary metal-oxide-semiconductor (CMOS) process flow without additional temperature or process limitations. The short channel MOSFETs exhibit similar electrical performance before and after exfoliation. This exfoliation process also provides a fast and economical approach to producing thinned silicon wafers, which is a key enabler for three-dimensional (3D) silicon integration based on Through Silicon Vias (TSVs).

  8. Renormalization Group Flow, Stability, and Bulk Viscosity in a Large N Thermal QCD Model

    CERN Document Server

    Dasgupta, Keshav; Gale, Charles; Richard, Michael

    2016-01-01

    The ultraviolet completion of a large N QCD model requires introducing new degrees of freedom at certain scale so that the UV behavior may become asymptotically conformal with no Landau poles and no UV divergences of Wilson loops. These UV degrees of freedom are represented by certain anti-branes arranged on the blown-up sphere of a warped resolved conifold in a way that they are separated from the other set of branes that control the IR behavior of the theory. This separation of the branes and the anti-branes creates instability in the theory. Further complications arise from the curvature of the ambient space. We show that, despite these analytical hurdles, stability may still be achieved by switching on appropriate world-volume fluxes on the branes. The UV degrees of freedom, on the other hand, modify the RG flow in the model. We discuss this in details by evaluating the flow from IR confining to UV conformal. Finally we lay down a calculational scheme to study bulk viscosity which, in turn, would signal t...

  9. Contaminant transport in wetland flows with bulk degradation and bed absorption

    Science.gov (United States)

    Wang, Ping; Chen, G. Q.

    2017-09-01

    Ecological degradation and absorption are ubiquitous and exert considerable influence on the contaminant transport in natural and constructed wetland flows. It creates an increased demand on models to accurately characterize the spatial concentration distribution of the transport process. This work extends a method of spatial concentration moments by considering the non-uniform longitudinal solute displacements along the vertical direction, and analytically determines the spatial concentration distribution in the very initial stage since source release with effects of bulk degradation and bed absorption. The present method is demonstrated to bear a more accurate prediction especially in the initial stage through convergence analysis of Hermite polynomials. Results reveal that contaminant cloud shows to be more contracted and reformed by bed absorption with increasing damping factor of wetland flows. Tremendous vertical concentration variation especially in the downstream of the contaminant cloud remains great even at asymptotic large times. Spatial concentration evolution by the extended method other than the mean by previous studies is potential for various implements associated with contaminant transport with strict environmental standards.

  10. Metamorphic fluid flow - a question of scale, crustal depth and bulk rock composition

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, R.J.; Rye, D.M.

    1985-01-01

    Recent studies have indicated that certain metamorphic rocks interacted with significant volumes of aqueous fluid during their time-integrated mineral reaction history. Rather than demonstrating that pervasive fluid flow is general in metamorphic rocks, these documented cases instead suggest the likelihood of pronounced to extreme channelization of through-going in fluids in deep-seated metamorphic terranes (P>3 kbar). In rocks more shallowly buried, and therefore under low lithostatic stress, pervasive flow along grain boundaries and open microfractures probably occurred, as at Skye and the Skaergaard Complex. In higher pressure metamorphic environments, documented cases of high fluid/rock ratio make a strong case for flow channelized in veins or in impure marble aquifers where pore space and permeability were created by decarbonation reactions driven by infiltration of aqueous fluid. The source of this fluid may commonly be traced to a nearby wet granitic intrusion or quartz vein. As long as the pressurized source of aqueous fluid continued, outward flow was possible as fluid held open the intergranular pore space which was created only at the infiltration/reaction front where a reduction in solid volume accompanied reaction. Cessation or interruption of fluid flow would allow the pore space to close due to porous-rock strength being exceeded by lithostatic stress. Pervasive flow or aqueous fluid in deepseated metamorphic terranes is therefore probably limited to carbonate-bearing lithologies adjacent to sources of major volumes of fluid; otherwise, fluid flow is likely to be localized in fractures or veins.

  11. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions.

    Science.gov (United States)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen; Plósz, Benedek Gy

    2014-10-15

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets for WWTP model calibration, and propose optimal choice of 1-D SST models under different flow and settling boundary conditions. Additionally, the hydraulic parameters in the second-order SST model are found significant under dynamic wet-weather flow conditions. These results highlight the importance of developing a more mechanistic based flow-dependent hydraulic sub-model in second-order 1-D SST models in the future.

  12. High-pressure X-ray diffraction study of bulk- and nanocrystalline GaN

    DEFF Research Database (Denmark)

    Jorgensen, J.E.; Jakobsen, J.M.; Jiang, Jianzhong

    2003-01-01

    Bulk- and nanocrystalline GaN have been studied by high-pressure energy-dispersive X-ray diffraction. Pressure-induced structural phase transitions from the wurtzite to the NaCl phase were observed in both materials. The transition pressure was found to be 40 GPa for the bulk-crystalline GaN, while...

  13. High output power electric motors with bulk HTS elements

    Science.gov (United States)

    Kovalev, L. K.; Ilushin, K. V.; Kovalev, K. L.; Penkin, V. T.; Poltavets, V. N.; Koneev, S. M.-A.; Akimov, I. I.; Gawalek, W.; Oswald, B.; Krabbes, G.

    2003-04-01

    New types of electric machines with the rotors containing bulk HTS (YBCO and Bi-Ag) elements are presented. Different schematics of hysteresis, reluctance, “trapped field” and composed synchronous HTS machines are discussed. The two-dimensional mathematical models describing the processes in such types of HTS machines were developed on the basis of the theoretical analysis of the electrodynamic and hysteresis processes in the single-domain and polycrystal YBCO ceramic samples and plate shape Bi-Ag elements. The test results of the series of hysteresis, reluctance, “trapped field” and composed with permanent magnets HTS motors with output power rating 0.1-18 kW and current frequency 50 and 400 Hz are given. These results show that in the media of liquid nitrogen the specific output power per one weight unit of HTS motors is 4-7 times better than for conventional electric machines. Comparison of the theoretical and experimental characteristics of the developed HTS motors show that they are in good agreement. The test results for liquid nitrogen cryogenic pump system with hysteresis 500 W HTS motor are discussed. The designs and first test results of HTS motor operating in the media of liquid nitrogen with output power 100 kW and power factor more than 0.8 are given. Future development and applications of new types of HTS motors for aerospace technology, on-land industry and transport systems are discussed.

  14. Technical issues of a high-T{sub c} superconducting bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Hiroyuki [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan). E-mail: fujimoto at rtri.or.jp

    2000-06-01

    Superconducting magnets made of high-T{sub c} superconductors are promising for industrial applications. It is well known that REBa{sub 2}Cu{sub 3}O{sub 7-}x superconductors prepared by melt processes have a high critical current density, J{sub c}, at 77 K and hig{sub h} magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger J{sub c} in high magnetic fields and a much improved irreversibility field, H{sub irr}, at 77 K. In this study, we discuss technical issues of a high-T{sub c} superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future. (author)

  15. Multi-instrument observations of the ionospheric counterpart of a bursty bulk flow in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Grocott

    2004-04-01

    Full Text Available On 07 September 2001 the Cluster spacecraft observed a "bursty bulk flow" event in the near-Earth central plasma sheet. This paper presents a detailed study of the coincident ground-based observations and attempts to place them within a simple physical framework. The event in question occurs at ~22:30 UT, some 10min after a southward turning of the IMF. IMAGE and SAMNET magnetometer measurements of the ground magnetic field reveal perturbations of a few tens of nT and small amplitude Pi2 pulsations. CUTLASS radar observations of ionospheric plasma convection show enhanced flows out of the polar cap near midnight, accompanied by an elevated transpolar voltage. Optical data from the IMAGE satellite also show that there is a transient, localised ~1 kR brightening in the UV aurora. These observations are consistent with the earthward transport of plasma in the tail, but also indicate the absence of a typical "large-scale" substorm current wedge. An analysis of the field-aligned current system implied by the radar measurements does suggest the existence of a small-scale current "wedgelet", but one which lacks the global scale and high conductivities observed during substorm expansions.

    Key words. Ionosphere (auroral ionosphere; ionospheremagnetosphere interactions; plasma convection

  16. High-pressure X-ray diffraction study of bulk- and nanocrystalline GaN

    DEFF Research Database (Denmark)

    Jorgensen, J.E.; Jakobsen, J.M.; Jiang, Jianzhong;

    2003-01-01

    Bulk- and nanocrystalline GaN have been studied by high-pressure energy-dispersive X-ray diffraction. Pressure-induced structural phase transitions from the wurtzite to the NaCl phase were observed in both materials. The transition pressure was found to be 40 GPa for the bulk-crystalline GaN, while...... the wurtzite phase was retained up to 60 GPa in the case of nanocrystalline GaN. The bulk moduli for the wurtzite phases were determined to be 187 ( 7) and 319 ( 10) GPa for the bulk- and nanocrystalline phases, respectively, while the respective NaCl phases were found to have very similar bulk moduli [ 208...

  17. Dynamic bulk and shear moduli due to grain-scale local fluid flow in fluid-saturated cracked poroelastic rocks: Theoretical model

    Science.gov (United States)

    Song, Yongjia; Hu, Hengshan; Rudnicki, John W.

    2016-07-01

    Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.

  18. Superhard MgB sub 2 bulk material prepared by high-pressure sintering

    CERN Document Server

    Ma, H A; Chen, L X; Zhu, P W; Ren, G Z; Guo, W L; Fu, X Q; Zou Guang Tian; Ren, Z A; Che, G C; Zhao, Z X

    2002-01-01

    Superhard MgB sub 2 bulk material with a golden metallic shine was synthesized by high-pressure sintering for 8 h at 5.5 GPa and different temperatures. Appropriate pressure and temperature conditions for synthesizing polycrystalline MgB sub 2 with high hardness were investigated. The samples were characterized by means of atomic force microscopy and x-ray diffraction. The Vickers hardness, bulk density, and electrical resistivity were measured at room temperature.

  19. Highly transparent ammonothermal bulk GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, WK; Ehrentraut, D; Downey, BC; Kamber, DS; Pakalapati, RT; Do Yoo, H; D' Evelyn, MP

    2014-10-01

    A novel apparatus has been employed to grow ammonothermal (0001) gallium nitride (GaN) with diameters up to 2 in The crystals have been characterized by x-ray diffraction rocking-curve (XRC) analysis, optical and scanning electron microscopy (SEM), cathodoluminescence (CL), and optical spectroscopy. High crystallinity GaN with FWHM values about 20-50 arcsec and dislocation densities below 1 x 10(5) cm(-2) have been obtained. High optical transmission was achieved with an optical absorption coefficient below 1 cm(-1) at a wavelength of 450 nm. (C) 2014 Elsevier B.V. All rights reserved.

  20. Bulk-edge correspondence, spectral flow and Atiyah-Patodi-Singer theorem for the Z2-invariant in topological insulators

    Science.gov (United States)

    Yu, Yue; Wu, Yong-Shi; Xie, Xincheng

    2017-03-01

    We study the bulk-edge correspondence in topological insulators by taking Fu-Kane spin pumping model as an example. We show that the Kane-Mele invariant in this model is Z2 invariant modulo the spectral flow of a single-parameter family of 1 + 1-dimensional Dirac operators with a global boundary condition induced by the Kramers degeneracy of the system. This spectral flow is defined as an integer which counts the difference between the number of eigenvalues of the Dirac operator family that flow from negative to non-negative and the number of eigenvalues that flow from non-negative to negative. Since the bulk states of the insulator are completely gapped and the ground state is assumed being no more degenerate except the Kramers, they do not contribute to the spectral flow and only edge states contribute to. The parity of the number of the Kramers pairs of gapless edge states is exactly the same as that of the spectral flow. This reveals the origin of the edge-bulk correspondence, i.e., why the edge states can be used to characterize the topological insulators. Furthermore, the spectral flow is related to the reduced η-invariant and thus counts both the discrete ground state degeneracy and the continuous gapless excitations, which distinguishes the topological insulator from the conventional band insulator even if the edge states open a gap due to a strong interaction between edge modes. We emphasize that these results are also valid even for a weak disordered and/or weak interacting system. The higher spectral flow to categorize the higher-dimensional topological insulators is expected.

  1. Fabrication of bulk nanostructured permanent magnets with high energy density: challenges and approaches.

    Science.gov (United States)

    Yue, Ming; Zhang, Xiangyi; Liu, J Ping

    2017-03-06

    Nanostructured permanent magnetic materials, including exchange-coupled nanocomposite permanent magnets, are considered as the next generation of high-strength magnets for future applications in energy-saving and renewable energy technologies. However, fabrication of bulk nanostructured magnets remains very challenging because conventional compaction and sintering techniques cannot be used for nanostructured bulk material processing. In this paper we review recent efforts at producing bulk nanostructured single-phase and composite magnetic materials with emphasis on grain size control, anisotropy generation and interface modification.

  2. Gossamer high-temperature bulk superconductivity in FeSe

    Science.gov (United States)

    Sinchenko, A. A.; Grigoriev, P. D.; Orlov, A. P.; Frolov, A. V.; Shakin, A.; Chareev, D. A.; Volkova, O. S.; Vasiliev, A. N.

    2017-04-01

    Using the anisotropic electron transport and susceptibility measurements we demonstrate the appearance of inhomogeneous gossamer superconductivity in FeSe single crystals at ambient pressure and at temperature five times higher than its zero resistance Tc. We also find and quantitatively describe a general property: If inhomogeneous superconductivity in a anisotropic conductor first appears in the form of isolated superconducting islands, it reduces electric resistivity anisotropically with maximal effect along the least conducting axis. This gives a simple tool to study inhomogeneous superconductivity in various anisotropic compounds, which helps to investigate the onset of high-temperature superconductivity.

  3. Management practices associated with low, medium, and high somatic cell counts in bulk milk.

    Science.gov (United States)

    Barkema, H W; Schukken, Y H; Lam, T J; Beiboer, M L; Benedictus, G; Brand, A

    1998-07-01

    Management practices associated with bulk milk somatic cell counts (SCC) were studied for 201 dairy herds grouped into three categories according to bulk milk SCC. The cumulative production of fat-corrected milk over 305 d of lactation and category for bulk milk SCC were highly correlated; herds within the low category had the highest milk production. Differences in bulk milk SCC among the categories were well explained by the management practices studied. This correlation was not only true for the difference between the high (250,000 to 400,000) and low (teat disinfection, and antibiotic treatment of clinical mastitis, were also found to be important in the explanation of the difference between herds in the medium and low categories for bulk milk SCC. More attention was paid to hygiene for herds in the low category than for herds in the medium or high category. Supplementation of the diet with minerals occurred more frequently for cows in the low category for bulk milk SCC than for cows in the medium and high categories.

  4. Anisotropy Effect on Levitation Performance of Bulk High-Tc Superconductors Above a Permanent Magnet Guideway

    Science.gov (United States)

    Zheng, Jun; Liao, Xinglin; Jing, Hailian; Lin, Qunxu; Ma, Guangtong; Yen, Fei; Wang, Suyu; Wang, Jiasu

    The anisotropy properties of bulk high-temperature superconductors (HTSCs) are taken into consideration for the application of high-temperature superconducting (HTS) Maglev systems, which are especially based on the different flux-trapping capabilities as well as critical current density, Jc, values between the growth section boundary (GSB) and the growth sections (GS) in bulk superconductors. By adjusting the angle between the GSB of bulk HTSCs and the strongest magnetic field position of a permanent magnet guideway (PMG), the levitation force and its relaxation processes are compared at different field-cooling conditions. Experimental results show that the levitation capability and the suppression of levitation force decay can be enhanced by optimizing the GS/GSB alignment of every bulk HTSC above the PMG. Meanwhile, our conclusions may provide references to other HTS maglev systems with small levitation gaps, i.e., superconducting magnetic bearings.

  5. Minor alloying behavior in bulk metallic glasses and high-entropy alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of minor alloying on several bulk metallic glasses and high-entropy al-loys was studied. It was found that minor Nb addition can optimize the interface structure between the W fiber and the Zr-based bulk metallic glass in the compos-ites,and improve the mechanical properties. Minor Y addition can destabilize the crystalline phases by inducing lattice distortion as a result to improve the glass-forming ability,and the lattice distortion energy is closely related to the effi-ciency of space filling of the competing crystalline phases. A long-period ordered structure can precipitate in the Mg-based bulk metallic glass by yttrium alloying. For the high-entropy alloys,solid solution can be formed by alloying,and its me-chanical properties can be comparable to most of the bulk metallic glasses.

  6. Developing a high-temperature superconducting bulk magnet for the maglev train of the future

    Science.gov (United States)

    Fujimoto, Hiroyuki

    1998-10-01

    The major applications of high-temperature superconductors have mostly been confined to products in the form of wires and thin films. However, recent developments show that rare-earth REBa2Cu3O7-x and light rare-earth LREBa2Cu3O7-3 superconductors prepared by melt processes have a high critical-current density at 77 K and high magnetic fields. These superconductors will promote the application of bulk high-temperature superconductors in high magnetic fields; the superconducting bulk magnet for the Maglev train is one possible application.

  7. Concepts for using trapped-flux bulk high-temperature superconductor in motors and generators

    Science.gov (United States)

    Hull, John R.; Strasik, Michael

    2010-12-01

    We review previous concepts for using bulk high-temperature superconductors (HTSs) in motors and generators and discuss methods for using trapped-flux (TF) HTSs in motors and generators that have been recently investigated in our laboratory. We examine the expected performance of a brushless motor/generator that uses TF bulk HTSs to provide magnetomotive force, where the stator windings are used to create the TF. A key feature is the use of dysprosium for the stator and rotor cores.

  8. Concepts for using trapped-flux bulk high-temperature superconductor in motors and generators

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R; Strasik, Michael [Boeing Research and Technology, PO Box 3707, MC 2T-50, Seattle, WA 98124-2207 (United States)

    2010-12-15

    We review previous concepts for using bulk high-temperature superconductors (HTSs) in motors and generators and discuss methods for using trapped-flux (TF) HTSs in motors and generators that have been recently investigated in our laboratory. We examine the expected performance of a brushless motor/generator that uses TF bulk HTSs to provide magnetomotive force, where the stator windings are used to create the TF. A key feature is the use of dysprosium for the stator and rotor cores.

  9. Fabrication of Bi2223 bulks with high critical current properties sintered in Ag tubes

    Science.gov (United States)

    Takeda, Yasuaki; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Nakashima, Takayoshi; Kagiyama, Tomohiro; Kobayashi, Shin-ichi; Hayashi, Kazuhiko

    2017-03-01

    Randomly grain oriented Bi2223 sintered bulks are one of the representative superconducting materials having weak-link problem due to very short coherence length particularly along the c-axis, resulting in poor intergrain Jc properties. In our previous studies, sintering and/or post-annealing under moderately reducing atmospheres were found to be effective for improving grain coupling in Bi2223 sintered bulks. Further optimizations of the synthesis process for Bi2223 sintered bulks were attempted in the present study to enhance their intergrain Jc. Effects of applied pressure of uniaxial pressing and sintering conditions on microstructure and superconducting properties have been systematically investigated. The best sample showed intergrain Jc of 2.0 kA cm-2 at 77 K and 8.2 kA cm-2 at 20 K, while its relative density was low ∼65%. These values are quite high as for a randomly oriented sintered bulk of cuprate superconductors.

  10. High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses

    Science.gov (United States)

    Yang, M.; Liu, X. J.; Ruan, H. H.; Wu, Y.; Wang, H.; Lu, Z. P.

    2016-06-01

    Metallic glasses are metastable and their thermal stability is critical for practical applications, particularly at elevated temperatures. The conventional bulk metallic glasses (BMGs), though exhibiting high glass-forming ability (GFA), crystallize quickly when being heated to a temperature higher than their glass transition temperature. This problem may potentially be alleviated due to the recent developments of high-entropy (or multi-principle-element) bulk metallic glasses (HE-BMGs). In this work, we demonstrate that typical HE-BMGs, i.e., ZrTiHfCuNiBe and ZrTiCuNiBe, have higher kinetic stability, as compared with the benchmark glass Vitreoy1 (Zr41.2Ti13.8Cu12.5Ni10Be22.5) with a similar chemical composition. The measured activation energy for glass transition and crystallization of the HE-BMGs is nearly twice that of Vitreloy 1. Moreover, the sluggish crystallization region ΔTpl-pf, defined as the temperature span between the last exothermic crystallization peak temperature Tpl and the first crystallization exothermic peak temperature Tpf, of all the HE-BMGs is much wider than that of Vitreloy 1. In addition, high-resolution transmission electron microscopy characterization of the crystallized products at different temperatures and the continuous heating transformation diagram which is proposed to estimate the lifetime at any temperature below the melting point further confirm high thermal stability of the HE-BMGs. Surprisingly, all the HE-BMGs show a small fragility value, which contradicts with their low GFA, suggesting that the underlying diffusion mechanism in the liquid and the solid of HE-BMGs is different.

  11. Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries

    Science.gov (United States)

    Schweiss, Rüdiger

    2015-03-01

    Polyacrylonitrile (PAN)-based carbon felts with different fibre properties were studied in terms of their suitability as porous flow-through electrode materials in all vanadium redox flow batteries. The crystallinity and their bulk hetero element content (in particular nitrogen) of the carbon fibres was shown to produce a significant effect on the electrocatalytical properties of the electrodes towards vanadium species. Similar effects were seen on the capacity losses associated with concomitant hydrogen evolution. Adjustments of fibre properties offer the potential of manufacturing improved electrode materials, potentially without additional steps such as surface activation or decoration with catalytically active species.

  12. Flow injection analysis-isotope ratio mass spectrometry for bulk carbon stable isotope analysis of alcoholic beverages.

    Science.gov (United States)

    Jochmann, Maik A; Steinmann, Dirk; Stephan, Manuel; Schmidt, Torsten C

    2009-11-25

    A new method for bulk carbon isotope ratio determination of water-soluble samples is presented that is based on flow injection analysis-isotope ratio mass spectrometry (FIA-IRMS) using an LC IsoLink interface. Advantages of the method are that (i) only very small amounts of sample are required (2-5 microL of the sample for up to 200 possible injections), (ii) it avoids complex sample preparation procedures such as needed for EA-IRMS analysis (only sample dilution and injection,) and (iii) high throughput due to short analysis times is possible (approximately 15 min for five replicates). The method was first tested and evaluated as a fast screening method with industrially produced ethanol samples, and additionally the applicability was tested by the measurement of 81 alcoholic beverages, for example, whiskey, brandy, vodka, tequila, and others. The minimal sample concentration required for precise and reproducible measurements was around 50 microL L(-1) ethanol/water (1.71 mM carbon). The limit of repeatability was determined to be r=0.49%. FIA-IRMS represents a fast screening method for beverage authenticity control. Due to this, samples can be prescreened as a decisive criterion for more detailed investigations by HPLC-IRMS or multielement GC-IRMS measurements for a verification of adulteration.

  13. STUDY ON THE BULK DENSITY OF HIGH CONSISTENCY PULP AND ENGINEERING APPLICATION IN THE BLEACHING TOWER

    Directory of Open Access Journals (Sweden)

    Ke-Fu Chen

    2011-02-01

    Full Text Available From experimental simulation of the process of high consistency pulp moving in a bleaching tower, the aerated bulk density and packed bulk density were measured and studied by using a self-made experimental system. The scattered experimental data – pressure p, and bulk density difference, which was between packed bulk density and aerated bulk density (ρ-ρ0 – were fitted by using Matlab software, and some good-fitting regression curves and equations were obtained. The results showed there was a break point W in the regression curves; within the range of pressure between zero and W the relationship between (ρ-ρ0 and p was a linear function, while for pressure between W and 70000 the relationship was a power function. To effectively meet with the bleaching response for the different kinds and different consistencies of pulp in the tower, by using the fitting regression equations combined with the expressions of average bulk density and pressure in the tower caused by gravity-driven pulp, two equations for average packed density ρa were deduced with the aim of deciding the maximum volume value of the tower, in agreement with the sizes of the towers presently used by major companies.

  14. Microstructure, flow behavior, and bulk texture evolution of cold drawn copper–silver composites

    Energy Technology Data Exchange (ETDEWEB)

    Dodla, S., E-mail: srihari.dodla@st.ovgu.de [Institut für Mechanik, Otto-von-Guericke-Universität Magdeburg, D-39106 Magdeburg (Germany); Thiem, P.; Krüger, M. [Institut für Werkstoff- und Fügetechnik, Otto-von-Guericke-Universität Magdeburg, D-39106 Magdeburg (Germany); Dietrich, D. [Institut für Werkstoffwissenschaft und Werkstofftechnik, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Bertram, A. [Institut für Mechanik, Otto-von-Guericke-Universität Magdeburg, D-39106 Magdeburg (Germany)

    2015-10-25

    In the last 20 years, several groups used nanostructured composites to produce high strength conductor materials for magnetic applications. The mechanical strength of Cu–Ag composites is strongly influenced by metal forming operations. Within the scope of the paper, the microstructure, the mechanical behavior, and the texture evolution are investigated for two cold drawn Cu-63wt%Ag composite rods. The aim of these investigations is to understand the influence of the microstructure and texture evolution on the mechanical behavior. The investigation is carried out using optical microscopy, scanning electron microscopy (SEM) along with electron backscattered diffraction (EBSD), X-ray diffraction measurements (XRD), and compression testing. The microscopic images show that the drawn samples mainly have a lamellar structure of Cu and Ag phases. However, elliptical shaped regions of primarily solidified copper solid solution are also observed. With increase of plastic deformation, the average lamella thickness of both phases has been decreased. EBSD measurements show that abundant banded regions are observed in the Ag phase while very few banded regions are present in the Cu phase. The bulk XRD measurements reveal that both phases of the drawn samples initially have the same type of texture, and both phases develop the same brass-type [110]〈112〉 texture. The texture intensity increases for both phases as the drawing strain increases. Compression tests are performed at constant strain rate of 10{sup −4} s{sup −1} at room temperature. The stress–strain curves under compression are presented for two different drawn samples. The texture measurements after compression reveal that the texture becomes more pronounced. - Highlights: • Two cold drawn Cu–Ag rods are investigated. • Both phases of the drawn samples initially have the same type of texture. • Several banded regions are observed in the Ag phase. • Texture becomes more pronounced after compression.

  15. High temperature superconductor bulk materials fundamentals, processing, properties control, applications aspects

    CERN Document Server

    Krabbes, Gernot; Canders, Wolf-Rüdiger; May, Hardo; Palka, Ryszard

    2005-01-01

    With its comprehensive review of the current knowledge and the future requirements in the field, this book presents all the features of bulk high temperature superconducting materials. Starting from physical and chemical fundamentals, the authors move on to portray methods and problems of materials processing, thoroughly working out the characteristic properties of bulk superconductors in contrast to long conductors and films. They provide a wide range of specific materials characteristics with respect to the latest developments and future applications guiding from fundamentals to practical engineering examples. The authors are all leading international specialists involved in the field of high TC superconductor bulk materials since the beginning. Of utmost interest to engineers, scientists, and PhD students working in this field

  16. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-05-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  17. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-02-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  18. Levitation performance of the magnetized bulk high- Tc superconducting magnet with different trapped fields

    Science.gov (United States)

    Liu, W.; Wang, J. S.; Liao, X. L.; Zheng, S. J.; Ma, G. T.; Zheng, J.; Wang, S. Y.

    2011-03-01

    To a high- Tc superconducting (HTS) maglev system which needs large levitation force density, the magnetized bulk high- Tc superconductor (HTSC) magnet is a good candidate because it can supply additional repulsive or attractive force above a permanent magnet guideway (PMG). Because the induced supercurrent within a magnetized bulk HTSC is the key parameter for the levitation performance, and it is sensitive to the magnetizing process and field, so the magnetized bulk HTSC magnets with different magnetizing processes had various levitation performances, not only the force magnitude, but also its force relaxation characteristics. Furthermore, the distribution and configuration of the induced supercurrent are also important factor to decide the levitation performance, especially the force relaxation characteristics. This article experimentally investigates the influences of different magnetizing processes and trapped fields on the levitation performance of a magnetized bulk HTSC magnet with smaller size than the magnetic inter-pole distance of PMG, and the obtained results are qualitatively analyzed by the Critical State Model. The test results and analyses of this article are useful for the suitable choice and optimal design of magnetized bulk HTSC magnets.

  19. Sound attenuation in rectangular and circular cross-section ducts with flow and bulk-reacting liner

    Science.gov (United States)

    Bies, D. A.; Hansen, C. H.; Bridges, G. E.

    1991-04-01

    A generalized theory is presented for sound propagation in lined ducts of arbitrary cross-section where acoustic wave propagation in the lining is also taken into account. The effects of a mean fluid flow in the duct airway, an anisotropic bulk reacting liner and a limp, impervious membrane covering the liner are all taken into account. Simple extension of the formalism to include the effect of a perforated facing is also provided. Bulk reacting and locally reacting liners are treated as limiting cases. The general analysis is applied to ducts of both rectangular and circular cross-section, taking into account higher order modes as well as plane wave sound propagation. Design charts for duct attenuation in octave frequency band averages and in terms of dimensionless parameters are presented.

  20. Convective high-speed flow and field-aligned high-speed flows explored by TC-1

    Institute of Scientific and Technical Information of China (English)

    ZHANG LingQian; LIU ZhenXing; MA ZhiWei; W.BAUMJOHANN; M.W.DUNLOP4; WANG GuangJun; WANG Xiao; H.REME; C.CARR

    2008-01-01

    From June 1, 2004 to October 31, 2006, a total 465 high-speed flow events are observed by the TC-1 satellite in the near-Earth region (-13 RE < X < -9 RE, |Y|<10 RE, |2|<5 RE). Based on the angle between the flow and the magnetic field, the high-speed flow events are further divided into two types, that is,field-aligned high-speed flow (FAHF) in the plasma sheet boundary and convective bursty bulk flow (BBF) in the center plasma sheet. Among the total 465 high-speed flow events, there are 371 FAHFs,and 94 BBFs. The CHF are mainly concentrated in the plasma sheet, the intersection angle between the flow and the magnetic field is larger, the magnetic field intensity is relatively weak. The FHF are mainly distributed near the boundary layer of the plasma sheet, the intersection angle between the flow and magnetic field is smaller, and the magnetic field intensity is relatively strong. The convective BBFs have an important effect on the substorm.

  1. Flux jumps in high-J c MgB2 bulks during pulsed field magnetization

    Science.gov (United States)

    Fujishiro, H.; Mochizuki, H.; Naito, T.; Ainslie, M. D.; Giunchi, G.

    2016-03-01

    Pulsed field magnetization (PFM) of a high-J c MgB2 bulk disk has been investigated at 20 K, in which flux jumps frequently occur for high pulsed fields. Using a numerical simulation of the PFM procedure, we estimated the time dependence of the local magnetic field and temperature during PFM. We analyzed the electromagnetic and thermal instability of the high-J c MgB2 bulk to avoid flux jumps using the time dependence of the critical thickness, d c(t), which shows the upper safety thickness to stabilize the superconductor magnetically, and the minimum propagation zone length, l m(t), to obtain dynamical stability. The values of d c(t) and l m(t) change along the thermally-stabilized direction with increasing temperature below the critical temperature, T c. However, the flux jump can be qualitatively understood by the local temperature, T(t), which exceeds T c in the bulk. Finally, possible solutions to avoid flux jumps in high-J c MgB2 bulks are discussed.

  2. A high energy microscope for local strain measurements within bulk materials

    DEFF Research Database (Denmark)

    Lienert, U.; Poulsen, H.F.; Martins, R.V.

    2000-01-01

    A novel diffraction technique for local, three dimensional strain scanning within bulk materials is presented. The technique utilizes high energy, micro-focussed synchrotron radiation which can penetrate several millimeters into typical metals. The spatial resolution can be as narrow as 1 mum....... Case studies demonstrate that steep macrostrain gradients can be resolved. Techniques for the local measurement of macro- and microstrains are discussed....

  3. High-Oriented Thermoelectric Nano-Bulk Fabricated from Thermoelectric Ink

    Science.gov (United States)

    Koyano, M.; Mizutani, S.; Hayashi, Y.; Nishino, S.; Miyata, M.; Tanaka, T.; Fukuda, K.

    2016-10-01

    Printing technology is expected to provide innovative and environmentally friendly processes for thermoelectric (TE) module fabrication. As described in this paper, we propose an orientation control process using plastic deformation at high temperatures and present high-oriented TE nano-bulks fabricated from bismuth telluride (Bi-Te) TE inks using this process. In the case of n-type Bi-Te, surface x-ray diffraction reveals that crystalline grains in the plastic-deformed nano-bulk demonstrate a c-plane orientation parallel to the pressed face. According to the high orientation, electrical resistivity ρ, thermal conductivity κ, and figure of merit ZT show anisotropic behavior. It is noteworthy that (ZT)// almost reaches unity (ZT)// ˜1 at 340 K, even at low temperatures of the plastic deformation process. In contrast, the ZT of plastic-deformed p-type nano-bulk indicates isotropic behavior. The difference in the process temperature dependence of ZT suggests that n-type and p-type nano-bulk orientation mechanisms mutually differ.

  4. Electrical conduction mechanism in bulk ceramic insulators at high voltages until dielectric breakdown

    Science.gov (United States)

    Neusel, C.; Jelitto, H.; Schneider, G. A.

    2015-04-01

    In order to develop and verify a dielectric breakdown model for bulk insulators thicker than 100 μm, the knowledge of the dominating conduction mechanism at high electric fields, or respectively voltages, is necessary. The dielectric breakdown is the electrical failure of an insulator. In some existing breakdown models, ohmic conduction is assumed as dominating conduction mechanism. For verification, the dominating dc conduction mechanism of bulk insulators at room temperature was investigated by applying high voltages up to 70 kV to the insulator until dielectric breakdown occurs. Four conduction models, namely, ohmic, space charge limited, Schottky, and Poole-Frenkel conduction, were employed to identify the dominating conduction mechanism. Comparing the calculated permittivities from the Schottky and Poole-Frenkel coefficients with experimentally measured permittivity, Schottky and Poole-Frenkel conduction can be excluded as dominating conduction mechanism. Based on the current density voltage characteristics (J-V-curve) and the thickness-dependence of the current density, space charge limited conduction (SCLC) was identified to be the dominating conduction mechanism at high voltages leading to dielectric breakdown. As a consequence, breakdown models based on ohmic conduction are not appropriate to explain the breakdown of the investigated bulk insulators. Furthermore, the electrical failure of the examined bulk insulators can only be described correctly by a breakdown model which includes SCLC as conduction mechanism.

  5. High output power reluctance electric motors with bulk high-temperature superconductor elements

    Science.gov (United States)

    Kovalev, L. K.; Ilushin, K. V.; Penkin, V. T.; Kovalev, K. L.; Larionoff, A. E.; M-A Koneev, S.; Modestov, K. A.; Larionoff, S. A.; Poltavets, V. N.; Akimov, I. I.; Alexandrov, V. V.; Gawalek, W.; Oswald, B.; Krabbes, G.

    2002-05-01

    We present new types of electric machines with the rotors containing bulk high-temperature superconductor (HTS) - YBCO and Bi-Ag - elements. We discuss different schematics of hysteresis, reluctance, 'trapped field' and composed synchronous HTS machines. The two-dimensional mathematical models describing the processes in such types of HTS machines were developed on the basis of the theoretical analysis of the electrodynamic and hysteresis processes in the single-domain and polycrystal YBCO ceramic samples and plate shape Bi-Ag elements. We give the test results of the series of hysteresis, reluctance, 'trapped field' and composed with permanent magnets HTS motors with an output power rating of 0.1-18 kW and current frequencies 50 Hz and 400 Hz. These results show that in the media of liquid nitrogen the specific output power per one unit weight of the HTS motor is four to seven times better than for conventional electric machines. A comparison of the theoretical and experimental characteristics of the developed HTS motors show that they are in good agreement. We discuss the test results for a liquid nitrogen cryogenic pump system with a hysteresis 500 W HTS motor. We describe several designs of new HTS motors operating in the media of liquid nitrogen with an output power 125 kW (and more) and a power factor of more than 0.8. We discuss future applications of new types of HTS motors for aerospace technology, on-land industry and transport systems.

  6. High-strength Zr-based bulk amorphous alloys containing nanocrystalline and nanoquasicrystalline particles

    Directory of Open Access Journals (Sweden)

    A Inoue, C Fan, J Saida and T Zhang

    2000-01-01

    Full Text Available It was recently found that the addition of special elements leading to the deviation from the three empirical rules for the achievement of high glass-forming ability causes new mixed structures consisting of the amorphous phase containing nanoscale compound or quasicrystal particles in Zr–Al–Ni–Cu–M (M=Ag, Pd, Au, Pt or Nb bulk alloys prepared by the copper mold casting and squeeze casting methods. In addition, the mechanical strength and ductility of the nonequilibrium phase bulk alloys are significantly improved by the formation of the nanostructures as compared with the corresponding amorphous single phase alloys. The composition ranges, formation factors, preparation processes, unique microstructures and improved mechanical properties of the nanocrystalline and nanoquasicrystalline Zr-based bulk alloys are reviewed on the basis of our recent results reported over the last two years. The success of synthesizing the novel nonequilibrium, high-strength bulk alloys with good mechanical properties is significant for the future progress of basic science and engineering.

  7. Super-acceleration on the Brane by Energy Flow from the Bulk

    CERN Document Server

    Cai, R G; Wang, B; Cai, Rong-Gen; Gong, Yungui; Wang, Bin

    2006-01-01

    We consider a brane cosmological model with energy exchange between brane and bulk. Parameterizing the energy exchange term by the scale factor and Hubble parameter, we are able to exactly solve the modified Friedmann equation on the brane. In this model, the equation of state for the effective dark energy has a transition behavior changing from $w_{de}^{eff}>-1$ to $w_{de}^{eff}-1$. Fitting data from type Ia supernova, Sloan Digital Sky Survey and Wilkinson Microwave Anisotropy Probe, our universe is predicted now in the state of super-acceleration with $w_{de0}^{eff}=-1.21$.

  8. Chalcopyrite CuGaTe{sub 2}: a high-efficiency bulk thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Plirdpring, Theerayuth; Harnwunggmoung, Adul [Graduate School of Engineering, Osaka University, Suita (Japan); Thermoelectric and Nanotechnology Research Center, Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Huntra Phranakhon Si Ayutthaya (Thailand); Kurosaki, Ken; Sugahara, Tohru; Ohishi, Yuji; Muta, Hiroaki [Graduate School of Engineering, Osaka University, Suita (Japan); Kosuga, Atsuko [Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, Osaka (Japan); Day, Tristan; Snyder, G. Jeffrey [Department of Materials Science, California Institute of Technology, Pasadena, CA (United States); Firdosy, Samad [Jet Propulsion Laboratory, Pasadena, CA (United States); Ravi, Vilupanur [Jet Propulsion Laboratory, Pasadena, CA (United States); California State Polytechnic University, Pomona, CA (United States); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University, Suita (Japan); Research Institute of Nuclear Engineering, University of Fukui (Japan)

    2012-07-17

    CuGaTe{sub 2} with a chalcopyrite structure demonstrates promising thermoelectric properties. The maximum figure of merit ZT is 1.4 at 950 K. CuGaTe{sub 2} and related chalcopyrites are a new class of high-efficiency bulk thermoelectric material for high-temperature applications. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Flow-through Bulk Optode for Spectrophotometric Determination of Thiocyanate and Its Application to Water and Saliva Analysis

    Directory of Open Access Journals (Sweden)

    José Fernández

    2006-10-01

    Full Text Available A flow-through spectrophotometric bulk optode for the flow-injectiondetermination of thiocyanate is described. As active constituents, the optode incorporatesthe lipophilized pH indicator 5-octadecanoyloxy-2-(4-nitrophenylazophenol andmethyltridodecyl ammonium chloride, dissolved in a plasticized poly(vinylchloridemembrane entrapped in a cellulose support. The optode is applied, in conjunction with theflow injection technique, to the determination of thiocyanate at pH 7.5 (TRIS/H2SO4. Thesensor is readily regenerated with a 10-2 M NaOH carrier solution. The analyticalcharacteristics of this optode with respect to thiocyanate response time, dynamicmeasurement range, reproducibility and selectivity are discussed. The proposed FI methodis applied to the determination of thiocyanate in waters from different sources and in humansaliva samples in order to distinguish between smokers and non-smokers.

  10. Highly deformable nanofilaments in flow

    Science.gov (United States)

    Pawłowska, S.

    2016-10-01

    Experimental analysis of hydrogel nanofilaments conveyed by flow is conducted to help in understanding physical phenomena responsible for transport properties and shape deformations of long bio-objects, like DNA or proteins. Investigated hydrogel nanofilaments exhibit typical macromolecules-like behavior, as spontaneous conformational changes and cross-flow migration. Results of the experiments indicate critical role of thermal fluctuations behavior of single filaments.

  11. Measuring cosmological bulk flows via the kinematic Sunyaev-Zel'dovich effect in the upcoming cosmic microwave background maps

    CERN Document Server

    Kashlinsky, A

    2000-01-01

    We propose a new method to measure the possible large-scale bulk flows in the Universe from the cosmic microwave background (CMB) maps from the upcoming missions, MAP and Planck. This can be done by studying the statistical properties of the CMB temperature field at many X-ray cluster positions. At each cluster position, the CMB temperature fluctuation will be a combination of the Sunyaev-Zeldovich (SZ) kinematic and thermal components, the cosmological fluctuations and the instrument noise term. When averaged over many such clusters the last three will integrate down, whereas the first one will be dominated by a possible bulk flow component. In particular, we propose to use all-sky X-ray cluster catalogs that should (or could) be available soon from X-ray satellites, and then to evaluate the dipole component of the CMB field at the cluster positions. We show that for the MAP and Planck mission parameters the dominant contributions to the dipole will be from the terms due to the SZ kinematic effect produced b...

  12. Remagnetization of bulk high-temperature superconductors subjected to crossed and rotating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Vanderbemden, P [SUPRATECS and Department of Electrical Engineering and Computer Science B28, Sart-Tilman, B-4000 Liege (Belgium); Hong, Z [Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Coombs, T A [Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Ausloos, M [SUPRATECS and Department of Physics B5, Sart-Tilman, B-4000 Liege (Belgium); Babu, N Hari [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Cardwell, D A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Campbell, A M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2007-09-15

    Bulk melt-processed Y-Ba-Cu-O (YBCO) has significant potential for a variety of high-field permanent-magnet-like applications, such as the rotor of a brushless motor. When used in rotating devices of this kind, however, the YBCO can be subjected to both transient and alternating magnetic fields that are not parallel to the direction of magnetization and which have a detrimental effect on the trapped field. These effects may lead to long-term decay of the magnetization of the bulk sample. In the present work, we analyze both experimentally and numerically the remagnetization process of a melt-processed YBCO single domain that has been partially demagnetized by a magnetic field applied orthogonal to the initial direction of trapped flux. Magnetic torque measurements are used as a tool to probe changes in the remanent magnetization during various sequences of applied field. The application of a small magnetic field between the transverse cycles parallel to the direction of original magnetization results in partial remagnetization of the sample. Rotating the applied field, however, is found to be much more efficient at remagnetizing the bulk material than applying a magnetizing field pulse of the same amplitude. The principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law. Finally, the remagnetization process is shown to result from the complex modification of current distribution within the cross-section of the bulk sample.

  13. Magneto-thermal phenomena in bulk high temperature superconductors subjected to applied AC magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Vanderbemden, P; Laurent, P [SUPRATECS and Department of Electrical Engineering and Computer Science B28, Sart-Tilman, B-4000 Liege (Belgium); Fagnard, J-F [SUPRATECS, Royal Military Academy of Belgium, Avenue de la Renaissance, B-1000 Brussels (Belgium); Ausloos, M [SUPRATECS and Department of Physics B5, Sart-Tilman, B-4000 Liege (Belgium); Hari Babu, N [Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University, West London UB8 3PH (United Kingdom); Cardwell, D A, E-mail: Philippe.Vanderbemden@ulg.ac.b [Bulk Superconductivity Group, Engineering Department, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2010-07-15

    In the present work we study, both theoretically and experimentally, the temperature increase in a bulk high temperature superconductor subjected to applied AC magnetic fields of large amplitude. We calculate analytically the equilibrium temperatures of the bulk sample as a function of the experimental parameters using a simple critical state model for an infinitely long type-II superconducting slab or cylinder. The results show the existence of a limit heat transfer coefficient (AU{sub lim}) separating two thermal regimes with different characteristics. The theoretical analysis predicts a 'forbidden' temperature window within which the temperature of the superconductor can never stabilize when the heat transfer coefficient is small. In addition, we determine analytical expressions for two threshold fields H{sub tr1} and H{sub tr2} characterizing the importance of magneto-thermal effects and show that a thermal runaway always occurs when the field amplitude is larger than H{sub tr2}. The theoretical predictions of the temperature evolution of the bulk sample during a self-heating process agree well with the experimental data. The simple analytical study presented in this paper enables order of magnitude thermal effects to be estimated for simple superconductor geometries under applied AC magnetic fields and can be used to predict the influence of experimental parameters on the self-heating characteristics of bulk type-II superconductors.

  14. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells.

    Science.gov (United States)

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Purdum, Geoffrey E; Khlyabich, Petr P; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles T; Steigerwald, Michael L; Loo, Yueh-Lin; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.

  15. Present status of bulk high temperature superconductors; Baruku koonchodendotai kaihatsu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Masato [Superconductivity Research Laboratory, Tokyo (Japan). Division 3

    1999-03-25

    Recent advancement in materials processing enabled us to grow large single-grain bulk RE-Ba-Cu-O superconductors (RE: rate earth elements) with high critical current densities. These superconductors can exhibit a large electromagnetic force with the interaction of external magnetic fields. Various devices have been developed by utilizing such a force: magnetic bearings, flywheels for energy storage, load transport, hysteresis motors, and several levitation devices. A large magnetic field can also be trapped by bulk superconductors, which can function as a quasi-permanent magnet. Trapped field values have already reached 10 T, thus leading to many novel applications of high trapped field magnets. The final target will be a second-generation Maglev train. (author)

  16. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength

    Institute of Scientific and Technical Information of China (English)

    ZHUO Long-Chao; PANG Shu-Jie; WANG Hui; ZHANG Tao

    2009-01-01

    Based on a new approach for designing glassy alloy compositions,bulk Al-based alloys with good glass-forming ability (GFA) are synthesized.The cast Al86Si0.5Ni4.06Co2.94 Y6Sc0.5 rod with a diameter of 1 mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod.The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 Gpa and maximum strength of 1.27 Gpa as well as an obvious plastic strain of about 2.4% during compressive deformation.This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability.

  17. Dynamics in the dry bulk market : Economic activity, trade flows, and safety in shipping

    NARCIS (Netherlands)

    C. Heij (Christiaan); S. Knapp (Sabine)

    2012-01-01

    textabstractRecent dynamics in iron ore markets are driven by rapid changes in economic activities that affect commodity markets, trade flows, and shipping activities. Time series models for the relation between these variables in Southeast Asia and the Australasian region are supplemented with

  18. Dynamics in the dry bulk market : Economic activity, trade flows, and safety in shipping

    NARCIS (Netherlands)

    C. Heij (Christiaan); S. Knapp (Sabine)

    2012-01-01

    textabstractRecent dynamics in iron ore markets are driven by rapid changes in economic activities that affect commodity markets, trade flows, and shipping activities. Time series models for the relation between these variables in Southeast Asia and the Australasian region are supplemented with mode

  19. Effects of bulk and free surface shear flows on amyloid fibril formation

    Science.gov (United States)

    Posada, David; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2008-11-01

    Amyloid diseases such as Alzheimer's and Huntington's, among others, are characterized by the conversion of monomers to oligomers (precursors) and then to amyloid fibrils. Besides factors such as concentration, pH, and ionic strength, evidence exists that shearing flow strongly influences amyloid formation in vitro. Also, during fibrillation in the presence of either gas or solid surfaces, both the polarity and roughness of the surfaces play a significant role in the kinetics of the fibrillation process. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field, we can identify the flow and interfacial conditions that impact protein aggregation kinetics. The present flow system consists of an annular region, bounded by stationary inner and outer cylinders and driven by rotation of the floor, with either a hydrophobic (air) or hydrophilic (solid) interface. We show both the combined and separated effects of shear and interfacial hydrophobicity on the fibrillation process, and the use of interfacial shear viscosity as a parameter for quantifying the oligomerization process.

  20. High-resolution photoinduced transient spectroscopy of neutron irradiated bulk silicon

    CERN Document Server

    Kozlowski, R; Nossarzhevska, E

    2002-01-01

    High-resolution photoinduced transient spectroscopy has been employed in a study on the formation of defects in bulk silicon due to 1 MeV neutron irradiation. Apart from divacancies in various charge states, complexes involving interstitial carbon and oxygen were revealed. The defect structure of float zone and Czochralski-grown material exposed to fluences of 2x10 sup 1 sup 4 and 6.75x10 sup 1 sup 4 cm sup - sup 2 is compared.

  1. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and

  2. High quality factor nanophotonic resonators in bulk rare-earth doped crystals

    CERN Document Server

    Zhong, Tian; Kindem, Jonathan M; Miyazono, Evan; Faraon, Andrei

    2015-01-01

    Numerous bulk crystalline materials exhibit attractive nonlinear and luminescent properties for classical and quantum optical applications. A chip-scale platform for high quality factor optical nanocavities in these materials will enable new optoelectronic devices and quantum light-matter interfaces. In this article, photonic crystal nanobeam resonators fabricated using focused ion beam milling in bulk insulators, such as rare-earth doped yttrium orthosilicate and yttrium vanadate, are demonstrated. Operation in the visible, near infrared, and telecom wavelengths with quality factors up to 27,000 and optical mode volumes close to one cubic wavelength is measured. These devices enable new nanolasers, on-chip quantum optical memories, single photon sources, and non-linear devices at low photon numbers based on rare-earth ions. The techniques are also applicable to other luminescent centers and crystals.

  3. Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses.

    Science.gov (United States)

    Chen, Wei-Jen; Eaton, Shane M; Zhang, Haibin; Herman, Peter R

    2008-07-21

    A femtosecond fiber laser was applied to fabricate broadband directional couplers inside bulk glass for general power splitting application in the 1250 to 1650-nm wavelength telecom spectrum. The broadband response was optimized over the 400-nm bandwidth by tailoring the coupling strength and the waveguide interaction length to balance the differing wavelength dependence of the straight interaction and bent transition regions. High spatial finesse of the femtosecond-laser writing technique enabled close placement (approxiamtely 6 microm) of adjacent waveguides that underpinned the wavelength-flattened broadband response at any coupling ratio in the 0% to 100% range. The spectral responses were well-represented by coupled mode theory, permitting simple design and implementation of broadband couplers for bulk 3D optical circuit integration.

  4. Bulk data transfer distributer: a high performance multicast model in ALMA ACS

    Science.gov (United States)

    Cirami, R.; Di Marcantonio, P.; Chiozzi, G.; Jeram, B.

    2006-06-01

    A high performance multicast model for the bulk data transfer mechanism in the ALMA (Atacama Large Millimeter Array) Common Software (ACS) is presented. The ALMA astronomical interferometer will consist of at least 50 12-m antennas operating at millimeter wavelength. The whole software infrastructure for ALMA is based on ACS, which is a set of application frameworks built on top of CORBA. To cope with the very strong requirements for the amount of data that needs to be transported by the software communication channels of the ALMA subsystems (a typical output data rate expected from the Correlator is of the order of 64 MB per second) and with the potential CORBA bottleneck due to parameter marshalling/de-marshalling, usage of IIOP protocol, etc., a transfer mechanism based on the ACE/TAO CORBA Audio/Video (A/V) Streaming Service has been developed. The ACS Bulk Data Transfer architecture bypasses the CORBA protocol with an out-of-bound connection for the data streams (transmitting data directly in TCP or UDP format), using at the same time CORBA for handshaking and leveraging the benefits of ACS middleware. Such a mechanism has proven to be capable of high performances, of the order of 800 Mbits per second on a 1Gbit Ethernet network. Besides a point-to-point communication model, the ACS Bulk Data Transfer provides a multicast model. Since the TCP protocol does not support multicasting and all the data must be correctly delivered to all ALMA subsystems, a distributer mechanism has been developed. This paper focuses on the ACS Bulk Data Distributer, which mimics a multicast behaviour managing data dispatching to all receivers willing to get data from the same sender.

