WorldWideScience

Sample records for high brain expression

  1. Seizure-related 6,a brain-specific expression gene,is highly expressed in the human cerebellum

    Institute of Scientific and Technical Information of China (English)

    Jianming Jiang; Long Yu; Yangtai Guan; Zhiliang Yu; Xinghua Huang; Xiaosong Chen; Lisha Tang; Xianning Zhang

    2010-01-01

    Epilepsy is a complex,Mendelian disease,and most cases are sporadic.Genomic comparisons of tissue from identified monogenic epilepsies with multigenic and acquired syndromes could ultimately reveal crucial molecular neuropathology for an epileptic phenotype.In the present study,a novel gene,human seizure-related(hSEZ)-6,was isolated from a human brain cDNA library.hSEZ-6 comprises 17 exons and spans a region of at least 55.6 kb,which was localized to 17q12 by radiation hybridization,hSEZ-6 exhibits two isoform types,hSEZ-6A and hSEZ-6B,which encode996 and 995 amino acids,respectively.The two putative hSEZ-6 proteins contain similar motifs and share 82% and 84% identity with mouse SEZ-6A protein,whose expression level increased in mouse cerebral cortex-derived cells treated with a convulsant drug,pentylentetrazole.Northern blot analysis demonstrated that hSEZ-6 is expressed highly in the cerebellum and in nucleus of the extrapyramidal system,such as the caudate nucleus and putamen.Reverse transcription polymerase chain reaction revealed that hSEZ-6 is expressed in neurons rather than gliocytes,which suggests that hSEZ-6 is a seizure-related gene.

  2. Properties and expression of Na+/K+-ATPase α-subunit isoforms in the brain of the swamp eel, Monopterus albus, which has unusually high brain ammonia tolerance.

    Directory of Open Access Journals (Sweden)

    Xiu L Chen

    Full Text Available The swamp eel, Monopterus albus, can survive in high concentrations of ammonia (>75 mmol l(-1 and accumulate ammonia to high concentrations in its brain (4.5 µmol g(-1. Na(+/K(+-ATPase (Nka is an essential transporter in brain cells, and since NH4(+ can substitute for K(+ to activate Nka, we hypothesized that the brain of M. albus expressed multiple forms of Nka α-subunits, some of which might have high K(+ specificity. Thus, this study aimed to clone and sequence the nka α-subunits from the brain of M. albus, and to determine the effects of ammonia exposure on their mRNA expression and overall protein abundance. The effectiveness of NH4(+ to activate brain Nka from M. albus and Mus musculus was also examined by comparing their Na(+/K(+-ATPase and Na(+/NH4(+-ATPase activities over a range of K(+/NH4(+ concentrations. The full length cDNA coding sequences of three nkaα (nkaα1, nkaα3a and nkaα3b were identified in the brain of M. albus, but nkaα2 expression was undetectable. Exposure to 50 mmol l(-1 NH4Cl for 1 day or 6 days resulted in significant decreases in the mRNA expression of nkaα1, nkaα3a and nkaα3b. The overall Nka protein abundance also decreased significantly after 6 days of ammonia exposure. For M. albus, brain Na(+/NH4(+-ATPase activities were significantly lower than the Na(+/K(+-ATPase activities assayed at various NH4(+/K(+ concentrations. Furthermore, the effectiveness of NH4(+ to activate Nka from the brain of M. albus was significantly lower than that from the brain of M. musculus, which is ammonia-sensitive. Hence, the (1 lack of nkaα2 expression, (2 high K(+ specificity of K(+ binding sites of Nkaα1, Nkaα3a and Nkaα3b, and (3 down-regulation of mRNA expression of all three nkaα isoforms and the overall Nka protein abundance in response to ammonia exposure might be some of the contributing factors to the high brain ammonia tolerance in M. albus.

  3. Study of gene function based on spatial co-expression in a high-resolution mouse brain atlas

    Directory of Open Access Journals (Sweden)

    Jiang Tao

    2007-04-01

    Full Text Available Abstract Background The Allen Brain Atlas (ABA project systematically profiles three-dimensional high-resolution gene expression in postnatal mouse brains for thousands of genes. By unveiling gene behaviors at both the cellular and molecular levels, ABA is becoming a unique and comprehensive neuroscience data source for decoding enigmatic biological processes in the brain. Given the unprecedented volume and complexity of the in situ hybridization image data, data mining in this area is extremely challenging. Currently, the ABA database mainly serves as an online reference for visual inspection of individual genes; the underlying rich information of this large data set is yet to be explored by novel computational tools. In this proof-of-concept study, we studied the hypothesis that genes sharing similar three-dimensional expression profiles in the mouse brain are likely to share similar biological functions. Results In order to address the pattern comparison challenge when analyzing the ABA database, we developed a robust image filtering method, dubbed histogram-row-column (HRC algorithm. We demonstrated how the HRC algorithm offers the sensitivity of identifying a manageable number of gene pairs based on automatic pattern searching from an original large brain image collection. This tool enables us to quickly identify genes of similar in situ hybridization patterns in a semi-automatic fashion and consequently allows us to discover several gene expression patterns with expression neighborhoods containing genes of similar functional categories. Conclusion Given a query brain image, HRC is a fully automated algorithm that is able to quickly mine vast number of brain images and identify a manageable subset of genes that potentially shares similar spatial co-distribution patterns for further visual inspection. A three-dimensional in situ hybridization pattern, if statistically significant, could serve as a fingerprint of certain gene function

  4. A high soy diet enhances neurotropin receptor and Bcl-XL gene expression in the brains of ovariectomized female rats.

    Science.gov (United States)

    Lovekamp-Swan, Tara; Glendenning, Michele L; Schreihofer, Derek A

    2007-07-23

    Estrogen is a powerful neuroprotective agent with the ability to induce trophic and antiapoptotic genes. However, concerns about negative overall health consequences of estrogen replacement after menopause have led to the adoption of other strategies to obtain estrogen's benefits in the brain, including the use of selective estrogen receptor modulators, high soy diets, or isoflavone supplements. This study sought to determine the ability of a high soy diet to induce neuroprotective gene expression in the female rat brain and compare the actions of soy with estrogen. Adult ovariectomized female rats were treated with 3 days of high dose estrogen or 2 weeks of a soy-free diet, a high soy diet, or chronic low dose estrogen. Different brain regions were microdissected and subjected to real time RT-PCR for neuroprotective genes previously shown to be estrogen-regulated. The principle findings are that a high soy diet led to the widespread increase in the mRNA for neurotropin receptors TrkA and p75-NTR, and the antiapoptotic Bcl-2 family member Bcl-X(L). Immunohistochemistry confirmed increases in both TrkA and Bcl-X(L). Chronic low dose estrogen mimicked some of these effects, but acute high dose estrogen did not. The effects of a high soy diet were particularly evident in the parietal cortex and hippocampus, two regions protected by estrogen in animal models of neurological disease and injury. These results suggest that a high soy diet may provide beneficial effects to the brain similar to low dose chronic estrogen treatment such as that used for postmenopausal hormone replacement.

  5. Effects of a free-choice high-fat high-sugar diet on brain PER2 and BMAL1 protein expression in mice.

    Science.gov (United States)

    Blancas-Velazquez, Aurea; la Fleur, Susanne E; Mendoza, Jorge

    2017-10-01

    The suprachiasmatic nucleus (SCN) times the daily rhythms of behavioral processes including feeding. Beyond the SCN, the hypothalamic arcuate nucleus (ARC), involved in feeding regulation and metabolism, and the epithalamic lateral habenula (LHb), implicated in reward processing, show circadian rhythmic activity. These brain oscillators are functionally coupled to coordinate the daily rhythm of food intake. In rats, a free choice high-fat high-sugar (fcHFHS) diet leads to a rapid increase of calorie intake and body weight gain. Interestingly, under a fcHFHS condition, rats ingest a similar amount of sugar during day time (rest phase) as during night time (active phase), but keep the rhythmic intake of regular chow-food. The out of phase between feeding patterns of regular (chow) and highly rewarding food (sugar) may involve alterations of brain circadian oscillators regulating feeding. Here, we report that the fcHFHS diet is a successful model to induce calorie intake, body weight gain and fat tissue accumulation in mice, extending its effectiveness as previously reported in rats. Moreover, we observed that whereas in the SCN the day-night difference in the PER2 clock protein expression was similar between chow-fed and fcHFHS-fed animals, in the LHb, this day-night difference was altered in fcHFHS-exposed animals compared to control chow mice. These findings confirm previous observations in rats showing disrupted daily patterns of feeding behavior under a fcHFHS diet exposure, and extend our insights on the effects of the diet on circadian gene expression in brain clocks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The gene expression of the neuronal protein, SLC38A9, changes in mouse brain after in vivo starvation and high-fat diet

    Science.gov (United States)

    Eriksson, Mikaela M.; Lekholm, Emilia; Arapi, Vasiliki; Perland, Emelie; Fredriksson, Robert

    2017-01-01

    SLC38A9 is characterized as a lysosomal component of the amino acid sensing Ragulator-RAG GTPase complex, controlling the mechanistic target of rapamycin complex 1 (mTORC1). Here, immunohistochemistry was used to map SLC38A9 in mouse brain and staining was detected throughout the brain, in cortex, hypothalamus, thalamus, hippocampus, brainstem and cerebellum. More specifically, immunostaining was found in areas known to be involved in amino acid sensing and signaling pathways e.g. piriform cortex and hypothalamus. SLC38A9 immunoreactivity co-localized with both GABAergic and glutamatergic neurons, but not with astrocytes. SLC38A9 play a key role in the mTORC1 pathway, and therefore we performed in vivo starvation and high-fat diet studies, to measure gene expression alterations in specific brain tissues and in larger brain regions. Following starvation, Slc38a9 was upregulated in brainstem and cortex, and in anterior parts of the brain (Bregma 3.2 to -2.1mm). After high-fat diet, Slc38a9 was specifically upregulated in hypothalamus, while overall downregulation was noticed throughout the brain (Bregma 3.2 to -8.6mm). PMID:28235079

  7. Spatiotemporal patterns of gene expression during fetal monkey brain development.

    Science.gov (United States)

    Redmond, D Eugene; Zhao, Ji-Liang; Randall, Jeffry D; Eklund, Aron C; Eusebi, Leonard O V; Roth, Robert H; Gullans, Steven R; Jensen, Roderick V

    2003-12-19

    Human DNA microarrays are used to study the spatiotemporal patterns of gene expression during the course of fetal monkey brain development. The 444 most dynamically expressed genes in four major brain areas are reported at five different fetal ages. The spatiotemporal profiles of gene expression show both regional specificity as well as waves of gene expression across the developing brain. These patterns of expression are used to identify statistically significant clusters of co-regulated genes. This study demonstrates for the first time in the primate the relevance, timing, and spatial locations of expression for many developmental genes identified in other animals and provides clues to the functions of many unknowns. Two different microarray platforms are used to provide high-throughput cross validation of the most important gene expression changes. These results may lead to new understanding of brain development and new strategies for treating and repairing disorders of brain function.

  8. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  9. Changes in serotonin (5-HT) and brain-derived neurotrophic factor (BDFN) expression in frontal cortex and hippocampus of aged rat treated with high tryptophan diet.

    Science.gov (United States)

    Musumeci, Giuseppe; Castrogiovanni, Paola; Castorina, Sergio; Imbesi, Rosa; Szychlinska, Marta Anna; Scuderi, Soraya; Loreto, Carla; Giunta, Salvatore

    2015-10-01

    Age-related cognitive decline is accompanied by an alteration in neurotransmitter synthesis and a dysregulation of neuroplasticity-related molecules such as serotonin (5-HT) and brain-derived neurotrophic factor (BDFN). It has been previously demonstrated that hyperserotonemia induced by l-Tryptophan (TrP) enriched diet protect against memory deficits during physiological aging. Since 5-HT is closely associated to BDNF, we aimed to investigate the effect of high TrP diet on 5-HT levels and BDNF expression in Frontal Cortex (FC) and Hippocampus (Hp) of aged rats. We found that the raising of systemic 5-HT levels by chronic diet (1 month) containing high TrP significantly prevents age-related decline of BDNF protein expression in both brain areas as indicated by ELISA and Western Blot analyses. Interestingly, immunohistochemical analyses confirmed that high TrP diet significantly elevates the number of 5-HT immunoreactive fibers in both brain areas tested and this correlated with BDNF increase in the FC and hippocampal regions CA1, CA2, CA3 and a strikingly down-regulation of neurotrophin levels in the dentate gyrus (DG) of aged rats. Altogether, these finding provide evidence that enhanced TrP intake and the consequent increase in 5-HT neurotransmission may act as a modulator of BDNF system suggesting a possible mechanism for the protective role of serotonergic system on memory impairment occurring along normal aging process.

  10. The Rat Homolog of the Schizophrenia Susceptibility Gene ZNF804A Is Highly Expressed during Brain Development, Particularly in Growth Cones

    DEFF Research Database (Denmark)

    Hinna, Katja Hvid; Rich, Karen; Fex Svenningsen, Åsa;

    2015-01-01

    A single nucleotide polymorphism in the ZNF804A gene, rs1344706, is associated with schizophrenia. The polymorphism has been suggested to alter fetal expression of ZNF804A. It has also been reported to be associated with altered cortical functioning and neural connectivity in the brain. Since...... developmental mechanisms are suggested in the pathophysiology for schizophrenia, expression of Zfp804A, the rat homolog of ZNF804A, was investigated in the developing rat brain. We found that expression of Zfp804A in most brain regions is developmentally regulated and peaks around birth, where after...

  11. High cholesterol diet results in increased expression of interleukin-6 and caspase-1 in the brain of apolipoprotein E knockout and wild type mice.

    Science.gov (United States)

    Rahman, S M A; Van Dam, A-M; Schultzberg, M; Crisby, M

    2005-12-01

    Inflammation in the central nervous system is an early hallmark of many neurodegenerative diseases including Alzheimer's disease (AD). Recently, increasing evidence suggests that hypercholesterolemia during midlife and abnormalities in the cholesterol metabolism could have an important role in the pathogenesis of AD. In the present study, we have evaluated the effect of high cholesterol (HC) diet on the expression of interleukin-6 (IL-6), a cytokine involved in neurodegeneration, and caspase-1, that is responsible for the cleavage of the precursors of interleukin-1 beta (IL-1 beta) and interleukin-18 (IL-18) in the brain of apolipoprotein E (Apo E) knock-out (KO) and wild type (WT) mice. The density of IL-6-positive cells was increased in the hippocampus (pdosal part of the cortex (p<0.001) and the lateral part of the cortex (p<0.005) in KO and WT mice on HC diet compared to ND. The findings of the present study indicate that chronic exposure to HC diet increases the expression of the two important inflammatory mediators IL-6 and caspase-1 in the brain of KO and WT mice. In the case of caspase-1, we report a major difference in the effect of HC diet on the KO mice compared to WT mice in the hippocampus. Increased expression of inflammatory mediators involved in neurodegeneration could be a potential mechanism by which hypercholesterolemia and HC diet increase the risk of AD.

  12. Effects of environmental enrichment on gene expression in the brain

    OpenAIRE

    Rampon, Claire; Jiang, Cecilia H.; Dong, Helin; Tang, Ya-Ping; Lockhart, David J; Schultz, Peter G.; Joe Z Tsien; Hu, Yinghe

    2000-01-01

    An enriched environment is known to promote structural changes in the brain and to enhance learning and memory performance in rodents [Hebb, D. O. (1947) Am. Psychol. 2, 306–307]. To better understand the molecular mechanisms underlying these experience-dependent cognitive changes, we have used high-density oligonucleotide microarrays to analyze gene expression in the brain. Expression of a large number of genes changes in response to enrichment training, many of w...

  13. Neuroglobin expression in rats after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Xin Lin; Min Li; Aijia Shang; Yazhuo Hu; Xiao Yang; Ling Ye; Suyan Bian; Zhongfeng Wang; Dingbiao Zhou

    2012-01-01

    In this study, we used a rat model of severe closed traumatic brain injury to explore the relationship between neuroglobin, brain injury and neuronal apoptosis. Real-time PCR showed that neuroglobin mRNA expression rapidly increased in the rat cerebral cortex, and peaked at 30 minutes and 48 hours following traumatic brain injury. Immunohistochemical staining demonstrated that neuroglobin expression increased and remained high 2 hours to 5 days following injury. The rate of increase in the apoptosis-related Bax/Bcl-2 ratio greatly decreased between 30 minutes and 1 hour as well as between 48 and 72 hours post injury. Expression of neuroglobin and the anti-apoptotic factor Bcl-2 greatly increased, while that of the proapoptotic factor decreased, in the cerebral cortex post severe closed traumatic brain injury. It suggests that neuroglobin might protect neurons from apoptosis after traumatic injury by regulating Bax/Bcl-2 pathway.

  14. On Expression Patterns and Developmental Origin of Human Brain Regions.

    Science.gov (United States)

    Kirsch, Lior; Chechik, Gal

    2016-08-01

    Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions.

  15. Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain.

    Science.gov (United States)

    Caspers, Michael; Czogalla, Katrin J; Liphardt, Kerstin; Müller, Jens; Westhofen, Philipp; Watzka, Matthias; Oldenburg, Johannes

    2015-05-01

    VKORC1 and VKORC1L1 are enzymes that both catalyze the reduction of vitamin K2,3-epoxide via vitamin K quinone to vitamin K hydroquinone. VKORC1 is the key enzyme of the classical vitamin K cycle by which vitamin K-dependent (VKD) proteins are γ-carboxylated by the hepatic γ-glutamyl carboxylase (GGCX). In contrast, the VKORC1 paralog enzyme, VKORC1L1, is chiefly responsible for antioxidative function by reduction of vitamin K to prevent damage by intracellular reactive oxygen species. To investigate tissue-specific vitamin K 2,3-epoxide reductase (VKOR) function of both enzymes, we quantified mRNA levels for VKORC1, VKORC1L1, GGCX, and NQO1 and measured VKOR enzymatic activities in 29 different mouse tissues. VKORC1 and GGCX are highly expressed in liver, lung and exocrine tissues including mammary gland, salivary gland and prostate suggesting important extrahepatic roles for the vitamin K cycle. Interestingly, VKORC1L1 showed highest transcription levels in brain. Due to the absence of detectable NQO1 transcription in liver, we assume this enzyme has no bypass function with respect to activation of VKD coagulation proteins. Our data strongly suggest diverse functions for the vitamin K cycle in extrahepatic biological pathways.

  16. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  17. Protection by neuroglobin expression in brain pathologies

    Directory of Open Access Journals (Sweden)

    Eliana Baez

    2016-09-01

    Full Text Available Astrocytes play an important role in physiological, metabolic and structural functions and, when impaired, they can be involved in various pathologies including Alzheimer, focal ischemic stroke and traumatic brain injury. These disorders involve an imbalance in the blood flow and nutrients such as glucose and lactacte, leading to biochemical and molecular changes that cause neuronal damage, which is followed by loss of cognitive and motor functions. Previous studies have shown that astrocytes are more resilient than neurons during brain insults as a consequence of their more effective antioxidant systems, transporters and enzymes, which made them less susceptible to excitotoxicity. In addition, astrocytes synthesize and release different protective molecules for neurons, including neuroglobin, a member of the globin family of proteins. After brain injury neuroglobin expression is induced in astrocytes. Since neuroglobin promotes neuronal survival, its increased expression in astrocytes after brain injury may represent an endogenous neuroprotective mechanism. Here, we review the role of neuroglobin in the CNS, its relationship with different pathologies, and the role of different factors that regulate its expression in astrocytes.

  18. Protection by Neuroglobin Expression in Brain Pathologies.

    Science.gov (United States)

    Baez, Eliana; Echeverria, Valentina; Cabezas, Ricardo; Ávila-Rodriguez, Marco; Garcia-Segura, Luis Miguel; Barreto, George E

    2016-01-01

    Astrocytes play an important role in physiological, metabolic, and structural functions, and when impaired, they can be involved in various pathologies including Alzheimer, focal ischemic stroke, and traumatic brain injury. These disorders involve an imbalance in the blood flow and nutrients such as glucose and lactate, leading to biochemical and molecular changes that cause neuronal damage, which is followed by loss of cognitive and motor functions. Previous studies have shown that astrocytes are more resilient than neurons during brain insults as a consequence of their more effective antioxidant systems, transporters, and enzymes, which made them less susceptible to excitotoxicity. In addition, astrocytes synthesize and release different protective molecules for neurons, including neuroglobin, a member of the globin family of proteins. After brain injury, neuroglobin expression is induced in astrocytes. Since neuroglobin promotes neuronal survival, its increased expression in astrocytes after brain injury may represent an endogenous neuroprotective mechanism. Here, we review the role of neuroglobin in the central nervous system, its relationship with different pathologies, and the role of different factors that regulate its expression in astrocytes.

  19. Protection by Neuroglobin Expression in Brain Pathologies

    Science.gov (United States)

    Baez, Eliana; Echeverria, Valentina; Cabezas, Ricardo; Ávila-Rodriguez, Marco; Garcia-Segura, Luis Miguel; Barreto, George E.

    2016-01-01

    Astrocytes play an important role in physiological, metabolic, and structural functions, and when impaired, they can be involved in various pathologies including Alzheimer, focal ischemic stroke, and traumatic brain injury. These disorders involve an imbalance in the blood flow and nutrients such as glucose and lactate, leading to biochemical and molecular changes that cause neuronal damage, which is followed by loss of cognitive and motor functions. Previous studies have shown that astrocytes are more resilient than neurons during brain insults as a consequence of their more effective antioxidant systems, transporters, and enzymes, which made them less susceptible to excitotoxicity. In addition, astrocytes synthesize and release different protective molecules for neurons, including neuroglobin, a member of the globin family of proteins. After brain injury, neuroglobin expression is induced in astrocytes. Since neuroglobin promotes neuronal survival, its increased expression in astrocytes after brain injury may represent an endogenous neuroprotective mechanism. Here, we review the role of neuroglobin in the central nervous system, its relationship with different pathologies, and the role of different factors that regulate its expression in astrocytes. PMID:27672379

  20. The RNA-binding protein Celf6 is highly expressed in diencephalic nuclei and neuromodulatory cell populations of the mouse brain.

    Science.gov (United States)

    Maloney, Susan E; Khangura, Eakta; Dougherty, Joseph D

    2016-05-01

    The gene CUG-BP, Elav-like factor 6 (CELF6) appears to be important for proper functioning of neurocircuitry responsible for behavioral output. We previously discovered that polymorphisms in or near CELF6 may be associated with autism spectrum disorder (ASD) in humans and that the deletion of this gene in mice results in a partial ASD-like phenotype. Here, to begin to understand which circuits might mediate these behavioral disruptions, we sought to establish in what structures, with what abundance, and at which ages Celf6 protein is present in the mouse brain. Using both a knockout-validated antibody to Celf6 and a novel transgenic mouse line, we characterized Celf6 expression in the mouse brain across development. Celf6 gene products were present early in neurodevelopment and in adulthood. The greatest protein expression was observed in distinct nuclei of the diencephalon and neuromodulatory cell populations of the midbrain and hindbrain, with clear expression in dopaminergic, noradrenergic, histaminergic, serotonergic and cholinergic populations, and a variety of presumptive peptidergic cells of the hypothalamus. These results suggest that disruption of Celf6 expression in hypothalamic nuclei may impact a variety of behaviors downstream of neuropeptide activity, while disruption in neuromodulatory transmitter expressing areas such as the ventral tegmental area, substantia nigra, raphe nuclei and locus coeruleus may have far-reaching influences on overall brain activity.

  1. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression.

    Directory of Open Access Journals (Sweden)

    Sandra J Kuhlman

    Full Text Available We describe a method that combines Cre-recombinase knockin mice and viral-mediated gene transfer to genetically label and functionally manipulate specific neuron types in the mouse brain. We engineered adeno-associated viruses (AAVs that express GFP, dsRedExpress, or channelrhodopsin (ChR2 upon Cre/loxP recombination-mediated removal of a transcription-translation STOP cassette. Fluorescent labeling was sufficient to visualize neuronal structures with synaptic resolution in vivo, and ChR2 expression allowed light activation of neuronal spiking. The structural dynamics of a specific class of neocortical neuron, the parvalbumin-containing (Pv fast-spiking GABAergic interneuron, was monitored over the course of a week. We found that although the majority of Pv axonal boutons were stable in young adults, bouton additions and subtractions on axonal shafts were readily observed at a rate of 10.10% and 9.47%, respectively, over 7 days. Our results indicate that Pv inhibitory circuits maintain the potential for structural re-wiring in post-adolescent cortex. With the generation of an increasing number of Cre knockin mice and because viral transfection can be delivered to defined brain regions at defined developmental stages, this strategy represents a general method to systematically visualize the structure and manipulate the function of different cell types in the mouse brain.

  2. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  3. Brain Food at High Altitude.

    Science.gov (United States)

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.

  4. [The expression of GFAP after brain concussion in rats].

    Science.gov (United States)

    Zhang, Chun-Bing; Li, Yong-Hong

    2006-04-01

    To study the expression of GFAP and pathologic changes after rats brain concussion, so that to provide evidence on brain concussion for forensic identification. Forty-five SD rats were divided into 3, 6, 12, 24 h and 2, 4, 7, 10 d and normal control groups in terms of different wounding time after brain concussion model established, and the expression of GFAP after rats brain concussion were then observed by using SP immunohistochemical method. In normal control brain, low-level GFAP expressions could be observed. After six hours' brain concussion, GFAP positive cells increased obviously. The trend reached to the peak at 7d, partly declined at 10d, then decreased gradually. Brain concussion induced the expression of GFAP. The detection of GFAP could be useful for diagnosis of brain concussion on forensic pathology, and could be a reference index for timing of injury after brain concussion.

  5. Highly Expressive Hakka Art

    Institute of Scientific and Technical Information of China (English)

    JENNIFER LIM

    1996-01-01

    SOUTHERN Jiangxi Province was the birthplace of the Hakka ethnic group and has since been the native home and main transfer hub for the spread of the nationality. The highly expressive art of the Hakkas, including folk songs in Xingguo, colored lantern performances in Shicheng, ancient

  6. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  7. Adenoviral vectors for highly selective gene expression in central serotonergic neurons reveal quantal characteristics of serotonin release in the rat brain

    Directory of Open Access Journals (Sweden)

    Teschemacher Anja G

    2009-03-01

    Full Text Available Abstract Background 5-hydroxytryptamine (5 HT, serotonin is one of the key neuromodulators in mammalian brain, but many fundamental properties of serotonergic neurones and 5 HT release remain unknown. The objective of this study was to generate an adenoviral vector system for selective targeting of serotonergic neurones and apply it to study quantal characteristics of 5 HT release in the rat brain. Results We have generated adenoviral vectors which incorporate a 3.6 kb fragment of the rat tryptophan hydroxylase-2 (TPH-2 gene which selectively (97% co-localisation with TPH-2 target raphe serotonergic neurones. In order to enhance the level of expression a two-step transcriptional amplification strategy was employed. This allowed direct visualization of serotonergic neurones by EGFP fluorescence. Using these vectors we have performed initial characterization of EGFP-expressing serotonergic neurones in rat organotypic brain slice cultures. Fluorescent serotonergic neurones were identified and studied using patch clamp and confocal Ca2+ imaging and had features consistent with those previously reported using post-hoc identification approaches. Fine processes of serotonergic neurones could also be visualized in un-fixed tissue and morphometric analysis suggested two putative types of axonal varicosities. We used micro-amperometry to analyse the quantal characteristics of 5 HT release and found that central 5 HT exocytosis occurs predominantly in quanta of ~28000 molecules from varicosities and ~34000 molecules from cell bodies. In addition, in somata, we observed a minority of large release events discharging on average ~800000 molecules. Conclusion For the first time quantal release of 5 HT from somato-dendritic compartments and axonal varicosities in mammalian brain has been demonstrated directly and characterised. Release from somato-dendritic and axonal compartments might have different physiological functions. Novel vectors generated in this

  8. Expression of epidermal growth factor receptors in human brain tumors.

    Science.gov (United States)

    Libermann, T A; Razon, N; Bartal, A D; Yarden, Y; Schlessinger, J; Soreq, H

    1984-02-01

    The expression of receptors for epidermal growth factor (EGF-R) was determined in 29 samples of brain tumors from 22 patients. Primary gliogenous tumors, of various degrees of cancer, five meningiomas, and two neuroblastomas were examined. Tissue samples were frozen in liquid nitrogen immediately after the operation and stored at -70 degrees until use. Cerebral tissue samples from 11 patients who died from diseases not related to the central nervous system served as controls. Immunoprecipitation of functional EGF-R-kinase complexes revealed high levels of EGF-R in all of the brain tumors of nonneuronal origin that were examined. The level of EGF-R varied between tumors from different patients and also between specimens prelevated from different areas of the same tumor. In contrast, the levels of EGF-R from control specimens were invariably low. The biochemical properties of EGF-R in brain tumor specimens were found to be indistinguishable from those of the well-characterized EGF-R from the A-431 cell line, derived from human epidermoid carcinomas. Human brain EGF-R displays a molecular weight of 170,000 by polyacrylamide-sodium dodecyl sulfate gel electrophoresis. It is phosphorylated mainly in tyrosine residues and shows a 2-dimensional phosphopeptide map similar to that obtained with the phosphorylated EGF-R from membranes of A-431 cells. Our observations suggest that induction of EGF-R expression may accompany the malignant transformation of human brain cells of nonneuronal origin.

  9. Notch receptor expression in human brain arteriovenous malformations.

    Science.gov (United States)

    Hill-Felberg, Sandra; Wu, Hope Hueizhi; Toms, Steven A; Dehdashti, Amir R

    2015-08-01

    The roles of the Notch pathway proteins in normal adult vascular physiology and the pathogenesis of brain arteriovenous malformations are not well-understood. Notch 1 and 4 have been detected in human and mutant mice vascular malformations respectively. Although mutations in the human Notch 3 gene caused a genetic form of vascular stroke and dementia, its role in arteriovenous malformations development has been unknown. In this study, we performed immunohistochemistry screening on tissue microarrays containing eight surgically resected human brain arteriovenous malformations and 10 control surgical epilepsy samples. The tissue microarrays were evaluated for Notch 1-4 expression. We have found that compared to normal brain vascular tissue Notch-3 was dramatically increased in brain arteriovenous malformations. Similarly, Notch 4 labelling was also increased in vascular malformations and was confirmed by western blot analysis. Notch 2 was not detectable in any of the human vessels analysed. Using both immunohistochemistry on microarrays and western blot analysis, we have found that Notch-1 expression was detectable in control vessels, and discovered a significant decrease of Notch 1 expression in vascular malformations. We have demonstrated that Notch 3 and 4, and not Notch 1, were highly increased in human arteriovenous malformations. Our findings suggested that Notch 4, and more importantly, Notch 3, may play a role in the development and pathobiology of human arteriovenous malformations.

  10. Investigation of G72 (DAOA expression in the human brain

    Directory of Open Access Journals (Sweden)

    Hirsch Steven

    2008-12-01

    Full Text Available Abstract Background Polymorphisms at the G72/G30 locus on chromosome 13q have been associated with schizophrenia or bipolar disorder in more than ten independent studies. Even though the genetic findings are very robust, the physiological role of the predicted G72 protein has thus far not been resolved. Initial reports suggested G72 as an activator of D-amino acid oxidase (DAO, supporting the glutamate dysfunction hypothesis of schizophrenia. However, these findings have subsequently not been reproduced and reports of endogenous human G72 mRNA and protein expression are extremely limited. In order to better understand the function of this putative schizophrenia susceptibility gene, we attempted to demonstrate G72 mRNA and protein expression in relevant human brain regions. Methods The expression of G72 mRNA was studied by northern blotting and semi-quantitative SYBR-Green and Taqman RT-PCR. Protein expression in human tissue lysates was investigated by western blotting using two custom-made specific anti-G72 peptide antibodies. An in-depth in silico analysis of the G72/G30 locus was performed in order to try and identify motifs or regulatory elements that provide insight to G72 mRNA expression and transcript stability. Results Despite using highly sensitive techniques, we failed to identify significant levels of G72 mRNA in a variety of human tissues (e.g. adult brain, amygdala, caudate nucleus, fetal brain, spinal cord and testis human cell lines or schizophrenia/control post mortem BA10 samples. Furthermore, using western blotting in combination with sensitive detection methods, we were also unable to detect G72 protein in a number of human brain regions (including cerebellum and amygdala, spinal cord or testis. A detailed in silico analysis provides several lines of evidence that support the apparent low or absent expression of G72. Conclusion Our results suggest that native G72 protein is not normally present in the tissues that we analysed

  11. MicroRNA expression profiles and functions in the brain

    Institute of Scientific and Technical Information of China (English)

    Yanting Qi; Yu Zhao; Zhuyin Chen; Xiaona Chen; Marie C. Lin; Xiangfu Kong; Lihui Lai

    2008-01-01

    MicroRNAs are abundant in the brains of vertebrates and some show a brain-specific or brain-enriched expression pattern. Because microRNAs regulate the expression of hundreds of target genes, it is not surprising that they have profoundly important functions in brain development and pathological processes. For example, miR-124 plays an important role in inducing and maintaining neuronal identity through targeting at least two anti-neural factors. MicroRNAs have also been implicated in brain disorders, including brain tumors and neurodegenerative diseases. This review aims to present an overview of the expression profiles and functions of microRNAs in the developing brains of vertebrates.

  12. Expression of muscarinic binding sites in primary human brain tumors.

    Science.gov (United States)

    Gurwitz, D; Razon, N; Sokolovsky, M; Soreq, H

    1984-05-01

    The expression of muscarinic binding sites was examined in a collection of primary brain tumors of different cellular origins and various degrees of dedifferentiation, as compared to control specimens. Eleven gliogenous tumors were examined, all of which contained substantial amounts of muscarinic binding sites. Most of the other tumor types examined did not display detectable binding of [3H]N-methyl-4-piperidyl benzilate ([3H]4NMPB). Scatchard analysis indicated the existence of homogeneous antagonist sites in both normal forebrain and glioblastoma multiforme, with Kd values of 1.2 nM and 0.9 nM, respectively. The density of muscarinic binding sites varied between tumors from different patients, and also between specimens prelevated from different areas of the same tumor. This variability, as well as the average density of binding sites, appeared to be larger in highly malignant tumors than in less malignant ones. In contrast, the density of muscarinic receptors from control specimens was invariably high, but within the same order of magnitude. To test whether the muscarinic binding activity in the brain tumors is correlated to other cholinoceptive properties, cholinesterase activity was also examined. Individual data for density of [3H]4NMPB binding sites were then plotted against corresponding values of cholinesterase activity. The pattern of distribution of these values was clearly different in tumor specimens, when compared to that observed in samples derived from non-malignant brain. Our observations indicate that human brain cells of gliogenous origin are capable of expressing muscarinic binding sites, and that, if a correlation exists between muscarinic receptors and cholinesterase levels in gliogenous tumors, it differs from that of non-malignant brain tissue.

  13. rse, a novel receptor-type tyrosine kinase with homology to Axl/Ufo, is expressed at high levels in the brain.

    Science.gov (United States)

    Mark, M R; Scadden, D T; Wang, Z; Gu, Q; Goddard, A; Godowski, P J

    1994-04-08

    We have isolated cDNA clones that encode the human and murine forms of a novel receptor-type tyrosine kinase termed Rse. Sequence analysis indicates that human Rse contains 890 amino acids, with an extracellular region composed of two immunoglobulin-like domains followed by two fibronectin type III domains. Murine Rse contains 880 amino acids and shares 90% amino acid identity with its human counterpart. Rse is structurally similar to the receptor-type tyrosine kinase Axl/Ufo, and the two proteins have 35 and 63% sequence identity in their extracellular and intracellular domains, respectively. To study the synthesis and activation of this putative receptor-type tyrosine kinase, we constructed a version of Rse (termed gD-Rse, where gD represents glycoprotein D) that contains an NH2-terminal epitope tag. NIH3T3 cells were engineered to express gD-Rse, which could be detected at the cell surface by fluorescence-activated cell sorting. Moreover, gD-Rse was rapidly phosphorylated on tyrosine residues upon incubation of the cells with an antibody directed against the epitope tag, suggesting that rse encodes an active tyrosine kinase. In the human tissues we examined, the highest level of expression of rse mRNA was observed in the brain; rse mRNA was also detected in the premegakaryocytopoietic cell lines CMK11-5 and Dami. The gene for rse was localized to human chromosome 15.

  14. EXPRESSION OF IL-13Ra2 GENE IN HUMAN BRAIN TUMORS

    Institute of Scientific and Technical Information of China (English)

    WU An-hua; TIE Xin-xin; WANG Yun-jie; YANG Guo-rui

    2005-01-01

    Objective: To investigate the expression of IL-13Ra2 gene in brain tumors. Methods: Seventy-nine human brain tumors were obtained from the department of Neurosurgery of China Medical University. Human IL-13Ra2 expression was evaluated by reverse transcriptase polymerase chain reaction and immunohistochemical analysis. Results: IL-13Ra2 gene was highly expressed in glioblastoma, medulloblastoma, malignant meningioma and benign meningioma. Conclusion:Human IL-13Ra2 gene is expressed in brain tumors in addition to gliomas, and our result indicates that the IL-13Ra2 gene promoter based gene therapy method can be used to treat brain tumors in addition to gliomas. Further studies involving larger numbers of samples are necessary to fully understand the expression profile of IL-13Ra2 gene in the brain tumors.

  15. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression

    Science.gov (United States)

    Goyal, Manu S.; Hawrylycz, Michael; Miller, Jeremy A.; Snyder, Abraham Z.; Raichle, Marcus E.

    2015-01-01

    SUMMARY Aerobic glycolysis (AG), i.e., non-oxidative metabolism of glucose despite the presence of abundant oxygen, accounts for 10–12% of glucose used by the adult human brain. AG varies regionally in the resting state. Brain AG may support synaptic growth and remodeling; however, data supporting this hypothesis are sparse. Here, we report on investigations on the role of AG in the human brain. Meta-analysis of prior brain glucose and oxygen metabolism studies demonstrates that AG increases during childhood, precisely when synaptic growth rates are highest. In resting adult humans, AG correlates with persistence of gene expression typical of infancy (transcriptional neoteny). In brain regions with the highest AG, we find increased gene expression related to synapse formation and growth. In contrast, regions high in oxidative glucose metabolism express genes related to mitochondria and synaptic transmission. Our results suggest that brain AG supports developmental processes, particularly those required for synapse formation and growth. PMID:24411938

  16. MicroRNA expression profiling of the porcine developing brain

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Busk, Peter Kamp;

    2011-01-01

    MicroRNAs are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in the control of developmental and physiological processes. In particular, the developing brain contains an impressive diversity of microRNAs. Most micro...... and the growth curve when compared to humans. Considering these similarities, studies examining microRNA expression during porcine brain development could potentially be used to predict the expression profile and role of microRNAs in the human brain....

  17. MicroRNA Expression Profiling of the Porcine Developing Brain

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Busk, Peter Kamp

    2011-01-01

    MicroRNAs are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in the control of developmental and physiological processes. In particular, the developing brain contains an impressive diversity of microRNAs. Most microRNA...... and the growth curve when compared to humans. Considering these similarities, studies examining microRNA expression during porcine brain development could potentially be used to predict the expression profile and role of microRNAs in the human brain....

  18. Neuroinflammation induces glial aromatase expression in the uninjured songbird brain

    Directory of Open Access Journals (Sweden)

    Saldanha Colin J

    2011-07-01

    Full Text Available Abstract Background Estrogens from peripheral sources as well as central aromatization are neuroprotective in the vertebrate brain. Under normal conditions, aromatase is only expressed in neurons, however following anoxic/ischemic or mechanical brain injury; aromatase is also found in astroglia. This increased glial aromatization and the consequent estrogen synthesis is neuroprotective and may promote neuronal survival and repair. While the effects of estradiol on neuroprotection are well studied, what induces glial aromatase expression remains unknown. Methods Adult male zebra finches (Taeniopygia guttata were given a penetrating injury to the entopallium. At several timepoints later, expression of aromatase, IL-1β-like, and IL-6-like were examined using immunohisotchemistry. A second set of zebra birds were exposed to phytohemagglutinin (PHA, an inflammatory agent, directly on the dorsal surface of the telencephalon without creating a penetrating injury. Expression of aromatase, IL-1β-like, and IL-6-like were examined using both quantitative real-time polymerase chain reaction to examine mRNA expression and immunohistochemistry to determine cellular expression. Statistical significance was determined using t-test or one-way analysis of variance followed by the Tukey Kramers post hoc test. Results Following injury in the zebra finch brain, cytokine expression occurs prior to aromatase expression. This temporal pattern suggests that cytokines may induce aromatase expression in the damaged zebra finch brain. Furthermore, evoking a neuroinflammatory response characterized by an increase in cytokine expression in the uninjured brain is sufficient to induce glial aromatase expression. Conclusions These studies are among the first to examine a neuroinflammatory response in the songbird brain following mechanical brain injury and to describe a novel neuroimmune signal to initiate aromatase expression in glia.

  19. Neuroglobin and Cytoglobin expression in the human brain

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Kelsen, Jesper; Hay-Schmidt, Anders

    2013-01-01

    expressed and up-regulated following stroke in the human brain. The present study aimed at confirming our previous observations in rodents using two post-mortem human brains. The anatomical localization of Neuroglobin and Cytoglobin in the human brain is much like what has been described for the rodent...... and Cytoglobin in the cerebral cortex, while no expression in the cerebellar cortex was detectable. We provide a neuroanatomical indication for a different role of Neuroglobin and Cytoglobin in the human brain.......Neuroglobin and Cytoglobin are new members of the heme-globin family. Both globins are primarily expressed in neurons of the brain and retina. Neuroglobin and Cytoglobin have been suggested as novel therapeutic targets in various neurodegenerative diseases based on their oxygen binding and cell...

  20. Differential Expression of Sirtuins in the Ageing Rat Brain

    Directory of Open Access Journals (Sweden)

    Gilles J. Guillemin

    2015-05-01

    Full Text Available Although there are seven mammalian sirtuins (SIRT1-7, little is known about their expression in the ageing brain. To characterise the change(s in mRNA and protein expression of SIRT1-7 and their associated proteins in the brain of ‘physiologically’ aged Wistar rats. We tested mRNA and protein expression levels of rat SIRT1-7, and the levels of associated proteins in the brain using RT-PCR and western blotting. Our data shows that SIRT1 expression increases with age, concurrently with increased acetylated p53 levels in all brain regions investigated. SIRT2 and FOXO3a protein levels increased only in the occipital lobe. SIRT3-5 expression declined significantly in the hippocampus and frontal lobe, associated with increases in superoxide and fatty acid oxidation levels, and acetylated CPS-1 protein expression, and a reduction in MnSOD level. While SIRT6 expression declines significantly with age acetylated H3K9 protein expression is increased throughout the brain. SIRT7 and Pol I protein expression increased in the frontal lobe. This study identifies previously unknown roles for sirtuins in regulating cellular homeostasis and healthy ageing.

  1. Brain Gene Expression Signatures From Cerebrospinal Fluid Exosome RNA Profiling

    Science.gov (United States)

    Zanello, S. B.; Stevens, B.; Calvillo, E.; Tang, R.; Gutierrez Flores, B.; Hu, L.; Skog, J.; Bershad, E.

    2016-01-01

    While the Visual Impairment and Intracranial Pressure (VIIP) syndrome observations have focused on ocular symptoms, spaceflight has been also associated with a number of other performance and neurologic signs, such as headaches, cognitive changes, vertigo, nausea, sleep/circadian disruption and mood alterations, which, albeit likely multifactorial, can also result from elevation of intracranial pressure (ICP). We therefore hypothesize that these various symptoms are caused by disturbances in the neurophysiology of the brain structures and are correlated with molecular markers in the cerebrospinal fluid (CSF) as indicators of neurophysiological changes. Exosomes are 30-200 nm microvesicles shed into all biofluids, including blood, urine, and CSF, carrying a highly rich source of intact protein and RNA cargo. Exosomes have been identified in human CSF, and their proteome and RNA pool is a potential new reservoir for biomarker discovery in neurological disorders. The purpose of this study is to investigate changes in brain gene expression via exosome analysis in patients suffering from ICP elevation of varied severity (idiopathic intracranial hypertension -IIH), a condition which shares some of the neuroophthalmological features of VIIP, as a first step toward obtaining evidence suggesting that cognitive function and ICP levels can be correlated with biomarkers in the CSF. Our preliminary work, reported last year, validated the exosomal technology applicable to CSF analysis and demonstrated that it was possible to obtain gene expression evidence of inflammation processes in traumatic brain injury patients. We are now recruiting patients with suspected IIH requiring lumbar puncture at Baylor College of Medicine. Both CSF (5 ml) and human plasma (10 ml) are being collected in order to compare the pattern of differentially expressed genes observed in CSF and in blood. Since blood is much more accessible than CSF, we would like to determine whether plasma biomarkers for

  2. 5-HT1A receptor gene silencers Freud-1 and Freud-2 are differently expressed in the brain of rats with genetically determined high level of fear-induced aggression or its absence.

    Science.gov (United States)

    Kondaurova, Elena M; Ilchibaeva, Tatiana V; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2016-09-01

    Serotonin 5-HT1A receptor is known to play a crucial role in the mechanisms of genetically defined aggression. In its turn, 5-HT1A receptor functional state is under control of multiple factors. Among others, transcriptional factors Freud-1 and Freud-2 are known to be involved in the repression of 5-HT1A receptor gene expression. However, implication of these factors in the regulation of behavior is unclear. Here, we investigated the expression of 5-HT1A receptor and silencers Freud-1 and Freud-2 in the brain of rats selectively bred for 85 generations for either high level of fear-induced aggression or its absence. It was shown that Freud-1 and Freud-2 levels were different in aggressive and nonaggressive animals. Freud-1 protein level was decreased in the hippocampus, whereas Freud-2 protein level was increased in the frontal cortex of highly aggressive rats. There no differences in 5-HT1A receptor gene expression were found in the brains of highly aggressive and nonaggressive rats. However, 5-HT1A receptor protein level was decreased in the midbrain and increased in the hippocampus of highly aggressive rats. These data showed the involvement of Freud-1 and Freud-2 in the regulation of genetically defined fear-induced aggression. However, these silencers do not affect transcription of the 5-HT1A receptor gene in the investigated rats. Our data indicate the implication of posttranscriptional rather than transcriptional regulation of 5-HT1A receptor functional state in the mechanisms of genetically determined aggressive behavior. On the other hand, the implication of other transcriptional regulators for 5-HT1A receptor gene in the mechanisms of genetically defined aggression could be suggested. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Cell cycle networks link gene expression dysregulation, mutation, and brain maldevelopment in autistic toddlers.

    Science.gov (United States)

    Pramparo, Tiziano; Lombardo, Michael V; Campbell, Kathleen; Barnes, Cynthia Carter; Marinero, Steven; Solso, Stephanie; Young, Julia; Mayo, Maisi; Dale, Anders; Ahrens-Barbeau, Clelia; Murray, Sarah S; Lopez, Linda; Lewis, Nathan; Pierce, Karen; Courchesne, Eric

    2015-12-14

    Genetic mechanisms underlying abnormal early neural development in toddlers with Autism Spectrum Disorder (ASD) remain uncertain due to the impossibility of direct brain gene expression measurement during critical periods of early development. Recent findings from a multi-tissue study demonstrated high expression of many of the same gene networks between blood and brain tissues, in particular with cell cycle functions. We explored relationships between blood gene expression and total brain volume (TBV) in 142 ASD and control male toddlers. In control toddlers, TBV variation significantly correlated with cell cycle and protein folding gene networks, potentially impacting neuron number and synapse development. In ASD toddlers, their correlations with brain size were lost as a result of considerable changes in network organization, while cell adhesion gene networks significantly correlated with TBV variation. Cell cycle networks detected in blood are highly preserved in the human brain and are upregulated during prenatal states of development. Overall, alterations were more pronounced in bigger brains. We identified 23 candidate genes for brain maldevelopment linked to 32 genes frequently mutated in ASD. The integrated network includes genes that are dysregulated in leukocyte and/or postmortem brain tissue of ASD subjects and belong to signaling pathways regulating cell cycle G1/S and G2/M phase transition. Finally, analyses of the CHD8 subnetwork and altered transcript levels from an independent study of CHD8 suppression further confirmed the central role of genes regulating neurogenesis and cell adhesion processes in ASD brain maldevelopment.