  5. High-overtone Bulk-Acoustic Resonator gravimetric sensitivity: towards wideband acoustic spectroscopy

    CERN Document Server

    Rabus, D; Ballandras, S; Baron, T; Lebrasseur, E; Carry, E

    2015-01-01

    In the context of direct detection sensors with compact dimensions, we investigate the gravimetric sensitivity of High-overtone Bulk Acoustic Resonators, through modeling of their acoustic characteristics and experiment. The high frequency characterizing such devices is expected to induce a significant effect when the acoustic field boundary conditions are modified by a thin adlayer. Furthermore, the multimode spectral characteristics is considered for wideband acoustic spectroscopy of the adlayer, once the gravimetric sensitivity dependence of the various overtones is established. Finally, means of improving the gravimetric sensitivity by confining the acoustic field in a low acoustic-impedance layer is theoretically established.

  6. Rapid estimation of tadalafil by reverse-phase high-performance liquid chromatography method in bulk and tablet formulation

    Directory of Open Access Journals (Sweden)

    P H Sonawane

    2013-01-01

    Full Text Available The simple, selective, precise and accurate reverse-phase high-performance liquid chromatography method was developed and validated for analysis of tadalafil in bulk and tablet dosage form. The column was Inertsil C18 (150×4.6 mm; 5 μm in isocratic mode. The mobile phase used was phosphate buffer (10 mM, pH 3.2 and acetonitrile (50:50% v/v at the flow rate of 1.0 ml/min with ultraviolet detection at 295 nm at ambient temperature. The retention time for tadalafil was found to be 4.01 min. Linearity was observed in the concentration range from 60 to 140 μg/ml for tadalafil with a correlation coefficient of (r2 0.9998. The method was validated according to International Conference on Harmonisation guidelines in terms of linearity, accuracy, precision and specificity. Hence, the proposed method can be utilized for routine quality control of tadalafil in bulk and tablet dosage form.

  7. Healing of interfaces of high and ultra-high-molecular- weight polystyrene below the bulk glass transition temperature

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    Amorphous bulk samples of high-molecular-weight (HMW) polystyrene (PS) with a weight-average molecular weight M-w of 102.5 kg/mol and a number-average molecular weight M. of 97 kg/mol and of ultra-high-molecular-weight PS (UHMWPS) with M-w=1110.5 kg/mol and M-n = 965.6 kg/mol were brought...

  8. Optimization of processing conditions towards high trapped fields in MgB{sub 2} bulks

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, M., E-mail: miryala1@shibaura-it.ac.jp [Superconducting Materials Laboratory, Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan); Inoue, K. [Superconducting Materials Laboratory, Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan); Koblischka, M.R. [Experimental Physics, Saarland University, Campus C 6 3, 66123 Saarbrücken (Germany); Tomita, M. [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan); Murakami, M. [Superconducting Materials Laboratory, Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan)

    2014-09-01

    Highlights: • Bulk MgB{sub 2} samples were prepared via solid state reaction at various sintering temperatures. • The J{sub c} value at 10 K and 0 T was 2.60 × 10{sup 5} A/cm{sup 2}. • A pinning force analysis for the samples sintered at 775 °C revealed a non-scaling behavior. • The trapped field results showed that processing temperature is the key to improving TF values. - Abstract: The present investigation focuses on the effects of various sintering temperatures on the critical current densities and the trapped field values of disk-shaped bulk MgB{sub 2} superconductors fabricated with a simple solid state reaction. The samples were prepared by varying the sintering temperature from 750 to 950 °C in pure Ar atmosphere. Scanning electron microscopy (SEM) and X-ray diffraction analyses showed that single phase and homogenous MgB{sub 2} bulks are produced in using sintering temperatures in the range of 750–825 °C. The samples sintered at 775 °C showed the highest critical current density (J{sub c}) values of 250 kA/cm{sup 2} at 10 K and 181 kA/cm{sup 2} at 20 K in self field. We also measured the trapped field values at 20 K for bulk MgB{sub 2} samples 20 mm in diameter and 7 mm in thickness, sintered at temperatures in the range of 700–950 °C with the same sintering duration of 3 h. Almost all the samples exhibited the trapped field values higher than 1 T, which shows the high potential of sintered MgB{sub 2} bulk materials as trapped field magnets. The highest value of 1.51 T at 20 K was achieved in the MgB{sub 2} sample sintered at 775 °C, reflecting its high pinning performance and homogeneous microstructure.

  9. Flux jump-assisted pulsed field magnetisation of high-J c bulk high-temperature superconductors

    Science.gov (United States)

    Ainslie, M. D.; Zhou, D.; Fujishiro, H.; Takahashi, K.; Shi, Y.-H.; Durrell, J. H.

    2016-12-01

    Investigating, predicting and optimising practical magnetisation techniques for charging bulk superconductors is a crucial prerequisite to their use as high performance ‘psuedo’ permanent magnets. The leading technique for such magnetisation is the pulsed field magnetisation (PFM) technique, in which a large magnetic field is applied via an external magnetic field pulse of duration of the order of milliseconds. Recently ‘giant field leaps’ have been observed during charging by PFM: this effect greatly aids magnetisation as flux jumps occur in the superconductor leading to magnetic flux suddenly intruding into the centre of the superconductor. This results in a large increase in the measured trapped field at the centre of the top surface of the bulk sample and full magnetisation. Due to the complex nature of the magnetic flux dynamics during the PFM process, simple analytical methods, such as those based on the Bean critical state model, are not applicable. Consequently, in order to successfully model this process, a multi-physical numerical model is required, including both electromagnetic and thermal considerations over short time scales. In this paper, we show that a standard numerical modelling technique, based on a 2D axisymmetric finite-element model implementing the H -formulation, can model this behaviour. In order to reproduce the observed behaviour in our model all that is required is the insertion of a bulk sample of high critical current density, J c. We further explore the consequences of this observation by examining the applicability of the model to a range of previously reported experimental results. Our key conclusion is that the ‘giant field leaps’ reported by Weinstein et al and others need no new physical explanation in terms of the behaviour of bulk superconductors: it is clear the ‘giant field leap’ or flux jump-assisted magnetisation of bulk superconductors will be a key enabling technology for practical applications.

  10. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    Science.gov (United States)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke

    2015-02-01

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50-200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10-50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.

  11. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2015-02-23

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.

  12. Chip scale mechanical spectrum analyzers based on high quality factor overmoded bulk acouslic wave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, R. H., III

    2012-03-01

    The goal of this project was to develop high frequency quality factor (fQ) product acoustic resonators matched to a standard RF impedance of 50 {Omega} using overmoded bulk acoustic wave (BAW) resonators. These resonators are intended to serve as filters in a chip scale mechanical RF spectrum analyzer. Under this program different BAW resonator designs and materials were studied theoretically and experimentally. The effort resulted in a 3 GHz, 50 {Omega}, sapphire overmoded BAW with a fQ product of 8 x 10{sup 13}, among the highest values ever reported for an acoustic resonator.

  13. High Quality, Low Cost Bulk Gallium Nitride Substrates Grown by the Electrochemical Solution Growth Method

    Energy Technology Data Exchange (ETDEWEB)

    Seacrist, Michael [SunEdison Inc., St. Peters, MO (United States)

    2017-08-15

    The objective of this project was to develop the Electrochemical Solution Growth (ESG) method conceived / patented at Sandia National Laboratory into a commercially viable bulk gallium nitride (GaN) growth process that can be scaled to low cost, high quality, and large area GaN wafer substrate manufacturing. The goal was to advance the ESG growth technology by demonstrating rotating seed growth at the lab scale and then transitioning process to prototype commercial system, while validating the GaN material and electronic / optical device quality. The desired outcome of the project is a prototype commercial process for US-based manufacturing of high quality, large area, and lower cost GaN substrates that can drive widespread deployment of energy efficient GaN-based power electronic and optical devices. In year 1 of the project (Sept 2012 – Dec 2013) the overall objective was to demonstrate crystalline GaN growth > 100um on a GaN seed crystal. The development plan included tasks to demonstrate and implement a method for purifying reagent grade salts, develop the reactor 1 process for rotating seed Electrochemical Solution Growth (ESG) of GaN, grow and characterize ESG GaN films, develop a fluid flow and reaction chemistry model for GaN film growth, and design / build an improved growth reactor capable of scaling to 50mm seed diameter. The first year’s project objectives were met in some task areas including salt purification, film characterization, modeling, and reactor 2 design / fabrication. However, the key project objective of the growth of a crystalline GaN film on the seed template was not achieved. Amorphous film growth on the order of a few tenths of a micron has been detected with a film composition including Ga and N, plus several other impurities originating from the process solution and hardware. The presence of these impurities, particularly the oxygen, has inhibited the demonstration of crystalline GaN film growth on the seed template. However, the

  14. High harmonic generation from bulk diamond driven by intense femtosecond laser pulse

    CERN Document Server

    Apostolova, Tzveta

    2016-01-01

    We investigate the high-harmonic generation (HHG) from bulk diamond induced by intense 15 fs laser pulse and photon energy 1.55 eV. For laser intensity in the range $I \\in [1,50]$ TW/cm$^2$, we find that HHG spectra from diamond exhibits two plateaus with high harmonics extending beyond the 50th order. Consistently with experimental observations, we find that the cutoff energy of the two plateaus scales linearly with the field strength. The first plateau is due to recombination of electron-hole pairs near the Brillouin zone center. The appearance of weak second plateau region for high field strength with $F \\sim$ 1 V/$\\AA$ results in emission of highly energetic XUV photons.

  15. Growth anisotropy effect of bulk high temperature superconductors on the levitation performance in the applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, J., E-mail: jzheng@swjtu.edu.cn; Liao, X.L.; Jing, H.L.; Deng, Z.G.; Yen, F.; Wang, S.Y.; Wang, J.S.

    2013-10-15

    Highlights: • The single-layer bulk HTSC with AGSBP obtains better levitation performance than that of MGSBP. • The double-layer bulk with AGSBP obtains better levitation performance than that of MGSBP too. • The double-layer bulk finding is contrast to MGSBP if pursuing high trapped field. • The optimization is highlighted by simple and easy operation, thus economical in the practice. -- Abstract: Growth anisotropies of bulk high temperature superconductors (HTSCs) fabricated by a top-seeded melt texture growth process, that is, different pinning effect in the growth sectors (GSs) and growth sector boundaries (GSBs), possess effect on the macro flux trapping and levitation performance of bulk HTSCs. Previous work (Physics Procedia, 36 (2012) 1043) has found that the bulk HTSC array with aligned GSB pattern (AGSBP) exhibits better capability for levitation and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP). In this paper, we further examine this growth anisotropy effect on the maglev performance of a double-layer bulk HTSC. In contrast to reported trapped flux cases (Supercond. Sci. Technol. 19 (2006) S466), the two superposed bulk HTSCs with same AGSBP with PMG are found to show better maglev performance. These series of results are helpful and support a new way for the performance optimization of present HTS maglev systems.

  16. SiMPl - High efficient silicon photomultipliers with integrated bulk resistor

    Energy Technology Data Exchange (ETDEWEB)

    Jendrysik, Christian; Andricek, Ladislav; Liemann, Gerhard; Moser, Hans-Guenther; Ninkovic, Jelena; Richter, Rainer [Max-Planck-Institute for Physics, Semiconductor Laboratory, Munich (Germany); Lutz, Gerhard [PN Sensor GmbH, Munich (Germany)

    2010-07-01

    Silicon photomultipliers (SiPM) are avalanche photodetectors which tend to replace conventional photomultiplier tubes in many application areas where detectors with high photon detection efficiency (PDE) are in the focus of interest. For Geiger mode operation high ohmic polysilicon is needed as quench resistor. On the one hand this forms a barrier for incident light, thus decreasing the PDE, which is a crucial point at low light levels. On the other hand it's also the most cost driving technological issue in fabrication. We present a novel design for a high efficient SiPM with the quench resistors integrated into the silicon bulk. Therefore obstacles for light like metal lines or contacts within the active area can be omitted and the fill factor of the device is only limited by the gaps necessary for optical crosstalk suppression. First results of this novel light detector are presented.

  17. Estimation of particle velocity in moving beds based on a flow model for bulk solids. Ryudo model ni motozuita idoso no ryushi sokudo no suisan

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H. (Muroran Inst. of Tech., Hokkaido (Japan)); Honda, Y. (Snow Brand Milk Products Co. Ltd., Sapporo (Japan))

    1992-11-10

    Based on a particle flow model (stress-shear strain velocity relational expression) which takes account of the bulk volume expansion effect during shearing deformation of particles, a new estimation method for particle velocity distribution and stress distribution is proposed. The method is applied to a crossflow moving bed and to a moving bed for comparison with the experimental values to examine its validity. The method is further extended to predict the velocity profile and stress profile of moving beds in a vertical tube (countercurrent and concurrent) accompanying gas flow. It is indicated that the bulk volume expansion effect differs according to dimensions. The velocity distribution and the stress distribution of flows in a vertical tube are greatly influenced by the nature of the flow, i.e. whether it is a counterflow or a concurrent flow, and the frictional force of solids on a wall surface increases markedly in a concurrent flow, which induces considerable lag of particle velocity. The parameter which is contained in the model and indicates the bulk volume expansion effect is a function of the particle velocity, and it is almost unaffected by the flow rate of gas moving. 7 refs., 10 figs.

  18. Transport of proteins to the plant vacuole is not by bulk flow through the secretory system, and requires positive sorting information.

    Science.gov (United States)

    Dorel, C; Voelker, T A; Herman, E M; Chrispeels, M J

    1989-02-01

    Plant cells, like other eukaryotic cells, use the secretory pathway to target proteins to the vacuolar/lysosomal compartment and to the extracellular space. We wished to determine whether the presence of a hydrophobic signal peptide would result in the transport of a reporter protein to vacuoles by bulk flow; to investigate this question, we expressed a chimeric gene in transgenic tobacco. The chimeric gene, Phalb, used for this study consists of the 1,188-bp 5' upstream sequence and the hydrophobic signal sequence of a vacuolar seed protein phytohemagglutinin, and the coding sequence of a cytosolic seed albumin (PA2). The chimeric protein PHALB cross-reacted with antibodies to PA2 and was found in the seeds of the transgenic plants (approximately 0.7% of total protein), but not in the leaves, roots, or flowers. Immunoblot analyses of seed extracts revealed four glycosylated polypeptides ranging in molecular weight from 29,000 to 32,000. The four polypeptides are glycoforms of a single polypeptide of Mr 27,000, and the heterogeneity is due to the presence of high mannose and endoglycosidase H-resistant glycans. The PHALB products reacted with an antiserum specific for complex plant glycans indicating that the glycans had been modified in the Golgi apparatus. Subcellular fractionation of glycerol extracts of mature seeds showed that only small amounts of PHALB accumulated in the protein storage vacuoles of the tobacco seeds. In homogenates made in an isotonic medium, very little PHALB was associated with the organelle fraction containing the endoplasmic reticulum and Golgi apparatus; most of it was in the soluble fraction. We conclude that PHALB passed through the Golgi apparatus, but did not arrive in the vacuoles. Transport to vacuoles is not by a bulk-flow mechanism, once proteins have entered the secretory system, and requires information beyond that provided by a hydrophobic signal peptide.

  19. Reserve, flowing electrolyte, high rate lithium battery

    Science.gov (United States)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  20. Direct depth distribution measurement of deuterium in bulk tungsten exposed to high-flux plasma

    Science.gov (United States)

    Taylor, C. N.; Shimada, M.

    2017-05-01

    Understanding tritium retention and permeation in plasma-facing components is critical for fusion safety and fuel cycle control. Glow discharge optical emission spectroscopy (GD-OES) is shown to be an effective tool to reveal the depth profile of deuterium in tungsten. Results confirm the detection of deuterium. A ˜46 μm depth profile revealed that the deuterium content decreased precipitously in the first 7 μm, and detectable amounts were observed to depths in excess of 20 μm. The large probing depth of GD-OES (up to 100s of μm) enables studies not previously accessible to the more conventional techniques for investigating deuterium retention. Of particular applicability is the use of GD-OES to measure the depth profile for experiments where high deuterium concentration in the bulk material is expected: deuterium retention in neutron irradiated materials, and ultra-high deuterium fluences in burning plasma environment.

  1. The High-Energy Spectra of Accreting Black Holes Observational Evidence for Bulk-Motion Infall

    CERN Document Server

    Shrader, C R; Shrader, Chris; Titarchuk, Lev

    1998-01-01

    We discuss the emergent spectra from accreting black holes, considering in particular the case where the accretion is characterized by relativistic bulk motion. We suggest that such accretion is likely to occur in a wide variety of black hole enviroments, where the strong gravitational field is expected to dominate the pressure forces, and this likely to lead to a characteristic high-energy spectriscopic signature; an extended power tail. It is in the high (soft) state that matter impinging upon the event horizon can be viewed directly, and intrinsic power-law seen. A test of the model is presented using observational data from the Compton Gamma Ray Observatory and the Rossi X-ray Timing Explorer, covering 2- 200 keV for recent galactic black hole X-ray nova outbursts.

  2. Study on resonance frequency distribution of high-overtone bulk acoustic resonators

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; WANG Zuoqing; ZHANG Shuyi

    2005-01-01

    Based on the method of characterizing piezo-films by the resonance frequency distributions, the factors influencing the resonance frequency distribution of a High-overtone Bulk Acoustic Resonator (HBAR) consisting of a piezoelectric thin film with twoelectrodes and a substrate are studied. Some HBARs are simulated. The results manifest that changing the acoustic impedance ratio of the substrate to piezo-film the distribution of the space of the parallel resonance frequency and the effective electromechanical coupling factor are changed. When the fundamental mode of the piezo-film is at high frequency, changing the acoustic impedance ratio of the electrode to piezo-film and the thickness of the electrodes make the resonance frequency distribution of HBARs change. These results manifest that the HBARs can be resonant at specified frequencies by means of adjusting the factors affecting the resonance frequency distribution.

  3. High critical current densities in bulk MgB{sub 2} fabricated using amorphous boron

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, Miryala; Kenta, Nozaki; Murakami, Masato [Superconducting Materials Laboratory, Department of Materials Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548 (Japan); Koblischka, Michael R. [Institute of Experimental Physics, Saarland University, P.O. Box 151150, 66041 Saarbruecken (Germany)

    2015-10-15

    We prepared bulk MgB{sub 2} from high-purity commercial powders of Mg metal (99.9% purity) and amorphous B (99% purity) powders using a single-step solid state reaction at 775 C for varying sintering duration from 1 to 10 h in pure argon atmosphere. X-ray diffraction analysis showed that all the samples were single phase MgB{sub 2}. The magnetization measurements confirmed a sharp superconducting transition with T{sub c,onset} at around 38.2-38.8 K. The critical current density (J{sub c}) values for the MgB{sub 2} samples produced at 1 h sintering time is the highest one in all processed materials here. Scanning electron microscopy analyses indicated that the sintering time has a crucial influence on the grain size. As a result, the highest J{sub c} value of 270 kA cm{sup -2} at 20 K and self-field was achieved in the sample produced at 775 C for 1 h. Our results clearly demonstrate that the optimization of the sintering conditions is essential to improve the bulk MgB{sub 2} performance. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Molecular order in high-efficiency polymer/fullerene bulk heterojunction solar cells.

    Science.gov (United States)

    Hammond, Matthew R; Kline, R Joseph; Herzing, Andrew A; Richter, Lee J; Germack, David S; Ro, Hyun-Wook; Soles, Christopher L; Fischer, Daniel A; Xu, Tao; Yu, Luping; Toney, Michael F; Delongchamp, Dean M

    2011-10-25

    We report quantitative measurements of ordering, molecular orientation, and nanoscale morphology in the active layer of bulk heterojunction (BHJ) organic photovoltaic cells based on a thieno[3,4-b]thiophene-alt-benzodithiophene copolymer (PTB7), which has been shown to yield very high power conversion efficiency when blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC(71)BM). A surprisingly low degree of order was found in the polymer-far lower in the bulk heterojunction than in pure PTB7. X-ray diffraction data yielded a nearly full orientation distribution for the polymer π-stacking direction within well-ordered regions, revealing a moderate preference for π-stacking in the vertical direction ("face-on"). By combining molecular orientation information from polarizing absorption spectroscopies with the orientation distribution of ordered material from diffraction, we propose a model describing the PTB7 molecular orientation distribution (ordered and disordered), with the fraction of ordered polymer as a model parameter. This model shows that only a small fraction (≈20%) of the polymer in the PTB7/PC(71)BM blend is ordered. Energy-filtered transmission electron microscopy shows that the morphology of PTB7/PC(71)BM is composed of nanoscale fullerene-rich aggregates separated by polymer-rich regions. The addition of diiodooctane (DIO) to the casting solvent, as a processing additive, results in smaller domains and a more finely interpenetrating BHJ morphology, relative to blend films cast without DIO.

  5. Comparison of High Temperature Crystal Lattice and Bulk Thermal Expansion Measurements of LGT Single Crystal

    Energy Technology Data Exchange (ETDEWEB)

    Beaucage, Timothy R [University of Maine; Beenfeldt, Eric P [University of Maine; Speakman, Scott A [ORNL; Porter, Wallace D [ORNL; Payzant, E Andrew [ORNL; Pereira da Cunha, Mauricio [University of Maine

    2006-01-01

    Among the langasite family of crystals (LGX), the three most popular materials are langasite (LGS, La3Ga5SiO14), langatate (LGT, La3Ga5.5Ta0.5O14) and langanite (LGN, La3Ga5.5Nb0.5O14). The LGX crystals have received significant attention for acoustic wave (AW) device applications due to several properties, which include: (1) piezoelectric constants about two and a half times those of quartz, thus allowing the design of larger bandwidth filters; (2) existence of temperature compensated orientations; (3) high density, with potential for reduced vibration and acceleration sensitivity; and (4) possibility of operation at high temperatures, since the LGX crystals do not present phase changes up to their melting point above 1400degC. The LGX crystals' capability to operate at elevated temperatures calls for an investigation on the growth quality and the consistency of these materials' properties at high temperature. One of the fundamental crystal properties is the thermal expansion coefficients in the entire temperature range where the material is operational. This work focuses on the measurement of the LGT thermal expansion coefficients from room temperature (25degC) to 1200degC. Two methods of extracting the thermal expansion coefficients have been used and compared: (a) dual push-rod dilatometry, which provides the bulk expansion; and (b) x-ray powder diffraction, which provides the lattice expansion. Both methods were performed over the entire temperature range and considered multiple samples taken from <001> Czochralski grown LGT material. The thermal coefficients of expansion were extracted by approximating each expansion data set to a third order polynomial fit over three temperature ranges reported in this work: 25degC to 400degC, 400degC to 900degC, 900degC to 1200degC. An accuracy of fit better than 35ppm for the bulk expansion and better than 10ppm for the lattice expansion have been obtained with the aforementioned polynomial fitting. The

  6. Diffusion and bulk flow in phloem loading: A theoretical analysis of the polymer trap mechanism for sugar transport in plants

    Science.gov (United States)

    Dölger, Julia; Rademaker, Hanna; Liesche, Johannes; Schulz, Alexander; Bohr, Tomas

    2014-10-01

    Plants create sugar in the mesophyll cells of their leaves by photosynthesis. This sugar, mostly sucrose, has to be loaded via the bundle sheath into the phloem vascular system (the sieve elements), where it is distributed to growing parts of the plant. We analyze the feasibility of a particular loading mechanism, active symplasmic loading, also called the polymer trap mechanism, where sucrose is transformed into heavier sugars, such as raffinose and stachyose, in the intermediary-type companion cells bordering the sieve elements in the minor veins of the phloem. Keeping the heavier sugars from diffusing back requires that the plasmodesmata connecting the bundle sheath with the intermediary cell act as extremely precise filters, which are able to distinguish between molecules that differ by less than 20% in size. In our modeling, we take into account the coupled water and sugar movement across the relevant interfaces, without explicitly considering the chemical reactions transforming the sucrose into the heavier sugars. Based on the available data for plasmodesmata geometry, sugar concentrations, and flux rates, we conclude that this mechanism can in principle function, but that it requires pores of molecular sizes. Comparing with the somewhat uncertain experimental values for sugar export rates, we expect the pores to be only 5%-10% larger than the hydraulic radius of the sucrose molecules. We find that the water flow through the plasmodesmata, which has not been quantified before, contributes only 10%-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all the necessary water for phloem translocation would be supplied in this way with no need for additional water uptake across the plasma membranes of the

  7. High Performance Liquid Chromatographic Analysis of Almotriptan Malate in Bulk and Tablets

    Directory of Open Access Journals (Sweden)

    Chandra Bala Sekaran

    2013-02-01

    Full Text Available Purpose: A simple RP-HPLC method has been developed and validated for the determination of almotriptan malate (ATM in bulk and tablets. Methods: Chromatographic separation of ATM was achieved by using a Thermo Scientific C18 column. A Mobile phase containing a mixture of methanol, water and acetic acid (4:8:0.1 v/v was pumped at the flow rate of 1 mL/min. Detection was performed at 227 nm. According to ICH guidelines, the method was validated. Results: The calibration curve was linear in the concentration range 5–60 μg/mL for the ATM with regression coefficient 0.9999. The method was precise with RSD <1.2%. Excellent recoveries of 99.60 - 100.80% proved the accuracy of the method. The limits of detection and quantification were found to be 0.025 and 0.075 μg/mL, respectively. Conclusion: The method was successfully applied for the quantification of ATM in tablets with acceptable accuracy and precision.

  8. Microstructure and mechanical properties of bulk highly faulted fcc/hcp nanostructured cobalt microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Aliou Hamady [Université Paris 13, Sorbonne Paris Cité, LSPM CNRS UPR 3407, 93430 Villetaneuse (France); Laboratoire Chimie des Matériaux, Département de Chimie, Faculté des Sciences et Technique, Université de Nouakchott (Mauritania, Islamic Republic of); Dirras, Guy, E-mail: dirras@unv-paris13.fr [Université Paris 13, Sorbonne Paris Cité, LSPM CNRS UPR 3407, 93430 Villetaneuse (France); Schoenstein, Frederic; Tétard, Florent; Jouini, Noureddine [Université Paris 13, Sorbonne Paris Cité, LSPM CNRS UPR 3407, 93430 Villetaneuse (France)

    2014-05-01

    Nanostructured cobalt powders with an average particle size of 50 nm were synthesized using a polyol method and subsequently consolidated by spark plasma sintering (SPS). SPS experiments performed at 650 °C with sintering times ranging from 5 to 45 min under a pressure of 100 MPa, yielded to dense bulk nanostructured cobalt (relative density greater than 97%). X-ray diffraction patterns of the as-prepared powders showed only a face centered cubic (fcc) crystalline phase, whereas the consolidated samples exhibited a mixture of both fcc and hexagonal close packed (hcp) phases. Transmission electron microscopy observations revealed a lamellar substructure with a high density of nanotwins and stacking faults in every grain of the sintered samples. Room temperature compression tests, carried out at a strain rate of 10{sup −3} s{sup −1}, yielded to highest strain to fracture values of up to 5% for sample of holding time of 15 min, which exhibited a yield strength of 1440 MPa, an ultimate strength as high as 1740 MPa and a Young's modulus of 205 GPa. The modulus of elasticity obtained from the nanoindentation tests, ranges from 181 to 218 GPa. The lowest modulus value of 181 GPa was obtained for the sample with the highest sintering time (45 min), which could be related to mass density loss as a consequence of trapped gases releasing. - Highlights: • Co nanopowder (50 nm) was prepared by reduction in polyol medium. • SPS was used to process bulk nanostructured Co specimens. • Microstructures were made of intricate fcc/hcp, along with nanotwins and SFs. • High strengths and moderate compressive ductility were obtained. • Deformation mechanisms related to complex interplay of different length scales.

  9. Continuous Flow Polymer Synthesis toward Reproducible Large-Scale Production for Efficient Bulk Heterojunction Organic Solar Cells.

    Science.gov (United States)

    Pirotte, Geert; Kesters, Jurgen; Verstappen, Pieter; Govaerts, Sanne; Manca, Jean; Lutsen, Laurence; Vanderzande, Dirk; Maes, Wouter

    2015-10-12

    Organic photovoltaics (OPV) have attracted great interest as a solar cell technology with appealing mechanical, aesthetical, and economies-of-scale features. To drive OPV toward economic viability, low-cost, large-scale module production has to be realized in combination with increased top-quality material availability and minimal batch-to-batch variation. To this extent, continuous flow chemistry can serve as a powerful tool. In this contribution, a flow protocol is optimized for the high performance benzodithiophene-thienopyrroledione copolymer PBDTTPD and the material quality is probed through systematic solar-cell evaluation. A stepwise approach is adopted to turn the batch process into a reproducible and scalable continuous flow procedure. Solar cell devices fabricated using the obtained polymer batches deliver an average power conversion efficiency of 7.2 %. Upon incorporation of an ionic polythiophene-based cathodic interlayer, the photovoltaic performance could be enhanced to a maximum efficiency of 9.1 %.

  10. Soft-ferromagnetic bulk glassy alloys with large magnetostriction and high glass-forming ability

    Directory of Open Access Journals (Sweden)

    Jiawei Li

    2011-12-01

    Full Text Available The effect of Dy addition on the glass-forming ability (GFA, magnetostriction as well as soft-magnetic properties and fracture strength in FeDyBSiNb glassy alloys was investigated. In addition to the increase of supercooled liquid region from 55 to 100 K, the addition of Dy is effective in approaching alloy to an eutectic point and increasing the saturation magnetostrction (λs. Accordingly, bulk glassy alloy (BGA rods with diameters up to 4 mm were produced, which exhibit a large λs as high as 65×10-6. Besides, the BGA system exhibits superhigh fracture strength of 4000 MPa, combined with good soft-magnetic properties.

  11. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Science.gov (United States)

    Wu, J. F.; Li, Y.

    2014-10-01

    High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  12. Mesoscale structural characterization within bulk materials by high-energy X-ray microdiffraction

    DEFF Research Database (Denmark)

    Lienert, U.; Poulsen, H.F.; Kvick, Å.

    2001-01-01

    accessible. The technique is nondestructive and allows for in situ studies of samples in complicated environments. A dedicated experimental station has been constructed at the ID11 beamline of the European Synchrotron Radiation Facility. On-line two-dimensional detectors and conical slits have been developed......A novel diffraction technique for the local three-dimensional characterization within polycrystalline bulk materials is presented. The technique uses high-energy synchrotron radiation (40 keV ... that provide the required intensity and spatial resolution perpendicular to the incident beam. A focus size of 1.2 mum was achieved. Modified crossed-beam techniques are being developed that define the longitudinal resolution, i.e., the component of the gauge volume parallel to the incident beam. We present...

  13. High-efficiency broadband anti-Stokes emission from Yb3+-doped bulk crystals.

    Science.gov (United States)

    Zhu, Siqi; Wang, Chunhao; Li, Zhen; Jiang, Wei; Wang, Yichuan; Yin, Hao; Wu, Lidan; Chen, Zhenqiang; Zhang, Ge

    2016-05-15

    We investigate the broadband anti-Stokes emission (BASE) from Yb3+-doped crystals with a laser diode (LD) pumping at 940 nm. Our experiment reveals that Yb3+-doped crystals with random cracks are able to generate bright BASE at room temperature and atmospheric pressure. By examining the various characteristics of the crystals and the emitted light, we supply a theory for interpreting the underlying physics for this variety of BASE. In particular, we take into consideration the effects of energy migration, avalanche process, and charge-transfer luminescence. This represents the first time, to the best of our knowledge, that BASE was obtained from Yb3+-doped bulk crystals with a high optical-optical efficiency.

  14. Effect of initial bulk density on high-solids anaerobic digestion of MSW: General mechanism.

    Science.gov (United States)

    Caicedo, Luis M; Wang, Hongtao; Lu, Wenjing; De Clercq, Djavan; Liu, Yanjun; Xu, Sai; Ni, Zhe

    2017-06-01

    Initial bulk density (IBD) is an important variable in anaerobic digestion since it defines and optimizes the treatment capacity of a system. This study reveals the mechanism on how IBD might affect anaerobic digestion of waste. Four different IBD values: D1 (500-700kgm(-3)), D2 (900-1000kgm(-3)), D3 (1100-1200kgm(-3)) and D4 (1200-1400kgm(-3)) were set and tested over a period of 90days in simulated landfill reactors. The main variables affected by the IBD are the methane generation, saturation degree, extraction of organic matter, and the total population of methanogens. The study identified that IBD >1000kgm(-3) may have significant effect on methane generation, either prolonging the lag time or completely inhibiting the process. This study provides a new understanding of the anaerobic digestion process in saturated high-solids systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Magnetophotocurrent in Organic Bulk Heterojunction Photovoltaic Cells at Low Temperatures and High Magnetic Fields

    Science.gov (United States)

    Khachatryan, B.; Devir-Wolfman, A. H.; Tzabari, L.; Tessler, N.; Vardeny, Z. V.; Ehrenfreund, E.

    2016-04-01

    We study high-field (up to B ˜8.5 T ) magnetophotocurrent (MPC) related to photogenerated polaron pairs (PPs) in the temperature range T =10 - 320 K in organic bulk heterojunction photovoltaic cells. We find that in the high-field regime (B >1 T ), MPC (B ) response increases with B for temperature T >200 K but decreases with B at T <200 K . MPC (B ) response does not saturate even at the highest field studied, at all T . We attribute the observed high-field MPC (B ) response to two competing mechanisms within the PP spin states: (a) a spin-mixing mechanism caused by the difference in the donor-acceptor (or positive-negative polarons) g factors (the so-called "Δ g mechanism"), and (b) the spin polarization induced by thermal population of the PP Zeeman split levels. The nonsaturating MPC (B ) response at high fields and high temperatures indicates that there exist charge-transfer excitons (CTEs) with decay time in the subnanosecond time domain. With decreasing temperature, the CTE decay time sharply increases, thereby promoting an increase of the thermal spin-polarization contribution to the MPC (B ) response.

  16. Comparative Study on Super Fine Mesophase Powder and MCMB Used to Manufacture High-Density Isotropic Carbon Bulks

    Institute of Scientific and Technical Information of China (English)

    LI Tong-qi; HU Zi-jun; WANG Jun-shan; GUO Yu-ming; WANG Cheng-yang

    2006-01-01

    Mesocarbon microbeads (MCMB) and super fine mesophase powder (SFMP) were prepared firstly from a coal tar pitch and then hot-condensed into high-density isotropic carbon (HDIC) bulks under 160 Mpa and finally sintered at 1 000 ℃. By analyzing the thermogravimetric behavior of the MCMB and SFMP powders, their volume shrinkage and weight loss during sintering and the bulk density and flexural strengths of their sintered bulks, it was found that the smaller sizes and the richer β-resin contents of SFMP have facilitated formation of sintered bulks with more compact isotropic structure and higher flexural strengths than MCMB. Because of the filling and bonding effects of SFMP on MCMB bulks, addition of SFMP, albeit a little, can greatly increase the flexural strengths of sintered bulks of MCMB. However, adding MCMB, even a slight amount, into SFMP can severely impair the flexural strength of sintered bulks. This might be attributed to both the crack initiation along the boundaries between MCMB and SFMP and the formation of layered texture of MCMB sphere.

  17. Extraction of bulk generation lifetime and surface generation velocity in high-resistivity silicon by means of gated diodes

    CERN Document Server

    Verzellesi, G; Bosisio, L; Dalla Betta, Gian Franco; Pignatel, Giogrio Umberto

    2002-01-01

    We show that the accuracy of the gated diode method for measuring bulk generation lifetime and surface generation velocity in high resistivity silicon depends critically on the gate length of the test device, as a result of nonidealities affecting the gated diode operation. Minimization of the surface generation velocity measurement error requires the gate length to be suitably decreased, while long gate length structures are needed for accurate bulk generation lifetime extraction.

  18. High-Throughput Contact Flow Lithography.

    Science.gov (United States)

    Le Goff, Gaelle C; Lee, Jiseok; Gupta, Ankur; Hill, William Adam; Doyle, Patrick S

    2015-10-01

    High-throughput fabrication of graphically encoded hydrogel microparticles is achieved by combining flow contact lithography in a multichannel microfluidic device and a high capacity 25 mm LED UV source. Production rates of chemically homogeneous particles are improved by two orders of magnitude. Additionally, the custom-built contact lithography instrument provides an affordable solution for patterning complex microstructures on surfaces.

  19. Turbulent Poiseuille & Couette flows at high Re

    Science.gov (United States)

    Lee, Myoungkyu; Moser, Robert D.

    2016-11-01

    We present the results of direct numerical simulation (DNS) of high Re turbulent Poiseuille and Couette flows. Couette flow has been simulated with a streamwise (x) domain that is 100 πδ long at Reynolds number up to Reτ 500 . In addition Poiseuille flow simulations up to Reτ 5200 were performed. In Couette flow, extremely large scale motions, which are approximately 50 πδ long in the x-direction with very strong intensity, have been observed. In this presentation we will focus on a comparison between these two flows in terms of the vorticity-velocity co-spectra, which are interesting because of the relationship between the Reynolds stress and the velocity-vorticity correlation (∂y = - ). Also considered will be the spectra of the turbulent transport term in the evolution equation for the turbulent kinetic energy. In both (co)-spectra it is shown that the difference between the two flows at high Re are primarily at large scales. This work was supported by NSF (OCI-0749223 and PRAC Grant 0832634), and computation resources were provided by the Argonne Leadership Computing Facility through the Early Science, INCITE 2013 and Directors Discretionary Programs.

  20. Chaotic behaviour of high Mach number flows

    Science.gov (United States)

    Varvoglis, H.; Ghosh, S.

    1985-01-01

    The stability of the super-Alfvenic flow of a two-fluid plasma model with respect to the Mach number and the angle between the flow direction and the magnetic field is investigated. It is found that, in general, a large scale chaotic region develops around the initial equilibrium of the laminar flow when the Mach number exceeds a certain threshold value. After reaching a maximum the size of this region begins shrinking and goes to zero as the Mach number tends to infinity. As a result high Mach number flows in time independent astrophysical plasmas may lead to the formation of 'quasi-shocks' in the presence of little or no dissipation.

  1. Anomalous results observed in magnetization of bulk high temperature superconductors—A windfall for applications

    Science.gov (United States)

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad; Carpenter, Keith; Davey, Kent

    2016-04-01

    Recent experiments on pulsed-zero field cool magnetization of bulk high Jc YBCO (YBa2Cu3O7-δ) have shown unexpected results. For example, reproducible, non-destructive, rapid, giant field leaps (GFLs) to higher penetrated field are observed. The observations are inconsistent with the critical state model (CSM), in several aspects. Additional experiments have been pursued in an attempt to clarify the physics involved in the observed anomalies. Here, we present experimental results for the Jc dependence of the anomalous features. It is found that the sudden field increase in the GFL is a monotonically increasing function of Jc. The ratio of required pulsed field amplitude, BA,max, to obtain maximum trappable field, BT,max, which CSM predicts to be ≥2.0, gradually approaches 1.0 at high Jc. Tests using values of pulsed, applied field BA,max just below the GFL exhibit two additional anomalies: (i) At high Jc, the highest trapped field is up to ˜6 times lower than predicted by CSM, and (ii) the measured Lorentz force as a function of Jc deviates sharply from CSM predictions. The data rule out heating effects and pinning center geometry as possible physical causes of these anomalies. A speculative cause is considered.

  2. Trapped magnetic field of a superconducting bulk magnet in high- T sub c RE-Ba-Cu-O

    CERN Document Server

    Fujimoto, H; Higuchi, T; Nakamura, Y; Kamijo, H; Nagashima, K; Murakami, M

    1999-01-01

    Superconducting magnets made of high-T sub c superconductors are promising for industrial applications. It is well known that REBa sub 2 Cu sub 3 O sub 7 sub - sub x and LRE (light rare-earth) Ba sub 2 Cu sub 3 O sub 7 sub - sub x superconductors prepared by melt processes have a high critical current density, J sub c , at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J sub c in high magnetic fields and a much improved irreversibility field, H sub i sub r sub r , at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train.

  3. Trapped magnetic field of a superconducting bulk magnet in high- T{sub c} RE-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Hiroyuki; Yoo, Sang Im; Higuchi, Takamitsu; Nakamura, Yuichi; Kamijo, Hiroki; Nagashima, Ken [Railway Technical Research Institute, Tokyo (Japan); Murakami, Masato [International Superconductivity Technology Center, Tokyo (Japan)

    1999-07-01

    Superconducting magnets made of high-T{sub c} superconductors are promising for industrial applications. It is well known that REBa{sub 2}Cu{sub 3}O{sub 7-x} and LRE (light rare-earth) Ba{sub 2}Cu{sub 3}O{sub 7-x} superconductors prepared by melt processes have a high critical current density, J{sub c}, at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J{sub c} in high magnetic fields and a much improved irreversibility field, H{sub irr}, at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train.

  4. Schlieren High Speed Imaging on Fluid Flow in Liquid Induced by Plasma-driven Interfacial Forces

    Science.gov (United States)

    Lai, Janis; Foster, John

    2016-10-01

    Effective plasma-based water purification depends heavily on the transport of plasma-derived reactive species from the plasma into the liquid. Plasma interactions at the liquid-gas boundary are known to drive circulation in the bulk liquid. This forced circulation is not well understood. A 2-D plasma- in-liquid water apparatus is currently being investigated as a means to study the plasma-liquid interface to understand not only reactive species flows but to also understand plasma- driven fluid dynamic effects in the bulk fluid. Using Schlieren high speed imaging, plasma-induced density gradients near the interfacial region and into the bulk solution are measured to investigate the nature of these interfacial forces. Plasma-induced flow was also measured using particle imaging velocimetry. NSF CBET 1336375 and DOE DE-SC0001939.

  5. Entropies in Alloy Design for High-Entropy and Bulk Glassy Alloys

    Directory of Open Access Journals (Sweden)

    Akihiro Makino

    2013-09-01

    Full Text Available High-entropy (H-E alloys, bulk metallic glasses (BMGs and high-entropy BMGs (HE-BMGs were statistically analyzed with the help of a database of ternary amorphous alloys. Thermodynamic quantities corresponding to heat of mixing and atomic size differences were calculated as a function of composition of the multicomponent alloys. Actual calculations were performed for configurational entropy (Sconfig. in defining the H-E alloys and mismatch entropy (Ss normalized with Boltzmann constant (kB, together with mixing enthalpy (DHmix based on Miedema’s empirical model and Delta parameter (d as a corresponding parameter to Ss/kB. The comparison between DHmix–d and DHmix–  diagrams for the ternary amorphous alloys revealed Ss/kB ~ (d /222. The zones S, S′ and B’s where H-E alloys with disordered solid solutions, ordered alloys and BMGs are plotted in the DHmix–d diagram are correlated with the areas in the DHmix – Ss /kB diagram. The results provide mutual understandings among H-E alloys, BMGs and HE-BMGs.

  6. High plastic Zr-Cu-Fe-Al-Nb bulk metallic glasses for biomedical applications

    Science.gov (United States)

    Wang, Shu-shen; Wang, Yun-liang; Wu, Yi-dong; Wang, Tan; Hui, Xi-dong

    2015-06-01

    Four Zr-Cu-Fe-Al-based bulk metallic glasses (BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties, and corrosion resistance properties of the prepared BMGs were investigated. These BMGs exhibit moderate glass forming abilities along with superior fracture and yield strengths compared to previously reported Zr-Cu-Fe-Al BMGs. Specifically, the addition of Nb into this quaternary system remarkably increases the plastic strain to 27.5%, which is related to the high Poisson's ratio and low Young's and shear moduli. The Nb-bearing BMGs also exhibit a lower corrosion current density by about one order of magnitude and a wider passive region than 316L steel in phosphate buffer solution (PBS, pH 7.4). The combination of the optimized composition with high deformation ability, low Young's modulus, and excellent corrosion resistance properties indicates that this kind of BMG is promising for biomedical applications.

  7. Application of PECVD for bulk and surface passivation of high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Krygowski, T.; Doshi, P.; Cai, L.; Doolittle, A.; Rohatgi, A. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1995-08-01

    Plasma enhanced chemical vapor deposition (PECVD) passivation of bulk and surface defects has been shown to be an important technique to improve the performance of multicrystalline silicon (mc-Si) and single crystalline silicon solar cells. In this paper, we report the status of our on-going investigation into the bulk and surface passivation properties of PECVD insulators for photovoltaic applications. The objective of this paper is to demonstrate the ability of PECVD films to passivate the front (emitter) surface, bulk, and back surface by proper tailoring of deposition and post-PECVD annealing conditions.

  8. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage Low-Moisture Switchgrass Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Womac, Alvin [Genera Energy LLC, Vonore, TN (United States); Groothuis, Mitch [Genera Energy LLC, Vonore, TN (United States); Westover, Tyler [Genera Energy LLC, Vonore, TN (United States); Phanphanich, Manunya [Genera Energy LLC, Vonore, TN (United States); Webb, Erin [Genera Energy LLC, Vonore, TN (United States); Sokhansanj, Shahab [Genera Energy LLC, Vonore, TN (United States); Turhollow, Anthony [Genera Energy LLC, Vonore, TN (United States)

    2013-09-24

    This project evaluates and compares comprehensive feedstock logistics systems (FLS), where a FLS is defined to comprehensively span from biomass material standing in a field to conveyance of a uniform, industrial-milled product into the throat of a biomass conversion facility (BCF). Elements of the bulk-format FLS evaluated in this project include: field-standing switchgrass dry chopped into bulk format on the farm, hauled (either loose or bulk compacted) to storage, stored with confining overburden in a protective facility, reclaimed and conveyed to bulk-format discharge, bulk compacted into an ejector trailer, and conveyed as bulk flow into the BCF. In this FLS evaluation, bulk storage bins served as a controlled and sensored proxy for large commercial stacks protected from moisture with a membrane cover.

  9. ONE THOUSAND AND ONE CLUSTERS: MEASURING THE BULK FLOW WITH THE PLANCK ESZ AND X-RAY-SELECTED GALAXY CLUSTER CATALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Mody, Krishnan [Mathematics Department, Princeton University, Princeton, NJ 08544 (United States); Hajian, Amir, E-mail: kmody@princeton.edu, E-mail: ahajian@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada)

    2012-10-10

    We present our measurement of the 'bulk flow' using the kinetic Sunyaev-Zel'dovich (kSZ) effect in the Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. As the tracer of peculiar velocities, we use Planck Early Sunyaev-Zel'dovich Detected Cluster Catalog and a compilation of X-ray-detected galaxy cluster catalogs based on ROSAT All-Sky Survey. We build a full-sky kSZ template and fit it to the WMAP data in W band. Using a Wiener filter we maximize the signal-to-noise ratio of the kSZ cluster signal in the data. We find no significant detection of the bulk flow, and our results are consistent with the {Lambda}CDM prediction.

  10. One Thousand and One Clusters: Measuring the Bulk Flow with the Planck ESZ and X-Ray Selected Galaxy Cluster Catalogs

    CERN Document Server

    Mody, Krishnan

    2012-01-01

    We present our measurement of the "bulk flow" using the kinetic Sunyaev-Zel'dovich (kSZ) effect in the WMAP 7-year data. As the tracer of peculiar velocities, we use Planck Early Sunyaev-Zel'dovich Detected Cluster Catalog and a compilation of X-ray detected galaxy cluster catalogs based on ROSAT All-Sky Survey. We build a full-sky kSZ template and fit it to the WMAP data in W-band. Using a Wiener filter we maximize the signal to noise ratio of the kSZ cluster signal in the data. We find no significant detection of the bulk flow, and our results are consistent with the LCDM prediction.

  11. High coercivity in Fe-Nb-B-Dy bulk nanocrystalline magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ziolkowski, Grzegorz; Chrobak, Artur; Klimontko, Joanna [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007, Katowice (Poland); Chrobak, Dariusz; Rak, Jan [Institute of Materials Science, University of Silesia, 75 Pulku Piechoty 1, 41-500, Chorzow (Poland); Zivotsky, Ondrej; Hendrych, Ales [Department of Physics, VSB-TU Ostrava, Ostrava (Czech Republic)

    2016-11-15

    The paper refers to structural and magnetic properties of the (Fe{sub 80}Nb{sub 6}B{sub 14}){sub 1-x}Dy{sub x} (x = 0.08, 0.10, 0.12, 0.16) bulk nanocrystalline alloys prepared by making use of the vacuum suction casting technique. The samples are in a form of rods with different diameters d = 1.5, 1, and 0.5 mm. The phase structure was investigated by XRD technique and reveals an occurrence of magnetically hard Dy{sub 2}Fe{sub 14}B as well as other relatively soft Dy-Fe, Fe-B, and Fe phases dependently on the Dy content. The alloys show hard magnetic properties with high coercive field up to 5.5 T (for x = 0.12 and d = 0.5 mm). The observed magnetic hardening effect with the increase of cooling rate (decrease of sample diameter d) can be attributed to a formation of ultra-hard magnetic objects as well as increasing role of low dimensional microstructure. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.F., E-mail: wujf@ciomp.ac.cn; Li, Y.

    2014-10-15

    Highlights: • Coasting time was investigated from the point-view of HTS flywheel applications. • The coasting time of aligned growth section boundary pattern (AGSBP) is shorter than that of MGSBP. • The electric magnetic drag force with AGSBP is larger than that of MGSBP. • This result may also exist in the maglev guideline when the maglev train stops freely. - Abstract: High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  13. High-speed friction and wear behaviors of bulk Ti3SiC2

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhen-ying; ZHAI Hong-xiang; ZHOU Wei; ZHOU Yang; AI Ming-xin; ZHANG Zhi-li; LI Shi-bo

    2005-01-01

    High-speed friction and wear behaviors of bulk Ti3 SiC2 sliding drily against low carbon steel were investigated. Tests were carried out using a block-on-disk type tester with normal pressures ranging from 0.1 to 0.8 MPa and several sliding speeds from 20 to 60 m/s. The results show that, in the case of sliding speeds of 20 - 40 m/s, the friction coefficient exhibits a decreasing tendency with increasing the normal pressure after an increment in the smaller pressure range, and the worn quantity of Ti3SiC2 exhibits a nearly linear increase with increasing the normal pressure. However, when the sliding speed is up to 60 m/s, the friction coefficient exhibits a monotonous increase and the worn quantity exhibits a quadric increase with increasing the normal pressure. These speed-dependent and pressure-dependent behaviors are attributed to the antifriction effects of a frictionally generated oxide film covering the friction surface of Ti3SiC2, and a balance between the generating rate and the removing (wearing) rate of the film.

  14. Bulk Insolation Models as Predictors for Locations for High Lunar Hydrogen Concentrations

    Science.gov (United States)

    Mcclanahan, T. P.; Mitrofanov, I.G.; Boynton, W. V.; Chin, G.; Starr, R. D.; Evans, L. G.; Sanin, A.; Livengood, T.; Sagdeev, R.; Milikh, G.

    2013-01-01

    In this study we consider the bulk effects of surface illumination on topography (insolation) and the possible thermodynamic effects on the Moon's hydrogen budget. Insolation is important as one of the dominant loss processes governing distributions of hydrogen volatiles on the Earth, Mars and most recently Mercury. We evaluated three types of high latitude > 65 deg., illumination models that were derived from the Lunar Observing Laser Altimetry (LOLA) digital elevation models (DEM)'s. These models reflect varying accounts of solar flux interactions with the Moon's near-surface. We correlate these models with orbital collimated epithermal neutron measurements made by the Lunar Exploration Neutron Detector (LEND). LEND's measurements derive the Moon's spatial distributions of hydrogen concentration. To perform this analysis we transformed the topographic model into an insolation model described by two variables as each pixels 1) slope and 2) slope angular orientation with respect to the pole. We then decomposed the illumination models and epithermal maps as a function of the insolation model and correlate the datasets.