  4. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth.

    Science.gov (United States)

    Orr, Brent A; Bai, Haibo; Odia, Yazmin; Jain, Deepali; Anders, Robert A; Eberhart, Charles G

    2011-07-01

    The hippo pathway and its downstream mediator yes-associated protein 1 (YAP1) regulate mammalian organ size in part through modulating progenitor cell numbers. YAP1 has also been implicated as an oncogene in multiple human cancers. Currently, little is known about the expression of YAP1 either in normal human brain tissue or in central nervous system neoplasms. We used immunohistochemistry to evaluate nuclear YAP1 expression in the fetal and normal adult human brains and in 264 brain tumors. YAP1 was expressed in fetal and adult brain regions known to harbor neural progenitor cells, but there was little YAP1 immunoreactivity in the adult cerebral cortex. YAP1 protein was also readily detected in the nuclei of human brain tumors. In medulloblastoma, the expression varied between histologic subtypes and was most prominent in nodular/desmoplastic tumors. In gliomas, it was frequently expressed in infiltrating astrocytomas and oligodendrogliomas but rarely in pilocytic astrocytomas. Using a loss-of-function approach, we show that YAP1 promoted growth of glioblastoma cell lines in vitro. High levels of YAP1 messenger RNA expression were associated with aggressive molecular subsets of glioblastoma and with a nonsignificant trend toward reduced mean survival in human astrocytoma patients. These findings suggest that YAP1 may play an important role in normal human brain development and that it could represent a new target in human brain tumors.

  5. Metal ion toxins and brain aquaporin-4 expression: an overview

    Directory of Open Access Journals (Sweden)

    Adriana eXimenes-Da-Silva

    2016-06-01

    Full Text Available Metal ions such as iron, zinc, and manganese are essential to metabolic functions, protein synthesis, neurotransmission, and antioxidant neuroprotective mechanisms. Conversely, non-essential metals such as mercury and lead are sources of human intoxication due to occupational activities or environmental contamination. Essential or non-essential metal accumulation in the central nervous system (CNS results in changes in blood-brain barrier (BBB permeability, as well as triggering microglia activation and astrocyte reactivity and changing water transport through the cells, which could result in brain swelling. Aquaporin-4 is the main water channel in the CNS, is expressed in astrocyte foot processes in brain capillaries and along the circumventricular epithelium in the ventricles, and has important physiological functions in maintaining brain osmotic homeostasis and supporting brain excitability through regulation of the extracellular space. Some evidence has pointed to a role of AQP4 during metal intoxication in the brain, where it may act in a dual form as a neuroprotector or a mediator of the development of oxidative stress in neurons and astrocytes, resulting in brain swelling and neuronal damage. This mini-review presents the way some metal ions affect changes in AQP4 expression in the CNS and discuss the ways in which water transport in brain cells can be involved in brain damage.

  6. Expression of Toll-like receptors in the developing brain.

    Directory of Open Access Journals (Sweden)

    David Kaul

    Full Text Available Toll-like receptors (TLR are key players of the innate and adaptive immune response in vertebrates. The original protein Toll in Drosophila melanogaster regulates both host defense and morphogenesis during development. Making use of real-time PCR, in situ hybridization, and immunohistochemistry we systematically examined the expression of TLR1-9 and the intracellular adaptor molecules MyD88 and TRIF during development of the mouse brain. Expression of TLR7 and TLR9 in the brain was strongly regulated during different embryonic, postnatal, and adult stages. In contrast, expression of TLR1-6, TLR8, MyD88, and TRIF mRNA displayed no significant changes in the different phases of brain development. Neurons of various brain regions including the neocortex and the hippocampus were identified as the main cell type expressing both TLR7 and TLR9 in the developing brain. Taken together, our data reveal specific expression patterns of distinct TLRs in the developing mouse brain and lay the foundation for further investigation of the pathophysiological significance of these receptors for developmental processes in the central nervous system of vertebrates.

  7. Distribution of cellular HSV-1 receptor expression in human brain.

    Science.gov (United States)

    Lathe, Richard; Haas, Juergen G

    2016-12-15

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  8. Volatile anesthetics influence blood-brain barrier integrity by modulation of tight junction protein expression in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Serge C Thal

    Full Text Available Disruption of the blood-brain barrier (BBB results in cerebral edema formation, which is a major cause for high mortality after traumatic brain injury (TBI. As anesthetic care is mandatory in patients suffering from severe TBI it may be important to elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ such as zonula occludens-1 (ZO-1 and claudin-5 (cl5 play a central role for BBB stability. First, the influence of the volatile anesthetics sevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER in murine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression of ZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled cortical impact (CCI. In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours after exposure. In BBB co-cultures mimicking the neurovascular unit (NVU volatile anesthetics had no impact on TEER. In healthy mice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water content increased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expression was significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analyses revealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The study demonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed to modulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence the barrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Future research is required to investigate

  9. Genetic control of human brain transcript expression in Alzheimer disease.

    Science.gov (United States)

    Webster, Jennifer A; Gibbs, J Raphael; Clarke, Jennifer; Ray, Monika; Zhang, Weixiong; Holmans, Peter; Rohrer, Kristen; Zhao, Alice; Marlowe, Lauren; Kaleem, Mona; McCorquodale, Donald S; Cuello, Cindy; Leung, Doris; Bryden, Leslie; Nath, Priti; Zismann, Victoria L; Joshipura, Keta; Huentelman, Matthew J; Hu-Lince, Diane; Coon, Keith D; Craig, David W; Pearson, John V; Heward, Christopher B; Reiman, Eric M; Stephan, Dietrich; Hardy, John; Myers, Amanda J

    2009-04-01

    We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal postmortem samples. We have now analyzed additional samples with a confirmed pathologic diagnosis of late-onset Alzheimer disease (LOAD; final n = 188 controls, 176 cases). Nine percent of the cortical transcripts that we analyzed had expression profiles correlated with their genotypes in the combined cohort, and approximately 5% of transcripts had SNP-transcript relationships that could distinguish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate-gene SNP-expression screens. This study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power for discovering risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease.

  10. Gene expression in the aging human brain: an overview.

    Science.gov (United States)

    Mohan, Adith; Mather, Karen A; Thalamuthu, Anbupalam; Baune, Bernhard T; Sachdev, Perminder S

    2016-03-01

    The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.

  11. Peripheral lipopolysaccharide administration transiently affects expression of brain-derived neurotrophic factor, corticotropin and proopiomelanocortin in mouse brain.

    Science.gov (United States)

    Schnydrig, Sabine; Korner, Lukas; Landweer, Svenja; Ernst, Beat; Walker, Gaby; Otten, Uwe; Kunz, Dieter

    2007-12-11

    Peripheral inflammation induced by intraperitoneal (i.p.) injection of Lipopolysaccharide (LPS) is known to cause functional impairments in the brain affecting memory and learning. One of mechanisms may be the interference with neurotrophin (NT) expression and function. In the current study we administered a single, high dose of LPS (3mg/kg, i.p.) into mice and investigated changes in brain-derived neurotrophic factor (BDNF) gene expression within 1-6 days after LPS injection. Crude synaptosomes were isolated from brain tissue and subjected to Western-blot analyses. We found transient reductions in synaptosomal proBDNF- and BDNF protein expression, with a maximal decrease at day 3 as compared to saline injected controls. The time course of reduction of BDNF mRNA in whole brain extracts parallels the decrease in protein levels in synaptosomes. LPS effects in the central nervous system (CNS) are known to crucially involve the activation of the hypothalamic-pituitary-adrenal (HPA) axis. We analysed the time course of corticotropin releasing hormone (CRH)- and proopiomelanocortin (POMC) mRNA expression. As observed for BDNF-, CRH- and POMC mRNA levels are also significantly reduced on day 3 indicating a comparable time course. These results suggest that peripheral inflammation causes a reduction of trophic supply in the brain, including BDNF at synaptic sites. The mechanisms involved could be a negative feedback of the activated HPA axis.

  12. Increased expression of aquaporin-4 in brain tissue of amygdala-kindled rats

    Institute of Scientific and Technical Information of China (English)

    Yinghui Chen; Yongbo Zhao

    2011-01-01

    Recurrent epileptic seizures can lead to brain edema, indicating that water regulation may be perturbed by seizures.We hypothesized that the expression of the brain water channel aquaporin-4 (AQP-4) may be upregulated in the epileptic brain.In the present study, we established the amygdala kindling model of epilepsy, and quantified AQP-4 protein and mRNA levels, using reverse transcription-PCR, immunohistochemistry and western blotting, in epileptic and control rats.We found that AQP-4 was overexpressed in the cerebral cortex of rats with epilepsy compared with controls.These findings show that AQP-4 is highly expressed in the brain of amygdala-kindled rats, suggesting that repeated seizures affect water homeostasis in the brain.

  13. Gene expression in the rodent brain is associated with its regional connectivity.

    Science.gov (United States)

    Wolf, Lior; Goldberg, Chen; Manor, Nathan; Sharan, Roded; Ruppin, Eytan

    2011-05-01

    The putative link between gene expression of brain regions and their neural connectivity patterns is a fundamental question in neuroscience. Here this question is addressed in the first large scale study of a prototypical mammalian rodent brain, using a combination of rat brain regional connectivity data with gene expression of the mouse brain. Remarkably, even though this study uses data from two different rodent species (due to the data limitations), we still find that the connectivity of the majority of brain regions is highly predictable from their gene expression levels-the outgoing (incoming) connectivity is successfully predicted for 73% (56%) of brain regions, with an overall fairly marked accuracy level of 0.79 (0.83). Many genes are found to play a part in predicting both the incoming and outgoing connectivity (241 out of the 500 top selected genes, p-valueregional connectivity in the rodent is significantly correlated with the annotation profile of genes previously found to determine neural connectivity in C. elegans (Pearson correlation of 0.24, p<1e-6 for the outgoing connections and 0.27, p<1e-5 for the incoming). Overall, the association between connectivity and gene expression in a specific extant rodent species' brain is likely to be even stronger than found here, given the limitations of current data.

  14. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain.

    Science.gov (United States)

    Pichery, Mélanie; Mirey, Emilie; Mercier, Pascale; Lefrancais, Emma; Dujardin, Arnaud; Ortega, Nathalie; Girard, Jean-Philippe

    2012-04-01

    IL-33 (previously known as NF from high endothelial venules) is an IL-1 family cytokine that signals through the ST2 receptor and drives cytokine production in mast cells, basophils, eosinophils, invariant NKT and NK cells, Th2 lymphocytes, and type 2 innate immune cells (natural helper cells, nuocytes, and innate helper 2 cells). Little is known about endogenous IL-33; for instance, the cellular sources of IL-33 in mouse tissues have not yet been defined. In this study, we generated an Il-33-LacZ gene trap reporter strain (Il-33(Gt/Gt)) and used this novel tool to analyze expression of endogenous IL-33 in vivo. We found that the Il-33 promoter exhibits constitutive activity in mouse lymphoid organs, epithelial barrier tissues, brain, and embryos. Immunostaining with anti-IL-33 Abs, using Il-33(Gt/Gt) (Il-33-deficient) mice as control, revealed that endogenous IL-33 protein is highly expressed in mouse epithelial barrier tissues, including stratified squamous epithelia from vagina and skin, as well as cuboidal epithelium from lung, stomach, and salivary gland. Constitutive expression of IL-33 was not detected in blood vessels, revealing the existence of species-specific differences between humans and mice. Importantly, IL-33 protein was always localized in the nucleus of producing cells with no evidence for cytoplasmic localization. Finally, strong expression of the Il-33-LacZ reporter was also observed in inflamed tissues, in the liver during LPS-induced endotoxin shock, and in the lung alveoli during papain-induced allergic airway inflammation. Together, our findings support the possibility that IL-33 may function as a nuclear alarmin to alert the innate immune system after injury or infection in epithelial barrier tissues.

  15. Non-negative Tensor Factorization with missing data for the modeling of gene expressions in the Human Brain

    DEFF Research Database (Denmark)

    Nielsen, Søren Føns Vind; Mørup, Morten

    2014-01-01

    forms a promising framework for imputing missing values and characterizing gene expression in the human brain. However, care also has to be taken in particular when predicting the genetic expression levels at a whole region of the brain missing as our analysis indicates that this requires a substantial......Non-negative Tensor Factorization (NTF) has become a prominent tool for analyzing high dimensional multi-way structured data. In this paper we set out to analyze gene expression across brain regions in multiple subjects based on data from the Allen Human Brain Atlas [1] with more than 40 % data...

  16. THE EFFECT OF GESTATIONAL MERCURY VAPOR EXPOSURE ON RAT BRAIN A-SYNUCLEIN EXPRESSION.

    Science.gov (United States)

    Alpha-synuclein is a highly conserved protein that localizes to pre-synaptic terminals and is thought to play a role in neuronal plasticity. It is upregulated developmentally and continues to be expressed at high levels in the adult brain. Its presence in a number of neuronal (A...

  17. Gene expression in the rodent brain is associated with its regional connectivity.

    Directory of Open Access Journals (Sweden)

    Lior Wolf

    2011-05-01

    Full Text Available The putative link between gene expression of brain regions and their neural connectivity patterns is a fundamental question in neuroscience. Here this question is addressed in the first large scale study of a prototypical mammalian rodent brain, using a combination of rat brain regional connectivity data with gene expression of the mouse brain. Remarkably, even though this study uses data from two different rodent species (due to the data limitations, we still find that the connectivity of the majority of brain regions is highly predictable from their gene expression levels-the outgoing (incoming connectivity is successfully predicted for 73% (56% of brain regions, with an overall fairly marked accuracy level of 0.79 (0.83. Many genes are found to play a part in predicting both the incoming and outgoing connectivity (241 out of the 500 top selected genes, p-value<1e-5. Reassuringly, the genes previously known from the literature to be involved in axon guidance do carry significant information about regional brain connectivity. Surveying the genes known to be associated with the pathogenesis of several brain disorders, we find that those associated with schizophrenia, autism and attention deficit disorder are the most highly enriched in the connectivity-related genes identified here. Finally, we find that the profile of functional annotation groups that are associated with regional connectivity in the rodent is significantly correlated with the annotation profile of genes previously found to determine neural connectivity in C. elegans (Pearson correlation of 0.24, p<1e-6 for the outgoing connections and 0.27, p<1e-5 for the incoming. Overall, the association between connectivity and gene expression in a specific extant rodent species' brain is likely to be even stronger than found here, given the limitations of current data.

  18. Gene Expression Profiling during Pregnancy in Rat Brain Tissue.

    Science.gov (United States)

    Mann, Phyllis E

    2014-03-04

    The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases "expectant brain" and "maternal brain". Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH) during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array) was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1) whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  19. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain

    Directory of Open Access Journals (Sweden)

    Jacqueline A. Hubbard

    2015-10-01

    Full Text Available Aquaporin-4 (AQP4 is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits.

  20. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain

    Science.gov (United States)

    Hubbard, Jacqueline A.; Hsu, Mike S.; Seldin, Marcus M.

    2015-01-01

    Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits. PMID:26489685

  1. Corticolimbic expression of TRPC4 and TRPC5 channels in the rodent brain.

    Directory of Open Access Journals (Sweden)

    Melissa A Fowler

    Full Text Available The canonical transient receptor potential (TRPC channels are a family of non-selective cation channels that are activated by increases in intracellular Ca(2+ and G(q/phospholipase C-coupled receptors. We used quantitative real-time PCR, in situ hybridization, immunoblots and patch-clamp recording from several brain regions to examine the expression of the predominant TRPC channels in the rodent brain. Quantitative real-time PCR of the seven TRPC channels in the rodent brain revealed that TRPC4 and TRPC5 channels were the predominant TRPC subtypes in the adult rat brain. In situ hybridization histochemistry and immunoblotting further resolved a dense corticolimbic expression of the TRPC4 and TRPC5 channels. Total protein expression of HIP TRPC4 and 5 proteins increased throughout development and peaked late in adulthood (6-9 weeks. In adults, TRPC4 expression was high throughout the frontal cortex, lateral septum (LS, pyramidal cell layer of the hippocampus (HIP, dentate gyrus (DG, and ventral subiculum (vSUB. TRPC5 was highly expressed in the frontal cortex, pyramidal cell layer of the HIP, DG, and hypothalamus. Detailed examination of frontal cortical layer mRNA expression indicated TRPC4 mRNA is distributed throughout layers 2-6 of the prefrontal cortex (PFC, motor cortex (MCx, and somatosensory cortex (SCx. TRPC5 mRNA expression was concentrated specifically in the deep layers 5/6 and superficial layers 2/3 of the PFC and anterior cingulate. Patch-clamp recording indicated a strong metabotropic glutamate-activated cation current-mediated depolarization that was dependent on intracellular Ca(2+and inhibited by protein kinase C in brain regions associated with dense TRPC4 or 5 expression and absent in regions lacking TRPC4 and 5 expression. Overall, the dense corticolimbic expression pattern suggests that these Gq/PLC coupled nonselective cation channels may be involved in learning, memory, and goal-directed behaviors.

  2. Expression and relevant research of MGMT and XRCC1 gene in differentgrades of brain glioma and normal brain tissues

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Zhang

    2015-01-01

    Objective: To explore and analyze expression and relevant research of MGMT and XRCC1 gene in different grades of brain glioma and normal brain tissues. Methods: 52 cases of patients with brain glioma treated in our hospital from December 2013 to December 2014, and 50 cases of normal brain-tissue patients with intracranial hypertension were selected, and proceeding test to the surgical resection of brain tissue of the above patients to determine its MGMT and XRCC1 protein content, sequentially to record the expression of MGMT and XRCC1 of both groups. Grading of tumors to brain glioma after operation was carried out, and the expression of MGMT and XRCC1 gene in brain tissues of different patients was analyzed and compared;finally the contingency tables of X2 test was used to analyze the correlation of XRCC1and MGMT. Results:Positive rate of MGMT expression in normal brain tissue was 2%,while positive rate of MGMT expression in brain glioma was 46.2%,which was obviously higher than that in normal brain tissues (χ2=26.85, P0.05), which had no statistical significance. There were 12 cases of patients whose MGMT protein expression was positive and XRCC1 protein expression was positive; there were 18 cases of patients whose MGMT protein expression was negative and XRCC1 protein expression was negative. Contingency tables of X2 test was used to analyze the correlation of XRCC1 and MGMT, which indicated that the expression of XRCCI and MGMT in brain glioma had no correlation (r=0.9%, P=0.353), relevancy of both was r=0.9%. Conclusions: Positive rate of the expression of MGMT and XRCC1 in brain glioma was obviously higher than that in normal brain tissues, but the distribution of different grades of brain glioma had no obvious difference, and MGMT and XRCC1 expression had no obvious correlation, which needed further research.

  3. Functional bitter taste receptors are expressed in brain cells.

    Science.gov (United States)

    Singh, Nisha; Vrontakis, Maria; Parkinson, Fiona; Chelikani, Prashen

    2011-03-04

    Humans are capable of sensing five basic tastes which are sweet, sour, salt, umami and bitter. Of these, bitter taste perception provides protection against ingestion of potentially toxic substances. Bitter taste is sensed by bitter taste receptors (T2Rs) that belong to the G-protein coupled receptors (GPCRs) superfamily. Humans have 25 T2Rs that are expressed in the oral cavity, gastrointestinal (GI) neuroendocrine cells and airway cells. Electrophysiological studies of the brain neurons show that the neurons are able to respond to different tastants. However, the presence of bitter taste receptors in brain cells has not been elucidated. In this report using RT-PCR, and immunohistochemistry analysis we show that T2Rs are expressed in multiple regions of the rat brain. RT-PCR analysis revealed the presence of T2R4, T2R107 and T2R38 transcripts in the brain stem, cerebellum, cortex and nucleus accumbens. The bitter receptor T2R4 was selected for further analysis at the transcript level by quantitative real time PCR and at the protein level by immunohistochemistry. To elucidate if the T2R4 expressed in these cells is functional, assays involving G-protein mediated calcium signaling were carried out. The functional assays showed an increase in intracellular calcium levels after the application of exogenous ligands for T2R4, denatonium benzoate and quinine to these cultured cells, suggesting that endogenous T2R4 expressed in these cells is functional. We discuss our results in terms of the physiological relevance of bitter receptor expression in the brain.

  4. Increased expression of osteopontin in brain arteriovenous malformations

    Institute of Scientific and Technical Information of China (English)

    XU Hong-zhi; QIN Zhi-yong; GU Yu-xiang; ZHOU Ping; XU Feng; CHEN Xian-cheng

    2012-01-01

    Background The precise mechanisms responsible for the development and growth of intracranial arteriovenous malformations (AVMs) remain unclear.Osteopontin (OPN) is a phosphorylated glycoprotein with diverse functions.This study aimed to analyze the expression of OPN in human brain AVMs.Methods The AVM nidus was surgically obtained from patients with AVM,whereas control brain artery specimens were surgically obtained from patients with epilepsy.Reverse transcription-polymerase chain reaction (RT-PCR) was used to examine the expression of OPN mRNA in biopsy specimens.OPN protein expression was localized by immunohistochemistry.The statistical differences between different groups were assessed by two-way analysis of variance (ANOVA).Results We analyzed 36 brain AVM specimens and 8 control brain artery specimens.Eleven patients with brain AVM received embolization treatment,and five underwent gamma knife radiotherapy before resection.Nineteen patients with brain AVM had a history of hemorrhage from AVMs.The expression of OPN mRNA was significantly higher in AVMs than that in the control specimens (25.76±2.71 vs.21.46±2.01,P <0.01).There was no statistically significant difference in the extent of OPN mRNA expression between the AVM group with and that without history of hemorrhage (26.13±2.45 vs.25.34±2.99) or gamma knife radiotherapy (24.39±2.10 vs.24.53±1.85).However,the difference between the AVM group with and that without embolization treatment history was statistically significant (24.39±2.10 vs.28.80±1.13,P <0.01).In the group with gamma knife radiotherapy history,OPN expression was found in arteries with early-stage radio-effect.Conclusions OPN may contribute to the vascular instability of brain AVMs.It may play an important role in the pathophysiological process related to embolization treatment.

  5. Expression of Alzheimer's disease risk genes in ischemic brain degeneration.

    Science.gov (United States)

    Ułamek-Kozioł, Marzena; Pluta, Ryszard; Januszewski, Sławomir; Kocki, Janusz; Bogucka-Kocka, Anna; Czuczwar, Stanisław J

    2016-12-01

    We review the Alzheimer-related expression of genes following brain ischemia as risk factors for late-onset of sporadic Alzheimer's disease and their role in Alzheimer's disease ischemia-reperfusion pathogenesis. More recent advances in understanding ischemic etiology of Alzheimer's disease have revealed dysregulation of Alzheimer-associated genes including amyloid protein precursor, β-secretase, presenilin 1 and 2, autophagy, mitophagy and apoptosis. We review the relationship between these genes dysregulated by brain ischemia and the cellular and neuropathological characteristics of Alzheimer's disease. Here we summarize the latest studies supporting the theory that Alzheimer-related genes play an important role in ischemic brain injury and that ischemia is a needful and leading supplier to the onset and progression of sporadic Alzheimer's disease. Although the exact molecular mechanisms of ischemic dependent neurodegenerative disease and neuronal susceptibility finally are unknown, a downregulated expression of neuronal defense genes like alfa-secretase in the ischemic brain makes the neurons less able to resist injury. The recent challenge is to find ways to raise the adaptive reserve of the brain to overcome such ischemic-associated deficits and support and/or promote neuronal survival. Understanding the mechanisms underlying the association of these genes with risk for Alzheimer's disease will provide the most meaningful targets for therapeutic development to date. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  6. Effect of basic fibroblast growth factor and danshen on bcl-2 and p53 mRNA expression in the brain of rats exposed to repeated,high,positive acceleration(+Gz)

    Institute of Scientific and Technical Information of China (English)

    Hongjin Liu; Qing Cai

    2008-01-01

    -transcription polymerase chain reaction.Apoptotic cell death was detected by terminal deoxvnuleotidyl transferase-mediated dUTP nick end labeling.RESULTS:Changes in mRNA expression of bcl-2 and p53 and apoptotic cells were observed in rat brain six hours after repeated+Gz cxposurcs.bFGF and danshen were able block the changes of bcl-2 and p53 expression and inhibit apoptotic cell death.CONCLUSION:The data suggest that apoptosis and changes in bcl-2 and p53 expression in the rat brain can be induced by repeated+Gz exposures.Apoptosis is,therefore,one of the molecular mechanisms of brain damage induced by repeated+Gz exposures.bFGF and danshen were of the equal potency in preventing brain injury induced by repeated+Gz exposures.

  7. Encouraging expressions affect the brain and alter visual attention.

    Directory of Open Access Journals (Sweden)

    Manuel Martín-Loeches

    Full Text Available BACKGROUND: Very often, encouraging or discouraging expressions are used in competitive contexts, such as sports practice, aiming at provoking an emotional reaction on the listener and, consequently, an effect on subsequent cognition and/or performance. However, the actual efficiency of these expressions has not been tested scientifically. METHODOLOGY/PRINCIPAL FINDINGS: To fill this gap, we studied the effects of encouraging, discouraging, and neutral expressions on event-related brain electrical activity during a visual selective attention task in which targets were determined by location, shape, and color. Although the expressions preceded the attentional task, both encouraging and discouraging messages elicited a similar long-lasting brain emotional response present during the visuospatial task. In addition, encouraging expressions were able to alter the customary working pattern of the visual attention system for shape selection in the attended location, increasing the P1 and the SP modulations while simultaneously fading away the SN. CONCLUSIONS/SIGNIFICANCE: This was interpreted as an enhancement of the attentional processes for shape in the attended location after an encouraging expression. It can be stated, therefore, that encouraging expressions, as those used in sport practice, as well as in many other contexts and situations, do seem to be efficient in exerting emotional reactions and measurable effects on cognition.

  8. Expression of neuropeptide Y in rat brain ischemia

    Directory of Open Access Journals (Sweden)

    Babović Siniša S.

    2013-01-01

    Full Text Available Introduction. The immunohistochemical method was used to follow the expression of neuropeptide Y in the course of pre ischemia of the rat brain. The aim of the study was to define all the areas of expression of this protein, show their localization, their map of distribution and histological types. Material and Methods. All the sections of telencephalon, diencephalon and midbrain were studied in resistant, and transitory ischemia, which enabled us to observe the reaction of neurons to an ischemic attack or to repeated attacks. The mapping was done for all three proteins by introducing our results into the maps of rat brain atlas, George Paxinos, Charles Watson. Photographing and protein expression was done using Analysis program. Results. The results of this research show that there is a differens in reaction between the resistant and transitory ischemia groups of rats, especially in the caudoputamen, gyrus dentatus, corpus amygdaloideum, particularly in the medial nucleus. The mapping shows the reaction in caudoputamen, gyrusdentatus, corpus amygdaloideum - especially in the central nucleus, then in the sensitive and secondary auditory cortex, mostly in the laminae V/VI, but less in neuron groups CA1, CA2, CA3 of hippocampus. Discussion. The phylogenetically older parts of the brain-rhinencephalon, also showed reaction, which lead us to conclude that both newer and older brain structures reacted immunohistochemically. Histological data have shown that small neurons are most commonly found while the second most common ones are big pyramidal cells of multipolar and bipolar type, with a different body shape. Conclusion. Our findings have confirmed the results obtained in some rare studies dealing with this issue, and offered a precise and detailed map of cells expressing neuropeptide Y in the rat brain following ischemic attack.

  9. Artificial selection on brain-expressed genes during the domestication of dog.

    Science.gov (United States)

    Li, Yan; Vonholdt, Bridgett M; Reynolds, Andy; Boyko, Adam R; Wayne, Robert K; Wu, Dong-Dong; Zhang, Ya-Ping

    2013-08-01

    Domesticated dogs have many unique behaviors not found in gray wolves that have augmented their interaction and communication with humans. The genetic basis of such unique behaviors in dogs remains poorly understood. We found that genes within regions highly differentiated between outbred Chinese native dogs (CNs) and wolves show high bias for expression localized to brain tissues, particularly the prefrontal cortex, a specific region responsible for complex cognitive behaviors. In contrast, candidate genes showing high population differentiation between CNs and German Shepherd dogs (GSs) did not demonstrate significant expression bias. These observations indicate that these candidate genes highly expressed in the brain have rapidly evolved. This rapid evolution was probably driven by artificial selection during the primary transition from wolves to ancient dogs and was consistent with the evolution of dog-specific characteristics, such as behavior transformation, for thousands of years.

  10. FTO is expressed in neurones throughout the brain and its expression is unaltered by fasting.

    Directory of Open Access Journals (Sweden)

    James S McTaggart

    Full Text Available Single-nucleotide polymorphisms in the first intron of the ubiquitously expressed FTO gene are associated with obesity. Although the physiological functions of FTO remain unclear, food intake is often altered when Fto expression levels are manipulated. Furthermore, deletion of FTO from neurones alone has a similar effect on food intake to deletion of FTO in all tissues. These results indicate that FTO expression in the brain is particularly important. Considerable focus has been placed on the dynamic regulation of Fto mRNA expression in the hypothalamus after short-term (16-48 hour fasting, but results have been controversial. There are no studies that quantify FTO protein levels across the brain, and assess its alteration following short-term fasting. Using immunohistochemistry, we found that FTO protein is widely expressed in mouse brain, and present in the majority of neurones. Using quantitative Western blotting and RT-qPCR we show that FTO protein and mRNA levels in the hypothalamus, cerebellum and rostral brain are relatively uniform, and levels in the brain are higher than in skeletal muscles of the lower limbs. Fasting for 18 hours does not alter the expression pattern, or levels, of FTO protein and mRNA. We further show that the majority of POMC neurones, which are critically involved in food intake regulation, also express FTO, but that the percentage of FTO-positive POMC neurones is not altered by fasting. In summary, we find no evidence that Fto/FTO expression is regulated by short-term (18-hour fasting. Thus, it is unlikely that the hunger and increased post-fasting food intake caused by such food deprivation is driven by alterations in Fto/FTO expression. The widespread expression of FTO in neurones also suggests that physiological studies of this protein should not be limited to the hypothalamus.

  11. Irradiation of rat brain reduces P-glycoprotein expression and function

    NARCIS (Netherlands)

    Bart, J.; Nagengast, W.B.; Coppes, R.P.; Wegman, T.D.; Graaf, W.T.A. van der; Groen, H.J.; Vaalburg, W.; Vries, E.G.F. de; Hendrikse, N.H.

    2007-01-01

    The blood-brain barrier (BBB) hampers delivery of several drugs including chemotherapeutics to the brain. The drug efflux pump P-glycoprotein (P-gp), expressed on brain capillary endothelial cells, is part of the BBB. P-gp expression on capillary endothelium decreases 5 days after brain irradiation,

  12. Irradiation of rat brain reduces P-glycoprotein expression and function

    NARCIS (Netherlands)

    Bart, J.; Nagengast, W. B.; Coppes, R. P.; Wegman, T. D.; van der Graaf, W. T. A.; Groen, H. J. M.; Vaalburg, W.; de Vries, E. G. E.; Hendrikse, N. H.

    2007-01-01

    The blood - brain barrier ( BBB) hampers delivery of several drugs including chemotherapeutics to the brain. The drug efflux pump P- glycoprotein ( P- gp), expressed on brain capillary endothelial cells, is part of the BBB. P- gp expression on capillary endothelium decreases 5 days after brain irrad

  13. Aging and Gene Expression in the Primate Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Khaitovich, Philipp; Plotkin, Joshua B.; Paabo, Svante; Eisen, Michael B.

    2005-02-18

    It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes in the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.

  14. Aging and gene expression in the primate brain.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser

    2005-09-01

    Full Text Available It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes in the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.

  15. Impaired social brain network for processing dynamic facial expressions in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Sato Wataru

    2012-08-01

    Full Text Available Abstract Background Impairment of social interaction via facial expressions represents a core clinical feature of autism spectrum disorders (ASD. However, the neural correlates of this dysfunction remain unidentified. Because this dysfunction is manifested in real-life situations, we hypothesized that the observation of dynamic, compared with static, facial expressions would reveal abnormal brain functioning in individuals with ASD. We presented dynamic and static facial expressions of fear and happiness to individuals with high-functioning ASD and to age- and sex-matched typically developing controls and recorded their brain activities using functional magnetic resonance imaging (fMRI. Result Regional analysis revealed reduced activation of several brain regions in the ASD group compared with controls in response to dynamic versus static facial expressions, including the middle temporal gyrus (MTG, fusiform gyrus, amygdala, medial prefrontal cortex, and inferior frontal gyrus (IFG. Dynamic causal modeling analyses revealed that bi-directional effective connectivity involving the primary visual cortex–MTG–IFG circuit was enhanced in response to dynamic as compared with static facial expressions in the control group. Group comparisons revealed that all these modulatory effects were weaker in the ASD group than in the control group. Conclusions These results suggest that weak activity and connectivity of the social brain network underlie the impairment in social interaction involving dynamic facial expressions in individuals with ASD.

  16. A Comparative Antibody Analysis of Pannexin1 Expression in Four Rat Brain Regions Reveals Varying Subcellular Localizations

    OpenAIRE

    Cone, Angela C.; Ambrosi, Cinzia; Scemes, Eliana; Maryann E. Martone; Sosinsky, Gina E.

    2013-01-01

    Pannexin1 (Panx1) channels release cytosolic ATP in response to signaling pathways. Panx1 is highly expressed in the central nervous system. We used four antibodies with different Panx1 anti-peptide epitopes to analyze four regions of rat brain. These antibodies labeled the same bands in Western blots and had highly similar patterns of immunofluorescence in tissue culture cells expressing Panx1, but Western blots of brain lysates from Panx1 knockout and control mice showed different banding p...

  17. Increased caveolin-1 expression in Alzheimer's disease brain.

    Science.gov (United States)

    Gaudreault, Sophie B; Dea, Doris; Poirier, Judes

    2004-07-01

    Increasing evidence suggests that cholesterol plays a central role in the pathophysiology of Alzheimer's disease (AD). Caveolin is a cholesterol-binding membrane protein involved in cellular cholesterol transport. We investigated the changes in the protein amount of hippocampal caveolin of autopsy-confirmed AD and aged-matched control subjects. Our results demonstrate that caveolin protein levels in the hippocampus and caveolin mRNA in the frontal cortex are up-regulated in AD by approximately two-fold, compared to control brains. These results suggest a relationship between caveolin-1 expression levels and a dysregulation of cholesterol homeostasis at the plasma membrane of brain cells. In support of this hypothesis, a significant increase in caveolin protein levels has also been observed in hippocampal tissue from ApoE-deficient (knockout) and aged wild-type mice; two situations associated with modifications of transbilayer distribution of cholesterol in brain synaptic plasma membranes. These results indicate that caveolin over-expression is linked to alterations of cholesterol distribution in the plasma membrane of brain cells and are consistent with the notion of a deterioration of cholesterol homeostasis in AD.

  18. Gene Expression Profiling during Pregnancy in Rat Brain Tissue

    Directory of Open Access Journals (Sweden)

    Phyllis E. Mann

    2014-03-01

    Full Text Available The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases “expectant brain” and “maternal brain”. Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1 whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  19. Body language in the brain: constructing meaning from expressive movement.

    Science.gov (United States)

    Tipper, Christine M; Signorini, Giulia; Grafton, Scott T

    2015-01-01

    This fMRI study investigated neural systems that interpret body language-the meaningful emotive expressions conveyed by body movement. Participants watched videos of performers engaged in modern dance or pantomime that conveyed specific themes such as hope, agony, lust, or exhaustion. We tested whether the meaning of an affectively laden performance was decoded in localized brain substrates as a distinct property of action separable from other superficial features, such as choreography, kinematics, performer, and low-level visual stimuli. A repetition suppression (RS) procedure was used to identify brain regions that decoded the meaningful affective state of a performer, as evidenced by decreased activity when emotive themes were repeated in successive performances. Because the theme was the only feature repeated across video clips that were otherwise entirely different, the occurrence of RS identified brain substrates that differentially coded the specific meaning of expressive performances. RS was observed bilaterally, extending anteriorly along middle and superior temporal gyri into temporal pole, medially into insula, rostrally into inferior orbitofrontal cortex, and caudally into hippocampus and amygdala. Behavioral data on a separate task indicated that interpreting themes from modern dance was more difficult than interpreting pantomime; a result that was also reflected in the fMRI data. There was greater RS in left hemisphere, suggesting that the more abstract metaphors used to express themes in dance compared to pantomime posed a greater challenge to brain substrates directly involved in decoding those themes. We propose that the meaning-sensitive temporal-orbitofrontal regions observed here comprise a superordinate functional module of a known hierarchical action observation network (AON), which is critical to the construction of meaning from expressive movement. The findings are discussed with respect to a predictive coding model of action understanding.

  20. Body language in the brain: constructing meaning from expressive movement

    Directory of Open Access Journals (Sweden)

    Christine Marie Tipper

    2015-08-01

    Full Text Available This fMRI study investigated neural systems that interpret body language - the meaningful emotive expressions conveyed by body movement. Participants watched videos of performers engaged in modern dance or pantomime that conveyed specific themes such as hope, agony, lust, or exhaustion. We tested whether the meaning of an affectively laden performance was decoded in localized brain substrates as a distinct property of action separable from other superficial features, such as choreography, kinematics, performer, and low-level visual stimuli. A repetition suppression (RS procedure was used to identify brain regions that decoded the meaningful affective state of a performer, as evidenced by decreased activity when emotive themes were repeated in successive performances. Because the theme was the only feature repeated across video clips that were otherwise entirely different, the occurrence of RS identified brain substrates that differentially coded the specific meaning of expressive performances. RS was observed bilaterally, extending anteriorly along middle and superior temporal gyri into temporal pole, medially into insula, rostrally into inferior orbitofrontal cortex, and caudally into hippocampus and amygdala. Behavioral data on a separate task indicated that interpreting themes from modern dance was more difficult than interpreting pantomime; a result that was also reflected in the fMRI data. There was greater RS in left hemisphere, suggesting that the more abstract metaphors used to express themes in dance compared to pantomime posed a greater challenge to brain substrates directly involved in decoding those themes. We propose that the meaning-sensitive temporal-orbitofrontal regions observed here comprise a superordinate functional module of a known hierarchical action observation network, which is critical to the construction of meaning from expressive movement. The findings are discussed with respect to a predictive coding model of action

  1. Cu/Zn superoxide dismutase expression in the postnatal rat brain following an excitotoxic injury

    Directory of Open Access Journals (Sweden)

    Faiz Maryam

    2005-06-01

    Full Text Available Abstract Background In the nervous system, as in other organs, Cu/Zn superoxide dismutase (Cu/Zn SOD is a key antioxidant enzyme involved in superoxide detoxification in normal cellular metabolism and after cell injury. Although it has been suggested that immature brain has a different susceptibility to oxidative damage than adult brain, the distribution and cell-specific expression of this enzyme in immature brain and after postnatal brain damage has not been documented. Methods In this study, we used immunohistochemistry and western blot to analyze the expression of Cu/Zn SOD in intact immature rat brain and in immature rat brain after an NMDA-induced excitotoxic cortical injury performed at postnatal day 9. Double immunofluorescence labelling was used to identify Cu/Zn SOD-expressing cell populations. Results In intact immature brain, Cu/Zn SOD enzyme was widely expressed at high levels in neurons mainly located in cortical layers II, III and V, in the sub-plate, in the pyriform cortex, in the hippocampus, and in the hypothalamus. Glial fibrillary acidic protein-positive cells only showed Cu/Zn SOD expression in the glia limitans and in scattered cells of the ventricle walls. No expression was detected in interfascicular oligodendroglia, microglia or endothelial cells. Following excitotoxic damage, neuronal Cu/Zn SOD was rapidly downregulated (over 2–4 hours at the injection site before neurodegeneration signals and TUNEL staining were observed. Later, from 1 day post-lesion onward, an upregulation of Cu/Zn SOD was found due to increased expression in astroglia. A further increase was observed at 3, 5 and 7 days that corresponded to extensive induction of Cu/Zn SOD in highly reactive astrocytes and in the astroglial scar. Conclusion We show here that, in the intact immature brain, the expression of Cu/Zn SOD was mainly found in neurons. When damage occurs, a strong and very rapid downregulation of this enzyme precedes neuronal degeneration

  2. The effects of high fat diet and exercise on cAMP response element binding protein gene expression in brain of mice%高脂膳食与运动对小鼠脑内cAMP反应元件结合蛋白基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    云少君; 乔欣; 李蔓; 魏守刚

    2015-01-01

    目的:通过观察cAMP反应元件结合蛋白( CREB)基因表达探讨高脂膳食与运动对脑老化的影响。方法70只ICR小鼠按体重随机分为普通对照组、高脂对照组、运动对照组、普通脑老化组、脑老化+高脂组、脑老化+运动组及脑老化+高脂+运动组。造模10 w后,以 Morris水迷宫实验检测小鼠的学习记忆能力, RT-PCR检测小鼠大脑CREB基因的表达水平。结果与普通对照组相比,普通脑老化组、脑老化+高脂组、脑老化+高脂+运动组及高脂对照组小鼠脑CREB基因表达水平明显降低(P<0.05),运动对照组CREB 基因表达水平无明显变化。脑老化+运动组小鼠脑CREB基因表达水平明显高于脑老化组( P<0.05)。结论脑老化小鼠 CREB基因表达水平降低。高脂膳食下调CREB 基因的表达,具有促脑老化效应。运动可以防止脑老化小鼠CREB基因的表达下降,具有抗脑老化效应。%Objective To explore the effects of high fat diet and exercise on the expression of cAMP response element binding pro-tein( CREB) gene in brain of mice.Methods Seventy mice were randomly divided into control , high fat diet, exercise, brain aging, brain aging +high fat diet, brain aging +exercise, brain aging +high fat diet +exercise groups.The experimental duration was 10 weeks.Morris water maze test was used to measure the learning and memory ability .Reverse transcription polymerase chain reaction ( RT-PCR) was used to detect the brain CREB gene expression .Results Compared with that of control group , the CREB gene expression was decreased in brain aging mice and brain aging +high fat diet group (P<0.05).There was not significant difference of CREB gene expression between brain ag-ing+exercise group and control group .The CREB gene expression in brain aging +high fat diet +exercise group was decreased significantly compared with that of normal group , but compared with that of brain

  3. Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology: a GWAS-based study using the Allen Human Brain Atlas.

    Science.gov (United States)

    Eising, Else; Huisman, Sjoerd M H; Mahfouz, Ahmed; Vijfhuizen, Lisanne S; Anttila, Verneri; Winsvold, Bendik S; Kurth, Tobias; Ikram, M Arfan; Freilinger, Tobias; Kaprio, Jaakko; Boomsma, Dorret I; van Duijn, Cornelia M; Järvelin, Marjo-Riitta R; Zwart, John-Anker; Quaye, Lydia; Strachan, David P; Kubisch, Christian; Dichgans, Martin; Davey Smith, George; Stefansson, Kari; Palotie, Aarno; Chasman, Daniel I; Ferrari, Michel D; Terwindt, Gisela M; de Vries, Boukje; Nyholt, Dale R; Lelieveldt, Boudewijn P F; van den Maagdenberg, Arn M J M; Reinders, Marcel J T

    2016-04-01

    Migraine is a common disabling neurovascular brain disorder typically characterised by attacks of severe headache and associated with autonomic and neurological symptoms. Migraine is caused by an interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified over a dozen genetic loci associated with migraine. Here, we integrated migraine GWAS data with high-resolution spatial gene expression data of normal adult brains from the Allen Human Brain Atlas to identify specific brain regions and molecular pathways that are possibly involved in migraine pathophysiology. To this end, we used two complementary methods. In GWAS data from 23,285 migraine cases and 95,425 controls, we first studied modules of co-expressed genes that were calculated based on human brain expression data for enrichment of genes that showed association with migraine. Enrichment of a migraine GWAS signal was found for five modules that suggest involvement in migraine pathophysiology of: (i) neurotransmission, protein catabolism and mitochondria in the cortex; (ii) transcription regulation in the cortex and cerebellum; and (iii) oligodendrocytes and mitochondria in subcortical areas. Second, we used the high-confidence genes from the migraine GWAS as a basis to construct local migraine-related co-expression gene networks. Signatures of all brain regions and pathways that were prominent in the first method also surfaced in the second method, thus providing support that these brain regions and pathways are indeed involved in migraine pathophysiology.

  4. Expression of the Otx2 homeobox gene in the developing mammalian brain: embryonic and adult expression in the pineal gland.

    Science.gov (United States)

    Rath, Martin F; Muñoz, Estela; Ganguly, Surajit; Morin, Fabrice; Shi, Qiong; Klein, David C; Møller, Morten

    2006-04-01

    Otx2 is a vertebrate homeobox gene, which has been found to be essential for the development of rostral brain regions and appears to play a role in the development of retinal photoreceptor cells and pinealocytes. In this study, the temporal expression pattern of Otx2 was revealed in the rat brain, with special emphasis on the pineal gland throughout late embryonic and postnatal stages. Widespread high expression of Otx2 in the embryonic brain becomes progressively restricted in the adult to the pineal gland. Crx (cone-rod homeobox), a downstream target gene of Otx2, showed a pineal expression pattern similar to that of Otx2, although there was a distinct lag in time of onset. Otx2 protein was identified in pineal extracts and found to be localized in pinealocytes. Total pineal Otx2 mRNA did not show day-night variation, nor was it influenced by removal of the sympathetic input, indicating that the level of Otx2 mRNA appears to be independent of the photoneural input to the gland. Our results are consistent with the view that pineal expression of Otx2 is required for development and we hypothesize that it plays a role in the adult in controlling the expression of the cluster of genes associated with phototransduction and melatonin synthesis.

  5. Notch receptor expression in neurogenic regions of the adult zebrafish brain.

    Directory of Open Access Journals (Sweden)

    Vanessa de Oliveira-Carlos

    Full Text Available The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 [Formula: see text] of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA [Formula: see text] cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA [Formula: see text] cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches.

  6. Developmental and cell type-specific expression of thyroid hormone transporters in the mouse brain and in primary brain cells.

    Science.gov (United States)

    Braun, Doreen; Kinne, Anita; Bräuer, Anja U; Sapin, Remy; Klein, Marc O; Köhrle, Josef; Wirth, Eva K; Schweizer, Ulrich

    2011-03-01

    Cellular thyroid hormone uptake and efflux are mediated by transmembrane transport proteins. One of these, monocarboxylate transporter 8 (MCT8) is mutated in Allan-Herndon-Dudley syndrome, a severe mental retardation associated with abnormal thyroid hormone constellations. Since mice deficient in Mct8 exhibit a milder neurological phenotype than patients, we hypothesized that alternative thyroid hormone transporters may compensate in murine brain cells for the lack of Mct8. Using qPCR, Western Blot, and immunocytochemistry, we investigated the expression of three different thyroid hormone transporters, i.e., Mct8 and L-type amino acid transporters Lat1 and Lat2, in mouse brain. All three thyroid hormone transporters are expressed from corticogenesis and peak around birth. Primary cultures of neurons and astrocytes express Mct8, Lat1, and Lat2. Microglia specifically expresses Mct10 and Slco4a1 in addition to high levels of Lat2 mRNA and protein. As in vivo, a brain microvascular endothelial cell line expressed Mct8 and Lat1. 158N, an oligodendroglial cell line expressed Mct8 protein, consistent with delayed myelination in MCT8-deficient patients. Functional T(3)- and T(4)-transport assays into primary astrocytes showed K(M) values of 4.2 and 3.7 μM for T(3) and T(4). Pharmacological inhibition of L-type amino acid transporters by BCH and genetic inactivation of Lat2 reduced astrocytic T(3) uptake to the same extent. BSP, a broad spectrum inhibitor, including Mct8, reduced T(3) uptake further suggesting the cooperative activity of several T(3) transporters in astrocytes.