  15. Bulk modulus and high-pressure crystal structures of tetrakis(trimethylsilyl)methane C

    Science.gov (United States)

    Dinnebier; Carlson; van Smaalen S

    2000-04-01

    The pressure dependence of the crystal structure of cubic tetrakis(trimethylsilyl)methane C[Si(CH3)3]4 (TC) (P 10 GPa) a transformation is observed into a c.c.p. structure that is different from the face-centred-cubic structure at ambient conditions. A non-linear compression behaviour is observed, which could be described by a Vinet relation in the range 0.28-4.8 GPa. The extrapolated bulk modulus of the high-pressure phase III was determined to be K0 = 7.1 (8) GPa. The crystal structures in phase III are refined against X-ray powder data measured at several pressures between 0.49 and 4.8 GPa, and the molecules are found to be fully ordered. This is interpreted to result from steric interactions between neighbouring molecules, as shown by analysing the pressure dependence of intramolecular angles, torsion angles and intermolecular distances. Except for their cell dimensions, phases I, II and III are found to be isostructural to the corresponding phases at low temperatures.

  16. Bulk meltwater flow and liquid water content of snowpacks mapped using the electrical self-potential (SP) method

    Science.gov (United States)

    Thompson, Sarah S.; Kulessa, Bernd; Essery, Richard L. H.; Lüthi, Martin P.

    2016-02-01

    Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. We show here that strong electrical self-potential fields are generated in melting in situ snowpacks at Rhone Glacier and Jungfraujoch Glacier, Switzerland. In agreement with theory, the diurnal evolution of self-potential magnitudes ( ˜ 60-250 mV) relates to those of bulk meltwater fluxes (0-1.2 × 10-6 m3 s-1) principally through the permeability and the content, electrical conductivity and pH of liquid water. Previous work revealed that when fresh snow melts, ions are eluted in sequence and electrical conductivity, pH and self-potential data change diagnostically. Our snowpacks had experienced earlier stages of melt, and complementary snow pit measurements revealed that electrical conductivity ( ˜ 1-5 × 10-6 S m-1) and pH ( ˜ 6.5-6.7) as well as permeabilities (respectively ˜ 9.7 × 10-5 and ˜ 4.3 × 10-5 m2 at Rhone Glacier and Jungfraujoch Glacier) were invariant. This implies, first, that preferential elution of ions was complete and, second, that our self-potential measurements reflect daily changes in liquid water contents. These were calculated to increase within the pendular regime from ˜ 1 to 5 and ˜ 3 to 5.5 % respectively at Rhone Glacier and Jungfraujoch Glacier, as confirmed by ground truth measurements. We conclude that the electrical self-potential method is a promising snow and firn hydrology sensor owing to its suitability for (1) sensing lateral and vertical liquid water flows directly and minimally invasively, (2) complementing established observational programs through multidimensional spatial mapping of meltwater fluxes or liquid water content and (3) monitoring autonomously at a low cost. Future work should focus on the development of self-potential sensor

  17. Levitation performance of the magnetized bulk high-T{sub c} superconducting magnet with different trapped fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W. [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China); Wang, J.S., E-mail: tonny@mars.swjtu.edu.c [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China); Liao, X.L.; Zheng, S.J.; Ma, G.T.; Zheng, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China); Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China)

    2011-03-15

    Research highlights: {yields} The different trapped fields bring entirely different levitation performance. {yields} The force relaxation characters is directly bound up with the trapped field. {yields} The higher trapped field not means better levitation performance. {yields} An profitable internal induced current configuration will benefit to suppress flux motion. - Abstract: To a high-T{sub c} superconducting (HTS) maglev system which needs large levitation force density, the magnetized bulk high-T{sub c} superconductor (HTSC) magnet is a good candidate because it can supply additional repulsive or attractive force above a permanent magnet guideway (PMG). Because the induced supercurrent within a magnetized bulk HTSC is the key parameter for the levitation performance, and it is sensitive to the magnetizing process and field, so the magnetized bulk HTSC magnets with different magnetizing processes had various levitation performances, not only the force magnitude, but also its force relaxation characteristics. Furthermore, the distribution and configuration of the induced supercurrent are also important factor to decide the levitation performance, especially the force relaxation characteristics. This article experimentally investigates the influences of different magnetizing processes and trapped fields on the levitation performance of a magnetized bulk HTSC magnet with smaller size than the magnetic inter-pole distance of PMG, and the obtained results are qualitatively analyzed by the Critical State Model. The test results and analyses of this article are useful for the suitable choice and optimal design of magnetized bulk HTSC magnets.

  18. Homogeneous Plastic Flow of Fully Amorphous and Partially Crystallized Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    Q.WANG; J.J. Blandin; M. Suery; B. Van de Moortéle; J.M. Pelletier

    2003-01-01

    The homogeneous plastic flow of fully amorphous and partially crystallized Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass (Vit1) has been investigated by compression tests at high temperatures in supercooled liquid region. Experimental results show that at sufficiently low strain rates, the supercooled liquid of the fully amorphous alloy reveals Newtonian flow with a linear relationship between the flow stress and strain rate. As the strain rate is increased, a transition from linear Newtonian to nonlinear flow is detected, which can be explained by the transition state theory.Over the entire strain rate interval investigated, however, only nonlinear flow is present in the partially crystallized alloy, and the flow stress for each strain rate is much higher. It is found that the strain rate-stress relationship for the partially crystallized alloy at the given temperature of 646 K also obeys the sinh law derived from the transition state theory, similar to that of the initial homogeneous amorphous alloy. Thus, it is proposed that the flow behavior of the nanocrystalline/amorphous composite at 646 K is mainly controlled by the viscous flow of the remaining supercooled liquid.

  19. Morphology-dependent trap formation in high performance polymer bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Beiley, Zach M.; Bartelt, Jonathan A.; Salleo, Alberto; McGehee, Michael D. [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Hoke, Eric T.; Noriega, Rodrigo; Burkhard, George F. [Department of Applied Physics, Stanford University, Stanford, CA 94305 (United States); Dacuna, Javier [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Toney, Michael F. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2011-10-15

    Bulk heterojunction solar cells (BHJs) based on poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) can have internal quantum efficiencies approaching 100% but require active layers that are too thin to absorb more than {proportional_to}70% of the above band gap light. When the active layer thickness is increased so that the cell absorbs more light, the fill factor and open circuit voltage decrease rapidly, so that the overall power conversion efficiency decreases. We find that hole-traps in the polymer, which we characterize using space-charge limited current measurements, play an important role in the performance of PCDTBT-based BHJs and may limit the active layer thickness. Recombination due to carrier trapping is not often considered in BHJs because it is not believed to be a dominant loss mechanism in the ''fruit-fly'' P3HT system. Furthermore, we show that in contrast to P3HT, PCDTBT has only weak short-range molecular order, and that annealing at temperatures above the glass transition decreases the order in the {pi}-{pi} stacking. The decrease in structural order is matched by the movement of hole-traps deeper into the band gap, so that thermal annealing worsens hole transport in the polymer and reduces the efficiency of PCDTBT-based BHJs. These findings suggest that P3HT is not prototypical of the new class of high efficiency polymers, and that further improvement of BHJ efficiencies will necessitate the study of high efficiency polymers with low structural order. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Morphology-Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Beiley, Zach M.

    2011-06-28

    Bulk heterojunction solar cells (BHJs) based on poly[N-9″-hepta- decanyl-2,7-carbazole- alt -5,5-(4′,7′-di-2-thienyl-2′, 1′,3′-benzothiadiazole)] (PCDTBT) can have internal quantum efficiencies approaching 100% but require active layers that are too thin to absorb more than ∼70% of the above band gap light. When the active layer thickness is increased so that the cell absorbs more light, the fi ll factor and open circuit voltage decrease rapidly, so that the overall power conversion efficiency decreases. We fi nd that hole-traps in the polymer, which we characterize using space-charge limited current measurements, play an important role in the performance of PCDTBT-based BHJs and may limit the active layer thickness. Recombination due to carrier trapping is not often considered in BHJs because it is not believed to be a dominant loss mechanism in the "fruit-fl y" P3HT system. Furthermore, we show that in contrast to P3HT, PCDTBT has only weak short-range molecular order, and that annealing at temperatures above the glass transition decreases the order in the π-π stacking. The decrease in structural order is matched by the movement of hole-traps deeper into the band gap, so that thermal annealing worsens hole transport in the polymer and reduces the efficiency of PCDTBTbased BHJs. These fi ndings suggest that P3HT is not prototypical of the new class of high efficiency polymers, and that further improvement of BHJ efficiencies will necessitate the study of high efficiency polymers with low structural order. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass.

    Science.gov (United States)

    Li, H F; Xie, X H; Zhao, K; Wang, Y B; Zheng, Y F; Wang, W H; Qin, L

    2013-11-01

    In order to enhance the corrosion resistance of the Ca65Mg15Zn20 bulk metallic glass, which has too fast a degradation rate for biomedical applications, we fabricated the Ca20Mg20Zn20Sr20Yb20 high-entropy bulk metallic glass because of the unique properties of high-entropy alloys. Our results showed that the mechanical properties and corrosion behavior were enhanced. The in vitro tests showed that the Ca20Mg20Zn20Sr20Yb20 high-entropy bulk metallic glass could stimulate the proliferation and differentiation of cultured osteoblasts. The in vivo animal tests showed that the Ca20Mg20Zn20Sr20Yb20 high-entropy bulk metallic glass did not show any obvious degradation after 4 weeks of implantation, and they can promote osteogenesis and new bone formation after 2 weeks of implantation. The improved mechanical properties and corrosion behavior can be attributed to the different chemical composition as well as the formation of a unique high-entropy atomic structure with a maximum degree of disorder.

  2. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    Energy Technology Data Exchange (ETDEWEB)

    Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G., E-mail: zgdeng@gmail.com

    2014-10-15

    Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  3. High-throughput Z T predictions of nanoporous bulk materials as next-generation thermoelectric materials: A material genome approach

    Science.gov (United States)

    Hao, Qing; Xu, Dongchao; Lu, Na; Zhao, Hongbo

    2016-05-01

    The advancement of computational tools for material property predictions enables a broad search of novel materials for various energy-related applications. However, challenges still exist in accurately predicting the mean free paths of electrons and phonons in a high-throughput frame for thermoelectric property predictions, which largely hinders the computation-driven material search for novel materials. In this work, this need is eliminated under the limit of reduced nanostructure size within a bulk material, in which these mean free paths are restricted by the nanostructure size. A criterion for Z T evaluation is proposed for general nanoporous bulk materials and is demonstrated with representative oxides.

  4. Fabrication and Characteristics of Thin Film Bulk Acoustic Resonators with Highly c-Axis Oriented AlN Films

    Institute of Scientific and Technical Information of China (English)

    GU Hao-Shuang; ZHANG Kai; HU Guang; LI Wei-Yong

    2006-01-01

    @@ Thin film bulk acoustic resonators are fabricated by using silicon bulk micromachining technology, which are constructed mainly from aluminium nitride (AlN) piezoelectric films. The results of x-ray diffraction, scanning electron microscopy and atomic force microscopy show that the AlN films exhibit highly c-axis orientation with good surface morphology. The resonators with the AlN films possessed a reflection coefficient -10.6 dB at the resonant frequency 2.537 GHz, an effective electromechanical coupling coefficient 3.75%, series quality 101.8, and parallel quality 79.7.

  5. Bulk damage and absorption in fused silica due to high-power laser applications

    Science.gov (United States)

    Nürnberg, F.; Kühn, B.; Langner, A.; Altwein, M.; Schötz, G.; Takke, R.; Thomas, S.; Vydra, J.

    2015-11-01

    Laser fusion projects are heading for IR optics with high broadband transmission, high shock and temperature resistance, long laser durability, and best purity. For this application, fused silica is an excellent choice. The energy density threshold on IR laser optics is mainly influenced by the purity and homogeneity of the fused silica. The absorption behavior regarding the hydroxyl content was studied for various synthetic fused silica grades. The main absorption influenced by OH vibrational excitation leads to different IR attenuations for OH-rich and low-OH fused silica. Industrial laser systems aim for the maximum energy extraction possible. Heraeus Quarzglas developed an Yb-doped fused silica fiber to support this growing market. But the performance of laser welding and cutting systems is fundamentally limited by beam quality and stability of focus. Since absorption in the optical components of optical systems has a detrimental effect on the laser focus shift, the beam energy loss and the resulting heating has to be minimized both in the bulk materials and at the coated surfaces. In collaboration with a laser research institute, an optical finisher and end users, photo thermal absorption measurements on coated samples of different fused silica grades were performed to investigate the influence of basic material properties on the absorption level. High purity, synthetic fused silica is as well the material of choice for optical components designed for DUV applications (wavelength range 160 nm - 260 nm). For higher light intensities, e.g. provided by Excimer lasers, UV photons may generate defect centers that effect the optical properties during usage, resulting in an aging of the optical components (UV radiation damage). Powerful Excimer lasers require optical materials that can withstand photon energy close to the band gap and the high intensity of the short pulse length. The UV transmission loss is restricted to the DUV wavelength range below 300 nm and

  6. Improved linkage analysis of Quantitative Trait Loci using bulk segregants unveils a novel determinant of high ethanol tolerance in yeast

    NARCIS (Netherlands)

    Duitama, Jorge; Sánchez-Rodríguez, Aminael; Goovaerts, Annelies; Pulido-Tamayo, Sergio; Hubmann, Georg; Foulquié-Moreno, María R.; Thevelein, Johan M.; Verstrepen, Kevin J.; Marchal, Kathleen

    2014-01-01

    Background: Bulk segregant analysis (BSA) coupled to high throughput sequencing is a powerful method to map genomic regions related with phenotypes of interest. It relies on crossing two parents, one inferior and one superior for a trait of interest. Segregants displaying the trait of the superior p

  7. Reflectors and resonators for high-k bulk Bloch plasmonic waves in multilayer hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei

    2012-01-01

    We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength-scale struc......We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength......-scale structuring. This multiscale approach is shown to be a promising platform for using bulk plasmonic waves in complex multilayer metamaterials as a new kind of information carriers....

  8. Quantitative and high spatial resolution d{sub 33} measurement of piezoelectric bulk and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Smitha, E-mail: sus44@psu.edu; Yang, Jung In; Trolier-McKinstry, Susan [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Stitt, Joe [Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-11-07

    A single beam laser interferometer based on a modified Mirau detection scheme with a vertical resolution of ∼5 pm was developed for localized d{sub 33} measurements on patterned piezoelectric films. The tool provides high spatial resolution (∼2 μm), essential for understanding scaling and processing effects in piezoelectric materials. This approach enables quantitative information on d{sub 33}, currently difficult in local measurement techniques such as piezoresponse force microscopy. The interferometer is built in a custom microscope and employs a phase lock-in technique in order to detect sub-Angstrom displacements. d{sub 33} measurements on single crystal 0.67PbMg{sub 0.33}Nb{sub 0.67}O{sub 3}-0.33PbTiO{sub 3} and bulk PbZrTiO{sub 3}-5A ceramics demonstrated agreement within <3% with measurements using a double beam laser interferometer. Substrate bending contributions to out-of-plane strain, observed in thin continuous PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} films grown on Si substrates is reduced for electrode diameters smaller than 100 μm. Direct scanning across room temperature and 150 °C poled 5 μm and 10 μm features etched in 0.5 μm thick PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} films doped with 1% Nb confirmed minimal substrate contributions to the effective d{sub 33,f}. Furthermore, enhanced d{sub 33,f} values were observed along the feature edges due to partial declamping from the substrate, thus validating the application of single beam interferometry on finely patterned electrodes.

  9. Cryogenic milling for the fabrication of high J{sub c} MgB{sub 2} bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. N.; Kang, M. O.; Park, H. W. [Korea University of Technology and Education, Cheonan (Korea, Republic of); Jun, B. H.; Kim, C. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    Cryogenic milling which is a combined process of low-temperature treatment and mechanical milling was applied to fabricate high critical current density (J{sub c}) MgB{sub 2} bulk superconductors. Liquid nitrogen was used as a coolant, and no solvent or lubricant was used. Spherical Mg (6-12 μm, 99.9 % purity) and plate-like B powder (⁓ 1 μm, 97 % purity) were milled simultaneously for various time periods (0, 2, 4, 6 h) at a rotating speed of 500 rpm using ZrO{sub 2} balls. The (Mg{sup +2B}) powders milled were pressed into pellets and heat-treated at 700°C for 1 h in flowing argon. The use of cryomilled powders as raw materials promoted the formation reaction of superconducting MgB{sub 2}, reduced the grain size of MgB{sub 2}, and suppressed the formation of impurity MgO. The superconducting critical temperature (T{sub c}) of MgB{sub 2} was not influenced as the milling time (t) increased up to 6 h. Meanwhile, the critical current density (J{sub c}) of MgB{sub 2} increased significantly when t increased to 4 h. When t increased further to 6 h, however, Jc decreased. The J{sub c} enhancement of MgB{sub 2} by cryogenic milling is attributed to the formation of the fine grain MgB{sub 2} and a suppression of the MgO formation.

  10. Towards Mass Production by High Performance Transfer Press in Micro Bulk Forming

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Arentoft, Mogens

    2014-01-01

    cold bulk forming. A methodology for selection of linear motors on the bases of the process parameters was obtained. In order to examine the effectiveness of the machine, specific geometry was investigated for production. Kinematic parameters were found for a production rate of 200 strokes per minute...

  11. Nanoscale Phase Immiscibility in High-ZT Bulk Lead Telluride Thermoelectric Materials

    Science.gov (United States)

    Girard, Steven Neal

    Renewable energy initiatives have increased interest in thermoelectric materials as an option for inexpensive and environmentally friendly waste heat-to-power generation. Unfortunately, low efficiencies have limited their wide-scale utilization. This work describes the synthesis and characterization of bulk nanostructured thermoelectric materials wherein natural phase immiscibility is manipulated to selectively generate nanoscale inclusions of a second phase that improve their efficiency through reductions in lattice thermal conductivity. The PbTe-PbS system exhibits natural phase separation by nucleation and growth or spinodal decomposition phase transformations depending on composition and temperature treatment. Through rapid quenching, nearly ideal solid solution alloys of PbTe-PbS are observed by powder X-ray diffraction. However, characterization by solid-state NMR and IR reflectivity show that solid solutions are obtained for rapidly quenched samples within the nucleation and growth region of the phase diagram, but samples within the spinodal decomposition region exhibit very slight phase immiscibility. We report the temperatures of phase separation using high temperature powder X-ray diffraction. Microscopy reveals that phase separation in PbTe-PbS naturally produces nanoinclusions. A decrease in lattice thermal conductivity is observed as a result of the solid solution-to-nanostructured phase transformation in this materials system, increasing thermoelectric figure of merit. Sn addition to PbTe-PbS produces a pseudobinary system of PbTe-PbSnS 2. This materials system produces microscale lamellae that effectively reduce lattice thermal conductivity. Unfortunately, the PbSnS2 inclusions also scatter electrons, reducing electrical conductivity and producing only a minimal increase in thermoelectric figure of merit. We additionally investigate PbSnS2 as prepared through Bridgman crystal growth. PbTe-PbS doped with Na appears to increase the kinetic rate of

  12. Homogenization of High-Contrast Brinkman Flows

    KAUST Repository

    Brown, Donald L.

    2015-04-16

    Modeling porous flow in complex media is a challenging problem. Not only is the problem inherently multiscale but, due to high contrast in permeability values, flow velocities may differ greatly throughout the medium. To avoid complicated interface conditions, the Brinkman model is often used for such flows [O. Iliev, R. Lazarov, and J. Willems, Multiscale Model. Simul., 9 (2011), pp. 1350--1372]. Instead of permeability variations and contrast being contained in the geometric media structure, this information is contained in a highly varying and high-contrast coefficient. In this work, we present two main contributions. First, we develop a novel homogenization procedure for the high-contrast Brinkman equations by constructing correctors and carefully estimating the residuals. Understanding the relationship between scales and contrast values is critical to obtaining useful estimates. Therefore, standard convergence-based homogenization techniques [G. A. Chechkin, A. L. Piatniski, and A. S. Shamev, Homogenization: Methods and Applications, Transl. Math. Monogr. 234, American Mathematical Society, Providence, RI, 2007, G. Allaire, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518], although a powerful tool, are not applicable here. Our second point is that the Brinkman equations, in certain scaling regimes, are invariant under homogenization. Unlike in the case of Stokes-to-Darcy homogenization [D. Brown, P. Popov, and Y. Efendiev, GEM Int. J. Geomath., 2 (2011), pp. 281--305, E. Marusic-Paloka and A. Mikelic, Boll. Un. Mat. Ital. A (7), 10 (1996), pp. 661--671], the results presented here under certain velocity regimes yield a Brinkman-to-Brinkman upscaling that allows using a single software platform to compute on both microscales and macroscales. In this paper, we discuss the homogenized Brinkman equations. We derive auxiliary cell problems to build correctors and calculate effective coefficients for certain velocity regimes. Due to the boundary effects, we construct

  13. The effect of high energy concentration source irradiation on structure and properties of Fe-based bulk metallic glass

    Science.gov (United States)

    Pilarczyk, Wirginia

    2016-06-01

    Metallic glasses exhibit metastable structure and maintain this relatively stable amorphous state within certain temperature range. High intensity laser beam was used for the surface irradiation of Fe-Co-B-Si-Nb bulk metallic glasses. The variable parameter was laser beam pulse energy. For the analysis of structure and properties of bulk metallic glasses and their surface after laser remelting the X-ray analysis, microscopic observation and test of mechanical properties were carried out. Examination of the nanostructure of amorphous materials obtained by high pressure copper mold casting method and the irradiated with the use of TITAN 80-300 HRTEM was carried out. Nanohardness and reduced Young's modulus of particular amorphous and amorphous-crystalline material zone of the laser beam were examined with the use of Hysitron TI950 Triboindenter nanoindenter and with the use of Berkovich's indenter. The XRD and microscopic analysis showed that the test material is amorphous in its structure before irradiation. Microstructure observation with electron transmission microscopy gave information about alloy crystallization in the irradiated process. Identification of given crystal phases allows to determine the kind of crystal phases created in the first place and also further changes of phase composition of alloy. The main value of the nanohardness of the surface prepared by laser beam has the order of magnitude similar to bulk metallic glasses formed by casting process irrespective of the laser beam energy used. Research results analysis showed that the area between parent material and fusion zone is characterized by extraordinarily interesting structure which is and will be the subject of further analysis in the scope of bulk metallic glasses amorphous structure and high energy concentration source. The main goal of this work is the results' presentation of structure and chosen properties of the selected bulk metallic glasses after casting process and after irradiation

  14. Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Dong, Shiqi; Liu, Yongsheng; Hong, Ziruo; Yao, Enping; Sun, Pengyu; Meng, Lei; Lin, Yuze; Huang, Jinsong; Li, Gang; Yang, Yang

    2017-08-09

    We have demonstrated high-performance integrated perovskite/bulk-heterojunction (BHJ) solar cells due to the low carrier recombination velocity, high open circuit voltage (VOC), and increased light absorption ability in near-infrared (NIR) region of integrated devices. In particular, we find that the VOC of the integrated devices is dominated by (or pinned to) the perovskite cells, not the organic photovoltaic cells. A Quasi-Fermi Level Pinning Model was proposed to understand the working mechanism and the origin of the VOC of the integrated perovskite/BHJ solar cell, which following that of the perovskite solar cell and is much higher than that of the low bandgap polymer based organic BHJ solar cell. Evidence for the model was enhanced by examining the charge carrier behavior and photovoltaic behavior of the integrated devices under illumination of monochromatic light-emitting diodes at different characteristic wavelength. This finding shall pave an interesting possibility for integrated photovoltaic devices to harvest low energy photons in NIR region and further improve the current density without sacrificing VOC, thus providing new opportunities and significant implications for future industry applications of this kind of integrated solar cells.

  15. Formation and mechanical properties of bulk Cu-Ti-Zr-Ni metallic glasses with high glass forming ability

    Institute of Scientific and Technical Information of China (English)

    YANG Ying-jun; KANG Fu-wei; XING Da-wei; SUN Jian-fei; SHEN Qing-ke; SHEN Jun

    2007-01-01

    Bulk amorphous Cu52.5Ti30Zr11.5Ni6 and Cu53.1Ti31.4Zr9.5Ni6 alloys with a high glass forming ability can be quenched into single amorphous rods with a diameter of 5 mm, and exhibit a high fracture strength of 2 212 MPa and 2 184 MPa under compressive condition, respectively. The stress-strain curves show nearly 2% elastic strain limit, yet display no appreciable macroscopic plastic deformation prior to the catastrophic fracture due to highly localized shear bands. The present work shows clearly evidence of molten droplets besides well-developed vein patterns typical of bulk metallic glasses on the fracture surface, suggesting that localized melting induced by adiabatic heating may occur during the final failure event.

  16. Bulk viscous corrections to screening and damping in QCD at high temperatures

    CERN Document Server

    Du, Qianqian; Guo, Yun; Strickland, Michael

    2016-01-01

    Non-equilibrium corrections to the distribution functions of quarks and gluons in a hot and dense QCD medium modify the "hard thermal loops" (HTL). The HTLs determine the retarded, advanced, and symmetric (time-ordered) propagators for gluons with soft momenta as well as the Debye screening and Landau damping mass scales. We compute such corrections to a thermal as well as to a non-thermal fixed point.The screening and damping mass scales are sensitive to the bulk pressure and hence to (pseudo-) critical dynamical scaling of the bulk viscosity in the vicinity of a second-order critical point. This could be reflected in the properties of quarkonium bound states in the deconfined phase and in the dynamics of soft gluon fields.

  17. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    Science.gov (United States)

    Manthiram, Arumugam (Inventor); Wu, Yan (Inventor)

    2010-01-01

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  18. Crystalline phase transition information induced by high temperature susceptibility transformations in bulk PMP-YBCO superconductor growth in-situ

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.P., E-mail: zhangcp6813@126.com [SMRC, Northwest Institute for Non-ferrous Metal Research, Xi’an (China); Physics Department, Université Joseph Fourier, Grenoble (France); State Key Lab of Solidification Processing, Northwest Polytechnical University, Xi’an (China); Chaud, X. [CRETA/CNRS, 25 avenue des martyrs, 38042 Grenoble Cedex 9 (France); Beaugnon, E. [Physics Department, Université Joseph Fourier, Grenoble (France); CRETA/CNRS, 25 avenue des martyrs, 38042 Grenoble Cedex 9 (France); Zhou, L. [SMRC, Northwest Institute for Non-ferrous Metal Research, Xi’an (China); State Key Lab of Solidification Processing, Northwest Polytechnical University, Xi’an (China)

    2015-01-15

    Highlights: • It was the first time we measured the susceptibility of bulk YBCO in powder-melting-process at high temperature up to 1060 °C. • It revealed that the crystalline phase transition of bulk PMP-YBCO growth in process. • A new discovery of Y123 phase pre-formed then melted in heating stage has been found. • It discovered that Y123 crystal solidification started at 1004 °C in cooling stage in PMP route. - Abstract: The dynamic susceptibility transformations of bulk HTSC PMP-YBCO growth have been investigated from 200 °C up to 1060 °C by the Faraday Balance in-situ. It revealed that the crystalline phase transitions of bulk PMP-YBCO growth in process. A new discovery of Y123 phase pre-formed then melted in heating stage has been found. It also discovered that Y123 crystal solidification started at 1004 °C in cooling stage. Before Y123 solidification the liquid phase CuO change to Cu{sub 2}O reciprocally as well as the copper ion valence changed between divalent Cu{sup 2+} and trivalent Cu{sup 1+} each other. It was essential to keep quantities of CuO phase instead of the Cu{sub 2}O for Y123 crystal solidification.

  19. Riblet drag reduction and the effect of bulk fluid rotation in a fully turbulent Taylor-Couette flow

    NARCIS (Netherlands)

    Greidanus, A.J.; Delfos, R.; Tokgoez, S.; Westerweel, J.

    2015-01-01

    Low drag surfaces are often desired in many industries with applications in open and closed channel flows, such as ship hulls and pipe flows. Drag reduction is a phenomenon that can have substantial energy savings, resulting in ecological and economical benefits. We use a Taylor-Couette facility as

  20. High Flow Nasal Cannulae in preterm infants

    Directory of Open Access Journals (Sweden)

    F. Ciuffini

    2013-06-01

    Full Text Available Despite of improved survival of premature infants, the incidence of long term pulmonary complications, mostly associated with ventilation-induced lung injury, remains high. Non invasive ventilation (NIV is able to reduce the adverse effects of mechanical ventilation. Although nasal continuous positive airway pressure (NCPAP is an effective mode of NIV, traumatic nasal complications and intolerance of the nasal interface are common. Recently high flow nasal cannula (HFNC is emerging as an efficient, better tolerated form of NIV, allowing better access to the baby’s face, which may improve nursing, feeding and bonding. The aim of this review is to discuss the available evidence of effectiveness and safety of HFNC in preterm newborns with respiratory distress syndrome (RDS. It is known that distending pressure generated by HFNC increases with increasing flow rate and decreasing infant size and varies according to the amount of leaks by nose and mouth. The effects of HFNC on lung mechanics, its clinical efficacy and safety are still insufficiently investigated. In conclusion, there is a growing evidence of the feasibility of HFNC as an alternative mode of NIV. However, further larger randomized trials are required, before being able to recommend HFNC in the treatment of moderate respiratory distress of preterm infants.

  1. High magnetic field studies of AlGaN/GaN heterostructures grown on bulk GaN

    Energy Technology Data Exchange (ETDEWEB)

    Siekacz, M.; Nowak, G.; Porowski, S. [High Pressure Research Center, Polish Academy of Sciences, 01-142 Warsaw (Poland); Dybko, K. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Skierbiszewski, C. [High Pressure Research Center, Polish Academy of Sciences, 01-142 Warsaw (Poland); TopGaN Ltd., Warsaw (Poland); Knap, W. [High Pressure Research Center, Polish Academy of Sciences, 01-142 Warsaw (Poland); GES -UMR, CNRS - Universite Montpellier 2, Place E. Bataillon, 34950 Montpellier (France); Wasilewski, Z. [Institute for Microstructural Sciences, National Research Council, Ottawa (Canada); Maude, D. [Grenoble High Magnetic Field Laboratory, MPI-CNRS, 38042 Grenoble (France); Lusakowski, J. [Institute of Experimental Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland); Krupczynski, W.; Bockowski, M. [TopGaN Ltd., Warsaw (Poland)

    2005-03-01

    We present transport properties of AlGaN/GaN heterostructures grown over high-pressure bulk GaN substrates. The experimental results include the conductivity tensor measurements in a magnetic field up to 23 T in a wide temperature range 2 K-300 K for Hall bar samples. The room temperature high field data allow us to clearly separate contributions of a parasitic parallel conduction from 2DEG conduction in all investigated heterostructures. The room temperature mobility limit for 2D electrons in GaN/AlGaN heterojunctions grown on defect free GaN bulk substrates is around 2400 cm{sup 2}/Vs. The Quantum Hall Effect studies are performed in the magnetic fields up to 23 T and temperatures between 1.6 K and 15 K This high magnetic field in combination with very high mobility (over 60000 cm{sup 2}/Vs) in the sample grown on the bulk GaN substrate allow us to determine the activation energy in cyclotron gap from longitudinal magnetoresistance. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. A possible high-mobility signal in bulk MoTe2: Temperature independent weak phonon decay

    Directory of Open Access Journals (Sweden)

    Titao Li

    2016-11-01

    Full Text Available Layered transition metal dichalcogenides (TMDs have attracted great attention due to their non-zero bandgap for potential application in high carrier mobility devices. Recent studies demonstrate that the carrier mobility of MoTe2 would decrease by orders of magnitude when used for few-layer transistors. As phonon scattering has a significant influence on carrier mobility of layered material, here, we first reported temperature-dependent Raman spectra of bulk 2H-MoTe2 from 80 to 300 K and discovered that the phonon lifetime of both E12g and A1g vibration modes are independent with temperature. These results were explained by the weak phonon decay in MoTe2. Our results imply the existence of a carrier mobility higher than the theoretical value in intrinsic bulk 2H-MoTe2 and the feasibility to obtain MoTe2-based transistors with sufficiently high carrier mobility.

  3. Combined Bulk and Surface Radiation Damage Effects at Very High Fluences in Silicon Detectors: Measurements and TCAD Simulations

    CERN Document Server

    Moscatelli, F; Morozzi, A; Mendicino, Roberto; Betta, G -F Dalla; Bilei, G M

    2016-01-01

    In this work we propose a new combined TCAD radiation damage modelling scheme, featuring both bulk and surface radiation damage effects, for the analysis of silicon detectors aimed at the High Luminosity LHC. In particular, a surface damage model has been developed by introducing the relevant parameters (NOX, NIT) extracted from experimental measurements carried out on p-type substrate test structures after gamma irradiations at doses in the range 10-500 Mrad(Si). An extended bulk model, by considering impact ionization and deep-level cross-sections variation, was included as well. The model has been validated through the comparison of the simulation findings with experimental measurements carried out at very high fluences (2 10^16 1 MeV equivalent n/cm^2) thus fostering the application of this TCAD approach for the design and optimization of the new generation of silicon detectors to be used in future HEP experiments.

  4. Combined Bulk and Surface Radiation Damage Effects at Very High Fluences in Silicon Detectors: Measurements and TCAD Simulations

    CERN Document Server

    Moscatelli, F; Morozzi, A; Mendicino, R; Dalla Betta, G F; Bilei, G M

    2016-01-01

    In this work we propose a new combined TCAD radiation damage modelling scheme, featuring both bulk and surface radiation damage effects, for the analysis of silicon detectors aimed at the High Luminosity LHC. In particular, a surface damage model has been developed by introducing the relevant parameters (NOX, NIT) extracted from experimental measurements carried out on p-type substrate test structures after gamma irradiations at doses in the range 10-500 Mrad(Si). An extended bulk model, by considering impact ionization and deep-level cross-sections variation, was included as well. The model has been validated through the comparison of the simulation findings with experimental measurements carried out at very high fluences (2×1016 1 MeV equivalent n/cm2) thus fostering the application of this TCAD approach for the design and optimization of the new generation of silicon detectors to be used in future HEP experiments.

  5. Enhanced trapped field performance of bulk high-temperature superconductors using split coil, pulsed field magnetization with an iron yoke

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.; Mochizuki, H.; Takahashi, K.; Shi, Y.-H.; Namburi, D. K.; Zou, J.; Zhou, D.; Dennis, A. R.; Cardwell, D. A.

    2016-07-01

    Investigating and predicting the magnetization of bulk superconducting materials and developing practical magnetizing techniques is crucial to using them as trapped field magnets in engineering applications. The pulsed field magnetization (PFM) technique is considered to be a compact, mobile and relative inexpensive way to magnetize bulk samples, requiring shorter magnetization times (on the order of milliseconds) and a smaller and less complicated magnetization fixture; however, the trapped field produced by PFM is generally much smaller than that of slower zero field cooling or field cooling techniques, particularly at lower operating temperatures. In this paper, the PFM of two, standard Ag-containing Gd-Ba-Cu-O samples is carried out using two types of magnetizing coils: (1) a solenoid coil, and (2) a split coil, both of which make use of an iron yoke to enhance the trapped magnetic field. It is shown that a significantly higher trapped field can be achieved using a split coil with an iron yoke, and in order to explain these how this arrangement works in detail, numerical simulations using a 2D axisymmetric finite element method based on the H -formulation are carried to qualitatively reproduce and analyze the magnetization process from both electromagnetic and thermal points of view. It is observed that after the pulse peak significantly less flux exits the bulk when the iron core is present, resulting in a higher peak trapped field, as well as more overall trapped flux, after the magnetization process is complete. The results have important implications for practical applications of bulk superconductors as such a split coil arrangement with an iron yoke could be incorporated into the design of a portable, high magnetic field source/magnet to enhance the available magnetic field or in an axial gap-type bulk superconducting electric machine, where iron can be incorporated into the stator windings to (1) improve the trapped field from the magnetization process

  6. Engineering the Propagation of High-k Bulk Plasmonic Waves in Multilayer Hyperbolic Metamaterials by Multiscale Structuring

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei; Sipe, John E.

    and feature exotic physical effects such as broadband singularity in the photonic density of states. It was shown that these photonic states are mainly populated by propagating high-k bulk plasmons, stemming from hybridization of short-range surface plasmon polaritons (SRSPPs) supported by individual metallic...... enhancement of spontaneous emission or blackbody radiation. In addition, the proposed structures can be employed to investigate other aspects of light-matter interaction in unusual environments....

  7. Castable Bulk Metallic Glass Strain Wave Gears: Towards Decreasing the Cost of High-Performance Robotics

    Science.gov (United States)

    Hofmann, Douglas C.; Polit-Casillas, Raul; Roberts, Scott N.; Borgonia, John-Paul; Dillon, Robert P.; Hilgemann, Evan; Kolodziejska, Joanna; Montemayor, Lauren; Suh, Jong-Ook; Hoff, Andrew; Carpenter, Kalind; Parness, Aaron; Johnson, William L.; Kennett, Andrew; Wilcox, Brian

    2016-11-01

    The use of bulk metallic glasses (BMGs) as the flexspline in strain wave gears (SWGs), also known as harmonic drives, is presented. SWGs are unique, ultra-precision gearboxes that function through the elastic flexing of a thin-walled cup, called a flexspline. The current research demonstrates that BMGs can be cast at extremely low cost relative to machining and can be implemented into SWGs as an alternative to steel. This approach may significantly reduce the cost of SWGs, enabling lower-cost robotics. The attractive properties of BMGs, such as hardness, elastic limit and yield strength, may also be suitable for extreme environment applications in spacecraft.

  8. Turbulent Flow past High Temperature Surfaces

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald

    2014-11-01

    Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.

  9. Extended dynamic model for ion diffusion in all-vanadium redox flow battery including the effects of temperature and bulk electrolyte transfer

    Science.gov (United States)

    Badrinarayanan, Rajagopalan; Zhao, Jiyun; Tseng, K. J.; Skyllas-Kazacos, Maria

    2014-12-01

    As with all redox flow batteries, the Vanadium Redox flow Battery (VRB) can suffer from capacity loss as the vanadium ions diffuse at different rates leading to a build-up on one half-cell and dilution on the other. In this paper an extended dynamic model of the vanadium ion transfer is developed including the effect of temperature and bulk electrolyte transfer. The model is used to simulate capacity decay for a range of different ion exchange membranes that are being used in the VRB. The simulations show that Selemion CMV and Nafion 115 membranes have similar behavior where the impact of temperature on capacity loss is highest within the first 100 cycles. The results for Selemion AMV membrane however are seen to be very different where the capacity loss at different temperatures observed to increase linearly with increasing charging/discharging cycles. The model is made more comprehensive by including the effect of bulk electrolyte transfer. A volume change of 19% is observed in each half-cell for Nafion 115 membrane based on the simulation parameters. The effect of this change in volume directly affects concentration, and the characteristics are analyzed for each vanadium species as well as the overall concentration in the half-cells.

  10. Cosmic bulk flows on 50 {h}^{-1}$Mpc scales: A Bayesian hyper-parameter method and multi-shells likelihood analysis

    CERN Document Server

    Ma, Yin-Zhe

    2012-01-01

    It has been argued recently that the galaxy peculiar velocity field provides evidence of excessive power on scales of $50\\hmpc$, which seems to be inconsistent with the standard $\\Lambda$CDM cosmological model. We discuss several assumptions and conventions used in studies of the large-scale bulk flow to check whether this claim is robust under a variety of conditions. Rather than using a composite catalogue we select samples from the SN, ENEAR, SFI++ and A1SN catalogues, and correct for Malmquist bias in each according to the IRAS PSCz density field. We also use slightly different assumptions about the small-scale velocity dispersion and the parameterisation of the matter power spectrum when calculating the variance of the bulk flow. By combining the likelihood of individual catalogues using a Bayesian hyper-parameter method, we find that the joint likelihood of the amplitude parameter gives $\\sigma_8=0.65^{+0.47}_{-0.35}(\\pm 1 \\sigma)$, which is entirely consistent with the $\\Lambda$CDM model. In addition, ...

  11. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    Science.gov (United States)

    Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.

    2014-10-01

    A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  12. The effect of hygroscopicity on sea-spray aerosol fluxes: a comparison of high-rate and bulk correction methods

    Directory of Open Access Journals (Sweden)

    D. A. J. Sproson

    2012-09-01

    Full Text Available The eddy covariance technique is the most direct of the methods that have been used to measure the flux of sea-spray aerosol between the ocean and atmosphere, but has been applied in only a handful of studies. However, unless the aerosol is dried before the eddy covariance measurements are made, the hygroscopic nature of sea-spray may combine with a relative humidity flux to result in a bias in the calculated aerosol flux. "Bulk" methods have been presented to account for this bias, however they rely on assumptions of the shape of the aerosol spectra which may not be valid for near-surface measurements of sea-spray.

    Here we describe a method of correcting aerosol spectra for relative humidity induced size variations at the high frequency (10 Hz measurement timescale, where counting statistics are poor and the spectral shape cannot be well represented by a simple power law. Such a correction allows the effects of hygroscopicity and relative humidity flux on the aerosol flux to be explicitly evaluated and compared to the bulk corrections, both in their original form and once reformulated to better represent the measured mean aerosol spectra. In general, the bulk corrections – particularly when reformulated for the measured mean aerosol spectra – perform relatively well, producing flux corrections of the right sign and approximate magnitude. However, there are times when the bulk methods either significantly over- or underestimate the required flux correction. We thus conclude that, where possible, relative humidity corrections should be made at the measurement frequency.

  13. Short communication: effect of storage and preservation on total bacterial counts determined by automated flow cytometry in bulk tank goat milk.

    Science.gov (United States)

    Sierra, D; Sánchez, A; Contreras, A; Luengo, C; Corrales, J C; de la Fe, C; Guirao, I; Morales, C T; Gonzalo, C

    2009-10-01

    This study was designed to evaluate the effects of different storage conditions on total bacterial count (TBC) determinations made in goat bulk tank milk using an automated flow cytometry method. The storage conditions tested were storage temperature (refrigeration at 4 and 10 degrees C or freezing at -20 degrees C), the use of a preservative (no preservative, NP; azidiol, AZ; or bronopol, BR), and the age of the milk samples for each analytical condition (storage times at 4 degrees C: from 0 h to 5 d for NP; and from 0 h to 22 d for AZ and BR; storage times at 10 degrees C: from 24 h to 2 d for NP and from 24 h to 22 for AZ and BR; storage times at -20 degrees C: from 24 h to 22 d for NP, AZ, and BR). Significant effects on individual bacterial count (IBC) variation were shown by the bulk tank milk sample, preservative, storage temperature, interaction preservative x storage temperature, and milk age within the interaction preservative x storage temperature. In preserved samples, the highest IBC were obtained for AZ and the lowest counts were obtained in samples preserved with BR. Because of the variation in IBC recorded in BR-preserved samples, we recommend that BR should not be used for TBC determinations using the automated flow cytometry method. The NP samples stored at 4 and 10 degrees C showed significantly higher IBC at 24 h postcollection, also invalidating these analytical conditions for TBC analyses. The practical implications of our findings are that goat milk samples preserved with AZ and stored at 10 or 4 degrees C are appropriate for TBC by the BactoScan flow cytometry method for up to 24 h and 11 d postcollection, respectively.

  14. Utilization of Tabula Rasa to Stabilize Bulk Lifetimes in n-Cz Silicon for High-Performance Solar Cell Processing

    Energy Technology Data Exchange (ETDEWEB)

    LaSalvia, Vincenzo; Jensen, Mallory Ann; Youssef, Amanda; Nemeth, William; Page, Matthew; Buonassisi, Tonio; Stradins, Paul

    2016-11-21

    We investigate a high temperature, high cooling-rate anneal Tabula Rasa (TR) and report its implications on n-type Czochralski-grown silicon (n-Cz Si) for photovoltaic fabrication. Tabula Rasa aims at dissolving and homogenizing oxygen precipitate nuclei that can grow during the cell process steps and degrade the cell performance due to their high internal gettering and recombination activity. The Tabula Rasa thermal treatment is performed in a clean tube furnace with cooling rates >100 degrees C/s. We characterize the bulk lifetime by Sinton lifetime and photoluminescence mapping just after Tabula Rasa, and after the subsequent cell processing. After TR, the bulk lifetime surprisingly degrades to <; 0.1ms, only to recover to values equal or higher than the initial non-treated wafer (several ms), after typical high temperature cell process steps. Those include boron diffusion and oxidation; phosphorus diffusion/oxidation; ambient annealing at 850 degrees C; and crystallization annealing of tunneling-passivating contacts (doped polycrystalline silicon on 1.5 nm thermal oxide). The drastic lifetime improvement during high temperature cell processing is attributed to improved external gettering of metal impurities and annealing of intrinsic point defects. Time and injection dependent lifetime spectroscopy further reveals the mechanisms of lifetime improvement after Tabula Rasa treatment. Additionally, we report the efficacy of Tabula Rasa on n-type Cz-Si wafers and its dependence on oxygen concentration, correlated to position within the ingot.

  15. Synthesis of Bulk Nanostructured DO22 Superlattice of Ni3(Mo, Nb with High Strength, High Ductility, and High Thermal Stability

    Directory of Open Access Journals (Sweden)

    H. M. Tawancy

    2012-01-01

    Full Text Available We show that a bulk nanostructured material combining high strength, high ductility, and high thermal stability can be synthesized in a Ni-Mo-Nb alloy with composition approaching Ni3(Mo, Nb. By means of a simple aging treatment at 700°C, the grains of the parent face-centered cubic phase are made to transform into nanosized ordered crystals with DO22 superlattice maintaining a size of 10–20 nm after up to 100 hours of aging and corresponding room-temperature yield strength of 820 MPa and tensile ductility of 35%. Deformation of the superlattice is found to predominantly occur by twinning on {111} planes of the parent phase. It is concluded that, although the respective slip systems are suppressed, most of the twinning systems are preserved in the DO22 superlattice enhancing the ductility.

  16. Mechanical properties of high dense coal fly-ash bulk materials by plasma spark sintering (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, G.; Hasezaki, K.; Nakashita, A.; Kakuda, H. [Shimane University, Shimane (Japan). Dept. of Material Science

    2008-10-15

    Coal fly-ash bulk materials were prepared by spark plasma sintering (SPS). The as-received coal fly ash produced by Misumi Power Station (The Chugoku Electric Power Co. Inc.), had an average particle size of 19 mm and contained about 2% carbon from unburned coal. The sintering temperature was 1273 K for 10 min. The mass density of the sintered compact was 2.4 x 103 kg/m{sup 3}. After three-point flexural testing of the compact, the average flexural strength and Young's modulus were 25.6 MPa and 23.0 GPa, respectively. From the flexural strength, the Weibull modulus was found to be m = 6.13, indicating that the compact was a typical ceramics. Fractographic examination indicated that in all specimens the fracture origin was located on the bottom surface and was not an intrinsic flaw. Vickers indentation test showed that the fracture toughness was 0.61 MPa.m{sup 0.5} and the calculated critical flaw size c{sub 0}, was 0.18 mm. This c{sub 0} value was larger than that of the voids and the unburned carbon at the fracture surface. It is noteworthy that the mechanical strength of the sintered compact was not affected by the voids and unburned carbon.

  17. Isothermal bulk modulus and its first pressure derivative of NaC1 at high pressure and high temperature

    Institute of Scientific and Technical Information of China (English)

    Song Ting; Sun Xiao-Wei; Liu Zi-Jiang; Li Ji1an-Feng; Tian Jun-Hong

    2012-01-01

    The isothermal bulk modulus and its first pressure derivative of NaCl are investigated using the classical molecular dynamics method and the quasi-harmonic Debye model.To ensure faithful molecular dynamics simulations,two types of potentials,the shell-model (SM) potential and the two-body rigid-ion Born-Mayer-Huggins-Fumi-Tosi (BMHFT)potential,are fully tested.Compared with the SM potential based simulation,the molecular dynamics simulation with the BMHFT potential is very successful in reproducing accurately the measured bulk modulus of NaC1. Particular attention is paid to the prediction of the isothermal bulk modulus and its first pressure derivative using the reliable potential and to the comparison of the SM and the BMHFT potentials based molecular dynamics simulations with the quasi-harmonic Debye model.The properties of NaCl in the pressure range of 0-30 GPa at temperatures up to the melting temperature of 1050 K are investigated.

  18. Flow “Fine” Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods

    Science.gov (United States)

    2015-01-01

    Abstract The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828

  19. Fluorene-based co-polymer with high hole mobility and device performance in bulk heterojunction organic solar cells.

    Science.gov (United States)

    Watters, Darren C; Yi, Hunan; Pearson, Andrew J; Kingsley, James; Iraqi, Ahmed; Lidzey, David

    2013-07-25

    A new donor-acceptor polymer based on 9,9-dioctylfluorene is synthesized and tested in organic photovoltaic devices. Results show that the polymer exhibits good solubility in a range of organic solvents and has a high hole mobility. When blended with a PC70 BM acceptor and fabricated into a bulk heterojunction, photovoltaic devices having a maximum power conversion efficiency (PCE) of 6.2% and a peak external quantum efficiency of 74% are created. Such efficiencies are realized without any necessity for solvent additives or thermal annealing protocols.

  20. Observation of the Fundamental Nyquist Noise Limit in an Ultra-High $Q$-Factor Cryogenic Bulk Acoustic Wave Cavity

    CERN Document Server

    Goryachev, Maxim; van Kann, Frank; Galliou, Serge; Tobar, Michael E

    2014-01-01

    Thermal Nyquist noise fluctuations of high-$Q$ Bulk Acoustic Wave (BAW) cavities have been observed at cryogenic temperatures with a DC Superconducting Quantum Interference Device (SQUID) amplifier. High $Q$ modes with bandwidths of few tens of milliHz produce thermal fluctuations with a Signal-To-Noise ratio of up to 23dB. The estimated effective temperature from the Nyquist noise is in good agreement with the physical temperature of the device, confirming the validity of the equivalent circuit model and the non-existence of any excess resonator self-noise. The measurements also confirm that the quality factor remains extremely high ($Q>10^8$ at low order overtones) for very weak (thermal) system motion at low temperatures, when compared to values measured with relatively strong external excitation. This result represents an enabling step towards operating such a high-Q acoustic device at the standard quantum limit.

  1. Mechanically flexible optically transparent silicon fabric with high thermal budget devices from bulk silicon (100)

    KAUST Repository

    Hussain, Muhammad Mustafa

    2013-05-30

    Today’s information age is driven by silicon based electronics. For nearly four decades semiconductor industry has perfected the fabrication process of continuingly scaled transistor – heart of modern day electronics. In future, silicon industry will be more pervasive, whose application will range from ultra-mobile computation to bio-integrated medical electronics. Emergence of flexible electronics opens up interesting opportunities to expand the horizon of electronics industry. However, silicon – industry’s darling material is rigid and brittle. Therefore, we report a generic batch fabrication process to convert nearly any silicon electronics into a flexible one without compromising its (i) performance; (ii) ultra-large-scale-integration complexity to integrate billions of transistors within small areas; (iii) state-of-the-art process compatibility, (iv) advanced materials used in modern semiconductor technology; (v) the most widely used and well-studied low-cost substrate mono-crystalline bulk silicon (100). In our process, we make trenches using anisotropic reactive ion etching (RIE) in the inactive areas (in between the devices) of a silicon substrate (after the devices have been fabricated following the regular CMOS process), followed by a dielectric based spacer formation to protect the sidewall of the trench and then performing an isotropic etch to create caves in silicon. When these caves meet with each other the top portion of the silicon with the devices is ready to be peeled off from the bottom silicon substrate. Release process does not need to use any external support. Released silicon fabric (25 μm thick) is mechanically flexible (5 mm bending radius) and the trenches make it semi-transparent (transparency of 7%). © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  2. Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR).