  7. Differential expression of human homeodomain TGIFLX in brain tumor cell lines.

    Directory of Open Access Journals (Sweden)

    Reza Raoofian

    2013-12-01

    Full Text Available Glioblastoma is the most common and the most lethal primary brain cancer. This malignancy is highly locally invasive, rarely metastatic and resistant to current therapies. Little is known about the distinct molecular biology of glioblastoma multiforme (GBM in terms of initiation and progression. So far, several molecular mechanisms have been suggested to implicate in GBM development. Homeodomain (HD transcription factors play central roles in the expression of genomic information in all known eukaryotes. The TGIFX homeobox gene was originally discovered in human adult testes. Our previous study showed implications of TGIFLX in prostate cancer and azoospermia, although the molecular mechanism by which TGIFLX acts is unknown. Moreover, studies reported that HD proteins are involved in normal and abnormal brain developments. We examined the expression pattern of TGIFLX in different human brain tumor cell lines including U87MG, A172, Daoy and 1321N1. Interestingly, real time RT-PCR and western blot analysis revealed a high level of TGIFLX expression in A172 cells but not in the other cell lines. We subsequently cloned the entire coding sequence of TGIFLX gene into the pEGFP-N1 vector, eukaryotic expression vector encoding eGFP, and transfected into the U-87 MG cell line. The TGIFLX-GFP expression was confirmed by real time RT-PCR and UV-microscopic analysis. Upon transfection into U87 cells, fusion protein TGIFLX-GFP was found to locate mainly in the nucleus. This is the first report to determine the nuclear localization of TGIFLX and evaluation of its expression level between different brain tumor cell lines. Our data also suggest that TGIFLX gene dysregulation could be involved in the pathogenesis of some human brain tumors.

  8. Sex hormones and expression pattern of cytoskeletal proteins in the rat brain throughout pregnancy.

    Science.gov (United States)

    González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; González-Flores, Oscar; Galván-Rosas, Agustín; Porfirio Gómora-Arrati; Camacho-Arroyo, Ignacio

    2014-01-01

    Pregnancy involves diverse changes in brain function that implicate a re-organization in neuronal cytoskeleton. In this physiological state, the brain is in contact with several hormones that it has never been exposed, as well as with very high levels of hormones that the brain has been in touch throughout life. Among the latter hormones are progesterone and estradiol which regulate several brain functions, including learning, memory, neuroprotection, and the display of sexual and maternal behavior. These functions involve changes in the structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity is regulated by estradiol and progesterone. We have found that the expression pattern of Microtubule Associated Protein 2, Tau, and Glial Fibrillary Acidic Protein changes in a tissue-specific manner in the brain of the rat throughout gestation and the start of lactation, suggesting that these proteins participate in the plastic changes observed in the brain during pregnancy. This article is part of a Special Issue entitled 'Pregnancy and Steroids'.

  9. Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, W.; Ferrer-Montiel, A.V.; Schinder, A.F.; Montal, M. (Univ. of California, San Diego, La Jolla (United States)); McPherson, J.P. (Univ. of California, Irvine (United States)); Evans, G.A. (Salk Inst. for Biological Studies, La Jolla, CA (United States))

    1992-02-15

    A full-length cDNA clone encoding a glutamate receptor was isolated from a human brain cDNA library, and the gene product was characterized after expression in Xenopus oocytes. Degenerate PCR primers to conserved regions of published rat brain glutamate receptor sequences amplified a 1-kilobase fragment from a human brain cDNA library. This fragment was used as a probe for subsequent hybridization screening. Two clones were isolated that, based on sequence information, code for different receptors: a 3-kilobase clone, HBGR1, contains a full-length glutamate receptor cDNA highly homologous to the rat brain clone GluR1, and a second clone, HBGR2, contains approximately two-thirds of the coding region of a receptor homologous to rat brain clone GluR2. Southern and PCr analysis of a somatic cell-hybrid panel mapped HBGR1 to human chromosome 5q31.3-33.3 and mapped HBGR2 to chromosome 4q25-34.3. Xenopus oocytes injected with in vitro-synthesized HBGR1 cRNA expressed currents activated by glutamate receptor agonists. These results indicate that clone HBGR1 codes for a glutamate receptor of the kainate subtype cognate to members of the glutamate receptor family from rodent brain.

  10. Distinct expression of Cbln family mRNAs in developing and adult mouse brains.

    Science.gov (United States)

    Miura, Eriko; Iijima, Takatoshi; Yuzaki, Michisuke; Watanabe, Masahiko

    2006-08-01

    Cbln1 belongs to the C1q and tumour necrosis factor superfamily, and plays crucial roles as a cerebellar granule cell-derived transneuronal regulator for synapse integrity and plasticity in Purkinje cells. Although Cbln2-Cbln4 are also expressed in the brain and could form heteromeric complexes with Cbln1, their precise expressions remain unclear. Here, we investigated gene expression of the Cbln family in developing and adult C57BL mouse brains by reverse transcriptase-polymerase chain reaction (RT-PCR), Northern blot, and high-resolution in situ hybridization (ISH) analyses. In the adult brain, spatial patterns of mRNA expression were highly differential depending on Cbln subtypes. Notably, particularly high levels of Cbln mRNAs were expressed in some nuclei and neurons, whereas their postsynaptic targets often lacked or were low for any Cbln mRNAs, as seen for cerebellar granule cells/Purkinje cells, entorhinal cortex/hippocampus, intralaminar group of thalamic nuclei/caudate-putamen, and dorsal nucleus of the lateral lemniscus/central nucleus of the inferior colliculus. In the developing brain, Cbln1, 2, and 4 mRNAs appeared as early as embryonic day 10-13, and exhibited transient up-regulation during the late embryonic and neonatal periods. For example, Cbln2 mRNA was expressed in the cortical plate of the developing neocortex, displaying a high rostromedial to low caudolateral gradient. In contrast, Cbln3 mRNA was selective to cerebellar granule cells throughout development, and its onset was as late as postnatal day 7-10. These results will provide a molecular-anatomical basis for future studies that characterize roles played by the Cbln family.

  11. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.

    2013-02-19

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites and to quantify the differences in gene expression across the 5 brain regions. We also analyzed the extent to which methylation influenced the observed expression profiles. We sequenced more than 71 million cap analysis of gene expression tags corresponding to 70,202 promoter regions and 16,888 genes. More than 7000 transcripts were differentially expressed, mainly because of differential alternative promoter usage. Unexpectedly, 7% of differentially expressed genes were neurodevelopmental transcription factors. Functional pathway analysis on the differentially expressed genes revealed an overrepresentation of several signaling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus and striatum. We also found that although 73% of methylation signals mapped within genes, the influence of methylation on the expression profile was small. Our study underscores alternative promoter usage as an important mechanism for determining the regional differences in gene expression at old age.

  12. Both 5' and 3' flanks regulate Zebrafish brain-derived neurotrophic factor gene expression

    Directory of Open Access Journals (Sweden)

    Heinrich Gerhard

    2004-05-01

    Full Text Available Abstract Background Precise control of developmental and cell-specific expression of the brain-derived neurotrophic factor (BDNF gene is essential for normal neuronal development and the diverse functions of BDNF in the adult organism. We previously showed that the zebrafish BDNF gene has multiple promoters. The complexity of the promoter structure and the mechanisms that mediate developmental and cell-specific expression are still incompletely understood. Results Comparison of pufferfish and zebrafish BDNF gene sequences as well as 5' RACE revealed three additional 5' exons and associated promoters. RT-PCR with exon-specific primers showed differential developmental and organ-specific expression. Two exons were detected in the embryo before transcription starts. Of the adult organs examined, the heart expressed a single 5' exon whereas the brain, liver and eyes expressed four of the seven 5' exons. Three of the seven 5' exons were not detectable by RT-PCR. Injection of promoter/GFP constructs into embryos revealed distinct expression patterns. The 3' flank profoundly affected expression in a position-dependent manner and a highly conserved sequence (HCS1 present in 5' exon 1c in a dehancer-like manner. Conclusions The zebrafish BDNF gene is as complex in its promoter structure and patterns of differential promoter expression as is its murine counterpart. The expression of two of the promoters appears to be regulated in a temporally and/or spatially highly circumscribed fashion. The 3' flank has a position-dependent effect on expression, either by affecting transcription termination or post-transcriptional steps. HCS1, a highly conserved sequence in 5' exon 1c, restricts expression to primary sensory neurons. The tools are now available for detailed genetic and molecular analyses of zebrafish BDNF gene expression.

  13. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    Science.gov (United States)

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration.

  14. Irradiation of rat brain reduces P-glycoprotein expression and function

    OpenAIRE

    Bart, J.; Nagengast, W B; Coppes, R P; Wegman, T D; van der Graaf, W T A; Groen, H J M; Vaalburg, W; de Vries, E G E; Hendrikse, N.H.

    2007-01-01

    The blood–brain barrier (BBB) hampers delivery of several drugs including chemotherapeutics to the brain. The drug efflux pump P-glycoprotein (P-gp), expressed on brain capillary endothelial cells, is part of the BBB. P-gp expression on capillary endothelium decreases 5 days after brain irradiation, which may reduce P-gp function and increase brain levels of P-gp substrates. To elucidate whether radiation therapy reduces P-gp expression and function in the brain, right hemispheres of rats wer...

  15. Coincident expression and distribution of melanotransferrin and transferrin receptor in human brain capillary endothelium.

    Science.gov (United States)

    Rothenberger, S; Food, M R; Gabathuler, R; Kennard, M L; Yamada, T; Yasuhara, O; McGeer, P L; Jefferies, W A

    1996-03-11

    One method of iron transport across the blood brain barrier (BBB) involves the transferrin receptor (TR), which is localized to the specialized brain capillary endothelium. The melanotransferrin (MTf) molecule, also called p97, has been widely described as a melanoma specific molecule, however, its expression in brain tissues has not been addressed. MTf has a high level of sequence homology to transferrin (Tf) and lactoferrin, but is unusual because it predominantly occurs as a membrane bound, glycosylphosphatidylinositol (GPI) anchored molecule, but can also occur as a soluble form. We have recently demonstrated that GPI-anchored MTf provides a novel route for cellular iron uptake which is independent of Tf and its receptor. Here we consider whether MTf may have a role in the transport of iron across the BBB. The distributions of MTf, Tf and the TR were studied immunohistochemically in human brain tissues. The distributions of MTf and TR were remarkably similar, and quite different from that of Tf. In all brain tissues examined, MTf and the TR were highly localized to capillary endothelium, while Tf itself was mainly localized to glial cells. These data suggest that MTf may play a role in iron transport within the human brain.

  16. SLC9A9 Co-expression modules in autism-associated brain regions.

    Science.gov (United States)

    Patak, Jameson; Hess, Jonathan L; Zhang-James, Yanli; Glatt, Stephen J; Faraone, Stephen V

    2016-07-21

    SLC9A9 is a sodium hydrogen exchanger present in the recycling endosome and highly expressed in the brain. It is implicated in neuropsychiatric disorders, including autism spectrum disorders (ASDs). Little research concerning its gene expression patterns and biological pathways has been conducted. We sought to investigate its possible biological roles in autism-associated brain regions throughout development. We conducted a weighted gene co-expression network analysis on RNA-seq data downloaded from Brainspan. We compared prenatal and postnatal gene expression networks for three ASD-associated brain regions known to have high SLC9A9 gene expression. We also performed an ASD-associated single nucleotide polymorphism enrichment analysis and a cell signature enrichment analysis. The modules showed differences in gene constituents (membership), gene number, and connectivity throughout time. SLC9A9 was highly associated with immune system functions, metabolism, apoptosis, endocytosis, and signaling cascades. Gene list comparison with co-immunoprecipitation data was significant for multiple modules. We found a disproportionately high autism risk signal among genes constituting the prenatal hippocampal module. The modules were enriched with astrocyte and oligodendrocyte markers. SLC9A9 is potentially involved in the pathophysiology of ASDs. Our investigation confirmed proposed functions for SLC9A9, such as endocytosis and immune regulation, while also revealing potential roles in mTOR signaling and cell survival.. By providing a concise molecular map and interactions, evidence of cell type and implicated brain regions we hope this will guide future research on SLC9A9. Autism Res 2016. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  17. Lateralization of gene expression in the honeybee brain during olfactory learning

    Science.gov (United States)

    Guo, Yu; Wang, Zilong; Li, You; Wei, Guifeng; Yuan, Jiao; Sun, Yu; Wang, Huan; Qin, Qiuhong; Zeng, Zhijiang; Zhang, Shaowu; Chen, Runsheng

    2016-01-01

    In the last decade, it has been demonstrated that brain functional asymmetry occurs not only in vertebrates but also in invertebrates. However, the mechanisms underlying functional asymmetry remain unclear. In the present study, we trained honeybees of the same parentage and age, on the proboscis extension reflex (PER) paradigm with only one antenna in use. The comparisons of gene expression between the left and right hemispheres were carried out using high throughput sequencing. Our research revealed that gene expression in the honeybee brain is also asymmetric, with more genes having higher expression in the right hemisphere than the left hemisphere. Our studies show that during olfactory learning, the left hemisphere is more responsible for long term memory and the right hemisphere is more responsible for the learning and short term memory. PMID:27703214

  18. Effect of Boric Acid Supplementation on the Expression of BDNF in African Ostrich Chick Brain.

    Science.gov (United States)

    Tang, Juan; Zheng, Xing-ting; Xiao, Ke; Wang, Kun-lun; Wang, Jing; Wang, Yun-xiao; Wang, Ke; Wang, Wei; Lu, Shun; Yang, Ke-li; Sun, Peng-Peng; Khaliq, Haseeb; Zhong, Juming; Peng, Ke-Mei

    2016-03-01

    The degree of brain development can be expressed by the levels of brain brain-derived neurotrophic factor (BDNF). BDNF plays an irreplaceable role in the process of neuronal development, protection, and restoration. The aim of the present study was to evaluate the effects of boric acid supplementation in water on the ostrich chick neuronal development. One-day-old healthy animals were supplemented with boron in drinking water at various concentrations, and the potential effects of boric acid on brain development were tested by a series of experiments. The histological changes in brain were observed by hematoxylin and eosin (HE) staining and Nissl staining. Expression of BDNF was analyzed by immunohistochemistry, quantitative real-time PCR (QRT-PCR), and enzyme linked immunosorbent assay (ELISA). Apoptosis was evaluated with Dutp-biotin nick end labeling (TUNEL) reaction, and caspase-3 was detected with QRT-PCR. The results were as follows: (1) under the light microscope, the neuron structure was well developed with abundance of neurites and intact cell morphology when animals were fed with less than 160 mg/L of boric acid (groups II, III, IV). Adversely, when boric acid doses were higher than 320 mg/L(groups V, VI), the high-dose boric acid neuron structure was damaged with less neurites, particularly at 640 mg/L; (2) the quantity of BDNF expression in groups II, III, and IV was increased while it was decreased in groups V and VI when compared with that in group I; (3) TUNEL reaction and the caspase-3 mRNA level showed that the amount of cell apoptosis in group II, group III, and group IV were decreased, but increased in group V and group VI significantly. These results indicated that appropriate supplementation of boric acid, especially at 160 mg/L, could promote ostrich chicks' brain development by promoting the BDNF expression and reducing cell apoptosis. Conversely, high dose of boric acid particularly in 640 mg/L would damage the neuron structure of

  19. Brain-derived neurotrophic factor expression is higher in brain tissue from patients with refractory epilepsy than in normal controls

    Institute of Scientific and Technical Information of China (English)

    Yudan Lv; Jiqing Qiu; Zan Wang; Li Cui; Hongmei Meng; Weihong Lin

    2011-01-01

    The role of the brain-derived neurotrophic factor in epilepsy remains controversial. The present study utilized light and electron microscopy to investigate pathological and ultrastructural changes in brain tissue obtained from the seizure foci of 24 patients with temporal epilepsy. We found that epileptic tissue showed neuronal degeneration, glial cell proliferation, nuclear vacuolization, and neural cell tropism. Immunoelectron microscopy and immunohistochemistry showed that brain-derived neurotrophic factor was expressed at significantly higher levels in patients with refractory temporal epilepsy compared with normal controls, demonstrating that the pathological changes within seizure foci in patients with refractory epilepsy are associated with brain-derived neurotrophic factor expression alterations.

  20. Expression of connexin36 in the adult and developing rat brain.

    Science.gov (United States)

    Belluardo, N; Mudò, G; Trovato-Salinaro, A; Le Gurun, S; Charollais, A; Serre-Beinier, V; Amato, G; Haefliger, J A; Meda, P; Condorelli, D F

    2000-05-19

    The distribution of connexin36 (Cx36) in the adult rat brain and retina has been analysed at the protein (immunofluorescence) and mRNA (in situ hybridization) level. Cx36 immunoreactivity, consisting primarily of round or elongated puncta, is highly enriched in specific brain regions (inferior olive and the olfactory bulb), in the retina, in the anterior pituitary and in the pineal gland, in agreement with the high levels of Cx36 mRNA in the same regions. A lower density of immunoreactive puncta can be observed in several brain regions, where only scattered subpopulations of cells express Cx36 mRNA. By combining in situ hybridization for Cx36 mRNA with immunohistochemistry for a general neuronal marker (NeuN), we found that neuronal cells are responsible for the expression of Cx36 mRNA in inferior olive, cerebellum, striatum, hippocampus and cerebral cortex. Cx36 mRNA was also demonstrated in parvalbumin-containing GABAergic interneurons of cerebral cortex, striatum, hippocampus and cerebellar cortex. Analysis of developing brain further revealed that Cx36 reaches a peak of expression in the first two weeks of postnatal life, and decreases sharply during the third week. Moreover, in these early stages of postnatal development Cx36 is detectable in neuronal populations that are devoid of Cx36 mRNA at the adult stage. The developmental changes of Cx36 expression suggest a participation of this connexin in the extensive interneuronal coupling which takes place in several regions of the early postnatal brain.

  1. NMO in pediatric patients: brain involvement and clinical expression

    Directory of Open Access Journals (Sweden)

    Joaquín A. Peña

    2011-02-01

    Full Text Available OBJECTIVE: To analyze the clinical, neuroimaging characteristics and positivity of the acquaporin water channel (NMO-IgG in pediatric patients with neuromyelitis optica (NMO. This disorder could have a variable clinical expression. To address such variability, the term NMO spectrum has been suggested. METHOD: We evaluated six pediatric patients, with a median age of 11 years at the time of the study, with the diagnosis of NMO by the Wingerchuck criteria. RESULTS: All the cases exhibited bilateral optic neuritis (ON. Four patients had abnormalities on brain MRI from the onset,although only three of them developed symptoms correlated to those lesions during the course of their disorder. NMO-IgG was positive in 80%. CONCLUSION: Optic neuropathy is the most impaired feature in NMO patients. Brain MRI lesions are not compatible with multiple sclerosis and positivity of the NMO-IgG are also present in NMO pediatric patients, confirming the heterogeneity in the expression of this disorder.

  2. Distinct Expression of Various Angiogenesis Factors in Mice Brain After Whole-Brain Irradiation by X-ray.

    Science.gov (United States)

    Deng, Zhezhi; Huang, Haiwei; Wu, Xiaohong; Wu, Mengmeng; He, Guoyong; Guo, Junjie

    2017-02-01

    Radiation-induced brain injury (RBI) is the most serious complication after radiotherapy. However, the etiology of RBI remains elusive. In order to evaluate the effect of X-rays on normal brain tissue, adult male BALB/C mice were subjected to whole-brain exposure with a single dose of 10 Gy or sham radiation. The structure and number of mice brain vessels were investigated 1, 7, 30, 90 and 180 days after irradiation by H&E staining and immune-fluorescence staining. Compared with sham control mice, in addition to morphological changes, a significant reduction of microvascular density was detected in irradiated mice brains. Whole-brain irradiation also caused damage in tight junction (TJ). Increased expression of glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF) was observed in irradiated mouse brains showed by Western Blot. Immune-fluorescence staining results also verified the co-labeling of GFAP and VEGF after whole-brain irradiation. Furthermore, the protein expression levels of other angiogenesis factors, angiopoietin-1 (Ang-1), endothelial-specific receptor tyrosine kinase (Tie-2), and angiopoietin-2 (Ang-2) in brain were determined by Western Blot. Increased expression of Ang-2 was shown in irradiated mouse brains. In contrast, whole-brain irradiation significantly decreased Ang-1 and Tie-2 expression. Our data indicated that X-rays induced time-dependent microvascular injury and activation of astrocytes after whole-brain irradiation in mouse brain. Distinct regulation of VEGF/Ang2 and Ang-1/Tie-2 are closely associated with RBI, suggesting that angiogenesis interventions might be beneficial for patients with RBI.

  3. Diazepam binding inhibitor gene expression: Location in brain and peripheral tissues of rate

    Energy Technology Data Exchange (ETDEWEB)

    Alho, H.; Fremeau, R.T. Jr.; Tiedge, H.; Wilcox, J.; Bovolin, P.; Brosius, J.; Roberts, J.L.; Costa, E.

    1988-09-01

    Diazepam binding inhibitor (DBI), an endogenous 10-kDa polypeptide was isolated from rat and human brain by monitoring displacement of radioactive diazepam bound to specific recognition sites in brain synaptic and mitochondrial membranes. The cellular location of DBI mRNA was studied in rat brain and selected peripheral tissues by in situ hybridization histochemistry with a /sup 35/S-labeled single-stranded complementary RNA probe. DBI mRNA was heterogeneously distributed in rat brain, with particularly high levels in the area postrema, the cerebellar cortex, and ependyma of the third ventricle. Intermediate levels were found in the olfactory bulb, pontine nuclei, inferior colliculi, arcuate nucleus, and pineal gland. Relatively low but significant levels of silver grains were observed overlying many mesencephalic and telencephalic areas that have previously been shown to contain numerous DBI-immunoreactive neurons and a high density of central benzodiazepine receptors. In situ hybridizations also revealed high levels of DBI mRNA in the posterior lobe of the pituitary gland, liver, and germinal center of the white pulp of spleen, all tissues that are rich in peripheral benzodiazepine binding sites. The tissue-specific pattern of DBI gene expression described here could be exploited to further understand the physiological function of DBI in the brain and periphery.

  4. Central brain neurons expressing doublesex regulate female receptivity in Drosophila.

    Science.gov (United States)

    Zhou, Chuan; Pan, Yufeng; Robinett, Carmen C; Meissner, Geoffrey W; Baker, Bruce S

    2014-07-02

    Drosophila melanogaster females respond to male courtship by either rejecting the male or allowing copulation. The neural mechanisms underlying these female behaviors likely involve the integration of sensory information in the brain. Because doublesex (dsx) controls other aspects of female differentiation, we asked whether dsx-expressing neurons mediate virgin female receptivity to courting males. Using intersectional techniques to manipulate the activities of defined subsets of dsx-expressing neurons, we found that activation of neurons in either the pCd or pC1 clusters promotes receptivity, while silencing these neurons makes females unreceptive. Furthermore, pCd and pC1 neurons physiologically respond to the male-specific pheromone cis-vaccenyl acetate (cVA), while pC1 neurons also respond to male courtship song. The pCd and pC1 neurons expressing dsx in females do not express transcripts from the fruitless (fru) P1 promoter. Thus, virgin female receptivity is controlled at least in part by neurons that are distinct from those governing male courtship.

  5. Naoxintong dose effects on inflammatory factor expression in the rat brain following focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Xiangjian Zhang; Li Xü; Zuoran Chen; Shuchao Hu; Liying Zhang; Haiyan Li; Ruichun Liu

    2008-01-01

    BACKGROUND: Certain components of tetramethylpyrazine, a traditional Chinese medicine, exhibit protective effects against brain injury.OBJECTIVE: To investigate the effects of different Naoxintong doses on expression of nuclear factor-kappa B (κ B), interleukin-6, tumor necrosis factor-α, and complement 3 in rats following focal cerebral ischemia.DESIGN, TIME AND SETTING: The randomized experiment was performed at the Laboratory of Neurology, Second Hospital of Hebei Medical University from June 2004 to June 2006. MATERIAIS: A total of 150 adult, healthy, male, Sprague Dawley rats, weighing 280-320 g, were selected. Naoxintong powder (mainly comprising szechwan lovage rhizome, milkvetch root, danshen root, and radix angelicae sinensis) was obtained from Buchang Pharmacy Co., Ltd. in Xianyang City of Shanxi Province of China, lot number 040608.METHODS: The rats were randomly assigned into sham operation, saline, high-dose Naoxintong, moderate-dose Naoxintong, and low-dose Naoxintong groups, with 30 rats in each group. Rat models of middle cerebral artery occlusion were established using the suture method, with the exception of the sham operation group. Rats in the high-dose, moderate-dose and low-dose Naoxintong groups received 4, 2, and 1 glkg Naoxintong respectively, by gavage. Rats in the saline group were treated with 1 mL saline by gavage. All rats were administered by garage at 5 and 23 hours following surgery, and subsequently, once per day.MAIN OUTCOME MEASURES: At 6, 24, 48, 72 hours, and 7 days following model establishment, brain water content was measured. Histopathological changes in brain tissues were detected using hematoxylin-eosin staining. Expression of nuclear factor- κB, interleukin-6, tumor necrosis factor-α, and complement 3 was examined by immunohistochemistry.RESULTS: A total of 150 rats were included in the final analysis with no loss. Brain water content was significantly increased in the ischemic hemisphere of rats from the saline, as

  6. Traumatic brain injury upregulates phosphodiesterase expression in the hippocampus

    Directory of Open Access Journals (Sweden)

    Nicole M Wilson

    2016-02-01

    Full Text Available Traumatic brain injury (TBI results in significant impairments in hippocampal synaptic plasticity. A molecule critically involved in hippocampal synaptic plasticity, 3',5'-cyclic adenosine monophosphate (cAMP, is downregulated in the hippocampus after TBI, but the mechanism that underlies this decrease is unknown. To address this question, we determined whether phosphodiesterase (PDE expression in the hippocampus is altered by TBI. Young adult male Sprague Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. Animals were analyzed by western blotting for changes in PDE expression levels in the hippocampus. We found that PDE1A levels were significantly increased at 30 min, 1 hr and 6 hr after TBI. PDE4B2 and 4D2 were also significantly increased at 1, 6 and 24 hr after TBI. Additionally, phosphorylation of PDE4A was significantly increased at 6 and 24 hr after TBI. No significant changes were observed in levels of PDE1B, 1C, 3A, 8A or 8B between 30 min to 7 days after TBI. To determine the spatial profile of these increases, we used immunohistochemistry and flow cytometry at 24 hr after TBI. PDE1A and phospho-PDE4A localized to neuronal cell bodies. PDE4B2 was expressed in neuronal dendrites, microglia and infiltrating CD11b+ immune cells. PDE4D was predominantly found in microglia and infiltrating CD11b+ immune cells. To determine if inhibition of PDE4 would improve hippocampal synaptic plasticity deficits after TBI, we treated hippocampal slices with rolipram, a pan-PDE4 inhibitor. Rolipram partially rescued the depression in basal synaptic transmission and converted a decaying form of LTP into long-lasting LTP. Overall, these results identify several possible PDE targets for reducing hippocampal synaptic plasticity deficits and improving cognitive dysfunction acutely after TBI.

  7. Upregulation of miR-183 expression and its clinical significance in human brain glioma.

    Science.gov (United States)

    Ye, Zhennan; Zhang, Zihuan; Wu, Lingyun; Liu, Cegang; Chen, Qiang; Liu, Jingpeng; Wang, Xiaoliang; Zhuang, Zong; Li, Wei; Xu, Shanshui; Hang, Chunhua

    2016-08-01

    Glioma is the most common type of primary malignant tumor in the central nervous system (CNS) with a high incidence and a high mortality rate, as well as an extremely low 5-year survival rate. As a class of small non-coding RNAs, microRNAs (miRNAs) may be closely involved in carcinogenesis and might also be connected with glioma diagnosis and prognosis. In this study, we aimed at investigating the expression level of microRNA-183 (miR-183) in 105 cases of glioma tissues of four World Health Organization (WHO) grades and 10 cases of normal brain tissues and its potential predictive and prognostic values in glioma. We found that the expression levels of miR-183 were significantly higher in glioma tissues than that in normal brain tissues, and also higher in high-grade gliomas (WHO grade III and IV) compared with low-grade gliomas (WHO grade I and II). The miR-183 expression level was classified as low or high according to the median value. High expression of miR-183 was found to significantly correlate with larger tumor size, higher WHO grade, and worse Karnofsky performance score (KPS). Kaplan-Meier survival analysis showed that patients with high miR-183 expression had worse overall survival (OS) and progression-free survival (PFS) than patients with low miR-183 expression. Moreover, univariate and multivariate analyses indicated that miR-183 expression level was an independent prognostic parameter of a patient's OS and PFS. In conclusion, our study indicated that miR-183 was upregulated in glioma, and that it may be used as a potential biomarker of poor prognosis in patients with glioma.

  8. Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats

    Directory of Open Access Journals (Sweden)

    Das Mahasweta

    2011-10-01

    Full Text Available Abstract Background Traumatic brain injury (TBI evokes a systemic immune response including leukocyte migration into the brain and release of pro-inflammatory cytokines; however, the mechanisms underlying TBI pathogenesis and protection are poorly understood. Due to the high incidence of head trauma in the sports field, battlefield and automobile accidents identification of the molecular signals involved in TBI progression is critical for the development of novel therapeutics. Methods In this report, we used a rat lateral fluid percussion impact (LFPI model of TBI to characterize neurodegeneration, apoptosis and alterations in pro-inflammatory mediators at two time points within the secondary injury phase. Brain histopathology was evaluated by fluoro-jade (FJ staining and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL assay, polymerase chain reaction (qRT PCR, enzyme linked immunosorbent assay (ELISA and immunohistochemistry were employed to evaluate the CCL20 gene expression in different tissues. Results Histological analysis of neurodegeneration by FJ staining showed mild injury in the cerebral cortex, hippocampus and thalamus. TUNEL staining confirmed the presence of apoptotic cells and CD11b+ microglia indicated initiation of an inflammatory reaction leading to secondary damage in these areas. Analysis of spleen mRNA by PCR microarray of an inflammation panel led to the identification of CCL20 as an important pro-inflammatory signal upregulated 24 h after TBI. Although, CCL20 expression was observed in spleen and thymus after 24h of TBI, it was not expressed in degenerating cortex or hippocampal neurons until 48 h after insult. Splenectomy partially but significantly decreased the CCL20 expression in brain tissues. Conclusion These results demonstrate that the systemic inflammatory reaction to TBI starts earlier than the local brain response and suggest that spleen- and/ or thymus-derived CCL20 might play a role in

  9. MicroRNA expression and regulation in human, chimpanzee, and macaque brains.

    Directory of Open Access Journals (Sweden)

    Hai Yang Hu

    2011-10-01

    Full Text Available Among other factors, changes in gene expression on the human evolutionary lineage have been suggested to play an important role in the establishment of human-specific phenotypes. However, the molecular mechanisms underlying these expression changes are largely unknown. Here, we have explored the role of microRNA (miRNA in the regulation of gene expression divergence among adult humans, chimpanzees, and rhesus macaques, in two brain regions: prefrontal cortex and cerebellum. Using a combination of high-throughput sequencing, miRNA microarrays, and Q-PCR, we have shown that up to 11% of the 325 expressed miRNA diverged significantly between humans and chimpanzees and up to 31% between humans and macaques. Measuring mRNA and protein expression in human and chimpanzee brains, we found a significant inverse relationship between the miRNA and the target genes expression divergence, explaining 2%-4% of mRNA and 4%-6% of protein expression differences. Notably, miRNA showing human-specific expression localize in neurons and target genes that are involved in neural functions. Enrichment in neural functions, as well as miRNA-driven regulation on the human evolutionary lineage, was further confirmed by experimental validation of predicted miRNA targets in two neuroblastoma cell lines. Finally, we identified a signature of positive selection in the upstream region of one of the five miRNA with human-specific expression, miR-34c-5p. This suggests that miR-34c-5p expression change took place after the split of the human and the Neanderthal lineages and had adaptive significance. Taken together these results indicate that changes in miRNA expression might have contributed to evolution of human cognitive functions.

  10. Expressive aphasia caused by Streptococcus intermedius brain abscess in an immunocompetent patient

    Directory of Open Access Journals (Sweden)

    Khaja M

    2017-01-01

    diffusion and diffuse surrounding vasogenic edema consistent with abscess. The patient was also seen by the neurosurgery department and underwent stereotactic, left temporal craniotomy, with drainage, and resection of abscess. Tissue culture grew S. intermedius sensitive to ampicillin sulbactam. Subsequently her expressive aphasia improved. Conclusion: Brain abscess has a high mortality, however a significant proportion of patients with appropriately treated abscess recover completely and can survive without significant neurologic damage. Advanced imaging modalities may yield more accurate methods of differentiation of mass lesions in the brain. Biopsy of brain lesion with early initiation of appropriate antibiotics will change the outcome. Keywords: expressive aphasia, Streptococcus intermedius, brain abscess

  11. The Changes of Gene Expression in Honeybee (Apis mellifera) Brains Associated with Ages(Behavior Biology)

    OpenAIRE

    Mayumi, Tsuchimoto; Makoto, AOKI; Mamoru, Takada; Yoshinori, Kanou; Hiromi, Sasagawa; Yasuo, Kitagawa; Tatsuhiko, Kadowaki; Department of Applied Biological Sciences School of Agricultural Sciences, Nagoya University Chikusa; Tokyo Metropolitan Institute for Neuroscience; Graduate Program for Regulation of Biological Signals Graduate School of Bioagricultural Sciences, Nagoya University Chikusa

    2004-01-01

    Honeybee (Apis mellifera) worker bees (workers) are known to perform wide variety of tasks depending on their ages. The worker's brains also show the activity and behavior-dependent chemical and structural plasticity. To test if there are any changes of gene expression associated with different ages in the worker brains, we compared the gene expression patterns between the brains of newly emerged bees and old foraging workers (foragers) by macroarray analysis. The expression of genes encoding...

  12. Identification of differentially expressed microRNAs across the developing human brain.

    Science.gov (United States)

    Ziats, M N; Rennert, O M

    2014-07-01

    We present a spatio-temporal assessment of microRNA (miRNA) expression throughout early human brain development. We assessed the prefrontal cortex, hippocampus and cerebellum of 18 normal human donor brains spanning infancy through adolescence by RNA-seq. We discovered differentially expressed miRNAs and broad miRNA patterns across both temporal and spatial dimensions, and between male and female prefrontal cortex. Putative target genes of the differentially expressed miRNAs were identified, which demonstrated functional enrichment for transcription regulation, synaptogenesis and other basic intracellular processes. Sex-biased miRNAs also targeted genes related to Wnt and transforming growth factor-beta pathways. The differentially expressed miRNA targets were highly enriched for gene sets related to autism, schizophrenia, bipolar disorder and depression, but not neurodegenerative diseases, epilepsy or other adult-onset psychiatric diseases. Our results suggest critical roles for the identified miRNAs in transcriptional networks of the developing human brain and neurodevelopmental disorders.

  13. Sex-dependent gene expression in early brain development of chicken embryos

    Directory of Open Access Journals (Sweden)

    Stigson Michael

    2006-02-01

    Full Text Available Abstract Background Differentiation of the brain during development leads to sexually dimorphic adult reproductive behavior and other neural sex dimorphisms. Genetic mechanisms independent of steroid hormones produced by the gonads have recently been suggested to partly explain these dimorphisms. Results Using cDNA microarrays and real-time PCR we found gene expression differences between the male and female embryonic brain (or whole head that may be independent of morphological differentiation of the gonads. Genes located on the sex chromosomes (ZZ in males and ZW in females were common among the differentially expressed genes, several of which (WPKCI-8, HINT, MHM non-coding RNA have previously been implicated in avian sex determination. A majority of the identified genes were more highly expressed in males. Three of these genes (CDK7, CCNH and BTF2-P44 encode subunits of the transcription factor IIH complex, indicating a role for this complex in neuronal differentiation. Conclusion In conclusion, this study provides novel insights into sexually dimorphic gene expression in the embryonic chicken brain and its possible involvement in sex differentiation of the nervous system in birds.

  14. To what extent is blood a reasonable surrogate for brain in gene expression studies: estimation from mouse hippocampus and spleen

    Directory of Open Access Journals (Sweden)

    Matthew N Davies

    2009-10-01

    Full Text Available Microarrays are designed to measure genome-wide differences in gene expression. In cases where a tissue is not accessible for analysis (e.g. human brain, it is of interest to determine whether a second, accessible tissue could be used as a surrogate for transcription profiling. Surrogacy has applications in the study of behavioural and neurodegenerative disorders. Comparison between hippocampus and spleen mRNA obtained from a mouse recombinant inbred panel indicates a high degree of correlation between the tissues for genes that display a high heritability of expression level. This correlation is not limited to apparent expression differences caused by sequence polymorphisms in the target sequences and includes both cis and trans genetic effects. A tissue such as blood could therefore give surrogate information on expression in brain for a subset of genes, in particular those co-expressed between the two tissues, which have heritably varying expression.

  15. To What Extent is Blood a Reasonable Surrogate for Brain in Gene Expression Studies: Estimation from Mouse Hippocampus and Spleen.

    Science.gov (United States)

    Davies, Matthew N; Lawn, Sarah; Whatley, Steven; Fernandes, Cathy; Williams, Robert W; Schalkwyk, Leonard C

    2009-01-01

    Microarrays are designed to measure genome-wide differences in gene expression. In cases where a tissue is not accessible for analysis (e.g. human brain), it is of interest to determine whether a second, accessible tissue could be used as a surrogate for transcription profiling. Surrogacy has applications in the study of behavioural and neurodegenerative disorders. Comparison between hippocampus and spleen mRNA obtained from a mouse recombinant inbred panel indicates a high degree of correlation between the tissues for genes that display a high heritability of expression level. This correlation is not limited to apparent expression differences caused by sequence polymorphisms in the target sequences and includes both cis and trans genetic effects. A tissue such as blood could therefore give surrogate information on expression in brain for a subset of genes, in particular those co-expressed between the two tissues, which have heritably varying expression.

  16. Myoglobin Expression in Chelonia mydas Brain, Heart and Liver Tissues

    Directory of Open Access Journals (Sweden)

    RINI PUSPITANINGRUM

    2010-09-01

    Full Text Available An understanding of the underpinning physiology and biochemistry of animals is essential to properly understand the impact of anthropogenic changes and natural catastrophes upon the conservation of endangered species. An observation on the tissue location of the key respiratory protein, myoglobin, now opens up new opportunities for understanding how hypoxia tolerance impacts on diving lifestyle in turtles. The respiratory protein, myoglobin has functions other than oxygen binding which are involved in hypoxia tolerance, including metabolism of reactive oxygen species and of the vascular function by metabolism of nitric oxide. Our work aims to determine whether myoglobin expression in the green turtle exists in multiple non muscle tissues and to confirm the hypothesis that reptiles also have a distributed myoglobin expression which is linked to the hypoxiatolerant trait. This initial work in turtle hatch Chelonia mydas confirms the presence of myoglobin transcriptin brain, heart and liver tissues. Furthermore, it will serve as a tool for completing the sequence and generating an in situ hybridization probe for verifying of cell location in expressing tissues.

  17. Effects of different endocrine disruptor (EDC) mixtures on gene expression in neonatal rat brain regions

    DEFF Research Database (Denmark)

    Lichtensteiger, Walter; Bassetti-Gaille, Catherine; Faass, Oliver

    2013-01-01

    EDC mixtures on gene expression in developing brain. Amix (8 anti-androgenic chemicals), Emix (4 estrogenic chemicals) and Tmix (Amix + Emix + paracetamol recently identified as anti-androgenic) were administered by oral gavage to rat dams from gestational day 7 until weaning, at doses corresponding...... to 450×, 200× and 100× high end human intakes (S. Christiansen et al., 2012. International Journal of Andrology 35, 303). At postnatal day 6, during the last part of sexual brain differentiation, exon microarray analyses were performed in medial preoptic area (MPO) in the highest dose group, and real...... of individual mRNAs demonstrated treatment- and sex-dependent differences between MPO and VMH. Effects were dose-dependent. Prominent are effects on the expression of genes involved in excitatory glutamatergic synapse formation and function. These data indicate that effects of complex EDC mixtures on developing...

  18. Preliminary observation of genes specifically expressed in brain tissues during stroke-like episodes in rats

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-mei; ZHAO Bin; ZHU Shan-jun; ZHU Zhi-ming; ZHANG Qian; HUI Ru-tai

    2001-01-01

    Objective: To observe the difference of gene expressions of brain tissues during apoplectic episodes and those of normal brain in Wistar rats in order to study the pathological mechanism of apoplexy. Methods: A rat model of hypertension was established with the administration of cold stimulus and high salt intake as the environmental risk factors.Apoplexy occurred in the rats because of hypertension. Suppression subtractive hybridization(SSH) was used to identify and analyze the differential genes specifically expressed in cerebral tissues of stoke group and control rats. Results: A total of 226 genes out of the 228 were usable and analyzed. The average length of the 226 genes was (286.6±120.3) bp with a range from 50 bp to 619 bp. And 126 clones out of the 226 showed a sequence with significant identity to the known genes; 78 clones demonstrated homogenous sequences to the existing ESTs ofdbEST, but no one of the 78 showed sequence with identity to that of known genes; and remaining 22 were novel transrcipts exhibiting no similarity to any known sequences. All the clones which were highly homogenous to the known genes were categorized on the basis of their function. It was found that 26.5% of the mitochodrial genes in brain tissues underwent changes after apoplexy and the changes showed a twofold relationship of cause and effect. Conclusion: Environmental factors are able to induce changes of gene expression, which may increase the sensitivity to apoplectic stroke.

  19. Developmental traumatic brain injury decreased brain derived neurotrophic factor expression late after injury.

    Science.gov (United States)

    Schober, Michelle Elena; Block, Benjamin; Requena, Daniela F; Hale, Merica A; Lane, Robert H

    2012-06-01

    Pediatric traumatic brain injury (TBI) is a major cause of acquired cognitive dysfunction in children. Hippocampal Brain Derived Neurotrophic Factor (BDNF) is important for normal cognition. Little is known about the effects of TBI on BDNF levels in the developing hippocampus. We used controlled cortical impact (CCI) in the 17 day old rat pup to test the hypothesis that CCI would first increase rat hippocampal BDNF mRNA/protein levels relative to SHAM and Naïve rats by post injury day (PID) 2 and then decrease BDNF mRNA/protein by PID14. Relative to SHAM, CCI did not change BDNF mRNA/protein levels in the injured hippocampus in the first 2 days after injury but did decrease BDNF protein at PID14. Surprisingly, BDNF mRNA decreased at PID 1, 3, 7 and 14, and BDNF protein decreased at PID 2, in SHAM and CCI hippocampi relative to Naïve. In conclusion, TBI decreased BDNF protein in the injured rat pup hippocampus 14 days after injury. BDNF mRNA levels decreased in both CCI and SHAM hippocampi relative to Naïve, suggesting that certain aspects of the experimental paradigm (such as craniotomy, anesthesia, and/or maternal separation) may decrease the expression of BDNF in the developing hippocampus. While BDNF is important for normal cognition, no inferences can be made regarding the cognitive impact of any of these factors. Such findings, however, suggest that meticulous attention to the experimental paradigm, and possible inclusion of a Naïve group, is warranted in studies of BDNF expression in the developing brain after TBI.

  20. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Directory of Open Access Journals (Sweden)

    Veronica H Ryan

    Full Text Available The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades.AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging.The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism.Expression patterns were split into Development (0 to 20 years and Aging (21 to 78 years intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2, cyclooxygenases (COX-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA and PTGS2 (COX-2 genes at 1q25, highly inter-correlated genes were at distant chromosomal loci.Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  1. Effect of microgravity on gene expression in mouse brain.

    Science.gov (United States)

    Frigeri, Antonio; Iacobas, Dumitru A; Iacobas, Sanda; Nicchia, Grazia Paola; Desaphy, Jean Francois; Camerino, Diana Conte; Svelto, Maria; Spray, David C

    2008-11-01

    Changes in gravitational force such as that experienced by astronauts during space flight induce a redistribution of fluids from the caudad to the cephalad portion of the body together with an elimination of normal head-to-foot hydrostatic pressure gradients. To assess brain gene profile changes associated with microgravity and fluid shift, a large-scale analysis of mRNA expression levels was performed in the brains of 2-week control and hindlimb-unloaded (HU) mice using cDNA microarrays. Although to different extents, all functional categories displayed significantly regulated genes indicating that considerable transcriptomic alterations are induced by HU. Interestingly, the TIC class (transport of small molecules and ions into the cells) had the highest percentage of up-regulated genes, while the most down-regulated genes were those of the JAE class (cell junction, adhesion, extracellular matrix). TIC genes comprised 16% of those whose expression was altered, including sodium channel, nonvoltage-gated 1 beta (Scnn1b), glutamate receptor (Grin1), voltage-dependent anion channel 1 (Vdac1), calcium channel beta 3 subunit (Cacnb3) and others. The analysis performed by GeneMAPP revealed several altered protein classes and functional pathways such as blood coagulation and immune response, learning and memory, ion channels and cell junction. In particular, data indicate that HU causes an alteration in hemostasis which resolves in a shift toward a more hyper-coagulative state with an increased risk of venous thrombosis. Furthermore, HU treatment seems to impact on key steps of synaptic plasticity and learning processes.

  2. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    Institute of Scientific and Technical Information of China (English)

    De-guo Jiang; Shi-li Jin; Gong-ying Li; Qing-qing Li; Zhi-ruo Li; Hong-xia Ma; Chuan-jun Zhuo; Rong-huan Jiang; Min-jie Ye

    2016-01-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry andin situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no signiifcant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our ifndings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  3. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    Directory of Open Access Journals (Sweden)

    De-guo Jiang

    2016-01-01

    Full Text Available Previous studies suggest that serotonin (5-HT might interact with brain-derived neurotrophic factor (BDNF during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  4. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress.

    Science.gov (United States)

    Jiang, De-Guo; Jin, Shi-Li; Li, Gong-Ying; Li, Qing-Qing; Li, Zhi-Ruo; Ma, Hong-Xia; Zhuo, Chuan-Jun; Jiang, Rong-Huan; Ye, Min-Jie

    2016-09-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  5. Commentary: BRAIN NETWORKS. Correlated Gene Expression Supports Synchronous Activity in Brain Networks. Science 348, 1241–4

    Directory of Open Access Journals (Sweden)

    Spiro P. Pantazatos

    2017-07-01

    Full Text Available A recent report claims that functional brain networks defined with resting-state functional magnetic resonance imaging (fMRI can be recapitulated with correlated gene expression (i.e., high within-network tissue-tissue “strength fraction,” SF (Richiardi et al., 2015. However, the authors do not adequately control for spatial proximity. We replicated their main analysis, performed a more effective adjustment for spatial proximity, and tested whether “null networks” (i.e., clusters with center coordinates randomly placed throughout cortex also exhibit high SF. Removing proximal tissue-tissue correlations by Euclidean distance, as opposed to removing correlations within arbitrary tissue labels as in Richiardi et al. (2015, reduces within-network SF to no greater than null. Moreover, randomly placed clusters also have significantly high SF, indicating that high within-network SF is entirely attributable to proximity and is unrelated to functional brain networks defined by resting-state fMRI. We discuss why additional validations in the original article are invalid and/or misleading and suggest future directions.