    Science.gov (United States)

    Gangagni Rao, A; Venkata Naidu, G; Krishna Prasad, K; Chandrasekhar Rao, N; Venkata Mohan, S; Jetty, Annapurna; Sarma, P N

    2005-01-01

    Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.

  3. Bulking factor of the strata overlying the gob and a three-dimensional numerical simulation of the air leakage flow field

    Institute of Scientific and Technical Information of China (English)

    Shao Hao; Jiang Shuguang; Wang Lanyun; Wu Zhengyan

    2011-01-01

    The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad. A mathematical function of a three-dimensional gob bulking factor is described based on a three-dimensional gob model. The method of taking value for interstice and permeability ratios is also proposed. The law of air leakage of fully mechanized top coal is researched in this study. The results show that the speed of air flow near the upper and lower crossheadings is higher than that in the central section of the gob at the same distance from the working face. When the amount of air at the working face exceeds a critical amount, the width of the spontaneous combustion zone in the upper and lower crossheadings is also larger than that in the central section. In this situation, the key is preventing the coal left in the upper and lower crossheadings from self-igniting. Reducing the amount of air at the working face can decrease the width of the spontaneous combustion zone, especially the width near the upper and lower crossheadings. This also moves the spontaneous combustion zone in the direction of the working face. It can prevent the coal in the gob from self-igniting by making the coal left in the crossheadings to be inert and by effectively controlling the amount of air at the working face.

  4. A highly sensitive fluorimetric method for determination of lenalidomide in its bulk form and capsules via derivatization with fluorescamine

    Directory of Open Access Journals (Sweden)

    Darwish Ibrahim A

    2012-10-01

    Full Text Available Abstract Background Lenalidomide (LND is a potent novel thalidomide analog which demonstrated remarkable clinical activity in treatment of multiple myeloma disease via a multiple-pathways mechanism. The strong evidences-based clinical success of LND in patients has led to its recent approval by US-FDA under the trade name of Revlimid® capsules by Celgene Corporation. Fluorimetry is a convenient technique for pharmaceutical quality control, however there was a fluorimetric method for determination of LND in its bulk and capsules. Results A novel highly sensitive and simple fluorimetric method has been developed and validated for the determination of lenalidmide (LND in its bulk and dosage forms (capsules. The method was based on nucleophilic substitution reaction of LND with fluorescamine (FLC in aqueous medium to form a highly fluorescent derivative that was measured at 494 nm after excitation at 381 nm. The factors affecting the reaction were carefully studied and optimized. The kinetics of the reaction was investigated, and the reaction mechanism was postulated. Under the optimized conditions, linear relationship with good correlation coefficient (0.9999 was found between the fluorescence intensity and LND concentration in the range of 25–300 ng/mL. The limits of detection and quantitation for the method were 2.9 and 8.7 ng/mL, respectively. The precision of the method was satisfactory; the values of relative standard deviations did not exceed 1.4%. The proposed method was successfully applied to the determination of LND in its bulk form and pharmaceutical capsules with good accuracy; the recovery values were 97.8–101.4 ± 1.08–2.75%. Conclusions The proposed method is selective and involved simple procedures. In conclusion, the method is practical and valuable for routine application in quality control laboratories for determination of LND.

  5. High Frame Rate Synthetic Aperture 3D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Holbek, Simon; Stuart, Matthias Bo

    2016-01-01

    3-D blood flow quantification with high spatial and temporal resolution would strongly benefit clinical research on cardiovascular pathologies. Ultrasonic velocity techniques are known for their ability to measure blood flow with high precision at high spatial and temporal resolution. However......, current volumetric ultrasonic flow methods are limited to one velocity component or restricted to a reduced field of view (FOV), e.g. fixed imaging planes, in exchange for higher temporal resolutions. To solve these problems, a previously proposed accurate 2-D high frame rate vector flow imaging (VFI......) technique is extended to estimate the 3-D velocity components inside a volume at high temporal resolutions (

  6. Real gas flows with high velocities

    CERN Document Server

    Lunev, Vladimir V

    2009-01-01

    Gasdynamic Model and Equations Outline of the Gasdynamic Model Basic Equations and Postulates Equations of State Kinetic Theory Second Law of Thermodynamics Speed of Sound Integral Equations of Motion Kinematics of Fluid Media Differential Equations of Gasdynamics Rheological Model Initial and Boundary Conditions Similarity and Modeling in Gasdynamics Euler Equations Navier-Stokes Equations Turbulent Flows Viscous and Inviscid Flow Models Inviscid Gasdynamics Stream Function, Potential,

  7. Validation of Two-Control-Volume Bulk Flow Method for Rotordynamic Characteristics of Hole-Pattern Seals%Bulk Flow方法分析孔型密封转子动力特性的有效性

    Institute of Scientific and Technical Information of China (English)

    晏鑫; 李军; 丰镇平

    2009-01-01

    基于Kleynhans和Childs的两控制容积等温BF(Bulk Flow)模型,通过增加能量方程和理想气体状态方程,建立了理想气体BF方法的数学模型,来预测和分析孔型密封转子在偏心状态下的静力学和动力学特性.由于转子在密封中心附近做微小涡动,故可通过采用摄动方法使得NS方程的求解过程得到较大的简化,再通过迭代求解简化后的零阶和一阶摄动方程组,就可以求出孔型密封的流场和动力特性系数.以此为依据发展了相关程序,计算出了不同工况条件下孔型密封的转子动力特性系数与激振频率的关系,通过与已有的实验数据和等温BF模型的计算结果进行对比,验证了理想气体BF模型及相关求解方法的有效性.结果表明:理想气体BF模型的预测结果与实验数据吻合良好,且优于等温BF模型的计算结果,证明了该理想气体BF模型的正确性和计算方法的可靠性.该方法可用于孔型密封动力特性的预测.

  8. Determination of Edoxaban in Bulk and in Tablet Dosage Form by Stability Indicating High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Pasam Satyanarayana Reddy , V. Shanmukha Kumar Jagarlapudi, Chandra Bala Sekaran

    2016-03-01

    Full Text Available Background: Edoxaban is an orally active direct factor Xa inhibitor. The aim of the present study was to develop a stability indicating HPLC method for the quantification of edoxaban in bulk and in tablet dosage form. Methods: Edoxaban was separated on Hypersil BDS C18 column (250 x 4.6 mm, i.d. 5µm using 0.1M K2HPO4: Methanol (65:35, v/v as an isocratic mobile phase at a flow rate of 1.0 ml/min. Detection was performed using photodiode array detector set at 245 nm. The chromatographic conditions were optimized. The method was validated as per the guidelines given by International Conference on Harmonization guidelines. Results: Edoxaban was eluted at 3.785 min with a total run time of 6 min. The calibration curve was found to be linear over the concentration range of 5–200 μg/ml. Limit of detection and limit of quantification for edoxaban are 0.209 µg/ml and 0.698 µg/ml, respectively. The intra- and inter-day precision values were ≤0.710% and the accuracy ranged from 99.824-100.720%. Besides, all the validation results were within acceptability criteria of general assay. The stability indicating nature of the method was established by subjecting the edoxaban to stress conditions such as acid and base hydrolyses, oxidative, photo- and thermal degradations. The degraded products formed in all stress conditions were resolved successfully from the edoxaban. Conclusion: The developed and validated method is suitable for the determination of edoxaban in bulk and in commercial tablet dosage form.

  9. Experimental determination of bulk modulus of 14Å tobermorite using high pressure synchrotron X-ray diffraction

    KAUST Repository

    Oh, Jae Eun

    2012-02-01

    Using a diamond anvil cell, 14 Å tobermorite, a structural analogue of calcium silicate hydrates (C-S-H), was examined by high-pressure synchrotron X-ray diffraction up to 4.8 GPa under hydrostatic conditions. The bulk modulus of 14 Å tobermorite was calculated, K o = 47 GPa. Comparison of the current results with previous high pressure studies on C-S-H(I) indicates that: (1) the compression behavior of the lattice parameters a and b of 14 Å tobermorite and C-S-H(I) are very similar, implying that both materials may have very similar Ca-O layers, and also implying that an introduction of structural defects into the Ca-O layers may not substantially change in-plane incompressibility of the ab plane of 14 Å tobermorite; and (2) the bulk modulus values of 14 Å tobermorite and C-S-H(I) are dominated by the incompressibility of the lattice parameter c, which is directly related to the interlayer spacing composed of dreierketten silicate chains, interlayer Ca, and water molecules. © 2011 Elsevier Ltd. All rights reserved.

  10. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiangxing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Zhongwu, E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongya [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Xiao, Zhiyu [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang, Guoqing [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-09-15

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH){sub max} increased from 65 to 120 kJ/m{sup 3} after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets.

  11. Repeated magnetization with temperature control in a high-Tc superconducting bulk; Ondo seigyo wo tomonatta koon chodendo baaruku tai no dotai no kurikaeshi no chakuji ho

    Energy Technology Data Exchange (ETDEWEB)

    Kamijo, H.; Fujimoto, H. [Railway tech. Research Inst., Tokyo (Japan)

    2000-05-29

    It examines applicability of the hulk magnet which uses magnetize-ingly the high-temperature superconductivity bulk body to the superconducting magnet for levitation system railway. It must be magnetized to the superconductive bulk body in respect of as much as possible large magnetic flux in order to obtain the powerful bulk magnet. Therefore, large coil for the impression magnetic field and power are required, and there is a problem of the growth of large electromagnetic mosquito even in the magnetizing process. Then, it is trying the method for magnetizing large magnetic field to the superconductive bulk body by comparatively small impression magnetic field by the method for repeatedly carrying out field cool and pulse magnetizing, while it gradually lowers the temperature of the superconductive bulk body from the critical temperature. (NEDO)

  12. High-density turbidity currents: Are they sandy debris flows?

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, G. [Mobil Exploration and Producing Technical Center, Dallas, TX (United States)

    1996-01-01

    Conventionally, turbidity currents are considered as fluidal flows in which sediment is supported by fluid turbulence, whereas debris flows are plastic flows in which sediment is supported by matrix strength, dispersive pressure, and buoyant lift. The concept of high-density turbidity current refers to high-concentration, commonly non-turbulent, flows of fluids in which sediment is supported mainly by matrix strength, dispersive pressure, and buoyant lift. The conventional wisdom that traction carpets with entrained turbulent clouds on top represent high-density turbidity currents is a misnomer because traction carpets are neither fluidal nor turbulent. Debris flows may also have entrained turbulent clouds on top. The traction carpet/debris flow and the overriding turbulent clouds are two separate entities in terms of flow rheology and sediment-support mechanism. In experimental and theoretical studies, which has linked massive sands and floating clasts to high-density turbidity currents, the term high-density turbidity current has actually been used for laminar flows. In alleviating this conceptual problem, sandy debris flow is suggested as a substitute for high-density turbidity current. Sandy debris flows represent a continuous spectrum of processes between cohesive and cohesionless debris flows. Commonly they are rheologically plastic. They may occur with or without entrained turbulent clouds on top. Their sediment-support mechanisms include matrix strength, dispersive pressure, and buoyant lift. They are characterized by laminar flow conditions, a moderate to high grain concentration, and a low to moderate mud content. Although flows evolve and transform during the course of transport in density-stratified flows, the preserved features in a deposit are useful to decipher only the final stages of deposition. At present, there are no established criteria to decipher transport mechanism from the depositional record.

  13. A Brief Review of High Entropy Alloys and Serration Behavior and Flow Units

    Institute of Scientific and Technical Information of China (English)

    Yong ZHANG; Jun-wei QIAO; Peter KLIAW

    2016-01-01

    Multicomponent alloys with high entropy of mixing,e.g.,high entropy alloys (HEAs)and/or multiprin-cipal-element alloys (MEAs),are attracting increasing attentions,because the materials with novel properties are being developed,based on the design strategy of the equiatomic ratio,multicomponent,and high entropy of mixing in their liquid or random solution state.Recently,HEAs with the ultrahigh strength and fracture toughness,excel-lent magnetic properties,high fatigue,wear and corrosion resistance,great phase stability/high resistance to heat-softening behavior,sluggish diffusion effects,and potential superconductivity,etc.,were developed.The HEAs can even have very high irradiation resistance and may have some self-healing effects,and can potentially be used as the first wall and nuclear fuel cladding materials.Serration behaviors and flow units are powerful methods to understand the plastic deformation or fracture of materials.The methods have been successfully used to study the plasticity of amorphous alloys (also bulk metallic glasses,BMGs).The flow units are proposed as:free volumes,shear transi-tion zones (STZs),tension-transition zones (TTZs),liquid-like regions,soft regions or soft spots,etc.The flow units in the crystalline alloys are usually dislocations,which may interact with the solute atoms,interstitial types,or sub-stitution types.Moreover,the flow units often change with the testing temperatures and loading strain rates,e.g., at the low temperature and high strain rate,plastic deformation will be carried out by the flow unit of twinning,and at high temperatures,the grain boundary will be the weak area,and play as the flow unit.The serration shapes are related to the types of flow units,and the serration behavior can be analyzed using the power law and modified power law.

  14. The Structure and Mechanical Properties of High-Strength Bulk Ultrafine-Grained Cobalt Prepared Using High-Energy Ball Milling in Combination with Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Ivo Marek

    2016-05-01

    Full Text Available In this study, bulk ultrafine-grained and micro-crystalline cobalt was prepared using a combination of high-energy ball milling and subsequent spark plasma sintering. The average grain sizes of the ultrafine-grained and micro-crystalline materials were 200 nm and 1 μm, respectively. Mechanical properties such as the compressive yield strength, the ultimate compressive strength, the maximum compressive deformation and the Vickers hardness were studied and compared with those of a coarse-grained as-cast cobalt reference sample. The bulk ultrafine-grained sample showed an ultra-high compressive yield strength that was greater than 1 GPa, which is discussed with respect to the preparation technique and a structural investigation.

  15. Preparation of high J(c) Bi-Sr-Ca-Cu-O bulk sample by floating zone method

    Science.gov (United States)

    Kubo, Yukio; Michishita, Kazuo; Higashida, Yutaka; Mizuno, Masatoshi; Yokoyama, Hisanori

    1989-04-01

    Bi-Sr-Ca-Cu-O bulk samples with three different nominal compositions of Bi2Sr2CaCu2O(y) Bi2Sr2Ca2Cu3O(y) and Bi(0.7)Pb(0.3)SrCaCu(1.8)O(y) were prepared by the floating zone method at growth rates ranging from 2 mm/h to 70 mm/h. The sample grown at 2 mm/h with the nominal composition of Bi2Sr2CaCu2O(y) possessed high density, highly aligned morphology, and a transport critical current density higher than 1490 A/sq cm at 77 K under a zero magnetic field without any postannealing.

  16. Batch-processed GdBCO-Ag bulk superconductors fabricated using generic seeds with high trapped fields

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Y., E-mail: ys206@cam.ac.u [Superconductivity Group, Engineering Department, University of Cambridge, CB2 1PZ (United Kingdom); Hari Babu, N. [Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University, West London UB8 3PH (United Kingdom); Iida, K. [Superconducting Group, IFW-Dresden Helmoholtz Str. 20, D-01069 Dresden (Germany); Yeoh, W.K. [Australian Key Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia); Dennis, A.R.; Pathak, S.K.; Cardwell, D.A. [Superconductivity Group, Engineering Department, University of Cambridge, CB2 1PZ (United Kingdom)

    2010-09-01

    Large, single grains of Y-Ba-Cu-O (YBCO) have been batch-processed to date by the top seeded melt growth (TSMG) process using NdBCO or SmBCO seed crystals. It has proved difficult, however, to economically batch-process light rare earth (LRE) LRE-Ba-Cu-O bulk high temperature superconductors, which have higher critical current densities and irreversibility fields than YBCO, and therefore greater potential for high field engineering applications. In this paper, we report a novel batch-process based on a cheap, readily available generic seed crystal, developed recently at Cambridge, and a TSMG melt processing technique based on cold seeding in air for the batch fabrication of Gd-Ba-Cu-O-Ag single grains. The superconducting properties of the (LRE)BCO single grains fabricated by this process are, in all respects, equivalent to those processed more conventionally in a reduced oxygen atmosphere.

  17. Spin signatures of photogenerated radical anions in polymer-[70]fullerene bulk-heterojunctions : high-frequency pulsed EPR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, O. G.; Filippone, S.; Martin, N.; Sperlich, A.; Deibel, C.; Dyakonov, V. (Chemical Sciences and Engineering Division); (Univ. Complutense de Madrid); (Univ. of Wurzburg)

    2010-04-14

    Charged polarons in thin films of polymer-fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9.5 GHz (X-band) and 130 GHz (D-band). The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C{sub 60}-PCBM), and two different soluble C{sub 70}-derivates: C{sub 70}-PCBM and diphenylmethano[70]fullerene oligoether (C{sub 70}-DPM-OE). The first experimental identification of the negative polaron localized on the C{sub 70}-cage in polymer-fullerene bulk heterojunctions has been obtained. When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification. Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P{sup +} and P{sup -} in PHT-C{sub 70} bulk heterojunctions. Comparing signals from C{sub 70}-derivatives with different side-chains, we have obtained experimental proof that the polaron is localized on the cage of the C{sub 70} molecule.

  18. Spin Signatures of Photogenerated Radical Anions in Polymer-[70]Fullerene Bulk Heterojunctions: High Frequency Pulsed EPR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, Oleg G. [Argonne National Lab. (ANL), Argonne, IL (United States); Filippone, Salvatore [Universidad Complutense de Madrid (Spain); Martin, C. R. [Universidad Complutense de Madrid (Spain); Sperlich, Andreas [Julius-Maximilians Univ. of Wurzburg (Germany); Deibel, Carsten [Julius-Maximilians Univ. of Wurzburg (Germany); Dyakonov, Vladimir [Julius-Maximilians Univ. of Wurzburg (Germany)

    2010-11-18

    Charged polarons in thin films of polymer-fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9.5 GHz (X-band) and 130 GHz (D-band). The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C60-PCBM), and two different soluble C70-derivates: C70-PCBM and diphenylmethano[70]fullerene oligoether (C70-DPM-OE). The first experimental identification of the negative polaron localized on the C70-cage in polymer-fullerene bulk heterojunctions has been obtained. When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification. Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P+ and P- in PHT-C70 bulk heterojunctions. Comparing signals from C70-derivatives with different side-chains, we have obtained experimental proof that the polaron is localized on the cage of the C70 molecule.

  19. Spin signatures of photogenerated radical anions in polymer-[70]fullerene bulk heterojunctions: high frequency pulsed EPR spectroscopy.

    Science.gov (United States)

    Poluektov, Oleg G; Filippone, Salvatore; Martín, Nazario; Sperlich, Andreas; Deibel, Carsten; Dyakonov, Vladimir

    2010-11-18

    Charged polarons in thin films of polymer-fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9.5 GHz (X-band) and 130 GHz (D-band). The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C(60)-PCBM), and two different soluble C(70)-derivates: C(70)-PCBM and diphenylmethano[70]fullerene oligoether (C(70)-DPM-OE). The first experimental identification of the negative polaron localized on the C(70)-cage in polymer-fullerene bulk heterojunctions has been obtained. When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification. Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P(+) and P(-) in PHT-C(70) bulk heterojunctions. Comparing signals from C(70)-derivatives with different side-chains, we have obtained experimental proof that the polaron is localized on the cage of the C(70) molecule.

  20. Spin signatures of photogenerated radical anions in polymer-[70] fullerene bulk-heterojunctions : high-frequency pulsed EPR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, O. G.; Filippone, S.; Martin, N.; Sperlich, A.; Deibel, C.; Dyakonov, V. (Chemical Sciences and Engineering Division); (Univ. Complutense de Madrid); (Univ. of Wurzburg)

    2010-01-01

    Charged polarons in thin films of polymer-fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9.5 GHz (X-band) and 130 GHz (D-band). The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C{sub 60}-PCBM), and two different soluble C{sub 70}-derivates: C{sub 70}-PCBM and diphenylmethano[70]fullerene oligoether (C{sub 70}-DPM-OE). The first experimental identification of the negative polaron localized on the C{sub 70}-cage in polymer-fullerene bulk heterojunctions has been obtained. When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification. Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P{sup +} and P{sup -} in PHT-C{sub 70} bulk heterojunctions. Comparing signals from C{sub 70}-derivatives with different side-chains, we have obtained experimental proof that the polaron is localized on the cage of the C{sub 70} molecule.

  1. Performance studies under high irradiation of resistive bulk-micromegas chambers at the CERN Gamma Irradiation Facility

    CERN Document Server

    Sidiropoulou, Ourania; Bortfeldt, J; Farina, E; Iengo, P; Longo, L; Sidiropoulou, O; Wotschack, J

    2017-01-01

    Radiation studies on several resistive bulk-Micromegas chambers produced at CERN will be viewed in this document. Two resistive bulk-Micromegas chambers have been installed at the CERN Gamma Irradiation Facility (GIF++) exposed to an intense gamma irradiation with the aim of evaluating the detector behaviour under high irradiation and carrying out a long-term age- ing study. The chambers under study have an active area of 10 x 10 cm 2 , a strip pitch of 400 m m , an ampli- fication gap of 128 m m , and a drift gap of 5 mm. The results on the detector performance as a function of the photon flux up to 44 MHz/cm 2 will be shown as well as the ageing properties as function of the integrated charge and the current intensity and its stability with time. In addition, the results of the efficiency measurements before, during, and after the irradiation will also be presented as a function of the amplification voltage at which the chambers are operated.

  2. High-resolution Digital Mapping of Historical Lava Flows as a Test-bed for Lava Flow Models

    Science.gov (United States)

    Pyle, D. M.; Parks, M.; Nomikou, P.; Mather, T. A.; Simou, E.; Kalnins, L. M.; Paulatto, M.; Watts, A. B.

    2013-12-01

    Quantitative analysis of high-resolution lava flow morphology can improve our understanding of past effusive eruptions by providing insight into eruptive processes and the rheological properties of erupted magmas. We report the results of an ongoing investigation into the young dacite lava flows of the Kameni islands, Santorini volcano, Greece, which were emplaced during both subaerial and shallow submarine eruptions over the past 3000 years. Historical eruptions of the Kameni islands since 1866 have been very carefully documented in contemporaneous scientific reports. Eruptions since 1573 appear to be time-predictable, with a close relationship between eruption length, the size of extruded lava domes, and the time elapsed since the previous eruption. A new NERC - Airborne Survey and Research Facility LiDAR survey of the Kameni islands was completed in May 2012, using a Leica ALS50 Airborne Laser Scanner mounted on a Dornier 228 aircraft. The topographic surface was mapped at an average point density of 2.1 points per square metre, and covers the entire extent of the youngest subaerial lava flow fields on Santorini. A 2-m DEM derived from the 2012 LiDAR dataset was merged with a 5-m resolution bathymetric grid, based on multibeam surveys carried out by the Hellenic Centre for Marine Research, during cruises in 2001 and 2006, using a SEABEAM 2120 hull-mounted swath system. The resultant grid provides the first high resolution map of both subaerial and submarine historic lava flows emplaced in the centre of the Santorini caldera, and includes several previously unidentified submarine flows and cones. Attribute maps were used to delineate and identify discrete lava flows both onshore and offshore; and morphometric profiles were used to compute accurate volumetric estimates for each of the historic flows, and to determine bulk rheological properties of the lavas, assuming a Bingham rheology. This ongoing work will improve our analysis of the relationship between

  3. Determination of ammonium in Kjeldahl digests by gas-diffusion flow-injection analysis with a bulk acoustic wave-impedance sensor.

    Science.gov (United States)

    Su, X L; Nie, L H; Yao, S Z

    1997-11-01

    A novel flow-injection analysis (FIA) system has been developed for the rapid and direct determination of ammonium in Kjeldahl digests. The method is based on diffusion of ammonia across a PTFE gas-permeable membrane from an alkaline (NaOH/EDTA) stream into a stream of diluted boric acid. The trapped ammonium in the acceptor is determined on line by a bulk acoustic wave (BAW)-impedance sensor and the signal is proportional to the ammonium concentration present in the digests. The proposed system exhibits a favorable frequency response to 5.0 x 10(-6)-4.0 x 10(-3) mol l(-1) ammonium with a detection limit of 1.0 x 10(-6) mol l(-1), and the precision was better than 1% (RSD) for 0.025-1.0 mM ammonium at a through-put of 45-50 samples h(-1). Results obtained for nitrogen determination in amino acids and for proteins determination in blood products are in good agreement with those obtained by the conventional distillation/titration method, respectively. The effects of composition of acceptor stream, cell constant of conductivity electrode, sample volume, flow rates and potential interferents on the FIA signals were discussed in detail.

  4. Highly stable superhydrophobic surfaces under flow conditions

    Science.gov (United States)

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

    2015-01-01

    We synthesized hydrophobic anodic aluminum oxide nanostructures with pore diameters of 35, 50, 65, and 80 nm directly on quartz crystal microresonators, and the stability of the resulting superhydrophobicity was investigated under flow conditions by measuring changes in the resonance frequency and dissipation factor. When the quartz substrates were immersed in water, their hydrophobic surfaces did not wet due to the presence of an air interlayer. The air interlayer was gradually replaced by water over time, which caused decreases in the resonance frequency (i.e., increases in mass) and increases in the dissipation factor (i.e., increases in viscous damping). Although the water contact angles of the nanostructures increased with increasing pore size, the stability of their superhydrophobicity increased with decreasing pore size under both static conditions (without flow) and dynamic conditions (with flow); this increase can be attributed to an increase in the solid surface area that interacts with the air layer above the nanopores as the pore size decreases. Further, the effects of increasing the flow rate on the stability of the superhydrophobicity were quantitatively determined.

  5. Bulk ultrasonic NDE of metallic components at high temperature using magnetostrictive transducers

    Science.gov (United States)

    Ashish, Antony Jacob; Rajagopal, Prabhu; Balasubramaniam, Krishnan; Kumar, Anish; Rao, B. Purnachandra; Jayakumar, Tammana

    2017-02-01

    Online ultrasonic NDE at high-temperature is of much interest to the power, process and automotive industries in view of possible savings in downtime. This paper describes a novel approach to developing ultrasonic transducers capable of high-temperature in-situ operation using the principle of magnetostriction. Preliminary design from previous research by the authors [1] is extended for operation at 1 MHz, and at elevated temperatures by amorphous metallic strips as the magnetostrictive core. Ultrasonic signals in pulse-echo mode are experimentally obtained from the ultrasonic transducer thus developed, in a simulated high-temperature environment of 350 °C for 10 hours. Advantages and challenges for practical deployment of this approach are discussed.

  6. High voltage bulk GaN-based photoconductive switches for pulsed power applications

    Science.gov (United States)

    Leach, J. H.; Metzger, R.; Preble, E. A.; Evans, K. R.

    2013-03-01

    Switches are at the heart of all pulsed power and directed energy systems, which find utility in a number of applications. At present, those applications requiring the highest power levels tend to employ spark-gap switches, but these suffer from relatively high delay-times (~10-8 sec), significant jitter (variation in delay time), and large size. That said, optically-triggered GaN-based photoconductive semiconductor switches (PCSS) offer a suitably small form factor and are a cost-effective, versatile solution in which delay times and jitter can be extremely short. Furthermore, the optical control of the switch means that they are electrically isolated from the environment and from any other system circuitry, making them immune from electrical noise, eliminating the potential for inadvertent switch triggering. Our recent work shows great promise to extend high-voltage GaN-based extrinsic PCSS state-of-the-art performance in terms of subnanosecond response times, low on-resistance, high current carrying capacity and high blocking voltages. We discuss our recent results in this work.

  7. Searching for high magnetization density in bulk Fe: the new metastable Fe6 phase

    Science.gov (United States)

    Umemoto, Koichiro; Himmetoglu, Burak; Wang, Jian-Ping; Wentzcovitch, Renata M.; Cococcioni, Matteo

    2015-01-01

    We report the discovery of a new allotrope of iron by first principles calculations. This phase has Pmn21 symmetry, a six-atom unit cell (hence the name Fe6), and the highest magnetization density (Ms) among all the known crystalline phases of iron. Obtained from the structural optimizations of the Fe3C-cementite crystal upon carbon removal, Pmn21 Fe6 is shown to result from the stabilization of a ferromagnetic FCC phase, further strained along the Bain path. Although metastable from 0 to 50 GPa, the new phase is more stable at low pressures than the other well-known HCP and FCC allotropes and smoothly transforms into the FCC phase under compression. If stabilized to room temperature, for example, by interstitial impurities, Fe6 could become the basis material for high Ms rare-earth-free permament magnets and high-impact applications such as light-weight electric engine rotors or high-density recording media. The new phase could also be key to explaining the enigmatic high Ms of Fe16N2, which is currently attracting intense research activity.

  8. Sensing with Advanced Computing Technology: Fin Field-Effect Transistors with High-k Gate Stack on Bulk Silicon.

    Science.gov (United States)

    Rigante, Sara; Scarbolo, Paolo; Wipf, Mathias; Stoop, Ralph L; Bedner, Kristine; Buitrago, Elizabeth; Bazigos, Antonios; Bouvet, Didier; Calame, Michel; Schönenberger, Christian; Ionescu, Adrian M

    2015-05-26

    Field-effect transistors (FETs) form an established technology for sensing applications. However, recent advancements and use of high-performance multigate metal-oxide semiconductor FETs (double-gate, FinFET, trigate, gate-all-around) in computing technology, instead of bulk MOSFETs, raise new opportunities and questions about the most suitable device architectures for sensing integrated circuits. In this work, we propose pH and ion sensors exploiting FinFETs fabricated on bulk silicon by a fully CMOS compatible approach, as an alternative to the widely investigated silicon nanowires on silicon-on-insulator substrates. We also provide an analytical insight of the concept of sensitivity for the electronic integration of sensors. N-channel fully depleted FinFETs with critical dimensions on the order of 20 nm and HfO2 as a high-k gate insulator have been developed and characterized, showing excellent electrical properties, subthreshold swing, SS ∼ 70 mV/dec, and on-to-off current ratio, Ion/Ioff ∼ 10(6), at room temperature. The same FinFET architecture is validated as a highly sensitive, stable, and reproducible pH sensor. An intrinsic sensitivity close to the Nernst limit, S = 57 mV/pH, is achieved. The pH response in terms of output current reaches Sout = 60%. Long-term measurements have been performed over 4.5 days with a resulting drift in time δVth/δt = 0.10 mV/h. Finally, we show the capability to reproduce experimental data with an extended three-dimensional commercial finite element analysis simulator, in both dry and wet environments, which is useful for future advanced sensor design and optimization.

  9. Interfacial Engineering for Highly Efficient-Conjugated Polymer-Based Bulk Heterojunction Photovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Alex Jen; David Ginger; Christine Luscombe; Hong Ma

    2012-04-02

    The aim of our proposal is to apply interface engineering approach to improve charge extraction, guide active layer morphology, improve materials compatibility, and ultimately allow the fabrication of high efficiency tandem cells. Specifically, we aim at developing: i. Interfacial engineering using small molecule self-assembled monolayers ii. Nanostructure engineering in OPVs using polymer brushes iii. Development of efficient light harvesting and high mobility materials for OPVs iv. Physical characterization of the nanostructured systems using electrostatic force microscopy, and conducting atomic force microscopy v. All-solution processed organic-based tandem cells using interfacial engineering to optimize the recombination layer currents vi. Theoretical modeling of charge transport in the active semiconducting layer The material development effort is guided by advanced computer modeling and surface/ interface engineering tools to allow us to obtain better understanding of the effect of electrode modifications on OPV performance for the investigation of more elaborate device structures. The materials and devices developed within this program represent a major conceptual advancement using an integrated approach combining rational molecular design, material, interface, process, and device engineering to achieve solar cells with high efficiency, stability, and the potential to be used for large-area roll-to-roll printing. This may create significant impact in lowering manufacturing cost of polymer solar cells for promoting clean renewable energy use and preventing the side effects from using fossil fuels to impact environment.

  10. "Work-Hardenable" ductile bulk metallic glass.

    Science.gov (United States)

    Das, Jayanta; Tang, Mei Bo; Kim, Ki Buem; Theissmann, Ralf; Baier, Falko; Wang, Wei Hua; Eckert, Jürgen

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (< 1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive "work hardening" and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The "work-hardening" capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  11. High flow nasal cannula for respiratory support in preterm infants.

    LENUS (Irish Health Repository)

    Wilkinson, Dominic

    2011-01-01

    High flow nasal cannulae (HFNC) are small, thin, tapered cannulae used to deliver oxygen or blended oxygen and air at flow rates of > 1 L\\/min. HFNC can be used to provide high concentrations of oxygen and may deliver positive end-expiratory pressure.

  12. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.

    2016-01-01

    power. In the present study we simulate the wake flow for a row of turbines with the wind aligned with the row using a simplified approach. The velocity deficit, being a function of the thrust coefficient, is simulated based on the BEM solution for wake expansion. An axis-symmetric boundary layer...... equation model (the same as implemented in the DWM model) is subsequently used to develop the deficit down to the next turbine, and then the approach is successively repeated. Simulation results for four different spacing’s in a row with eight turbines show that there are two major flow regimes...... in the intersection region between the two flow regimes a strong variation in power and thrust occur, e.g. going from almost zero power to rated power for a wind speed change of 4m/s. Another result is that the inflow profile to the last turbine in the row at a wind speed of 16m/s for a spacing of 3D shows...

  13. Levitation force and magnetization in bulk and thin film high T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Riise, A.B

    1998-04-01

    The authors present high-resolution measurements of the repulsive vertical force and its associated stiffness between a Nd-B-Fe magnet and a YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconductor in cylindrical geometry. The results are compared with theoretical predictions. The calculations are based on a model in which the superconductor is assumed to be either a sintered granular material or consisting of grains embedded in a nonactive matrix so that only intragranular currents are important. The critical state model is applied to each grain individually and closed form expressions for both vertical force F{sub z} and stiffness are obtained in a configuration with cylindrical symmetry. The model explains all features of the experimental results in a consistent way. A good quantitative agreement has been obtained using only three adjustable parameters. Several central aspects of the phenomenon of magnetic levitation with high-T{sub c} superconductors are presented. High-resolution measurements are made of the repulsive vertical force and its associated stiffness as well as the horizontal stabilizing force and the stiffness governing lateral vibrations. The results obtained at 77 K using a granular YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} sample and Nd-Fe-B magnet in a rectangular levitation configuration are compared with theoretical predictions. The calculations, which are based on the critical state model with the assumption that it applies to the grins individually, give closed-form expressions for all the measured quantities. It is concluded that the present model explains all features of the observations in a consistent way. Using only three adjustable parameters a good agreement exists also at a quantitative level. Experimental studies and theoretical modelling of the levitation force on a permanent magnet placed above a superconducting thin film are offered. It is shown that measurements of the levitation force is a simple and precise method to determine the

  14. High frequency bulk resonators for bio/chemical diagnostics and monitoring applications

    DEFF Research Database (Denmark)

    Cagliani, Alberto

    In the environmental monitoring eld there is a vast variety of possible applications for microfabricated MEMS sensors. As an example, a network of miniaturized sensors could detect toxic gases, harmful airbornes, explosives in air or, in liquid, monitor the quality of drinking water...... is by monitoring the target mass, that is continuously deposited or removed from the sensor's surface, while the sensor's structure vibrates in resonance. This thesis presents the development of MEMS mass sensors based on mechanical microresonators in the very high frequency range 12-132 MHz. This devices can...

  15. Highly efficient solutions for smart and bulk power transmission of 'green energy'

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Wilfried; Retzmann, Dietmar; Uecker, Karl

    2010-09-15

    Environmental constraints, loss minimization and CO2 reduction will play an increasingly more important role in future. Security and sustainability of power supply as well as economic efficiency needs application of advanced technologies. Innovative solutions with HVDC (High Voltage Direct Current) and FACTS (Flexible AC Transmission Systems) have the potential to cope with these challenges. They provide the features which are necessary to avoid technical problems in power systems, they increase the transmission capacity and system stability very efficiently and help prevent cascading outages. Furthermore, they are essential for Grid Access of Renewable Energy Sources such as Hydro, Wind and Solar-Energy.

  16. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    OpenAIRE

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.

    2015-01-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3 +, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at e...

  17. Bulk MgB2 superconductor with high critical current density synthesized by self-propagating high-temperature synthesis method

    Institute of Scientific and Technical Information of China (English)

    Feng Wang-Jun; Xia Tian-Dong; Liu Tian-Zuo; Zhao Wen-Jun; Wei Zhi-Qiang

    2005-01-01

    Pure MgB2 bulk samples are successfully synthesized by self-propagating high-temperature synthesis (SHS)method. The experiments show that the best preheating temperature is 250℃, the highest Jc values of the prepared MgB2 reach 1.5×106A/cm2 (10K, 0.5T) and 1.7×106A/cm2 (20K, 0T), and the MgB2 particle sizes range from 2 to 5μm. The advantages of this method are that it is simple, economical and suitable for the manufacture of bulk MgB2 materials on industrial scale.

  18. Internal resonance of an elastic body levitated above high-Tc superconducting bulks

    Energy Technology Data Exchange (ETDEWEB)

    Kokuzawa, T; Toshihiko, S; Yoshizawa, M, E-mail: sugiura@mech.keio.ac.j [Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan)

    2010-06-01

    In high-Tc superconducting magnetic levitation systems, levitated bodies can keep stable levitation with no contact and no control and thus their damping is very small. Thanks to these features, their applications to various apparatus are expected. However, on account of their small damping, the nonlinearity of electromagnetic levitation force can give notable effects upon motion of the levitated bodies. Therefore this nonlinearity must be taken into account to accurately analyze the dynamical behavior of the levitated bodies. Structures of such a levitated body can show elastic deformation if the large electromagnetic force acts on it. Therefore, we need to deal with the model as an elastic body. As mentioned above, nonlinear characteristics easily appear in this elastic vibration on account of the small damping. Especially when the ratio of the natural frequencies of the eigenmodes is integer, internal resonance can occur. This nonlinear resonance is derived from nonlinear interactions among the eigenmodes of the elastic levitated body. This kind of internal resonance of an elastic body appearing in high-Tc superconducting levitation systems has not been studied so far. This research especially deals with internal resonance of a beam supported at both its ends by electromagnetic forces acting on permanent magnets. The governing equation with the nonlinear boundary conditions for the dynamics of a levitated beam has been derived. Numerical results show internal resonance of the 1st mode and the 3rd mode. Experimental results are qualitatively in good agreement with numerical ones.

  19. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    KAUST Repository

    Saidaminov, Makhsud I.

    2015-07-06

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.

  20. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    Science.gov (United States)

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.

    2015-07-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br- or I-) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.

  1. Transport coefficients and heat fluxes in non-equilibrium high-temperature flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Kustova, E. V.

    2017-02-01

    The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great

  2. Influence of high-temperature processing on the surface properties of bulk AlN substrates

    Science.gov (United States)

    Tojo, Shunsuke; Yamamoto, Reo; Tanaka, Ryohei; Thieu, Quang Tu; Togashi, Rie; Nagashima, Toru; Kinoshita, Toru; Dalmau, Rafael; Schlesser, Raoul; Murakami, Hisashi; Collazo, Ramón; Koukitu, Akinori; Monemar, Bo; Sitar, Zlatko; Kumagai, Yoshinao

    2016-07-01

    Deep-level luminescence at 3.3 eV related to the presence of Al vacancies (VAl) was observed in room temperature photoluminescence (RT-PL) spectra of homoepitaxial AlN layers grown at 1450 °C by hydride vapor-phase epitaxy (HVPE) and cooled to RT in a mixture of H2 and N2 with added NH3. However, this luminescence disappeared after removing the near surface layer of AlN by polishing. In addition, the deep-level luminescence was not observed when the post-growth cooling of AlN was conducted without NH3. Secondary ion mass spectrometry (SIMS) studies revealed that although the point defect density of the interior of the AlN layers remained low, the near surface layer cooled in the presence of NH3 was contaminated by Si impurities due to both suppression of the surface decomposition by the added NH3 and volatilization of Si by decomposition of the quartz reactor walls at high temperatures. The deep-level luminescence reappeared after the polished AlN wafers were heated in presence of NH3 at temperatures above 1400 °C. The surface contamination by Si is thought to generate VAl near the surface by lowering their formation energy due to the Fermi level effect, resulting in deep-level luminescence at 3.3 eV caused by the shallow donor (Si) to VAl transition.

  3. Simple, highly efficient vacuum-processed bulk heterojunction solar cells based on merocyanine dyes

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Vera; Kronenberg, Nils M.; Lenze, Martin R.; Graf, Steven M.; Hertel, Dirk; Meerholz, Klaus [Department fuer Chemie, Universitaet Koeln, Luxemburger Strasse 116, 50939 Koeln (Germany); Buerckstuemmer, Hannah; Tulyakova, Elena V.; Wuerthner, Frank [Institut fuer Organische Chemie and Roentgen Research Center for Complex Material Systems, Universitaet Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany)

    2011-10-15

    In order to be competitive on the energy market, organic solar cells with higher efficiency are needed. To date, polymer solar cells have retained the lead with efficiencies of up to 8%. However, research on small molecule solar cells has been catching up throughout recent years and is showing similar efficiencies, however, only for more sophisticated multilayer device configurations. In this work, a simple, highly efficient, vacuum-processed small molecule solar cell based on merocyanine dyes - traditional colorants that can easily be mass-produced and purified - is presented. In the past, merocyanines have been successfully introduced in solution-processed as well as vacuum-processed devices, demonstrating efficiencies up to 4.9%. Here, further optimization of devices is achieved while keeping the same simple layer stack, ultimately leading to efficiencies beyond the 6% mark. In addition, physical properties such as the charge carrier transport and the cell performance under various light intensities are addressed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Experimental investigation on a high subsonic compressor cascade flow

    Directory of Open Access Journals (Sweden)

    Zhang Haideng

    2015-08-01

    Full Text Available With the aim of deepening the understanding of high-speed compressor cascade flow, this paper reports an experimental study on NACA-65 K48 compressor cascade with high subsonic inlet flow. With the increase of passage pressurizing ability, endwall boundary layer behavior is deteriorated, and the transition zone is extended from suction surface to the endwall as the adverse pressure gradient increases. Cross flow from endwall to midspan, mixing of corner boundary layer and the main stream, and reversal flow on the suction surface are caused by corner separation vortex structures. Passage vortex is the main corner separation vortex. During its movement downstream, the size grows bigger while the rotating direction changes, forming a limiting circle. With higher incidence, corner separation is further deteriorated, leading to higher flow loss. Meanwhile, corner separation structure, flow mixing characteristics and flow loss distribution vary a lot with the change of incidence. Compared with low aspect-ratio model, corner separation of high aspect-ratio model moves away from the endwall and is more sufficiently developed downstream the cascade. Results obtained present details of high-speed compressor cascade flow, which is rare in the relating research fields and is beneficial to mechanism analysis, aerodynamic optimization and flow control design.

  5. Enhancement of glass-forming ability of Fe-based bulk metallic glasses with high saturation magnetic flux density

    Directory of Open Access Journals (Sweden)

    Mingxiao Zhang

    2012-06-01

    Full Text Available The effects of substituting Fe with Ni on thermal properties, glass-forming ability (GFA and magnetic properties of Fe76-xNixMo3.5P10C4B4Si2.5 (x = 0−30 at.% alloys were investigated in detail. The breadth of the supercooled liquid region was found to gradually increase from 42 to 55 K with increasing Ni content to 30 at.%. When x = 5 at.%, the alloy composition approached a eutectic point, resulting in an increase in GFA. As a result, FeNiMoPCBSi bulk metallic glasses with critical diameters up to 5.5 mm were successfully synthesized by copper mold casting. These glassy alloys exhibit a high saturation magnetic flux density of 0.75−1.21 T and excellent soft magnetic properties, i.e., low coercive force of 1.1−2.0 A/m, and high effective permeability of 14400−19700 at 1 kHz under a field of 1 A/m. The reasons for the high stability of the supercooled liquid, and the high GFA as well as excellent soft magnetic properties are discussed in this article.

  6. High speed digital holographic interferometry for hypersonic flow visualization

    Science.gov (United States)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  7. High Resolution Simulation of Turbulent Flow in a Channel.

    Science.gov (United States)

    1987-09-25

    chosen to maintain the original Poiseuille flow . The introduction of highly unstable disturbances causes transition to turbulence so that the wall...for Turbulent Channel Flow ," Phys. Rev. Lett, Vol. 47, 832-835 (1981). 2. S.A. Orszag and L.C. Kells, "Transition to turbulence in plane Poiseuille and...plane Couette Flow ," J. Fluid Mech., Vol. 96, pp. 159-205. 3. Kreplin, H.-P. and Eckelmann, H., "Behavior of the Three Fluctucting Velocity

  8. High-speed flow visualization in hypersonic, transonic, and shock tube flows

    Science.gov (United States)

    Kleine, H.; Olivier, H.

    2017-02-01

    High-speed flow visualisation has played an important role in the investigations conducted at the Stoßwellenlabor of the RWTH Aachen University for many decades. In addition to applying the techniques of high-speed imaging, this laboratory has been actively developing new or enhanced visualisation techniques and approaches such as various schlieren methods or time-resolved Mach-Zehnder interferometry. The investigated high-speed flows are inherently highly transient, with flow Mach numbers ranging from about M = 0.7 to M = 8. The availability of modern high-speed cameras has allowed us to expand the investigations into problems where reduced reproducibility had so far limited the amount of information that could be extracted from a limited number of flow visualisation records. Following a brief historical overview, some examples of recent studies are given, which represent the breadth of applications in which high-speed imaging has been an essential diagnostic tool to uncover the physics of high-speed flows. Applications include the stability of hypersonic corner flows, the establishment of shock wave systems in transonic airfoil flow, and the complexities of the interactions of shock waves with obstacles of various shapes.

  9. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  10. Holography as a highly efficient renormalization group flow. I. Rephrasing gravity

    Science.gov (United States)

    Behr, Nicolas; Kuperstein, Stanislav; Mukhopadhyay, Ayan

    2016-07-01

    We investigate how the holographic correspondence can be reformulated as a generalization of Wilsonian renormalization group (RG) flow in a strongly interacting large-N quantum field theory. We first define a highly efficient RG flow as one in which the Ward identities related to local conservation of energy, momentum and charges preserve the same form at each scale. To achieve this, it is necessary to redefine the background metric and external sources at each scale as functionals of the effective single-trace operators. These redefinitions also absorb the contributions of the multitrace operators to these effective Ward identities. Thus, the background metric and external sources become effectively dynamical, reproducing the dual classical gravity equations in one higher dimension. Here, we focus on reconstructing the pure gravity sector as a highly efficient RG flow of the energy-momentum tensor operator, leaving the explicit constructive field theory approach for generating such RG flows to the second part of the work. We show that special symmetries of the highly efficient RG flows carry information through which we can decode the gauge fixing of bulk diffeomorphisms in the corresponding gravity equations. We also show that the highly efficient RG flow which reproduces a given classical gravity theory in a given gauge is unique provided the endpoint can be transformed to a nonrelativistic fixed point with a finite number of parameters under a universal rescaling. The results obtained here are used in the second part of this work, where we do an explicit field-theoretic construction of the RG flow and obtain the dual classical gravity theory.

  11. High energy density redox flow device

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W. Craig; Chiang, Yet-Ming; Duduta, Mihai; Limthongkul, Pimpa

    2017-04-04

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  12. Bulk Crystal Growth, and High-Resolution X-ray Diffraction Results of LiZnAs Semiconductor Material

    Science.gov (United States)

    Montag, Benjamin W.; Reichenberger, Michael A.; Sunder, Madhana; Ugorowski, Philip B.; Nelson, Kyle A.; Henson, Luke C.; McGregor, Douglas S.

    2017-08-01

    LiZnAs is being explored as a candidate for solid-state neutron detectors. The compact form, solid-state device would have greater efficiency than present day gas-filled 3He and 10BF3 detectors. Devices fabricated from LiZnAs having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. The 6Li( n, t)4He reaction yields a total Q-value of 4.78 MeV, an energy larger than that of the 10B reaction, which can easily be identified above background radiations. LiZnAs material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace (Montag et al. in J Cryst Growth 412:103, 2015). The raw synthesized LiZnAs was purified by a static vacuum sublimation in quartz (Montag et al. in J Cryst Growth 438:99, 2016). Bulk crystalline LiZnAs ingots were grown from the purified material with a high-temperature Bridgman-style growth process described here. One of the largest LiZnAs ingots harvested was 9.6 mm in diameter and 4.2 mm in length. Samples were harvested from the ingot and were characterized for crystallinity using a Bruker AXS Inc. D8 AXS Inc. D2 CRYSO, energy dispersive x-ray diffractometer, and a Bruker AXS Inc. D8 DISCOVER, high-resolution x-ray diffractometer equipped with molybdenum radiation, Gobel mirror, four bounce germanium monochromator and a scintillation detector. The primary beam divergence was determined to be 0.004°, using a single crystal Si standard. The x-ray based characterization revealed that the samples nucleated in the (110) direction and a high-resolution open detector rocking curve recorded on the (220) LiZnAs yielded a full width at half maximum (FWHM) of 0.235°. Sectional pole figures using off-axis reflections of the (211) LiZnAs confirmed in-plane ordering, and also indicated the presence of multiple

  13. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    Science.gov (United States)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  14. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals.

    Science.gov (United States)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  15. Research in high flow therapy: mechanisms of action.

    Science.gov (United States)

    Dysart, Kevin; Miller, Thomas L; Wolfson, Marla R; Shaffer, Thomas H

    2009-10-01

    Recently, heater/humidifier devices that use novel methods to condition breathing gases from an external source have been introduced. The addition of sufficient warmth and high levels of humidification to breathing gas has allowed for higher flow rates from nasal cannula devices to be applied to patients (i.e., high flow therapy). This article provides a review of the proposed mechanisms behind the efficacy of high flow therapy via nasal cannula, which include washout of nasopharyngeal dead space, attenuation of the inspiratory resistance associated with the nasopharynx, improvement in conductance and pulmonary compliance, mild distending pressure and reduction in energy expenditure for gas conditioning.

  16. Modeling of high speed micro rotors in moderate flow confinement

    NARCIS (Netherlands)

    Dikmen, E.; Hoogt, van der P.J.M.; Aarts, R.G.K.M.

    2008-01-01

    The recent developments in high speed micro rotating machinery lead to the need for multiphysical modeling of the rotor and the surrounding medium. In this study, thermal and flow induced effects on rotor dynamics of geometries with moderate flow confinement are studied. The structure is modeled via

  17. Stereoscopic PIV measurements of flow in the nasal cavity with high flow therapy

    Science.gov (United States)

    Spence, C. J. T.; Buchmann, N. A.; Jermy, M. C.; Moore, S. M.

    2011-04-01

    Knowledge of the airflow characteristics within the nasal cavity with nasal high flow (NHF) therapy and during unassisted breathing is essential to understand the treatment's efficacy. The distribution and velocity of the airflow in the nasal cavity with and without NHF cannula flow has been investigated using stereoscopic particle image velocimetry at steady peak expiration and inspiration. In vivo breathing flows were measured and dimensionally scaled to reproduce physiological conditions in vitro. A scaled model of the complete nasal cavity was constructed in transparent silicone and airflow simulated with an aqueous glycerine solution. NHF modifies nasal cavity flow patterns significantly, altering the proportion of inspiration and expiration through each passageway and producing jets with in vivo velocities up to 17.0 ms-1 for 30 l/min cannula flow. Velocity magnitudes differed appreciably between the left and right sides of the nasal cavity. The importance of using a three-component measurement technique when investigating nasal flows has been highlighted.

  18. Development and validation of a simple stability-indicating high performance liquid chromatographic method for the determination of miconazole nitrate in bulk and cream formulations.

    Science.gov (United States)

    De Zan, María M; Cámara, María S; Robles, Juan C; Kergaravat, Silvina V; Goicoechea, Héctor C

    2009-08-15

    A simple and stability-indicating high performance liquid chromatographic method was developed and validated for the determination of miconazole nitrate in bulk and cream preparations. The extraction step for cream samples consisted in a warming, cooling and centrifugation procedure that assures the elimination of the lipophilic matrix component, in order to avoid further precipitation in the chromatographic system. Separation was achieved on a ZORBAX Eclipse XDB - C18 (4.6 mm x 150 mm, 5 microm particle size) column, using a mobile phase consisting of water, methanol and acetonitrile, in a flow and solvent gradient elution for 15 min. The column was maintained at 25 degrees C and 10 microL of solutions were injected. UV detection was performed at 232 nm, although employment of a diode array detector allowed selectivity confirmation by peak purity evaluation. The method was validated reaching satisfactory results for selectivity, precision and accuracy. Degradation products in naturally aged samples could be simultaneously evaluated, without interferences in the quantitative analysis.

  19. Bulk high-T{sub c} superconductors with drilled holes: how to arrange the holes to maximize the trapped magnetic flux?

    Energy Technology Data Exchange (ETDEWEB)

    Lousberg, Gregory P [SUPRATECS Research Group, Department of Electrical Engineering and Computer Science (B28), University of Liege (Belgium); Ausloos, M [SUPRATECS, Department of Physics (B5), University of Liege (Belgium); Vanderbemden, Ph [SUPRATECS Research Group, Department of Electrical Engineering and Computer Science (B28), University of Liege (Belgium); Vanderheyden, B [SUPRATECS Research Group, Department of Electrical Engineering and Computer Science (B28), University of Liege (Belgium)

    2008-02-15

    Drilling holes in a bulk high-T{sub c} superconductor enhances the oxygen annealing and the heat exchange with the cooling liquid. However, drilling holes also reduces the amount of magnetic flux that can be trapped in the sample. In this paper, we use the Bean model to study the magnetization and the current line distribution in drilled samples, as a function of the hole positions. A single hole perturbs the critical current flow over an extended region that is bounded by a discontinuity line, where the direction of the current density changes abruptly. We demonstrate that the trapped magnetic flux is maximized if the centre of each hole is positioned on one of the discontinuity lines produced by the neighbouring holes. For a cylindrical sample, we construct a polar triangular hole pattern that exploits this principle; in such a lattice, the trapped field is {approx}20% higher than in a squared lattice, for which the holes do not lie on discontinuity lines. This result indicates that one can simultaneously enhance the oxygen annealing, the heat transfer and maximize the trapped field.

  20. Core surface flow modelling from high-resolution secular variation

    DEFF Research Database (Denmark)

    Holme, R.; Olsen, Nils

    2006-01-01

    -flux hypothesis, but the spectrum of the SV implies that a conclusive test of frozen-flux is not possible. We parametrize the effects of diffusion as an expected misfit in the flow prediction due to departure from the frozen-flux hypothesis; at low spherical harmonic degrees, this contribution dominates...... the expected departure of the SV predictions from flow to the observed SV, while at high degrees the SV model uncertainty is dominant. We construct fine-scale core surface flows to model the SV. Flow non-uniqueness is a serious problem because the flows are sufficiently small scale to allow flow around non......-series of magnetic data and better parametrization of the external magnetic field....

  1. Flow "Fine" Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods.

    Science.gov (United States)

    Kobayashi, Shū

    2016-02-18

    The concept of flow "fine" synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow "fine" synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. High coercivity microcrystalline Nd-rich Nd-Fe-Co-Al-B bulk magnets prepared by direct copper mold casting

    Science.gov (United States)

    Zhao, L. Z.; Hong, Y.; Fang, X. G.; Qiu, Z. G.; Zhong, X. C.; Gao, X. S.; Liu, Z. W.

    2016-06-01

    High coercivity Nd25Fe40Co20Al15-xBx (x=7-15) hard magnets were prepared by a simple process of injection casting. Different from many previous investigations on nanocomposite compositions, the magnets in this work contain hard magnetic Nd2(FeCoAl)14B, Nd-rich, and Nd1+ε(FeCo)4B4 phases. The magnetic properties, phase evolution, and microstructure of the as-cast and annealed magnets were investigated. As the boron content increased from 7 to 11 at%, the intrinsic coercivity Hcj of the as-cast magnet increased from 816 to 1140 kA/m. The magnets annealed at 750 °C have shown more regular and smaller grains than the as-cast alloys, especially for the x=11 alloy. The high intrinsic coercivities for the annealed alloys with x=8~11 result from the presence of small-sized grains in the microstructure. The highest Hcj of 1427 kA/m was obtained for the heat treated alloy with x=10. This work provides an alternative approach for preparing fully dense Nd-rich bulk hard magnets with relatively good properties.

  3. Influence of lateral displacement on the levitation performance of a magnetized bulk high-T{sub c} superconductor magnet

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W., E-mail: tonny-violet@163.com [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China) and Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, J.S.; Ma, G.T.; Zheng, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China); Tuo, X.G.; Li, L.L. [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China); Ye, C.Q.; Liao, X.L. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China); Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China)

    2012-03-15

    Compared with the permanent magnet, the magnetized bulk high-T{sub c} superconductor magnet (MBSCM) can trap higher magnetic field due to its strong flux pinning ability, so it is a good candidate to improve the levitation performance of high-T{sub c} superconductive (HTS) maglev system. The trapped magnetic flux of a MBSCM is sustained by the inductive superconducting current produced by the magnetizing process and is susceptible to the current intensity as well as configuration. In the HTS maglev system, the lateral displacement is an important process to change the superconducting current within a MBSCM and then affects its levitation performance, which is essential for the traffic ability in curve-way, the loading capacity of lateral impact and so on. The research about influence of lateral displacement on the levitation performance of MBSCM is necessary when MBSCM is applied on the HTS maglev vehicle. The experimental investigations about the influence of lateral displacement on the levitation performance of a MBSCM with different trapped fluxes and applied fields are processed in this article. The analyses and conclusions of this article are useful for the practical application of MBSCM in HTS maglev system.

  4. Integrated Solid/Nanoporous Copper/Oxide Hybrid Bulk Electrodes for High-performance Lithium-Ion Batteries

    Science.gov (United States)

    Hou, Chao; Lang, Xing-You; Han, Gao-Feng; Li, Ying-Qi; Zhao, Lei; Wen, Zi; Zhu, Yong-Fu; Zhao, Ming; Li, Jian-Chen; Lian, Jian-She; Jiang, Qing

    2013-01-01

    Nanoarchitectured electroactive materials can boost rates of Li insertion/extraction, showing genuine potential to increase power output of Li-ion batteries. However, electrodes assembled with low-dimensional nanostructured transition metal oxides by conventional approach suffer from dramatic reductions in energy capacities owing to sluggish ion and electron transport kinetics. Here we report that flexible bulk electrodes, made of three-dimensional bicontinuous nanoporous Cu/MnO2 hybrid and seamlessly integrated with Cu solid current collector, substantially optimizes Li storage behavior of the constituent MnO2. As a result of the unique integration of solid/nanoporous hybrid architecture that simultaneously enhances the electron transport of MnO2, facilitates fast ion diffusion and accommodates large volume changes on Li insertion/extraction of MnO2, the supported MnO2 exhibits a stable capacity of as high as ~1100 mA h g−1 for 1000 cycles, and ultrahigh charge/discharge rates. It makes the environmentally friendly and low-cost electrode as a promising anode for high-performance Li-ion battery applications. PMID:24096928

  5. SONIC SPEED AND SHOCK WAVE IN HIGH VELOCITY AERATED FLOWS FROM HIGH HEAD DISCHARGE STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    Dong Zhi-yong

    2003-01-01

    The compressible characteristics in aerated flows at the high velocity of about 50m/s were analyzed. Based on the theory of compressible the relations between the sonic speed and shock wave in high-velocity aerated flow were theoretically deduced. And comparisons with measured data were made. The theoretical and experimental results show the sonic speed in aerated flow is merely of the order of several-dozen meters per second, and its minimum value is only 20m/s, which is far much less than that in water or air alone. So high subsonic flow, supersonic flow and transonic flow as well as compression wave, shock wave and expansion wave similarly to aerodnamics may be produced in high velocity aerated flow at the speed of the order of 50m/s. Hence the influences of these compressible characteristics on high head discharge structures can not be neglected, especially on super high dams over 200m high.

  6. High-Speed Visual Analysis of Fluid Flow and Heat Transfer in Oscillating Heat Pipes with Different Diameters

    Directory of Open Access Journals (Sweden)

    Xiangdong Liu

    2016-10-01

    Full Text Available The oscillating heat pipe (OHP is a new member in the family of heat pipes, and it has great potential applications in energy conservation. However, the fluid flow and heat transfer in the OHP as well as the fundamental effects of inner diameter on them have not been fully understood, which are essential to the design and optimization of the OHP in real applications. Therefore, by combining the high-speed visualization method and infrared thermal imaging technique, the fluid flow and thermal performance in the OHPs with inner diameters of 1, 2 and 3 mm are presented and analyzed. The results indicate that three fluid flow motions, including small oscillation, bulk oscillation and circulation, coexist or, respectively, exist alone with the increasing heating load under different inner diameters, with three flow patterns occurring in the OHPs, viz. bubbly flow, slug flow and annular flow. These fluid flow motions are closely correlated with the heat and mass transfer performance in the OHPs, which can be reflected by the characteristics of infrared thermal images of condensers. The decrease in the inner diameter increases the frictional flow resistance and capillary instability while restricting the nucleate boiling in OHPs, which leads to a smaller proportion of bubbly flow, a larger proportion of short slug flow, a poorer thermal performance, and easier dry-out of working fluid. In addition, when compared with the 2 mm OHP, the increasing role of gravity induces the thermosyphon effect and weakens the ‘bubble pumping’ action, which results in a little smaller and bigger thermal resistances of 3 mm OHP under small and bulk oscillation of working fluid, respectively.

  7. Evaporation of polydispersed droplets in a highly turbulent channel flow

    Science.gov (United States)

    Cochet, M.; Bazile, Rudy; Ferret, B.; Cazin, S.

    2009-09-01

    A model experiment for the study of evaporating turbulent two-phase flows is presented here. The study focuses on a situation where pre-atomized and dispersed droplets vaporize and mix in a heated turbulent flow. The test bench consists in a channel flow with characteristics of homogeneous and isotropic turbulence where fluctuations levels reach very high values (25% in the established zone). An ultrasonic atomizer allows the injection of a mist of small droplets of acetone in the carrier flow. The large range diameters ensure that every kind of droplet behavior with regards to turbulence is possible. Instantaneous concentration fields of the vaporized phase are extracted from fluorescent images (PLIF) of the two phase flow. The evolution of the mixing of the acetone vapor is analyzed for two different liquid mass loadings. Despite the high turbulence levels, concentration fluctuations remain significant, indicating that air and acetone vapor are not fully mixed far from the injector.

  8. Evaporation of polydispersed droplets in a highly turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Cochet, M.; Bazile, Rudy; Ferret, B.; Cazin, S. [INPT, UPS, IMFT (Institut de Mecanique des Fluides de Toulouse), Universite de Toulouse (France)

    2009-09-15

    A model experiment for the study of evaporating turbulent two-phase flows is presented here. The study focuses on a situation where pre-atomized and dispersed droplets vaporize and mix in a heated turbulent flow. The test bench consists in a channel flow with characteristics of homogeneous and isotropic turbulence where fluctuations levels reach very high values (25% in the established zone). An ultrasonic atomizer allows the injection of a mist of small droplets of acetone in the carrier flow. The large range diameters ensure that every kind of droplet behavior with regards to turbulence is possible. Instantaneous concentration fields of the vaporized phase are extracted from fluorescent images (PLIF) of the two phase flow. The evolution of the mixing of the acetone vapor is analyzed for two different liquid mass loadings. Despite the high turbulence levels, concentration fluctuations remain significant, indicating that air and acetone vapor are not fully mixed far from the injector. (orig.)

  9. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  10. High order Poisson Solver for unbounded flows

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2015-01-01

    as regularisation we document an increased convergence rate up to tenth order. The method however, can easily be extended well beyond the tenth order. To show the full extend of the method we present the special case of a spectrally ideal regularisation of the velocity formulated integration kernel, which achieves......This paper presents a high order method for solving the unbounded Poisson equation on a regular mesh using a Green’s function solution. The high order convergence was achieved by formulating mollified integration kernels, that were derived from a filter regularisation of the solution field...... or by performing the differentiation as a multiplication of the Fourier coefficients. In this way, differential operators such as the divergence or curl of the solution field could be solved to the same high order convergence without additional computational effort. The method was applied and validated using...

  11. Computational analysis of high-throughput flow cytometry data

    Science.gov (United States)

    Robinson, J Paul; Rajwa, Bartek; Patsekin, Valery; Davisson, Vincent Jo

    2015-01-01

    Introduction Flow cytometry has been around for over 40 years, but only recently has the opportunity arisen to move into the high-throughput domain. The technology is now available and is highly competitive with imaging tools under the right conditions. Flow cytometry has, however, been a technology that has focused on its unique ability to study single cells and appropriate analytical tools are readily available to handle this traditional role of the technology. Areas covered Expansion of flow cytometry to a high-throughput (HT) and high-content technology requires both advances in hardware and analytical tools. The historical perspective of flow cytometry operation as well as how the field has changed and what the key changes have been discussed. The authors provide a background and compelling arguments for moving toward HT flow, where there are many innovative opportunities. With alternative approaches now available for flow cytometry, there will be a considerable number of new applications. These opportunities show strong capability for drug screening and functional studies with cells in suspension. Expert opinion There is no doubt that HT flow is a rich technology awaiting acceptance by the pharmaceutical community. It can provide a powerful phenotypic analytical toolset that has the capacity to change many current approaches to HT screening. The previous restrictions on the technology, based on its reduced capacity for sample throughput, are no longer a major issue. Overcoming this barrier has transformed a mature technology into one that can focus on systems biology questions not previously considered possible. PMID:22708834

  12. Numerical simulations of high Knudsen number gas flows and microchannel electrokinetic liquid flows

    Science.gov (United States)

    Yan, Fang

    Low pressure and microchannel gas flows are characterized by high Knudsen numbers. Liquid flows in microchannels are characterized by non-conventional driving potentials like electrokinetic forces. The main thrust of the dissertation is to investigate these two different kinds of flows in gases and liquids respectively. High Knudsen number (Kn) gas flows were characterized by 'rarified' or 'microscale' behavior. Because of significant non-continuum effect, traditional CFD techniques are often inaccurate for analyzing high Kn number gas flows. The direct simulation Monte Carlo (DSMC) method offers an alternative to traditional CFD which retains its validity in slip and transition flow regimes. To validate the DSMC code, comparisons of simulation results with theoretical analysis and experimental data are made. The DSMC method was first applied to compute low pressure, high Kn flow fields in partially heated two dimensional channels. The effects of varying pressure, inlet flow and gas transport properties (Kn, Reynolds number, Re and the Prandtl number, Pr respectively) on the wall heat transfer (Nusselt number, Nu) were examined. The DSMC method was employed to explore mixing gas flows in two dimensional microchannels. Mixing of two gas streams (H2 and O2) was considered within a microchannel. The effect of the inlet-outlet pressure difference, the pressure ratio of the incoming streams and the accommodation coefficient of the solid wall on mixing length were all examined. Parallelization of a three-dimensional DSMC code was implemented using OpenMP procedure on a shared memory multi-processor computer. The parallel code was used to simulate 3D high Kn number Couette flow and the flow characteristics are found to be very different from their continuum counterparts. A mathematical model describing electrokinetically driven mass transport phenomena in microfabricated chip devices will also be presented. The model accounts for the principal physical phenomena affecting

  13. High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing.

    Science.gov (United States)

    Hood, Renee R; DeVoe, Don L

    2015-11-18

    Liposomes represent a leading class of nanoparticles for drug delivery. While a variety of techniques for liposome synthesis have been reported that take advantage of microfluidic flow elements to achieve precise control over the size and polydispersity of nanoscale liposomes, with important implications for nanomedicine applications, these methods suffer from extremely limited throughput, making them impractical for large-scale nanoparticle synthesis. High aspect ratio microfluidic vertical flow focusing is investigated here as a new approach to overcoming the throughput limits of established microfluidic nanoparticle synthesis techniques. Here the vertical flow focusing technique is utilized to generate populations of small, unilamellar, and nearly monodisperse liposomal nanoparticles with exceptionally high production rates and remarkable sample homogeneity. By leveraging this platform, liposomes with modal diameters ranging from 80 to 200 nm are prepared at production rates as high as 1.6 mg min(-1) in a simple flow-through process.

  14. A Combinatorial Approach to the Investigation of Metal Systems that Form Both Bulk Metallic Glasses and High Entropy Alloys

    Science.gov (United States)

    Welk, Brian A.; Gibson, Mark A.; Fraser, Hamish L.

    2016-03-01

    In this work, compositionally graded specimens were deposited using the laser engineered net-shaping (LENS™) additive manufacturing technique to study the glass-forming ability of two bulk metallic glass (BMG) and high entropy alloy (HEA) composite systems. The first graded specimen varied from Zr57Ti5Al10Cu20Ni8 (BMG) to CoCrFeNiCu0.5 (HEA) and the second graded specimen varied from TiZrCuNb (BMG) to (TiZrCuNb)65Ni35 (HEA). After deposition, laser surface melting experiments were performed parallel to the gradient to remelt and rapidly solidify the specimen. Scanning electron microscopy and energy dispersive x-ray spectroscopy were used to determine the morphology and composition variations in the as-deposited and laser surface melted phases. Selected area diffraction of the melt pool regions confirmed an almost fully amorphous region in the first gradient and an amorphous matrix/crystalline dendrite composite structure in the second gradient.

  15. Comparative study of bulk metallic glass composites with high-volume-fractioned dendritic and spherical b. c. c. phase precipitates

    Directory of Open Access Journals (Sweden)

    Guo-yuan Sun

    2015-05-01

    Full Text Available A dendritic β-phase reinforced bulk metallic glass (BMG composite named as D2 was prepared by rapid quenching of a homogenous Zr60Ti14.67Nb5.33Cu5.56Ni4.44Be10 melt, and characterized by means of X-ray diffraction (XRD, scanning electron microscopy (SEM observation and room-temperature compression test. The microstructure and mechanical properties were compared with those of the spherical β-phase reinforced composite named as composite S2. It was found that the composite D2 contains β-phase dendrites up to 56% in volume-fraction, and exhibits a ductile compressive behavior with plastic strain of 12.7%. As the high-volume-fractioned β-phase dendrites transferred to coarse spherical particles of about 20 μm in diameter in the composite S2, a much improved plastic strain up to 20.4% can be achieved. Micrographs of the fractured samples reveal different interaction modes of the propagating shear bands with the dendritic and spherical β phase inclusions, resulting in different shear strains in the composite samples. The matrix of composite S2 undergoes a significantly larger shear strain than that of the composite D2 before ultimate failure, which is thought to be mainly responsible for the greatly increased global plastic strain of the S2 relative to D2.

  16. Controlled assembly of high-order nanoarray metal structures on bulk copper surface by femtosecond laser pulses

    Science.gov (United States)

    Qin, Wanwan; Yang, Jianjun

    2017-07-01

    We report a new one-step maskless method to fabricate high-order nanoarray metal structures comprising periodic grooves and particle chains on a single-crystal Cu surface using femtosecond laser pulses at the central wavelength of 400 nm. Remarkably, when a circularly polarized infrared femtosecond laser pulse (spectrally centered at 800 nm) pre-irradiates the sample surface, the geometric dimensions of the composite structure can be well controlled. With increasing the energy fluence of the infrared laser pulse, both the groove width and particle diameter are observed to reduce, while the measured spacing-to-diameter ratio of the nanoparticles tends to present an increasing tendency. A physical scenario is proposed to elucidate the underlying mechanisms: as the infrared femtosecond laser pulse pre-irradiates the target, the copper surface is triggered to display anomalous transient physical properties, on which the subsequently incident Gaussian blue laser pulse is spatially modulated into fringe-like energy depositions via the excitation of ultrafast surface plasmon. During the following relaxation processes, the periodically heated thin-layer regions can be transferred into the metastable liquid rivulets and then they break up into nanodroplet arrays owing to the modified Rayleigh-like instability. This investigation indicates a simple integrated approach for active designing and large-scale assembly of complexed functional nanostructures on bulk materials.

  17. Two methods of tuning threshold voltage of bulk FinFETs with replacement high-k metal-gate stacks

    Science.gov (United States)

    Xu, Miao; Zhu, Huilong; Zhang, Yanbo; Xu, Qiuxia; Zhang, Yongkui; Qin, Changliang; Zhang, Qingzhu; Yin, Huaxiang; Xu, Hao; Chen, Shuai; Luo, Jun; Li, Chunlong; Zhao, Chao; Ye, Tianchun

    2017-03-01

    In this work, we propose two threshold voltage (VTH) tuning methods for bulk FinFETs with replacement high-k metal gate. The first method is to perform a vertical implantation into fin structure after dummy gate removal, self-aligned forming halo & punch through stop pocket (halo & PTSP) doping profile. The second method is to execute P+/BF2+ ion implantations into the single common work function (WF) layer in N-/P-FinFETs, respectively. These two methods have been investigated by TCAD simulations and MOS-capacitor experiments respectively, and then integrated into FinFET fabrication successfully. Experimental results show that the halo & PTSP doping profile can reduce VTH roll off and total variation. With P+/BF2+ doped WF layer, the VTH-sat shift -0.43 V/+1.26 V for N-FinFETs and -0.75 V/+0.11 V for P-FinFETs, respectively, with gate length of 500 nm. The proposed two methods are simple and effective for FinFET VTH tuning, and have potential for future application of massive production.

  18. A film bulk acoustic resonator-based high-performance pressure sensor integrated with temperature control system

    Science.gov (United States)

    Zhang, Mengying; Zhao, Zhan; Du, Lidong; Fang, Zhen

    2017-04-01

    This paper presented a high-performance pressure sensor based on a film bulk acoustic resonator (FBAR). The support film of the FBAR chip was made of silicon nitride and the part under the resonator area was etched to enhance the sensitivity and improve the linearity of the pressure sensor. A micro resistor temperature sensor and a micro resistor heater were integrated in the chip to monitor and control the operating temperature. The sensor chip was fabricated, and packaged in an oscillator circuit for differential pressure detection. When the detected pressure ranged from  ‑100 hPa to 600 hPa, the sensitivity of the improved FBAR pressure sensor was  ‑0.967 kHz hPa‑1, namely  ‑0.69 ppm hPa‑1, which was 19% higher than that of existing sensors with a complete support film. The nonlinearity of the improved sensor was less than  ±0.35%, while that of the existing sensor was  ±5%. To eliminate measurement errors from humidity, the temperature control system integrated in the sensor chip controlled the temperature of the resonator up to 75 °C, with accuracy of  ±0.015 °C and power of 20 mW.

  19. Study on bulk shielding for a spallation neutron source facility in the high-intensity proton accelerator project

    CERN Document Server

    Maekawa, F; Takada, H; Teshigawara, M; Watanabe, N

    2002-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project, a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed in a main part of the Materials and Life Science Facility. This report describes results of a study on bulk shielding performance of a biological shield for the spallation neutron source by means of a Monte Carlo calculation method, that is important in terms of radiation safety and cost reduction. A shielding configuration was determined as a reference case by considering preliminary studies and interaction with other components, then shielding thickness that was required to achieve a target dose rate of 1 mu Sv/h was derived. Effects of calculation conditions such as shielding materials and dimensions on the shielding performance was investigated by changing those parameters. By taking all the results and design margins into account, a shielding configuration that was identified as the most appropriate was finally determined as follows. An iron shield regi...

  20. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk.

    Science.gov (United States)

    He, Meng; Kravchyk, Kostiantyn; Walter, Marc; Kovalenko, Maksym V

    2014-03-12

    We report colloidal synthesis of antimony (Sb) nanocrystals with mean size tunable in the 10-20 nm range and with narrow size distributions of 7-11%. In comparison to microcrystalline Sb, 10 and 20 nm Sb nanocrystals exhibit enhanced rate-capability and higher cycling stability as anode materials in rechargeable Li-ion and Na-ion batteries. All three particle sizes of Sb possess high and similar Li-ion and Na-ion charge storage capacities of 580-640 mAh g(-1) at moderate charging/discharging current densities of 0.5-1C (1C-rate is 660 mA g(-1)). At all C-rates (0.5-20C, e.g. current densities of 0.33-13.2 Ag(1-)), capacities of 20 nm Sb particles are systematically better than for both 10 nm and bulk Sb. At 20C-rates, retention of charge storage capacities by 10 and 20 nm Sb nanocrystals can reach 78-85% of the low-rate value, indicating that rate capability of Sb nanostructures can be comparable to the best Li-ion intercalation anodes and is so far unprecedented for Na-ion storage.

  1. Micellar high performance liquid chromatographic determination of flunixin meglumine in bulk, pharmaceutical dosage forms, bovine liver and kidney

    Directory of Open Access Journals (Sweden)

    Fathalla F. Belal

    2015-03-01

    Full Text Available A simple, sensitive and rapid liquid chromatographic method was developed and validated for the analysis of flunixin meglumine (flunixin-M in bulk, pharmaceutical dosage forms, bovine liver and kidney. Analytical separation was performed in less than 4 min using a C18 column with UV detection at 284 nm. A micellar solution composed of 0.15 M sodium dodecyl sulphate, 8% n-butanol and 0.3% triethylamine in 0.02 M phosphoric acid buffered at pH 7.0 was used as the mobile phase. The method was fully validated in accordance with the International Conference on Harmonization (ICH guidelines. The limit of detection and the limit of quantitation were 0.02 and 0.06 μg mL−1, respectively. The recoveries obtained were in range of 95.58–106.94% for bovine liver and kidney. High extraction efficiency was obtained without matrix interference in the extraction process and in the subsequent chromatographic determination. The method showed good repeatability, linearity and sensitivity according to the evaluation of the validation parameters.

  2. Photoprecursor Approach Enables Preparation of Well-Performing Bulk-Heterojunction Layers Comprising a Highly Aggregating Molecular Semiconductor.

    Science.gov (United States)

    Suzuki, Mitsuharu; Yamaguchi, Yuji; Takahashi, Kohei; Takahira, Katsuya; Koganezawa, Tomoyuki; Masuo, Sadahiro; Nakayama, Ken-ichi; Yamada, Hiroko

    2016-04-06

    Active-layer morphology critically affects the performance of organic photovoltaic cells, and thus its optimization is a key toward the achievement of high-efficiency devices. However, the optimization of active-layer morphology is sometimes challenging because of the intrinsic properties of materials such as strong self-aggregating nature or low miscibility. This study postulates that the "photoprecursor approach" can serve as an effective means to prepare well-performing bulk-heterojunction (BHJ) layers containing highly aggregating molecular semiconductors. In the photoprecursor approach, a photoreactive precursor compound is solution-deposited and then converted in situ to a semiconducting material. This study employs 2,6-di(2-thienyl)anthracene (DTA) and [6,6]-phenyl-C71-butyric acid methyl ester as p- and n-type materials, respectively, in which DTA is generated by the photoprecursor approach from the corresponding α-diketone-type derivative DTADK. When only chloroform is used as a cast solvent, the photovoltaic performance of the resulting BHJ films is severely limited because of unfavorable film morphology. The addition of a high-boiling-point cosolvent, o-dichlorobenzene (o-DCB), to the cast solution leads to significant improvement such that the resulting active layers afford up to approximately 5 times higher power conversion efficiencies. The film structure is investigated by two-dimensional grazing-incident wide-angle X-ray diffraction, atomic force microscopy, and fluorescence microspectroscopy to demonstrate that the use of o-DCB leads to improvement in film crystallinity and increase in charge-carrier generation efficiency. The change in film structure is assumed to originate from dynamic molecular motion enabled by the existence of solvent during the in situ photoreaction. The unique features of the photoprecursor approach will be beneficial in extending the material and processing scopes for the development of organic thin-film devices.

  3. Flow structure around high-speed train in open air

    Institute of Scientific and Technical Information of China (English)

    田红旗; 黄莎; 杨明智

    2015-01-01

    According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II, pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction.

  4. High-efficiency design of a mixed-flow pump

    Institute of Scientific and Technical Information of China (English)

    KIM; Jin-Hyuk; AHN; Hyung-Jin; KIM; Kwang-Yong

    2010-01-01

    High-efficiency design of a mixed-flow pump has been carried out based on numerical analysis of a three-dimensional viscous flow.For analysis,the Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were discretized by finite-volume approximations.Structured grid system was constructed in the computational domain,which has O-type grids near the blade surfaces and H/J-type grids in other regions.The numerical results were validated with experimental data for the heads and hydraulic efficiencies at different flow coefficients.The hydraulic efficiency at the design flow coefficient was evaluated with variation of the geometric variables,i.e.,the area of the discharge and length of the vane in the diffuser.The result has shown that the hydraulic efficiency of a mixed-flow pump at the design condition is improved by the modification of the geometry.

  5. Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.

  6. Turbulent behaviour of non-cohesive sediment gravity flows at unexpectedly high flow density

    Science.gov (United States)

    Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian

    2016-04-01

    Experimental lock exchange-type turbidity currents laden with non-cohesive silica-flour were found to be highly dynamic at remarkably high suspended sediment concentrations. These experiments were conducted to produce sediment gravity flows of volumetric concentrations ranging from 1% to 52%, to study how changes in suspended sediment concentration affects the head velocities and run-out distances of these flows, in natural seawater. Increasing the volumetric concentration of suspended silica-flour, C, up to C = 46%, within the flows led to a progressive increase in the maximum head velocity. This relationship suggests that suspended sediment concentration intensifies the density difference between the turbulent suspension and the ambient water, which drives the flow, even if almost half of the available space is occupied by sediment particles. However, from C = 46% to C = 52% a rapid reduction in the maximum head velocity was measured. It is inferred that at C = 46%, friction from grain-to-grain interactions begins to attenuate turbulence within the flows. At C > 46%, the frictional stresses become progressively more dominant over the turbulent forces and excess density, thus producing lower maximum head velocities. This grain interaction process started to rapidly reduce the run-out distance of the silica-flour flows at equally high concentrations of C ≥ 47%. All flows with C 9%. Yet, the critical flow concentration at which turbulence modulation commenced for these silica-flour laden flows appeared to be much higher. We suggest that Bagnold's 9% criterion cannot be applied to flows that carry fine-grained sediment, because turbulent forces are more important than dispersive forces, and frictional forces start to affect the flows only at concentrations just below the cubic packing density of spheres of C = 52%. These experimental results also imply that natural flows may be able to transport vast volumes of non-cohesive sediment with relative ease, especially

  7. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jared W Wenger

    2010-05-01

    Full Text Available Fermentation of xylose is a fundamental requirement for the efficient production of ethanol from lignocellulosic biomass sources. Although they aggressively ferment hexoses, it has long been thought that native Saccharomyces cerevisiae strains cannot grow fermentatively or non-fermentatively on xylose. Population surveys have uncovered a few naturally occurring strains that are weakly xylose-positive, and some S. cerevisiae have been genetically engineered to ferment xylose, but no strain, either natural or engineered, has yet been reported to ferment xylose as efficiently as glucose. Here, we used a medium-throughput screen to identify Saccharomyces strains that can increase in optical density when xylose is presented as the sole carbon source. We identified 38 strains that have this xylose utilization phenotype, including strains of S. cerevisiae, other sensu stricto members, and hybrids between them. All the S. cerevisiae xylose-utilizing strains we identified are wine yeasts, and for those that could produce meiotic progeny, the xylose phenotype segregates as a single gene trait. We mapped this gene by Bulk Segregant Analysis (BSA using tiling microarrays and high-throughput sequencing. The gene is a putative xylitol dehydrogenase, which we name XDH1, and is located in the subtelomeric region of the right end of chromosome XV in a region not present in the S288c reference genome. We further characterized the xylose phenotype by performing gene expression microarrays and by genetically dissecting the endogenous Saccharomyces xylose pathway. We have demonstrated that natural S. cerevisiae yeasts are capable of utilizing xylose as the sole carbon source, characterized the genetic basis for this trait as well as the endogenous xylose utilization pathway, and demonstrated the feasibility of BSA using high-throughput sequencing.

  8. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jared W Wenger

    2010-05-01

    Full Text Available Fermentation of xylose is a fundamental requirement for the efficient production of ethanol from lignocellulosic biomass sources. Although they aggressively ferment hexoses, it has long been thought that native Saccharomyces cerevisiae strains cannot grow fermentatively or non-fermentatively on xylose. Population surveys have uncovered a few naturally occurring strains that are weakly xylose-positive, and some S. cerevisiae have been genetically engineered to ferment xylose, but no strain, either natural or engineered, has yet been reported to ferment xylose as efficiently as glucose. Here, we used a medium-throughput screen to identify Saccharomyces strains that can increase in optical density when xylose is presented as the sole carbon source. We identified 38 strains that have this xylose utilization phenotype, including strains of S. cerevisiae, other sensu stricto members, and hybrids between them. All the S. cerevisiae xylose-utilizing strains we identified are wine yeasts, and for those that could produce meiotic progeny, the xylose phenotype segregates as a single gene trait. We mapped this gene by Bulk Segregant Analysis (BSA using tiling microarrays and high-throughput sequencing. The gene is a putative xylitol dehydrogenase, which we name XDH1, and is located in the subtelomeric region of the right end of chromosome XV in a region not present in the S288c reference genome. We further characterized the xylose phenotype by performing gene expression microarrays and by genetically dissecting the endogenous Saccharomyces xylose pathway. We have demonstrated that natural S. cerevisiae yeasts are capable of utilizing xylose as the sole carbon source, characterized the genetic basis for this trait as well as the endogenous xylose utilization pathway, and demonstrated the feasibility of BSA using high-throughput sequencing.

  9. Characteristics of a Bulk High-Critical Temperature Superconductor Fabricated by the Shock Compaction Method: Possible Use as a Highly Sensitive Magnetic Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H [Interdisci. Grad. School of Sci. and Engi., Grad. School of Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Maeji, Y [Interdisci. Grad. School of Sci. and Engi., Grad. School of Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Yamagata, K [Relia. Eval. Technol. Center, Nitto Denko Corp., Onomichi, Hiroshima 722-0212 (Japan); Itoh, M [Interdisci. Grad. School of Sci. and Engi., Grad. School of Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Kezuka, H [Faculty of Bionics, Tokyo University of Technol., Hachioji, Tokyo 192-0982 (Japan); Kikuchi, M [Kansen Fukushi Research Center, Tohoku Fukushi University Sendai, Miyagi 989-3201 (Japan); Atou, T [Insti. for Mate. Research, Tohoku University Sendai, Miyagi 980-8577 (Japan); Kawasaki, M [Insti. for Mate. Research, Tohoku University Sendai, Miyagi 980-8577 (Japan); Fukuoka, K [Insti. for Mate. Research, Tohoku University Sendai, Miyagi 980-8577 (Japan)

    2006-06-01

    A magnetic sensor, constructed of bulk Bi-Pb-Sr-Ca-Cu-O (BPSCCO), was fabricated by use of the shock compaction method, employing a propellant gun-system, and then sintered under through use of an electronic furnace. The specimen as a magnetic sensor was maintained in the superconducting state at 77.4 K, under a current density J of approximately 40 A/cm{sup 2} in the absence of an excitation magnetic field B{sub ex}. The superconducting state was then broken and the specimen exposed to a B{sub ex} value of 40x10{sup -4} T. That is, the resistance R{sub meas} of the specimen occurred when exposed to 40x10{sup -4} T under a constant J of 40 A/cm{sup 2}. The magnetic sensitivity S of the specimen was approximately 13 %/(10{sup -4} T) over the range of measurement of the magnetic field B{sub meas} from 0 to {+-}5x10{sup -4} T, under a constant 40x10{sup -4} T for the value of B{sub ex}, being approximately 13 times greater than that of a giant magnetoresistance (GMR) sensor. It was, consequently, determined that it was possible to apply the bulk BPSCCO specimen as a highly sensitive magnetic sensor.

  10. Simulating High Reynolds Number Flow by Lattice Boltzmann Method

    Institute of Scientific and Technical Information of China (English)

    KANG Xiu-Ying; LIU Da-He; ZHOU Jing; JIN Yong-Juan

    2005-01-01

    @@ A two-dimensional channel flow with different Reynolds numbers is tested by using the lattice Boltzmann method under different pressure and velocity boundary conditions. The results show that the simulation error increases,and the pressure and the flow rate become unstable under a high Reynolds number. To improve the simulation precision under a high Reynolds number, the number of fluid nodes should be enlarged. For a higher Reynoldsnumber flow, the velocity boundary with an approximately parabolic velocity profile is found to be more adaptive.Blood flow in an artery with cosine shape symmetrical narrowing is then simulated under a velocity boundary condition. Its velocity, pressure and wall shear stress distributions are consistent with previous studies.

  11. Carbon film deposition from high velocity rarefied flow

    Energy Technology Data Exchange (ETDEWEB)

    Rebrov, A.K., E-mail: rebrov@itp.nsc.ru; Emelyanov, A.A.; Yudin, I.B.

    2015-01-30

    The presented study is based on the idea of the activation of a gas-precursor high velocity flow by hot wire. The wire forms the channel for flow before expansion to substrate. The construction allows change of the specific flow rate, velocity, composition and temperature of a gas mixture by studying the film synthesis in conditions from free molecular to continuum flow at velocities from hundreds to thousands of m/s. At a high pressure, the film has typical and unusual hexagonal incorporations for diamond tetragonal particles. Raman spectrum with the pronounced diamond peak is typical for diamond-like film. X-ray diffraction points in the presence of lonsdaleite. Conditions of deposition were simulated by Monte Carlo method. Collisions with hot surfaces and chemical transformations were taken into consideration as well.

  12. Direct observation of strain in bulk subgrains and dislocation walls by high angular resolution three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Lienert, U.; Almer, J.;

    2008-01-01

    The X-ray diffraction (XRD) method "high angular resolution 3DXRD" is briefly introduced, and results are presented for a single bulk grain in a polycrystalline copper sample deformed in tension. It is found that the three-dimensional reciprocal-space intensity distribution of a 400 reflection...

  13. Review of actuators for high speed active flow control

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; LUO ZhenBing; XIA ZhiXun; LIU Bing; DENG Xiong

    2012-01-01

    Actuators are one of the key points for the development of active flow control technology.Efficient methods of high speed flow control can provide enhanced propulsive efficiency and at the same time enable safe and maneuverable high speed flight.The development of high speed flight technology promotes the emergence of novel and robust actuators.This review introduces the state of the art in the development of actuators that can be used in high speed active flow control.The classification and different operation criteria of the actuators are discussed.The specifications,mechanisms and applications of various popular actuator types including fluidic,mechanical,and plasma actuators are described.Based on the realistic need of high speed flow control and the existing results of actuators,a new actuator design method is proposed.At last,the merits and drawbacks of the actuators are summarized and some suggestions on the development of active flow control technology are put forward.

  14. Stability-indicating high performance thin layer chromatography determination of Paroxetine hydrochloride in bulk drug and pharmaceutical formulations.

    Science.gov (United States)

    Venkatachalam, A; Chatterjee, Vidya S

    2007-08-29

    A simple selective precise and stability-indicating high performance thin layer chromatographic method of analysis of Paroxetine hydrochloride both as a bulk drug and in formulations was developed and validated. The method employed TLC (Thin Layer Chromatography) aluminum precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of butanol:acetic acid:water (8:2:0.5, v/v/v). This system was found to give compact spots for Paroxetine HCl (Rf, retardation factor, value-0.48+/-0.02). Paroxteine HCl was subjected to acid and alkali hydrolysis, oxidation and photodegradation, where the degraded product was well separated from the pure drug. Densitometric analysis of Paroxetine hydrochloride was carried out in the absorbance mode at 295 nm. The linear regression analysis data for the calibration spots showed good relationship with (regression) r2 = 0.9903 in the amount range of 300-1500 ng (nanogram) per spot. The mean value of co-relation co-efficient, slope and intercept were 0.9903+/-0.001, 5.38+/-0.058 and 182.5+/-2.16 respectively. The method was validated for precision, recovery and robustness. The limits of detection and quantitation were 50 and 150 ng, respectively. The drug does not undergo degradation with oxidation, but gets affected in acidic and alkaline conditions. The acid and alkali degradation showed extra peaks at 0.4 and 0.08 Rf, respectively. This indicates that the drug is susceptible to acidic and alkaline medium. As the method could effectively separate the drug from its degradation products, it can be employed as a stability-indicating one.

  15. Bulk Combinatorial Synthesis and High Throughput Characterization for Rapid Assessment of Magnetic Materials: Application of Laser Engineered Net Shaping (LENS™)

    Science.gov (United States)

    Geng, J.; Nlebedim, I. C.; Besser, M. F.; Simsek, E.; Ott, R. T.

    2016-07-01

    A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS™; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS™ system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. The Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.

  16. Automated High-Dimensional Flow Cytometric Data Analysis

    Science.gov (United States)

    Pyne, Saumyadipta; Hu, Xinli; Wang, Kui; Rossin, Elizabeth; Lin, Tsung-I.; Maier, Lisa; Baecher-Allan, Clare; McLachlan, Geoffrey; Tamayo, Pablo; Hafler, David; de Jager, Philip; Mesirov, Jill

    Flow cytometry is widely used for single cell interrogation of surface and intracellular protein expression by measuring fluorescence intensity of fluorophore-conjugated reagents. We focus on the recently developed procedure of Pyne et al. (2009, Proceedings of the National Academy of Sciences USA 106, 8519-8524) for automated high- dimensional flow cytometric analysis called FLAME (FLow analysis with Automated Multivariate Estimation). It introduced novel finite mixture models of heavy-tailed and asymmetric distributions to identify and model cell populations in a flow cytometric sample. This approach robustly addresses the complexities of flow data without the need for transformation or projection to lower dimensions. It also addresses the critical task of matching cell populations across samples that enables downstream analysis. It thus facilitates application of flow cytometry to new biological and clinical problems. To facilitate pipelining with standard bioinformatic applications such as high-dimensional visualization, subject classification or outcome prediction, FLAME has been incorporated with the GenePattern package of the Broad Institute. Thereby analysis of flow data can be approached similarly as other genomic platforms. We also consider some new work that proposes a rigorous and robust solution to the registration problem by a multi-level approach that allows us to model and register cell populations simultaneously across a cohort of high-dimensional flow samples. This new approach is called JCM (Joint Clustering and Matching). It enables direct and rigorous comparisons across different time points or phenotypes in a complex biological study as well as for classification of new patient samples in a more clinical setting.

  17. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries

    Science.gov (United States)

    Chen, Hongning; Zou, Qingli; Liang, Zhuojian; Liu, Hao; Li, Quan; Lu, Yi-Chun

    2015-01-01

    Redox flow batteries are promising technologies for large-scale electricity storage, but have been suffering from low energy density and low volumetric capacity. Here we report a flow cathode that exploits highly concentrated sulphur-impregnated carbon composite, to achieve a catholyte volumetric capacity 294 Ah l-1 with long cycle life (>100 cycles), high columbic efficiency (>90%, 100 cycles) and high energy efficiency (>80%, 100 cycles). The demonstrated catholyte volumetric capacity is five times higher than the all-vanadium flow batteries (60 Ah l-1) and 3-6 times higher than the demonstrated lithium-polysulphide approaches (50-117 Ah l-1). Pseudo-in situ impedance and microscopy characterizations reveal superior electrochemical and morphological reversibility of the sulphur redox reactions. Our approach of exploiting sulphur-impregnated carbon composite in the flow cathode creates effective interfaces between the insulating sulphur and conductive carbon-percolating network and offers a promising direction to develop high-energy-density flow batteries.

  18. Relative entropy equals bulk relative entropy

    CERN Document Server

    Jafferis, Daniel L; Maldacena, Juan; Suh, S Josephine

    2015-01-01

    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  19. Feasibility of introducing ferromagnetic materials to onboard bulk high-T{sub c} superconductors to enhance the performance of present maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zigang, E-mail: zgdeng@gmail.com [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power (TPL), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Wang, Jiasu [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Zheng, Jun; Zhang, Ya [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power (TPL), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Wang, Suyu [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China)

    2013-02-14

    Highlights: ► Ferromagnetic materials guide the flux distribution of the PMG to bulk positions. ► With ferromagnetic materials, guidance performance can be enhanced greatly. ► A new HTS Maglev system with onboard ferromagnetic materials is designed. ► The design can meet large guidance force requirements for practical applications. -- Abstract: Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.

  20. Multiple states in highly turbulent Taylor-Couette flow

    CERN Document Server

    Huisman, Sander G; Sun, Chao; Lohse, Detlef

    2016-01-01

    The ubiquity of turbulent flows in nature and technology makes it of utmost importance to fundamentally understand turbulence. Kolmogorov's 1941 paradigm suggests that for strongly turbulent flows with many degrees of freedom and its large fluctuations, there would only be \\emph{one} turbulent state as the large fluctuations would explore the entire higher-dimensional phase space. Here we report the first conclusive evidence of multiple turbulent states for large Reynolds number $\\text{Re}=\\mathcal{O}(10^6)$ (Taylor number $\\text{Ta}=\\mathcal{O}(10^{12})$) Taylor-Couette flow in the regime of ultimate turbulence, by probing the phase space spanned by the rotation rates of the inner and outer cylinder. The manifestation of multiple turbulent states is exemplified by providing combined global torque and local velocity measurements. This result verifies the notion that bifurcations can occur in high-dimensional flows i.e. very large $\\text{Re}$) and questions Kolmogorov's paradigm.

  1. Self-heating of bulk high temperature superconductors of finite height subjected to a large alternating magnetic field

    Science.gov (United States)

    Laurent, P.; Fagnard, J.-F.; Babu, N. Hari; Cardwell, D. A.; Vanderheyden, B.; Vanderbemden, P.

    2010-12-01

    In this work we study, both experimentally and numerically, the self-heating of a bulk, large YBCO pellet of aspect ratio (thickness/diameter) ~ 0.4 subjected to a large AC magnetic field. To ensure accurate temperature measurements, the sample was placed in an experimental vacuum chamber to achieve a small and reproducible heat transfer coefficient between the superconductor and the cryogenic fluid. The temperature was measured at several locations on the sample surface during the self-heating process. The experimentally determined temperature gradients are found to be very small in this arrangement (Bean model, assuming a uniform temperature in the sample. A 2D magneto-thermal model was also used to determine the space and time-dependent temperature distribution T(r, z, t) during the application of the AC field. The losses in the bulk pellet were determined using an algorithm based on the numerical method of Brandt, which was combined with a heat diffusion algorithm implemented using a finite-difference method. The model is shown to be able to reproduce the main trends of the observed temperature evolution of the bulk sample during a self-heating process. Finally, the 2D model is used to study the effect of a non-uniform distribution of critical current density Jc(r, z) on the losses within the bulk superconductor.

  2. Engineering the propagation of high-k bulk plasmonic waves in multilayer hyperbolic metamaterials by multiscale structuring

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei; Sipe, J. E.

    2013-01-01

    Propagation of large-wavevector bulk plasmonic waves in multilayer hyperbolic metamaterials (HMMs) with two levels of structuring is theoretically studied. It is shown that when the parameters of a subwavelength metal-dielectric multilayer (substructure) are modulated (superstructured) on a large...

  3. Plasma-Assisted Chemistry in High-Speed Flow

    Institute of Scientific and Technical Information of China (English)

    Sergey B.LEONOV; Dmitry A.YARANTSEV; Anatoly P.NAPARTOVICH; Igor V.KOCHETOV

    2007-01-01

    Fundamental problems related to the high-speed combustion are analyzed. The result of plasma-chemical modeling is presented as a motivation of experimental activity.Numerical simulations of the effect of uniform non-equilibrium discharge on the premixed hydrogen and ethylene-air mixture in supersonic flow demonstrate an advantage of such a technique over a heating.Experimental results on multi-electrode non-uniform discharge maintenance behind wallstep and in cavity of supersonic flow are presented.The model test on hydrogen and ethylene ignition is demonstrated at direct fuel injection to low-temperature high-speed airflow.

  4. Determination of the bulk modulus of hydroxycancrinite, a possible zeolitic precursor in geopolymers, by high-pressure synchrotron X-ray diffraction

    KAUST Repository

    Oh, Jae Eun

    2011-11-01

    Crystalline zeolitic materials, such as hydroxycancrinite, hydroxysodalite, herschelite and nepheline, are often synthesized from geopolymerization using fly-ash and solutions of NaOH at high temperatures. Comprised mainly of 6-membered aluminosilicate rings that act as basic building units, their crystal structures may provide insight into the reaction products formed in NaOH-activated fly ash-based geopolymers. Recent research indicates that the hydroxycancrinite and hydroxysodalite may play an important role as possible analogues of zeolitic precursor in geopolymers. Herein is reported a high pressure synchrotron study of the behavior of hydroxycancrinite exposed to pressures up to 6.1 GPa in order to obtain its bulk modulus. A refined equation of state for hydroxycancrinite yielded a bulk modulus of Ko = 46 ± 5 GPa (assuming Ko′ = 4.0) for a broad range of applied pressure. When low pressure values are excluded from the fit and only the range of 2.5 and 6.1 GPa is considered, the bulk modulus of hydroxycancrinite was found to be Ko = 46.9 ± 0.9 GPa (Ko′ = 4.0 ± 0.4, calculated). Comparison with the literature shows that all zeolitic materials possessing single 6-membered rings (i.e., hydroxycancrinite, sodalite and nepheline) have similar bulk moduli. © 2011 Elsevier Ltd. All rights reserved.

  5. High energy density Z-pinch plasmas using flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  6. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.

    2013-12-27

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A derivation of bulk-motion insensitive implosion metrics inferred from neutron and high-energy x-ray emission in a series of high yield implosions on the NIF

    Science.gov (United States)

    Springer, P. T.; Macphee, A. G.; Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Cerjan, C. J.; Dewald, E. L.; Dittrich, T. R.; Doeppner, T.; Edgell, D. H.; Edwards, M. J.; Gaffney, J.; Grim, G. P.; Haan, S.; Hammer, J. H.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Milovich, J.; Munro, D. H.; Pak, A.; Park, H. S.

    2015-11-01

    A suite of nuclear and x-ray data is used to deduce key implosion performance metrics at stagnation including the hotspot pressure, energy, and the role of alpha heating on producing the observed yield. Key to this analysis is a determination of the burn-averaged temperature of the hot plasma so that the nuclear reactivity and yield can then be used to deduce the plasma density and pressure. In this presentation we examine the systematics of both neutron and high-energy x-ray emission (22 keV x-ray monochromator) from a series of high yield implosions on the NIF. The advantage of incorporating high energy x-rays into the analysis is their insignificant attenuation and insensitivity to bulk flows, thus providing insight as to whether these effects complicate the interpretation of the nuclear data, and that a precipitous drop in their production is expected as the thermal temperature is reduced. A dynamic model for hotspot assembly is developed that incorporates thermal conduction, radiative losses, and alpha heating, which simultaneously matches both neutron and x-ray data with nearly identical nuclear and x-ray derived thermal temperatures. Work performed under the auspices of the USDoE by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.

  8. Characterization of non equilibrium effects on high quality critical flows

    Energy Technology Data Exchange (ETDEWEB)

    Camelo, E.; Lemonnier, H.; Ochterbeck, J. [Commissariat a l Energie Atomique, Grenoble (France)] [and others

    1995-09-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness.

  9. Highly viscous fluid flow in a spinning and nutating cylinder

    Science.gov (United States)

    Herbert, T.