  6. The expression of the Goodpasture antigen-binding protein (ceramide transporter) in adult rat brain.

    Science.gov (United States)

    Mencarelli, Chiara; Hammels, Caroline; Van Den Broeck, Joost; Losen, Mario; Steinbusch, Hellen; Revert, Francisco; Saus, Juan; Hopkins, David A; De Baets, Marc H; Steinbusch, Harry W; Martinez-Martinez, Pilar

    2009-10-01

    The Goodpasture antigen-binding protein (GPBP) plays a critical role in brain development. Knockdown of GPBP leads to loss of myelinated tracts in the central nervous system and to extensive apoptosis in the brain during early embryogenesis. GPBP was initially identified as a protein associated with the autoantigen in Goodpasture autoimmune syndrome, where it was shown to be a kinase that regulates type IV collagen organization. GPBP isoforms bind and transport ceramide from the endoplasmic reticulum to the Golgi apparatus and are therefore also known as ceramide transporters (CERT). Ceramide dysregulation is involved in autoimmunity and neurodegenerative disorders. In order to analyze the possible role of GPBP in neuroinflammation and neurodegeneration we studied the basal GPBP expression in normal rat brain. High levels of immunoreactivity were detected in neurons of the cerebral cortex, hippocampal formation, the basal ganglia, the olfactory bulb and nuclei of the thalamus, the hypothalamus and the septal area. Lower expression levels of GPBP were observed widely throughout the brain, suggesting that GPBP plays an important role in central nervous system neuron function.

  7. Exposure to a Highly Caloric Palatable Diet during the Perinatal Period Affects the Expression of the Endogenous Cannabinoid System in the Brain, Liver and Adipose Tissue of Adult Rat Offspring

    OpenAIRE

    Ramírez-López, María Teresa; Arco, Raquel; Decara, Juan; Vázquez, Mariam; Noemí Blanco, Rosario; Alén, Francisco; Suárez, Juan; Gómez de Heras, Raquel; Rodríguez de Fonseca, Fernando

    2016-01-01

    Recent studies have linked gestational exposure to highly caloric diets with a disrupted endogenous cannabinoid system (ECS). In the present study, we have extended these studies by analyzing the impact of the exposure to a palatable diet during gestation and lactation on a) the adult expression of endocannabinoid-related behaviors, b) the metabolic profile of adult offspring and c) the mRNA expression of the signaling machinery of the ECS in the hypothalamus, the liver and the adipose tissue...

  8. Correlation between heat shock protein 70 expression in the brain stem and sudden death after experimental traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lian-xu; XU Xiao-hu; LIU Chao; PAN Su-yue; ZHU Jia-zhen; ZHANG Cheng

    2001-01-01

    Objective: The aim of this study was to determine the patterns of heat-shock protein 70 (HSP70) biosynthesis following traumatic brain injury, and observe the effect of HSP70 induction on the function of the vital center in the brain stem. Methods: Rat models of sudden death resulted form traumatic brain injury were produced, and HSP70 expression in the rat brain stem was determined by immunohistochemistry, the induction of HSP70 mRNA detected by RT-PCR. Results: The level of HSP70 mRNA was prominently elevated in the brain stem as early as 1 5 min following the impact injury, while HSP70 expression was only observed 3 to 6 h after the injury. It was also observed that the levels of HSP70 mRNA but not the protein were elevated in the brain stem of sudden death rats. Conclusion: The synthesis of HSP70 was significantly enhanced in the brain stem following traumatic injury, and the expression of HSP70 is beneficial to eliminate the stress agents, and to sustain the cellular protein homeostasis. When the injury disturbs the synthesis of HSP70 to disarm the protective mechanism of heat-shock proteins, dysfunction of the vital center in the brain stem, and consequently death may occur. Breach in the synchronization of HSP70 mRNA-protein can be indicative of fatal damage to the nerve cells.

  9. Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage.

    Science.gov (United States)

    Kokaia, Z; Zhao, Q; Kokaia, M; Elmér, E; Metsis, M; Smith, M L; Siesjö, B K; Lindvall, O

    1995-11-01

    Levels of mRNA for c-fos, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), TrkB, and TrkC were studied using in situ hybridization in the rat brain at different reperfusion times after unilateral middle cerebral artery occlusion (MCAO). Short-term (15 min) MCAO, which does not cause neuronal death, induced elevated BDNF mRNA expression confined to ipsilateral frontal and cingulate cortices outside the ischemic area. With a longer duration of MCAO (2 h), which leads to cortical infarction, the increase was more marked and elevated BDNF mRNA levels were also detected bilaterally in dentate granule cells and CA1 and CA3 pyramidal neurons. Maximum expression was found after 2 h of reperfusion. At 24 h BDNF mRNA expression had returned to control values. In the ischemic core of the parietal cortex only scattered neurons were expressing high levels of BDNF mRNA after 15 min and 2 h of MCAO. Analysis of different BDNF transcripts showed that MCAO induced a marked increase of exon III mRNA but only small increases of exon I and II mRNAs in cortex and hippocampus. In contrast to BDNF mRNA, elevated expression of c-fos mRNA was observed in the entire ipsilateral cerebral cortex, including the ischemic core, after both 15 min and 2 h of MCAO. Two hours of MCAO also induced transient, bilateral increases of NGF and TrkB mRNA levels and a decrease of NT-3 mRNA expression, confined to dentate granule cells. The upregulation of BDNF mRNA expression in cortical neurons after MCAO is probably triggered by glutamate through a spreading depression-like mechanism. The lack of response of the BDNF gene in the ischemic core may be due to suppression of signal transduction or transcription factor synthesis caused by the ischemia. The observed pattern of gene expression after MCAO agrees well with a neuroprotective role of BDNF in cortical neurons. However, elevated levels of NGF and BDNF protein could also increase synaptic efficacy in the

  10. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System

    DEFF Research Database (Denmark)

    Beliveau, Vincent; Ganz, Melanie; Feng, Ling

    2017-01-01

    associations between protein expression and density at high detail. This new in vivo neuroimaging atlas of the 5-HT system not only provides insight in the human brain's regional protein synthesis, transport, and density, but also represents a valuable source of information for the neuroscience community......The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4...... brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system...

  11. Aquaporin 4 expression and ultrastructure of the blood-brain barrier following cerebral contusion injury

    Institute of Scientific and Technical Information of China (English)

    Xinjun Li; Yangyun Han; Hong Xu; Zhongshu Sun; Zengjun Zhou; Xiaodong Long; Yumin Yang; Linbo Zou

    2013-01-01

    This study aimed to investigate aquaporin 4 expression and the ultrastructure of the blood-brain barrier at 2–72 hours following cerebral contusion injury, and correlate these changes to the formation of brain edema. Results revealed that at 2 hours after cerebral contusion and laceration injury, aquaporin 4 expression significantly increased, brain water content and blood-brain barrier permeability increased, and the number of pinocytotic vesicles in cerebral microvascular endothelial cells increased. In addition, the mitochondrial accumulation was observed. As contusion and laceration injury became aggravated, aquaporin 4 expression continued to increase, brain water content and blood-brain barrier permeability gradually increased, brain capillary endothelial cells and astrocytes swelled, and capillary basement membrane injury gradually increased. The above changes were most apparent at 12 hours after injury, after which they gradually attenuated. Aquaporin 4 expression positively correlated with brain water content and the blood-brain barrier index. Our experimental findings indicate that increasing aquaporin 4 expression and blood-brain barrier permeability after cerebral contusion and laceration injury in humans is involved in the formation of brain edema.

  12. BrainMaps.org - Interactive High-Resolution Digital Brain Atlases and Virtual Microscopy.

    Science.gov (United States)

    Mikula, Shawn; Stone, James M; Jones, Edward G

    2008-01-01

    BrainMaps.org is an interactive high-resolution digital brain atlas and virtual microscope that is based on over 20 million megapixels of scanned images of serial sections of both primate and non-primate brains and that is integrated with a high-speed database for querying and retrieving data about brain structure and function over the internet. Complete brain datasets for various species, including Homo sapiens, Macaca mulatta, Chlorocebus aethiops, Felis catus, Mus musculus, Rattus norvegicus, and Tyto alba, are accessible online. The methods and tools we describe are useful for both research and teaching, and can be replicated by labs seeking to increase accessibility and sharing of neuroanatomical data. These tools offer the possibility of visualizing and exploring completely digitized sections of brains at a sub-neuronal level, and can facilitate large-scale connectional tracing, histochemical and stereological analyses.

  13. Brain Activity while Reading Sentences with Kanji Characters Expressing Emotions

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe the brain activity associated with kanji characters expressing emotion, which are places at the end of a sentence. Japanese people use a special kanji character in brackets at the end of sentences in text messages such as those sent through e-mail and messenger tools. Such kanji characters plays a role to expresses the sender's emotion (such as fun, laughter, sadness, tears), like emoticons. It is a very simple and effective way to convey the senders' emotions and his/her thoughts to the receiver. In this research, we investigate the effects of emotional kanji characters by using an fMRI study. The experimental results show that both the right and left inferior frontal gyrus, which have been implicated on verbal and nonverbal information, were activated. We found that we detect a sentence with an emotional kanji character as the verbal and nonverval information, and a sentence with emotional kanji characters enrich communication between the sender and the reciever.

  14. Rate of evolution in brain-expressed genes in humans and other primates.

    Directory of Open Access Journals (Sweden)

    Hurng-Yi Wang

    2007-02-01

    Full Text Available Brain-expressed genes are known to evolve slowly in mammals. Nevertheless, since brains of higher primates have evolved rapidly, one might expect acceleration in DNA sequence evolution in their brain-expressed genes. In this study, we carried out full-length cDNA sequencing on the brain transcriptome of an Old World monkey (OWM and then conducted three-way comparisons among (i mouse, OWM, and human, and (ii OWM, chimpanzee, and human. Although brain-expressed genes indeed appear to evolve more rapidly in species with more advanced brains (apes > OWM > mouse, a similar lineage effect is observable for most other genes. The broad inclusion of genes in the reference set to represent the genomic average is therefore critical to this type of analysis. Calibrated against the genomic average, the rate of evolution among brain-expressed genes is probably lower (or at most equal in humans than in chimpanzee and OWM. Interestingly, the trend of slow evolution in coding sequence is no less pronounced among brain-specific genes, vis-à-vis brain-expressed genes in general. The human brain may thus differ from those of our close relatives in two opposite directions: (i faster evolution in gene expression, and (ii a likely slowdown in the evolution of protein sequences. Possible explanations and hypotheses are discussed.

  15. Rate of Evolution in Brain-Expressed Genes in Humans and Other Primates

    Science.gov (United States)

    Wang, Hurng-Yi; Chien, Huan-Chieh; Osada, Naoki; Hashimoto, Katsuyuki; Sugano, Sumio; Gojobori, Takashi; Chou, Chen-Kung; Tsai, Shih-Feng; Wu, Chung-I; Shen, C.-K. James

    2007-01-01

    Brain-expressed genes are known to evolve slowly in mammals. Nevertheless, since brains of higher primates have evolved rapidly, one might expect acceleration in DNA sequence evolution in their brain-expressed genes. In this study, we carried out full-length cDNA sequencing on the brain transcriptome of an Old World monkey (OWM) and then conducted three-way comparisons among (i) mouse, OWM, and human, and (ii) OWM, chimpanzee, and human. Although brain-expressed genes indeed appear to evolve more rapidly in species with more advanced brains (apes > OWM > mouse), a similar lineage effect is observable for most other genes. The broad inclusion of genes in the reference set to represent the genomic average is therefore critical to this type of analysis. Calibrated against the genomic average, the rate of evolution among brain-expressed genes is probably lower (or at most equal) in humans than in chimpanzee and OWM. Interestingly, the trend of slow evolution in coding sequence is no less pronounced among brain-specific genes, vis-à-vis brain-expressed genes in general. The human brain may thus differ from those of our close relatives in two opposite directions: (i) faster evolution in gene expression, and (ii) a likely slowdown in the evolution of protein sequences. Possible explanations and hypotheses are discussed. PMID:17194215

  16. Regional expression of Pax7 in the brain of Xenopus laevis during embryonic and larval development

    Directory of Open Access Journals (Sweden)

    Sandra eBandín

    2013-12-01

    Full Text Available Pax7 is a member of the highly conserved Pax gene family that is expressed in restricted zones of the central nervous system during development, being involved in early brain regionalization and the maintenance of the regional identity. Using sensitive immunohistochemical techniques we have analyzed the spatiotemporal pattern of Pax7 expression in the brain of the anuran amphibian Xenopus laevis, during development. Pax7 expression was first detected in early embryos in the basal plate of prosomere 3, roof and alar plates of prosomere 1 and mesencephalon, and the alar plate of rhombomere 1. As development proceeded, Pax7 cells were observed in the hypothalamus close to the catecholaminergic population of the mammillary region. In the diencephalon, Pax7 was intensely expressed in a portion of the basal plate of prosomere 3, in the roof plate and in scattered cells of the thalamus in prosomere 2, throughout the roof of prosomere 1, and in the commissural and juxtacommissural domains of the pretectum. In the mesencephalon, Pax7 cells were localized in the optic tectum and, to a lesser extent, in the torus semicircularis. The rostral portion of the alar part of rhombomere 1, including the ventricular layer of the cerebellum, expressed Pax7 and, gradually, some of these dorsal cells were observed to populate ventrally the interpeduncular nucleus and the isthmus (rhombomere 0. Additionally, Pax7 positive cells were found in the ventricular zone of the ventral part of the alar plate along the rhombencephalon and the spinal cord. The findings show that the strongly conserved features of Pax7 expression through development shared by amniote vertebrates are also present in the anamniote amphibians as a common characteristic of the brain organization of tetrapods.

  17. Repeated exposure to sublethal doses of the organophosphorus compound VX activates BDNF expression in mouse brain.

    Science.gov (United States)

    Pizarro, Jose M; Chang, Wenling E; Bah, Mariama J; Wright, Linnzi K M; Saviolakis, George A; Alagappan, Arun; Robison, Christopher L; Shah, Jinesh D; Meyerhoff, James L; Cerasoli, Douglas M; Midboe, Eric G; Lumley, Lucille A

    2012-04-01

    The highly toxic organophosphorus compound VX [O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonate] is an irreversible inhibitor of the enzyme acetylcholinesterase (AChE). Prolonged inhibition of AChE increases endogenous levels of acetylcholine and is toxic at nerve synapses and neuromuscular junctions. We hypothesized that repeated exposure to sublethal doses of VX would affect genes associated with cell survival, neuronal plasticity, and neuronal remodeling, including brain-derived neurotrophic factor (BDNF). We examined the time course of BDNF expression in C57BL/6 mouse brain following repeated exposure (1/day × 5 days/week × 2 weeks) to sublethal doses of VX (0.2 LD(50) and 0.4 LD(50)). BDNF messenger RNA expression was significantly (p VX exposure. BDNF protein expression, however, was only increased in the CA3 region of the hippocampus. Whether increased BDNF in response to sublethal doses of VX exposure is an adaptive response to prevent cellular damage or a precursor to impending brain damage remains to be determined. If elevated BDNF is an adaptive response, exogenous BDNF may be a potential therapeutic target to reduce the toxic effects of nerve agent exposure.

  18. Sex and stress hormone influences on the expression and activity of brain-derived neurotrophic factor.

    Science.gov (United States)

    Carbone, D L; Handa, R J

    2013-06-03

    The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of CNS ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in CNS development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of CNS physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids (GCs), have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor Tropomyosin-Related Kinase B by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but also in mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and GCs, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the CNS.

  19. Modulation of Microglial Cell Fcγ Receptor Expression Following Viral Brain Infection

    Science.gov (United States)

    Chauhan, Priyanka; Hu, Shuxian; Sheng, Wen S.; Prasad, Sujata; Lokensgard, James R.

    2017-01-01

    Fcγ receptors (FcγRs) for IgG couple innate and adaptive immunity through activation of effector cells by antigen-antibody complexes. We investigated relative levels of activating and inhibitory FcγRs on brain-resident microglia following murine cytomegalovirus (MCMV) infection. Flow cytometric analysis of microglial cells obtained from infected brain tissue demonstrated that activating FcγRs were expressed maximally at 5 d post-infection (dpi), while the inhibitory receptor (FcγRIIB) remained highly elevated during both acute and chronic phases of infection. The highly induced expression of activating FcγRIV during the acute phase of infection was also noteworthy. Furthermore, in vitro analysis using cultured primary microglia demonstrated the role of interferon (IFN)γ and interleukin (IL)-4 in polarizing these cells towards a M1 or M2 phenotype, respectively. Microglial cell-polarization correlated with maximal expression of either FcγRIV or FcγRIIB following stimulation with IFNγ or IL-4, respectively. Finally, we observed a significant delay in polarization of microglia towards an M2 phenotype in the absence of FcγRs in MCMV-infected Fcer1g and FcgR2b knockout mice. These studies demonstrate that neuro-inflammation following viral infection increases expression of activating FcγRs on M1-polarized microglia. In contrast, expression of the inhibitory FcγRIIB receptor promotes M2-polarization in order to shut-down deleterious immune responses and limit bystander brain damage. PMID:28165503

  20. Increasing vitamin A in post-weaning diets reduces food intake and body weight and modifies gene expression in brains of male rats born to dams fed a high multivitamin diet.

    Science.gov (United States)

    Sánchez-Hernández, Diana; Cho, Clara E; Kubant, Ruslan; Reza-López, Sandra A; Poon, Abraham N; Wang, Jingzhou; Huot, Pedro S P; Smith, Christopher E; Anderson, G Harvey

    2014-10-01

    High multivitamin gestational diets (HV, 10-fold AIN-93G levels) increase body weight (BW) and food intake (FI) in rat offspring weaned to a recommended multivitamin (RV), but not to a HV diet. We hypothesized that high vitamin A (HA) alone, similar to HV, in post-weaning diets would prevent these effects of the HV maternal diet consistent with gene expression in FI and reward pathways. Male offspring from dams fed HV diets were weaned to a high vitamin A (HA, 10-fold AIN-93G levels), HV or RV diet for 29 weeks. BW, FI, expression of genes involved in regulation of FI and reward and global and gene-specific DNA methylation of pro-opiomelanocortin (POMC) in the hypothalamus were measured. Both HV and HA diets slowed post-weaning weight gain and modified gene expression in offspring compared to offspring fed an RV post-weaning diet. Hypothalamic POMC expression in HA offspring was not different from either HV or RV, and dopamine receptor 1 was 30% (Pdiets reduces post-weaning weight gain and FI and modifies gene expression in FI and reward pathways.

  1. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes

    Science.gov (United States)

    Insulin resistance leads to memory impairment. Cinnamon (CN) improves whole body insulin resistance but its effects in the brain are not known. Changes in behavior, insulin signaling, and Alzheimer-associated gene expression in the brain were measured in male Wistar rats fed a high fat/high fructose...

  2. Effects of sex steroid hormones on neuromedin S and neuromedin U2 receptor expression following experimental traumatic brain injury.

    Science.gov (United States)

    Khaksari, Mohammad; Maghool, Fatemeh; Asadikaram, Gholamreza; Hajializadeh, Zahra

    2016-10-01

    Neuroprotective effects of female gonadal steroids are mediated through several pathways involving multiple peptides and receptors after traumatic brain injury (TBI). Two of these peptides are including the regulatory peptides neuromedin U (NMU) and neuromedin S (NMS), and their common receptor neuromedin U2 receptor (NMUR2). This study investigates the effects of physiological doses of estradiol and progesterone on brain edema, NMS and NMU as well as NMUR2 expression following TBI. Ovariectomized female rats were given high-and low-dose of female sex steroid hormones through implantation of capsules for a week before trauma. The brain NMUR2 expression, prepro-NMS expression, NMU content, and water content (brain edema) were evaluated 24 hr after TBI induced by Marmarou's method. Percentage of brain water content in high- and low-dose estradiol, and in high- and low- dose progesterone was less than vehicle (P<0.01). Results show high expression of prepro-NMS in high dose progesterone (TBI-HP) rats compared to the high dose estrogen (TBI-HE), as well as vehicle (P<0.01). NMU content in low-dose progesterone (TBI-LP) group was more than that of vehicle group (P<0.001). Furthermore a difference in NMU content observed between TBI-HP compared to TBI-HE, and vehicle (P<0.05). The NMUR2 mRNA expression revealed an upregulation in TBI-HP rats compared to the TBI-HE group (P<0.001). Findings indicate that progesterone attenuates brain edema and induces an increase in NMS and its receptor which may mediate the anti-edematous effect of progesterone after TBI.

  3. Novel Kv3 glycoforms differentially expressed in adult mammalian brain contain sialylated N-glycans.

    Science.gov (United States)

    Schwalbe, Ruth A; Corey, Melissa J; Cartwright, Tara A

    2008-02-01

    The N-glycan pool of mammalian brain contains remarkably high levels of sialylated N-glycans. This study provides the first evidence that voltage-gated K+ channels Kv3.1, Kv3.3, and Kv3.4, possess distinct sialylated N-glycan structures throughout the central nervous system of the adult rat. Electrophoretic migration patterns of Kv3.1, Kv3.3, and Kv3.4 glycoproteins from spinal cord, hypothalamus, thalamus, cerebral cortex, hippocampus, and cerebellum membranes digested with glycosidases were used to identify the various glycoforms. Differences in the migration of Kv3 proteins were attributed to the desialylated N-glycans. Expression levels of the Kv3 proteins were highest in cerebellum, whereas those of Kv3.1 and Kv3.3 were much lower in the other 5 regions. The lowest level of Kv3.1 was expressed in the hypothalamus, whereas the lowest levels of Kv3.3 were expressed in both thalamus and hypothalamus. The other regions expressed intermediate levels of Kv3.3, with spinal cord expressing the highest. The expression level of Kv3.4 in the hippocampus was slightly lower than that in cerebellum, and was closely followed by the other 4 regions, with spinal cord expressing the lowest level. We suggest that novel Kv3 glycoforms may endow differences in channel function and expression among regions throughout the central nervous system.

  4. Chicken FTO gene: tissue-specific expression, brain distribution, breed difference and effect of fasting.

    Science.gov (United States)

    Wang, Yufeng; Rao, Kaiqing; Yuan, Lixia; Everaert, Nadia; Buyse, Johan; Grossmann, Roland; Zhao, Ruqian

    2012-11-01

    Fat mass and obesity-associated (FTO) gene is widely expressed in central and peripheral tissues of mammals, and exhibits a range of functions, especially in energy balance. However, basic knowledge of FTO in the chicken is lacking. Therefore, we studied the tissue distribution, age and breed dependent changes, brain localization, as well as the impact of fasting on FTO mRNA expression in the chicken. FTO mRNA was expressed in all the tissues studied, and generally, with high expression in hypothalamus, liver, visceral fat and cerebellum. However it exhibited breed-specific patterns: in broilers, the highest expression was seen in the liver, while in layers, hypothalamus and cerebellum showed relatively higher FTO mRNA expression. One-week-old broilers expressed markedly higher FTO mRNA in liver compared with the layers of the same age (Pbreed difference was reversed in visceral fat and cerebellum (PBreed-specific expression of FTO mRNA was shown in PVN, but not in VMN, with higher abundance in broilers compared to layers. The decrease in FTO mRNA levels after 24h of fasting was seen only in VMN of layer chickens. These results may provide some intriguing hints for further investigation of FTO function in the chicken. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Increased expression of receptor for advanced glycation end-products worsens focal brain ischemia in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Ying Xing; Jinting He; Weidong Yu; Lingling Hou; Jiajun Chen

    2012-01-01

    A rat model of diabetes mellitus was induced by a high fat diet, followed by focal brain ischemia induced using the thread method after 0.5 month. Immunohistochemistry showed that expression of receptor for advanced glycation end-products was higher in the ischemic cortex of diabetic rats compared with non-diabetic rats with brain ischemia. Western blot assay revealed increased phosphorylated c-Jun N-terminal kinase expression, and unchanged phosphorylated extracellular signal-regulated protein kinase protein expression in the ischemic cortex of diabetic rats compared with non-diabetic rats with brain ischemia. Additionally, phosphorylated p38 mitogen-activated protein kinase protein was not detected in any rats in the two groups. Severity of limb hemiplegia was worse in diabetic rats with brain ischemia compared with ischemia alone rats. The results suggest that increased expression of receptor for advanced glycation end-products can further activate the c-Jun N-terminal kinase pathway in mitogen-activated protein kinase, thereby worsening brain injury associated with focal brain ischemia in diabetic rats.

  6. Expression of c-jun in brain stem following moderate lateral fluid percussion brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: To study the expression of c-jun in brain stem following moderate lateral fluid percussion brain injury in rats, and to observe the temporal patterns of its expressions following percussion.METHODS: Male Sprague-Dawley rats were divided into normal control, sham operation control and injury groups. The rats of injury group subjected to moderate lateral fluid percussion injury (0.2 mPa), and then were subdivided into 5 min, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h and 12 h groups according to the time elapsed after injury. The expression of c-jun was studied by immunohistochemistry and in situ hybridization. RESULTS: After percussion for 15 min, Jun positive neurons increased in brain stem progressively, and peaked at 12h. At 5min after percussion, the induction of c-jun mRNA was increased, and remained elevated up to 1h-2h after brain injury. CONCLUSION: The induction and expression of the c-jun in brain stem after fluid percussion brain injury were increased rapidly and lasted for a long time.

  7. Microvascular brain pathology on high resolution MRI

    NARCIS (Netherlands)

    Veluw, S.J. van

    2015-01-01

    Cerebral small vessel disease (SVD) is a common finding in the aging human brain and is associated with stroke, cognitive decline, and dementia. On autopsy, SVD encompasses pathological processes affecting small arteries and arterioles. Magnetic resonance imaging (MRI) detects the consequences of th

  8. Expression of metastasis-associated protein 3 in human brain glioma related to tumor prognosis.

    Science.gov (United States)

    Shan, Shouqin; Hui, Guangyan; Hou, Fanggao; Shi, Hua; Zhou, Guoqing; Yan, Han; Wang, Lu; Liu, Jinfeng

    2015-10-01

    Glioma represents a disparate group of tumors characterized by high invasion ability, and therefore it is of clinical significance to identify molecular markers and therapeutic targets for better clinical management. Previously, metastasis-associated protein family (MTA) is considered to promote tumor cell invasion and metastasis of human malignancies. Recently, the newly identified MTA3 has been shown to play conflicting roles in human malignancies, while the expression pattern and potential clinical significance of MTA3 in human glioma have not been addressed yet. In the present study, we investigated the protein expression of MTA3 by immunohistochemistry assay and analyzed its association with glioma prognosis in 186 cases of patients. Results showed that MTA3 expression was decreased in glioma compared with that in normal brain (P human glioma and negatively associated with prognosis of patients, suggesting that MTA3 may play a tumor suppressor role in glioma.

  9. brain-coX: investigating and visualising gene co-expression in seven human brain transcriptomic datasets.

    Science.gov (United States)

    Freytag, Saskia; Burgess, Rosemary; Oliver, Karen L; Bahlo, Melanie

    2017-06-08

    The pathogenesis of neurological and mental health disorders often involves multiple genes, complex interactions, as well as brain- and development-specific biological mechanisms. These characteristics make identification of disease genes for such disorders challenging, as conventional prioritisation tools are not specifically tailored to deal with the complexity of the human brain. Thus, we developed a novel web-application-brain-coX-that offers gene prioritisation with accompanying visualisations based on seven gene expression datasets in the post-mortem human brain, the largest such resource ever assembled. We tested whether our tool can correctly prioritise known genes from 37 brain-specific KEGG pathways and 17 psychiatric conditions. We achieved average sensitivity of nearly 50%, at the same time reaching a specificity of approximately 75%. We also compared brain-coX's performance to that of its main competitors, Endeavour and ToppGene, focusing on the ability to discover novel associations. Using a subset of the curated SFARI autism gene collection we show that brain-coX's prioritisations are most similar to SFARI's own curated gene classifications. brain-coX is the first prioritisation and visualisation web-tool targeted to the human brain and can be freely accessed via http://shiny.bioinf.wehi.edu.au/freytag.s/ .

  10. Environmental effects on molecular biomarkers expression in pancreatic and brain cancer

    Science.gov (United States)

    Mensah, Lawrence; Mallidi, Srivalleesha; Massodi, Iqbal; Anbil, Sriram; Mai, Zhiming; Hasan, Tayyaba

    2013-03-01

    A complete understanding of the biological mechanisms regulating devastating disease such as cancer remains elusive. Pancreatic and brain cancers are primary among the cancer types with poor prognosis. Molecular biomarkers have emerged as group of proteins that are preferentially overexpressed in cancers and with a key role in driving disease progression and resistance to chemotherapy. The epidermal growth factor receptor (EGFR), a cell proliferative biomarker is particularly highly expressed in most cancers including brain and pancreatic cancers. The ability of EGFR to sustain prolong cell proliferation is augmented by biomarkers such as Bax, Bcl-XL and Bcl-2, proteins regulating the apoptotic process. To better understand the role and effect of the microenvironment on these biomarkers in pancreatic cancer (PaCa); we analysed two pancreatic tumor lines (AsPc-1 and MiaPaCa-2) in 2D, 3D in-vitro cultures and in orthotopic tumors at different growth stages. We also investigated in patient derived glioblastoma (GBM) tumor cultures, the ability to utilize the EGFR expression to specifically deliver photosensitizer to the cells for photodynamic therapy. Overall, our results suggest that (1) microenvironment changes affect biomarker expression; thereby it is critical to understand these effects prior to designing combination therapies and (2) EGFR expression in tumor cells indeed could serve as a reliable and a robust biomarker that could be used to design targeted and image-guided photodynamic therapy.

  11. Low Expression of Slit2 and Robo1 is Associated with Poor Prognosis and Brain-specific Metastasis of Breast Cancer Patients.

    Science.gov (United States)

    Qin, Fengxia; Zhang, Huikun; Ma, Li; Liu, Xiaoli; Dai, Kun; Li, Wenliang; Gu, Feng; Fu, Li; Ma, Yongjie

    2015-09-24

    Brain metastasis is a significant unmet clinical problem in breast cancer treatment. It is always associated with poor prognosis and high morbidity. Recently, Slit2/Robo1 pathway has been demonstrated to be involved in the progression of breast carcinoma. However, until present, there are no convincing reports that suggest whether the Slit2/Robo1 axis has any role in brain metastasis of breast cancer. In this study, we investigated the correlation between Slit2/Robo1 signaling and breast cancer brain metastasis for the first time. Our results demonstrated that (1) Invasive ductal carcinoma patients with low expression of Slit2 or Robo1 exhibited worse prognosis and brain-specific metastasis, but not liver, bone or lung. (2) Lower expression of Slit2 and Robo1 were observed in patients with brain metastasis, especially in their brain metastasis tumors, compared with patients without brain metastasis. (3) The interval from diagnosis of breast cancer to brain metastasis and brain metastasis to death were both much shorter in patients with low expression of Slit2 or Robo1 compared with the high expression group. Overall, our findings indicated that Slit2/Robo1 axis possibly be regarded as a significant clinical parameter for predicting brain metastasis in breast cancer patients.

  12. Expression change in Angiopoietin-1 underlies change in relative brain size in fish.

    Science.gov (United States)

    Chen, Yu-Chia; Harrison, Peter W; Kotrschal, Alexander; Kolm, Niclas; Mank, Judith E; Panula, Pertti

    2015-07-07

    Brain size varies substantially across the animal kingdom and is often associated with cognitive ability; however, the genetic architecture underpinning natural variation in these key traits is virtually unknown. In order to identify the genetic architecture and loci underlying variation in brain size, we analysed both coding sequence and expression for all the loci expressed in the telencephalon in replicate populations of guppies (Poecilia reticulata) artificially selected for large and small relative brain size. A single gene, Angiopoietin-1 (Ang-1), a regulator of angiogenesis and suspected driver of neural development, was differentially expressed between large- and small-brain populations. Zebra fish (Danio rerio) morphants showed that mild knock down of Ang-1 produces a small-brained phenotype that could be rescued with Ang-1 mRNA. Translation inhibition of Ang-1 resulted in smaller brains in larvae and increased expression of Notch-1, which regulates differentiation of neural stem cells. In situ analysis of newborn large- and small-brained guppies revealed matching expression patterns of Ang-1 and Notch-1 to those observed in zebrafish larvae. Taken together, our results suggest that the genetic architecture affecting brain size in our population may be surprisingly simple, and Ang-1 may be a potentially important locus in the evolution of vertebrate brain size and cognitive ability.

  13. Differential expression of Egr1 and activation of microglia following irradiation in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Vollmann, H.; Woelfel, S.; Meyermann, R. [Tuebingen Univ. (Germany). Inst. of Brain Research; Ohneseit, P. [Tuebingen Univ. (Germany). Div. of Radiobiology and Molecular Environmental Research; Stransky, E. [Tuebingen Univ. (Germany). Dept. of Psychiatry; Vonthein, R. [Tuebingen Univ. (Germany). Dept. of Medical Biometry; Wick, W. [Tuebingen Univ. (Germany). Dept. of General Neurology; Simon, P. [Tuebingen Univ. (Germany). Inst. of Brain Research; Tuebingen Univ. (Germany). General Internal Medicine

    2007-05-15

    Background: Little is known about the immediate effects of whole-brain {gamma}-irradiation. The authors hypothesize that Egr1 as an immediate early gene and microglia both participate in early reactions. Material and Methods: Both, expression of Egr1 and cellular distribution were studied in a temporal sequence in different brain regions of rats subjected to irradiation with 10 Gy. Brain tissue was examined using immunohistochemistry, real-time RT-PCR (reverse transcription-polymerase chain reaction), and Western blotting. Results: Astroglia and oligodendroglia showed increased Egr1 immunoreactivity within the first hours following irradiation. This was accompanied by a strong peak in CD68 immunoreactivity histologically attributable to activated microglia. A high constitutive expression of Egr1 protein in the nuclei of activated neurons was reduced following irradiation and RT-PCR demonstrated significantly reduced levels of egr1-lv as a neuronal activity-related mRNA variant. Conclusion: The induction of Egr1 in glial cells, as well as the activation of microglia take place earlier than histological changes reported so far. The authors revealed a temporal sequence of reactions that point toward the initiation of an immediate inflammatory response including reduced neuronal activity. (orig.)

  14. Brain expression of the water channels Aquaporin-1 and -4 in mice with acute liver injury, hyperammonemia and brain edema

    DEFF Research Database (Denmark)

    Eefsen, Martin; Jelnes, Peter; Schmidt, Lars E;

    2010-01-01

    Cerebral edema is a feared complication to acute liver failure (ALF), but the pathogenesis is still poorly understood. The water channels Aquaporin-1 (Aqp1) and -4 (Aqp4) has been associated with brain edema formation in several neuropathological conditions, indicating a possible role of Aqp1 and....../or Aqp4 in ALF mediated brain edema. We induced acute liver injury and hyperammonemia in mice, to evaluate brain edema formation and the parallel expression of Aqp1 and Aqp4 in ALF. Liver injury and hyperammonemia were induced by +D-galactosamine (GLN) plus lipopolysaccharide (LPS) intraperitoneally......(6266) (p edema in mice with ALF....

  15. Fine-tuning notes in the behavioral symphony: parent-of-origin allelic gene expression in the brain.

    Science.gov (United States)

    Sittig, Laura J; Redei, Eva E

    2014-01-01

    The gene encoding the thyroid hormone (TH)-metabolizing enzyme, deiodinase type III (Dio3), exhibits a preferential paternal expression in most tissues. Dio3 is part of the Dlk1-Dio3 imprinted locus, so named according to its ancestral genes, Delta-like homolog 1 (Dlk1) and Dio3, which among other important functions control metabolic programming in the developing embryo and fetus. Here, we describe the aspects of the genomic imprinting patterns exhibited by Dio3 across brain regions and development. The corresponding local changes in the dosage of the Dio3 enzyme are inversely related to TH levels that vary from one brain region to another, and affect social and cognitive behaviors. We show that this regional tuning of brain region-specific expression is dependent on parent of origin-specific genetic polymorphisms in the rat, is sexually dimorphic, and is affected by the early environmental challenge of fetal exposure to alcohol, opening the possibility that the potential for variant expression patterns of the Dio3 gene is quite large. The multiple regulatory genomic features within the Dlk1-Dio3 locus, and other imprinted loci, allow mammals to specifically modulate parent-of-origin allelic gene expression brain region. These regulatory structures seem to have evolved as a possible mechanism of adaptation in response to the simultaneous need for highly regulated expression in some tissues during development, but variable expression across specific regions of the brain over the complete life span. Here, we use Dio3 as a single gene example of the epigenetic parent-of-origin allelic expression in specific brain regions and discuss the potential of this general phenomenon to shape evolutionarily relevant social and cognitive behavior in eutherian mammals. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Allen Brain Atlas-Driven Visualizations: A Web-Based Gene Expression Energy Visualization Tool

    Directory of Open Access Journals (Sweden)

    Andrew eZaldivar

    2014-05-01

    Full Text Available The Allen Brain Atlas-Driven Visualizations (ABADV is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources.

  17. Tumor LDH-A expression and serum LDH status are two metabolic predictors for triple negative breast cancer brain metastasis.

    Science.gov (United States)

    Dong, Tieying; Liu, Zhaoliang; Xuan, Qijia; Wang, Zhuozhong; Ma, Wenjie; Zhang, Qingyuan

    2017-07-20

    There are limited therapeutic methods for triple negative breast cancer in the clinic, which is easy to progress into the brain to form metastatic lesions and evolve into the terminal stage. Because both the primary cancer and the brain metastasis have high glycolysis, we hypothesize that lactate dehydrogenase (LDH), which catalyzes the final step of glycolysis, may be a predictor, as well as a treatment target, for breast cancer brain metastasis. Therefore, the expression of LDH-A was detected on 119 triple negative breast cancer tissues with immunohistochemistry, and the serum LDH levels were also measured. Our results showed that the LDH-A expression inside the tumor was significantly higher than the matched normal tissues. Tumor LDH-A expression, serum LDH status, and the slope of serum LDH status were closely associated with triple negative breast cancer brain metastasis and brain metastasis free survival. This study indicates that tumor LDH and serum LDH status are two predictors for triple negative breast cancer brain metastasis.

  18. Effect of Long-Term Intake of Y3+ in Drinking Water on Gene Expression in Brains of Rats

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The rats were fed with water dissolved Y3 + at different levels (0, 53.4, 5340 mg· L- 1 ) for 7 months. The gene expression in brain tissue was detected with oligonucleotide microarray. The results show that, compared to the control,789 genes express differentially, 507 over-expressed genes and 282 under-expressed genes in the high-dose group (5340found to express differentially including 32 over-expressed genes and 12 under-expressed genes in the low-dose group (53.sults suggest that Y3 + can change the expression of some genes, which may be responsible for the toxicity of rare earths on learning and memory.

  19. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain.

    Science.gov (United States)

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-20

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development.

  20. Expression of the Otx2 homeobox gene in the developing mammalian brain: embryonic and adult expression in the pineal gland

    DEFF Research Database (Denmark)

    Rath, Martin F; Muñoz, Estela; Ganguly, Surajit;

    2006-01-01

    , with special emphasis on the pineal gland throughout late embryonic and postnatal stages. Widespread high expression of Otx2 in the embryonic brain becomes progressively restricted in the adult to the pineal gland. Crx (cone-rod homeobox), a downstream target gene of Otx2, showed a pineal expression pattern...... that the level of Otx2 mRNA appears to be independent of the photoneural input to the gland. Our results are consistent with the view that pineal expression of Otx2 is required for development and we hypothesize that it plays a role in the adult in controlling the expression of the cluster of genes associated...... similar to that of Otx2, although there was a distinct lag in time of onset. Otx2 protein was identified in pineal extracts and found to be localized in pinealocytes. Total pineal Otx2 mRNA did not show day-night variation, nor was it influenced by removal of the sympathetic input, indicating...

  1. Cholesterogenic genes expression in brain and liver of ganglioside-deficient mice.

    Science.gov (United States)

    Mlinac, Kristina; Fon Tacer, Klementina; Heffer, Marija; Rozman, Damjana; Bognar, Svjetlana Kalanj

    2012-10-01

    The aim of this study was to determine the effect of changed ganglioside profile on transcription of selected genes involved in cholesterol homeostasis. For that purpose, the expression of 11 genes related to cholesterol synthesis, regulation, and cholesterol transport was investigated in selected brain regions (frontal cortex, hippocampus, brain stem, cerebellum) and liver of St8sia1 knockout (KO) mice characterized by deficient synthesis of b- and c-series gangliosides and accumulation of a-series gangliosides. The expression of majority of the analyzed genes, as determined using quantitative real time PCR, was slightly higher in St8sia1 KO compared to wild-type (wt) controls. More prominent changes were observed in Hmgr, Cyp51, and Cyp46 expression in brain (hippocampus and brain stem) and Srebp1a, Insig2a, and Ldlr in liver. In addition, the expression of master transcriptional regulators, Srebp1a, Srebp1c, and Insig2a, as well as transporters Ldlr and Vldlr differed between liver and brain, and within brain regions in wt animals. Cyp46 expression was expectedly brain-specific, with brain region difference in both wt and St8sia1 KO. The established change in transcriptome of cholesterogenic genes is associated to specific alteration of ganglioside composition which indicates relationship between gangliosides and regulation of cholesterol metabolism.

  2. Enhanced Expression of Aquaporin-9 in Rat Brain Edema Induced by Bacterial Lipopolysaccharides

    Institute of Scientific and Technical Information of China (English)

    Huaili WANG; Runming JIN; Peichao TIAN; Zhihong ZHUO

    2009-01-01

    To investigate the role of AQP9 in brain edema,the expression of AQP9 in an infectious rat brain edema model induced by the injection of lipopolysaccharide (LPS) was examined.Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that the expressions of AQP9 mRNA and protein at all observed intervals were significantly increased in LPS-treated animals in comparison with the control animals.Time-course analysis showed that the first signs of blood-brain barrier disruption and the increase of brain water content in LPS-treated animals were evident 6 h after LPS injection,with maximum value appearing at 12 h,which coincided with the expression profiles of AQP9 mRNA and protein in LPS-treated animals.The further correlation analysis revealed strong positive correlations among the brain water content,the disruption of the blood-brain barrier and the enhanced expressions of AQP9 mRNA and protein in LPS-treated animals.These results suggested that the regulation of AQP9 expression may play important roles in water movement and in brain metabolic homeostasis associated with the pathophysiology of brain edema induced by LPS injection.

  3. Expression of the homeobox genes OTX2 and OTX1 in the early developing human brain

    DEFF Research Database (Denmark)

    Larsen, Karen B; Lutterodt, Melissa C; Møllgård, Kjeld

    2010-01-01

    protein was found in the subcommissural organ, pineal gland, and cerebellum. The early expression of OTX2 and OTX1 in proliferative cell layers of the human fetal brain supports the concept that these homeobox genes are important in neuronal cell development and differentiation: OTX1 primarily...... of young neurons of the deeper cortical layers. We have studied the spatial and temporal expression of the two homeobox genes OTX2 and OTX1 in human fetal brains from 7 to 14 weeks postconception by in situ hybridization and immunohistochemistry. OTX2 was expressed in the diencephalon, mesencephalon...... in the neocortex, and OTX2 in the archicortex, diencephalon, rostral brain stem, and cerebellum....

  4. Expression of trkB mRNA is altered in rat hippocampus after experimental brain trauma.

    Science.gov (United States)

    Hicks, R R; Zhang, L; Dhillon, H S; Prasad, M R; Seroogy, K B

    1998-08-31

    Recent investigations have shown that expression of mRNAs for the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) is differentially altered in the hippocampus following traumatic brain injury. In the present study, modulation of neurotrophin receptor expression was examined in the hippocampus in a rat model of traumatic brain injury using in situ hybridization. Messenger RNA for trkB, the high-affinity receptor for BDNF and neurotrophin-4 (NT-4), was increased between 3 and 6 h bilaterally in the dentate gyrus following a lateral fluid-percussion brain injury of moderate severity (2.0-2.1 atm). No time-dependent alterations were observed for trkB mRNA in hippocampal subfields CA1 and CA3. Levels of mRNA for trkC, the high-affinity receptor for NT-3, did not change in any region of the hippocampus. These data demonstrate that lateral fluid-percussion injury modulates expression of trkB mRNA in the hippocampus and support a role for BDNF/trkB signalling mechanisms in secondary events associated with traumatic brain injury.

  5. Molecular characterization and temporal expression profiling of presenilins in the developing porcine brain

    Directory of Open Access Journals (Sweden)

    Fredholm Merete

    2007-09-01

    Full Text Available Abstract Background The transmembrane presenilin (PSEN proteins, PSEN1 and PSEN2, have been proposed to be the catalytic components of the γ-secretase protein complex, which is an intramembranous multimeric protease involved in development, cell regulatory processes, and neurodegeneration in Alzheimer's disease. Here we describe the sequencing, chromosomal mapping, and polymorphism analysis of PSEN1 and PSEN2 in the domestic pig (Sus scrofa domesticus. Results The porcine presenilin proteins showed a high degree of homology over their entire sequences to the PSENs from mouse, bovine, and human. PSEN1 and PSEN2 transcription was examined during prenatal development of the brain stem, hippocampus, cortex, basal ganglia, and cerebellum at embryonic days 60, 80, 100, and 114, which revealed distinct temporal- and tissue-specific expression profiles. Furthermore, immunohistochemical analysis of PSEN1 and PSEN2 showed similar localization of the proteins predominantly in neuronal cells in all examined brain areas. Conclusion The data provide evidence for structural and functional conservation of PSENs in mammalian lineages, and may suggest that the high sequence similarity and colocalization of PSEN1 and PSEN2 in brain tissue reflect a certain degree of functional redundancy. The data show that pigs may provide a new animal model for detailed analysis of the developmental functions of the PSENs.

  6. Cloning of a serine proteinase inhibitor from bovine brain: expression in the brain and characterization of its target proteinases.

    Science.gov (United States)

    Nakaya, N; Nishibori, M; Kawabata, M; Saeki, K

    1996-12-01

    A cDNA encoding of the serine proteinase inhibitor (serpin), B-43, was cloned from the cDNA library of the bovine brain. It encoded 378 amino acids, and the MW of the protein was estimated to be 42.6 kDa, which is consistent with that of the native B-43 purified from the bovine brain. The homology search revealed that B-43 belongs to the ovalbumin branch of the serpin superfamily. Among them, B-43 was most homologous to human placental thrombin inhibitor (PI-6) and its murine counterpart, with the amino acid identity of 76% and 71%, respectively. Northern blot analysis showed that the size of the transcript was 1.4 kb, and that the expression of B-43 in the bovine brain varied depending on the brain regions, i.e. a lower level of expression was observed in the cerebral cortex and the hippocampus compared to the level of expression that was observed in the medulla oblongata. [35S]-labeled B-43 protein was synthesized in vitro by using a rabbit reticulocyte lysate system, which formed complexes with proteinases such as thrombin, trypsin, alpha-chymotrypsin, and 7S nerve growth factor (NGF), but not with urokinase or plasmin. These results, together with the immunohistochemical localization of B-43 in astrocytes and in some neurons which was observed in the previous study suggest that B-43 may be involved in the regulation of serine proteinases present in the brain or extravasated from the blood.

  7. Large litters rearing changes brain expression of GLUT3 and acetylcholinesterase activity in adult rats.

    Science.gov (United States)

    de Vasconcelos, Vivian Sarmento; Machado, Sonia Salgueiro; Guedes, Rubem Carlos Araújo; Bandeira, Bruno Carneiro; Ximenes-da-Silva, Adriana

    2012-09-06

    Effects of malnutrition in the brain are more pronounced during the period of growth spurt, corresponding to the suckling in rodents. Neuronal glucose transporter GLUT3 expression and acetylcholinesterase activity were studied in the brain of adult young rats (84 days old) suckled in litters formed by 6 (control group) or 12 pups (malnourished group). In the adult rats, brain weight, blood glucose levels and GLUT3 expression were decreased in malnourished group (5%, 18%, 58%, respectively, Pmalnutrition during suckling period decreased GLUT3 expression and increased acetylcholinesterase activity in the rat brain that could contribute to possible cognitive deficits and changes of brain metabolic activity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Developmental expression of estrogen receptor beta in the brain of prairie voles (Microtus ochrogaster).