    1985-02-01

    Spin-stabilized projectiles with liquid payloads can experience a severe flight instability characterized by a rapid yaw angle growth and a simultaneous loss in spin rate. Laboratory experiments and field tests have shown that this instability originates from the internal fluid motion in the range of high viscosity. Evaluation of the experimental data and analysis of the equations for the fluid motion in a spinning and nutating cylinder suggest a theoretical approach in three major steps: (1) analysis of the steady viscous flow in an infinitely long cylinder, (2) hydrodynamic stability analysis of this basic flow, and (3) analysis of the end effects. The basic flow has been found in analytical form. At low Reynolds number, this flow agrees well with computational results for the center section of a cylinder of aspect ratio 4.3. The despin moment caused by this flow largely agrees with experimental data for a wide range of Reynolds numbers. Current work aims at the stability of this flow.

  10. Experimental evidence of bulk chemistry constraint on SiO2 solubility in clinopyroxene at high-pressure conditions

    Science.gov (United States)

    Kawasaki, Toshisuke; Osanai, Yasuhito

    2015-06-01

    We have experimentally confirmed that the solubility of SiO2 in clinopyroxene at ultrahigh-pressure metamorphic conditions is buffered by coesite and kyanite. The present findings were derived from high-pressure experiments on metapelite glass, powdered andesite and eclogite glass under anhydrous conditions. The metapelite glass and powdered andesite were recrystallised in boron nitride capsules at 8 GPa and 1100-1500 °C. The eclogite glass was heated in an AuPd capsule, both ends of which were welded, at 3 GPa and 1000 °C. Clinopyroxene nucleated from metapelite glass, the bulk composition of which is saturated in both SiO2 and Al2SiO5 components plotting within the Jd (Na,K)(Al,Cr)(Si,Ti)2O6-Qtz (Si,Ti)O2-Grt M3(Al,Cr)2(Si,Ti)3O12-Als (Al,Cr)2(Si,Ti)O5 tetrahedron (M = Fe, Mn, Mg, Ni, Zn, Ca), coexists with garnet, coesite and kyanite. The average excess silica content of the clinopyroxene ranges from 23.4 to 35.4 mol%. In contrast, an andesite experiment saturated in SiO2 but undersaturated in Al2SiO5 within the Jd-Qtz-Aug M(Si,Ti)O3-Grt tetrahedron produced clinopyroxene, garnet and coesite but no kyanite. The average excess silica in the clinopyroxene was 9.7-15.5 mol%, which is comparable to previous experimental data. Experiment on the eclogite glass with similar composition to andesite yielded clinopyroxene, garnet and coesite. An average excess silica content in clinopyroxene counts 6.4 mol%, which is much lower than that obtained from the andesite. The SiO2 content of clinopyroxene coexisting with garnet, coesite and kyanite is much higher than that of clinopyroxene coexisting with garnet and coesite without kyanite. Although the temperature dependence is unclear, the SiO2 solubility increases with pressure and Fe/(Fe+Mg). Clinopyroxene forms the solid solution series Jd-Es □0.5M0.5Al(Si,Ti)2O6 and Aug-Es, rather than Jd-Ts MAl2(Si,Ti)O6 and Es-Ts joins. Our experimental data suggest the probable existence of octahedral Si which may accompany the M2

  11. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.

    2012-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...

  12. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.

    2014-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...

  13. Abnormal blood flow in the sublingual microcirculation at high altitude

    NARCIS (Netherlands)

    Martin, D.S.; Ince, C.; Goedhart, P.; Levett, D.Z.H.; Grocott, M.P.W.

    2009-01-01

    We report the first direct observations of deranged microcirculatory blood flow at high altitude, using sidestream dark-field imaging. Images of the sublingual microcirculation were obtained from a group of 12 volunteers during a climbing expedition to Cho Oyu (8,201 m) in the Himalayas.

  14. Flow Analysis By High Speed Photography And Pictures

    Science.gov (United States)

    Werle, H.

    1985-02-01

    At the ONERA hydrodynamic visualization laboratory, high-speed photography and cinematography are used for analysing flow-phenomena around fixed or mobile models in the test section of three vertical water tunnels, operating by gravity draining. These studies in water are based on the hydraulic analogy of aerodynamic incompressible flows. Flow visualization is archieved by liquid tracers (dye emissions) or gaseous tracers (fine air bubbles in suspension in water). In many cases, the pictures at normal speed or long exposure time are insufficient, for they do not permit to distinguish all the details of the phenomena, due to an averaging or motion effect. Furthermore they must be completed with high speed pictures. This is illustrated by a few visua-lization examples recently obtained on following themes - two dimensional flow around a fixed cylinder, first at the start of the flow (symmetrical vortex), then in steady regime (periodic vortex street) ; - laminar-turbulent transition in a boundary layer along a cylindrical body at zero angle of attack ; - flow separation around a sphere and wake in steady regime at small and high Reynolds numbers; - flow separation around a profile, first with fixed incidence, then with harmonic oscillations in pitch ; - core structure of a longitudinal vortex issued from a wing first organized, then disintegrated under the effect of a lengthwise pressure gradient (vortex breakdown) ; - mixing zone around a turbulent axisymmetric jet, characterized by the formation of large vortex struc-tures ; - hovering tests of an helicopter rotor, first at the start of the rotation, then in established regime, finally in cruise flight ; - case of a complete helicopter model in cruise-flight, with air-intake simulation, gas exhaust and tail rotor ; - flow around a complete delta-wing aircraft model at mean or high angle of attack, first in steady regime, then with harmonic oscillations in yaw or pitch. These results illustrate the contribution of

  15. Crystalline phase transition information induced by high temperature susceptibility transformations in bulk PMP-YBCO superconductor growth in-situ

    Science.gov (United States)

    Zhang, C. P.; Chaud, X.; Beaugnon, E.; Zhou, L.

    2015-01-01

    The dynamic susceptibility transformations of bulk HTSC PMP-YBCO growth have been investigated from 200 °C up to 1060 °C by the Faraday Balance in-situ. It revealed that the crystalline phase transitions of bulk PMP-YBCO growth in process. A new discovery of Y123 phase pre-formed then melted in heating stage has been found. It also discovered that Y123 crystal solidification started at 1004 °C in cooling stage. Before Y123 solidification the liquid phase CuO change to Cu2O reciprocally as well as the copper ion valence changed between divalent Cu2+ and trivalent Cu1+ each other. It was essential to keep quantities of CuO phase instead of the Cu2O for Y123 crystal solidification.

  16. High-resolution DEM Effects on Geophysical Flow Models

    Science.gov (United States)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be

  17. Self-heating of bulk high temperature superconductors of finite height subjected to a large alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, P; Vanderheyden, B; Vanderbemden, P [SUPRATECS and Department of Electrical Engineering and Computer Science B28, Sart-Tilman, B-4000 Liege (Belgium); Fagnard, J-F [SUPRATECS, Royal Military Academy of Belgium, Avenue de la Renaissance, B-1000 Brussels (Belgium); Babu, N Hari [Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University, West London UB8 3PH (United Kingdom); Cardwell, D A, E-mail: Philippe.Vanderbemden@ulg.ac.b [Bulk Superconductivity Group, Engineering Department, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2010-12-15

    In this work we study, both experimentally and numerically, the self-heating of a bulk, large YBCO pellet of aspect ratio (thickness/diameter) {approx} 0.4 subjected to a large AC magnetic field. To ensure accurate temperature measurements, the sample was placed in an experimental vacuum chamber to achieve a small and reproducible heat transfer coefficient between the superconductor and the cryogenic fluid. The temperature was measured at several locations on the sample surface during the self-heating process. The experimentally determined temperature gradients are found to be very small in this arrangement (<0.2 K across the radius of the superconductor). The time-dependence of the average temperature T(t) is found to agree well with a theoretical prediction based on the one-dimensional (1D) Bean model, assuming a uniform temperature in the sample. A 2D magneto-thermal model was also used to determine the space and time-dependent temperature distribution T(r, z, t) during the application of the AC field. The losses in the bulk pellet were determined using an algorithm based on the numerical method of Brandt, which was combined with a heat diffusion algorithm implemented using a finite-difference method. The model is shown to be able to reproduce the main trends of the observed temperature evolution of the bulk sample during a self-heating process. Finally, the 2D model is used to study the effect of a non-uniform distribution of critical current density J{sub c}(r, z) on the losses within the bulk superconductor.

  18. Spectroscopy Measurements on Ablation Testing in High Enthalpy Plasma Flows

    Science.gov (United States)

    2010-11-01

    stagnation point, are located on the ablative material sample. 3.5 InfraRed THERMOGRAPHY Surface temperature measurement is a topic of great concern...high temperature material at two different narrow wavelengths. The temperature is calculated by building the ratio of the radiation intensities. The...this work is to develop the capability of testing and characterization of ablative materials exposed to high enthalpy plasma flows including both

  19. High speed optical holography of retinal blood flow

    CERN Document Server

    Pellizzari, Mathilde; Degardin, Julie; Sahel, Jose-Alain; Fink, Mathias; Paques, Michel; Atlan, Michael

    2016-01-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  20. A parallel microfluidic flow cytometer for high-content screening.

    Science.gov (United States)

    McKenna, Brian K; Evans, James G; Cheung, Man Ching; Ehrlich, Daniel J

    2011-05-01

    A parallel microfluidic cytometer (PMC) uses a high-speed scanning photomultiplier-based detector to combine low-pixel-count, one-dimensional imaging with flow cytometry. The 384 parallel flow channels of the PMC decouple count rate from signal-to-noise ratio. Using six-pixel one-dimensional images, we investigated protein localization in a yeast model for human protein misfolding diseases and demonstrated the feasibility of a nuclear-translocation assay in Chinese hamster ovary (CHO) cells expressing an NFκB-EGFP reporter.

  1. Numerical simulation of LBGK model for high Reynolds number flow

    Institute of Scientific and Technical Information of China (English)

    Zhou Xiao-Yang; Shi Bao-Chang; Wang Neng-Chao

    2004-01-01

    A principle of selecting relaxation parameter was proposed to observe the limit computational capability of the incompressible LBGK models developed by Guo ZL (Guo model) and He SY (He model) for high Reynolds number flow.To the two-dimensional driven cavity flow problem, the highest Reynolds numbers covered by Guo and He models are in the range 58000-52900 and 28000-29000, respectively, at 0.3 Mach number and 1/256 lattice space. The simulation results also show that the Guo model has stronger robustness due to its higher accuracy.

  2. High speed turbulent reacting flows: DNS and LES

    Science.gov (United States)

    Givi, Peyman

    1990-01-01

    Work on understanding the mechanisms of mixing and reaction in high speed turbulent reacting flows was continued. Efforts, in particular, were concentrated on taking advantage of modern computational methods to simulate high speed turbulent flows. In doing so, two methodologies were used: large eddy simulations (LES) and direct numerical simulations (DNS). In the work related with LES the objective is to study the behavior of the probability density functions (pdfs) of scalar properties within the subgrid in reacting turbulent flows. The data base obtained by DNS for a detailed study of the pdf characteristics within the subgrid was used. Simulations are performed for flows under various initializations to include the effects of compressibility on mixing and chemical reactions. In the work related with DNS, a two-dimensional temporally developing high speed mixing layer under the influence of a second-order non-equilibrium chemical reaction of the type A + B yields products + heat was considered. Simulations were performed with different magnitudes of the convective Mach numbers and with different chemical kinetic parameters for the purpose of examining the isolated effects of the compressibility and the heat released by the chemical reactions on the structure of the layer. A full compressible code was developed and utilized, so that the coupling between mixing and chemical reactions is captured in a realistic manner.

  3. Automation in high-content flow cytometry screening.

    Science.gov (United States)

    Naumann, U; Wand, M P

    2009-09-01

    High-content flow cytometric screening (FC-HCS) is a 21st Century technology that combines robotic fluid handling, flow cytometric instrumentation, and bioinformatics software, so that relatively large numbers of flow cytometric samples can be processed and analysed in a short period of time. We revisit a recent application of FC-HCS to the problem of cellular signature definition for acute graft-versus-host-disease. Our focus is on automation of the data processing steps using recent advances in statistical methodology. We demonstrate that effective results, on par with those obtained via manual processing, can be achieved using our automatic techniques. Such automation of FC-HCS has the potential to drastically improve diagnosis and biomarker identification.

  4. Label-free high-throughput imaging flow cytometry

    Science.gov (United States)

    Mahjoubfar, A.; Chen, C.; Niazi, K. R.; Rabizadeh, S.; Jalali, B.

    2014-03-01

    Flow cytometry is an optical method for studying cells based on their individual physical and chemical characteristics. It is widely used in clinical diagnosis, medical research, and biotechnology for analysis of blood cells and other cells in suspension. Conventional flow cytometers aim a laser beam at a stream of cells and measure the elastic scattering of light at forward and side angles. They also perform single-point measurements of fluorescent emissions from labeled cells. However, many reagents used in cell labeling reduce cellular viability or change the behavior of the target cells through the activation of undesired cellular processes or inhibition of normal cellular activity. Therefore, labeled cells are not completely representative of their unaltered form nor are they fully reliable for downstream studies. To remove the requirement of cell labeling in flow cytometry, while still meeting the classification sensitivity and specificity goals, measurement of additional biophysical parameters is essential. Here, we introduce an interferometric imaging flow cytometer based on the world's fastest continuous-time camera. Our system simultaneously measures cellular size, scattering, and protein concentration as supplementary biophysical parameters for label-free cell classification. It exploits the wide bandwidth of ultrafast laser pulses to perform blur-free quantitative phase and intensity imaging at flow speeds as high as 10 meters per second and achieves nanometer-scale optical path length resolution for precise measurements of cellular protein concentration.

  5. Processing of Bulk YBa2Cu3O(7-x) High Temperature Superconductor Materials for Gravity Modification Experiments and Performance Under AC Levitation

    Science.gov (United States)

    Koczor, Ronald; Noever, David; Hiser, Robert

    1999-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of bulk-processed high temperature superconductor disks. Others have indicated that large annular disks (on the order of 25cm diameter) and AC levitation fields play an essential role in their observed experiments. We report experiments in processing such large bulk superconductors. Successful results depend on material mechanical characteristics, and pressure and heat treat protocols. Annular disks having rough dimensions of 30cm O.D., 7cm I.D. and 1 cm thickness have been routinely fabricated and tested under AC levitation fields ranging from 45 to 300OHz. Implications for space transportation initiatives and power storage flywheel technology will be discussed.

  6. Preparation of high performance Zn4Sb3 bulk thermoelectric materials%Zn4Sb3高性能热电材料的制备

    Institute of Scientific and Technical Information of China (English)

    陈中春; 辻村润一; 葳本遼

    2011-01-01

    A "reaction -extrusion process" has been developed to prepare Zn4Sb3 bulk materials with high thermoelectric performance. The synthesis, densification, and shape -forming of Zn4Sb3 bulk materials were realized simultaneously in one hot - extrusion process, and the resulting extrudates had high density with single β - Zn4 Sb3phase. A large extrusion ratio and a small punch speed are advantageous to enhance thermoelectric performance. The extruded Zn4Sb3 materials exhibited excellent thermoelectric performance, for example, the dimensionless thermoelectric figure of merit is 1.77 at 623 K, which is 36% higher compared to conventional hot - pressed materials. On the other hand, the incorporation of 1% SiC nanosized particles into Zn4Sb3 matrix leads to improvements in both thermoelectric and mechanical properties.

  7. Nd-142/Nd-144 in bulk planetary reservoirs, the problem of incomplete mixing of interstellar components and significance of very high precision Nd-145/Nd-144 measurements

    Science.gov (United States)

    Harper, C. L., Jr.; Jacobsen, S. B.

    1993-01-01

    Apart from the challenge of very high precision Nd-142/Nd-144 ratio measurement, accurate applications of the coupled Sm-(146,147)-Nd-(142,143) systematics in planetary differentiation studies require very precise knowledge of the present-day (post-Sm-146 decay) Nd-142/Nd-144 ratios of bulk planetary objects (BP). The coupled systematics yield model ages for the time of formation of Sm/Nd-fractionated reservoirs by differentiation of Sm/Nd-unfractionated bulk planetary reservoirs. Estimates of (Nd-142/Nd-144)(sub BP) and (Nd-143/Nd-144)(sub BP) therefore provide the critical baseline relative to which these model ages are referenced. In the Sm-147-Nd-143 systematics, Nd-143/Nd-144 variations are mostly large; therefore, small variations in initial Nd-143/Nd-144 ratios generally can be ignored. However, in the case of Sm-146-Nd-142, the range of Nd-142/Nd-144 divergence for differentiated planetary reservoirs is much smaller. Consequently Sm-(146,147)-Nd-(142,143) model ages are sensitive to small variations in bulk planetary Nd-142/Nd-144 (both present-day and initial). One major unanswered question is whether or not Nd shelf standards (CIT Nd beta/Ames metal, La Jolla, NASA-JSC/Ames metal) have Nd-142/Nd-144 identical to the bulk Earth or otherwise might record some degree of radiogenic evolution in an early-fractionated reservoir. Our discussions of earth Earth differentiation based on Nd-142/Nd-144 in Isua and Acasta samples have employed a working assumption: (Nd-142/Nd-144)(sub Nd beta) = (Nd-142/Nd-144)(sub Bulk Earth). This requires experimental justification and is apparently contradicted by chondrite Nd-142/Nd-144 measurements, which have been interpreted to indicate: (Nd-142/Nd-144)(sub JSC/Ames metal) = ((Nd-142/Nd-144)(sub CHUR) = 35 plus or minus 8 ppm). At present, interpretations of the early Earth and Moon hinge largely on this issue. Because Ba in bulk chondrite samples exhibit similar magnitude nuclear anomalies, attributable to incomplete mixing

  8. Influence of ZnO and Dy2 O3 on MgB2 Bulks Fabricated by High Temperature and Pressure Reaction

    Science.gov (United States)

    Sumption, Mike; Yang, Yuan

    ZnO and Dy2O3 have been considered as dopants for the improvement of superconducting properties in MgB2 bulks. However, the effect of these dopants is still unclear: some studies reported these metal oxides worked as new pinning centers and others was attributed the effects to Mg site substitution. In addition, low temperature reactions may explore limited solubility regimes for these dopants. In order to study the intrinsic effect of ZnO and Dy2O3 in MgB2, a high temperature solid state sintering method has been used to fabricate dense and homogeneous MgB2 bulks. Even higher temperature excursions above the peritectic allow us to explore the solubility limits. To do this we used an induction furnace built inside of a high pressure vessel which allowed us to reach 1700oC and 1500 Psi. A slow cooling rate (2oC/min) was used in an attempt to obtain a homogeneous nucleation and phase distribution. A series of MgB2 bulk samples with ZnO and Dy2O3 additives were synthesized through this high pressure and temperature procedures. The resulting microstructures of these bulk samples were revealed by SEM and TEM. Atomic substitution were evaluated by high resolution XRD. The upper critical field Bc 2, irreversible field Birr and Tc were obtained from both magnetic and resistivity measurements. The roles of substitution vs precipitate induced strain on Bc 2enhancements with adding ZnO and Dy2O3 were discussed.

  9. The high Reynolds number flow through an axial-flow pump

    Science.gov (United States)

    Zierke, W. C.; Straka, W. A.; Taylor, P. D.

    1993-11-01

    The high Reynolds number pump (HIREP) facility at ARL Penn State has been used to perform a low-speed, large-scale experiment of the incompressible flow of water through a two-blade-row turbomachine. HIREP can involve blade chord Reynolds numbers as high as 6,000,000 and can accommodate a variety of instrumentation in both a stationary and a rotating frame of reference. The objectives of this experiment were as follows: to provide a database for comparison with three-dimensional, viscous (turbulent) flow computations; to evaluate the engineering models; and to improve our physical understanding of many of the phenomena involved in this complex flow field. The experimental results include a large quantity of data acquired throughout HIREP. A five-hole probe survey of the inlet flow 37.0 percent chord upstream of the inlet guide vane (IGV) leading edge is sufficient to give information for the inflow boundary conditions, while some static-pressure information is available to help establish an outflow boundary condition.

  10. Efficient Unsteady Flow Visualization with High-Order Access Dependencies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru

    2016-04-19

    We present a novel high-order access dependencies based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly-seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our proposed approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiency of pathline computation.

  11. NUMERICAL SIMULATION OF CAVITATION FLOW UNDER HIGH PRESSURE AND TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei-guo; ZHANG Ling-xin; SHAO Xue-ming

    2011-01-01

    The numerical simulation of cavitation flow on a 2D NACA0015 hydrofoil under high pressure and temperature is performed. The Singhal's cavitation model is adopted combined with an improved RNG k-ε turbulence model to study the cavitation flow. The thermal effect in the cavitation flow is taken into account by introducing the energy equation with a source term based on the latent heat transfer. The code is validated by a case of a hydrofoil under two different temperatures in a comparison between the simulation and the experiment. Computational results show that the latent heat of vaporization has a significant impact on the cavitation process in the high temperature state, and the cavity in the high temperature state is thinner and shorter than that in a normal state with the same cavitation number, due to the fact that the heat absorption in the cavitation area reduces the local temperature and the saturated vapor pressure. This numerical study provides some guidance for the design of machineries in the High Pressure and Temperature (HPT) state.

  12. Logarithmic boundary layers in highly turbulent Taylor-Couette flow

    CERN Document Server

    Huisman, Sander G; Cierpka, Christian; Kahler, Christian J; Lohse, Detlef; Sun, Chao

    2013-01-01

    We provide direct measurements of the boundary layer properties in highly turbulent Taylor-Couette flow up to $\\text{Ta}=6.2 \\times 10^{12}$ using high-resolution particle image velocimetry (PIV). We find that the mean azimuthal velocity profile at the inner and outer cylinder can be fitted by the von K\\'arm\\'an log law $u^+ = \\frac 1\\kappa \\ln y^+ +B$. The von K\\'arm\\'an constant $\\kappa$ is found to depend on the driving strength $\\text{Ta}$ and for large $\\text{Ta}$ asymptotically approaches $\\kappa \\approx 0.40$. The variance profiles of the local azimuthal velocity have a universal peak around $y^+ \\approx 12$ and collapse when rescaled with the driving velocity (and not with the friction velocity), displaying a log-dependence of $y^+$ as also found for channel and pipe flows [1,2].

  13. In-Vivo High Dynamic Range Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    Current vector flow systems are limited in their detectable range of blood flow velocities. Previous work on phantoms has shown that the velocity range can be extended using synthetic aperture directional beamforming combined with an adaptive multi-lag approach. This paper presents a first invivo...... example with a high dynamic velocity range. Velocities with an order of magnitude apart are detected on the femoral artery of a 41 years old healthy individual. Three distinct heart cycles are captured during a 3 secs acquisition. The estimated vector velocities are compared against each other within...... in-vivo and provide quantitative results in a high dynamic velocity range. Providing velocity measurements during the whole cardiac cycle for both arteries and veins...

  14. Characteristics of Multiplexed Grooved Nozzles for High Flow Rate Electrospray

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Tae; Kim, Woo Jin; Kim, Sang Soo [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2007-10-15

    The electrospray operated in the cone-jet mode can generate highly charged micro droplets in an almost uniform size at flow rates. Therefore, the multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. This experiment reports the multiplexed grooved nozzle system with the extractor. The effects of the grooves and the extractor on the performance of the electrospray were evaluated through experiments. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. Furthermore, the number of nozzles per unit area is increased by the extractor. The multiplexing density is 12 jets per cm{sup 2} at 30 mm distance from the nozzle tip to the ground plate. The multiplexing system for the high flow rate electrospray is realized with the extractor which can diminish the space charge effect without sacrificing characteristics of the cone-jet mode.

  15. High-flow priapism in acute lymphatic leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Mentzel, Hans-Joachim; Vogt, Susanna; Kaiser, Werner A. [Institute of Diagnostic and Interventional Radiology, Department of Pediatric Radiology, Friedrich-Schiller-Universitaet Jena, Bachstrasse 18, 07740, Jena (Germany); Kentouche, Karim; Doerfel, Claus; Zintl, Felix [Department of Paediatrics, University of Jena (Germany)

    2004-07-01

    Priapism is defined as prolonged and persistent erection of the penis without sexual stimulation. It is associated with excessive hyperleukocytosis (e.g. in acute or chronic leukaemia); however, this complication is rarely seen in the pediatric population. We report a 12-year-old boy suffering from acute leukaemia presenting with, at first intermittent, but increasingly persistent erection. Doppler US revealed signs of high-flow priapism. MRI excluded intrapelvic tumour masses, and three-dimensional contrast-enhanced MR angiography could not demonstrate an arteriovenous fistula or thrombosis. Cavernosal blood-gas measurement was in agreement with high-flow priapism. On the basis of the imaging findings, invasive therapeutic management was avoided in our patient with a successful outcome. (orig.)

  16. Lithium-Based High Energy Density Flow Batteries

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  17. Capillary flow of amorphous metal for high performance electrode

    OpenAIRE

    Se Yun Kim; Suk Jun Kim; Sang Soo Jee; Jin Man Park; Keum Hwan Park; Sung Chan Park; Eun Ae Cho; Jun Ho Lee; In Yong Song; Sang Mock Lee; In Taek Han; Ka Ram Lim; Won Tae Kim; Ju Cheol Park; Jürgen Eckert

    2013-01-01

    Metallic glass (MG) assists electrical contact of screen-printed silver electrodes and leads to comparable electrode performance to that of electroplated electrodes. For high electrode performance, MG needs to be infiltrated into nanometer-scale cavities between Ag particles and reacts with them. Here, we show that the MG in the supercooled state can fill the gap between Ag particles within a remarkably short time due to capillary effect. The flow behavior of the MG is revealed by computation...

  18. Range Image Flow using High-Order Polynomial Expansion

    Science.gov (United States)

    2013-09-01

    give a special thanks to Dr. Steve Hobbs for his help with the high-order tensor calculations. MATLAB ® is a registered...that using multiple spatial scales and past information improve the final flow estimation, as we would expect. Also, we will port the MATLAB R...taken column- wise and diagonalized, and f is the range image data, taken column-wise. The values of these weights for a Velodyne R© and Odetic lidar

  19. Preparation of high crystalline nanoparticles of rare-earth based complex pervoskites and comparison of their structural and magnetic properties with bulk counterparts

    DEFF Research Database (Denmark)

    Basith, M. A.; Islam, M. A.; Ahmmad, Bashir

    2017-01-01

    A simple route to prepare Gd0.7Sr0.3MnO3 nanoparticles by ultrasonication of their bulk powder materials is presented in this article. For comparison, Gd0.7Sr0.3MnO3 nanoparticles are also prepared by ball milling. The prepared samples are characterized by X-ray diffraction (XRD), field emission...... of crystalline and amorphous phases. FESEM images demonstrate the formation of nanoparticles with average particle size in the range of 50–100 nm for both ultrasonication and 4 h (h) of ball milling. The bulk materials and nanoparticles synthesized by both ultrasonication and 4 h ball milling exhibit...... of the nanoparticles due to ball milling particularly for milling time exceeding 8 h. This investigation demonstrates the potential of ultrasonication as a simple route to prepare high crystalline rare-earth based manganite nanoparticles with improved control compared to the traditional ball milling technique....

  20. Formation of Fe{sub 86}Zr{sub 5.5}Nb{sub 5.5}B{sub 3} nanocrystalline bulk alloy under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lu Bin [Central South Univ., School of Materials Science and Engineering, Changsha (China); Tongji Univ., School of Materials and Science Engineering, Shanghai, SH (China); Xi' an Jiaotong Univ., Xi' an (China); Northwest Inst. for Non-ferrous Metal Research, Xi' an (China); Yi Danqing; Liu Huiqun; Wu Biaoli; Chen Xiaoli [Central South Univ., School of Materials Science and Engineering, Changsha (China); Xi' an Jiaotong Univ., Xi' an (China); Yan Biao; Yin Junlin [Tongji Univ., School of Materials and Science Engineering, Shanghai, SH (China); Liu Yan [Chinese Academy of Sciences Shanghai Inst. of Ceramics, Shanghai, SH (China)

    2005-07-01

    Mechanical alloying(MA) technique and single-roller melt spinning technique were used to prepare Fe{sub 86}Zr{sub 5.5}Nb{sub 5.5}B{sub 3} nanocrystalline and amorphous powders, bulk alloys were prepared by cryogenically high-pressure quick sintering. The results showed that: (1) after MA process for 15 hours, the grain size of {alpha}-Fe phase was {<=}10 nm; (2) melt spinning powders were fragmented by ball milling, but remained amorphous state. The crystallization temperature of this amorphous powder was about 500 C. Apparent activation energy of the amorphous crystallization was E=294.1 KJ/mol; (3) under the quick sintering conditions of P=5.5 GPa/t=3min/P{sub w}{>=}1050 W, single phase {alpha}-Fe nanocrystalline(8{proportional_to}15nm) bulk alloys with relative density {>=}98.7% can be obtained. (orig.)

  1. High superionic conduction arising from aligned large lamellae and large figure of merit in bulk Cu1.94Al0.02Se

    Science.gov (United States)

    Zhong, Bin; Zhang, Yong; Li, Weiqian; Chen, Zhenrui; Cui, Jingying; Li, Wei; Xie, Yuandong; Hao, Qing; He, Qinyu

    2014-09-01

    Good thermoelectric materials should have low thermal conductivity, high electrical conductivity, and Seebeck coefficient, which cannot be easily balanced in bulk materials. Exceptionally, the super-ionics in β-Cu2Se can favorably contribute large ionic electrical conductivity and a liquid-like thermal conductivity by Cu+ ions. In the previous work, the superionic mechanism was found to be enhanced by small and randomly orientated lamellae with alternating ordered Se ion monolayer and disordered Cu ion bilayers. Here, we further enhance the superionic mechanism by increasing and better aligning lamellae in bulk Cu1.94Al0.02Se, resulting in a large thermoelectric figure of merit of 2.62 at 756 °C.

  2. Temperature-dependent differences in the nonlinear acoustic behavior of ultrasound contrast agents revealed by high-speed imaging and bulk acoustics.

    Science.gov (United States)

    Mulvana, Helen; Stride, Eleanor; Tang, Mengxing; Hajnal, Jo V; Eckersley, Robert

    2011-09-01

    Previous work by the authors has established that increasing the temperature of the suspending liquid from 20°C to body temperature has a significant impact on the bulk acoustic properties and stability of an ultrasound contrast agent suspension (SonoVue, Bracco Suisse SA, Manno, Lugano, Switzerland). In this paper the influence of temperature on the nonlinear behavior of microbubbles is investigated, because this is one of the most important parameters in the context of diagnostic imaging. High-speed imaging showed that raising the temperature significantly influences the dynamic behavior of individual microbubbles. At body temperature, microbubbles exhibit greater radial excursion and oscillate less spherically, with a greater incidence of jetting and gas expulsion, and therefore collapse, than they do at room temperature. Bulk acoustics revealed an associated increase in the harmonic content of the scattered signals. These findings emphasize the importance of conducting laboratory studies at body temperature if the results are to be interpreted for in vivo applications.

  3. Refraction of high frequency noise in an arbitrary jet flow

    Science.gov (United States)

    Khavaran, Abbas; Krejsa, Eugene A.

    1994-01-01

    Refraction of high frequency noise by mean flow gradients in a jet is studied using the ray-tracing methods of geometrical acoustics. Both the two-dimensional (2D) and three-dimensional (3D) formulations are considered. In the former case, the mean flow is assumed parallel and the governing propagation equations are described by a system of four first order ordinary differential equations. The 3D formulation, on the other hand, accounts for the jet spreading as well as the axial flow development. In this case, a system of six first order differential equations are solved to trace a ray from its source location to an observer in the far field. For subsonic jets with a small spreading angle both methods lead to similar results outside the zone of silence. However, with increasing jet speed the two prediction models diverge to the point where the parallel flow assumption is no longer justified. The Doppler factor of supersonic jets as influenced by the refraction effects is discussed and compared with the conventional modified Doppler factor.

  4. High-temperature zirconia microthruster with an integrated flow sensor

    Science.gov (United States)

    Lekholm, Ville; Persson, Anders; Palmer, Kristoffer; Ericson, Fredric; Thornell, Greger

    2013-05-01

    This paper describes the design, fabrication and characterization of a ceramic, heated cold-gas microthruster device made with silicon tools and high temperature co-fired ceramic processing. The device contains two opposing thrusters, each with an integrated calorimetric propellant flow sensor and a heater in the stagnation chamber of the nozzle. The exhaust from a thruster was photographed using schlieren imaging to study its behavior and search for leaks. The heater elements were tested under a cyclic thermal load and to the maximum power before failure. The nozzle heater was shown to improve the efficiency of the thruster by 6.9%, from a specific impulse of 66 to 71 s, as calculated from a decrease of the flow rate through the nozzle of 13%, from 44.9 to 39.2 sccm. The sensitivity of the integrated flow sensor was measured to 0.15 mΩ sccm-1 in the region of 0-15 sccm and to 0.04 mΩ sccm-1 above 20 sccm, with a zero-flow sensitivity of 0.27 mΩ sccm-1. The choice of yttria-stabilized zirconia as a material for the devices makes them robust and capable of surviving temperatures locally exceeding 1000 °C.

  5. Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows

    Science.gov (United States)

    Sammy, Mo

    2010-01-01

    Active flow control is often used to manipulate flow instabilities to achieve a desired goal (e.g. prevent separation, enhance mixing, reduce noise, etc.). Instability frequencies normally scale with flow velocity scale and inversely with flow length scale (U/l). In a laboratory setting for such flow experiments, U is high, but l is low, resulting in high instability frequency. In addition, high momentum and high background noise & turbulence in the flow necessitate high amplitude actuation. Developing a high amplitude and high frequency actuator is a major challenge. Ironically, these requirements ease up in application (but other issues arise).

  6. High-resolution (SIMS) versus bulk sulfur isotope patterns of pyrite in Proterozoic microbialites with diverse mat textures

    Science.gov (United States)

    Gomes, M. L.; Fike, D. A.; Bergmann, K.; Knoll, A. H.

    2015-12-01

    Sulfur (S) isotope signatures of sedimentary pyrite preserved in marine rocks provide a rich suite of information about changes in biogeochemical cycling associated with the evolution of microbial metabolisms and oxygenation of Earth surface environments. Conventionally, these S isotope records are based on bulk rock measurements. Yet, in modern microbial mat environments, S isotope compositions of sulfide can vary by up to 40‰ over a spatial range of ~ 1 mm. Similar ranges of S isotope variability have been found in Archean pyrite grains using both Secondary Ion Mass Spectrometry and other micro-analytical techniques. These micron-scale patterns have been linked to changes in rates of microbial sulfate reduction and/or sulfide oxidation, isotopic distillation of the sulfate reservoir due to microbial sulfate reduction, and post-depositional alteration. Fine-scale mapping of S isotope compositions of pyrite can thus be used to differentiate primary environmental signals from post-depositional overprinting - improving our understanding of both. Here, we examine micron-scale S isotope patterns of pyrite in microbialites from the Mesoproterozoic-Neoproterozoic Sukhaya Tunguska Formation and Neoproterozoic Draken Formation in order to explore S isotope variability associated with different mat textures and pyrite grain morphologies. A primary goal is to link modern observations of how sulfide spatial isotope distributions reflect active microbial communities present at given depths in the mats to ancient processes driving fine-sale pyrite variability in microbialites. We find large (up to 60‰) S isotope variability within a spatial range of less than 2.5cm. The micron-scale S isotope measurements converge around the S isotope composition of pyrite extracted from bulk samples of the same microbialites. These micron-scale pyrite S isotope patterns have the potential to reveal important information about ancient biogeochemical cycling in Proterozoic mat environments

  7. Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K., E-mail: greatsunkai@sina.com [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Shi, Q.Y.; Sun, Y.J.; Chen, G.Q. [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Ultimate tensile strength of the bulk composite improved significantly. Black-Right-Pointing-Pointer Nanoparticles dispersed uniformly in the composites after friction stir process. Black-Right-Pointing-Pointer Strengthening mechanism of the composites has been studied. - Abstract: Friction stir processing has been applied to fabricate SiC-Mg bulk composites in this study. AZ63 magnesium alloy, a kind of commercial engineering materials, was selected as base metal. SiC nanoparticles with average size of 40 nm were selected as reinforced particles. After being ultrasonic dispersed in ethanol and friction stir processed with base metal, the SiC particles were uniformly dispersed. Friction stir processing without filling any particles was also applied to base metal as a comparison group. Microstructure evolution was observed by optical microscope and scanning electron microscope. Fine and uniform nugget zone were found both in comparison group and composite. The phases of the material were determined by X-ray diffraction. Transmission electron microscopy observation was conducted to study the condition of SiC nanoparticles. SiC particles were found both inside the grain and at the grain boundary. No micro-sized particle agglomeration was observed in the composite. Vicker hardness and tensile test were carried out to study the mechanical properties of the composite. The average Vicker hardness of the base metal, comparison group and composite were 80 Hv, 85 Hv and 109 Hv respectively. The ultimate tensile strength of the composite reached 312 MPa. Compared with 160 MPa of the as-casted Mg alloy, 263 MPa of the comparison group, the effect of nanoparticles on strength increase was significant.

  8. High resolution temperature measurement technique for measuring marine heat flow

    Institute of Scientific and Technical Information of China (English)

    QIN; YangYang; YANG; XiaoQiu; WU; BaoZhen; SUN; ZhaoHua; SHI; XiaoBin

    2013-01-01

    High resolution temperature measurement technique is one of the key techniques for measuring marine heat flow. Basing on Pt1000 platinum resistance which has the characteristics of high accuracy and good stability, we designed a bridge reversal excitation circuit for high resolution temperature measurement. And the deep ocean floor in-situ test results show that: (1) temperature deviation and peak-to-peak resolution of the first version circuit board (V1) are 1.960-1.990 mK and 0.980-0.995 m Kat 1.2-2.7°C, respectively; and temperature deviation and peak-to-peak resolution of the second circuit board (V2) are 2.260mK and 1.130 mK at 1.2-1.3°C, respectively; (2) During the 2012NSFC-IndOcean cruise, seafloor geothermal gradient at Ind2012HF03,-07 and-12 stations (water depth ranges from 3841 to 4541 m) were successfully measured, the values are 59.1,75.1 and 71.6°C/km, respectively. And the measurement errors of geothermal gradient at these three stations are less than 3.0% in terms of the peak-to-peak resolution. These indicate that the high resolution temperature measurement technique based on Pt1000 platinum resistance in this paper can be applied to marine heat flow measurement to obtain high precision geothermal parameters.

  9. Lagrangian transported MDF methods for compressible high speed flows

    Science.gov (United States)

    Gerlinger, Peter

    2017-06-01

    This paper deals with the application of thermochemical Lagrangian MDF (mass density function) methods for compressible sub- and supersonic RANS (Reynolds Averaged Navier-Stokes) simulations. A new approach to treat molecular transport is presented. This technique on the one hand ensures numerical stability of the particle solver in laminar regions of the flow field (e.g. in the viscous sublayer) and on the other hand takes differential diffusion into account. It is shown in a detailed analysis, that the new method correctly predicts first and second-order moments on the basis of conventional modeling approaches. Moreover, a number of challenges for MDF particle methods in high speed flows is discussed, e.g. high cell aspect ratio grids close to solid walls, wall heat transfer, shock resolution, and problems from statistical noise which may cause artificial shock systems in supersonic flows. A Mach 2 supersonic mixing channel with multiple shock reflection and a model rocket combustor simulation demonstrate the eligibility of this technique to practical applications. Both test cases are simulated successfully for the first time with a hybrid finite-volume (FV)/Lagrangian particle solver (PS).

  10. Transient flow characteristics of a high speed rotary valve

    Science.gov (United States)

    Browning, Patrick H.

    were experimentally mapped as a function of valve speed, inter-cylinder pressure ratios and volume ratios and the results were compared to compressible flow theoretical models. Specifically, the transient behavior suggested a short-lived loss-mode initiation closely resembled by shock tube theory followed by a quasi-steady flow regime resembling choked flow behavior. An empirical model was then employed to determine the useful range of the CCV design as applied to a four-stroke CIBAI engine cycle modeled using a 1-D quasi-steady numerical method, with particular emphasis on the cyclic timing of the CCV opening. Finally, a brief discussion of a high-temperature version of the CCV design is presented.

  11. ZnS and ZnSe immersion gratings for astronomical high-resolution spectroscopy - evaluation of internal attenuation of bulk materials in the short NIR region

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Y; Kobayashi, N; Kondo, S; Yasui, C; Kuzmenko, P J; Tokoro, H; Terada, H

    2009-08-12

    We measure the internal attenuation of bulk crystals of CVD-ZnS, CVD-ZnSe, Si, and GaAs, in the short near-infrared (sNIR) region to evaluate the possibility of astronomical immersion gratings with those high refractive index materials. We confirm that multispectral grade CVD-ZnS and CVD-ZnSe are best suited for the immersion gratings, with the smallest internal attenuation of {alpha}{sub att} = 0.01-0.03 cm{sup -1} among the major candidates. The measured attenuation is roughly in proportion to {lambda}{sup -2}, suggesting it is dominated by bulk scattering due to the polycrystalline grains rather than by absorption. The total transmittance in the immersion grating is estimated to be at least > 80 %, even for the spectral resolution of R = 300,000. Two potential problems, the scattered light by the bulk material and the degradation of the spectral resolution due to the gradient illumination in the diffracted beam, are investigated and found to be negligible for usual astronomical applications. Since the remaining problem, the difficulty of cutting grooves on CVD-ZnS and CVD-ZnSe, has recently been overcome by the nanoprecision fly-cutting technique, ZnS and ZnSe immersion gratings for astronomy can be technically realized.

  12. Coexistence of bulk and surface states probed by Shubnikov-de Haas oscillations in Bi2Se3 with high charge-carrier density

    Science.gov (United States)

    de Vries, E. K.; Pezzini, S.; Meijer, M. J.; Koirala, N.; Salehi, M.; Moon, J.; Oh, S.; Wiedmann, S.; Banerjee, T.

    2017-07-01

    Topological insulators are ideally represented as having an insulating bulk with topologically protected, spin-textured surface states. However, it is increasingly becoming clear that these surface transport channels can be accompanied by a finite conducting bulk, as well as additional topologically trivial surface states. To investigate these parallel conduction transport channels, we studied Shubnikov-de Haas oscillations in Bi2Se3 thin films, in high magnetic fields up to 30 T so as to access channels with a lower mobility. We identify a clear Zeeman-split bulk contribution to the oscillations from a comparison between the charge-carrier densities extracted from the magnetoresistance and the oscillations. Furthermore, our analyses indicate the presence of a two-dimensional state and signatures of additional states the origin of which cannot be conclusively determined. Our findings underpin the necessity of theoretical studies on the origin of and the interplay between these parallel conduction channels for a careful analysis of the material's performance.

  13. Highly efficient electroosmotic flow through functionalized carbon nanotube membranes

    Science.gov (United States)

    Wu, Ji; Gerstandt, Karen; Majumder, Mainak; Zhan, Xin; Hinds, Bruce J.

    2011-08-01

    Carbon nanotube membranes with inner diameter ranging from 1.5-7 nm were examined for enhanced electroosmotic flow. After functionalization via electrochemical diazonium grafting and carbodiimide coupling reaction, it was found that neutral caffeine molecules can be efficiently pumped via electroosmosis. An electroosmotic velocity as high as 0.16 cm s-1 V-1 has been observed. Power efficiencies were 25-110 fold improved compared to related nanoporous materials, which has important applications in chemical separations and compact medical devices. Nearly ideal electroosmotic flow was seen in the case where the mobile cation diameter nearly matched the inner diameter of the single-walled carbon nanotube resulting in a condition of using one ion is to pump one neutral molecule at equivalent concentrations.

  14. High speed optical holography of retinal blood flow.

    Science.gov (United States)

    Pellizzari, M; Simonutti, M; Degardin, J; Sahel, J-A; Fink, M; Paques, M; Atlan, M

    2016-08-01

    We performed noninvasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (∼30 microns diameter) over 400×400  pixels with a spatial resolution of ∼8 microns and a temporal resolution of ∼6.5  ms.

  15. Flow Characterization of a Piezo-Electric High Speed Valve

    Directory of Open Access Journals (Sweden)

    T. Takiya

    2012-03-01

    Full Text Available Injecting a gas into fusion reactors or semiconductor manufacturing systems, one has to quickly control the flow rate by a piezoelectric valve. In order to construct a gas injection system with high speed valves in the future, performance tests have been conducted on a commercial piezoelectric valve. An orifice flowmeter for measuring time average flowrate and a hot wire anemometer for instantaneous flowrate were manufactured. The total flow coefficient of the orifice flowmeter was obtained experimentally under a low pressure of a 10-2 Pa and a low flowrate of a few mg/s, although they are smaller than the values specified by Japanese Industrial Standards. It is found that the hot wire anemometer installed downstream in the vicinity of the valve is suitable for detecting the change in flowrate with the response time of less than 1 ms.

  16. High voltage direct current modelling in optimal power flows

    Energy Technology Data Exchange (ETDEWEB)

    Ambriz-Perez, H. [Comision Federal de Electricidad, Mexico, Unidad de Ingenieria Especializada, Rio Rodano No. 14 - Piso 10, Sala 1002, Col. Cuauhtemoc, C.P. 06598, Mexico, D.F. (Mexico); Acha, E. [Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G128LT, Scotland (United Kingdom); Fuerte-Esquivel, C.R. [Faculty of Electrical Engineering, Universidad Michoacana de San Nicolas de Hidalgo, Morelia 58030, Michoacan (Mexico)

    2008-03-15

    Two-terminal high voltage direct current (HVDC) transmission links are in operation throughout the world. They are key elements in electrical power networks; their representation is oversimplified or ignored in most power system studies. This is particularly the case in Optima Power Flow (OPF) studies. Hence, an OPF program has been extended to incorporate HVDC links, taking due account of overlapping and power transfer control characteristics. This is a new development in Newton Optimal Power Flows, where the converter equations are included directly in the matrix W. The method is indeed a unified one since the solution vector is extended to accommodate the DC variables. The HVDC link model correctly takes into account the relevant DC limit variables. The impact of HVDC links on OPF studies is illustrated by numeric examples, which includes a 5-node system, the AEP 14-node and a 166-node system. (author)

  17. Synthesis of highly monodisperse Ge crystals in a capacitively coupled flow through reactor for photovoltaic applications

    Science.gov (United States)

    Gresback, Ryan; Kortshagen, Uwe

    2006-10-01

    Germanium nanocrystals are interesting candidates for quantum dot-based solar cells. While the band gap of bulk Ge is ˜0.7 eV, the energy gap can be increased due to quantum confinement to ˜ 2eV for Ge particles of ˜3 nm in size. With a single material, Ge nanocrystals of sizes from 3 -15 nm would thus allow to span the entire range of band gaps that is of interest for photovoltaic devices. Moreover, compared to many other quantum dot materials that are currently studied for photovoltaic applications, Ge is perceived as non-toxic and environmentally benign. Ge nanocrystals are synthesized in a tubular, capacitively coupled flow through reactor. Germanium tetrachloride is used as a precursor. It is introduced into the plasma by a flow of argon and hydrogen. At typical pressures of 2 Torr and 40 W of RF power at 13.56 MHz, Ge crystals are generated and reside in the plasma for several tens of milliseconds. The size of the nanocrystals can be controlled in a range from 3-20 nm through the residence time. Particles are highly monodisperse. Organically passivated Ge nanocrystals self-assemble into monolayers when cast from colloidal solutions.

  18. Comparison between Normal and HeII Two-phase Flows at High Vapor Velocities

    CERN Document Server

    Van Weelderen, R; Rousset, B; Thibault, P; Wolf, P E

    2006-01-01

    We present results on helium co-current two-phase flow experiments at high vapor velocity obtained with the use of the new CEA/SBT 400 W/1.8 K refrigerator [1]. For vapor velocities larger than typically 4 m/s, a mist of droplets develops from the bulk liquid interface accompanied by an increase in heat transfer at the wall. Experiments were conducted in a 10 m long, 40 mm I.D. straight pipe, both in helium II and in helium I to compare these two situations. The respective roles of vapor density, vapor velocity and liquid level on atomization were systematically investigated. Light scattering experiments were performed to measure sizes, velocities and interfacial areas of droplets in a complete cross section. In-house-made heat transfer sensors located in the mist allowed us to deduce an upper value of the extra cooling power of the dispersed phase. The practical interest of atomized flow for cooling large cryogenic facilities is discussed by considering the balance between increase in heat transfer and press...

  19. Catastrophic optical bulk degradation (COBD) in high-power single- and multi-mode InGaAs-AlGaAs strained quantum well lasers

    Science.gov (United States)

    Sin, Yongkun; Lingley, Zachary; Brodie, Miles; Presser, Nathan; Moss, Steven C.

    2017-02-01

    High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both telecommunications and space satellite communications systems. However, little has been reported on failure modes and degradation mechanisms of high-power SM and MM InGaAs-AlGaAs strained QW lasers although it is crucial to understand failure modes and underlying degradation mechanisms in developing these lasers that meet lifetime requirements for space satellite systems, where extremely high reliability of these lasers is required. Our present study addresses the aforementioned issues by performing long-term life-tests followed by failure mode analysis (FMA) and physics of failure investigation. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs-AlGaAs strained QW lasers under ACC (automatic current control) mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. FMA was performed on failed SM lasers using electron beam induced current (EBIC). This technique allowed us to identify failure types by observing dark line defects. All the SM failures we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Our group previously reported that bulk failure or COBD (catastrophic optical bulk damage) is the dominant failure mode of MM InGaAs-AlGaAs strained QW lasers. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) processing and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Our long-term life-test results and FMA results are reported.

  20. Visualizing the internal structure of subaqueous, high-concentration sediment-laden flows: implication of rheology to flow structure

    Science.gov (United States)

    Perillo, M. M.; Buttles, J.; Mohrig, D. C.; Kane, I.; Pontén, A.; Brown, D.; Minton, B. W.

    2013-12-01

    Subaqueous sediment-laden flows are thought to be the main mechanism transporting sediments to the deep sea. Understanding the processes governing these flows is crucial to building predictive models of flow behaviour, sediment transport and deposition and is applicable to a wide range of disciplines. Physical modelling using a wide range of experimental facilities and measurement techniques has significantly advanced our understanding of these sediment-laden flows and their ability to erode, transport and deposit sediments. However, for the case of high-sediment concentration flows, measuring flow and depositional properties is still a challenge. Here, we present results from an acoustic reflection technique that allows for direct and noninvasive visualization of the internal structure of high concentration, clay-rich, sand-laden flows with a range of initial yield strengths (0-26 Pa). As the acoustic signal travels through the sediment-laden flow, it encounters zones of varying acoustic impedance that are due to temporal and spatial changes in sediment concentration, grain size and sorting, and flow mixing. The reflected signal is processed and interpreted using seismic techniques developed in exploration geophysics. The ultrasonic reflection data captured two distinct flow stages, an active stage and a post-depositional creeping stage. The clay-rich sand-laden flows showed stratification expressed by three clear vertical zones: (a) an upper relatively dilute turbulent zone, (b) a zone with high sediment concentration and significantly reduced mixing and (c) an aggrading bed of static grains.

  1. Bulk Hydrogen Content OF High-Silica Rocks in Gale Crater With the Active Dynamic Albedo of Neutrons Experiment

    Science.gov (United States)

    Gabriel, T. S. J.; Hardgrove, C.; Litvak, M.; Mitrofanov, I.; Boynton, W. V.; Fedosov, F.; Golovin, D.; Jun, I.; Mischna, M.; Tate, C. G.; Moersch, J.; Harshman, K.; Kozyrev, A. S.; Malakhov, A.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Vostrukhin, A.; Archer, P. D., Jr.; Franz, H. B.; Thompson, L.

    2017-01-01

    The Mars Science Laboratory (MSL) Curiosity rover recently traversed over plateaus of mafic aeolian sandstones (the 'Stimson' formation) that overlie mudstones (the 'Murray' formation). Within the Stimson formation we observed many lighter-toned, halo-forming features, that are potentially indicative of fluid alteration (see Fig. 1). These halo features extend for tens of meters laterally and are approx.1 meter wide. The halo features were characterized by Curiosity's geochemical instruments: Alpha Proton X-Ray Spectrometer (APXS), Chemin, Chemcam and Sample Analysis at Mars (SAM). With respect to the host (unaltered) Stimson rocks, fracture halos were significantly enriched in silicon and low in iron [1]. Changes in hydrogen abundance (due to its large neutron scattering cross section) greatly influence the magnitude of the thermal neutron response from the Dynamic Albedo of Neutrons (DAN) instrument [2]. There are also some elemental species, e.g. chlorine, iron, and nickel, that have significant microscopic neutron absorption cross sections. These elements can be abundant and variable results provide a useful estimate of the lower bound for bulk hydrogen content (assuming a homogeneous distribution).

  2. Analysis of Nabumetone in Bulk and Tablet Formulation by a New and Validated Reverse Phase High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Prafulla Kumar Sahu

    2009-01-01

    Full Text Available RP-HPLC analytical method for the estimation of nabumetone in pharmaceutical dosage forms was developed and validated. A Hypersil ODS C18, 4.6 mm x 250 mm, 5 μm column from Supelco (India, with mobile phase comprised of acetonitrile: triple distilled water (50:50 with a total run time of 18 min was used and the wavelength of the detector was set at 230 nm. Stavudin is used as internal standard. The retention times were 14.167 min and 1.967 min for nabumetone and stavudin (IS respectively. The extraction recovery of nabumetone from pharmaceutical dosage form (tablets was >101% and the calibration curve was linear (r2 = 0.995 over nabumetone concentrations ranging from 1 to 200 µg/mL. The method had an accuracy of >99% and LOD and LOQ of 0.17482 µg/mL and 0.5827 µg/mL respectively. The method reported is simple, reliable, precise and accurate and has the capability of being used for determination of nabumetone in bulk and pharmaceutical dosage forms.

  3. Ambient Layer-by-Layer ZnO Assembly for Highly Efficient Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Eita, Mohamed Samir

    2015-02-04

    The use of metal oxide interlayers in polymer solar cells has great potential because metal oxides are abundant, thermally stable, and can be used in fl exible devices. Here, a layer-by-layer (LbL) protocol is reported as a facile, room-temperature, solution-processed method to prepare electron transport layers from commercial ZnO nanoparticles and polyacrylic acid (PAA) with a controlled and tunable porous structure, which provides large interfacial contacts with the active layer. Applying the LbL approach to bulk heterojunction polymer solar cells with an optimized ZnO layer thickness of H25 nm yields solar cell power-conversion effi ciencies (PCEs) of ≈6%, exceeding the effi ciency of amorphous ZnO interlayers formed by conventional sputtering methods. Interestingly, annealing the ZnO/PAA interlayers in nitrogen and air environments in the range of 60-300 ° C reduces the device PCEs by almost 20% to 50%, indicating the importance of conformational changes inherent to the PAA polymer in the LbL-deposited fi lms to solar cell performance. This protocol suggests a new fabrication method for solution-processed polymer solar cell devices that does not require postprocessing thermal annealing treatments and that is applicable to fl exible devices printed on plastic substrates.

  4. High-Resolution Faraday Rotation and Electron-Phonon Coupling in Surface States of the Bulk-Insulating Topological Insulator Cu_{0.02}Bi_{2}Se_{3}.

    Science.gov (United States)

    Wu, Liang; Tse, Wang-Kong; Brahlek, M; Morris, C M; Aguilar, R Valdés; Koirala, N; Oh, S; Armitage, N P

    2015-11-20

    We have utilized time-domain magnetoterahertz spectroscopy to investigate the low-frequency optical response of the topological insulator Cu_{0.02}Bi_{2}Se_{3} and Bi_{2}Se_{3} films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu_{0.02}Bi_{2}Se_{3} induces a true bulk insulator with only a single type of conduction with a total sheet carrier density of ~4.9×10^{12}/cm^{2} and mobility as high as 4000 cm^{2}/V·s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on the top and bottom of the film with a chemical potential ~145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero-field Drude conductance. In contrast, in normal Bi_{2}Se_{3} films, two conduction channels were observed, and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk or two-dimensional electron gas states. Our high-resolution Faraday rotation spectroscopy on Cu_{0.02}Bi_{2}Se_{3} paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push the chemical potential in the lowest Landau level.

  5. Numerical Simulation of Flow Instabilities in High Speed Multistage Compressors

    Institute of Scientific and Technical Information of China (English)

    JunHu; ThomasPeters; 等

    1999-01-01

    In the present paper,a nonlinear multi“actuator disk” model is proposed to analyze the dynamic behavior of flow instabilities,including rotating stall and surge,in high speed multistage axial compressors.The model describes the duct flow fields using two dimensional,compressible and unsteady Euler equations,and accounts for the influences of downstream plenum and throttle in the system as well.It replaces each blade row of multistage compressore with a disk.For numerical calculations,the time marching procedure,using MacCormack two steps scheme,is used.The main pupose of this paper is to predict the mechanism of two dimensional short wavelength rotating stall inception and the interation between blade rows in high speed multistage compressors.It has been demonstrated that the model has the ability to predict those phenomena,and the results show that some system parameters have a strong effect on the stall features as well.Results for a five stage high speed compressor are analyzed in detail,and comparison with the experimental data demonstrates that the model and calculating results are reliable.

  6. A high-precision algorithm for axisymmetric flow

    Directory of Open Access Journals (Sweden)

    A. Gokhman

    1995-01-01

    Full Text Available We present a new algorithm for highly accurate computation of axisymmetric potential flow. The principal feature of the algorithm is the use of orthogonal curvilinear coordinates. These coordinates are used to write down the equations and to specify quadrilateral elements following the boundary. In particular, boundary conditions for the Stokes' stream-function are satisfied exactly. The velocity field is determined by differentiating the stream-function. We avoid the use of quadratures in the evaluation of Galerkin integrals, and instead use splining of the boundaries of elements to take the double integrals of the shape functions in closed form. This is very accurate and not time consuming.

  7. High-Resolution Sedimentation Rates at IODP Sites U1424 and U1427 since the late Pliocene from spectral-analyzing GRA Bulk Density and RGB Color Profiles

    Science.gov (United States)

    Gorgas, Thomas; Irino, Tomohisa; Tada, Ryuji

    2016-04-01

    Sedimentation Rates (SRs) for IODP Sites U1424 (lat/lon coordinates: 40o11.40'N, 138o13.90'E; water depth: 2808 mbsl) and U1427 (lat/lon coordinates: 35o57.92'N, 134o26.06'E; water depth: 330 mbsl) were calculated by performing spectral analysis in the depth domain on both RGB color and Gamma-Ray-Attenuation (GRA) bulk density data. Inversion and integration of SRs versus depth from spectral analysis yielded detailed SR profiles in both time and depth domains. Our results show a greater variability in calculated SRs and differed from those established through coarse-scaled biostratigraphy and paleo-magnetic data. Our data analyses produces pulses of distinct high SRs for certain depth/age intervals at both sites, with time lags for such features possibly due to variable oceanographic conditions near-shore for Site U1427 versus those at Site U1424 further offshore. Both GRA and RGB profiles reveal a distinct periodicity in the waveband of Milankovitch cycles and other prominent periodicities in the 10-to-1ky period range. This observation suggests climate variabilities and trends in SRs responding to insolation patterns during the past 1 Myr at both sites and extending to 4.5 Myr for Site U1424. With only few identified eccentricity (100ky) cycle segments throughout the entire normalized spectral amplitude profile, our high-resolution Age-Depth model was tuned to obliquity (41ky) and precessional (19-23ky) cycles to achieving a strong fit with corresponding low-resolution models based on biostratigraphy, paleo-magnetic and, at least for Site U1424, augmenting volcanostratigraphy data. According to our Age-Depth models, relatively low SRs occur when evolutive amplitude spectra are dominated by periods in the range of obliquity and eccentricity. In contrast, significant SR peaks at both sites often occur when strong precessional amplitudes coexist with all other cycles. Lower SRs at Site U1424 have been interpreted to reflect a decrease in diatom flux and relative

  8. Evolution of thermoelectric performance for (Bi,Sb){sub 2}Te{sub 3} alloys from cutting waste powders to bulks with high figure of merit

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xi' an, E-mail: groupfxa@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); Cai, Xin zhi, E-mail: xzcwust@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); Han, Xue wu, E-mail: hanxuewu1990@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); Zhang, Cheng cheng, E-mail: zcc516990418@live.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); and others

    2016-01-15

    Bi{sub 2}Te{sub 3} based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi{sub 2}Te{sub 3} based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb){sub 2}Te{sub 3} alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb){sub 2}Te{sub 3} alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used in this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi{sub 0.36}Sb{sub 1.64}Te{sub 3} and Bi{sub 0.4}Sb{sub 1.6}Te{sub 3} alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi{sub 2}Te{sub 3} based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers. - Graphical abstract: Three kinds of typical morphologies for the fractographs: typical lamellar structure, agglomerated submicron-sized granules and dispersed cubic particles from the initial cutting waste powders. - Highlights: • Bi{sub 2}Te{sub 3} based wastes were directly selected as raw materials

  9. High-resolution transmission electron microscopy and bulk magnetometry study of LaFe_(11.5)Si_(1.5) compound

    Institute of Scientific and Technical Information of China (English)

    Zou Jun-Ding; Li Wei; Shen Bao-Gen

    2009-01-01

    This paper studies the microstructural and magnetic properties of LaFe_(11.5)Si_(1.5) compound by means of high-resolution transmission electron microscope and bulk magnetometry measurements. The crystalline structure is accompanied with the noncrystalline and nanocrystalline structures. This characteristic is the reflection of the crystalline process held by quenching. The inverse susceptibilities diverge and deviate from Curie-Weiss law under low applied magnetic fields. This paper proposes the possible mechanism between the anomalous susceptibilities and microstructtire, and offers a perspective on the magnetic properties of metastable intermetallic compounds.

  10. Electrical analysis of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors on flexible bulk mono-crystalline silicon

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-06-01

    We report on the electrical study of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors (MOSCAPs) on a flexible ultra-thin (25 μm) silicon fabric which is peeled off using a CMOS compatible process from a standard bulk mono-crystalline silicon substrate. A lifetime projection is extracted using statistical analysis of the ramping voltage (Vramp) breakdown and time dependent dielectric breakdown data. The obtained flexible MOSCAPs operational voltages satisfying the 10 years lifetime benchmark are compared to those of the control MOSCAPs, which are not peeled off from the silicon wafer. © 2014 IEEE.

  11. Reliability of AlGaN/GaN high electron mobility transistors on low dislocation density bulk GaN substrate: Implications of surface step edges

    Energy Technology Data Exchange (ETDEWEB)

    Killat, N., E-mail: Nicole.Killat@bristol.ac.uk, E-mail: Martin.Kuball@bristol.ac.uk; Montes Bajo, M.; Kuball, M., E-mail: Nicole.Killat@bristol.ac.uk, E-mail: Martin.Kuball@bristol.ac.uk [Center for Device Thermography and Reliability (CDTR), H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Paskova, T. [Kyma Technologies, Inc., Raleigh, North Carolina 27617 (United States); Materials Science and Engineering Department, North Carolina State University, Raleigh, North Carolina 27695 (United States); Evans, K. R. [Kyma Technologies, Inc., Raleigh, North Carolina 27617 (United States); Leach, J. [Kyma Technologies, Inc., Raleigh, North Carolina 27617 (United States); Electrical and Computer Engineering Department, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Li, X.; Özgür, Ü.; Morkoç, H. [Electrical and Computer Engineering Department, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Chabak, K. D.; Crespo, A.; Gillespie, J. K.; Fitch, R.; Kossler, M.; Walker, D. E.; Trejo, M.; Via, G. D.; Blevins, J. D. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)

    2013-11-04

    To enable gaining insight into degradation mechanisms of AlGaN/GaN high electron mobility transistors, devices grown on a low-dislocation-density bulk-GaN substrate were studied. Gate leakage current and electroluminescence (EL) monitoring revealed a progressive appearance of EL spots during off-state stress which signify the generation of gate current leakage paths. Atomic force microscopy evidenced the formation of semiconductor surface pits at the failure location, which corresponds to the interaction region of the gate contact edge and the edges of surface steps.

  12. High-throughput Exploration of Glass Formation via Laser Deposition and the Study of Heterogeneous Microstructure in a Bulk Metallic Glass Alloy

    Science.gov (United States)

    Tsai, Peter T.

    Bulk metallic glasses are a relatively novel class of engineering alloys characterized by a "disordered" atomic structure devoid of long-range translational symmetry. Compared to crystalline alloys, the confluence of metallic bonding and amorphous structure imbues bulk metallic glasses with a unique set of properties that makes them particularly attractive for a wide variety of structural applications. Such properties include exceptional yield strengths, high elastic resilience, resistance to corrosion, and in particular, the unparalleled ability among metals to be thermoplastically formed across a wide range of length scales when heated above the glass transition temperature. Formation of metallic glass from a molten liquid depends on whether cooling is sufficiently rapid to bypass crystallization and vitrify into an amorphous solid; for a given alloy composition, the ease with which full vitrification can occur upon cooling from the liquid state is termed the alloy's "glass forming ability". Unfortunately, relatively few excellent glass formers have been reported in the vast, multicomponent composition space in which they reside. The apparent slowness of progress may be attributed largely to the inefficiency of the one-at-a-time experimental approach to discovery and design. In this thesis work, a high-throughput combinatorial methodology was developed to expedite the discovery process of new bulk metallic glasses. Laser deposition was used to fabricate continuously-graded composition libraries of Cu-Zr and Cu-Zr-Ti alloys. By processing the libraries with a range of laser heat input, the best glass formers in each alloy system could be efficiently and systematically deduced. Furthermore, instrumented nanoindentation performed on the libraries enabled rapid evaluation of mechanical property trends. Despite boasting high strengths, monolithic bulk metallic glasses generally suffer from an intrinsic lack of damage tolerance compared to other high performance alloys

  13. DSMC Simulation of High Mach Number Taylor-Couette Flow

    Science.gov (United States)

    Pradhan, Sahadev, , Dr.

    2017-01-01

    The main focus of this work is to characterise the Taylor-Couette flow of an ideal gas between two coaxial cylinders at Mach number Ma = (U_w /√{ kbT_w / m }) in the range 0.01 Boltzmann constant. The cylindrical surfaces are specified as being diffusely reflecting with the thermal accommodation coefficient equal to one. In the present analysis of high Mach number compressible Taylor-Couette flow using DSMC method, wall slip in the temperature and the velocities are found to be significant. Slip occurs because the temperature/velocity of the molecules incident on the wall could be very different from that of the wall, even though the temperature/velocity of the reflected molecules is equal to that of the wall. Due to the high surface speed of the inner cylinder, significant heating of the gas is taking place. The gas temperature increases until the heat transfer to the surface equals the work done in moving the surface. The highest temperature is obtained near the moving surface of the inner cylinder at a radius of about (1.26 r_1).

  14. A scalable approach for high throughput branch flow filtration.

    Science.gov (United States)

    Inglis, David W; Herman, Nick

    2013-05-07

    Microfluidic continuous flow filtration methods have the potential for very high size resolution using minimum feature sizes that are larger than the separation size, thereby circumventing the problem of clogging. Branch flow filtration is particularly promising because it has an unlimited dynamic range (ratio of largest passable particle to the smallest separated particle) but suffers from very poor volume throughput because when many branches are used, they cannot be identical if each is to have the same size cut-off. We describe a new iterative approach to the design of branch filtration devices able to overcome this limitation without large dead volumes. This is demonstrated by numerical modelling, fabrication and testing of devices with 20 branches, with dynamic ranges up to 6.9, and high filtration ratios (14-29%) on beads and fungal spores. The filters have a sharp size cutoff (10× depletion for 12% size difference), with large particle rejection equivalent to a 20th order Butterworth low pass filter. The devices are fully scalable, enabling higher throughput and smaller cutoff sizes and they are compatible with ultra low cost fabrication.

  15. CPAP and High-Flow Nasal Cannula Oxygen in Bronchiolitis.

    Science.gov (United States)

    Sinha, Ian P; McBride, Antonia K S; Smith, Rachel; Fernandes, Ricardo M

    2015-09-01

    Severe respiratory failure develops in some infants with bronchiolitis because of a complex pathophysiologic process involving increased airways resistance, alveolar atelectasis, muscle fatigue, and hypoxemia due to mismatch between ventilation and perfusion. Nasal CPAP and high-flow nasal cannula (HFNC) oxygen may improve the work of breathing and oxygenation. Although the mechanisms behind these noninvasive modalities of respiratory support are not well understood, they may help infants by way of distending pressure and delivery of high concentrations of warmed and humidified oxygen. Observational studies of varying quality have suggested that CPAP and HFNC may confer direct physiologic benefits to infants with bronchiolitis and that their use has reduced the need for intubation. No trials to our knowledge, however, have compared CPAP with HFNC in bronchiolitis. Two randomized trials compared CPAP with oxygen delivered by low-flow nasal cannula or face mask and found some improvements in blood gas results and some physiologic parameters, but these trials were unable to demonstrate a reduction in the need for intubation. Two trials evaluated HFNC in bronchiolitis (one comparing it with headbox oxygen, the other with nebulized hypertonic saline), with the results not seeming to suggest important clinical or physiologic benefits. In this article, we review the pathophysiology of respiratory failure in bronchiolitis, discuss these trials in detail, and consider how future research studies may be designed to best evaluate CPAP and HFNC in bronchiolitis.

  16. Quantitative measurement of high flow velocities by a spin echo MR technique

    Energy Technology Data Exchange (ETDEWEB)

    Lin Yigun (First Military Medical Coll., Quangzhou, FJ (China)); Kojima, Akihiro; Shinzato, Jintetsu; Sakamoto, Yuji; Ueno, Sukeyoshi; Takahashi, Mutsumasa; Higashida, Yoshiharu

    A new method of flow measurement using a spin echo (SE) technique has been developed on the basis of the flow effect that at high velocities signal intensity decreases linearly with increasing flow velocity. Flow velocity is calculated from the signal intensity ratio of the flowing material in two images with the same imaging parameters but different echo times. The linear relationship between the signal intensity and flow velocity was examined with a steady flow phantom. When assessed with steady flows in the phantom, flow velocities calculated by this method were in good agreement with velocities measured by a flow meter. This method was used with ECG gating to measure the blood flow of the right common carotid artery of a healthy volunteer. The measured peak flow velocity and the pattern of flow velocities during systole correlated well with the results obtained by Doppler ultrasound. (author).

  17. High-pressure pyrolysis study of C sub 3 N sub 6 H sub 6 : a route to preparing bulk C sub 3 N sub 4

    CERN Document Server

    Ma, H A; Chen, L X; Zhu, P W; Guo, W L; Guo, X B; Wang, Y D; Li, S Q; Zou Guang Tian; Zhang, G; Bex, P

    2002-01-01

    In order to prepare bulk C sub 3 N sub 4 , high-pressure pyrolysis of melamine (C sub 3 N sub 6 H sub 6) at different temperatures was carried out. The products were characterized by C, N, H element analysis, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, and x-ray diffractometry. The results of the analysis reveal that graphitic phase C sub 3 N sub 4 has been synthesized. It provides a novel route to synthesis of the theoretical superhard cubic C sub 3 N sub 4 and other C sub 3 N sub 4 phases from organic compounds by a high-pressure and high-temperature method.

  18. From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers

    CERN Document Server

    Zhukovsky, Sergei V; Sipe, J E; Lavrinenko, Andrei V

    2014-01-01

    We theoretically investigate general existence conditions for broadband bulk large-wavevector (high-k) propagating waves (such as volume plasmon polaritons in hyperbolic metamaterials) in subwavelength periodic multilayer structures. Describing the elementary excitation in the unit cell of the structure by a generalized resonance pole of a reflection coefficient, and using Bloch's theorem, we derive analytical expressions for the band of large-wavevector propagating solutions. We apply our formalism to determine the high-k band existence in two important cases: the well-known metal-dielectric, and recently introduced graphene-dielectric stacks. We confirm that short-range surface plasmons in thin metal layers can give rise to hyperbolic metamaterial properties, and demonstrate that long-range surface plasmons cannot. We also show that graphene-dielectric multilayers tend to support high-k waves and explore the range of parameters for which this is possible, confirming the prospects of using graphene for mater...

  19. 2 MeV electron irradiation effects on bulk and interface of atomic layer deposited high-k gate dielectrics on silicon

    Energy Technology Data Exchange (ETDEWEB)

    García, H., E-mail: hecgar@ele.uva.es [Departamento de Electricidad y Electrónica, ETSI Telecomunicación, Universidad de Valladolid, 47011 Valladolid (Spain); Castán, H.; Dueñas, S.; Bailón, L. [Departamento de Electricidad y Electrónica, ETSI Telecomunicación, Universidad de Valladolid, 47011 Valladolid (Spain); Campabadal, F.; Rafí, J.M.; Zabala, M.; Beldarrain, O. [Institut de Microelectrònica de Barcelona (IMB-CNM), CSIC, Campus UAB, 08193 Bellaterra (Spain); Ohyama, H.; Takakura, K.; Tsunoda, I. [Department of Electronic Engineering, Kumamoto National College of Technology, Kumamoto 861-1102 (Japan)

    2013-05-01

    2 MeV electron irradiation effects on the electrical properties of Al{sub 2}O{sub 3} and HfO{sub 2}-based metal–insulator–semiconductor capacitors have been studied. High-k dielectrics were directly grown on silicon by atomic layer deposition. Capacitors were exposed to three different electron irradiation doses of 0.025, 0.25 and 2.5 MGy. Capacitance–voltage, deep-level transient spectroscopy, conductance transients, flat-band voltage transients and current–voltage techniques were used to characterize the defects induced or activated by irradiation on the dielectric bulk and on the interface with silicon substrate. In all cases, positive charge is trapped in the dielectric bulk after irradiation indicating the existence of hole traps in the dielectric. When the samples are exposed to 2 MeV electron beam (e-beam) irradiation, electron–hole pairs are created and holes are then captured by the hole traps. Insulator/semiconductor interface quality slightly improves for low irradiation doses, but it is degraded for high doses. Irradiation always degrades the dielectric layers in terms of gate leakage current: the trapped holes are mobile charge which can contribute to leakage current by hopping from trap to trap. - Highlights: ► Positive charge accumulates inside dielectrics after electron irradiation. ► Irradiation improves oxide/semiconductor interface for low doses. ► Irradiation increases gate leakage current.

  20. Sub-coherent growth of ZnO nanorod arrays on three-dimensional graphene framework as one-bulk high-performance photocatalyst

    Science.gov (United States)

    Yu, Mei; Ma, Yuxiao; Liu, Jianhua; Li, Xinjie; Li, Songmei; Liu, Shenyao

    2016-12-01

    Highly ordered ZnO nanorod arrays were grown vertically on the surface of three-dimensional graphene (3DG) framework bulk to prepare a one-bulk structure. In such structure, ZnO exhibits outstanding photocatalyst performance due to its hybridization with 3DG. The sub-coherency between ZnO and 3DG ensures the template-free growth of ZnO nanorod arrays and the exposing of its most active crystal surfaces {0001}. The hybridization prevents the agglomeration of ZnO nanoparticles, helping the formation of nanorod array morphology, enhancing the mass transfer of reactants and the separation of photogenerated holes. In the efficiency test, with tiny amount of ZnO catalyst (∼5.03 × 10-3 g), the concentration of methyl orange decreased to ∼11% of the initial value within four hours. The structure possesses high average photocatalytic efficiency of 6.56 × 10-3 h-1, much higher than that of bare ZnO nanorods.

  1. High-Resolution Flow Logging for Hydraulic Characterization of Boreholes and Aquifer Flow Zones at Contaminated Bedrock Sites

    Science.gov (United States)

    Williams, J. H.; Johnson, C. D.; Paillet, F. L.

    2004-05-01

    In the past, flow logging was largely restricted to the application of spinner flowmeters to determine flow-zone contributions in large-diameter production wells screened in highly transmissive aquifers. Development and refinement of tool-measurement technology, field methods, and analysis techniques has greatly extended and enhanced flow logging to include the hydraulic characterization of boreholes and aquifer flow zones at contaminated bedrock sites. State-of-the-art in flow logging will be reviewed, and its application to bedrock-contamination investigations will be presented. In open bedrock boreholes, vertical flows are measured with high-resolution flowmeters equipped with flexible rubber-disk diverters fitted to the nominal borehole diameters to concentrate flow through the measurement throat of the tools. Heat-pulse flowmeters measure flows in the range of 0.05 to 5 liters per minute, and electromagnetic flowmeters measure flows in the range of 0.3 to 30 liters per minute. Under ambient and low-rate stressed (either extraction or injection) conditions, stationary flowmeter measurements are collected in competent sections of the borehole between fracture zones identified on borehole-wall images. Continuous flow, fluid-resistivity, and temperature logs are collected under both sets of conditions while trolling with a combination electromagnetic flowmeter and fluid tool. Electromagnetic flowmeters are used with underfit diverters to measure flow rates greater than 30 liters per minute and suppress effects of diameter variations while trolling. A series of corrections are applied to the flow-log data to account for the zero-flow response, bypass, trolling, and borehole-diameter biases and effects. The flow logs are quantitatively analyzed by matching simulated flows computed with a numerical model to measured flows by varying the hydraulic properties (transmissivity and hydraulic head) of the flow zones. Several case studies will be presented that demonstrate

  2. High Heat Flux Burnout in Subcooled Flow Boiling

    Institute of Scientific and Technical Information of China (English)

    G.P.Celata; M.Cumo; 等

    1995-01-01

    The paper reports the results of an experimental research carried out at the Heat transfer divison of the Energy Department,C.R.Casaccia,on the thermal hydraulic characterization of subcooled flow boiling CHF under typical conditions of thermonuclear fusion reactors.I.e.high liquid velocity and subcooling.The experiment was carried out exploring the following parameters:channel diameter(from 2.5to 8.0 mm),heated length(10 and 15cm) ,liquid velocity (from 2 to 40m/s),exit pressure(from atmospheric to 5.0 MPa),inlet temperature(from 30 to 80℃),channel orientation (vertical and horizontal),A maximum CHF value of 60.6MW/m2 has been obtained under the following conditions:Tin-30°,p=2.5MPa,u=40m/s,D=2.5mm(smooth channel) Turbulence promoters(helically coiled wires)have been employed to further enhance the CHF attainable with subcooled flow boiling.Helically coiled wires allow an increase of 50% of the maximum CHF obtained with smooth channels.

  3. A High Resolution Low Dissipation Hybrid Scheme for Compressible Flows

    Institute of Scientific and Technical Information of China (English)

    YU Jian; YAN Chao; JIANG Zhenhua

    2011-01-01

    In this paper,an efficient hybrid shock capturing scheme is proposed to obtain accurate results both in the smooth region and around discontinuities for compressible flows.The hybrid algorithm is based on a fifth-order weighted essentially non-oscillatory (WENO) scheme in the finite volume form to solve the smooth part of the flow field,which is coupled with a characteristic-based monotone upstream-centered scheme for conservation laws(MUSCL) to capture discontinuities.The hybrid scheme is intended to combine high resolution of MUSCL scheme and low dissipation of WENO scheme.The two ingredients in this hybrid scheme are switched with an indicator.Three typical indicators are chosen and compared.MUSCL and WENO are both shock capturing schemes making the choice of the indicator parameter less crucial.Several test cases are carried out to investigate hybrid scheme with different indicators in terms of accuracy and efficiency.Numerical results demonstrate that the hybrid scheme in the present work performs well in a broad range of problems.

  4. The influence of fuel injection and heat release on bulk flow structures in a direct-injection, swirl-supported diesel engine

    Science.gov (United States)

    Sterl, Andreas; van Oldenborgh, Geert Jan; Hazeleger, Wilco; Burgers, Gerrit

    2007-08-01

    Particle image velocimetry is applied to measure the vertical (r z) plane flow structures in a light-duty direct-injection diesel engine with a realistic piston geometry. The measurements are corrected for optical distortions due to the curved piston bowl walls and the cylindrical liner. Mean flow fields are presented and contrasted for operation both with and without fuel injection and combustion. For operation with combustion, the two-dimensional divergence of the measured mean velocity fields is employed as a qualitative indicator of the locations of mean heat release. In agreement with numerical simulations, dual-vortex, vertical plane mean flow structures that may enhance mixing rates are formed approximately mid-way through the combustion event. Late in the cycle a toroidal vortex forms outside the bowl mouth. Imaging studies suggest that soot and partially oxidized fuel trapped within this vortex are slow to mix with surrounding fluid; moreover, the vortex impedes mixing of fluid exiting the bowl with air within the squish volume.

  5. High angle of attack aerodynamics subsonic, transonic, and supersonic flows

    CERN Document Server

    Rom, Josef

    1992-01-01

    The aerodynamics of aircraft at high angles of attack is a subject which is being pursued diligently, because the modern agile fighter aircraft and many of the current generation of missiles must perform well at very high incidence, near and beyond stall. However, a comprehensive presentation of the methods and results applicable to the studies of the complex aerodynamics at high angle of attack has not been covered in monographs or textbooks. This book is not the usual textbook in that it goes beyond just presenting the basic theoretical and experimental know-how, since it contains reference material to practical calculation methods and technical and experimental results which can be useful to the practicing aerospace engineers and scientists. It can certainly be used as a text and reference book for graduate courses on subjects related to high angles of attack aerodynamics and for topics related to three-dimensional separation in viscous flow courses. In addition, the book is addressed to the aerodynamicist...

  6. Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly

    KAUST Repository

    Lee, Olivia P.

    2011-10-21

    Efficient organic photovoltaic (OPV) materials are constructed by attaching completely planar, symmetric end-groups to donor-acceptor electroactive small molecules. Appending C2-pyrene as the small molecule end-group to a diketopyrrolopyrrole core leads to materials with a tight, aligned crystal packing and favorable morphology dictated by π-π interactions, resulting in high power conversion efficiencies and high fill factors. The use of end-groups to direct molecular self-assembly is an effective strategy for designing high-performance small molecule OPV devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solid rocket booster internal flow analysis by highly accurate adaptive computational methods

    Science.gov (United States)

    Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.

    1991-01-01

    The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.

  8. A THERMODYNAMIC CAVITATION MODEL APPLICABLE TO HIGH TEMPERATURE FLOW

    Directory of Open Access Journals (Sweden)

    De-Min Liu

    2011-01-01

    Full Text Available Cavitation is not only related with pressure, but also affected by temperature. Under high temperature, temperature depression of liquids is caused by latent heat of vaporization. The cavitation characteristics under such condition are different from those under room temperature. The paper focuses on thermodynamic cavitation based on the Rayleigh-Plesset equation and modifies the mass transfer equation with fully consideration of the thermodynamic effects and physical properties. To validate the modified model, the external and internal flow fields, such as hydrofoil NACA0015 and nozzle, are calculated, respectively. The hydrofoil NACA0015's cavitation characteristic is calculated by the modified model at different temperatures. The pressure coefficient is found in accordance with the experimental data. The nozzle cavitation under the thermodynamic condition is calculated and compared with the experiment.

  9. First observation of angle-dependent Stark cyclotron resonance in bulk crystals: High-electric-field interlayer magnetotransport in a layered organic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, A.; Konoike, T.; Uchida, K. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Osada, T., E-mail: osada@issp.u-tokyo.ac.j [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2010-06-01

    We report a novel angle-dependent magnetotransport phenomenon in layered conductors under strong interlayer electric fields. Interlayer conduction shows the Stark cyclotron resonance (SCR) when electron orbital motion becomes periodic in k-space. The SCR amplitude oscillates depending on magnetic field orientations. The conventional angle-dependent magnetoresistance oscillation (AMRO) switches to the angle-dependent SCR in high electric fields. We predict angle-dependent SCR due to electron orbital motion in layered conductors with coherent interlayer coupling. In addition, we demonstrate the expected switching from conventional AMRO to angle-dependent SCR in high electric fields using an organic conductor {alpha}-(BEDT-TTF){sub 2}NH{sub 4}Hg(SCN){sub 4}. This is the first observation of the SCR with orbital origin in bulk crystals.

  10. Simultaneous Analysis of Losartan Potassium, Amlodipine Besylate, and Hydrochlorothiazide in Bulk and in Tablets by High-Performance Thin Layer Chromatography with UV-Absorption Densitometry

    Directory of Open Access Journals (Sweden)

    Karunanidhi Santhana Lakshmi

    2012-01-01

    Full Text Available A Simple high-performance thin layer chromatography (HPTLC method for separation and quantitative analysis of losartan potassium, amlodipine, and hydrochlorothiazide in bulk and in pharmaceutical formulations has been established and validated. After extraction with methanol, sample and standard solutions were applied to silica gel plates and developed with chloroform : methanol : acetone : formic acid 7.5 : 1.3 : 0.5 : 0.03 (/// as mobile phase. Zones were scanned densitometrically at 254 nm. The values of amlodipine besylate, hydrochlorothiazide, and losartan potassium were 0.35, 0.57, and 0.74, respectively. Calibration plots were linear in the ranges 500–3000 ng per spot for losartan potassium, amlodipine and hydrochlorothiazide, the correlation coefficients, r, were 0.998, 0.998, and 0.999, respectively. The suitability of this method for quantitative determination of these compounds was by validation in accordance with the requirements of pharmaceutical regulatory standards. The method can be used for routine analysis of these drugs in bulk and in formulation.

  11. High energy sodium based room temperature flow batteries

    Science.gov (United States)

    Shamie, Jack

    As novel energy sources such as solar, wind and tidal energies are explored it becomes necessary to build energy storage facilities to load level the intermittent nature of these energy sources. Energy storage is achieved by converting electrical energy into another form of energy. Batteries have many properties that are attractive for energy storage including high energy and power. Among many different types of batteries, redox flow batteries (RFBs) offer many advantages. Unlike conventional batteries, RFBs store energy in a liquid medium rather than solid active materials. This method of storage allows for the separation of energy and power unlike conventional batteries. Additionally flow batteries may have long lifetimes because there is no expansion or contraction of electrodes. A major disadvantage of RFB's is its lower energy density when compared to traditional batteries. In this Thesis, a novel hybrid Na-based redox flow battery (HNFB) is explored, which utilizes a room temperature molten sodium based anode, a sodium ion conducting solid electrolyte and liquid catholytes. The sodium electrode leads to high voltages and energy and allows for the possibility of multi-electron transfer per molecule. Vanadium acetylacetonate (acac) and TEMPO have been investigated for their use as catholytes. In the vanadium system, 2 electrons transfers per vanadium atom were found leading to a doubling of capacity. In addition, degradation of the charged state was found to be reversible within the voltage range of the cell. Contamination by water leads to the formation of vanadyl acetylacetonate. Although it is believed that vanadyl complex need to be taken to low voltages to be reduced back to vanadium acac, a new mechanism is shown that begins at higher voltages (2.1V). Vanadyl complexes react with excess ligand and protons to reform the vanadium complex. During this reaction, water is reformed leading to the continuous cycle in which vanadyl is formed and then reduced back

  12. Low flow and high flow responses to converting natural grassland into bluegum ( Eucalyptus globulus) in Nilgiris watersheds of South India

    Science.gov (United States)

    Sikka, A. K.; Samra, J. S.; Sharda, V. N.; Samraj, P.; Lakshmanan, V.

    2003-01-01

    A concern has been raised in many parts of the world over the effect of large scale planting of Eucalyptus on hydrological behaviour of small watersheds. Hydrological response of watersheds due to conversion of natural grasslands into bluegum ( Eucalyptus globulus) plantations on low flows and high flows has been presented in this paper. The concept of using low flow index (LFI) as a tool to study and quantify the effects of bluegum plantation on low flow regime has been demonstrated. Conversion of natural grasslands into bluegum plantations has resulted in decreased low flow volume as well as peak flow, which in turn increased the soil moisture losses. These effects were more pronounced during the second rotation (i.e. first coppiced growth) as compared to the first rotation. Significant reduction in low flow as a result of decline in base flow could be predicted with LFI decreasing by 2.0 and 3.75 times, in the first and second rotation, respectively. Moderation in peak discharge rates was also observed as a result of bluegum plantation. Probability plots of peak discharge tend to suggest that the effect of bluegum plantation on peak flows become insignificant for the floods with higher return periods. These results clearly suggest that caution need to be exercised while planning large scale conversion of natural grasslands into bluegum plantations in the catchments of hydro-electric reservoirs in the Nilgiris which adversely affects water availability especially during lean flow period.

  13. Coarse-grained simulations for flow of complex soft matter fluids in the bulk and in the presence of solid interfaces

    Science.gov (United States)

    Ahuja, V. R.; van der Gucht, J.; Briels, W. J.

    2016-11-01

    We present a coarse-grained particle-based simulation technique for modeling flow of complex soft matter fluids such as polymer solutions in the presence of solid interfaces. In our coarse-grained description of the system, we track the motion of polymer molecules using their centers-of-mass as our coarse-grain co-ordinates and also keep track of another set of variables that describe the background flow field. The coarse-grain motion is thus influenced not only by the interactions based on appropriate potentials used to model the particular polymer system of interest and the random kicks associated with thermal fluctuations, but also by the motion of the background fluid. In order to couple the motion of the coarse-grain co-ordinates with the background fluid motion, we use a Galilean invariant, first order Brownian dynamics algorithm developed by Padding and Briels [J. Chem. Phys. 141, 244108 (2014)], which on the one hand draws inspiration from smoothed particle hydrodynamics in a way that the motion of the background fluid is efficiently calculated based on a discretization of the Navier-Stokes equation at the positions of the coarse-grain coordinates where it is actually needed, but also differs from it because of the inclusion of thermal fluctuations by having momentum-conserving pairwise stochastic updates. In this paper, we make a few modifications to this algorithm and introduce a new parameter, viz., a friction coefficient associated with the background fluid, and analyze the relationship of the model parameters with the dynamic properties of the system. We also test this algorithm for flow in the presence of solid interfaces to show that appropriate boundary conditions can be imposed at solid-fluid interfaces by using artificial particles embedded in the solid walls which offer friction to the real fluid particles in the vicinity of the wall. We have tested our method using a model system of a star polymer solution at the overlap concentration.

  14. Coarse-grained simulations for flow of complex soft matter fluids in the bulk and in the presence of solid interfaces.

    Science.gov (United States)

    Ahuja, V R; van der Gucht, J; Briels, W J

    2016-11-21

    We present a coarse-grained particle-based simulation technique for modeling flow of complex soft matter fluids such as polymer solutions in the presence of solid interfaces. In our coarse-grained description of the system, we track the motion of polymer molecules using their centers-of-mass as our coarse-grain co-ordinates and also keep track of another set of variables that describe the background flow field. The coarse-grain motion is thus influenced not only by the interactions based on appropriate potentials used to model the particular polymer system of interest and the random kicks associated with thermal fluctuations, but also by the motion of the background fluid. In order to couple the motion of the coarse-grain co-ordinates with the background fluid motion, we use a Galilean invariant, first order Brownian dynamics algorithm developed by Padding and Briels [J. Chem. Phys. 141, 244108 (2014)], which on the one hand draws inspiration from smoothed particle hydrodynamics in a way that the motion of the background fluid is efficiently calculated based on a discretization of the Navier-Stokes equation at the positions of the coarse-grain coordinates where it is actually needed, but also differs from it because of the inclusion of thermal fluctuations by having momentum-conserving pairwise stochastic updates. In this paper, we make a few modifications to this algorithm and introduce a new parameter, viz., a friction coefficient associated with the background fluid, and analyze the relationship of the model parameters with the dynamic properties of the system. We also test this algorithm for flow in the presence of solid interfaces to show that appropriate boundary conditions can be imposed at solid-fluid interfaces by using artificial particles embedded in the solid walls which offer friction to the real fluid particles in the vicinity of the wall. We have tested our method using a model system of a star polymer solution at the overlap concentration.

  15. Transfer-less flexible and transparent high-κ/metal gate germanium devices on bulk silicon (100)

    KAUST Repository

    Nassar, Joanna M.

    2014-08-01

    Flexible wearable electronics have been of great interest lately for the development of innovative future technology for various interactive applications in the field of consumer electronics and advanced healthcare, offering the promise of low-cost, lightweight, and multifunctionality. In the pursuit of this trend, high mobility channel materials need to be investigated on a flexible platform, for the development of flexible high performance devices. Germanium (Ge) is one of the most attractive alternatives for silicon (Si) for high-speed computational applications, due its higher hole and electron mobility. Thus, in this work we show a cost effective CMOS compatible process for transforming conventional rigid Ge metal oxide semiconductor capacitors (MOSCAPS) into a mechanically flexible and semi-transparent platform. Devices exhibit outstanding bendability with a bending radius of 0.24 cm, and semi-transparency up to 30 %, varying with respect to the diameter size of the release holes array.

  16. Highly efficient organic tandem solar cell with a SubPc interlayer based on TAPC:C70 bulk heterojunction

    Science.gov (United States)

    Gao, Yuan; Jin, Fangming; Li, Wenlian; Su, Zisheng; Chu, Bei; Wang, Junbo; Zhao, Haifeng; Wu, Hairuo; Liu, Chengyuan; Hou, Fuhua; Lin, Tong; Song, Qiaogang

    2016-04-01

    We report a small molecule tandem organic photovoltaic (OPV) cell with a high power conversion efficiency (PCE) of 7.27%. This cell contains two subcells with an identical mixed active layer of C70:5 wt%TAPC (1,1-bis-(4-bis(4-methyl-phenyl)-amino-phenyl)-cyclohexane). The performance was dramatically improved by simply inserting a thin boron subphthalocyanine chloride (SubPc) interlayer, which results in an increase of the short-circuit current and open-circuit voltage as well as a decrease of the series resistance of the tandem cell. The response of the cell only contributed from the absorption of C70. The high PCE was attributed to the high absorption efficiency of C70 and improved holes extraction efficiency at the anode due to the band bending occurs at both MoO3/SubPc and SubPc/C70:5 wt%TAPC interfaces.

  17. Thermoplastic Micro-Forming of Bulk Metallic Glasses: A Review

    Science.gov (United States)

    Li, Ning; Chen, Wen; Liu, Lin

    2016-04-01

    Bulk metallic glasses are a fascinating class of metallic alloys with an isotropic amorphous structure that is rapidly quenched from liquid melts. The absence of a crystalline micro-structure endows them with a portfolio of properties such as high strength, high elasticity, and excellent corrosion resistance. Whereas the limited plasticity and hence poor workability at ambient temperature impede the structural application of bulk metallic glasses, the unique superplasticity within the supercooled liquid region opens an alternative window of so-called thermoplastic forming, which allows precise and versatile net-shaping of complex geometries on length scales ranging from nanometers to centimeters that were previously unachievable with conventional crystalline metal processing. Thermoplastic forming not only breaks through the bottleneck of the manufacture of bulk metallic glasses at ambient temperature but also offers an alluring prospect in micro-engineering applications. This paper comprehensively reviews some pivotal aspects of bulk metallic glasses during thermoplastic micro-forming, including an in-depth understanding of the crystallization kinetics of bulk metallic glasses and the thermoplastic processing time window, the thermoplastic forming map that clarifies the relationship between the flow characteristics and the formability, the interfacial friction in micro-forming and novel forming methods to improve the formability, and the potential applications of the hot-embossed micro-patterns/components.

  18. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2015-08-29

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work. The stability map of partial premixed flames illustrates that the flames are stable between two extinction limits. A low extinction limit when partial premixed flames approach non-premixed flame conditions, and a high extinction limit, with the partial premixed flames approach fully premixed flame conditions. These two limits showed that the most stable flame conditions are achieved at a certain degree of partial premixed. The stability is improved by adding air co-flow. As the air co-flow velocity increases the most stable flames are those that approach fully premixed. The turbulent flow field of three flames at 0, 5, 10 m/s co-flow velocity are investigated using Stereo Particle Image Velocimetry (SPIV) in order to explore the improvement of the flame stability due to the use of air co-flow. The three flames are all at a jet equivalence ratio (Φj) of 2, fixed level of partial premixing and jet Reynolds number (Rej) of 10,000. The use of co-flow results in the formation of two vortices at the cone exit. These vortices act like stabilization anchors for the flames to the nozzle tip. With these vortices in the flow field, the reaction zone shifts toward the reduced turbulence intensity at the nozzle rim of the cone. Interesting information about the structure of the flow field with and without co-flow are identified and reported in this work.

  19. Growth of free-standing bulk wurtzite AlxGa1-xN layers by molecular beam epitaxy using a highly efficient RF plasma source

    Science.gov (United States)

    Novikov, S. V.; Staddon, C. R.; Sahonta, S.-L.; Oliver, R. A.; Humphreys, C. J.; Foxon, C. T.

    2016-12-01

    The recent development of group III nitrides allows researchers world-wide to consider AlGaN based light emitting diodes as a possible new alternative deep ultra-violet light source for surface decontamination and water purification. In this paper we will describe our recent results on plasma-assisted molecular beam epitaxy (PA-MBE) growth of free-standing wurtzite AlxGa1-xN bulk crystals using the latest model of Riber's highly efficient nitrogen RF plasma source. We have achieved AlGaN growth rates up to 3 μm/h. Wurtzite AlxGa1-xN layers with thicknesses up to 100 μm were successfully grown by PA-MBE on 2-inch and 3-inch GaAs (111)B substrates. After growth the GaAs was subsequently removed using a chemical etch to achieve free-standing AlxGa1-xN wafers. Free-standing bulk AlxGa1-xN wafers with thicknesses in the range 30-100 μm may be used as substrates for further growth of AlxGa1-xN-based structures and devices. High Resolution Scanning Transmission Electron Microscopy (HR-STEM) and Convergent Beam Electron Diffraction (CBED) were employed for detailed structural analysis of AlGaN/GaAs (111)B interface and allowed us to determine the N-polarity of AlGaN layers grown on GaAs (111)B substrates. The novel, high efficiency RF plasma source allowed us to achieve free-standing AlxGa1-xN layers in a single day's growth, making this a commercially viable process.

  20. High accuracy NMR chemical shift corrected for bulk magnetization as a tool for structural elucidation of dilutable microemulsions. Part 1 - Proof of concept.

    Science.gov (United States)

    Hoffman, Roy E; Darmon, Eliezer; Aserin, Abraham; Garti, Nissim

    2016-02-01

    In microemulsions, changes in droplet size and shape and possible transformations occur under various conditions. They are difficult to characterize by most analytical tools because of their nano-sized structure and dynamic nature. Several methods are usually combined to obtain reliable information, guiding the scientist in understanding their physical behavior. We felt that there is a need for a technique that complements those in use today in order to provide more information on the microemulsion behavior, mainly as a function of dilution with water. The improvement of NMR chemical shift measurements independent of bulk magnetization effects makes it possible to study the very weak intermolecular chemical shift effects. In the present study, we used NMR high resolution magic angle spinning to measure the chemical shift very accurately, free of bulk magnetization effects. The chemical shift of microemulsion components is measured as a function of the water content in order to validate the method in an interesting and promising, U-type dilutable microemulsion, which had been previously studied by a variety of techniques. Phase transition points of the microemulsion (O/W, bicontinuous, W/O) and changes in droplet shape were successfully detected using high-accuracy chemical shift measurements. We analyzed the results and found them to be compatible with the previous studies, paving the way for high-accuracy chemical shifts to be used for the study of other microemulsion systems. We detected two transition points along the water dilution line of the concentrate (reverse micelles) corresponding to the transition from swollen W/O nano-droplets to bicontinuous to the O/W droplets along with the changes in the droplets' sizes and shapes. The method seems to be in excellent agreement with other previously studied techniques and shows the advantage of this easy and valid technique.

  1. Internal Flow of a High Specific-Speed Diagonal-Flow Fan (Rotor Outlet Flow Fields with Rotating Stall

    Directory of Open Access Journals (Sweden)

    Norimasa Shiomi

    2003-01-01

    Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.

  2. Highly conductive composites for fuel cell flow field plates and bipolar plates

    Science.gov (United States)

    Jang, Bor Z; Zhamu, Aruna; Song, Lulu

    2014-10-21

    This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.

  3. Centrality Dependence of Flow in High-Energy Nucleus-Nucleus Collisions

    Institute of Scientific and Technical Information of China (English)

    杨红艳; 周代翠; 杨纯斌; 蔡勖

    2002-01-01

    Directed flow and elliptic flow of final state particles in high-energy nucleus-nucleus collisions in the EMU01 experiment have been studied. The dependences of directed flow and elliptic flow on incident energy and impact centrality of outgoing particles are presented. The results exhibit strong dependence of flow on centrality and energy. We also suggest a more reliable way to determine the event plane resolution here.

  4. Conversion of Low-Flow Priapism to High-Flow State Using T-Shunt with Tunneling

    Science.gov (United States)

    Tadros, Nicholas N.; Hedges, Jason C.

    2017-01-01

    Introduction. The three types of priapism are stuttering, arterial (high-flow, nonischemic), and venoocclusive (low-flow, ischemic). These are usually distinct entities and rarely occur in the same patient. T-shunts and other distal shunts are frequently combined with tunneling, but a seldom recognized potential complication is conversion to a high-flow state. Case Presentation. We describe 2 cases of men who presented with low-flow priapism episodes that were treated using T-shunts with tunneling that resulted with both men having recurrent erections shortly after surgery that were found to be consistent with high-flow states. Case 1 was a 33-year-old male with sickle cell anemia and case 2 was a 24-year-old male with idiopathic thrombocytopenic purpura. In both cases the men were observed over several weeks and both men returned to normal erectile function. Conclusions. Historically, proximal shunts were performed only in cases when distal shunts failed and carry a higher risk of serious complications. T-shunts and other distal shunts combined with tunneling are being used more frequently in place of proximal shunts. These cases illustrate how postoperative erections after T-shunts with tunneling can signify a conversion from low-flow to high-flow states and could potentially be misdiagnosed as an operative failure. PMID:28331646

  5. Rigid spherical particles in highly turbulent Taylor-Couette flow

    Science.gov (United States)

    Bakhuis, Dennis; Verschoof, Ruben A.; Mathai, Varghese; Huisman, Sander G.; Lohse, Detlef; Sun, Chao

    2016-11-01

    Many industrial and maritime processes are subject to enormous frictional losses. Reducing these losses even slightly will already lead to large financial and environmental benefits. The understanding of the underlying physical mechanism of frictional drag reduction is still limited, for example, in bubbly drag reduction there is an ongoing debate whether deformability and bubble size are the key parameters. In this experimental study we report high precision torque measurements using rigid non-deformable spherical particles in highly turbulent Taylor-Couette flow with Reynolds numbers up to 2 ×106 . The particles are made of polystyrene with an average density of 1.036 g cm-3 and three different diameters: 8mm, 4mm, and 1.5mm. Particle volume fractions of up to 6% were used. By varying the particle diameter, density ratio of the particles and the working fluid, and volume fraction of the particles, the effect on the torque is compared to the single phase case. These systematic measurements show that adding rigid spherical particles only results in very minor drag reduction. This work is financially supported by Netherlands Organisation for Scientific Research (NWO) by VIDI Grant Number 13477.