    Science.gov (United States)

    Ploskonka, Stephanie D; Eaton, Jennifer L; Carr, Michael S; Schmidt, Jennifer V; Cushing, Bruce S

    2016-03-01

    Here, for the first time, the expression of estrogen receptor beta (ERβ) is characterized in the brains of the highly prosocial prairie vole (Microtus ochrogaster). ERβ immunoreactivity was compared in weanlings (postnatal Day 21) and adult males and females. The results indicate several major findings. First, unlike ERα, ERβ expression is not sexually dimorphic. Second, the adult pattern of ERβ-IR is established at the time of weaning, as there were no age-dependent effects on distribution. Finally, ERβ does not appear to be as widely distributed in voles compared with rats and mice. High levels of ERβ-IR were observed in several regions/nuclei within the medial pre-optic area, ventrolateral pre-optic nuclei, and in the hypothalamus, especially in the paraventricular and supraoptic nuclei. The visualization of ERβ in prairie voles is important as the socially monogamous prairie vole functions as a human relevant model system for studying the expression of social behavior and social deficit disorders. Future studies will now be able to determine the effect of treatments on the expression and/or development of ERβ in this highly social species.

  9. Decreased GABABR expression and increased neuronal cell death in developing rat brain after PTZ-induced seizure.

    Science.gov (United States)

    Naseer, Muhammad Imran; Ullah, Ikram; Al-Qahtani, Mohammed H; Karim, Sajjad; Ullah, Najeeb; Ansari, Shakeel Ahmed; Kim, Myeong Ok; Bibi, Fehmida

    2013-04-01

    The objective of this study was to evaluate the PTZ-induced seizures effects on GABAB receptor (R) expression and to observe its neurodegenerative effect in hippocampal part of developing rat brain. In the present study, high dose of pentylenetetrazol (PTZ 40 mg/kg) was injected in developing rats of age 5 weeks having average weight of 60-65 g for 4 days. Further, baclofen (B 3 mg/kg i.p) agonist and phaclofen (P 30 μg/rat) antagonist of GABABR were injected along with PTZ. Western blot analysis was used to elucidate expression of GABABR protein upon PTZ, baclofen and phaclofen exposure in the developing rat brain. Furthermore, PTZ-induced apoptotic neurodegeneration was also observed through the release of caspase-3 antibody and propidium iodide (PI) staining using confocal microscopy. Seizure was confirmed using electroencephalography (EEG) data obtained from the Laxtha EEG-monitoring device in the EEG recording room and EEG was monitored 5-15 min after PTZ injection. The results of the present study showed that PTZ-induced seizure significantly decreased GABABR expression and induced neuronal apoptosis in cortical and hippocampal part of brain. While, baclofen reverse the effect of PTZ by increasing the expression of GABABR as compared to the PTZ- , PTZ plus B- and PTZ plus P-treated groups. Our findings indicated that PTZ-induced seizure showed not only decrease in GABABR expression but also cause neuronal apoptosis in the developing rat brain.

  10. RNA Sequence Analysis of Human Huntington Disease Brain Reveals an Extensive Increase in Inflammatory and Developmental Gene Expression.

    Directory of Open Access Journals (Sweden)

    Adam Labadorf

    Full Text Available Huntington's Disease (HD is a devastating neurodegenerative disorder that is caused by an expanded CAG trinucleotide repeat in the Huntingtin (HTT gene. Transcriptional dysregulation in the human HD brain has been documented but is incompletely understood. Here we present a genome-wide analysis of mRNA expression in human prefrontal cortex from 20 HD and 49 neuropathologically normal controls using next generation high-throughput sequencing. Surprisingly, 19% (5,480 of the 28,087 confidently detected genes are differentially expressed (FDR<0.05 and are predominantly up-regulated. A novel hypothesis-free geneset enrichment method that dissects large gene lists into functionally and transcriptionally related groups discovers that the differentially expressed genes are enriched for immune response, neuroinflammation, and developmental genes. Markers for all major brain cell types are observed, suggesting that HD invokes a systemic response in the brain area studied. Unexpectedly, the most strongly differentially expressed genes are a homeotic gene set (represented by Hox and other homeobox genes, that are almost exclusively expressed in HD, a profile not widely implicated in HD pathogenesis. The significance of transcriptional changes of developmental processes in the HD brain is poorly understood and warrants further investigation. The role of inflammation and the significance of non-neuronal involvement in HD pathogenesis suggest anti-inflammatory therapeutics may offer important opportunities in treating HD.

  11. A gestational diet high in fat-soluble vitamins alters expression of genes in brain pathways and reduces sucrose preference, but not food intake, in Wistar male rat offspring.

    Science.gov (United States)

    Sanchez-Hernandez, Diana; Poon, Abraham N; Kubant, Ruslan; Kim, Hwanki; Huot, Pedro S P; Cho, Clara E; Pannia, Emanuela; Pausova, Zdenka; Anderson, G Harvey

    2015-04-01

    High intakes of multivitamins (HV) during pregnancy by Wistar rats increase food intake, body weight, and characteristics of the metabolic syndrome in male offspring. In this study, high-fat soluble vitamins were fed in combination during gestation to test the hypothesis that they partially account for the effects of the HV diet. Pregnant Wistar rats (14-16/group) were fed a recommended multivitamin diet (1-fold all vitamins) or high-fat soluble vitamin diet (HFS; 10-fold vitamins A, D, E, and K) during pregnancy. Offspring body weight, food intake, and preference as well as expression of selected genes in the hypothalamus and hippocampus were evaluated at birth, weaning, and 14 weeks postweaning. Body weight and food intake were not affected but sucrose preference decreased by 4% in those born to dams fed the HFS gestational diet. Gene expressions of the hypothalamic anorexogenic pro-opiomelanocortin (Pomc) and orexogenic neuropeptide Y (Npy) (∼30% p = 0.008, ∼40% p = 0.007) were increased in weaning and adult rats, respectively. Hippocampal dopaminergic genes (35%-50% p food intake but may affect the development of higher hedonic regulatory pathways associated with food preference.

  12. Human Brain Chemokine and Cytokine Expression in Sepsis: A Report of Three Cases.

    Science.gov (United States)

    Warford, Jordan; Lamport, Anna-Claire; Kennedy, Barry; Easton, Alexander S

    2017-01-01

    Sepsis is a systemic response to infection that can affect brain function by inducing resident cells (including astrocytes and microglia) to generate brain chemokines and cytokines. However, there are few studies on the human brain. Since this information may shed further light on pathogenesis, our study objective was to measure the expression of 36 chemokines and cytokines in autopsied brain from 3 cases of sepsis and 10 controls, and to relate this to astrocyte and microglial activation. The right frontal pole was removed at autopsy and chemokine and cytokine expression measured by multiplexed enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (qPCR). Immunohistochemistry and image analysis were carried out to determine the expression of glial fibrillary acidic protein (GFAP), a marker of activated astrocytes, and CD68 and CD45, markers of activated microglial cells. Concentrations of the chemokines CXCL8, CXCL10, CXCL12, CCL13 and CCL22 were increased in pooled data from the three cases of sepsis (psepsis cases. Additionally, individual sepsis cases showed increases in mRNA expression for HDAC (histone deacetylase) 6 and EIF (eukaryotic translation initiation factor) 4A2. Brain GFAP expression was significantly increased (psepsis cases. Individual sepsis cases showed increases in CD68 or CD45 expression. These expression patterns add to our understanding of the pathogenesis of sepsis and its effects on the brain.

  13. Effect of pharmacologic resuscitation on the brain gene expression profiles in a swine model of traumatic brain injury and hemorrhage

    DEFF Research Database (Denmark)

    Dekker, Simone E; Bambakidis, Ted; Sillesen, Martin

    2014-01-01

    BACKGROUND: We have previously shown that addition of valproic acid (VPA; a histone deacetylase inhibitor) to hetastarch (Hextend [HEX]) resuscitation significantly decreases lesion size in a swine model of traumatic brain injury (TBI) and hemorrhagic shock (HS). However, the precise mechanisms...... have not been well defined. As VPA is a transcriptional modulator, the aim of this study was to investigate its effect on brain gene expression profiles. METHODS: Swine were subjected to controlled TBI and HS (40% blood volume), kept in shock for 2 hours, and resuscitated with HEX or HEX + VPA (n = 5...... per group). Following 6 hours of observation, brain RNA was isolated, and gene expression profiles were measured using a Porcine Gene ST 1.1 microarray (Affymetrix, Santa Clara, CA). Pathway analysis was done using network analysis tools Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene...

  14. Pacific white shrimp (Litopenaeus vannamei) vitellogenesis-inhibiting hormone (VIH) is predominantly expressed in the brain and negatively regulates hepatopancreatic vitellogenin (VTG) gene expression.

    Science.gov (United States)

    Chen, Ting; Zhang, Lv-Ping; Wong, Nai-Kei; Zhong, Ming; Ren, Chun-Hua; Hu, Chao-Qun

    2014-03-01

    Ovarian maturation in crustaceans is temporally orchestrated by two processes: oogenesis and vitellogenesis. The peptide hormone vitellogenesis-inhibiting hormone (VIH), by far the most potent negative regulator of crustacean reproduction known, critically modulates crustacean ovarian maturation by suppressing vitellogenin (VTG) synthesis. In this study, cDNA encoding VIH was cloned from the eyestalk of Pacific white shrimp, Litopenaeus vannamei, a highly significant commercial culture species. Phylogenetic analysis suggests that L. vannamei VIH (lvVIH) can be classified as a member of the type II crustacean hyperglycemic hormone family. Northern blot and RT-PCR results reveal that both the brain and eyestalk were the major sources for lvVIH mRNA expression. In in vitro experiments on primary culture of shrimp hepatopancreatic cells, it was confirmed that some endogenous inhibitory factors existed in L. vannamei hemolymph, brain, and eyestalk that suppressed hepatopancreatic VTG gene expression. Purified recombinant lvVIH protein was effective in inhibiting VTG mRNA expression in both in vitro primary hepatopancreatic cell culture and in vivo injection experiments. Injection of recombinant VIH could also reverse ovarian growth induced by eyestalk ablation. Furthermore, unilateral eyestalk ablation reduced the mRNA level of lvVIH in the brain but not in the remaining contralateral eyestalk. Our study, as a whole, provides new insights on VIH regulation of shrimp reproduction: 1) the brain and eyestalk are both important sites of VIH expression and therefore possible coregulators of hepatopancreatic VTG mRNA expression and 2) eyestalk ablation could increase hepatopancreatic VTG expression by transcriptionally abolishing eyestalk-derived VIH and diminishing brain-derived VIH.

  15. Exposure to a Highly Caloric Palatable Diet during the Perinatal Period Affects the Expression of the Endogenous Cannabinoid System in the Brain, Liver and Adipose Tissue of Adult Rat Offspring

    Science.gov (United States)

    Ramírez-López, María Teresa; Arco, Raquel; Decara, Juan; Vázquez, Mariam; Noemí Blanco, Rosario; Alén, Francisco; Suárez, Juan; Gómez de Heras, Raquel

    2016-01-01

    Recent studies have linked gestational exposure to highly caloric diets with a disrupted endogenous cannabinoid system (ECS). In the present study, we have extended these studies by analyzing the impact of the exposure to a palatable diet during gestation and lactation on a) the adult expression of endocannabinoid-related behaviors, b) the metabolic profile of adult offspring and c) the mRNA expression of the signaling machinery of the ECS in the hypothalamus, the liver and the adipose tissue of adult offspring of both sexes. Exposure to a palatable diet resulted in a) sex-dimorphic and perinatal diet specific feeding behaviors, including the differential response to the inhibitory effects of the cannabinoid receptor inverse agonist AM251, b) features of metabolic syndrome including increased adiposity, hyperleptinemia, hypertriglyceridemia and hypercholesterolemia and c) tissue and sex-specific changes in the expression of both CB1 and CB2 receptors and in that of the endocannabinoid-degrading enzymes FAAH and MAGL, being the adipose tissue the most affected organ analyzed. Since the effects were observed in adult animals that were weaned while consuming a normal diet, the present results indicate that the ECS is one of the targets of maternal programming of the offspring energy expenditure. These results clearly indicate that the maternal diet has long-term effects on the development of pups through multiple alterations of signaling homeostatic pathways that include the ECS. The potential relevance of these alterations for the current obesity epidemic is discussed. PMID:27806128

  16. Expression of innate immune complement regulators on brain epithelial cells during human bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Gasque Philippe

    2006-09-01

    Full Text Available Abstract Background In meningitis, the cerebrospinal fluid contains high levels of innate immune molecules (e.g. complement which are essential to ward off the infectious challenge and to promote the infiltration of phagocytes (neutrophils, monocytes. However, epithelial cells of either the ependymal layer, one of the established niche for adult neural stem cells, or of the choroid plexus may be extremely vulnerable to bystander attack by cytotoxic and cytolytic complement components. Methods In this study, we assessed the capacity of brain epithelial cells to express membrane-bound complement regulators (ie, CD35, CD46, CD55 and CD59 in vitro and in situ by immunostaining of control and meningitis human brain tissue sections. Results Double immunofluorescence experiments for ependymal cell markers (GFAP, S100, ZO-1, E-cadherin and complement regulators indicated that the human ependymal cell line model was strongly positive for CD55, CD59 compared to weak stainings for CD46 and CD35. In tissues, we found that CD55 was weakly expressed in control choroid plexus and ependyma but was abundantly expressed in meningitis. Anti-CD59 stained both epithelia in apical location while increased CD59 staining was solely demonstrated in inflamed choroid plexus. CD46 and CD35 were not detected in control tissue sections. Conversely, in meningitis, the ependyma, subependyma and choroid plexus epithelia were strongly stained for CD46 and CD35. Conclusion This study delineates for the first time the capacity of brain ependymal and epithelial cells to respond to and possibly sustain the innate complement-mediated inflammatory insult.

  17. A Simple Method for Immunohistochemical Staining of Zebrafish Brain Sections for c-fos Protein Expression.

    Science.gov (United States)

    Chatterjee, Diptendu; Tran, Steven; Shams, Soaleha; Gerlai, Robert

    2015-12-01

    Immediate early genes (IEGs) are transcription factors whose own transcription is initiated rapidly, for example, in the brain in response to environmental stimuli. c-fos is an IEG often used as a marker of neuronal activation. c-fos mRNA expression has started to be quantified and localized in the zebrafish brain following environmental manipulations but analysis of the expression of c-fos protein in the zebrafish brain has rarely been attempted. Here, we describe an immunofluorescence staining method for quantifying c-fos protein expression in different regions of the zebrafish brain. In addition, we expose zebrafish to caffeine, a positive control for c-fos activation in the brain. To confirm cell nucleus specific binding of the c-fos antibody, we counterstained brain sections with the nuclear fluorescent stain DAPI. Furthermore, we describe a method for reducing background autofluorescence often observed in zebrafish brain tissue. Our analysis showed that exposure to caffeine increased the number of c-fos protein-positive cells in specific zebrafish brain regions detected by the immunofluorescence method. Our results demonstrate the feasibility of immunofluorescence-based methods in the analysis of neuronal activation in the zebrafish brain, and reinforce the utility of the zebrafish in behavioral neuroscience research.

  18. The brain-specific Beta4 subunit downregulates BK channel cell surface expression.

    Science.gov (United States)

    Shruti, Sonal; Urban-Ciecko, Joanna; Fitzpatrick, James A; Brenner, Robert; Bruchez, Marcel P; Barth, Alison L

    2012-01-01

    The large-conductance K(+) channel (BK channel) can control neural excitability, and enhanced channel currents facilitate high firing rates in cortical neurons. The brain-specific auxiliary subunit β4 alters channel Ca(++)- and voltage-sensitivity, and β4 knock-out animals exhibit spontaneous seizures. Here we investigate β4's effect on BK channel trafficking to the plasma membrane. Using a novel genetic tag to track the cellular location of the pore-forming BKα subunit in living cells, we find that β4 expression profoundly reduces surface localization of BK channels via a C-terminal ER retention sequence. In hippocampal CA3 neurons from C57BL/6 mice with endogenously high β4 expression, whole-cell BK channel currents display none of the characteristic properties of BKα+β4 channels observed in heterologous cells. Finally, β4 knock-out animals exhibit a 2.5-fold increase in whole-cell BK channel current, indicating that β4 also regulates current magnitude in vivo. Thus, we propose that a major function of the brain-specific β4 subunit in CA3 neurons is control of surface trafficking.

  19. The brain-specific Beta4 subunit downregulates BK channel cell surface expression.

    Directory of Open Access Journals (Sweden)

    Sonal Shruti

    Full Text Available The large-conductance K(+ channel (BK channel can control neural excitability, and enhanced channel currents facilitate high firing rates in cortical neurons. The brain-specific auxiliary subunit β4 alters channel Ca(++- and voltage-sensitivity, and β4 knock-out animals exhibit spontaneous seizures. Here we investigate β4's effect on BK channel trafficking to the plasma membrane. Using a novel genetic tag to track the cellular location of the pore-forming BKα subunit in living cells, we find that β4 expression profoundly reduces surface localization of BK channels via a C-terminal ER retention sequence. In hippocampal CA3 neurons from C57BL/6 mice with endogenously high β4 expression, whole-cell BK channel currents display none of the characteristic properties of BKα+β4 channels observed in heterologous cells. Finally, β4 knock-out animals exhibit a 2.5-fold increase in whole-cell BK channel current, indicating that β4 also regulates current magnitude in vivo. Thus, we propose that a major function of the brain-specific β4 subunit in CA3 neurons is control of surface trafficking.

  20. THE RELATIONSHIP BETWEEN PERITUMORAL BRAIN EDEMA AND VASCULAR ENDOTHELIAL GROWTH FACTOR EXPRESSION IN PATIENTS WITH MENINGIOMA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To determine whether VEGF plays a role in the development of peritumoral brain edema. Methods 50 meningioma patients and their VEGF expression were studied. We took a mono- clonal antibody from mouse to VEGF to stain the tumor cells, the vascular endothelial cells and the interstitial cells. The severity of brain edema was evaluated according to CT or MR scans by the following equation: edema index = Vtumor+edema/Vtumor. The relationship between VEGF expression and edema index was analyzed statisti- cally. Results VEGF was expressed in meningioma tumor cells, which is usually concentrated at the pe- ripheral sites of the tumor. There was a positive linear correlation between the expression and the brain edema index. Conclusion VEGF may play a role in the development of peritumoral brain edema in meningioma patient.

  1. Correlation of aquaporin-4 expression to blood-brain barrier permeability in rats with focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Pengcheng Xu; Haorong Feng; Jinbu Xu; Yongping Wu

    2008-01-01

    BACKGROUND: Ischemic cerebrovascular disease causes injury to the blood-brain barrier. The occurrence of brain edema is associated with aquaporin expression following cerebral ischemia/reperfusion. OBJECTIVE: To analyze the correlation of aquaporin-4 expression to brain edema and blood-brain barrier permeability in brain tissues of rat models of ischemia/reperfusion. DESIGN, TIME AND SETTING: The randomized control experiment was performed at the Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, China from December 2006 to October 2007. MATERIALS: A total of 112 adult, male, Sprague-Dawley rats, weighing 220-250 g, were used to establish rat models of middle cerebral artery occlusion and reperfusion by the suture method. Rabbit anti-aquaporin-4 (Santa Cruz, USA) and Evans blue (Sigma, USA) were used to analyze the tissue. METHODS: The rats were randomized into sham-operated (n = 16) and ischemia/reperfusion (n = 96) groups. There were 6 time points in the ischemia/reperfusion group, comprising 4, 6, 12, 24, 48, and 72 hours after reperfusion, with 16 rats for each time point. Rat models in the sham-operated group at 4 hours after surgery and rat models in the ischemia/reperfusion group at different time points were equally and randomly assigned into 4 different subgroups. MAIN OUTCOME MEASURES: Brain water content on the ischemic side and the control side was measured using the dry-wet weight method. Blood-brain barrier function was determined by Evans Blue. Aquaporin-4 expression surrounding the ischemic focus, as well as the correlation of aquaporin-4 expression with brain water content and Evans blue staining, were measured using immunohistochemistry and Western blot analysis. RESULTS: Brain water content on the ischemic side significantly increased at 12 hours after reperfusion, reached a peak at 48 hours, and was still high at 72 hours. Brain water content was greater on the ischemic hemispheres, compared with the control hemispheres

  2. Expression of Hsp70 and Caspase-3 in rabbits after severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing; TAO Dai-qin; ZHAO Hui; YIN Zhi-yong

    2012-01-01

    Objective:To investigate the expression of Caspase-3 and Hsp70 in rabbits after severe traumatic brain injury (TBI) and to explore the feasibility of its application in estimation of injury time in forensic medicine.Methods:A rabbit model of heavy TBI was developed by high velocity impact on the parietal bone with an iron stick.Totally 8 healthy adult New Zealand white rabbits were randomly divided into control group (n=2) and injury group (n=6).Four hours after injury,tissue specimens from the parietal lobe,temporal lobe,occipital lobe,cerebellum and brainstem were harvested to detect the expression of Hsp70 and Caspase-3 by immunohistochemistry.Besides,the gray values of cells positive for Hsp70 and Caspase-3 were analyzed with an image analyzer.Results:Immunohistochemistry staining demonstrated a low level of Caspase-3 and Hsp70 expression in normal control group.While in injury group,both the Caspase-3and Hsp70 expression was significantly elevated (P<0.05).Positive cells gathered around the lesion focus.Occipital lobe and cerebellum had fewer positive cells while temporal and brainstem had the fewest.Conclusion:The expression of Caspase-3 and Hsp70 at an early stage following severe TBI is characteristic and can be applied to estimate the time of injury.

  3. Fighting experience alters brain androgen receptor expression dependent on testosterone status

    Science.gov (United States)

    Li, Cheng-Yu; Earley, Ryan L.; Huang, Shu-Ping; Hsu, Yuying

    2014-01-01

    Contest decisions are influenced by the outcomes of recent fights (winner–loser effects). Steroid hormones and serotonin are closely associated with aggression and therefore probably also play important roles in mediating winner–loser effects. In mangrove rivulus fish, Kryptolebias marmoratus, individuals with higher testosterone (T), 11-ketotestosterone and cortisol levels are more capable of winning, but titres of these hormones do not directly mediate winner–loser effects. In this study, we investigated the effects of winning/losing experiences on brain expression levels of the receptor genes for androgen (AR), oestrogen α/β (ERα/β), glucocorticoid (GR) and serotonin (5-HT1AR). The effect of contest experience on AR gene expression depended on T levels: repeated losses decreased, whereas repeated wins increased AR gene expression in individuals with low T but not in individuals with medium or high T levels. These results lend strong support for AR being involved in mediating winner–loser effects, which, in previous studies, were more detectable in individuals with lower T. Furthermore, the expression levels of ERα/β, 5-HT1AR and GR genes were higher in individuals that initiated contests against larger opponents than in those that did not. Overall, contest experience, underlying endocrine state and hormone and serotonin receptor expression patterns interacted to modulate contest decisions jointly. PMID:25320171

  4. Molecular cloning and expression analysis of fushi tarazu factor 1 in the brain of air-breathing catfish, Clarias gariepinus.

    Directory of Open Access Journals (Sweden)

    Parikipandla Sridevi

    Full Text Available BACKGROUND: Fushi tarazu factor 1 (FTZ-F1 encodes an orphan nuclear receptor belonging to the nuclear receptor family 5A (NR5A which includes adrenal 4-binding protein or steroidogenic factor-1 (Ad4BP/SF-1 and liver receptor homologue 1 (LRH-1 and plays a pivotal role in the regulation of aromatases. METHODOLOGY/PRINCIPAL FINDINGS: Present study was aimed to understand the importance of FTZ-F1 in relation to brain aromatase (cyp19a1b during development, recrudescence and after human chorionic gonadotropin (hCG induction. Initially, we cloned FTZ-F1 from the brain of air-breathing catfish, Clarias gariepinus through degenerate primer RT-PCR and RACE. Its sequence analysis revealed high homology with other NR5A1 group members Ad4BP/SF-1 and LRH-1, and also analogous to the spatial expression pattern of the latter. In order to draw functional correlation of cyp19a1b and FTZ-F1, we analyzed the expression pattern of the latter in brain during gonadal ontogeny, which revealed early expression during gonadal differentiation. The tissue distribution both at transcript and protein levels revealed its prominent expression in brain along with liver, kidney and testis. The expression pattern of brain FTZ-F1 during reproductive cycle and after hCG induction, in vivo was analogous to that of cyp19a1b shown in our earlier study indicating its involvement in recrudescence. CONCLUSIONS/SIGNIFICANCE: Based on our previous results on cyp19a1b and the present data, it is plausible to implicate potential roles for brain FTZ-F1 in ovarian differentiation and recrudescence process probably through regulation of cyp19a1b in teleosts. Nevertheless, these interactions would require primary coordinated response from ovarian aromatase and its related transcription factors.

  5. Expression change in Angiopoietin-1 underlies change in relative brain size in fish

    OpenAIRE

    Chen, Y. C.; Harrison, P. W.; Kotrschal, A.; Kolm, N.; Mank, J. E.; Panula, P

    2015-01-01

    Brain size varies substantially across the animal kingdom and is often associated with cognitive ability; however, the genetic architecture underpinning natural variation in these key traits is virtually unknown. In order to identify the genetic architecture and loci underlying variation in brain size, we analysed both coding sequence and expression for all the loci expressed in the telencephalon in replicate populations of guppies (Poecilia reticulata) artificially selected for large and sma...

  6. Effect of Oxytropis glabra DC. Poisoning on α-Mannosidase(AMA) Expression in Mice Brain Tissue

    Institute of Scientific and Technical Information of China (English)

    Wang Shuai; Jia Qizhen; Zhang Ling; Chen Genyuan; Ma Chunhui

    2015-01-01

    The effect of Oxytropis glabra DC. on α-mannosidase( AMA) expression in mice brain tissue was explored to reveal the toxicity mechanism of O. glabra. Forty mice were randomly divided into four groups,namely control group,experimental group I,experimental group II and experimental group III. The mice in three experimental groups were fed with O. glabra at the doses of 1,5 and 10 g per kilogram weight,respectively. After challenge for 63 d,mice brains were collected to detect changes in distribution and expression of AMA in different brain regions. The results showed that O. glabra poisoning led to declined AMA mRNA expression in mice brain tissue,but the mice in experimental group I had no significant difference with those in control group( P > 0. 05). The AMA mRNA expression in cerebellum,cerebrum and thalamus of mice in experimental groups II and III were significantly lower than that in control group( P 0. 05). AMA had very weak expression in hippocampus and brainstem,but it had expressions in other regions,and the expression was positively correlated with the number of neurons and granulosa cells. The results showed that different doses of O. glabra reduced AMA mRNA expression in mice brain tissue,while cerebellum,cerebrum and thalamus were the main target function areas.

  7. Gene expression profiles in rat brain disclose CNS signature genes and regional patterns of functional specialisation

    Directory of Open Access Journals (Sweden)

    Breilid Harald

    2007-04-01

    Full Text Available Abstract Background The mammalian brain is divided into distinct regions with structural and neurophysiological differences. As a result, gene expression is likely to vary between regions in relation to their cellular composition and neuronal function. In order to improve our knowledge and understanding of regional patterns of gene expression in the CNS, we have generated a global map of gene expression in selected regions of the adult rat brain (frontomedial-, temporal- and occipital cortex, hippocampus, striatum and cerebellum; both right and left sides as well as in three major non-neural tissues (spleen, liver and kidney using the Applied Biosystems Rat Genome Survey Microarray. Results By unsupervised hierarchical clustering, we found that the transcriptome within a region was highly conserved among individual rats and that there were no systematic differences between the two hemispheres (right versus left side. Further, we identified distinct sets of genes showing significant regional enrichment. Functional annotation of each of these gene sets clearly reflected several important physiological features of the region in question, including synaptic transmission within the cortex, neurogenesis in hippocampus and G-protein-mediated signalling in striatum. In addition, we were able to reveal potentially new regional features, such as mRNA transcription- and neurogenesis-annotated activities in cerebellum and differential use of glutamate signalling between regions. Finally, we determined a set of 'CNS-signature' genes that uncover characteristics of several common neuronal processes in the CNS, with marked over-representation of specific features of synaptic transmission, ion transport and cell communication, as well as numerous novel unclassified genes. Conclusion We have generated a global map of gene expression in the rat brain and used this to determine functional processes and pathways that have a regional preference or ubiquitous

  8. Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment.

    Science.gov (United States)

    De Foubert, G; Carney, S L; Robinson, C S; Destexhe, E J; Tomlinson, R; Hicks, C A; Murray, T K; Gaillard, J P; Deville, C; Xhenseval, V; Thomas, C E; O'Neill, M J; Zetterström, T S C

    2004-01-01

    Recent studies indicate that brain-derived neurotrophic factor (BDNF) may be implicated in the clinical action of antidepressant drugs. Repeated (2-3 weeks) administration of antidepressant drugs increases BDNF gene expression. The onset of this response as well as concomitant effects on the corresponding BDNF protein is however, unclear. The present study investigated the effects of acute and chronic administration of the selective serotonin reuptake inhibitor, fluoxetine (10mg/kg p.o.), upon regional rat brain levels of BDNF mRNA and protein expression. To improve the clinical significance of the study, fluoxetine was administered orally and mRNA and protein levels were determined ex vivo using the techniques of in situ hybridisation histochemistry and immunocytochemistry respectively. Direct measurement of BDNF protein was also carried out using enzyme-linked immunosorbent assay (ELISA). Four days of once daily oral administration of fluoxetine induced decreases in BDNF mRNA (hippocampus, medial habenular and paraventricular thalamic nuclei). Whilst 7 days of treatment showed a non-significant increase in BDNF mRNA, there were marked and region-specific increases following 14 days of treatment. BDNF protein levels remained unaltered until 21 days of fluoxetine treatment, when the numbers of BDNF immunoreactive cells were increased, reaching significance in the pyramidal cell layer of CA1 and CA3 regions of Ammon's horn (CA1 and CA3) but not in the other sub-regions of the hippocampus. Indicative of the highly regional change within the hippocampus, the ELISA method failed to demonstrate significant up-regulation at 21 days, measuring levels of BDNF protein in the whole hippocampus. In contrast to the detected time dependent and biphasic response of the BDNF gene, activity-regulated, cytoskeletal-associated protein (Arc) mRNA showed a gradual increase during the 14-day course of treatment. The results presented here show that BDNF is expressed differentially

  9. Gene expression patterns of spleen, lung and brain with different radiosensitivity in C57BL6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, Zahidur Rahman; Lee, Woo Jung; Bae, Sang Woo; Lee, Yun Sil [Laboratory of Radiation Effect, Seoul (Korea, Republic of); Lee, Su Jae [Laboratory of Radiation Experimental Therapeutics, Seoul (Korea, Republic of)

    2005-12-15

    Although little information is available on the underlying mechanisms, various genetic factors have been associated with tissue-specific responses to radiation. In the present study, we explored the possibility whether organ specific gene expression is associated with radiosensitivity using samples from brain, lung and spleen. We examined intrinsic expression pattern of 23 genes in the organs by semi-quantitative RT-PCR method using both male and female C57BL/6 mice. Expression of p53 and p21, well known factors for governing sensitivity to radiation or chemotherapeutic agents, was not different among the organ types. Both higher expression of sialyltransferase, delta7-sterol reductase, leptin receptor splice variant form 12.1, and Cu/Zn SuperOxide Dismutase (SOD) and lower expression of alphaB crystalline were specific for spleen tissue. Expression level of glutathione peroxidase and APO-1 cell surface antigen gene in lung tissue was high, while that of Na, K-ATPase alpha-subunit, Cu/ZnSOD, and cyclin G was low. Brain, radioresistant organ, showed higher expression of Na, K-ATPase-subunit, cyclin G, and nucleolar protein hNop56 and lower expression of delta7-sterol reductase. The result revealed a potential correlation between gene expression patterns and organ sensitivity, and identified genes which might be responsible for organ sensitivity.

  10. CART peptide and opioid addiction: Expression changes in male rat brain.

    Science.gov (United States)

    Bakhtazad, A; Vousooghi, N; Garmabi, B; Zarrindast, M R

    2016-06-14

    Previous studies have shown the prominence of cocaine- and amphetamine-regulated transcript (CART) peptide in rewarding and reinforcing effects of drugs of abuse specially psychostimulants. The data regarding the effects of different stages of opioid addiction on CART expression and the interconnection between CART and opioids are not much available. Here we have studied the changes in the expression level of CART mRNA and protein in various parts of the brain reward pathway in different stages of opioid addiction. Groups of male rats received acute low-dose (10mg/kg), acute high-dose (80mg/kg) and chronic escalating doses of morphine. In addition, withdrawal and abstinence states were evaluated after injection of naloxone (1mg/kg) and long-term maintenance of addicted animals, respectively. Expression of CART mRNA in the brain was measured by real-time PCR method. Western blotting was used to quantify the protein level. CART mRNA and protein were both up-regulated in high-dose morphine-administered animals and also in the withdrawal group in the nucleus accumbens (NAc), striatum and prefrontal cortex (PFC). In the addicted group, CART mRNA and protein were both down-regulated in NAc and striatum. In the abstinent group, CART mRNA was down-regulated in NAc. In the hippocampus, the only observed change was the up-regulation of CART mRNA in the withdrawal group. We suggest that the modulatory role of CART peptide in rewarding and reinforcing effects of opioids weakens when opioids are used for a long time and is stimulated when acute stress such as naloxone-induced withdrawal syndrome or acute high-dose administration of morphine occurs to the animal.

  11. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System.

    Science.gov (United States)

    Beliveau, Vincent; Ganz, Melanie; Feng, Ling; Ozenne, Brice; Højgaard, Liselotte; Fisher, Patrick M; Svarer, Claus; Greve, Douglas N; Knudsen, Gitte M

    2017-01-04

    The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4) and the 5-HT transporter (5-HTT). The atlas is created from molecular and structural high-resolution neuroimaging data consisting of positron emission tomography (PET) and magnetic resonance imaging (MRI) scans acquired in a total of 210 healthy individuals. Comparison of the regional PET binding measures with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system of the human brain.

  12. A 3800 gene microarray for cattle functional genomics: comparison of gene expression in spleen, placenta, and brain.

    Science.gov (United States)

    Band, Mark R; Olmstead, Colleen; Everts, Robin E; Liu, Zonglin L; Lewin, Harris A

    2002-05-01

    A cDNA microarray representing approximately 3800 cattle genes was created for functional genomic studies. The array elements were selected from > 7000 cDNA clones identified in a large-scale expressed sequence tag (EST) project that utilized spleen and normalized and subtracted placenta cDNA libraries. Sequence similarity searches of the 3820 ESTs represented on the array using BLASTN identified 3290 (86.1%) as putative human orthologs, with the remainder consisting of "novel" genes or highly divergent orthologs. Experiments were conducted with a prototype 768 gene microarray created from spleen cDNAs and with the 3800 gene array that included genes from spleen and placenta. The 768 gene array was used to profile RNA transcripts expressed by adult and fetal spleen. The 3800 gene array was used to profile transcripts expressed by adult brain and placenta. Microarray analysis of RNA extracted from fetal and adult spleen identified 29 genes that were differentially expressed two-fold or more. Transcriptional differences of two of these genes, IGJ and CTSS, were confirmed using TaqMan technology. The comparison of brain and placenta revealed 400 genes expressed at higher levels in brain and 72 genes expressed at higher levels in placenta. These results demonstrate the potential power of microarrays for understanding the molecular mechanisms of cattle development, disease resistance, nutrition, fertility and production traits.

  13. 5-lipoxygenase expression in a brain damage model induced by chronic oral administration of aluminum

    Institute of Scientific and Technical Information of China (English)

    Yongquan Pan; Peng Zhang; Junqing Yang; Qiang Su

    2010-01-01

    A preliminary study has found that the 5-lipoxygenase inhibitor, caffeic acid, has a marked protective effect on acute brain injury induced by intracerebroventricular microinjection of aluminum.In this experiment, chronic brain injury and neuronal degeneration model was established in rats by chronic oral administration of aluminum, and then intervened using caffeic acid. Results showed that caffeic acid can downregulate chronic aluminum overload-induced 5-lipoxygenase mRNA and protein expression, and repair the aluminum overload-induced hippocampal neuronal damage andspatial orientation impairment. It is suggested that direct intervention of 5-lipoxygenase expression has a neuroprotective role in the degeneration induced by chronic aluminum overload brain injury model.

  14. The expression of c-Fos and colocalisation of c-Fos and glucocorticoid receptors in brain structures of low and high anxiety rats subjected to extinction trials and re-learning of a conditioned fear response.

    Science.gov (United States)

    Lehner, Małgorzata; Wisłowska-Stanek, Aleksandra; Taracha, Ewa; Maciejak, Piotr; Szyndler, Janusz; Skórzewska, Anna; Turzyńska, Danuta; Sobolewska, Alicja; Hamed, Adam; Bidziński, Andrzej; Płaźnik, Adam

    2009-11-01

    We designed an animal model to examine the mechanisms of differences in individual responses to aversive stimuli. We used the rat freezing response in the context fear test as a discriminating variable: low responders (LR) were defined as rats with a duration of freezing response one standard error or more below the mean value, and high responders (HR) were defined as rats with a duration of freezing response one standard error or more above the mean value. We sought to determine the colocalisation of c-Fos and glucocorticoid receptors-immunoreactivity (GR-ir) in HR and LR rats subjected to conditioned fear training, two extinction sessions and re-learning of a conditioned fear. We found that HR animals showed a marked decrease in conditioned fear in the course of two extinction sessions (16 days) in comparison with the control and LR groups. The LR group exhibited higher activity in the cortical M2 and prelimbic areas (c-Fos) and had an increased number of cells co-expressing c-Fos and GR-ir in the M2 and medial orbital cortex after re-learning a contextual fear. HR rats showed increased expression of c-Fos, GR-ir and c-Fos/GR-ir colocalised neurons in the basolateral amygdala and enhanced c-Fos and GR-ir in the dentate gyrus (DG) in comparison with LR animals. Our data indicate that recovery of a context-related behaviour upon re-learning of contextual fear is accompanied in HR animals by a selective increase in c-Fos expression and GRs-ir in the DG area of the hippocampus.

  15. Duration of exclusive breastfeeding is associated with differences in infants' brain responses to emotional body expressions.

    Science.gov (United States)

    Krol, Kathleen M; Rajhans, Purva; Missana, Manuela; Grossmann, Tobias

    2014-01-01

    Much research has recognized the general importance of maternal behavior in the early development and programing of the mammalian offspring's brain. Exclusive breastfeeding (EBF) duration, the amount of time in which breastfed meals are the only source of sustenance, plays a prominent role in promoting healthy brain and cognitive development in human children. However, surprisingly little is known about the influence of breastfeeding on social and emotional development in infancy. In the current study, we examined whether and how the duration of EBF impacts the neural processing of emotional signals by measuring electro-cortical responses to body expressions in 8-month-old infants. Our analyses revealed that infants with high EBF experience show a significantly greater neural sensitivity to happy body expressions than those with low EBF experience. Moreover, regression analyses revealed that the neural bias toward happiness or fearfulness differs as a function of the duration of EBF. Specifically, longer breastfeeding duration is associated with a happy bias, whereas shorter breastfeeding duration is associated with a fear bias. These findings suggest that breastfeeding experience can shape the way in which infants respond to emotional signals.

  16. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  17. Compact and mobile high resolution PET brain imager

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  18. Expression of brain-derived neurotrophic factor in rat hippocampus following focal cerebral ischemic injury

    Institute of Scientific and Technical Information of China (English)

    Yingping Li; Ruifang Guo; Kaifeng Lu

    2008-01-01

    BACKGROUND: The functional role of brain-derived neurotrophic factor (BDNF) is enhanced following cerebral ischemic injury providing neurons with an important self-protection mechanism in early stage ischemia/hypoxia.OBJECTIVE: To investigate the expression pattern of BDNF in different rat hippocampal regions following focal cerebral ischemic injury.DESIGN, TIME AND SETTING: We performed a comparative and neurobiological study of animals in the Department of Histology and Embryology and the Central Laboratory, Hebei Medical University from March to December 2003.MATERIALS: Forty healthy Sprague Dawley rats were randomly divided into a cerebral ischemla group and a sham operation group, with 20 rats per group.METHODS: In the cerebral ischemia group, we occluded the right middle cerebral artery with a suture,threading it to a depth of 17-19 mm. In the sham operation group, the threading depth was approximately 10 mm.MAIN OUTCOME MEASURES: We analyzed the expression of BDNF in different hippocampal regions by immunohistochemical staining of brain sections taken on post-operative days 7, 14, 21 and 30.RESULTS: Sham operation group: We observed a number of a few BDNF-positive cells with light staining in the hippocampal CAI CA4 regions and dentate gyrus. Cerebral ischemia group: compared with the sham operation group, BDNF increased on day 7, significantly increased on day 14, and reached a peak on day 21 (P < 0.05). Furthermore, immunologically reactive products were darkly stained, and neurons had long axons.BDNF was particularly highly expressed in the hippocampal CA3 and CA4 regions and dentate gyrus.CONCLUSION: Cerebral ischemic injury can damage hippocampal neurons. Neurons can increase their anti-ischemic capacity by increasing BDNF expression in the hippocampal CA3 and CA4 regions and dentate gyrus.

  19. Abnormal expressions of proliferating cell nuclear antigen and P27 protein in brain glioma

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Both proliferating cell nuclear antigen and P27 protein are important factors to regulate cell cycle. While, the combination of them can provide exactly objective markers to evaluate prognosis of patients with brain glioma needs to be further studied based on pathological level.OBJECTIVE: To observe the expressions of proliferating cell nuclear antigen and P27 protein in both injured and normal brain glioma tissues and analyze the effect of them on onset and development of brain glioma.DESIGN: Case contrast observation.SETTING: Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University.PARTICIPANTS: A total of 63 patients with brain glioma were selected from Department of Neurosurgery,the Second Affiliated Hospital of Xi'an Jiaotong University from July 1996 to June 2000. There were 38 males and 25 females and their ages ranged from 23 to 71 years. Based on pathological classification and grading standards of brain glioma, patients were divided into grade Ⅰ - tⅡ (n =30) and grade Ⅲ - Ⅳ (n =33). All cases received one operation but no radiotherapy and chemiotherapy before operation. Sample tissues were collected from tumor parenchyma. Non-neoplastic brain tissues were collected from another 12 non-tumor subjects who received craniocerebral trauma infra-decompression and regarded as the control group. There were 10 males and 2 females and their ages ranged from 16 to 54 years. The experiment had got confirmed consent from local ethic committee and the collection was provided confirmed consent from patients and their relatives. All samples were restained with HE staining so as to diagnose as the brain glioma.While, all patients with brain glioma received radiotherapy after operation and their survival periods were followed up.METHODS: Primary lesion wax of brain glioma was cut into serial sections and stained with S-P immunohistochemical staining. Brown substance which was observed in tumor nucleus was regarded as the

  20. Building a 5-HT3A Receptor Expression Map in the Mouse Brain

    Science.gov (United States)

    Koyama, Yoshihisa; Kondo, Makoto; Shimada, Shoichi

    2017-01-01

    Of the many serotonin receptors, the type 3 receptors (5-HT3R) are the only ionotropic ones, playing a key role in fast synaptic transmission and cognitive and emotional brain function through controlled neuronal excitation. To better understand the various functions of 5-HT3Rs, it is very important to know their expression pattern in the central nervous system (CNS). To date, many distributional studies have shown localized 5-HT3R expression in the brain and spinal cord. However, an accurate pattern of 5-HT3R expression in the CNS remains to be elucidated. To investigate the distribution of 5-HT3R in the mouse brain in detail, we performed immunofluorescent staining using 5-HT3AR-GFP transgenic mice. We found strong 5-HT3AR expression in the olfactory bulb, cerebral cortex, hippocampus, and amygdala; and partial expression in the pons, medulla, and spinal cord. Meanwhile, the thalamus, hypothalamus, and midbrain exhibited a few 5-HT3AR-expressing cells, and no expression was detected in the cerebellum. Further, double-immunostaining using neural markers confirmed that 5-HT3AR is expressed in GABAergic interneurons containing somatostatin or calretinin. In the present study, we built a 5-HT3AR expression map in the mouse brain. Our findings make significant contributions in elucidating the novel functions of 5-HT3R in the CNS. PMID:28276429

  1. Brain Development Parameters and Intelligence in Chilean High School Graduates

    Science.gov (United States)

    Ivanovic, Daniza M.; Leiva, Boris P.; Castro, Carmen G.; Olivares, Manuel G.; Jansana, Joan Manuel M.; Castro, Veronica G.; Almagia, Atilio Aldo F.; Toro, Triana D.; Urrutia, Maria Soledad C.; Miller, Patricio T.; Bosch, Enrique O.; Larrain, Cristian G.; Perez, Hernan T.

    2004-01-01

    The hypothesis that independently of sex, brain volume (BV) and head circumference (HC) are positively and significantly associated with intellectual quotient (IQ) was examined in a sample of 96 high school graduates of high [Wechsler Intelligence Scale for Adults--Revised (WAIS-R) is greater than 120] and low IQ (WAIS-R is less than 100) (1:1),…

  2. Enhanced fos expression in the zebra finch (Taeniopygia guttata) brain following first courtship.

    Science.gov (United States)

    Sadananda, Monika; Bischof, Hans-Joachim

    2002-06-24

    Young zebra finch males that court a female for the first time develop a stable preference for the females of that species. On the neuronal level, consolidation of the imprinted information takes place. Here we demonstrate that first courtship or being chased around in the cage leads to enhanced fos expression in forebrain areas implicated in learning and imprinting in zebra finch males compared with birds reared in isolation or in the aviary. Two of the forebrain areas highly active during first courtship (as demonstrated by the 14C-2-deoxyglucose technique), the imprinting locus latral neo/hyperstriatum ventrale (LNH) and the secondary visual area hyperstriatum accessorium/dorsale (HAD), demonstrate enhanced fos expression. Two other imprinting-related areas, the medial neo/hyperstriatum ventrale (MNH) and archistriatum/neostriatum caudale (ANC), do show c-fos induction; however, the areas are not congruous with those demarcated by the 2-DG autoradiographic studies. Additional telencephalic areas include the olfactory lobe, the information storage site lobus parolfactorius (LPO), the memory site hippocampus, the auditory caudomedial neostriatum implicated in the strength of song learning, and the caudolateral neostriatum, which is comparable to the mammalian prefrontal cortex. In addition, c-fos is induced by first courtship and chasing in neurosecretory cell groups of the preoptic area and hypothalamus associated with the repertoire of sexual behavior and stress or enhanced arousal. Enhanced fos expression is also observed in brainstem sources of specific (noradrenergic, catecholaminergic) and nonspecific (reticular formation) activating pathways with inputs to higher brain areas implicated in the imprinting process. Birds reared in isolation or alternatively in the aviary with social and sexual contact to conspecifics showed attenuated or no fos expression in most of the above-mentioned areas. First courtship and chasing both lead to enhanced uptake of 2-DG in

  3. Association of HIF- expression and cell apoptosis after traumatic brain injury in the rat

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To explore the expression of hypoxia inducible factor-1α (HIF-1~) and the correlation between HIF-1α and apoptosis after traumatic brain injury.Methods: Using experimental traumatic brain injury in the rats, the expression of HIF-1α was studied by immunohisto-chemistry in cerebral tissue, apoptotic cell death was evaluated with TUNEL (transferase-mediated XdUTP nick end labeling ), and double-labeled immunohistochemistry and TUNEL methods were used to investigate the relationship between HIF-1α and apoptosis.Results: There was remarkable difference in the expression of HIF-1α between the experimental groups and the control groups (P < 0.01), in the experimental groups,the expression of HIF-1α at 48 hours was highest; the evidence of apoptotic cell death after experimental traumatic brain injury was found by TUNEL; the apoptotic percentage increased or decreased according to the changes of the positive expression of HIF-1α (r = 0.99).Conclusions: The results suggest that secondary brain ischemia plays a crucial role in apoptotic cell death after traumatic brain injury; HIF-1α can prompt apoptotic cell death after experimental traumatic brain injury.e expres

  4. A truncated Kv1.1 protein in the brain of the megencephaly mouse: expression and interaction

    Directory of Open Access Journals (Sweden)

    Århem Peter

    2005-11-01

    Full Text Available Abstract Background The megencephaly mouse, mceph/mceph, is epileptic and displays a dramatically increased brain volume and neuronal count. The responsible mutation was recently revealed to be an eleven base pair deletion, leading to a frame shift, in the gene encoding the potassium channel Kv1.1. The predicted MCEPH protein is truncated at amino acid 230 out of 495. Truncated proteins are usually not expressed since nonsense mRNAs are most often degraded. However, high Kv1.1 mRNA levels in mceph/mceph brain indicated that it escaped this control mechanism. Therefore, we hypothesized that the truncated Kv1.1 would be expressed and dysregulate other Kv1 subunits in the mceph/mceph mice. Results We found that the MCEPH protein is expressed in the brain of mceph/mceph mice. MCEPH was found to lack mature (Golgi glycosylation, but to be core glycosylated and trapped in the endoplasmic reticulum (ER. Interactions between MCEPH and other Kv1 subunits were studied in cell culture, Xenopus oocytes and the brain. MCEPH can form tetramers with Kv1.1 in cell culture and has a dominant negative effect on Kv1.2 and Kv1.3 currents in oocytes. However, it does not retain Kv1.2 in the ER of neurons. Conclusion The megencephaly mice express a truncated Kv1.1 in the brain, and constitute a unique tool to study Kv1.1 trafficking relevant for understanding epilepsy, ataxia and pathologic brain overgrowth.