  6. Improved critical current densities in bulk FeSe superconductor using ball milled powders and high temperature sintering

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, M.; Furutani, K.; Murakami, M. [Graduate School of Science and Engineering, Superconducting Materials Laboratory, Shibaura Institute of Technology, Tokyo (Japan); Kumar, Dinesh; Rao, M.S. Ramachandra [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai (India); Koblischka, M.R. [Institute of Experimental Physics, Saarland University, Saarbruecken (Germany)

    2016-12-15

    The present study is investigating the effect of high temperature sintering combined with ball milled powders for the preparation of FeSe material via solid state sintering technique. The commercial powders of Fe (99.9% purity) and Se (99.9% purity) were mixed in a nominal ratio Fe:Se = 1:1 and thoroughly ground and ball-milled in a glove box during 6 h. Then, the powder mixture was pressed into pellets of 5 mm in diameter and 2 mm thickness using an uniaxial pressure of 100 MPa. The samples were sealed in quartz tubes and sintered at 600 C for 24 h. Then, the pellets were again thoroughly ground and ball-milled in the glove box and pressed into pellets, and the final sintering was performed at two different temperatures, namely at 900 C for 24 h and at 950 C for 24 h. X-ray diffraction results confirmed that both samples showed mainly of the β-FeSe with tetragonal structure. The temperature dependence of magnetization (M-T) curves revealed a sharp superconducting transition T{sub c,} {sub onset} = 8.16 K for the sample sintered at 900 C. Further, scanning electron microscopy observations proved that samples sintered at 900 C show a platelike grain structure with high density. As a result, improved irreversibility fields around 5 T and the critical current density (J{sub c}) values of 6252 A cm{sup -2} at 5 K and self-field are obtained. Furthermore, the normalized volume pinning force versus the reduced field plots indicated a peak position at 0.4 for the sample sintered at 900 C. Improved flux pinning and the high J{sub c} values are attributed to the textured microstructure of the material, produced by a combination of high temperature sintering and ball milling. (copyright 2016 The Authors. Phys. Status Solidi A published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@con.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2013-07-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  8. Sub-cycle control of multi-THz high-harmonic generation and all-coherent charge transport in bulk semiconductors

    Science.gov (United States)

    Lange, C.; Schubert, O.; Hohenleutner, M.; Langer, F.; Baierl, S.; Maag, T.; Urbanek, B.; Edwards, E. R. J.; Woltersdorf, G.; Bougeard, D.; Huttner, U.; Golde, D.; Meier, T.; Kira, M.; Koch, S. W.; Huber, R.

    2015-02-01

    Ultrafast transport of electrons in semiconductors lies at the heart of high-speed electronics, electro-optics and fundamental solid-state physics. Intense phase-locked terahertz (THz) pulses at photon energies far below electronic interband resonances may serve as a precisely adjustable alternating bias, strongly exceeding d.c. breakdown voltages. Here, we exploit the near-field enhancement in gold metamaterial structures on undoped bulk GaAs, driven by few-cycle THz transients centered at 1 THz, to bias the semiconductor substrate with field amplitudes exceeding 12 MV/cm. Such fields correspond to a potential drop of the bandgap energy over a distance of only two unit cells. In this extremely off-resonant scenario characterized by a Keldysh parameter of γK ≈ 0.02, massive interband Zener tunneling injects a sizeable carrier density exceeding 1019 cm-3, and strong photoluminescence results. At a center frequency of 30 THz, THz transients with peak fields of 72 MV/cm analogously excite carriers in a bulk, semiconducting GaSe crystal, without metamaterial. Here, in contrast, we are able to drive coherent interband polarization and furthermore dynamical Bloch oscillations of electrons in the conduction band, on femtosecond time scales. The dynamics entail the generation of absolutely phase-stable high-harmonic transients containing spectral components up to the 22nd order of the fundamental frequency, spanning 12.7 optical octaves throughout the entire terahertz-to-visible domain between 0.1 and 675 THz. Our experiments establish a new field of light-wave electronics exploring coherent charge transport at optical clock rates and bring picosecond-scale electric circuitry at the interface of THz optics and electronics into reach.

  9. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    Science.gov (United States)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  10. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  11. High-Frequency Acoustic Flow Visualization (HFAFV) Sonar Systems

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Flow visualization of fluid processes on the continental shelf; e.g., internal tides, ear instabilities, and nonlinear internal gravity waves (solitons)....

  12. PDF methods for combustion in high-speed turbulent flows

    Science.gov (United States)

    Pope, Stephen B.

    1995-01-01

    This report describes the research performed during the second year of this three-year project. The ultimate objective of the project is extend the applicability of probability density function (pdf) methods from incompressible to compressible turbulent reactive flows. As described in subsequent sections, progress has been made on: (1) formulation and modelling of pdf equations for compressible turbulence, in both homogeneous and inhomogeneous inert flows; and (2) implementation of the compressible model in various flow configurations, namely decaying isotropic turbulence, homogeneous shear flow and plane mixing layer.

  13. Computations of ideal and real gas high altitude plume flows

    Science.gov (United States)

    Feiereisen, William J.; Venkatapathy, Ethiraj

    1988-01-01

    In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.

  14. Flow separation in rocket nozzles under high altitude condition

    Science.gov (United States)

    Stark, R.; Génin, C.

    2017-01-01

    The knowledge of flow separation in rocket nozzles is crucial for rocket engine design and optimum performance. Typically, flow separation is studied under sea-level conditions. However, this disregards the change of the ambient density during ascent of a launcher. The ambient flow properties are an important factor concerning the design of altitude-adaptive rocket nozzles like the dual bell nozzle. For this reason an experimental study was carried out to study the influence of the ambient density on flow separation within conventional nozzles.

  15. Multiple-octave spanning high-energy mid-IR supercontinuum generation in bulk quadratic nonlinear crystals

    DEFF Research Database (Denmark)

    Zhou, Binbin; Bache, Morten

    2016-01-01

    supercontinuum generation in the visible, near-IR, and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal is pumped in the mid-IR. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second......-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed. The results were recorded in a commercially available crystal LiInS2 pumped in the 3-4 µm...

  16. Identification and control of large-scale structures in highly turbulent shear flow

    Science.gov (United States)

    Schadow, K. C.; Wilson, K. J.; Gutmark, E.

    Unforced and forced subsonic jets were studied using hot-wire anemometry. It is found that highly coherent flow structure can be generated in the initial region of ducted flow by applying forcing to the flow innstability frequencies. Flow visualization experiments in water showed that the coherent structures had relatively high azimuthal coherence and were periodic in time and space. The convection velocity of the structures was about 60 percent of the mean flow velocity. Mixing of the shear layer with the surrounding recirculation zone and the inside core was enhanced by the forcing and reduced their size accordingly. Photographs from the flow visualization tests are provided.

  17. The High Reynolds Number Flow Through an Axial-Flow Pump

    Science.gov (United States)

    1993-11-01

    velocity field. After some initial computations of the flow field using a viscous form of the code of Adamczyk, Mulac, and Celestina [1986] at a low Mach...Simulating Flows in Multistage Turbomachinery," ASME Paper 85-GT-220, 1985. Adamczyk, J. J., Mulac, R. A., and Celestina , M. L., "A Model for Closing the

  18. Invited Article: Multiple-octave spanning high-energy mid-IR supercontinuum generation in bulk quadratic nonlinear crystals

    Science.gov (United States)

    Zhou, Binbin; Bache, Morten

    2016-08-01

    Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystals like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR, and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal is pumped in the mid-IR. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed. The results were recorded in a commercially available crystal LiInS2 pumped in the 3-4 μm range with 85 fs 50 μJ pulse energy, with the broadest supercontinuum covering 1.6-7.0 μm. We measured up 30 μJ energy in the supercontinuum, and the energy promises to scale favorably with an increased pump energy. Other mid-IR crystals can readily be used as well to cover other pump wavelengths and target other supercontinuum wavelength ranges.

  19. High-Speed Synchrotron X-ray Imaging Studies of the Ultrasound Shockwave and Enhanced Flow during Metal Solidification Processes

    Science.gov (United States)

    Tan, Dongyue; Lee, Tung Lik; Khong, Jia Chuan; Connolley, Thomas; Fezzaa, Kamel; Mi, Jiawei

    2015-07-01

    The highly dynamic behavior of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high-speed synchrotron X-ray imaging facilities housed, respectively, at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second revealed that ultrasonic bubble implosion in a liquid Bi-8 wt pctZn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 ~ 100 pct higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively.

  20. High-resolution AUV mapping of the 2015 flows at Axial Seamount, Juan de Fuca Ridge

    Science.gov (United States)

    Paduan, J. B.; Chadwick, W. W., Jr.; Clague, D. A.; Le Saout, M.; Caress, D. W.; Thomas, H. J.; Yoerger, D.

    2016-12-01

    Lava flows erupted in April 2015 at Axial Seamount were mapped at 1-m resolution with the AUV Sentry in August 2015 and the MBARI Mapping AUVs in July 2016 and observed and sampled with ROVs on those same expeditions. Thirty percent of terrain covered by new flows had been mapped by the MBARI AUVs prior to the eruption. Differencing of before and after maps (using ship-collected bathymetry where the AUV had not mapped before) allows calculation of extents and volumes of flows and shows new fissures. The maps reveal unexpected fissure patterns and shifts in the style of flow emplacement through a single eruption. There were 11 separate flows totaling 1.48 x 108 m3 of lava erupted from numerous en echelon fissures over 19 km on the NE caldera floor, on the NE flank, and down the N rift zone. Flows in and around the caldera have maximum thicknesses of 5-19 m. Most erupted as sheet flows and spread along intricate channels that terminated in thin margins. Some utilized pre-existing fissures. Some flows erupted from short fissures, while at least two longer new fissures produced little or no lava. A flow on the upper N rift has a spectacular lava channel flanked by narrow lava pillars supporting a thin roof left after the flow drained. A shatter ring still emanating warm fluid is visible in the map as a 15-m wide low cone. Hundreds of exploded pillows were observed but are not discernable in the bathymetry. The northern-most three flows deep on the N rift are similar in area to the others but comprise the bulk of the eruption volume. Differencing of ship-based bathymetry shows only these flows. Near the eruptive fissures they are sheet flows, but as they flowed downslope they built complexes of coalesced pillow mounds up to 67-128 m thick. Changes in flow morphology occurred through the course of the eruption. Large pillow mounds had molten cores that deformed as the eruption progressed. One flow began as a thin, effusive sheet flow but as the eruption rate decreased, a

  1. The Design of Impact Test-Bed for High-Flow Water Medium Relief Valve

    Directory of Open Access Journals (Sweden)

    Junliang Chang

    2014-11-01

    Full Text Available Water medium hydraulic systems are widely used in coal mining machinery. As the power of hydraulic system becomes higher, the flow and pressure of water medium relief valve are also higher, and the flow may reach 2000 L/min. However, there is no relevant test-bed which could provide instantaneous high-pressure and high-flow to support the experiment for high-flow relief valve; consequently, this impact test-bed for high-flow water medium relief valve is designed to satisfy fast loading demand. Through building model, simulation analysis, and construction of an impact test-bed of high-flow water medium relief valve, the dynamic performance of high-flow water medium relief valve is detected. The setting pressure of relief valve, the accumulator volume and the filling fluid pressure, and the damping of cartridge valve can be changed, and the dynamic performance of high-flow water medium relief valve under different impact loads is detected. The results show that the designed impact test-bed of high-flow water medium relief valve could provide required high-pressure and high-flow emulsion for the tested water medium relief valve, and it could control the strength of impact load, which is an energy saving, high efficiency, and low cost method.

  2. A flow-free droplet-based device for high throughput polymorphic crystallization.

    Science.gov (United States)

    Yang, Shih-Mo; Zhang, Dapeng; Chen, Wang; Chen, Shih-Chi

    2015-06-21

    Crystallization is one of the most crucial steps in the process of pharmaceutical formulation. In recent years, emulsion-based platforms have been developed and broadly adopted to generate high quality products. However, these conventional approaches such as stirring are still limited in several aspects, e.g., unstable crystallization conditions and broad size distribution; besides, only simple crystal forms can be produced. In this paper, we present a new flow-free droplet-based formation process for producing highly controlled crystallization with two examples: (1) NaCl crystallization reveals the ability to package saturated solution into nanoliter droplets, and (2) glycine crystallization demonstrates the ability to produce polymorphic crystallization forms by controlling the droplet size and temperature. In our process, the saturated solution automatically fills the microwell array powered by degassed bulk PDMS. A critical oil covering step is then introduced to isolate the saturated solution and control the water dissolution rate. Utilizing surface tension, the solution is uniformly packaged in the form of thousands of isolating droplets at the bottom of each microwell of 50-300 μm diameter. After water dissolution, individual crystal structures are automatically formed inside the microwell array. This approach facilitates the study of different glycine growth processes: α-form generated inside the droplets and γ-form generated at the edge of the droplets. With precise temperature control over nanoliter-sized droplets, the growth of ellipsoidal crystalline agglomerates of glycine was achieved for the first time. Optical and SEM images illustrate that the ellipsoidal agglomerates consist of 2-5 μm glycine clusters with inner spiral structures of ~35 μm screw pitch. Lastly, the size distribution of spherical crystalline agglomerates (SAs) produced from microwells of different sizes was measured to have a coefficient variation (CV) of less than 5%, showing

  3. High-Resolution Gamma-Ray Spectrometers using Bulk Absorbers Coupled to Mo/Cu Multilayer Superconducting Transition-Edge Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chow, D.T.; Loshak, A.; Van Den Berg, M.L.; Frank, M.; Barbee Jr., T.W.; Labov, S.E.

    2000-07-04

    In x-ray and gamma-ray spectroscopy, it is desirable to have detectors with high energy resolution and high absorption efficiency. At LLNL, we have developed superconducting tunnel junction-based single photon x-ray detectors with thin film absorbers that have achieved these goals for photon energies up to 1 keV. However, for energies above 1 keV, the absorption efficiency of these thin-film detectors decreases drastically. We are developing the use of high-purity superconducting bulk materials as microcalorimeter absorbers for high-energy x-rays and gamma rays. The increase in absorber temperature due to incident photons is sensed by a superconducting transition-edge sensor (TES) composed of a Mo/Cu multilayer thin film. Films of Mo and Cu are mutually insoluble and therefore very stable and can be annealed. The multilayer structure allows scaling in thickness to optimize heat capacity and normal state resistance. We measured an energy resolution of 70 eV for 60 keV incident gamma-rays with a 1 x 1 x 0.25 mm{sup 3} Sn absorber. We present x-ray and gamma-ray results from this detector design with a Sn absorber. We also propose the use of an active negative feedback voltage bias to improve the performance of our detector and show preliminary results.

  4. Investigation of low-temperature electrical conduction mechanisms in highly resistive GaN bulk layers extracted with simple parallel conduction extraction method

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, A. [Ahi Evran University, Department of Physics, Faculty of Science and Arts, Kirsehir (Turkey); Ankara University, Department of Engineering Physics, Faculty of Engineering, Besevler, Ankara (Turkey); Lisesivdin, S.B. [Bilkent University, Nanotechnology Research Center, Bilkent, Ankara (Turkey); Kasap, M.; Ozcelik, S. [Gazi University, Department of Physics, Faculty of Science and Arts, Teknikokullar, Ankara (Turkey); Ozbay, E. [Bilkent University, Nanotechnology Research Center, Bilkent, Ankara (Turkey); Bilkent University, Department of Physics, Bilkent, Ankara (Turkey); Bilkent University, Department of Electrical and Electronics Engineering, Bilkent, Ankara (Turkey); Balkan, N. [University of Essex, School of Computer Science and Electronic Engineering, Colchester (United Kingdom)

    2010-03-15

    The electrical conduction mechanisms in various highly resistive GaN layers of Al{sub x}Ga{sub 1-x}N/AlN/GaN/AlN heterostructures are investigated in a temperature range between T=40 K and 185 K. Temperature-dependent conductivities of the bulk GaN layers are extracted from Hall measurements with implementing simple parallel conduction extraction method (SPCEM). It is observed that the resistivity ({rho}) increases with decreasing carrier density in the insulating side of the metal-insulator transition for highly resistive GaN layers. Then the conduction mechanism of highly resistive GaN layers changes from an activated conduction to variable range hopping conduction (VRH). In the studied temperature range, ln ({rho}) is proportional to T{sup -1/4} for the insulating sample and proportional to T{sup -1/2} for the more highly insulating sample, indicating that the transport mechanism is due to VRH. (orig.)

  5. Highly sensitive flow-injection chemiluminescence determination of pyrogallol compounds

    Science.gov (United States)

    Kanwal, Shamsa; Fu, Xiaohong; Su, Xingguang

    2009-12-01

    A highly sensitive flow-injection chemiluminescent method for the direct determination of pyrogallol compounds has been developed. Proposed method is based on the enhanced effect of pyrogallol compounds on the chemiluminescence signals of KMnO 4-H 2O 2 system in slightly alkaline medium. Three important pyrogallol compounds, pyrogallic acid, gallic acid and tannic acid, have been detected by this method, and the possible mechanism of the CL reaction is also discussed. The proposed method is simple, convenient, rapid (60 samples h -1), and sensitive, has a linear range of 8 × 10 -10 mol L -1 to 1 × 10 -5 mol L -1, for pyrogallic acid, with a detection limit of 6 × 10 -11 mol L -1, 4 × 10 -8 mol L -1 to 5 × 10 -3 mol L -1 for gallic acid with a detection limit of 9 × 10 -10 mol L -1, and 8 × 10 -8 mol L -1 to 5 × 10 -2 mol L -1 for tannic acid, with a detection limit of 2 × 10 -9 mol L -1, respectively. The relative standard deviation (RSD, n = 15) was 0.8, 1.1 and 1.3% for 5 × 10 -6 mol L -1 pyrogallic acid, gallic acid and tannic acid, respectively. The proposed method was successfully applied to the determination of pyrogallol compounds in tea and coffee samples.

  6. High flow nasal oxygen in acute respiratory failure.

    Science.gov (United States)

    Ricard, J-D

    2012-07-01

    Use of high flow nasal cannula oxygen (HFNC) is increasingly popular in adult ICUs for patients with acute hypoxemic respiratory failure. This is the result of the successful long-term use of HFNC in the neonatal field and recent clinical data in adults indicating beneficial effects of HFNC over conventional facemask oxygen therapy. HFNC rapidly alleviates symptoms of respiratory distress and improves oxygenation by several mechanisms, including deadspace washout, reduction in oxygen dilution and in inspiratory nasopharyngeal resistance, a moderate positive airway pressure effect that may generate alveolar recruitment and an overall greater tolerance and comfort with the interface and the heated and humidified inspired gases. Indications of HFNC are broad, encompassing most if not all causes of acute hypoxemic respiratory failure. HFNC can also provide oxygen during invasive procedures, and be used to prevent or treat post-extubation respiratory failure. HFNC may also alleviate respiratory distress in patients at a palliative stage. Although observational studies suggest that HFNC might reduce the need for intubation in acute hypoxemic respiratory failure; such a reduction has not yet been demonstrated. Beyond this potential additional effect on outcome, the evidence already published argues in favor of the large use of HFNC as first line therapy for acute respiratory failure.

  7. Capillary flow of amorphous metal for high performance electrode

    Science.gov (United States)

    Kim, Se Yun; Kim, Suk Jun; Jee, Sang Soo; Park, Jin Man; Park, Keum Hwan; Park, Sung Chan; Cho, Eun Ae; Lee, Jun Ho; Song, In Yong; Lee, Sang Mock; Han, In Taek; Lim, Ka Ram; Kim, Won Tae; Park, Ju Cheol; Eckert, Jürgen; Kim, Do Hyang; Lee, Eun-Sung

    2013-07-01

    Metallic glass (MG) assists electrical contact of screen-printed silver electrodes and leads to comparable electrode performance to that of electroplated electrodes. For high electrode performance, MG needs to be infiltrated into nanometer-scale cavities between Ag particles and reacts with them. Here, we show that the MG in the supercooled state can fill the gap between Ag particles within a remarkably short time due to capillary effect. The flow behavior of the MG is revealed by computational fluid dynamics and density funtional theory simulation. Also, we suggest the formation mechanism of the Ag electrodes, and demonstrate the criteria of MG for higher electrode performance. Consequently, when Al85Ni5Y8Co2 MG is added in the Ag electrodes, cell efficiency is enhanced up to 20.30% which is the highest efficiency reported so far for screen-printed interdigitated back contact solar cells. These results show the possibility for the replacement of electroplating process to screen-printing process.

  8. Preparation of high crystalline nanoparticles of rare-earth based complex pervoskites and comparison of their structural and magnetic properties with bulk counterparts

    Science.gov (United States)

    Basith, M. A.; Islam, M. A.; Ahmmad, Bashir; Sarowar Hossain, M. D.; Mølhave, K.

    2017-07-01

    A simple route to prepare Gd0.7Sr0.3MnO3 nanoparticles by ultrasonication of their bulk powder materials is presented in this article. For comparison, Gd0.7Sr0.3MnO3 nanoparticles are also prepared by ball milling. The prepared samples are characterized by x-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive x-ray (EDX), x-ray photoelectron spectroscope (XPS), and superconducting quantum interference device (SQUID) magnetometer. XRD Rietveld analysis is carried out extensively for the determination of crystallographic parameters and the amount of crystalline and amorphous phases. FESEM images demonstrate the formation of nanoparticles with average particle size in the range of 50-100 nm for both ultrasonication and 4 h (h) of ball milling. The bulk materials and nanoparticles synthesized by both ultrasonication and 4 h ball milling exhibit a paramagnetic to spin-glass transition. However, nanoparticles synthesized by 8 h and 12 h ball milling do not reveal any phase transition, rather show an upturn of magnetization at low temperature. The degradation of the magnetic properties in ball milled nanoparticles may be associated with amorphization of the nanoparticles due to ball milling particularly for milling time exceeding 8 h. This investigation demonstrates the potential of ultrasonication as a simple route to prepare high crystalline rare-earth based manganite nanoparticles with improved control compared to the traditional ball milling technique.

  9. Modification of the trapped field in bulk high-temperature superconductors as a result of the drilling of a pattern of artificial columnar holes

    Science.gov (United States)

    Lousberg, Gregory P.; Fagnard, J.-F.; Ausloos, M.; Vanderbemden, Ph; Vanderheyden, B.

    2010-06-01

    The trapped magnetic field is examined in bulk high-temperature superconductors that are artificially drilled along their c-axis. The influence of the hole pattern on the magnetization is studied and compared by means of numerical models and Hall probe mapping techniques. To this aim, we consider two bulk YBCO samples with a rectangular cross-section that are drilled each by six holes arranged either on a rectangular lattice (sample I) or on a centered rectangular lattice (sample II). For the numerical analysis, three different models are considered for calculating the trapped flux: (i), a two-dimensional (2D) Bean model neglecting demagnetizing effects and flux creep, (ii), a 2D finite-element model neglecting demagnetizing effects but incorporating magnetic relaxation in the form of an E - J power law, and, (iii), a 3D finite element analysis that takes into account both the finite height of the sample and flux creep effects. For the experimental analysis, the trapped magnetic flux density is measured above the sample surface by Hall probe mapping performed before and after the drilling process. The maximum trapped flux density in the drilled samples is found to be smaller than that in the plain samples. The smallest magnetization drop is found for sample II, with the centered rectangular lattice. This result is confirmed by the numerical models. In each sample, the relative drops that are calculated independently with the three different models are in good agreement. As observed experimentally, the magnetization drop calculated in the sample II is the smallest one and its relative value is comparable to the measured one. By contrast, the measured magnetization drop in sample (1) is much larger than that predicted by the simulations, most likely because of a change of the microstructure during the drilling process.

  10. RESEARCH ON ABRASION OF DEBRIS FLOW TO HIGH-SPEED DRAINAGE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    陈洪凯; 唐红梅; 吴四飞

    2004-01-01

    As one weak topic in research of debris flow, abrasion of debris flow shortens obviously application life of control structure composed of concrete. High-speed drainage structure, one of the most effective techniques to control giant debris flow disaster, has shortened one-third application life due to abrasion by debris flow. Based on velocity calculation method founded by two-phase theory, research of abrasion mechanism of debris flow to high-speed drainage structure was made. The mechanism includes both abrasion mechanism of homogeneous sizing and shearing mechanism of particle of debris flow to high-speed drainage trough structure. Further abrasion equations of both sizing and particle were established by Newton movement theory of debris flow. And abrasion amount formula of the high-speed drainage trough structure is set up by dimensional analysis. Amount to calculating in the formula is consistent with testing data in-situ, which is valuable in design of high-speed drainage structure.

  11. ADAPTIVE FINITE ELEMENT METHOD FOR HIGH-SPEED FLOW-STRUCTURE INTERACTION

    Institute of Scientific and Technical Information of China (English)

    Wiroj LIMTRAKARN; Pramote DECHAUMPHAI

    2004-01-01

    An adaptive finite element method for high-speed flow-structure interaction is presented. The cell-centered finite element method is combined with an adaptive meshing technique to solve the Navier-Stokes equations for high-speed compressible flow behavior. The energy equation and the quasi-static structural equations for aerodynamically heated structures are solved by applying the Galerkin finite element method. The finite element formulation and computational procedure are described. Interactions between the high-speed flow, structural heat transfer, and deformation are studied by two applications of Mach 10 flow over an inclined plate, and Mach 4 flow in a channel.

  12. From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers

    Science.gov (United States)

    Zhukovsky, Sergei V.; Andryieuski, Andrei; Sipe, J. E.; Lavrinenko, Andrei V.

    2014-10-01

    We theoretically investigate general existence conditions for broadband bulk large-wave-vector (high-k) propagating waves (such as volume plasmon polaritons in hyperbolic metamaterials) in subwavelength periodic multilayer structures. Describing the elementary excitation in the unit cell of the structure by a generalized resonance pole of a reflection coefficient and using Bloch's theorem, we derive analytical expressions for the band of large-wave-vector propagating solutions. We apply our formalism to determine the high-k band existence in two important cases: the well-known metal-dielectric and recently introduced graphene-dielectric stacks. We confirm that short-range surface plasmons in thin metal layers can give rise to hyperbolic metamaterial properties and demonstrate that long-range surface plasmons cannot. We also show that graphene-dielectric multilayers tend to support high-k waves and explore the range of parameteres for which this is possible, confirming the prospects of using graphene for materials with hyperbolic dispersion. The approach is applicable to a large variety of structures, such as continuous or structured microwave, terahertz, and optical metamaterials.

  13. Electron-band theory inspired design of magnesium-precious metal bulk metallic glasses with high thermal stability and extended ductility.

    Science.gov (United States)

    Laws, Kevin J; Shamlaye, Karl F; Granata, Davide; Koloadin, Leah S; Löffler, Jörg F

    2017-06-13

    Magnesium-based bulk metallic glasses (BMGs) exhibit high specific strengths and excellent glass-forming ability compared to other metallic systems, making them suitable candidates for next-generation materials. However, current Mg-based BMGs tend to exhibit low thermal stability and are prone to structural relaxation and brittle failure. This study presents a range of new magnesium-precious metal-based BMGs from the ternary Mg-Ag-Ca, Mg-Ag-Yb, Mg-Pd-Ca and Mg-Pd-Yb alloy systems with Mg content greater than 67 at.%. These alloys were designed for high ductility by utilising atomic bond-band theory and a topological efficient atomic packing model. BMGs from the Mg-Pd-Ca alloy system exhibit high glass-forming ability with critical casting sizes of up to 3 mm in diameter, the highest glass transition temperatures (>200 °C) of any reported Mg-based BMG to date, and sustained compressive ductility. Alloys from the Mg-Pd-Yb family exhibit critical casting sizes of up to 4 mm in diameter, and the highest compressive plastic (1.59%) and total (3.78%) strain to failure of any so far reported Mg-based glass. The methods and theoretical approaches presented here demonstrate a significant step forward in the ongoing development of this extraordinary class of materials.

  14. Bulk Nanostructured Materials

    Science.gov (United States)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-09-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  15. High resolution urban morphology data for urban wind flow modeling

    Science.gov (United States)

    Cionco, Ronald M.; Ellefsen, Richard

    The application of urban forestry methods and technologies to a number of practical problems can be further enhanced by the use and incorporation of localized, high resolution wind and temperature fields into their analysis methods. The numerical simulation of these micrometeorological fields will represent the interactions and influences of urban structures, vegetation elements, and variable terrain as an integral part of the dynamics of an urban domain. Detailed information of the natural and man-made components that make up the urban area is needed to more realistically model meteorological fields in urban domains. Simulating high resolution wind and temperatures over and through an urban domain utilizing detailed morphology data can also define and quantify local areas where urban forestry applications can contribute to better solutions. Applications such as the benefits of planting trees for shade purposes can be considered, planned, and evaluated for their impact on conserving energy and cooling costs as well as the possible reconfiguration or removal of trees and other barriers for improved airflow ventilation and similar processes. To generate these fields, a wind model must be provided, as a minimum, the location, type, height, structural silhouette, and surface roughness of these components, in order to account for the presence and effects of these land morphology features upon the ambient airflow. The morphology of Sacramento, CA has been characterized and quantified in considerable detail primarily for wind flow modeling, simulation, and analyses, but can also be used for improved meteorological analyses, urban forestry, urban planning, and other urban related activities. Morphology methods previously developed by Ellefsen are applied to the Sacramento scenario with a high resolution grid of 100 m × 100 m. The Urban Morphology Scheme defines Urban Terrain Zones (UTZ) according to how buildings and other urban elements are structured and placed with

  16. Plasma flow at a high Mach-number

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Bing; Hameiri, Eliezer [Courant Institute of Mathematical Sciences, New York University New York, New York 10012 (United States)

    2013-09-15

    Unlike the case of static magnetohydrodynamic (MHD) equilibria, where an expansion in large aspect ratio of toroidal devices is common, cases of MHD equilibria with flow are rarely treated this way, and when this is done the expansion tends to be only partial. The main reason for the difference seems to be the difficulty of expanding the larger system of equilibrium equations with flow. Here, we use a recent expansion technique which employs a variational principle to simplify the process [E. Hameiri, Phys. Plasmas 20, 024504 (2013)]. We treat four cases of MHD equilibria with flow, developing their asymptotic expansions in full, and for an application consider the effect of the flow on the Shafranov shift.

  17. High resolution PIV of flow over biofilm covered walls

    Science.gov (United States)

    Hartenberger, Joel; Perlin, Marc; Ceccio, Steven

    2016-11-01

    Microbial, 'slime' biofilms detrimentally affect the performance of engineered systems used every day from heat exchangers to large ocean-going vessels. The presence of a slime layer on a pipe wall or external boundary often leads to a significant increase in drag and may alter the nature of the turbulence in the adjacent flow. Despite these consequences, relatively few efforts have been undertaken to understand the underlying physical processes which couple biofilm characteristics with increased drag and other alterations to the flow. Experiments performed in a 1:14 scale replica of the US Navy's Large Cavitation Channel (LCC) at the University of Michigan investigate the effect of biofilm composition, coverage and thickness on the development of an external turbulent boundary layer (TBL) through the use of conventional and micro PIV. A range of fields of view (FOVs) were used to capture both the inner and outer regions of the boundary layer. The fine resolution of micro PIV gives an in-depth look at the near-wall region of the flow and may provide evidence linking specific biofilm features with flow characteristics while the less resolved, larger FOVs capture flow behavior to the freestream. Measurement techniques used to characterize the biofilm will be presented along with a description of the mean flow and turbulent fluctuations in the TBL.

  18. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2015-04-01

    Full Text Available This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1 early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2 microfluidic impedance flow cytometry with enhanced sensitivity; (3 microfluidic impedance and optical flow cytometry for single-cell analysis and (4 integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications.

  19. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.

    Science.gov (United States)

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-04-29

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications.

  20. Numerical simulation of high speed chemically reacting flows

    Science.gov (United States)

    Schuricht, Scott Richard

    A single step second-order accurate flux-difference-splitting method has been developed for solving unsteady quasi-one-dimensional and two-dimensional flows of multispecies fluids with finite rate chemistry. A systematic method for incorporating the source term effects into the wave strength parameters of Roe's linearized approximate Riemann solver is presented that is consistent with characteristic theory. The point implicit technique is utilized to achieve second-order time accuracy of the local area source term The stiffness associated with the chemical reactions is removed by implicitly integrating the kinetics system using the LSODE package. From the implicit integration, values of the species production rates are developed and incorporated into the flux-difference-splitting framework using a source term projection and splitting technique that preserves the upwind nature of source terms. Numerous validation studies are presented to illustrate the capability of the numerical method. Shock tube and converging-diverging nozzle cases show the method is second order accurate in space and time for one-dimensional flows. A supersonic source flow case and a subsonic sink flow case show the method is second order spatially accurate for two-dimensional flows. Static combustion and steady supersonic combustion cases illustrate the ability of the method to accurately capture the ignition delay for hydrogen-air mixtures. Demonstration studies are presented to illustrate the capabilities of the method. One-dimensional flow in a shock tube predicts species dissociation behind the main shock wave. One-dimension flow in supersonic nozzles predicts the well-known chemical freezing effect in an expanding flow. Two-dimensional cases consisted of a model of a scramjet combustor and a rocket motor nozzle. A parametric study was performed on a model of a scramjet combustor. The parameters studied were; wall angle, inlet Mach number, inlet temperature, and inlet equivalence ratio

  1. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: compositional optimization for potential biomedical applications.

    Science.gov (United States)

    Hua, Nengbin; Huang, Lu; Chen, Wenzhe; He, Wei; Zhang, Tao

    2014-11-01

    The present study designs and prepares Ni-free Zr60+xTi2.5Al10Fe12.5-xCu10Ag5 (at.%, x=0, 2.5, 5) bulk metallic glasses (BMGs) by copper mold casting for potential biomedical application. The effects of Zr content on the in vitro biocompatibility of the Zr-based BMGs are evaluated by investigating mechanical properties, bio-corrosion behavior, and cellular responses. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high notch toughness. Electrochemical measurements demonstrate that the Zr-based BMGs are corrosion resistant in a phosphate buffered saline solution. The bio-corrosion resistance of BMGs is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. Regular cell responses of mouse MC3T3-E1 cells, including cell adhesion and proliferation, are observed on the Zr-Ti-Al-Fe-Cu-Ag BMGs, which reveals their general biosafety. The high-Zr-based BMGs exhibit a higher cell proliferation activity in comparison with that of pure Zr and Ti-6Al-4V alloy. The effects of Zr content on the in vitro biocompatibility can be used to guide the future design of biocompatible Zr-based BMGs. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Synthesis of High cis-Polybutadiene in Styrene Solution with Neodymium-Based Catalysts: Towards the Preparation of HIPS and ABS via In Situ Bulk Polymerization

    Directory of Open Access Journals (Sweden)

    Ramón Díaz de León

    2016-01-01

    Full Text Available In a first step, 1,3-butadiene was selectively polymerized at 60°C in styrene as solvent using NdV3/DIBAH/EASC as the catalyst system. The catalyst system activation process, the addition order of monomers and catalyst components, and the molar ratios [Al]/[Nd] and [Cl]/[Nd] were studied. The catalyst system allowed the selective 1,3-butadiene polymerization, reaching conversions between 57.5 and 88.1% with low polystyrene contents in the order of 6.3 to 15.4%. Molecular weights ranging from 39,000 to 150,000 g/mol were obtained, while cis-1,4 content was found in the interval of 94.4 to 96.4%. On the other hand, the glass transition temperatures of synthesized materials were established in the range of −101.9 to −107.4°C, explained by the presence of polystyrene segments in the polybutadiene chains; in the same sense, the polybutadienes did not show the typical melting endotherm of high cis-polybutadienes. In a second step, the resulting styrene/high cis-1,4 polybutadiene solutions were used to synthesize ABS (adding a fraction of acrylonitrile monomer and HIPS via in situ bulk polymerizations and the results were discussed in terms of morphological development, molecular parameters, dynamical mechanical behavior, and mechanical properties.

  3. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria.

    Directory of Open Access Journals (Sweden)

    Nachiket P Marathe

    Full Text Available The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range. In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86% of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE, Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1 was resistant to 36 antibiotics, while P. rettgeri (OSR3 was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80% strains each, and 88/93 (95% strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides

  4. High anisotropy of flow-aligned bicellar membrane systems

    KAUST Repository

    Kogan, Maxim

    2013-10-01

    In recent years, multi-lipid bicellar systems have emerged as promising membrane models. The fast orientational diffusion and magnetic alignability made these systems very attractive for NMR investigations. However, their alignment was so far achieved with a strong magnetic field, which limited their use with other methods that require macroscopic orientation. Recently, it was shown that bicelles could be aligned also by shear flow in a Couette flow cell, making it applicable to structural and biophysical studies by polarized light spectroscopy. Considering the sensitivity of this lipid system to small variations in composition and physicochemical parameters, efficient use of such a flow-cell method with coupled techniques will critically depend on the detailed understanding of how the lipid systems behave under flow conditions. In the present study we have characterized the flow alignment behavior of the commonly used dimyristoyl phosphatidylcholine/dicaproyl phosphatidylcholine (DMPC/DHPC) bicelle system, for various temperatures, lipid compositions, and lipid concentrations. We conclude that at optimal flow conditions the selected bicellar systems can produce the most efficient flow alignment out of any lipid systems used so far. The highest degree of orientation of DMPC/DHPC samples is noticed in a narrow temperature interval, at a practical temperature around 25 C, most likely in the phase transition region characterized by maximum sample viscosity. The change of macroscopic orientation factor as function of the above conditions is now described in detail. The increase in macroscopic alignment observed for bicelles will most likely allow recording of higher resolution spectra on membrane systems, which provide deeper structural insight and analysis into properties of biomolecules interacting with solution phase lipid membranes. © 2013 Elsevier Ireland Ltd.

  5. Numerical analyses of high Reynolds number flow of high pressure fuel gas through rough pipes

    Energy Technology Data Exchange (ETDEWEB)

    Cadorin, Margherita; Morini, Mirko; Pinelli, Michele [ENDIF - Engineering Department in Ferrara, University of Ferrara, Via Saragat, 1 - 44122 Ferrara (Italy)

    2010-07-15

    In this paper, a CFD commercial code is used to evaluate the pressure drop through pipes in a stream of high pressure gas. Both hexahedral and tetrahedral grids are considered. Preliminarily, a grid sensitivity analysis is carried out by comparing CFD results with analytical results. Each grid is characterized by a different number and thickness of layers in order to investigate the behavior of the grid with respect to the boundary layer. Then, the model is validated by using a literature test case, in which high pressure gas flow through a rough pipe is experimentally studied. Moreover, various equations of state (i.e., constant properties, Ideal Gas and Redlich-Kwong equations) and boundary conditions (e.g., pressure, mass flow, etc.) are taken into consideration and compared. Finally, the model is used to extrapolate the behavior of gaseous fuels (i.e., natural gas, biogas and hydrogen-methane mixture) flowing at high pressure through pipes of different roughness. The analyses show that the radial depth of the prism layers on pipe wall has to be controlled to allow the correct resolution of the boundary layer. Moreover, the results highlight that the first element height of the prism layer should be high enough to avoid inconsistencies in the rough model application. At the same time, the grid used for calculations does not strongly influence the numerical results and hence tune of the first element height to perfectly fit the roughness is not always justified. The final analysis on the different gaseous fuels put into evidence the capability of the CFD analysis to determine the energy performance of fuel transportation in gas pipeline. (author)

  6. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  7. Flow at AGS energies a barometer for high density effects?

    CERN Document Server

    Kahana, D E; Shuryak, E V

    1996-01-01

    Preliminary data on transverse energy `flow' and event asymmetries reported by the E877(814) collaborations are compared to ARC model calculations for Au+Au at full AGS beam energy. ARC triple differential cross-sections for protons and pions are presented. Proton flow is produced in ARC, with the maximum in-plane momentum about 120 MeV/c. For central events the directed momentum for pions is near zero, consistent with experiment. Pion momentum opposite to the nucleons' is evident in a peripheral sample, however, indicating that this pion `anti-flow' involves absorption by `spectator' matter. `Squeeze-out' of protons in central events at mid-rapidity is suggested by the ARC distributions.

  8. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    Science.gov (United States)

    Lago-Cachón, D.; Rivas, M.; Martínez-García, J. C.; Oliveira-Rodríguez, M.; Blanco-López, M. C.; García, J. A.

    2017-02-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies.

  9. Particle deposition in low-speed, high-turbulence flows

    DEFF Research Database (Denmark)

    Reck, Mads; Larsen, Poul Scheel; Ullum, U.

    2002-01-01

    field measurements. Particle deposition is shown to be associated with near-wall coherent structures. Flow reversal, simulated by impulsive start, is shown to give higher deposition rates than steady mean flows. Key word index: Spoilage fungi; spores; food processing plant; deposition flux; large eddy......, active and passive samplers provide typical values of airborne concentrations and specific deposition fluxes. Velocity and turbulence data from field studies are used as input in LES simulations of the process, and estimates of deposition fluxes are of the same order of magnitude as those deduced from...... simulation....

  10. Second order closure for stratified convection: bulk region and overshooting

    CERN Document Server

    Biferale, L; Sbragaglia, M; Scagliarini, A; Toschi, F; Tripiccione, R

    2011-01-01

    The parameterization of small-scale turbulent fluctuations in convective systems and in the presence of strong stratification is a key issue for many applied problems in oceanography, atmospheric science and planetology. In the presence of stratification, one needs to cope with bulk turbulent fluctuations and with inversion regions, where temperature, density -or both- develop highly non-linear mean profiles due to the interactions between the turbulent boundary layer and the unmixed -stable- flow above/below it. We present a second order closure able to cope simultaneously with both bulk and boundary layer regions, and we test it against high-resolution state-of-the-art 2D numerical simulations in a convective and stratified belt for values of the Rayleigh number, up to Ra = 10^9. Data are taken from a Rayleigh-Taylor system confined by the existence of an adiabatic gradient.

  11. Plasma Sensor for High Bandwidth Mass-Flow Measurements at High Mach Numbers with RF Link Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposal is aimed at the development of a miniature high bandwidth (1 MHz class) plasma sensor for flow measurements at high enthalpies. This device uses a...

  12. Simultaneous high-speed internal and external flow measurements for a high-pressure diesel nozzle

    CERN Document Server

    Purwar, Harsh; Méès, Loïc; Rozé, Claude; Blaisot, Jean-Bernard; Michard, Marc; Maligne, David

    2016-01-01

    We present an extensive experimental study focused on understanding the impact of cavitation in a high-pressure diesel nozzle on the macroscopic properties of fuel spray. Several high-speed videos of the liquid flow through a transparent, asymmetric cylindrical nozzle with a single orifice (phi = 0.35 mm) are recorded along with the videos of the resulting spray in the near-nozzle region, issued with an injection pressure of 300 bar at a frame-rate of 75 kHz. The high-repetition images of the internal flow are then used to estimate the onset of cavitation inside the transparent nozzle and the probability of development of cavitation in different regions of the nozzle with an average estimate of the amount of cavitation with time. On the other hand, recorded spray images are used to study spray penetration, cone-angles and velocity from the start of fuel injection. A novel approach is proposed for the measurement of perturbations that occur in form of big liquid structures along the spray boundary.

  13. On the induction of homogeneous bulk crystallization in Eu-doped calcium aluminosilicate glass by applying simultaneous high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, R. F., E-mail: robsonfmuniz@yahoo.com.br [Institut Lumière Matière, UMR 5306 CNRS-Université Lyon 1, Université de Lyon, 69622 Villeurbanne (France); Departamento de Física, Universidade Estadual de Maringá, 87020900, Maringá, PR (Brazil); Ligny, D. de [Department of Materials Science, Glass and Ceramics, University of Erlangen Nürnberg, Martensstr. 5, 91058 Erlangen (Germany); Le Floch, S.; Martinet, C.; Guyot, Y. [Institut Lumière Matière, UMR 5306 CNRS-Université Lyon 1, Université de Lyon, 69622 Villeurbanne (France); Rohling, J. H.; Medina, A. N.; Sandrini, M.; Baesso, M. L. [Departamento de Física, Universidade Estadual de Maringá, 87020900, Maringá, PR (Brazil); Andrade, L. H. C.; Lima, S. M. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, C.P. 351, Dourados, MS (Brazil)

    2016-06-28

    From initial calcium aluminosilicate glass, transparent glass-ceramics have been successfully synthesized under simultaneous high pressure and temperature (SHPT). Possible homogeneous volumetric crystallization of this glassy system, which was not achieved previously by means of conventional heat treatment, has been put in evidence with a SHPT procedure. Structural, mechanical, and optical properties of glass and glass-ceramic obtained were investigated. Raman spectroscopy and X-ray diffraction allowed to identify two main crystalline phases: merwinite [Ca{sub 3}Mg(SiO{sub 4}){sub 2}] and diopside [CaMgSi{sub 2}O{sub 6}]. A Raman scanning profile showed that the formation of merwinite is quite homogeneous over the bulk sample. However, the sample surface also contains significant diopside crystals. Instrumented Berkovich nanoindentation was applied to determine the effect of SHPT on hardness from glass to glass-ceramic. For Eu-doped samples, the broadband emission due to 4f{sup 6}5d{sup 1} → 4f{sup 7} transition of Eu{sup 2+} was studied in both host systems. Additionally, the {sup 5}D{sub 0} → {sup 7}F{sub J} transition of Eu{sup 3+} was used as an environment probe in the pristine glass and the glass-ceramic.

  14. Stability-indicating reversed-phase high-performance thin-layer chromatography/densitometry estimation of lafutidine in bulk and tablets

    Directory of Open Access Journals (Sweden)

    Prajapati Nitin D.

    2013-01-01

    Full Text Available Lafutidine (LTD is a histamine H2 receptor antagonist, with anti-ulcer and mucosal protective activity. A sensitive and selective stability-indicating reversed- phase high -performance thin-layer chromatography (RP-HPTLC/Densitometry method is suggested for the determination of LTD in the presence of its acid, alkaline, oxidative and dry heat degradation products. Stress testing of LTD was done according to the International Conference on Harmonization (ICH guidelines in order to validate the stability-indicating power of the analytical procedures. Stress testing demonstrated that LTD underwent acid, alkaline, oxidative and dry heat degradation; on the other hand, it showed stability towards neutral and photo degradation. Chromatography was performed on aluminum-backed silica gel 60 RP-18 F254 S plates with Methanol: Water: Triethylamine 8: 2: 0.5 (v/v as mobile phase. Densitometric scanning was performed at 276 nm. The system gave compact bands for LTD (Rf 0.67 ± 0.02. Linear regression analysis data for the calibration plots discovered a good linear relationship with r2 > 0.99 in the working concentration range 500 to 3000 ng per band. The limits of detection and quantification were 23.51 ng and 71.26 ng, respectively. The developed method can routinely be used for analysis of LTD in bulk and pharmaceutical formulations.

  15. High sensitivity boron quantification in bulk silicon using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Marcos V.; Silva, Tiago F. da; Added, Nemitala; Rizutto, Marcia A.; Tabacniks, Manfredo H. [Instituto de Fisica da Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil); Neira, John B.; Neto, Joao B. F. [Institute of Research Tecnology, Cidade Universitaria, SP, 05508-091 (Brazil)

    2013-05-06

    There is a great need to quantify sub-ppm levels of boron in bulk silicon. There are several methods to analyze B in Si: Nuclear Reaction Analysis using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be reaction exhibits a quantification limit of some hundreds ppm of B in Si. Heavy Ion Elastic Recoil Detection Analysis offers a detection limit of 5 to 10 at. ppm. Secondary Ion Mass Spectrometry is the method of choice of the semiconductor industry for the analysis of B in Si. This work verifies the use of NRA to quantify B in Si, and the corresponding detection limits. Proton beam with 1.6 up to 2.6 MeV was used to obtain the cross-section of the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction at 170 Degree-Sign scattering angle. The results show good agreementwith literature indicating that the quantification of boron in silicon can be achieved at 100 ppm level (high sensitivity) at LAMFI-IFUSP with about 16% uncertainty. Increasing the detection solid angle and the collected beam charge, can reduce the detection limit to less than 100 ppm meeting present technological needs.

  16. Magnetization Response of the Bulk and Supplementary Magnetic Domain Structure in High-Permeability Steel Laminations Visualized In Situ by Neutron Dark-Field Imaging

    Science.gov (United States)

    Betz, B.; Rauscher, P.; Harti, R. P.; Schäfer, R.; Irastorza-Landa, A.; Van Swygenhoven, H.; Kaestner, A.; Hovind, J.; Pomjakushina, E.; Lehmann, E.; Grünzweig, C.

    2016-08-01

    Industrial transformer cores are composed of stacked high-permeability steel laminations (HPSLs). The performance and degree of efficiency of transformers are directly determined by the magnetic properties of each HPSL. In this article, we show how the neutron dark-field image (DFI) allows for the in situ visualization of the locally resolved response of the bulk and supplementary magnetic domain structures in HPSLs under the influence of externally applied magnetic fields. In particular, we investigate the domain formation and growth along the initial magnetization curve up to the saturated state. For decreasing field, we visualize the recurrence of the hysteretic domain structure down to the remanent state. Additionally, the DFI allows us to derive a correlation between the grain orientation and the corresponding volume and supplementary domain structure. Furthermore, we visualize the influence of the insulation coating, introducing desired tensile stresses on the domain structures. To compare our DFI findings to traditional methods, we perform complementary surface-sensitive magneto-optical Kerr-microscopy investigations.

  17. Ultra-fast preparation of high-performance thermoelectric bulk TiNiSb0.05Sn0.95 by microwave synthesis.

    Science.gov (United States)

    Li, Y; Cheng, C; Lei, Y; Wang, M; Wan, R D

    2016-12-20

    The antimony-doped half-Heusler thermoelectric bulk TiNiSb0.05Sn0.95 was prepared via ultra-fast 4.5 min microwave synthesis, cold-press forming and 20 min microwave pressureless sintering. The electrical properties i.e. the Seebeck coefficient (S), electrical resistivity (ρ), and carrier concentration (n) and mobility (μ) were measured on a Seebeck coefficient/resistance analysis system (S/RAs) and Hall effect measurement system (HEMS), respectively. The thermal conductivity (κ) was measured on a laser flash thermal analyzer (LFA). The results show that a high purity single phase was obtained after microwave sintering. The electrical resistivity is 2.70-5.33 μΩ m at temperatures ranging from ∼300 to 773 K. The highest power factor of 4042 μW m(-1) K(-2) was achieved at 473 K. The microstructure analyses show that numerous circular intercrystalline pores caused by microwave sintering are present within the TiNiSn grains. The lattice and total thermal conductivity are 1.76-3.77 and 4.66-5.98 W m(-1) K(-1). The highest thermoelectric figure of merit of 0.44 was achieved at 623 K.

  18. On the induction of homogeneous bulk crystallization in Eu-doped calcium aluminosilicate glass by applying simultaneous high pressure and temperature

    Science.gov (United States)

    Muniz, R. F.; de Ligny, D.; Le Floch, S.; Martinet, C.; Rohling, J. H.; Medina, A. N.; Sandrini, M.; Andrade, L. H. C.; Lima, S. M.; Baesso, M. L.; Guyot, Y.

    2016-06-01

    From initial calcium aluminosilicate glass, transparent glass-ceramics have been successfully synthesized under simultaneous high pressure and temperature (SHPT). Possible homogeneous volumetric crystallization of this glassy system, which was not achieved previously by means of conventional heat treatment, has been put in evidence with a SHPT procedure. Structural, mechanical, and optical properties of glass and glass-ceramic obtained were investigated. Raman spectroscopy and X-ray diffraction allowed to identify two main crystalline phases: merwinite [Ca3Mg(SiO4)2] and diopside [CaMgSi2O6]. A Raman scanning profile showed that the formation of merwinite is quite homogeneous over the bulk sample. However, the sample surface also contains significant diopside crystals. Instrumented Berkovich nanoindentation was applied to determine the effect of SHPT on hardness from glass to glass-ceramic. For Eu-doped samples, the broadband emission due to 4f65d1 → 4f7 transition of Eu2+ was studied in both host systems. Additionally, the 5D0 → 7FJ transition of Eu3+ was used as an environment probe in the pristine glass and the glass-ceramic.

  19. Core surface flow modelling from high-resolution secular variation

    DEFF Research Database (Denmark)

    Holme, R.; Olsen, Nils

    2006-01-01

    -flux hypothesis, but the spectrum of the SV implies that a conclusive test of frozen-flux is not possible. We parametrize the effects of diffusion as an expected misfit in the flow prediction due to departure from the frozen-flux hypothesis; at low spherical harmonic degrees, this contribution dominates...

  20. High-temperature entrained flow gasification of biomass

    DEFF Research Database (Denmark)

    Qin, Ke; Lin, Weigang; Jensen, Peter Arendt

    2012-01-01

    Biomass (wood and straw) gasification has been studied in a laboratory scale atmospheric pressure entrained flow reactor. Effects of reaction temperature, steam/carbon molar ratio, excess air ratio, and biomass type on the solid, liquid and gas products were investigated. The biomass was completely...