  5. Volatile Anesthetics Influence Blood-Brain Barrier Integrity by Modulation of Tight Junction Protein Expression in Traumatic Brain Injury

    OpenAIRE

    Thal, Serge C.; Clara Luh; Eva-Verena Schaible; Ralph Timaru-Kast; Jana Hedrich; Luhmann, Heiko J.; Kristin Engelhard; Zehendner, Christoph M.

    2012-01-01

    Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortalityrnafter traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be importantrnto elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonularnoccludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anesthet...

  6. Brain expressed microRNAs implicated in schizophrenia etiology

    DEFF Research Database (Denmark)

    Hansen, Thomas; Olsen, Line; Lindow, Morten;

    2007-01-01

    Protein encoding genes have long been the major targets for research in schizophrenia genetics. However, with the identification of regulatory microRNAs (miRNAs) as important in brain development and function, miRNAs genes have emerged as candidates for schizophrenia-associated genetic factors...

  7. Exclusive neuronal expression of SUCLA2 in the human brain

    DEFF Research Database (Denmark)

    Dobolyi, Arpád; Ostergaard, Elsebet; Bagó, Attila G

    2015-01-01

    SUCLA2 encodes the ATP-forming β subunit (A-SUCL-β) of succinyl-CoA ligase, an enzyme of the citric acid cycle. Mutations in SUCLA2 lead to a mitochondrial disorder manifesting as encephalomyopathy with dystonia, deafness and lesions in the basal ganglia. Despite the distinct brain pathology...

  8. Correlation of vascular endothelial growth factor to permeability of blood-brain barrier and brain edema during high-altitude exposure

    Institute of Scientific and Technical Information of China (English)

    Qiquan Zhou; Chang'e Liu; Jing Wang; Yunli Wang; Bo Zhou

    2009-01-01

    BACKGROUND:Many studies have evaluated the role of vascular endothelial growth factor (VEGF) in traumatic brain edema and hemorrhagic brain edema.OBJECTIVE:To observe the effects of VEGF expression on permeability of the blood-brain barrier (BBB) during high-altitude and hypoxia exposure,and to investigate the correlation between VEGF expression and BBB permeability with regard to Evans blue staining and brain edema during high-altitude exposure.DESIGN,TIME AND SETTING:The randomized,controlled,animal study was performed at the Tanggula Etape,Central Laboratory of Chengdu Medical College,and Central Laboratory of General Hospital of Chengdu Military Area Command of Chinese PLA,China,from July 2003 to November 2004.MATERIALS:Quantitative RT-PCR kit (Sigma,USA),VEGF ELISA kit (Biosource,USA),and Evans blue (Jingchun,China) were acquired for this study.METHODS:A total of 180 Wistar rats were equally and randomly assigned to 15 groups:low-altitude (500 m),middle-altitude (2 880 m),high-altitude (4 200 m),super-high-altitude (5 000 m),1,3,5,7,9,11,13,15,17,19,and 21 days of super high-altitude exposure.Wistar rats were exposed to various altitude gradients to establish a hypoxia model.MAIN OUTCOME MEASURES:Brain water content was calculated according to the wet-to-dry weight ratio.BBB permeability to Evans blue was determined by colorimetric method.VEGF mRNA and protein levels in brain tissues were detected using RT-PCR and double-antibody sandwich ELISA.RESULTS:Brain water content,BBB permeability to Evans blue,and VEGF mRNA and protein levels in brain tissues increased with increasing altitude and prolonged exposure to altitude.The greatest increase was determined on day 9 upon ascending 5 000 m.Simultaneously,VEGF expression positively correlated to BBB permeability of Evans blue and brain water content (r=0.975,0.917,P<0.01).CONCLUSION:Increased VEGF protein and mRNA expression was responsible for increased BBB permeability,which may be an important mechanism

  9. Expression of cysteinyl leukotriene receptors in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    Wei-PingZhang; HuaHu; LeiZhangl; ZhongChen; Er-QingWei

    2004-01-01

    Cysteinyl leukotrienes (CysLTs) are potent proinflammatory mediators. Till now only CysLT receptor 1 (CysLT1) and CysLT receptor 2 (CysLT2) have been cloned. Although the existence of CysLT1 and CysLT2 in the brain has been demonstrated by Northern blot and RT-PCR analyses, the exact location of the receptors in the brain remains unknown. The objective

  10. Differential spatial expression and subcellular localization of CtBP family members in rodent brain.

    Directory of Open Access Journals (Sweden)

    Diana Hübler

    Full Text Available C-terminal binding proteins (CtBPs are well-characterized nuclear transcriptional co-regulators. In addition, cytoplasmic functions were discovered for these ubiquitously expressed proteins. These include the involvement of the isoform CtBP1-S/BARS50 in cellular membrane-trafficking processes and a role of the isoform RIBEYE as molecular scaffolds in ribbons, the presynaptic specializations of sensory synapses. CtBPs were suggested to regulate neuronal differentiation and they were implied in the control of gene expression during epileptogenesis. However, the expression patterns of CtBP family members in specific brain areas and their subcellular localizations in neurons in situ are largely unknown. Here, we performed comprehensive assessment of the expression of CtBP1 and CtBP2 in mouse brain at the microscopic and the ultra-structural levels using specific antibodies. We quantified and compared expression levels of both CtBPs in biochemically isolated brain fractions containing cellular nuclei or synaptic compartment. Our study demonstrates differential regional and subcellular expression patterns for the two CtBP family members in brain and reveals a previously unknown synaptic localization for CtBP2 in particular brain regions. Finally, we propose a mechanism of differential synapto-nuclear targeting of its splice variants CtBP2-S and CtBP2-L in neurons.

  11. Differential spatial expression and subcellular localization of CtBP family members in rodent brain.

    Science.gov (United States)

    Hübler, Diana; Rankovic, Marija; Richter, Karin; Lazarevic, Vesna; Altrock, Wilko D; Fischer, Klaus-Dieter; Gundelfinger, Eckart D; Fejtova, Anna

    2012-01-01

    C-terminal binding proteins (CtBPs) are well-characterized nuclear transcriptional co-regulators. In addition, cytoplasmic functions were discovered for these ubiquitously expressed proteins. These include the involvement of the isoform CtBP1-S/BARS50 in cellular membrane-trafficking processes and a role of the isoform RIBEYE as molecular scaffolds in ribbons, the presynaptic specializations of sensory synapses. CtBPs were suggested to regulate neuronal differentiation and they were implied in the control of gene expression during epileptogenesis. However, the expression patterns of CtBP family members in specific brain areas and their subcellular localizations in neurons in situ are largely unknown. Here, we performed comprehensive assessment of the expression of CtBP1 and CtBP2 in mouse brain at the microscopic and the ultra-structural levels using specific antibodies. We quantified and compared expression levels of both CtBPs in biochemically isolated brain fractions containing cellular nuclei or synaptic compartment. Our study demonstrates differential regional and subcellular expression patterns for the two CtBP family members in brain and reveals a previously unknown synaptic localization for CtBP2 in particular brain regions. Finally, we propose a mechanism of differential synapto-nuclear targeting of its splice variants CtBP2-S and CtBP2-L in neurons.

  12. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development

    DEFF Research Database (Denmark)

    Venø, Morten T; Hansen, Thomas B; Venø, Susanne T

    2015-01-01

    BACKGROUND: Recently, thousands of circular RNAs (circRNAs) have been discovered in various tissues and cell types from human, mouse, fruit fly and nematodes. However, expression of circRNAs across mammalian brain development has never been examined. RESULTS: Here we profile the expression of circ...

  13. Infants' Emerging Sensitivity to Emotional Body Expressions: Insights from Asymmetrical Frontal Brain Activity

    Science.gov (United States)

    Missana, Manuela; Grossmann, Tobias

    2015-01-01

    Sensitive responding to others' emotional body expressions is an essential social skill in humans. Using event-related brain potentials, it has recently been shown that the ability to discriminate between emotional body expressions develops between 4 and 8 months of age. However, it is not clear whether the perception of emotional body expressions…

  14. Infants' Emerging Sensitivity to Emotional Body Expressions: Insights from Asymmetrical Frontal Brain Activity

    Science.gov (United States)

    Missana, Manuela; Grossmann, Tobias

    2015-01-01

    Sensitive responding to others' emotional body expressions is an essential social skill in humans. Using event-related brain potentials, it has recently been shown that the ability to discriminate between emotional body expressions develops between 4 and 8 months of age. However, it is not clear whether the perception of emotional body expressions…

  15. Brain inspired high performance electronics on flexible silicon

    KAUST Repository

    Sevilla, Galo T.

    2014-06-01

    Brain\\'s stunning speed, energy efficiency and massive parallelism makes it the role model for upcoming high performance computation systems. Although human brain components are a million times slower than state of the art silicon industry components [1], they can perform 1016 operations per second while consuming less power than an electrical light bulb. In order to perform the same amount of computation with today\\'s most advanced computers, the output of an entire power station would be needed. In that sense, to obtain brain like computation, ultra-fast devices with ultra-low power consumption will have to be integrated in extremely reduced areas, achievable only if brain folded structure is mimicked. Therefore, to allow brain-inspired computation, flexible and transparent platform will be needed to achieve foldable structures and their integration on asymmetric surfaces. In this work, we show a new method to fabricate 3D and planar FET architectures in flexible and semitransparent silicon fabric without comprising performance and maintaining cost/yield advantage offered by silicon-based electronics.

  16. Netrin-1 expression is an independent prognostic factor for poor patient survival in brain metastases.

    Directory of Open Access Journals (Sweden)

    Patrick N Harter

    Full Text Available The multifunctional molecule netrin-1 is upregulated in various malignancies and has recently been presented as a major general player in tumorigenesis leading to tumor progression and maintenance in various animal models. However, there is still a lack of clinico-epidemiological data related to netrin-1 expression. Therefore, the aim of our study was to elucidate the association of netrin-1 expression and patient survival in brain metastases since those constitute one of the most limiting factors for patient prognosis. We investigated 104 brain metastases cases for netrin-1 expression using in-situ hybridization and immunohistochemistry with regard to clinical parameters such as patient survival and MRI data. Our data show that netrin-1 is strongly upregulated in most cancer subtypes. Univariate analyses revealed netrin-1 expression as a significant factor associated with poor patient survival in the total cohort of brain metastasis patients and in sub-entities such as non-small cell lung carcinomas. Interestingly, many cancer samples showed a strong nuclear netrin-1 signal which was recently linked to a truncated netrin-1 variant that enhances tumor growth. Nuclear netrin-1 expression was associated with poor patient survival in univariate as well as in multivariate analyses. Our data indicate both total and nuclear netrin-1 expression as prognostic factors in brain metastases patients in contrast to other prognostic markers in oncology such as patient age, number of brain metastases or Ki67 proliferation index. Therefore, nuclear netrin-1 expression constitutes one of the first reported molecular biomarkers for patient survival in brain metastases. Furthermore, netrin-1 may constitute a promising target for future anti-cancer treatment approaches in brain metastases.

  17. Differential gene expression in brain tissues of aggressive and non-aggressive dogs

    Directory of Open Access Journals (Sweden)

    Tverdal Aage

    2010-06-01

    Full Text Available Abstract Background Canine behavioural problems, in particular aggression, are important reasons for euthanasia of otherwise healthy dogs. Aggressive behaviour in dogs also represents an animal welfare problem and a public threat. Elucidating the genetic background of adverse behaviour can provide valuable information to breeding programs and aid the development of drugs aimed at treating undesirable behaviour. With the intentions of identifying gene-specific expression in particular brain parts and comparing brains of aggressive and non-aggressive dogs, we studied amygdala, frontal cortex, hypothalamus and parietal cortex, as these tissues are reported to be involved in emotional reactions, including aggression. Based on quantitative real-time PCR (qRT-PCR in 20 brains, obtained from 11 dogs euthanised because of aggressive behaviour and nine non-aggressive dogs, we studied expression of nine genes identified in an initial screening by subtraction hybridisation. Results This study describes differential expression of the UBE2V2 and ZNF227 genes in brains of aggressive and non-aggressive dogs. It also reports differential expression for eight of the studied genes across four different brain tissues (amygdala, frontal cortex, hypothalamus, and parietal cortex. Sex differences in transcription levels were detected for five of the nine studied genes. Conclusions The study showed significant differences in gene expression between brain compartments for most of the investigated genes. Increased expression of two genes was associated with the aggression phenotype. Although the UBE2V2 and ZNF227 genes have no known function in regulation of aggressive behaviour, this study contributes to preliminary data of differential gene expression in the canine brain and provides new information to be further explored.

  18. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival.

    Science.gov (United States)

    Wainwright, Derek A; Balyasnikova, Irina V; Chang, Alan L; Ahmed, Atique U; Moon, Kyung-Sub; Auffinger, Brenda; Tobias, Alex L; Han, Yu; Lesniak, Maciej S

    2012-11-15

    Glioblastoma multiforme (GBM) is an aggressive adult brain tumor with a poor prognosis. One hallmark of GBM is the accumulation of immunosuppressive and tumor-promoting CD4(+)FoxP3(+)GITR(+) regulatory T cells (Tregs). Here, we investigated the role of indoleamine 2,3 dioxygenase (IDO) in brain tumors and the impact on Treg recruitment. To determine the clinical relevance of IDO expression in brain tumors, we first correlated patient survival to the level of IDO expression from resected glioma specimens. We also used novel orthotopic and transgenic models of glioma to study how IDO affects Tregs. The impact of tumor-derived and peripheral IDO expression on Treg recruitment, GITR expression, and long-term survival was determined. Downregulated IDO expression in glioma predicted a significantly better prognosis in patients. Coincidently, both IDO-competent and deficient mice showed a survival advantage bearing IDO-deficient brain tumors, when compared with IDO-competent brain tumors. Moreover, IDO deficiency was associated with a significant decrease in brain-resident Tregs, both in orthotopic and transgenic mouse glioma models. IDO deficiency was also associated with lower GITR expression levels on Tregs. Interestingly, the long-term survival advantage conferred by IDO deficiency was lost in T-cell-deficient mice. These clinical and preclinical data confirm that IDO expression increases the recruitment of immunosuppressive Tregs that lead to tumor outgrowth. In contrast, IDO deficiency decreases Treg recruitment and enhances T-cell-mediated tumor rejection. Thus, the data suggest a critical role for IDO-mediated immunosuppression in glioma and support the continued investigation of IDO-Treg interactions in the context of brain tumors. ©2012 AACR.

  19. Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells.

    Directory of Open Access Journals (Sweden)

    Vinay K Tripathi

    Full Text Available The expression and metabolic profile of cytochrome P450s (CYPs is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y and glial (U373-MG cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC, cyclophosphamide (CPA, ethanol and known neurotoxicant- monocrotophos (MCP, a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against

  20. Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells.

    Science.gov (United States)

    Tripathi, Vinay K; Kumar, Vivek; Singh, Abhishek K; Kashyap, Mahendra P; Jahan, Sadaf; Pandey, Ankita; Alam, Sarfaraz; Khan, Feroz; Khanna, Vinay K; Yadav, Sanjay; Lohani, Mohtshim; Pant, Aditya B

    2014-01-01

    The expression and metabolic profile of cytochrome P450s (CYPs) is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y) and glial (U373-MG) cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC), cyclophosphamide (CPA), ethanol and known neurotoxicant- monocrotophos (MCP), a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h) of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against xenobiotics.

  1. Sex, the brain and hypertension: brain oestrogen receptors and high blood pressure risk factors.

    Science.gov (United States)

    Hay, Meredith

    2016-01-01

    Hypertension is a major contributor to worldwide morbidity and mortality rates related to cardiovascular disease. There are important sex differences in the onset and rate of hypertension in humans. Compared with age-matched men, premenopausal women are less likely to develop hypertension. However, after age 60, the incidence of hypertension increases in women and even surpasses that seen in older men. It is thought that changes in levels of circulating ovarian hormones as women age may be involved in the increase in hypertension in older women. One of the key mechanisms involved in the development of hypertension in both men and women is an increase in sympathetic nerve activity (SNA). Brain regions important for the regulation of SNA, such as the subfornical organ, the paraventricular nucleus and the rostral ventral lateral medulla, also express specific subtypes of oestrogen receptors. Each of these brain regions has also been implicated in mechanisms underlying risk factors for hypertension such as obesity, stress and inflammation. The present review brings together evidence that links actions of oestrogen at these receptors to modulate some of the common brain mechanisms involved in the ability of hypertensive risk factors to increase SNA and blood pressure. Understanding the mechanisms by which oestrogen acts at key sites in the brain for the regulation of SNA is important for the development of novel, sex-specific therapies for treating hypertension. © 2016 Authors; published by Portland Press Limited.

  2. Occludin and connexin 43 expression contribute to the pathogenesis of traumatic brain edema*

    Institute of Scientific and Technical Information of China (English)

    Wanyin Ren; Guojie Jing; Qin Shen; Xiaoteng Yao; Yingchao Jing; Feng Lin; Weidong Pan

    2013-01-01

    The experimental model of traumatic brain injury was established in Sprague-Dawley rats according to Feeney’s free fal ing method. The brains were harvested at 2, 6 and 24 hours, and at 3 and 5 days after injury. Changes in brain water content were determined using the wet and dry weights. Our results showed that water content of tissue significantly increased after traumatic brain injury, and reached minimum at 24 hours. Hematoxylin-eosin staining revealed pathological impairment of brain tissue at each time point after injury, particularly at 3 days, with nerve celledema, degenera-tion, and necrosis observed, and the apoptotic rate significantly increased. Immunohistochemistry and western blot analysis revealed that the expression of occludin at the injured site gradual y de-creased as injury time advanced and reached a minimum at 3 days after injury; the expression of connexin 43 gradual y increased as injury time advanced and reached a peak at 24 hours after in-jury. The experimental findings indicate that changes in occludin and connexin 43 expression were consistent with the development of brain edema, and may reflect the pathogenesis of brain injury.

  3. Upregulated gene expression of local brain-derived neurotrophic factor and nerve growth factor after intracisternal administration of marrow stromal cells in rats with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹; 毛颖; 吴雪海

    2005-01-01

    Objective: To examine the effects of rat marrow stromal cells (rMSCs) on gene expression of local brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) after injection of rMSCs into Cistern Magnum of adult rats subjected to traumatic brain injury(TBI).Results: Group cell transplantation had higher BDNF and NGF gene expressions than Group saline control during a period of less than 3 weeks (P<0.05).Conclusions: rMSCs transplantation via Cistern Magnum in rats subjected to traumatic brain injury can enhance expressions of local brain NGF and BDNF to a certain extent.

  4. EST-based Analysis of Gene Expression in the Porcine Brain

    Institute of Scientific and Technical Information of China (English)

    Bing Zhang; Wu Jin; Yanwu Zeng; Zhixi Su; Songnian Hu; Jun Yu

    2004-01-01

    Since pig is an important livestock species worldwide, its gene expression has been investigated intensively, but rarely in brain. In order to study gene expression profiles in the pig central nervous system, we sequenced and analyzed 43,122 highquality 5′ end expressed sequence tags (ESTs) from porcine cerebellum, cortex cerebrum, and brain stem cDNA libraries, involving several different prenatal and postnatal developmental stages. The initial ESTs were assembled into 16,101 clusters and compared to protein and nucleic acid databases in GenBank. Of these sequences, 30.6% clusters matched protein databases and represented function known sequences; 75.1% had significant hits to nucleic acid databases and partial represented known function; 73.3% matched known porcine ESTs; and 21.5% had no matches to any known sequences in GenBank. We used the categories defined by the Gene Ontology to survey gene expression in the porcine brain.

  5. Glucocorticoids modulate BDNF mRNA expression in the rat hippocampus after traumatic brain injury.

    Science.gov (United States)

    Grundy, P L; Patel, N; Harbuz, M S; Lightman, S L; Sharples, P M

    2000-10-20

    Brain-derived neurotrophic factor (BDNF) expression in rat hippocampus is increased after experimental traumatic brain injury (TBI) and may be neuroprotective. Glucocorticoids are important regulators of brain neurotrophin levels and are often prescribed following TBI. The effect of adrenalectomy (ADX) on the expression of BDNF mRNA in the hippocampus after TBI has not been investigated to date. We used fluid percussion injury (FPI) and in situ hybridization to evaluate the expression of BDNF mRNA in the hippocampus 4 h after TBI in adrenal-intact or adrenalectomized rats (with or without corticosterone replacement). FPI and ADX independently increased expression of BDNF mRNA. In animals undergoing FPI, prior ADX caused further elevation of BDNF mRNA and this upregulation was prevented by corticosterone replacement in ADX rats. These findings suggest that glucocorticoids are involved in the modulation of the BDNF mRNA response to TBI.

  6. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene.

    Directory of Open Access Journals (Sweden)

    Rebecca L Skalsky

    Full Text Available Glioblastoma is a highly aggressive malignant tumor involving glial cells in the human brain. We used high-throughput sequencing to comprehensively profile the small RNAs expressed in glioblastoma and non-tumor brain tissues. MicroRNAs (miRNAs made up the large majority of small RNAs, and we identified over 400 different cellular pre-miRNAs. No known viral miRNAs were detected in any of the samples analyzed. Cluster analysis revealed several miRNAs that were significantly down-regulated in glioblastomas, including miR-128, miR-124, miR-7, miR-139, miR-95, and miR-873. Post-transcriptional editing was observed for several miRNAs, including the miR-376 family, miR-411, miR-381, and miR-379. Using the deep sequencing information, we designed a lentiviral vector expressing a cell suicide gene, the herpes simplex virus thymidine kinase (HSV-TK gene, under the regulation of a miRNA, miR-128, that was found to be enriched in non-tumor brain tissue yet down-regulated in glioblastomas, Glioblastoma cells transduced with this vector were selectively killed when cultured in the presence of ganciclovir. Using an in vitro model to recapitulate expression of brain-enriched miRNAs, we demonstrated that neuronally differentiated SH-SY5Y cells transduced with the miRNA-regulated HSV-TK vector are protected from killing by expression of endogenous miR-128. Together, these results provide an in-depth analysis of miRNA dysregulation in glioblastoma and demonstrate the potential utility of these data in the design of miRNA-regulated therapies for the treatment of brain cancers.

  7. CLOCK expression identifies developing circadian oscillator neurons in the brains of Drosophila embryos

    Directory of Open Access Journals (Sweden)

    Ng Fanny

    2008-12-01

    Full Text Available Abstract Background The Drosophila circadian oscillator is composed of transcriptional feedback loops in which CLOCK-CYCLE (CLK-CYC heterodimers activate their feedback regulators period (per and timeless (tim via E-box mediated transcription. These feedback loop oscillators are present in distinct clusters of dorsal and lateral neurons in the adult brain, but how this pattern of expression is established during development is not known. Since CLK is required to initiate feedback loop function, defining the pattern of CLK expression in embryos and larvae will shed light on oscillator neuron development. Results A novel CLK antiserum is used to show that CLK expression in the larval CNS and adult brain is limited to circadian oscillator cells. CLK is initially expressed in presumptive small ventral lateral neurons (s-LNvs, dorsal neurons 2 s (DN2s, and dorsal neuron 1 s (DN1s at embryonic stage (ES 16, and this CLK expression pattern persists through larval development. PER then accumulates in all CLK-expressing cells except presumptive DN2s during late ES 16 and ES 17, consistent with the delayed accumulation of PER in adult oscillator neurons and antiphase cycling of PER in larval DN2s. PER is also expressed in non-CLK-expressing cells in the embryonic CNS starting at ES 12. Although PER expression in CLK-negative cells continues in ClkJrk embryos, PER expression in cells that co-express PER and CLK is eliminated. Conclusion These data demonstrate that brain oscillator neurons begin development during embryogenesis, that PER expression in non-oscillator cells is CLK-independent, and that oscillator phase is an intrinsic characteristic of brain oscillator neurons. These results define the temporal and spatial coordinates of factors that initiate Clk expression, imply that circadian photoreceptors are not activated until the end of embryogenesis, and suggest that PER functions in a different capacity before oscillator cell development is

  8. A digital atlas of ion channel expression patterns in the two-week-old rat brain.

    Science.gov (United States)

    Shcherbatyy, Volodymyr; Carson, James; Yaylaoglu, Murat; Jäckle, Katharina; Grabbe, Frauke; Brockmeyer, Maren; Yavuz, Halenur; Eichele, Gregor

    2015-01-01

    The approximately 350 ion channels encoded by the mammalian genome are a main pillar of the nervous system. We have determined the expression pattern of 320 channels in the two-week-old (P14) rat brain by means of non-radioactive robotic in situ hybridization. Optimized methods were developed and implemented to generate stringently coronal brain sections. The use of standardized methods permits a direct comparison of expression patterns across the entire ion channel expression pattern data set and facilitates recognizing ion channel co-expression. All expression data are made publically available at the Genepaint.org database. Inwardly rectifying potassium channels (Kir, encoded by the Kcnj genes) regulate a broad spectrum of physiological processes. Kcnj channel expression patterns generated in the present study were fitted with a deformable subdivision mesh atlas produced for the P14 rat brain. This co-registration, when combined with numerical quantification of expression strengths, allowed for semi-quantitative automated annotation of expression patterns as well as comparisons among and between Kcnj subfamilies. The expression patterns of Kcnj channel were also cross validated against previously published expression patterns of Kcnj channel genes.

  9. Microarray analysis of high-dose recombinant erythropoietin treatment of unilateral brain injury in neonatal mouse hippocampus.

    Science.gov (United States)

    Juul, Sandra E; Beyer, Richard P; Bammler, Theo K; McPherson, Ronald J; Wilkerson, Jasmine; Farin, Federico M

    2009-05-01

    Recombinant human erythropoietin (rEpo) is neuroprotective in neonatal models of brain injury. Proposed mechanisms of neuroprotection include activation of gene pathways that decrease oxidative injury, inflammation, and apoptosis, while increasing vasculogenesis and neurogenesis. To determine the effects of rEpo on gene expression in 10-d-old BALB-c mice with unilateral brain injury, we compared microarrays from the hippocampi of brain-injured pups treated with saline or rEpo to similarly treated sham animals. Total RNA was extracted 24 h after brain injury and analyzed using Affymetrix GeneChip Mouse Exon 1.0 ST Arrays. We identified sex-specific differences in hippocampal gene expression after brain injury and after high-dose rEpo treatment using single-gene and gene set analysis. Although high-dose rEpo had minimal effects on hippocampal gene expression in shams, at 24-h post brain injury, high-dose rEpo treatment significantly decreased the proinflammatory and antiapoptotic response noted in saline-treated brain-injured comparison animals.

  10. High voltage electric potentials to enhance brain-derived neurotrophic factor levels in the brain.

    Science.gov (United States)

    Yanamoto, Hiroji; Nakajo, Yukako; Kataoka, Hiroharu; Iihara, Koji

    2013-01-01

    Development of a safe method to increase brain-derived neurotrophic factor (BDNF) levels in the brain is expected to enhance learning and memory, induce tolerance to cerebral infarction or tolerance to depressive state, improve glucose metabolism, and suppress appetite and body weight. We have shown that repetitive applications of high-voltage electric potential (HELP) to the body increase BDNF levels in the brain, improving learning and memory in mice. Here, we investigated the effects of HELP treatment for a chronic period on the BDNF levels in the mouse brain, and on body weight in mice and humans. Adult mice were exposed to 3.1 or 5.4 kV HELP (on the body), 5 h a day for 24 weeks, and BDNF levels in the brain and alterations in body weight were analyzed. Humans [age, 53.2 ± 15.5 years old; BMI, 27.8 ± 5.6 (mean ± SD, n = 6)] were exposed to 3.9 kV HELP (on the body) for 1 h a day, continuing for 33 months (2.8 years) under the monitor of body weight. In mice, the HELP application elevated BDNF levels in the brain at least temporarily, affecting body weight in a voltage- and time-dependent manner. In humans, the HELP treatment reduced body weight compared to the pretreated initial values without any aversive effects (p BDNF, and 5.4 kV HELP was considered as excessive. HELP with an appropriate voltage can be utilized to increase BDNF levels in the brain for a prolonged period. We anticipate further investigations to clarify the effect of the optimal-leveled HELP therapy on memory disturbances, neurological deficits after stroke, depression, diabetes, obesity and metabolic syndrome.

  11. Neuroimaging studies of bilingual expressive language representation in the brain: potential applications for magnetoencephalography

    Institute of Scientific and Technical Information of China (English)

    Elizabeth W.Pang

    2012-01-01

    Bilingualism is the ability to use two or more languages with equal or near equal fluency.How the brain,often seamlessly,selects,controls,and switches between languages is an enigma.Neuroimaging studies offer the unique opportunity to probe the mechanisms underlying bilingual brain function.Non-invasive methods,in particular,functional MRI (fMRI) and event-related potentials (ERPs),have allowed examination in healthy control populations.Whole-head magnetoencephalography (MEG),a relatively new addition to the cadre of neuroimaging tools,offers a combination of the high spatial resolution of fMRI with the high temporal resolution of ERPs.Thus far,MEG has been applied to the studies of bilingual receptive language,or bilingual language comprehension.MEG has not yet been applied to the study of bilingual language production as such studies have faced more challenges (see Salmelin,2007 for a review),and these have only recently been addressed.Here,we review the literature on MEG expressive language studies and point out a direction for the application of MEG to the study of bilingual language production.

  12. The Ketogenic Diet Suppresses the Cathepsin E Expression Induced by Kainic Acid in the Rat Brain

    Science.gov (United States)

    Jeong, Hyun Jeong; Kim, Hojeong; Kim, Yoon-Kyoung; Park, Sang-Kyu; Kang, Dong-Won

    2010-01-01

    Purpose The ketogenic diet has long been used to treat epilepsy, but its mechanism is not yet clearly understood. To explore the potential mechanism, we analyzed the changes in gene expression induced by the ketogenic diet in the rat kainic acid (KA) epilepsy model. Materials and Methods KA-administered rats were fed the ketogenic diet or a normal diet for 4 weeks, and microarray analysis was performed with their brain tissues. The effects of the ketogenic diet on cathepsin E messenger ribonucleic acid (mRNA) expression were analyzed in KA-administered and normal saline-administered groups with semi-quantitative and real-time reverse transcription polymerase chain reaction (RT-PCR). Brain tissues were dissected into 8 regions to compare differential effects of the ketogenic diet on cathepsin E mRNA expression. Immunohistochemistry with an anti-cathepsin E antibody was performed on slides of hippocampus obtained from whole brain paraffin blocks. Results The microarray data and subsequent RT-PCR experiments showed that KA increased the mRNA expression of cathepsin E, known to be related to neuronal cell death, in most brain areas except the brain stem, and these increases of cathepsin E mRNA expression were suppressed by the ketogenic diet. The expression of cathepsin E mRNA in the control group, however, was not significantly affected by the ketogenic diet. The change in cathepsin E mRNA expression was greatest in the hippocampus. The protein level of cathepsin E in the hippocampus of KA-administered rat was elevated in immunohistochemistry and the ketogenic diet suppressed this increase. Conclusion Our results showed that KA administration increased cathepsin E expression in the rat brain and its increase was suppressed by the ketogenic diet. PMID:20635438

  13. GFAPδ expression in glia of the developmental and adolescent mouse brain.

    Directory of Open Access Journals (Sweden)

    Carlyn Mamber

    Full Text Available Glial fibrillary acidic protein (GFAP is the major intermediate filament (IF protein in astrocytes. In the human brain, GFAP isoforms have unique expression patterns, which indicate that they play distinct functional roles. One isoform, GFAPδ, is expressed by proliferative radial glia in the developing human brain. In the adult human, GFAPδ is a marker for neural stem cells. However, it is unknown whether GFAPδ marks the same population of radial glia and astrocytes in the developing mouse brain as it does in the developing human brain. This study characterizes the expression pattern of GFAPδ throughout mouse embryogenesis and into adolescence. Gfapδ transcripts are expressed from E12, but immunohistochemistry shows GFAPδ staining only from E18. This finding suggests a translational uncoupling. GFAPδ expression increases from E18 to P5 and then decreases until its expression plateaus around P25. During development, GFAPδ is expressed by radial glia, as denoted by the co-expression of markers like vimentin and nestin. GFAPδ is also expressed in other astrocytic populations during development. A similar pattern is observed in the adolescent mouse, where GFAPδ marks both neural stem cells and mature astrocytes. Interestingly, the Gfapδ/Gfapα transcript ratio remains stable throughout development as well as in primary astrocyte and neurosphere cultures. These data suggest that all astroglia cells in the developing and adolescent mouse brain express GFAPδ, regardless of their neurogenic capabilities. GFAPδ may be an integral component of all mouse astrocytes, but it is not a specific neural stem cell marker in mice as it is in humans.

  14. GFAPδ expression in glia of the developmental and adolescent mouse brain.

    Science.gov (United States)

    Mamber, Carlyn; Kamphuis, Willem; Haring, Nina L; Peprah, Nuzrat; Middeldorp, Jinte; Hol, Elly M

    2012-01-01

    Glial fibrillary acidic protein (GFAP) is the major intermediate filament (IF) protein in astrocytes. In the human brain, GFAP isoforms have unique expression patterns, which indicate that they play distinct functional roles. One isoform, GFAPδ, is expressed by proliferative radial glia in the developing human brain. In the adult human, GFAPδ is a marker for neural stem cells. However, it is unknown whether GFAPδ marks the same population of radial glia and astrocytes in the developing mouse brain as it does in the developing human brain. This study characterizes the expression pattern of GFAPδ throughout mouse embryogenesis and into adolescence. Gfapδ transcripts are expressed from E12, but immunohistochemistry shows GFAPδ staining only from E18. This finding suggests a translational uncoupling. GFAPδ expression increases from E18 to P5 and then decreases until its expression plateaus around P25. During development, GFAPδ is expressed by radial glia, as denoted by the co-expression of markers like vimentin and nestin. GFAPδ is also expressed in other astrocytic populations during development. A similar pattern is observed in the adolescent mouse, where GFAPδ marks both neural stem cells and mature astrocytes. Interestingly, the Gfapδ/Gfapα transcript ratio remains stable throughout development as well as in primary astrocyte and neurosphere cultures. These data suggest that all astroglia cells in the developing and adolescent mouse brain express GFAPδ, regardless of their neurogenic capabilities. GFAPδ may be an integral component of all mouse astrocytes, but it is not a specific neural stem cell marker in mice as it is in humans.

  15. Hyperlipidemia affects neuronal nitric oxide synthase expression in brains of focal cerebral ischemia rat model

    Institute of Scientific and Technical Information of China (English)

    Jianji Pei; Liqiang Liu; Jinping Pang; Xiaohong Tian

    2008-01-01

    BACKGROUND: Hyperlipidemia, a risk factor for ischemic cerebrovascular disease, may mediate production of neuronal nitric oxide synthase (nNOS) to induce increased nitric oxide levels, resulting in brain neuronal injury. OBJECTIVE: To investigate effects of hyperlipidemia on brain nNOS expression, and to verify changes in infarct volume and pathology during reperfusion, as well as neuronal injury following ischemia/reperfusion in a rat model of focal cerebral ischemia. DESIGN, TIME AND SETTING: Complete, randomized grouping experiment was performed at the Laboratory of Physiology, Shanxi Medical University from March 2005 to March 2006. MATERIALS: A total of 144 eight-week-old, male, Wistar rats, weighing 160-180 g, were selected. A rat model of middle cerebral artery occlusion was established by suture method after 4 weeks of formulated diet. Nitric oxide kit and rabbit anti-rat nNOS kit were respectively purchased from Nanjing Jiancheng Bioengineering Institute, China and Wuhan Boster Biological Technology, Ltd., China. METHODS: The rats were equally and randomly divided into high-fat diet and a normal diet groups. Rats in the high-fat diet group were fed a high-fat diet, consisting of 10% egg yolk powder, 5% pork fat, and 0.5% pig bile salt combined with standard chow to create hyperlipidemia. Rats in the normal diet group were fed a standard rat chow. A total of 72 rats in both groups were randomly divided into 6 subgroups: sham-operated, 4-hour ischemia, 4-hour ischemia/2-hour reperfusion, 4-hour ischemia/4-hour reperfusion, 4-hour ischemia/6-hour reperfusion, and 4-hour ischemia/12-hour reperfusion, with 12 rats in each subgroup. MAIN OUTCOME MEASURES: nNOS expression was measured by immunohistochemistry, and pathomorphology changes were detected by hematoxylin-eosin staining. Infarct volume and nitric oxide levels were respectively measured using 2, 3, 5-triphenyltetrazolium chloride (TTC) and immunohistochemistry. RESULTS: In the ischemic region, pathology

  16. A High Rate Tension Device for Characterizing Brain Tissue

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1177/1754337112436900

    2013-01-01

    The mechanical characterization of brain tissue at high loading velocities is vital for understanding and modeling Traumatic Brain Injury (TBI). The most severe form of TBI is diffuse axonal injury (DAI) which involves damage to individual nerve cells (neurons). DAI in animals and humans occurs at strains > 10% and strain rates > 10/s. The mechanical properties of brain tissues at these strains and strain rates are of particular significance, as they can be used in finite element human head models to accurately predict brain injuries under different impact conditions. Existing conventional tensile testing machines can only achieve maximum loading velocities of 500 mm/min, whereas the Kolsky bar apparatus is more suitable for strain rates > 100/s. In this study, a custom-designed high rate tension device is developed and calibrated to estimate the mechanical properties of brain tissue in tension at strain rates < 90/s, while maintaining a uniform velocity. The range of strain can also be extended to 100% de...

  17. Identification of a novel enhancer of brain expression near the apoE gene cluster by comparative genomics

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ping; Pennacchio, Len A.; Goff, Wilfried Le; Rubin, Edward M.; Smith, Jonathan D.

    2003-10-01

    Comparative analysis of the human and mouse genomic sequences downstream of the apolipoprotein E gene (APOE) revealed a highly conserved element with previously undefined function. In reporter gene transfection studies, this element which is located f42 kb distal to APOE was found to have silencer activity in a subset of cell lines examined. Analysis of transgenic mice containing a fusion construct linking this distal 631 bp conserved element to a reporter gene comprised of the human APOE gene with its proximal promoter resulted in robust brain expression of the transgenic human apoE mRNA in three independent transgenic lines, supporting the identification of a novel brain controlling region (BCR). Further studies using immunohistochemistry revealed widespread human apoE localization throughout the brains of the BCR-apoE transgenic mice with prominent expression in the cortex and diencephalon. In addition, double-label immunofluorescence performed on brain sections and cultures of primary cortical cells localized human apoE protein to cortical neurons and microglia. These studies demonstrate that comparative sequence analysis is a successful strategy to predict candidate regulatory regions in vivo, although they do not imply that this element controls apoE expression physiologically.

  18. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Science.gov (United States)

    Watson, Alan M; Rose, Annika H; Gibson, Gregory A; Gardner, Christina L; Sun, Chengqun; Reed, Douglas S; Lam, L K Metthew; St Croix, Claudette M; Strick, Peter L; Klimstra, William B; Watkins, Simon C

    2017-01-01

    Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  19. High αv Integrin Level of Cancer Cells Is Associated with Development of Brain Metastasis in Athymic Rats.

    Science.gov (United States)

    Wu, Yingjen Jeffrey; Pagel, Michael A; Muldoon, Leslie L; Fu, Rongwei; Neuwelt, Edward A

    2017-08-01

    Brain metastases commonly occur in patients with malignant skin, lung and breast cancers resulting in high morbidity and poor prognosis. Integrins containing an αv subunit are cell adhesion proteins that contribute to cancer cell migration and cancer progression. We hypothesized that high expression of αv integrin cell adhesion protein promoted metastatic phenotypes in cancer cells. Cancer cells from different origins were used and studied regarding their metastatic ability and intetumumab, anti-αv integrin mAb, sensitivity using in vitro cell migration assay and in vivo brain metastases animal models. The number of brain metastases and the rate of occurrence were positively correlated with cancer cell αv integrin levels. High αv integrin-expressing cancer cells showed significantly faster cell migration rate in vitro than low αv integrin-expressing cells. Intetumumab significantly inhibited cancer cell migration in vitro regardless of αv integrin expression level. Overexpression of αv integrin in cancer cells with low αv integrin level accelerated cell migration in vitro and increased the occurrence of brain metastases in vivo. αv integrin promotes brain metastases in cancer cells and may mediate early steps in the metastatic cascade, such as adhesion to brain vasculature. Targeting αv integrin with intetumumab could provide clinical benefit in treating cancer patients who develop metastases. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Chronological changes in microRNA expression in the developing human brain.

    Directory of Open Access Journals (Sweden)

    Michael P Moreau

    Full Text Available MicroRNAs (miRNAs are endogenously expressed noncoding RNA molecules that are believed to regulate multiple neurobiological processes. Expression studies have revealed distinct temporal expression patterns in the developing rodent and porcine brain, but comprehensive profiling in the developing human brain has not been previously reported.We performed microarray and TaqMan-based expression analysis of all annotated mature miRNAs (miRBase 10.0 as well as 373 novel, predicted miRNAs. Expression levels were measured in 48 post-mortem brain tissue samples, representing gestational ages 14-24 weeks, as well as early postnatal and adult time points.Expression levels of 312 miRNAs changed significantly between at least two of the broad age categories, defined as fetal, young, and adult.We have constructed a miRNA expression atlas of the developing human brain, and we propose a classification scheme to guide future studies of neurobiological function.

  1. Personality Trait and Facial Expression Filter-Based Brain-Computer Interface

    OpenAIRE

    Seongah Chin; Chung-Yeon Lee

    2013-01-01

    In this paper, we present technical approaches that bridge the gap in the research related to the use of brain‐computer interfaces for entertainment and facial expressions. Such facial expressions that reflect an individual’s personal traits can be used to better realize artificial facial expressions in a gaming environment based on a brain‐computer interface. First, an emotion extraction filter is introduced in order to classify emotions on the basis of the users’ brain signals in real time....

  2. C/EBPβ Isoforms Expression in the Rat Brain during the Estrous Cycle

    Directory of Open Access Journals (Sweden)

    Valeria Hansberg-Pastor

    2015-01-01

    Full Text Available The CCAAT/enhancer-binding protein beta (C/EBPβ is a transcription factor expressed in different areas of the brain that regulates the expression of several genes involved in cell differentiation and proliferation. This protein has three isoforms (LAP1, LAP2, and LIP with different transcription activation potential. The role of female sex hormones in the expression pattern of C/EBPβ isoforms in the rat brain has not yet been described. In this study we demonstrate by western blot that the expression of the three C/EBPβ isoforms changes in different brain areas during the estrous cycle. In the cerebellum, LAP2 content diminished on diestrus and proestrus and LIP content diminished on proestrus and estrus days. In the prefrontal cortex, LIP content was higher on proestrus and estrus days. In the hippocampus, LAP isoforms presented a switch on diestrus day, since LAP1 content was the highest while that of LAP2 was the lowest. The LAP2 isoform was the most abundant one in all the three brain areas. The LAP/LIP ratio changed throughout the cycle and was tissue specific. These results suggest that C/EBPβ isoforms expression changes in a tissue-specific manner in the rat brain due to the changes in sex steroid hormone levels presented during the estrous cycle.

  3. Detecting positive darwinian selection in brain-expressed genes during human evolution

    Institute of Scientific and Technical Information of China (English)

    QI XueBin; Alice A. LIN; Luca L. CAVALLI-SFORZA; WANG Jun; SU Bing; YANG Su; ZHENG HongKun; WANG YinQiu; LIAO ChengHong; LIU Ying; CHEN XiaoHua; SHI Hong; YU XiaoJing

    2007-01-01

    To understand the genetic basis that underlies the phenotypic divergence between human and nonhuman primates, we screened a total of 7176 protein-coding genes expressed in the human brain and compared them with the chimpanzee orthologs to identify genes that show evidence of rapid evolution in the human lineage. Our results showed that the nonsynonymous/synonymous substitution (Ka/Ks) ratio for genes expressed in the brain of human and chimpanzee is 0.3854, suggesting that the brain-expressed genes are under functional constraint. The X-linked human brain-expressed genes evolved more rapidly than autosomal ones. We further dissected the molecular evolutionary patterns of 34 candidate genes by sequencing representative primate species to identify lineage-specific adaptive evolution. Fifteen out of the 34 candidate genes showed evidence of positive Darwinian selection in human and/or chimpanzee lineages. These genes are predicted to play diverse functional roles in embryonic development, spermatogenesis and male fertility, signal transduction, sensory nociception, and neural function. This study together with others demonstrated the usefulness and power of phylogenetic comparison of multiple closely related species in detecting lineage-specific adaptive evolution, and the identification of the positively selected brain-expressed genes may add new knowledge to the understanding of molecular mechanism of human origin.

  4. Relative Expression of HIF-1α mRNA in Rat Heart, Brain and Blood During Induced Systemic Hypoxia

    Directory of Open Access Journals (Sweden)

    Syarifah Dewi

    2009-11-01

    Full Text Available Hypoxia is a pathological condition in which the body as a whole or region of the body (tissue or cell deprived of adequate oxygen supply. The transcriptional regulator hypoxia inducible factor-1 (HIF-1 is an essential mediator of O2 homeostasis. Unlike the β sub unit (HIF-1β, the activity of HIF-1α is controlled in an oxygen-dependent manner. It has been reported that the stability and expression of HIF-1α during hypoxia is remarkably higher than those under normoxic conditions.The aim of this study was to analyze the adaptive tissue responses during induced systemic hypoxia by comparation of relative expression of mRNA HIF-1α in rat heart, brain and blood. Twenty-five male Sprague Dawley rats were subjected to systemic hypoxia by placing them in the hypoxic chamber supplied by 8-10% of O2 for 0, 1, 7, 14 and 21 days, respectively. The relative expression level of HIF-1α mRNA in brain, heart and leucocyte cells were analyzed using quantitative RT-PCR assay (Real Time PCR based on Pfaff's formula. This study demonstrates that the increased of relative expression of HIF-1α mRNA during induced systemic hypoxia reached its maximum level at day 7 (in heart or at day 14 (in brain, whereas in leucocyte cells the stimulation of HIF-1α expression was intensively maintained up to 21 days although the expression has reached the remarkably high level. We could conclude that HIF-1α as an oxygen sensing during systemic hypoxia has different capacity and sensitivity in brain, heart and blood tissues, due to the importance of oxygen homeostasis in each tissue.

  5. Expression and prognostic value of Oct-4 in astrocytic brain tumors

    DEFF Research Database (Denmark)

    Krogh Petersen, Jeanette; Jensen, Per; Sørensen, M. D.

    2016-01-01

    suggested to have promising potentials as prognostic markers in gliomas. Methodology/Principal Findings: The aim of the present study was to investigate the expression and prognostic impact of the TSC-related marker Oct-4 in astrocytic brain tumors of increasing grade. In total 114 grade II, III and IV.......045). There was no association between survival and Oct-4 positive cell fraction, neither when combining all tumor grades nor in analysis of individual grades. Oct-4 intensity was not associated with grade, but taking IDH1 status into account we found a tendency for high Oct-4 intensity to be associated with poor prognosis...... was associated with tumor malignancy, but seemed to be without independent prognostic influence in glioblastomas. Identification of a potential prognostic value in anaplastic astrocytomas requires additional studies using larger patient cohorts. © 2016 Krogh Petersen et al. This is an open access article...

  6. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mingzhou (Joe) [New Mexico State University, Las Cruces; Lewis, Chris K. [New Mexico State University, Las Cruces; Lance, Eric [New Mexico State University, Las Cruces; Chesler, Elissa J [ORNL; Kirova, Roumyana [Bristol-Myers Squibb Pharmaceutical Research & Development, NJ; Langston, Michael A [University of Tennessee, Knoxville (UTK); Bergeson, Susan [Texas Tech University, Lubbock

    2009-01-01

    The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from high-throughput transcriptomic data is addressed. A network reconstruction algorithm was developed that uses the statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. Using temporal gene expression data collected from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol, this algorithm identified genes from a major neuronal pathway as putative components of the alcohol response mechanism. Three of these genes have known associations with alcohol in the literature. Several other potentially relevant genes, highlighted and agreeing with independent results from literature mining, may play a role in the response to alcohol. Additional, previously-unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  7. Temporal changes in the expression of brain-derived neurotrophic factor mRNA in the ventromedial nucleus of the hypothalamus of the developing rat brain.

    Science.gov (United States)

    Sugiyama, Nobuhiro; Kanba, Shigenobu; Arita, Jun

    2003-07-04

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family, which is important for the growth, differentiation, and survival of neurons during development. We have performed a detailed mapping of BDNF mRNA in the neonatal rat brain using a quantitative in situ hybridization technique. At postnatal day (PND) 4, hypothalamic structures showed only modest expression of BDNF mRNA, with the exception of the ventromedial nucleus (VMN), where expression was higher than that detected in the hippocampus. Abundant BDNF mRNA was also found in the bed nucleus of the anterior commissure, retrosplenial granular cortex, and the posteroventral part of the medial amygdaloid nucleus. Messenger RNAs encoding other neurotrophins, including nerve growth factor (NGF) and neurotrophin-3 (NT-3) and the BDNF receptor trkB, were not selectively localized in neonatal VMN. During subsequent developmental stages, BDNF mRNA expression in the VMN changed dynamically, peaking at PND 4 and falling to minimal levels in the adult brain. In contrast, the low levels of BDNF mRNA observed in the CA3 region of the hippocampus increased to adult levels following PND 10. As the VMN undergoes sexual differentiation, we compared BDNF, NGF, NT-3, and trkB mRNA expression in the VMN in males and females at embryonic day 20 and PND 4, but found no differences between them. These results suggest that localized and high level expression of BDNF mRNA in the neonatal VMN plays an important role in its neural organization and functional development.

  8. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  9. Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain.

    Science.gov (United States)

    Ishikawa, Chihiro; Li, Haiyan; Ogura, Rin; Yoshimura, Yuko; Kudo, Takashi; Shirakawa, Masaki; Shiba, Dai; Takahashi, Satoru; Morita, Hironobu; Shiga, Takashi

    2017-01-01

    Spaceflight entails various stressful environmental factors including microgravity. The effects of gravity changes have been studied extensively on skeletal, muscular, cardiovascular, immune and vestibular systems, but those on the nervous system are not well studied. The alteration of gravity in ground-based animal experiments is one of the approaches taken to address this issue. Here we investigated the effects of centrifugation-induced gravity changes on gene expression of brain-derived neurotrophic factor (BDNF) and serotonin receptors (5-HTRs) in the mouse brain. Exposure to 2g hypergravity for 14 days showed differential modulation of gene expression depending on regions of the brain. BDNF expression was decreased in the ventral hippocampus and hypothalamus, whereas increased in the cerebellum. 5-HT1BR expression was decreased in the cerebellum, whereas increased in the ventral hippocampus and caudate putamen. In contrast, hypergravity did not affect gene expression of 5-HT1AR, 5-HT2AR, 5-HT2CR, 5-HT4R and 5-HT7R. In addition to hypergravity, decelerating gravity change from 2g hypergravity to 1g normal gravity affected gene expression of BDNF, 5-HT1AR, 5-HT1BR, and 5-HT2AR in various regions of the brain. We also examined involvement of the vestibular organ in the effects of hypergravity. Surgical lesions of the inner ear's vestibular organ removed the effects induced by hypergravity on gene expression, which suggests that the effects of hypergravity are mediated through the vestibular organ. In summary, we showed that gravity changes induced differential modulation of gene expression of BDNF and 5-HTRs (5-HT1AR, 5-HT1BR and 5-HT2AR) in some brain regions. The modulation of gene expression may constitute molecular bases that underlie behavioral alteration induced by gravity changes.

  10. Expression of miR-15/107 family microRNAs in human tissues and cultured rat brain cells.

    Science.gov (United States)

    Wang, Wang-Xia; Danaher, Robert J; Miller, Craig S; Berger, Joseph R; Nubia, Vega G; Wilfred, Bernard S; Neltner, Janna H; Norris, Christopher M; Nelson, Peter T

    2014-02-01

    The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs), sharing a 5' AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively). In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS). In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs). Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  11. Brain death induces the alteration of liver protein expression profiles in rabbits.

    Science.gov (United States)

    Du, Bing; Li, Ling; Zhong, Zhibiao; Fan, Xiaoli; Qiao, Bingbing; He, Chongxiang; Fu, Zhen; Wang, Yanfeng; Ye, Qifa

    2014-08-01

    At present, there is no accurate method for evaluating the quality of liver transplant from a brain-dead donor. Proteomics are used to investigate the mechanisms involved in brain death‑induced liver injury and to identify sensitive biomarkers. In the present study, age‑ and gender‑matched rabbits were randomly divided into the brain death and sham groups. The sham served as the control. A brain‑death model was established using an intracranial progressive pressurized method. The differentially expressed proteins extracted from the liver tissues of rabbits that were brain‑dead for 6 h in the two groups were determined by two‑dimensional gel electrophoresis and matrix‑assisted laser desorption ionization time of flight mass spectrometry. Although there was no obvious functional and morphological difference in 2, 4 and 6 h after brain death, results of the proteomics analysis revealed 973±34 and 987±38 protein spots in the control and brain death groups, respectively. Ten proteins exhibited a ≥2‑fold alteration. The downregulated proteins were: aldehyde dehydrogenase, runt‑related transcription factor 1 (RUNX1), inorganic pyrophosphatase, glutamate‑cysteine ligase regulatory subunit and microsomal cytochrome B5. By contrast, the expression of dihydropyrimidinase-related protein 4, peroxiredoxin‑6, 3‑phosphoinositide‑dependent protein kinase‑1, 3-mercaptopyruvate and alcohol dehydrogenase were clearly upregulated. Immunohistochemistry and western blot analysis results revealed that the expression of RUNX1 was gradually increased in a time‑dependent manner in 2, 4, and 6 h after brain death. In conclusion, alteration of the liver protein expression profile induced by brain death indicated the occurrence of complex pathological changes even if no functional or morphological difference was identified. Thus, RUNX1 may be a sensitive predict factor for evaluating the quality of brain death donated liver.

  12. Brain expressed microRNAs implicated in schizophrenia etiology

    DEFF Research Database (Denmark)

    Hansen, Thomas; Olsen, Line; Lindow, Morten

    2007-01-01

    Protein encoding genes have long been the major targets for research in schizophrenia genetics. However, with the identification of regulatory microRNAs (miRNAs) as important in brain development and function, miRNAs genes have emerged as candidates for schizophrenia-associated genetic factors....... Indeed, the growing understanding of the regulatory properties and pleiotropic effects that miRNA have on molecular and cellular mechanisms, suggests that alterations in the interactions between miRNAs and their mRNA targets may contribute to phenotypic variation....

  13. Alteration of Selected Neurotrophic Factors and their Receptor Expression in Mouse Brain Response to Whole-Brain Irradiation.

    Science.gov (United States)

    Pius-Sadowska, Ewa; Kawa, Miłosz Piotr; Kłos, Patrycja; Rogińska, Dorota; Rudnicki, Michał; Boehlke, Marek; Waloszczyk, Piotr; Machaliński, Bogusław

    2016-11-01

    Ionizing radiation can significantly affect brain function in children and young adults, particularly in the hippocampus where neurogenic niches are located. Injury to normal tissue is a major concern when whole-brain irradiation (WBI) is used to treat central nervous system (CNS) tumors, and the pathogenesis of this injury remains poorly understood. We assessed the expression of selected neurotrophins (NTs) and NT receptors (NTRs) in brains of young mice after a single 10 Gy gamma-ray exposure using morphological and molecular analyses [qRT-PCR, Western blot, immunohistochemistry (IHC)] to evaluate WBI-induced injury in its acute phase. Activity of the NT-NTR axes was examined by analysis of ERK and Akt phosphorylation. Using Nissl staining of hippocampus slices to visualize morphological changes, and TUNEL assay and active caspase-3 detection to assess apoptotic cell death, we found evidence of apoptosis and degenerative changes in hippocampal tissue after WBI. Shortly after WBI, we also observed significant overexpression of several NTs (BDNF, NT-3, NGF and GDNF) and NTRs (TrkA, TrkB, TrkC, GFRα-1, and p75NTR) compared to control animals. The upregulated NT and NTR proteins, in part, originated from two analyzed neurogenic areas: the subgranular zone of the hippocampal dentate gyrus and the subventricular zone, as confirmed by IHC. Finally, components of intracellular signaling pathways, including Akt and MAPK, were activated in acute phase after WBI. Given the role of NTs in diverse biological mechanisms, including maintenance and growth of neurons in the adult brain, our findings of altered expression of neurotrophins and their receptors in brain tissue shortly after irradiation suggest that these molecules play a vital role in the pathophysiology of the acute phase of WBI-induced injury.

  14. Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee.

    Science.gov (United States)

    Whitfield, Charles W; Band, Mark R; Bonaldo, Maria F; Kumar, Charu G; Liu, Lei; Pardinas, Jose R; Robertson, Hugh M; Soares, M Bento; Robinson, Gene E

    2002-04-01

    To accelerate the molecular analysis of behavior in the honey bee (Apis mellifera), we created expressed sequence tag (EST) and cDNA microarray resources for the bee brain. Over 20,000 cDNA clones were partially sequenced from a normalized (and subsequently subtracted) library generated from adult A. mellifera brains. These sequences were processed to identify 15,311 high-quality ESTs representing 8912 putative transcripts. Putative transcripts were functionally annotated (using the Gene Ontology classification system) based on matching gene sequences in Drosophila melanogaster. The brain ESTs represent a broad range of molecular functions and biological processes, with neurobiological classifications particularly well represented. Roughly half of Drosophila genes currently implicated in synaptic transmission and/or behavior are represented in the Apis EST set. Of Apis sequences with open reading frames of at least 450 bp, 24% are highly diverged with no matches to known protein sequences. Additionally, over 100 Apis transcript sequences conserved with other organisms appear to have been lost from the Drosophila genome. DNA microarrays were fabricated with over 7000 EST cDNA clones putatively representing different transcripts. Using probe derived from single bee brain mRNA, microarrays detected gene expression for 90% of Apis cDNAs two standard deviations greater than exogenous control cDNAs. [The sequence data described in this paper have been submitted to Genbank data library under accession nos. BI502708-BI517278. The sequences are also available at http://titan.biotec.uiuc.edu/bee/honeybee_project.htm.

  15. κMicroarray analysis of relative gene expression stability for selection of internal reference genes in the rhesus macaque brain

    Directory of Open Access Journals (Sweden)

    Urbanski Henryk F

    2010-06-01

    the cycle study, multiple probe sets annotated for actin, gamma 1 (ACTG1 showed high signal intensity and were among the most stably expressed. Conclusions Using gene microarray analysis, we identified genes showing high expression stability under various sex-steroid environments in different regions of the rhesus macaque brain. Use of quantile-normalized microarray gene expression values represents an improvement over traditional methods of selecting internal reference genes for PCR analysis.

  16. Expression patterns of neuroligin-3 and tyrosine hydroxylase across the brain in mate choice contexts in female swordtails.

    Science.gov (United States)

    Wong, Ryan Y; Cummings, Molly E

    2014-01-01

    Choosing mates is a commonly shared behavior across many organisms, with important fitness consequences. Variations in female preferences can be due in part to differences in neural and cellular activity during mate selection. Initial studies have begun to identify putative brain regions involved in mate preference, yet the understanding of the neural processes regulating these behaviors is still nascent. In this study, we characterized the expression of a gene involved in synaptogenesis and plasticity (neuroligin-3) and one that codes for the rate-limiting enzyme in dopamine biosynthesis (tyrosine hydroxylase; TH1) in the female Xiphophorus nigrensis (northern swordtail) brain as related to mate preference behavior. We exposed females to a range of different mate choice contexts including two large courting males (LL), two small coercive males (SS), and a context that paired a large courting male with a small coercive male (LS). Neuroligin-3 expression in a mate preference context (LS) showed significant correlations with female preference in two telencephalic areas (Dm and Dl), a hypothalamic nucleus (HV), and two regions associated with sexual and social behavior (POA and Vv). We did not observe any context- or behavior-specific changes in tyrosine hydroxylase mRNA expression concomitant with female preference in any of the brain regions examined. Analysis of TH and neuroligin-3 expression across different brain regions showed that expression patterns varied with the male social environment only for neuroligin-3, where the density of correlated expression between brain regions was positively associated with mate choice contexts that involved a greater number of courting male phenotypes (LS and LL). This study identified regions showing presumed high levels of synaptic plasticity using neuroligin-3, implicating and supporting their roles in female mate preference, but we did not detect any relationship between tyrosine hydroxylase and mate preference with 30 min

  17. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes

    DEFF Research Database (Denmark)

    de Jong, Simone; Boks, Marco P M; Fuller, Tova F;

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood...... of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co...... of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in...

  18. High-intensity Exercise Modifies the Effects of Stanozolol on Brain Oxidative Stress in Rats.

    Science.gov (United States)

    Camiletti-Moirón, D; Aparicio, V A; Nebot, E; Medina, G; Martínez, R; Kapravelou, G; Andrade, A; Porres, J M; López-Jurado, M; Aranda, P

    2015-11-01

    We analyzed the effects of high-intensity exercise (HIE) and anabolic androgenic steroids (AAS) on brain redox status. 40 male Wistar rats were randomly distributed in 4 experimental groups (n=10) with or without HIE and with or without weekly Stanozolol administration. Thiobarbituric acid-reactive substances (TBARs) and protein carbonyl content (PCC) were assessed. Total superoxide dismutase (tSOD), manganese superoxide dismutase (Mn-SOD), copper/zinc superoxide dismutase (CuZn-SOD) and catalase (CAT) activities were measured. Finally, protein expression levels of glutathione peroxidase (GPx), NAD(P)H dehydrogenase, Quinone 1 (NQO1), NF-E2-Related Factor 2 (Nrf2), glial fibrillary acidic protein (GFAP), nuclear factor kappa β p65 (NF-κβ) and signal transducer and activator of transcription 3 were determined. Brain PCC concentrations were lower in the HIE groups compared to the untrained controls, whereas CAT activity was higher (both, peffect on brain redox status.

  19. Ischemic preconditioning reduces ischemic brain injury by suppressing nuclear factor kappa B expression and neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Songsheng Shi; Weizhong Yang; Xiankun Tu; Chunmei Chen; Chunhua Wang

    2013-01-01

    Ischemic stroke induces a series of complex pathophysiological events including blood-brain barrier disruption, inflammatory response and neuronal apoptosis. Previous studies demonstrate that ischemic preconditioning attenuates ischemic brain damage via inhibiting blood-brain barrier disruption and the inflammatory response. Rats underwent transient (15 minutes) occlusion of the bilateral common carotid artery with 48 hours of reperfusion, and were subjected to permanent middle cerebral artery occlusion. This study explored whether ischemic preconditioning could reduce ischemic brain injury and relevant molecular mechanisms by inhibiting neuronal apoptosis. Results found that at 72 hours following cerebral ischemia, myeloperoxidase activity was enhanced, malondialdehyde levels increased, and neurological function was obviously damaged. Simultaneously, neuronal apoptosis increased, and nuclear factor-κB and cleaved caspase-3 expression was significantly increased in ischemic brain tissues. Ischemic preconditioning reduced the cerebral ischemia-induced inflammatory response, lipid peroxidation, and neurological function injury. In addition, ischemic preconditioning decreased nuclear factor-κB p65 and cleaved caspase-3 expression. These results suggested that ischemic preconditioning plays a protective effect against ischemic brain injury by suppressing the inflammatory response, reducing lipid peroxidation, and neuronal apoptosis via inhibition of nuclear factor-κB and cleaved caspase-3 expression.

  20. Formation of cadherin-expressing brain nuclei in diencephalic alar plate divisions.

    Science.gov (United States)

    Yoon, M S; Puelles, L; Redies, C

    2000-11-01

    During the formation of brain nuclei, the vertebrate neural tube is partitioned into distinct embryonic divisions. In this study, the expression of three members of the cadherin family of adhesion molecules (cadherin-6B, cadherin-7, and R-cadherin) was mapped to study the differentiation of gray matter in the division so that diencephalic alar plate of chicken embryos from embryonic day 3 (E3) to E10. At early stages of development (E3-E4), each cadherin is expressed in restricted regions of the diencephalic wall of the neural tube. The borders of some of the expression domains coincide with divisional boundaries. As the mantle layer is formed and increases in thickness from E4 to E8, morphologically discernible aggregates of cells appear that express the three cadherins differentially. These aggregates represent the anlagen of specific diencephalic brain nuclei, e.g., the lateroanterior nucleus, the ventral geniculate nucleus, the nucleus rotundus, the perirotundic area, the principal precommissural nucleus, and the lateral spiriform nucleus. Most of the cadherin-expressing diencephalic nuclei studied in this work apparently derive from a single embryonic division and remain there. The divisional boundaries are replaced gradually by the borders of cadherin-expressing brain nuclei. The current results support the idea that cadherins confer differential adhesiveness to developing structures of gray matter in the diencephalic alar plate. Moreover, they suggest that each cadherin plays a role in the formation of specific brain nuclei within the diencephalic divisions.

  1. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    Directory of Open Access Journals (Sweden)

    José Jaime Herrera-Pérez

    2013-01-01

    Full Text Available In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT expression associated with low testosterone (T levels. The objectives of this study were to establish (1 if brain SERT expression is reduced by aging and (2 if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population.

  2. Increased cortical expression of two synaptogenic thrombospondins in human brain evolution.

    Science.gov (United States)

    Cáceres, Mario; Suwyn, Carolyn; Maddox, Marcelia; Thomas, James W; Preuss, Todd M

    2007-10-01

    Thrombospondins are extracellular-matrix glycoproteins implicated in the control of synaptogenesis and neurite growth. Previous microarray studies suggested that one gene of this family, thrombospondin 4 (THBS4), was upregulated during human brain evolution. Using independent techniques to examine thrombospondin expression patterns in adult brain samples, we report approximately 6-fold and approximately 2-fold greater expression of THBS4 and THBS2 messenger RNA (mRNA), respectively, in human cerebral cortex compared with chimpanzees and macaques, with corresponding differences in protein levels. In humans and chimpanzees, thrombospondin expression differences were observed in the forebrain (cortex and caudate), whereas the cerebellum and most nonbrain tissues exhibited similar levels of the 2 mRNAs. Histological examination revealed THBS4 mRNA and protein expression in numerous pyramidal and glial cells in the 3 species but humans also exhibited very prominent immunostaining of the synapse-rich cortical neuropil. In humans, additionally, THBS4 antibodies labeled beta-amyloid containing plaques in Alzheimer's cases and some control cases. This is the first detailed characterization of gene-expression changes in human evolution that involve specific brain regions, including portions of cerebral cortex. Increased expression of thrombospondins in human brain evolution could result in changes in synaptic organization and plasticity, and contribute to the distinctive cognitive abilities of humans, as well as to our unique vulnerability to neurodegenerative disease.

  3. Ischemia Alters the Expression of Connexins in the Aged Human Brain

    Directory of Open Access Journals (Sweden)

    Taizen Nakase

    2009-01-01

    Full Text Available Although the function of astrocytic gap junctions under ischemia is still under debate, increased expression of connexin 43 (Cx43 has been observed in ischemic brain lesions, suggesting that astrocytic gap junctions could provide neuronal protection against ischemic insult. Moreover, different connexin subtypes may play different roles in pathological conditions. We used immunohistochemical analysis to investigate alterations in the expression of connexin subtypes in human stroke brains. Seven samples, sectioned after brain embolic stroke, were used for the analysis. Data, evaluated semiquantitatively by computer-assisted densitometry, was compared between the intact hemisphere and ischemic lesions. The results showed that the coexpression of Cx32 and Cx45 with neuronal markers was significantly increased in ischemic lesions. Cx43 expression was significantly increased in the colocalization with astrocytes and relatively increased in the colocalization with neuronal marker in ischemic lesions. Therefore, Cx32, Cx43, and Cx45 may respond differently to ischemic insult in terms of neuroprotection.

  4. Screening of Toll-like receptors expression in multiple system atrophy brains

    DEFF Research Database (Denmark)

    Brudek, Tomasz; Winge, Kristian; Agander, Tina Klitmøller

    2013-01-01

    their deregulation may play a role in neurodegeneration. Multiple system atrophy (MSA) together with Parkinson's disease belongs to a diverse group of neurodegenerative conditions termed α-synucleinopathies. MSA is a fatal late onset disease characterized by the presence of α-synuclein positive glial cytoplasmic...... inclusions in oligodendrocytes. α-Synuclein can act as a danger-associated molecular pattern and alter TLR expression thereby activating inflammatory responses in the brain. In this study, using real-time PCR, we assessed the expression of TLRs (TLR1-10) in selected areas of MSA brains (substantia nigra......, striatum, cerebral cortex, and nucleus dentatus) in comparison with normal controls. We show evidence for increased levels of mRNA-encoding hTLR-3, hTLR-4, and hTLR-5 in substantia nigra, striatum, cerebral cortex, and nucleus dentatus from MSA brains versus normal controls. The levels of expression of h...

  5. Stochastic fluctuations in gene expression in aging hippocampal neurons could be exacerbated by traumatic brain injury.

    Science.gov (United States)

    Shearer, Joseph; Boone, Deborah; Weisz, Harris; Jennings, Kristofer; Uchida, Tatsuo; Parsley, Margaret; DeWitt, Douglas; Prough, Donald; Hellmich, Helen

    2016-04-01

    Traumatic brain injury (TBI) is a risk factor for age-related dementia and development of neurodegenerative disorders such as Alzheimer's disease that are associated with cognitive decline. The exact mechanism for this risk is unknown but we hypothesized that TBI is exacerbating age-related changes in gene expression. Here, we present evidence in an animal model that experimental TBI increases age-related stochastic gene expression. We compared the variability in expression of several genes associated with cell survival or death, among three groups of laser capture microdissected hippocampal neurons from aging rat brains. TBI increased stochastic fluctuations in gene expression in both dying and surviving neurons compared to the naïve neurons. Increases in random, stochastic fluctuations in prosurvival or prodeath gene expression could potentially alter cell survival or cell death pathways in aging neurons after TBI which may lead to age-related cognitive decline.

  6. Expression and localization of claudins-3 and -12 in transformed human brain endothelium

    Directory of Open Access Journals (Sweden)

    Schrade Anja

    2012-02-01

    Full Text Available Abstract Background The aim of this study was to characterize the hCMEC/D3 cell line, an in vitro model of the human Blood Brain Barrier (BBB for the expression of brain endothelial specific claudins-3 and -12. Findings hCMEC/D3 cells express claudins-3 and -12. Claudin-3 is distinctly localized to the TJ whereas claudin -12 is observed in the perinuclear region and completely absent from TJs. We show that the expression of both proteins is lost in cell passage numbers where the BBB properties are no longer fully conserved. Expression and localization of claudin-3 is not modulated by simvastatin shown to improve barrier function in vitro and also recommended for routine hCMEC/D3 culture. Conclusions These results support conservation of claudin-3 and -12 expression in the hCMEC/D3 cell line and make claudin-3 a potential marker for BBB characteristics in vitro.

  7. Osmoregulation Requires Brain Expression of the Renal Na-K-2Cl Cotransporter NKCC2

    Science.gov (United States)

    Konopacka, Agnieszka; Qiu, Jing; Yao, Song T.; Greenwood, Michael P.; Greenwood, Mingkwan; Lancaster, Thomas; Inoue, Wataru; de Souza Mecawi, Andre; Vechiato, Fernanda M.V.; de Lima, Juliana B.M.; Coletti, Ricardo; Hoe, See Ziau; Martin, Andrew; Lee, Justina; Joseph, Marina; Hindmarch, Charles; Paton, Julian; Antunes-Rodrigues, Jose; Bains, Jaideep

    2015-01-01

    The Na-K-2Cl cotransporter 2 (NKCC2) was thought to be kidney specific. Here we show expression in the brain hypothalamo-neurohypophyseal system (HNS), wherein upregulation follows osmotic stress. The HNS controls osmotic stability through the synthesis and release of the neuropeptide hormone, arginine vasopressin (AVP). AVP travels through the bloodstream to the kidney, where it promotes water conservation. Knockdown of HNS NKCC2 elicited profound effects on fluid balance following ingestion of a high-salt solution—rats produced significantly more urine, concomitant with increases in fluid intake and plasma osmolality. Since NKCC2 is the molecular target of the loop diuretics bumetanide and furosemide, we asked about their effects on HNS function following disturbed water balance. Dehydration-evoked GABA-mediated excitation of AVP neurons was reversed by bumetanide, and furosemide blocked AVP release, both in vivo and in hypothalamic explants. Thus, NKCC2-dependent brain mechanisms that regulate osmotic stability are disrupted by loop diuretics in rats. PMID:25834041

  8. The effect of alcohol and nicotine abuse on gene expression in the brain.

    Science.gov (United States)

    Flatscher-Bader, Traute; Wilce, Peter A

    2009-12-01

    Alcohol intake at levels posing an acute heath risk is common amongst teenagers. Alcohol abuse is the second most common mental disorder worldwide. The incidence of smoking is decreasing in the Western world but increasing in developing countries and is the leading cause of preventable death worldwide. Considering the longstanding history of alcohol and tobacco consumption in human societies, it might be surprising that the molecular mechanisms underlying alcohol and smoking dependence are still incompletely understood. Effective treatments against the risk of relapse are lacking. Drugs of abuse exert their effect manipulating the dopaminergic mesocorticolimbic system. In this brain region, alcohol has many potential targets including membranes and several ion channels, while other drugs, for example nicotine, act via specific receptors or binding proteins. Repeated consumption of drugs of abuse mediates adaptive changes within this region, resulting in addiction. The high incidence of alcohol and nicotine co-abuse complicates analysis of the molecular basis of the disease. Gene expression profiling is a useful approach to explore novel drug targets in the brain. Several groups have utilised this technology to reveal drug-sensitive pathways in the mesocorticolimbic system of animal models and in human subjects. These studies are the focus of the present review.

  9. Expression pattern of mUBPy in the brain and sensory organs of mouse during embryonic development.

    Science.gov (United States)

    d'Amora, Marta; Angelini, Cristiano; Aluigi, Maria Grazia; Marcoli, Manuela; Maura, Guido; Berruti, Giovanna; Vallarino, Mauro

    2010-10-08

    Mouse UBPy (mUBPy) belongs to the family of ubiquitin-specific processing proteases (UBPs). In this study we have investigated the expression of mUBPy in the brain and sensory organs of mouse at different embryonic stages (E9, E11, E13, E15, E17, E19) and during the postnatal stages P0, P1, P2, P4 and P5 using Western blot and immunohistochemistry. mUBPy-immunoreactive cell bodies first appeared at stage E11 in several brain regions, particularly in the walls surrounding the vesicles and the ventricles. Subsequently, at stage E13, new mUBPy-positive cells appeared in the corpus striatum, the caudate nucleus, the thalamus, the epithalamus, the hypothalamus and the pons. At E15 the mUBPy pattern was very similar to that observed at E13, whereas at stage E17 mUBPy-immunoreactivity significantly decreased and a high number of mUBPy-immunoreactive cells was found only to line the third ventricle and within the mantle layer of the fourth ventricle. At E19 and P0, no mUBPy-immunoreactive element was found in the brain. At the postnatal stages P2 and P5, mUBPy-positive cells were detected in all subdivisions of the brain, with high concentrations in several cortex regions. Double labeling with the mUBPy antiserum and antisera against specific cell markers showed that the enzyme is expressed both in neurons and astrocytes. Outside the brain, mUBPy was detected, from stage E11, in the eye, within the lens and the cornea, in the inner ear, at the level of the cochlear and vestibular systems and in the olfactory epithelium. The spatio-temporal expression of mUBPy suggests that the enzyme may be involved in neuroregulatory processes during embryogenesis.

  10. Brain Network Analysis from High-Resolution EEG Signals

    Science.gov (United States)

    de Vico Fallani, Fabrizio; Babiloni, Fabio

    Over the last decade, there has been a growing interest in the detection of the functional connectivity in the brain from different neuroelectromagnetic and hemodynamic signals recorded by several neuro-imaging devices such as the functional Magnetic Resonance Imaging (fMRI) scanner, electroencephalography (EEG) and magnetoencephalography (MEG) apparatus. Many methods have been proposed and discussed in the literature with the aim of estimating the functional relationships among different cerebral structures. However, the necessity of an objective comprehension of the network composed by the functional links of different brain regions is assuming an essential role in the Neuroscience. Consequently, there is a wide interest in the development and validation of mathematical tools that are appropriate to spot significant features that could describe concisely the structure of the estimated cerebral networks. The extraction of salient characteristics from brain connectivity patterns is an open challenging topic, since often the estimated cerebral networks have a relative large size and complex structure. Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory. Since a graph is a mathematical representation of a network, which is essentially reduced to nodes and connections between them, the use of a theoretical graph approach seems relevant and useful as firstly demonstrated on a set of anatomical brain networks. In those studies, the authors have employed two characteristic measures, the average shortest path L and the clustering index C, to extract respectively the global and local properties of the network structure. They have found that anatomical brain networks exhibit many local connections (i.e. a high C) and few random long distance connections (i.e. a low L). These values identify a particular model that interpolate between a regular

  11. A comparison of four clustering methods for brain expression microarray data

    Directory of Open Access Journals (Sweden)

    Owen Michael J

    2008-11-01

    Full Text Available Abstract Background DNA microarrays, which determine the expression levels of tens of thousands of genes from a sample, are an important research tool. However, the volume of data they produce can be an obstacle to interpretation of the results. Clustering the genes on the basis of similarity of their expression profiles can simplify the data, and potentially provides an important source of biological inference, but these methods have not been tested systematically on datasets from complex human tissues. In this paper, four clustering methods, CRC, k-means, ISA and memISA, are used upon three brain expression datasets. The results are compared on speed, gene coverage and GO enrichment. The effects of combining the clusters produced by each method are also assessed. Results k-means outperforms the other methods, with 100% gene coverage and GO enrichments only slightly exceeded by memISA and ISA. Those two methods produce greater GO enrichments on the datasets used, but at the cost of much lower gene coverage, fewer clusters produced, and speed. The clusters they find are largely different to those produced by k-means. Combining clusters produced by k-means and memISA or ISA leads to increased GO enrichment and number of clusters produced (compared to k-means alone, without negatively impacting gene coverage. memISA can also find potentially disease-related clusters. In two independent dorsolateral prefrontal cortex datasets, it finds three overlapping clusters that are either enriched for genes associated with schizophrenia, genes differentially expressed in schizophrenia, or both. Two of these clusters are enriched for genes of the MAP kinase pathway, suggesting a possible role for this pathway in the aetiology of schizophrenia. Conclusion Considered alone, k-means clustering is the most effective of the four methods on typical microarray brain expression datasets. However, memISA and ISA can add extra high-quality clusters to the set produced

  12. Homocysteine homeostasis and betaine-homocysteine S-methyltransferase expression in the brain of hibernating bats.

    Directory of Open Access Journals (Sweden)

    Yijian Zhang

    Full Text Available Elevated homocysteine is an important risk factor that increases cerebrovascular and neurodegenerative disease morbidity. In mammals, B vitamin supplementation can reduce homocysteine levels. Whether, and how, hibernating mammals, that essentially stop ingesting B vitamins, maintain homocysteine metabolism and avoid cerebrovascular impacts and neurodegeneration remain unclear. Here, we compare homocysteine levels in the brains of torpid bats, active bats and rats to identify the molecules involved in homocysteine homeostasis. We found that homocysteine does not elevate in torpid brains, despite declining vitamin B levels. At low levels of vitamin B6 and B12, we found no change in total expression level of the two main enzymes involved in homocysteine metabolism (methionine synthase and cystathionine β-synthase, but a 1.85-fold increase in the expression of the coenzyme-independent betaine-homocysteine S-methyltransferase (BHMT. BHMT expression was observed in the amygdala of basal ganglia and the cerebral cortex where BHMT levels were clearly elevated during torpor. This is the first report of BHMT protein expression in the brain and suggests that BHMT modulates homocysteine in the brains of hibernating bats. BHMT may have a neuroprotective role in the brains of hibernating mammals and further research on this system could expand our biomedical understanding of certain cerebrovascular and neurodegenerative disease processes.

  13. Embryonic and Postnatal Expression of Aryl Hydrocarbon Receptor mRNA in Mouse Brain

    Science.gov (United States)

    Kimura, Eiki; Tohyama, Chiharu

    2017-01-01

    Aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix-Per-Arnt-Sim transcription factor family, plays a critical role in the developing nervous system of invertebrates and vertebrates. Dioxin, a ubiquitous environmental pollutant, avidly binds to this receptor, and maternal exposure to dioxin has been shown to impair higher brain functions and dendritic morphogenesis, possibly via an AhR-dependent mechanism. However, there is little information on AhR expression in the developing mammalian brain. To address this issue, the present study analyzed AhR mRNA expression in the brains of embryonic, juvenile, and adult mice by reverse transcription (RT)-PCR and in situ hybridization. In early brain development (embryonic day 12.5), AhR transcript was detected in the innermost cortical layer. The mRNA was also expressed in the hippocampus, cerebral cortex, cerebellum, olfactory bulb, and rostral migratory stream on embryonic day 18.5, postnatal days 3, 7, and 14, and in 12-week-old (adult) mice. Hippocampal expression was abundant in the CA1 and CA3 pyramidal and dentate gyrus granule cell layers, where expression level of AhR mRNA in 12-week old is higher than that in 7-day old. These results reveal temporal and spatial patterns of AhR mRNA expression in the mouse brain, providing the information that may contribute to the elucidation of the physiologic and toxicologic significance of AhR in the developing brain. PMID:28223923

  14. Molecular cloning, expression and in situ hybridization of rat brain glutamic acid decarboxylase messenger RNA.

    Science.gov (United States)

    Julien, J F; Legay, F; Dumas, S; Tappaz, M; Mallet, J

    1987-01-14

    A cDNA library was generated in the expression vector lambda GT11 from rat brain poly(A)+ RNAs and screened with a GAD antiserum. Two clones reacted positively. One of them was shown to express a GAD activity which was specifically trapped on anti-GAD immunogel and was inhibited by gamma-acetylenic-GABA. Blot hybridization analysis of RNAs from rat brain revealed a single 4 kilobases band. Preliminary in situ hybridizations showed numerous cells labelled by the GAD probe such as the Purkinje and stellate cells in the cerebellar cortex and the cells of the reticular thalamic nucleus.

  15. Expression of LFA-1/ICAM-1 in CNS lymphomas: possible mechanism for lymphoma homing into the brain.

    Science.gov (United States)

    Bashir, R; Coakham, H; Hochberg, F

    1992-02-01

    We examined a possible role for the adhesion molecules LFA-1 and ICAM-1 in localizing central nervous system non-Hodgkin's lymphomas (CNS-NHLs) to the brain. Fresh frozen sections from 12 monoclonal CNS NHLs (11 primary, one secondary) were stained with monoclonal antibodies to LFA-1 alpha chain (CD11a), beta chain (CD18) and, ICAM-1 (CD54). Additional staining made use of rat monoclonal antibodies to the human and mouse high endothelial venule antigens HECA 452 and MECA 79 and mouse ICAM-1. The expression of these same molecules was also studied in mice with severe combined immunodeficiency (SCID) mice, bearing intracranial human lymphoblastoid cells. Eleven of the CNS-NHL tumors expressed LFA-1 alpha (one strongly, one intermediate, nine weakly). Nine of the tumors weakly expressed LFA-1 beta.. Nine of twelve tumors weakly expressed ICAM-1. In six of seven tumors definite blood vessels stained for ICAM-1. Non-tumor brain from two patients and non-tumor cerebral blood vessels showed no staining with CD11a, CD18 or CD54 antibodies. Strong expression of LFA-alpha and LFA-beta as well as ICAM-1 was noted in human lymphoblastoid cells (LCLs)/SCID mouse CNS lymphomas. Tumor blood vessels in these mice stained for mouse ICAM-1. Normal SCID mouse brains showed no staining with CD11a, CD18, CD54 or mouse ICAM-1 antibodies. Human, human/mouse CNS lymphomas, normal human, and mouse brains showed no staining with either HECA 452 or MECA 79.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Quantitative Trait Locus and Brain Expression of HLA-DPA1 Offers Evidence of Shared Immune Alterations in Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Ling Z. Morgan

    2016-03-01

    Full Text Available Genome-wide association studies of schizophrenia encompassing the major histocompatibility locus (MHC were highly significant following genome-wide correction. This broad region implicates many genes including the MHC complex class II. Within this interval we examined the expression of two MHC II genes (HLA-DPA1 and HLA-DRB1 in brain from individual subjects with schizophrenia (SZ, bipolar disorder (BD, major depressive disorder (MDD, and controls by differential gene expression methods. A third MHC II mRNA, CD74, was studied outside of the MHC II locus, as it interacts within the same immune complex. Exon microarrays were performed in anterior cingulate cortex (ACC in BD compared to controls, and both HLA-DPA1 and CD74 were decreased in expression in BD. The expression of HLA-DPA1 and CD74 were both reduced in hippocampus, amygdala, and dorsolateral prefrontal cortex regions in SZ and BD compared to controls by specific qPCR assay. We found several novel HLA-DPA1 mRNA variants spanning HLA-DPA1 exons 2-3-4 as suggested by exon microarrays. The intronic rs9277341 SNP was a significant cis expression quantitative trait locus (eQTL that was associated with the total expression of HLA-DPA1 in five brain regions. A biomarker study of MHC II mRNAs was conducted in SZ, BD, MDD, and control lymphoblastic cell lines (LCL by qPCR assay of 87 subjects. There was significantly decreased expression of HLA-DPA1 and CD74 in BD, and trends for reductions in SZ in LCLs. The discovery of multiple splicing variants in brain for HLA-DPA1 is important as the HLA-DPA1 gene is highly conserved, there are no reported splicing variants, and the functions in brain are unknown. Future work on the function and localization of MHC Class II proteins in brain will help to understand the role of alterations in neuropsychiatric disorders. The HLA-DPA1 eQTL is located within a large linkage disequilibrium block that has an irrefutable association with schizophrenia. Future

  17. Categorical Representation of Facial Expressions in the Infant Brain

    Science.gov (United States)

    Leppanen, Jukka M.; Richmond, Jenny; Vogel-Farley, Vanessa K.; Moulson, Margaret C.; Nelson, Charles A.

    2009-01-01

    Categorical perception, demonstrated as reduced discrimination of within-category relative to between-category differences in stimuli, has been found in a variety of perceptual domains in adults. To examine the development of categorical perception in the domain of facial expression processing, we used behavioral and event-related potential (ERP)…

  18. DARPP-32 expression in rat brain after electroconvulsive stimulation.

    Science.gov (United States)

    Rosa, Daniela V F; Souza, Renan P; Souza, Bruno R; Motta, Bernardo S; Caetano, Fernando; Jornada, Luciano K; Feier, Gustavo; Gomez, Marcus V; Quevedo, João; Romano-Silva, Marco A

    2007-11-07

    Although electroconvulsive therapy (ECT) has been used as a treatment for mental disorder since 1930s, little progress has been made in the mechanisms underlying its therapeutic or adverse effects. The aim of this work was to analyze the expression of DARPP-32 (a protein with a central role in dopaminergic signaling) in striatum, cortex, hippocampus and cerebellum of Wistar rats subjected to acute or chronic electroconvulsive stimulation (ECS). Rats were submitted to a single stimulation (acute) or to a series of eight stimulations, applied one every 48 h (chronic). Animals were killed for collection of tissue samples at time zero, 0.5, 3, 12, 24 and 48 h after stimulation in the acute model and at the same time intervals after the last stimulation in the chronic model. Our results indicated that acute ECS produces smaller changes in the expression of DARPP-32 but, interestingly, chronic ECS increased transient expression of DARPP-32 in several time frames, in striatum and hippocampus, after the last stimulation. Results on the expression of proteins involved in signaling pathways are relevant for neuropsychiatric disorders and treatment, in particular ECT, and can contribute to shed light on the mechanisms related to therapeutic and adverse effects.

  19. 基于基因芯片技术的大强度耐力训练大鼠糖脂代谢相关基因的表达%The genes expression connected with glycometabolism and fatty acid metabolism in the brain of the high-intensity endurance training rat based on gene chips

    Institute of Scientific and Technical Information of China (English)

    张婧; 熊正英; 张志琪; 战旗; 唐量; 刘荣花

    2013-01-01

    应用基因芯片检测技术研究大强度耐力训练对大鼠脑组织糖代谢和脂肪酸代谢相关基因表达的影响.将SD大鼠随机分为安静组与大强度耐力训练组,两组自由摄食和饮水,安静组安静饲养,大强度耐力训练组训练7周后处死,迅速取出脑组织提取mRNA,作逆转录为cDNA以备检测.利用基因芯片技术初步筛选出与运动能力相关的糖代谢和脂肪酸代谢有关基因分别为4和8条,均表达下调.与糖代谢相关基因表达产物分别是乳酸脱氢酶同工酶3(LDH3)、UDP-葡萄糖苷酸(基)转移酶、葡萄糖6-磷酸酶和磷酸甘油变位酶;与脂代谢相关基因表达产物分别是羧酯脂肪酶、二乙基对硝基苯磷酸酯酶、硬脂酰CoA去饱和酶、羟基类固醇磺基转移酶、芳乙酰胺脱乙酰酶、载脂蛋白A(-Ⅰ和-Ⅴ)和溶血磷脂酸△-酰基转移酶.筛选出大强度耐力训练大鼠脑组织中与糖代谢和脂肪酸代谢过程相关基因,且均表达下调,说明运动训练已经对大鼠脑组织物质代谢和能量代谢产生抑制作用,这可能也是引起运动性中枢疲劳的机制之一.%The effect of genes expression connected with glycometabolism and fatty acid metabolism in the brain of the high-intensity endurance training rat was studied using cDNA microarray.Rats were divided into the quiet group and the strong intensity endurance training group at random.The both groups freely ingest and drink.The quiet group of rats was bred quietly.The group with high-intensity endurance training was put to death after training for 7 weeks.Brains were taken quickly to extract mRNA for reverse transcription cDNA for detection.There were the 4 and 8 strips of genes connected with glycometabolism and fatty acid metabolism expressed in rats' brain,respectively,and all were down-regulation.The genetic expression product related to glycometabolism were LDH3,UDP-glucuronosyltransferase,Glucose-6phosphatase (G6pc

  20. Gene expression changes in the course of normal brain aging are sexually dimorphic.

    Science.gov (United States)

    Berchtold, Nicole C; Cribbs, David H; Coleman, Paul D; Rogers, Joseph; Head, Elizabeth; Kim, Ronald; Beach, Tom; Miller, Carol; Troncoso, Juan; Trojanowski, John Q; Zielke, H Ronald; Cotman, Carl W

    2008-10-07

    Gene expression profiles were assessed in the hippocampus, entorhinal cortex, superior-frontal gyrus, and postcentral gyrus across the lifespan of 55 cognitively intact individuals aged 20-99 years. Perspectives on global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age in the superior-frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the sixth to seventh decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with down-regulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with proportionally greater activation in the female brain. These data open opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain and suggest that this balance is set differently in males and females, an intriguing idea.

  1. TAT-mediated intracellular protein delivery to primary brain cells is dependent on glycosaminoglycan expression.

    Science.gov (United States)

    Simon, Melissa J; Gao, Shan; Kang, Woo Hyeun; Banta, Scott; Morrison, Barclay

    2009-09-01

    Although some studies have shown that the cell penetrating peptide (CPP) TAT can enter a variety of cell lines with high efficiency, others have observed little or no transduction in vivo or in vitro under conditions mimicking the in vivo environment. The mechanisms underlying TAT-mediated transduction have been investigated in cell lines, but not in primary brain cells. In this study we demonstrate that transduction of a green fluorescent protein (GFP)-TAT fusion protein is dependent on glycosaminoglycan (GAG) expression in both the PC12 cell line and primary astrocytes. GFP-TAT transduced PC12 cells and did so with even higher efficiency following NGF differentiation. In cultures of primary brain cells, TAT significantly enhanced GFP delivery into astrocytes grown under different conditions: (1) monocultures grown in serum-containing medium; (2) monocultures grown in serum-free medium; (3) cocultures with neurons in serum-free medium. The efficiency of GFP-TAT transduction was significantly higher in the monocultures than in the cocultures. The GFP-TAT construct did not significantly enter neurons. Experimental modulation of GAG content correlated with alterations in TAT transduction in PC12 cells and astrocyte monocultures grown in the presence of serum. In addition, this correlation was predictive of TAT-mediated transduction in astrocyte monocultures grown in serum free medium and in coculture. We conclude that culture conditions affect cellular GAG expression, which in turn dictates TAT-mediated transduction efficiency, extending previous results from cell lines to primary cells. These results highlight the cell-type and phenotype-dependence of TAT-mediated transduction, and underscore the necessity of controlling the phenotype of the target cell in future protein engineering efforts aimed at creating more efficacious CPPs.

  2. Linking ATM Promoter Methylation to Cell Cycle Protein Expression in Brain Tumor Patients: Cellular Molecular Triangle Correlation in ATM Territory.

    Science.gov (United States)

    Mehdipour, P; Karami, F; Javan, Firouzeh; Mehrazin, M

    2015-08-01

    Ataxia telangiectasia mutated (ATM) is a key gene in DNA double-strand break (DSB), and therefore, most of its disabling genetic alterations play an important initiative role in many types of cancer. However, the exact role of ATM gene and its epigenetic alterations, especially promoter methylation in different grades of brain tumors, remains elusive. The current study was conducted to query possible correlations among methylation statue of ATM gene, ATM/ retinoblastoma (RB) protein expression, D1853N ATM polymorphism, telomere length (TL), and clinicopathological characteristics of various types of brain tumors. Isolated DNA from 30 fresh tissues was extracted from different types of brain tumors and two brain tissues from deceased normal healthy individuals. DNAs were treated with bisulfate sodium using DNA modification kit (Qiagen). Methylation-specific polymerase chain reaction (MSP-PCR) was implicated to determine the methylation status of treated DNA templates confirmed by promoter sequencing. Besides, the ATM and RB protein levels were determined by immunofluorescence (IF) assay using monoclonal mouse antihuman against ATM, P53, and RB proteins. To achieve an interactive correlation, the methylation data were statistically analyzed by considering TL and D1853N ATM polymorphism. More than 73% of the brain tumors were methylated in ATM gene promoter. There was strong correlation between ATM promoter methylation and its protein expression (p ATM promoter and ATM protein expression with D1853N ATM polymorphism (p = 0.01). ATM protein expression was not in line with RB protein expression while it was found to be significantly correlated with ATM promoter methylation (p = 0.01). There was significant correlation between TL neither with ATM promoter methylation nor with ATM protein expression nor with D1853N polymorphism. However, TL has shown strong correlation with patient's age and tumor grade (p = 0.01). Given the important role of cell cycle checkpoint

  3. Effects of chronic ethanol administration on expression of BDNF and trkB mRNAs in rat hippocampus after experimental brain injury.

    Science.gov (United States)

    Zhang, L; Dhillon, H S; Barron, S; Hicks1, R R; Prasad, R M; Seroogy, K B

    2000-06-23

    Previous evidence indicates that both chronic alcohol treatment and traumatic brain injury modulate expression of certain neurotrophins and neurotrophin receptors in cortical tissue. However, the combined effects of chronic alcohol and brain trauma on expression of neurotrophins and their receptors have not been investigated. In the present study, we examined the effects of 6 weeks of chronic ethanol administration on lateral fluid percussion (FP) brain injury-induced alterations in expression of mRNAs for the neurotrophin brain-derived neurotrophic factor (BDNF) and its high affinity receptor, trkB, in rat hippocampus. In both the control- (pair-fed isocaloric sucrose) diet and the chronic ethanol-diet groups, unilateral FP brain injury induced a bilateral increase in levels of both BDNF and trkB mRNAs in the dentate gyrus granule cell layer, and of BDNF mRNA in hippocampal region CA3. However, no significant differences in expression were found between the control-diet and ethanol-diet groups, in either the sham-injured or FP-injured animals. These findings suggest that 6 weeks of chronic ethanol administration does not alter the plasticity of hippocampal BDNF/trkB expression in response to experimental brain injury.

  4. Fear across the senses: brain responses to music, vocalizations and facial expressions.

    Science.gov (United States)

    Aubé, William; Angulo-Perkins, Arafat; Peretz, Isabelle; Concha, Luis; Armony, Jorge L

    2015-03-01

    Intrinsic emotional expressions such as those communicated by faces and vocalizations have been shown to engage specific brain regions, such as the amygdala. Although music constitutes another powerful means to express emotions, the neural substrates involved in its processing remain poorly understood. In particular, it is unknown whether brain regions typically associated with processing 'biologically relevant' emotional expressions are also recruited by emotional music. To address this question, we conducted an event-related functional magnetic resonance imaging study in 47 healthy volunteers in which we directly compared responses to basic emotions (fear, sadness and happiness, as well as neutral) expressed through faces, non-linguistic vocalizations and short novel musical excerpts. Our results confirmed the importance of fear in emotional communication, as revealed by significant blood oxygen level-dependent signal increased in a cluster within the posterior amygdala and anterior hippocampus, as well as in the posterior insula across all three domains. Moreover, subject-specific amygdala responses to fearful music and vocalizations were correlated, consistent with the proposal that the brain circuitry involved in the processing of musical emotions might be shared with the one that have evolved for vocalizations. Overall, our results show that processing of fear expressed through music, engages some of the same brain areas known to be crucial for detecting and evaluating threat-related information.

  5. Fear across the senses: brain responses to music, vocalizations and facial expressions

    Science.gov (United States)

    Angulo-Perkins, Arafat; Peretz, Isabelle; Concha, Luis; Armony, Jorge L.

    2015-01-01

    Intrinsic emotional expressions such as those communicated by faces and vocalizations have been shown to engage specific brain regions, such as the amygdala. Although music constitutes another powerful means to express emotions, the neural substrates involved in its processing remain poorly understood. In particular, it is unknown whether brain regions typically associated with processing ‘biologically relevant’ emotional expressions are also recruited by emotional music. To address this question, we conducted an event-related functional magnetic resonance imaging study in 47 healthy volunteers in which we directly compared responses to basic emotions (fear, sadness and happiness, as well as neutral) expressed through faces, non-linguistic vocalizations and short novel musical excerpts. Our results confirmed the importance of fear in emotional communication, as revealed by significant blood oxygen level-dependent signal increased in a cluster within the posterior amygdala and anterior hippocampus, as well as in the posterior insula across all three domains. Moreover, subject-specific amygdala responses to fearful music and vocalizations were correlated, consistent with the proposal that the brain circuitry involved in the processing of musical emotions might be shared with the one that have evolved for vocalizations. Overall, our results show that processing of fear expressed through music, engages some of the same brain areas known to be crucial for detecting and evaluating threat-related information. PMID:24795437

  6. Identification of Differentially Expressed Thyroid Hormone Responsive Genes from the Brain of the Mexican Axolotl (Ambystoma mexicanum) ✧

    Science.gov (United States)

    Huggins, P; Johnson, CK; Schoergendorfer, A; Putta, S; Bathke, AC; Stromberg, AJ; Voss, SR

    2011-01-01

    The Mexican axolotl (Ambystoma mexicanum) presents an excellent model to investigate mechanisms of brain development that are conserved among vertebrates. In particular, metamorphic changes of the brain can be induced in free-living aquatic juveniles and adults by simply adding thyroid hormone (T4) to rearing water. Whole brains were sampled from juvenile A. mexicanum that were exposed to 0, 8, and 18 days of 50 nM T4, and these were used to isolate RNA and make normalized cDNA libraries for 454 DNA sequencing. A total of 1,875,732 high quality cDNA reads were assembled with existing ESTs to obtain 5,884 new contigs for human RefSeq protein models, and to develop a custom Affymetrix gene expression array (Amby_002) with approximately 20,000 probe sets. The Amby_002 array was used to identify 303 transcripts that differed statistically (p 1.5) as a function of days of T4 treatment. Further statistical analyses showed that Amby_002 performed concordantly in comparison to an existing, small format expression array. This study introduces a new A. mexicanum microarray resource for the community and the first lists of T4-responsive genes from the brain of a salamander amphibian. PMID:21457787

  7. Identification of differentially expressed thyroid hormone responsive genes from the brain of the Mexican Axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Huggins, P; Johnson, C K; Schoergendorfer, A; Putta, S; Bathke, A C; Stromberg, A J; Voss, S R

    2012-01-01

    The Mexican axolotl (Ambystoma mexicanum) presents an excellent model to investigate mechanisms of brain development that are conserved among vertebrates. In particular, metamorphic changes of the brain can be induced in free-living aquatic juveniles and adults by simply adding thyroid hormone (T4) to rearing water. Whole brains were sampled from juvenile A. mexicanum that were exposed to 0, 8, and 18 days of 50 nM T4, and these were used to isolate RNA and make normalized cDNA libraries for 454 DNA sequencing. A total of 1,875,732 high quality cDNA reads were assembled with existing ESTs to obtain 5884 new contigs for human RefSeq protein models, and to develop a custom Affymetrix gene expression array (Amby_002) with approximately 20,000 probe sets. The Amby_002 array was used to identify 303 transcripts that differed statistically (p1.5) as a function of days of T4 treatment. Further statistical analyses showed that Amby_002 performed concordantly in comparison to an existing, small format expression array. This study introduces a new A. mexicanum microarray resource for the community and the first lists of T4-responsive genes from the brain of a salamander amphibian.

  8. Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available BACKGROUND: Most studies investigating the neurobiology of depression and suicide have focused on the serotonergic system. While it seems clear that serotonergic alterations play a role in the pathogenesis of these major public health problems, dysfunction in additional neurotransmitter systems and other molecular alterations may also be implicated. Microarray expression studies are excellent screening tools to generate hypotheses about additional molecular processes that may be at play. In this study we investigated brain regions that are known to be implicated in the neurobiology of suicide and major depression are likely to represent valid global molecular alterations. METHODOLOGY/PRINCIPAL FINDINGS: We performed gene expression analysis using the HG-U133AB chipset in 17 cortical and subcortical brain regions from suicides with and without major depression and controls. Total mRNA for microarray analysis was obtained from 663 brain samples isolated from 39 male subjects, including 26 suicide cases and 13 controls diagnosed by means of psychological autopsies. Independent brain samples from 34 subjects and animal studies were used to control for the potential confounding effects of comorbidity with alcohol. Using a Gene Ontology analysis as our starting point, we identified molecular pathways that may be involved in depression and suicide, and performed follow-up analyses on these possible targets. Methodology included gene expression measures from microarrays, Gene Score Resampling for global ontological profiling, and semi-quantitative RT-PCR. We observed the highest number of suicide specific alterations in prefrontal cortical areas and hippocampus. Our results revealed alterations of synaptic neurotransmission and intracellular signaling. Among these, Glutamatergic (GLU and GABAergic related genes were globally altered. Semi-quantitative RT-PCR results investigating expression of GLU and GABA receptor subunit genes were consistent with

  9. Early expression of hypocretin/orexin in the chick embryo brain.

    Directory of Open Access Journals (Sweden)

    Kyle E Godden

    Full Text Available Hypocretin/Orexin (H/O neuropeptides are released by a discrete group of neurons in the vertebrate hypothalamus which play a pivotal role in the maintenance of waking behavior and brain state control. Previous studies have indicated that the H/O neuronal development differs between mammals and fish; H/O peptide-expressing cells are detectable during the earliest stages of brain morphogenesis in fish, but only towards the end of brain morphogenesis (by ∼ 85% of embryonic development in rats. The developmental emergence of H/O neurons has never been previously described in birds. With the goal of determining whether the chick developmental pattern was more similar to that of mammals or of fish, we investigated the emergence of H/O-expressing cells in the brain of chick embryos of different ages using immunohistochemistry. Post-natal chick brains were included in order to compare the spatial distribution of H/O cells with that of other vertebrates. We found that H/O-expressing cells appear to originate from two separate places in the region of the diencephalic proliferative zone. These developing cells express the H/O neuropeptide at a comparatively early age relative to rodents (already visible at 14% of the way through fetal development, thus bearing a closer resemblance to fish. The H/O-expressing cell population proliferates to a large number of cells by a relatively early embryonic age. As previously suggested, the distribution of H/O neurons is intermediate between that of mammalian and non-mammalian vertebrates. This work suggests that, in addition to its roles in developed brains, the H/O peptide may play an important role in the early embryonic development of non-mammalian vertebrates.

  10. 3' tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer

    Directory of Open Access Journals (Sweden)

    Poland Gregory A

    2009-11-01

    Full Text Available Abstract Background Massive parallel sequencing has the potential to replace microarrays as the method for transcriptome profiling. Currently there are two protocols: full-length RNA sequencing (RNA-SEQ and 3'-tag digital gene expression (DGE. In this preliminary effort, we evaluated the 3' DGE approach using two reference RNA samples from the MicroArray Quality Control Consortium (MAQC. Results Using Brain RNA sample from multiple runs, we demonstrated that the transcript profiles from 3' DGE were highly reproducible between technical and biological replicates from libraries constructed by the same lab and even by different labs, and between two generations of Illumina's Genome Analyzers. Approximately 65% of all sequence reads mapped to mitochondrial genes, ribosomal RNAs, and canonical transcripts. The expression profiles of brain RNA and universal human reference RNA were compared which demonstrated that DGE was also highly quantitative with excellent correlation of differential expression with quantitative real-time PCR. Furthermore, one lane of 3' DGE sequencing, using the current sequencing chemistry and image processing software, had wider dynamic range for transcriptome profiling and was able to detect lower expressed genes which are normally below the detection threshold of microarrays. Conclusion 3' tag DGE profiling with massive parallel sequencing achieved high sensitivity and reproducibility for transcriptome profiling. Although it lacks the ability of detecting alternative splicing events compared to RNA-SEQ, it is much more affordable and clearly out-performed microarrays (Affymetrix in detecting lower abundant transcripts.

  11. Brain-derived neurotrophic factor increases vascular endothelial growth factor expression and enhances angiogenesis in human chondrosarcoma cells.

    Science.gov (United States)

    Lin, Chih-Yang; Hung, Shih-Ya; Chen, Hsien-Te; Tsou, Hsi-Kai; Fong, Yi-Chin; Wang, Shih-Wei; Tang, Chih-Hsin

    2014-10-15

    Chondrosarcomas are a type of primary malignant bone cancer, with a potent capacity for local invasion and distant metastasis. Brain-derived neurotrophic factor (BDNF) is commonly upregulated during neurogenesis. The aim of the present study was to examine the mechanism involved in BDNF-mediated vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma cells. Here, we knocked down BDNF expression in chondrosarcoma cells and assessed their capacity to control VEGF expression and angiogenesis in vitro and in vivo. We found knockdown of BDNF decreased VEGF expression and abolished chondrosarcoma conditional medium-mediated angiogenesis in vitro as well as angiogenesis effects in vivo in the chick chorioallantoic membrane and Matrigel plug nude mouse models. In addition, in the xenograft tumor angiogenesis model, the knockdown of BDNF significantly reduced tumor growth and tumor-associated angiogenesis. BDNF increased VEGF expression and angiogenesis through the TrkB receptor, PLCγ, PKCα, and the HIF-1α signaling pathway. Finally, we analyzed samples from chondrosarcoma patients by immunohistochemical staining. The expression of BDNF and VEGF protein in 56 chondrosarcoma patients was significantly higher than in normal cartilage. In addition, the high level of BDNF expression correlated strongly with VEGF expression and tumor stage. Taken together, our results indicate that BDNF increases VEGF expression and enhances angiogenesis through a signal transduction pathway that involves the TrkB receptor, PLCγ, PKCα, and the HIF-1α. Therefore, BDNF may represent a novel target for anti-angiogenic therapy for human chondrosarcoma.

  12. Cytochrome P450 CYP2J9, a new mouse arachidonic acid omega-1 hydroxylase predominantly expressed in brain.

    Science.gov (United States)

    Qu, W; Bradbury, J A; Tsao, C C; Maronpot, R; Harry, G J; Parker, C E; Davis, L S; Breyer, M D; Waalkes, M P; Falck, J R; Chen, J; Rosenberg, R L; Zeldin, D C

    2001-07-06

    A cDNA encoding a new cytochrome P450 was isolated from a mouse brain library. Sequence analysis reveals that this 1,958-base pair cDNA encodes a 57-58-kDa 502-amino acid polypeptide that is 70-91% identical to CYP2J subfamily P450s and is designated CYP2J9. Recombinant CYP2J9 was co-expressed with NADPH-cytochrome P450 oxidoreductase (CYPOR) in Sf9 cells using a baculovirus system. Microsomes of CYP2J9/CYPOR-transfected cells metabolize arachidonic acid to 19-hydroxyeicosatetraenoic acid (HETE) thus CYP2J9 is enzymologically distinct from other P450s. Northern analysis reveals that CYP2J9 transcripts are present at high levels in mouse brain. Mouse brain microsomes biosynthesize 19-HETE. RNA polymerase chain reaction analysis demonstrates that CYP2J9 mRNAs are widely distributed in brain and most abundant in the cerebellum. Immunoblotting using an antibody raised against human CYP2J2 that cross-reacts with CYP2J9 detects a 56-kDa protein band that is expressed in cerebellum and other brain segments and is regulated during postnatal development. In situ hybridization of mouse brain sections with a CYP2J9-specific riboprobe and immunohistochemical staining with the anti-human CYP2J2 IgG reveals abundant CYP2J9 mRNA and protein in cerebellar Purkinje cells. Importantly, 19-HETE inhibits the activity of recombinant P/Q-type Ca(2+) channels that are known to be expressed preferentially in cerebellar Purkinje cells and are involved in triggering neurotransmitter release. Based on these data, we conclude that CYP2J9 is a developmentally regulated P450 that is abundant in brain, localized to cerebellar Purkinje cells, and active in the biosynthesis of 19-HETE, an eicosanoid that inhibits activity of P/Q-type Ca(2+) channels. We postulate that CYP2J9 arachidonic acid products play important functional roles in the brain.

  13. Transferrin receptor expression and role in transendothelial transport of transferrin in cultured brain endothelial monolayers

    DEFF Research Database (Denmark)

    Hersom, Maria; Helms, Hans Christian; Pretzer, Natasia;

    2016-01-01

    across the endothelial cells by transcytosis. The aim of the present study was to investigate transferrin receptor expression and role in transendothelial transferrin transport in cultured bovine brain endothelial cell monolayers. Transferrin receptor mRNA and protein levels were investigated...... in endothelial mono-cultures and co-cultures with astrocytes, as well as in freshly isolated brain capillaries using qPCR, immunocytochemistry and Western blotting. Transendothelial transport and luminal association of holo-transferrin was investigated using [125I]holo-transferrin or [59Fe......]-transferrin. Transferrin receptor mRNA expression in all cell culture configurations was lower than in freshly isolated capillaries, but the expression slightly increased during six days of culture. The mRNA expression levels were similar in mono-cultures and co-cultures. Immunostaining demonstrated comparable transferrin...

  14. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M. (Cleveland Clinic Foundation, OH (USA))

    1990-08-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures.

  15. A comparison of brain gene expression levels in domesticated and wild animals.

    Directory of Open Access Journals (Sweden)

    Frank W Albert

    2012-09-01

    Full Text Available Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits. We compared the expression differences with those between domesticated guinea pigs and a distant wild relative (Cavia aperea as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30-75 genes (less than 1% of expressed genes were differentially expressed, while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats (DLL3 and DHDH were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different.

  16. Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Natalie A Twine

    Full Text Available Recent studies strongly indicate that aberrations in the control of gene expression might contribute to the initiation and progression of Alzheimer's disease (AD. In particular, alternative splicing has been suggested to play a role in spontaneous cases of AD. Previous transcriptome profiling of AD models and patient samples using microarrays delivered conflicting results. This study provides, for the first time, transcriptomic analysis for distinct regions of the AD brain using RNA-Seq next-generation sequencing technology. Illumina RNA-Seq analysis was used to survey transcriptome profiles from total brain, frontal and temporal lobe of healthy and AD post-mortem tissue. We quantified gene expression levels, splicing isoforms and alternative transcript start sites. Gene Ontology term enrichment analysis revealed an overrepresentation of genes associated with a neuron's cytological structure and synapse function in AD brain samples. Analysis of the temporal lobe with the Cufflinks tool revealed that transcriptional isoforms of the apolipoprotein E gene, APOE-001, -002 and -005, are under the control of different promoters in normal and AD brain tissue. We also observed differing expression levels of APOE-001 and -002 splice variants in the AD temporal lobe. Our results indicate that alternative splicing and promoter usage of the APOE gene in AD brain tissue might reflect the progression of neurodegeneration.

  17. Identification of a set of genes showing regionally enriched expression in the mouse brain

    Directory of Open Access Journals (Sweden)

    Marra Marco A

    2008-07-01

    Full Text Available Abstract Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters ( Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.

  18. Expression of alpha-synuclein in different brain parts of adult and aged rats.

    Science.gov (United States)

    Adamczyk, A; Solecka, J; Strosznajder, J B

    2005-03-01

    The synucleins are a family of presynaptic proteins that are abundant in neurons and include alpha-, beta, and gamma-synuclein. Alpha-synuclein (ASN) is involved in several neurodegenerative age-related disorders but its relevance in physiological aging is unknown. In the present study we investigated the expression of ASN mRNA and protein in the different brain parts of the adult (4-month-old) and aged (24-month-old) rats by using RT-PCR technique and Western blot, respectively. Our results indicated that mRNA expression and immunoreactivity of ASN is similar in brain cortex, hippocampus and striatum but markedly lower in cerebellum comparing to the other brain parts. Aging lowers ASN mRNA expression in striatum and cerebellum by about 40%. The immunoreactivity of ASN in synaptic plasma membranes (SPM) from aged brain cortex, hippocampus and cerebellum is significantly lower comparing to adult by 39%, 24% and 65%, respectively. Beta-synuclein (BSN) was not changed in aged brain comparing to adult. Age-related alteration of ASN may affect the nerve terminals structure and function.

  19. Males are from Mars, and females are from Venus: sex-specific fetal brain gene expression signatures in a mouse model of maternal diet-induced obesity.

    Science.gov (United States)

    Edlow, Andrea G; Guedj, Faycal; Pennings, Jeroen L A; Sverdlov, Deanna; Neri, Caterina; Bianchi, Diana W

    2016-05-01

    Maternal obesity is associated with adverse neurodevelopmental outcomes in children, including autism spectrum disorders, developmental delay, and attention-deficit hyperactivity disorder. The underlying mechanisms remain unclear. We previously identified second-trimester amniotic fluid and term cord blood gene expression patterns suggesting dysregulated brain development in fetuses of obese compared with lean women. We sought to investigate the biological significance of these findings in a mouse model of maternal diet-induced obesity. We evaluated sex-specific differences in fetal growth, brain gene expression signatures, and associated pathways. Female C57BL/6J mice were fed a 60% high-fat diet or 10% fat control diet for 12-14 weeks prior to mating. During pregnancy, obese dams continued on the high-fat diet or transitioned to the control diet. Lean dams stayed on the control diet. On embryonic day 17.5, embryos were weighed and fetal brains were snap frozen. RNA was extracted from male and female forebrains (10 per diet group per sex) and hybridized to whole-genome expression arrays. Significantly differentially expressed genes were identified using a Welch's t test with the Benjamini-Hochberg correction. Functional analyses were performed using ingenuity pathways analysis and gene set enrichment analysis. Embryos of dams on the high-fat diet were significantly smaller than controls, with males more severely affected than females (P = .01). Maternal obesity and maternal obesity with dietary change in pregnancy resulted in significantly more dysregulated genes in male vs female fetal brains (386 vs 66, P obesity with and without dietary change in pregnancy was associated with unique brain gene expression signatures for each sex, with an overlap of only 1 gene. Changing obese dams to a control diet in pregnancy resulted in more differentially expressed genes in the fetal brain than maternal obesity alone. Functional analyses identified common dysregulated

  20. Comparing the Expression of Genes Related to Serotonin (5-HT in C57BL/6J Mice and Humans Based on Data Available at the Allen Mouse Brain Atlas and Allen Human Brain Atlas

    Directory of Open Access Journals (Sweden)

    C. A. Acevedo-Triana

    2017-01-01

    Full Text Available Brain atlases are tools based on comprehensive studies used to locate biological characteristics (structures, connections, proteins, and gene expression in different regions of the brain. These atlases have been disseminated to the point where tools have been created to store, manage, and share the information they contain. This study used the data published by the Allen Mouse Brain Atlas (2004 for mice (C57BL/6J and Allen Human Brain Atlas (2010 for humans (6 donors to compare the expression of serotonin-related genes. Genes of interest were searched for manually in each case (in situ hybridization for mice and microarrays for humans, normalized expression data (z-scores were extracted, and the results were graphed. Despite the differences in methodology, quantification, and subjects used in the process, a high degree of similarity was found between expression data. Here we compare expression in a way that allows the use of translational research methods to infer and validate knowledge. This type of study allows part of the relationship between structures and functions to be identified, by examining expression patterns and comparing levels of expression in different states, anatomical correlations, and phenotypes between different species. The study concludes by discussing the importance of knowing, managing, and disseminating comprehensive, open-access studies in neuroscience.

  1. Expression of manganese superoxide dismutase in rat blood, heart and brain during induced systemic hypoxia

    Directory of Open Access Journals (Sweden)

    Septelia I. Wanandi

    2011-02-01

    Full Text Available Background: Hypoxia results in an increased generation of ROS. Until now, little is known about the role of MnSOD - a major endogenous antioxidant enzyme - on the cell adaptation response against hypoxia. The aim of this study was to  determine the MnSOD mRNA expression and levels of specific activity in blood, heart and brain of rats during induced systemic hypoxia.Methods: Twenty-five male Sprague Dawley rats were subjected to systemic hypoxia in an hypoxic chamber (at 8-10% O2 for 0, 1, 7, 14 and 21 days, respectively. The mRNA relative expression of MnSOD was analyzed using Real Time RT-PCR. MnSOD specific activity was determined using xanthine oxidase inhibition assay.Results: The MnSOD mRNA relative expression in rat blood and heart was decreased during early induced systemic hypoxia (day 1 and increased as hypoxia continued, whereas the mRNA expression in brain was increased since day 1 and reached its maximum level at day 7. The result of MnSOD specific activity during early systemic hypoxia was similar to the mRNA expression. Under very late hypoxic condition (day 21, MnSOD specific activity in blood, heart and brain was significantly decreased. We demonstrate a positive correlation between MnSOD mRNA expression and specific activity in these 3 tissues during day 0-14 of induced systemic hypoxia. Furthermore, mRNA expression and specific activity levels in heart strongly correlate with those in blood.Conclusion: The MnSOD expression at early and late phases of induced systemic hypoxia is distinctly regulated. The MnSOD expression in brain differs from that in blood and heart revealing that brain tissue can  possibly survive better from induced systemic hypoxia than heart and blood. The determination of MnSOD expression in blood can be used to describe its expression in heart under systemic hypoxic condition. (Med J Indones 2011; 20:27-33Keywords: MnSOD, mRNA expression, ROS, specific activity, systemic hypoxia

  2. Clinical Significance of KISS1 Protein Expression for Brain Invasion and Metastasis

    Science.gov (United States)

    Ulasov, Ilya V.; Kaverina, Natalya V.; Pytel, Peter; Thaci, Bart; Liu, FeiFei; Hurst, Douglas R.; Welch, Danny R.; Sattar, Husein A.; Olopade, Olufunmilayo I.; Baryshnikov, Anatoly Y.; Kadagidze, Zaira G.; Lesniak, Maciej S.

    2013-01-01

    BACKGROUND Metastases to the brain represent a feared complication and contribute to the morbidity and mortality of breast cancer. Despite improvements in therapy, prognostic factors for development of metastases are lacking. KISS1 is a metastasis suppressor that demonstrates inhibition of metastases formation in several types of cancer. The purpose of this study was to determine the importance of KISS1 expression in breast cancer progression and the development of intracerebral lesions. METHODS In this study, we performed a comparative analysis of 47 brain metastases and 165 primary breast cancer specimens by using the antihuman KISS1 antibody. To compare KISS1 expression between different groups, we used a 3-tier score and the automated score computer software (ACIS) evaluation. To reveal association between mRNA and protein expression, we used quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Significance of immunohistochemistry stainings was correlated with clinicopathological data. RESULTS We identified that KISS1 expression is significantly higher in primary breast cancer compared with brain metastases (P < .05). The mRNA analysis performed on 33 selected ductal carcinoma brain metastatic lesions and 36 primary ductal carcinomas revealed a statistically significant down-regulation of KISS1 protein in metastatic cases (P = .04). Finally, we observed a significant correlation between expression of KISS1 and metastasis-free survival (P = .04) along with progression of breast cancer and expression of KISS1 in primary breast cancer specimens (P = .044). CONCLUSIONS In conclusion, our study shows that breast cancer expresses KISS1. Cytoplasmic expression of KISS1 may be used as a prognostic marker for increased risk of breast cancer progression. PMID:21928364

  3. Monitoring of newborns at high risk for brain injury

    OpenAIRE

    Pisani, Francesco; Spagnoli, Carlotta

    2016-01-01

    Due to the increasing number of surviving preterm newborns and to the recognition of therapeutic hypothermia as the current gold standard in newborns with hypoxic-ischaemic encephalopathy, there has been a growing interest in the implementation of brain monitoring tools in newborns at high risk for neurological disorders. Among the most frequent neurological conditions and presentations in the neonatal period, neonatal seizures and neonatal status epilepticus, paroxysmal non-epileptic motor p...

  4. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India); Godbole, Madan M., E-mail: madangodbole@yahoo.co.in [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India)

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  5. The expression of TRPA1 mRNA in the rat brain

    Institute of Scientific and Technical Information of China (English)

    Peng Du; Shua Li; Jinyu Zheng; Zhi-yuan Yu; Minjie Xie; Wei Wang

    2006-01-01

    Objective: To investigate the distribution of TRPA1 (one kind of the TRP-like ion channel family) channel in the hippocampus and cerebral cortex of rat. Methods: RT-PCR was used to amplify the fragment of TRPA1 in the DRG (dorsal root ganglion), hippocampus and cerebral cortex of adult SD rat. In situ hybridization staining was used to show the distribution of TRPA1 mRNA in the hippocampus and cerebral cortex of adult rat brain. Results: Both RT-PCR and in situ hybridization staining showed that TRPA1 mRNA was expressed in hippocampus and cerebral cortex of the adult rat brain. Conclusion: Ourresults suggest that there is expression of TRPA1 mRNA both in the hippocampus and cerebral cortex of the adult rat brain.

  6. Comparison of regional gene expression differences in the brains of the domestic dog and human

    Directory of Open Access Journals (Sweden)

    Kennerly Erin

    2004-11-01

    Full Text Available Abstract Comparison of the expression profiles of 2,721 genes in the cerebellum, cortex and pituitary gland of three American Staffordshire terriers, one beagle and one fox hound revealed regional expression differences in the brain but failed to reveal marked differences among breeds, or even individual dogs. Approximately 85 per cent (42 of 49 orthologue comparisons of the regional differences in the dog are similar to those that differentiate the analogous human brain regions. A smaller percentage of human differences were replicated in the dog, particularly in the cortex, which may generally be evolving more rapidly than other brain regions in mammals. This study lays the foundation for detailed analysis of the population structure of transcriptional variation as it relates to cognitive and neurological phenotypes in the domestic dog.

  7. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    1999-11-01

    Full Text Available The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE, which can be activated through hypoxia-inducible factor-1 (HIF-1. We transfected plasmids containing multiple copies of HIRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HIRE copy number, and the degree of hypoxia.

  8. High-fat diet transition reduces brain DHA levels associated with altered brain plasticity and behaviour.

    Science.gov (United States)

    Sharma, Sandeep; Zhuang, Yumei; Gomez-Pinilla, Fernando

    2012-01-01

    To assess how the shift from a healthy diet rich in omega-3 fatty acids to a diet rich in saturated fatty acid affects the substrates for brain plasticity and function, we used pregnant rats fed with omega-3 supplemented diet from their 2nd day of gestation period as well as their male pups for 12 weeks. Afterwards, the animals were randomly assigned to either a group fed on the same diet or a group fed on a high-fat diet (HFD) rich in saturated fats for 3 weeks. We found that the HFD increased vulnerability for anxiety-like behavior, and that these modifications harmonized with changes in the anxiety-related NPY1 receptor and the reduced levels of BDNF, and its signalling receptor pTrkB, as well as the CREB protein. Brain DHA contents were significantly associated with the levels of anxiety-like behavior in these rats.

  9. Diversified expression of NG2/CSPG4 isoforms in glioblastoma and human foetal brain identifies pericyte subsets.

    Science.gov (United States)

    Girolamo, Francesco; Dallatomasina, Alice; Rizzi, Marco; Errede, Mariella; Wälchli, Thomas; Mucignat, Maria Teresa; Frei, Karl; Roncali, Luisa; Perris, Roberto; Virgintino, Daniela

    2013-01-01

    NG2/CSPG4 is a complex surface-associated proteoglycan (PG) recognized to be a widely expressed membrane component of glioblastoma (WHO grade IV) cells and angiogenic pericytes. To determine the precise expression pattern of NG2/CSPG4 on glioblastoma cells and pericytes, we generated a panel of >60 mouse monoclonal antibodies (mAbs) directed against the ectodomain of human NG2/CSPG4, partially characterized the mAbs, and performed a high-resolution distributional mapping of the PG in human foetal, adult and glioblastoma-affected brains. The reactivity pattern initially observed on reference tumour cell lines indicated that the mAbs recognized 48 immunologically distinct NG2/CSPG4 isoforms, and a total of 14 mAbs was found to identify NG2/CSPG4 isoforms in foetal and neoplastic cerebral sections. These were consistently absent in the adult brain, but exhibited a complementary expression pattern in angiogenic vessels of both tumour and foetal tissues. Considering the extreme pleomorphism of tumour areas, and with the aim of subsequently analysing the distributional pattern of the NG2/CSPG4 isoforms on similar histological vessel typologies, a preliminary study was carried out with endothelial cell and pericyte markers, and with selected vascular basement membrane (VBM) components. On both tumour areas characterized by 'glomeruloid' and 'garland vessels', which showed a remarkably similar cellular and molecular organization, and on developing brain vessels, spatially separated, phenotypically diversified pericyte subsets with a polarized expression of key surface components, including NG2/CSPG4, were disclosed. Interestingly, the majority of the immunolocalized NG2/CSPG4 isoforms present in glioblastoma tissue were present in foetal brain, except for one isoform that seemed to be exclusive of tumour cells, being absent in foetal brain. The results highlight an unprecedented, complex pattern of NG2/CSPG4 isoform expression in foetal and neoplastic CNS, discriminating

  10. Diversified expression of NG2/CSPG4 isoforms in glioblastoma and human foetal brain identifies pericyte subsets.

    Directory of Open Access Journals (Sweden)

    Francesco Girolamo

    Full Text Available NG2/CSPG4 is a complex surface-associated proteoglycan (PG recognized to be a widely expressed membrane component of glioblastoma (WHO grade IV cells and angiogenic pericytes. To determine the precise expression pattern of NG2/CSPG4 on glioblastoma cells and pericytes, we generated a panel of >60 mouse monoclonal antibodies (mAbs directed against the ectodomain of human NG2/CSPG4, partially characterized the mAbs, and performed a high-resolution distributional mapping of the PG in human foetal, adult and glioblastoma-affected brains. The reactivity pattern initially observed on reference tumour cell lines indicated that the mAbs recognized 48 immunologically distinct NG2/CSPG4 isoforms, and a total of 14 mAbs was found to identify NG2/CSPG4 isoforms in foetal and neoplastic cerebral sections. These were consistently absent in the adult brain, but exhibited a complementary expression pattern in angiogenic vessels of both tumour and foetal tissues. Considering the extreme pleomorphism of tumour areas, and with the aim of subsequently analysing the distributional pattern of the NG2/CSPG4 isoforms on similar histological vessel typologies, a preliminary study was carried out with endothelial cell and pericyte markers, and with selected vascular basement membrane (VBM components. On both tumour areas characterized by 'glomeruloid' and 'garland vessels', which showed a remarkably similar cellular and molecular organization, and on developing brain vessels, spatially separated, phenotypically diversified pericyte subsets with a polarized expression of key surface components, including NG2/CSPG4, were disclosed. Interestingly, the majority of the immunolocalized NG2/CSPG4 isoforms present in glioblastoma tissue were present in foetal brain, except for one isoform that seemed to be exclusive of tumour cells, being absent in foetal brain. The results highlight an unprecedented, complex pattern of NG2/CSPG4 isoform expression in foetal and neoplastic CNS

  11. Expression profile of nicotinic acetylcholine receptor subunits in the brain of HIV-1 transgenic rats given chronic nicotine treatment.

    Science.gov (United States)

    Cao, Junran; Nesil, Tanseli; Wang, Shaolin; Chang, Sulie L; Li, Ming D

    2016-10-01

    Abuse of addictive substances, including cigarettes, is much greater in HIV-1-infected individuals than in the general population and challenges the efficiency of highly active anti-retroviral therapy (HAART). The HIV-1 transgenic (HIV-1Tg) rat, an animal model used to study drug addiction in HIV-1-infected patients on HAART, displays abnormal neurobehavioral responses to addictive substances. Given that the cholinergic system plays an essential part in the central reward circuitry, we evaluated the expression profile of nine nicotinic acetylcholine receptor (nAChR) subunit genes in the central nervous system (CNS) of HIV-1Tg rats. We found that nAChR subunits were differentially expressed in various brain regions in HIV-1Tg rats compared to F344 control rats, with more subunits altered in the ventral tegmental area (VTA) and nucleus accumbens (NAc) of the HIV-1Tg rats than in other brain regions. We also found that chronic nicotine treatment (0.4 mg/kg/day) decreased the mRNA expression of nAChR subunits α6, β3, and β4 in the VTA of HIV-1Tg rats, whereas expression of α4 and α6 subunits in the NAc increased. No such changes were observed in F344 rats. Together, our data suggest that HIV-1 proteins alter the expression of nAChRs, which may contribute to the vulnerability to cigarette smoking addiction in HIV-1 patients.

  12. Exploring the motivational brain: effects of implicit power motivation on brain activation in response to facial expressions of emotion.

    Science.gov (United States)

    Schultheiss, Oliver C; Wirth, Michelle M; Waugh, Christian E; Stanton, Steven J; Meier, Elizabeth A; Reuter-Lorenz, Patricia

    2008-12-01

    This study tested the hypothesis that implicit power motivation (nPower), in interaction with power incentives, influences activation of brain systems mediating motivation. Twelve individuals low (lowest quartile) and 12 individuals high (highest quartile) in nPower, as assessed per content coding of picture stories, were selected from a larger initial participant pool and participated in a functional magnetic resonance imaging study during which they viewed high-dominance (angry faces), low-dominance (surprised faces) and control stimuli (neutral faces, gray squares) under oddball-task conditions. Consistent with hypotheses, high-power participants showed stronger activation in response to emotional faces in brain structures involved in emotion and motivation (insula, dorsal striatum, orbitofrontal cortex) than low-power participants.

  13. Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury

    Science.gov (United States)

    Richter, Catherine A.; Garcia-Reyero, Natàlia; Martyniuk, Chris; Knoebl, Iris; Pope, Marie; Wright-Osment, Maureen K.; Denslow, Nancy D.; Tillitt, Donald E.

    2011-01-01

    Methylmercury (MeHg) is a potent neurotoxicant and endocrine disruptor that accumulates in aquatic systems. Previous studies have shown suppression of hormone levels in both male and female fish, suggesting effects on gonadotropin regulation in the brain. The gene expression profile in adult female zebrafish whole brain induced by acute (96 h) MeHg exposure was investigated. Fish were exposed by injection to 0 or 0.5(mu or u)g MeHg/g. Gene expression changes in the brain were examined using a 22,000-feature zebrafish microarray. At a significance level of pgenes were up-regulated and 76 genes were down-regulated in response to MeHg exposure. Individual genes exhibiting altered expression in response to MeHg exposure implicate effects on glutathione metabolism in the mechanism of MeHg neurotoxicity. Gene ontology (GO) terms significantly enriched among altered genes included protein folding, cell redox homeostasis, and steroid biosynthetic process. The most affected biological functions were related to nervous system development and function, as well as lipid metabolism and molecular transport. These results support the involvement of oxidative stress and effects on protein structure in the mechanism of action of MeHg in the female brain. Future studies will compare the gene expression profile induced in response to MeHg with that induced by other toxicants and will investigate responsive genes as potential biomarkers of MeHg exposure.

  14. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    Science.gov (United States)

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  15. Age-correlated gene expression in normal and neurodegenerative human brain tissues.

    Directory of Open Access Journals (Sweden)

    Kajia Cao

    Full Text Available BACKGROUND: Human brain aging has received special attention in part because of the elevated risks of neurodegenerative disorders such as Alzheimer's disease in seniors. Recent technological advances enable us to investigate whether similar mechanisms underlie aging and neurodegeneration, by quantifying the similarities and differences in their genome-wide gene expression profiles. PRINCIPAL FINDINGS: We have developed a computational method for assessing an individual's "physiological brain age" by comparing global mRNA expression datasets across a range of normal human brain samples. Application of this method to brains samples from select regions in two diseases--Alzheimer's disease (AD, superior frontal gyrus, frontotemporal lobar degeneration (FTLD, in rostral aspect of frontal cortex ∼BA10--showed that while control cohorts exhibited no significant difference between physiological and chronological ages, FTLD and AD exhibited prematurely aged expression profiles. CONCLUSIONS: This study establishes a quantitative scale for measuring premature aging in neurodegenerative disease cohorts, and it identifies specific physiological mechanisms common to aging and some forms of neurodegeneration. In addition, accelerated expression profiles associated with AD and FTLD suggest some common mechanisms underlying the risk of developing these diseases.

  16. A novel brain receptor is expressed in a distinct population of olfactory sensory neurons

    NARCIS (Netherlands)

    Conzelmann, S; Levai, O; Bode, B; Eisel, U; Raming, K; Breer, H; Strotmann, J

    2000-01-01

    Three novel G-protein-coupled receptor genes related to the previously described RA1c gene have been isolated from the mouse genome. Expression of these genes has been detected in distinct areas of the brain and also in the olfactory epithelium of the nose. Developmental studies revealed a different

  17. Expression of annexin and Annexin-mRNA in rat brain under influence of steroid drugs

    NARCIS (Netherlands)

    Voermans, PH; Go, KG; ter Horst, GJ; Ruiters, MHJ; Solito, E; Parente, L; James, HE; Marshall, LF; Reulen, HJ; Baethmann, A; Marmarou, A; Ito, U; Hoff, JT; Kuroiwa, T; Czernicki, Z

    1997-01-01

    Brain tissue of rats pretreated with methylprednisolone or with the 21-aminosteroid U74389F, and that of untreated control rats, was assessed for the expression of Annexin-l (Anx-1) and the transcription of its mRNA. For this purpose Anx-1 cDNA was amplified and simultaneously a T7-RNA-polymerase pr

  18. Assessment and Therapeutic Application of the Expressive Therapies Continuum: Implications for Brain Structures and Functions

    Science.gov (United States)

    Lusebrink, Vija B.

    2010-01-01

    The Expressive Therapies Continuum (ETC) provides a theoretical model for art-based assessments and applications of media in art therapy. The three levels of the ETC (Kinesthetic/Sensory, Perceptual/Affective, and Cognitive/Symbolic) appear to reflect different functions and structures in the brain that process visual and affective information.…

  19. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    Science.gov (United States)

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  20. Magnetoencephalography Detection of High-Frequency Oscillations in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Kimberly eLeiken

    2014-12-01

    Full Text Available Increasing evidence from invasive intracranial recordings suggests that the matured brain generates both physiological and pathological high-frequency signals. The present study was designed to detect high-frequency brain signals in the developing brain using newly developed magnetoencephalography (MEG methods. Twenty healthy children were studied with a high sampling rate MEG system. Functional high-frequency brain signals were evoked by electrical stimulation applied to the index fingers. To determine if the high-frequency neuromagnetic signals are true brain responses in high-frequency range, we analyzed the MEG data using the conventional averaging as well as newly developed time-frequency analysis along with beamforming. The data of healthy children showed that very high-frequency brain signals (> 1000 Hz in the somatosensory cortex in the developing brain could be detected and localized using MEG. The amplitude of very high-frequency brain signals was significantly weaker than that of the low-frequency brain signals. Very high-frequency brain signals showed a much earlier latency than those of a low-frequency. Magnetic source imaging (MSI revealed that a portion of the high-frequency signals was from the somatosensory cortex, another portion of the high-frequency signals was probably from the thalamus. Our results provide evidence that the developing brain generates high-frequency signals that can be detected with the noninvasive technique of MEG. MEG detection of high-frequency brain signals may open a new window for the study of developing brain function.

  1. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression

    Science.gov (United States)

    So, Nina; Franks, Becca; Lim, Sean; Curley, James P.

    2015-01-01

    Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David’s Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg’s Hub Centrality and Bonacich’s Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive

  2. Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice.

    Science.gov (United States)

    Duan, Deyi; Fu, Yuhong; Paxinos, George; Watson, Charles

    2013-03-01

    The transcription factor Pax6 has been reported to specify neural progenitor cell fates during development and maintain neuronal commitments in the adult. The spatiotemporal patterns of Pax6 expression were examined in sagittal and horizontal sections of the embryonic, postnatal, and adult brains using immunohistochemistry and double immunolabeling. The proportion of Pax6-immunopositive cells in various parts of the adult brain was estimated using the isotropic fractionator methodology. It was shown that at embryonic day 11 (E11) Pax6 was robustly expressed in the proliferative neuroepithelia of the ventricular zone in the forebrain and hindbrain, and in the floor and the mesencephalic reticular formation (mRt) in the midbrain. At E12, its expression emerged in the nucleus of the lateral lemniscus in the rhombencephalon and disappeared from the floor of the midbrain. As neurodevelopment proceeds, the expression pattern of Pax6 changes from the mitotic germinal zone in the ventricular zone to become extensively distributed in cell groups in the forebrain and hindbrain, and the expression persisted in the mRt. The majority of Pax6-positive cell groups were maintained until adult life, but the intensity of Pax6 expression became much weaker. Pax6 expression was maintained in the mitotic subventricular zone in the adult brain, but not in the germinal region dentate gyrus in the adult hippocampus. There was no obvious colocalization of Pax6 and NeuN during embryonic development, suggesting Pax6 is found primarily in developing progenitor cells. In the adult brain, however, Pax6 maintains neuronal features of some subtypes of neurons, as indicated by 97.1% of Pax6-positive cells co-expressing NeuN in the cerebellum, 40.7% in the olfactory bulb, 38.3% in the cerebrum, and 73.9% in the remaining brain except the hippocampus. Differentiated tyrosine hydroxylase (TH) neurons were observed in the floor of the E11 midbrain where Pax6 was also expressed, but no obvious

  3. Brain expression genome-wide association study (eGWAS identifies human disease-associated variants.

    Directory of Open Access Journals (Sweden)

    Fanggeng Zou

    Full Text Available Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with Alzheimer's disease (AD, cerebellar n=197, temporal cortex n=202 and with other brain pathologies (non-AD, cerebellar n=177, temporal cortex n=197. We conducted an expression genome-wide association study (eGWAS using 213,528 cisSNPs within ± 100 kb of the tested transcripts. We identified 2,980 cerebellar cisSNP/transcript level associations (2,596 unique cisSNPs significant in both ADs and non-ADs (q<0.05, p=7.70 × 10(-5-1.67 × 10(-82. Of these, 2,089 were also significant in the temporal cortex (p=1.85 × 10(-5-1.70 × 10(-141. The top cerebellar cisSNPs had 2.4-fold enrichment for human disease-associated variants (p<10(-6. We identified novel cisSNP/transcript associations for human disease-associated variants, including progressive supranuclear palsy SLCO1A2/rs11568563, Parkinson's disease (PD MMRN1/rs6532197, Paget's disease OPTN/rs1561570; and we confirmed others, including PD MAPT/rs242557, systemic lupus erythematosus and ulcerative colitis IRF5/rs4728142, and type 1 diabetes mellitus RPS26/rs1701704. In our eGWAS, there was 2.9-3.3 fold enrichment (p<10(-6 of significant cisSNPs with suggestive AD-risk association (p<10(-3 in the Alzheimer's Disease Genetics Consortium GWAS. These results demonstrate the significant contributions of genetic factors to human brain gene expression, which are reliably detected across different brain regions and pathologies. The significant enrichment of brain cisSNPs among disease-associated variants advocates gene expression changes as a mechanism for many central nervous system (CNS and non-CNS diseases. Combined assessment of expression and disease GWAS may provide complementary information in discovery of human disease variants with functional implications. Our findings

  4. Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats

    Institute of Scientific and Technical Information of China (English)

    Na Zhang; Gen-Yang Cheng; Xian-Zhi Liu; Feng-Jiang Zhang

    2014-01-01

    Objective:To investigate the effect of acute renal ischemia reperfusion on brain tissue. Methods:Fourty eight rats were randomly divided into four groups(n=12): sham operation group,30 min ischemia60 min reperfusion group,60 min ischemia60 min reperfusion group, and 120 min ischemia60 min reperfusion group.The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors.Results:Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time.The detection at the molecular level showed decreasedBcl-2 expression, increasedBax expression, upregulated expression ofNF-κB and its downstream factor COX-2/PGE2.Conclusions:Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation.

  5. Memory consolidation and amnesia modify 5-HT6 receptors expression in rat brain: an autoradiographic study.

    Science.gov (United States)

    Meneses, A; Manuel-Apolinar, L; Castillo, C; Castillo, E

    2007-03-12

    Traditionally, the search for memory circuits has been centered on examinations of amnesic and AD patients, cerebral lesions and, neuroimaging. A complementary alternative might be the use of autoradiography with radioligands. Indeed, ex vivo autoradiographic studies offer the advantage to detect functionally active receptors altered by pharmacological tools and memory formation. Hence, herein the 5-HT(6) receptor antagonist SB-399885 and the amnesic drugs scopolamine or dizocilpine were used to manipulate memory consolidation and 5-HT(6) receptors expression was determined by using [(3)H]-SB-258585. Thus, memory consolidation was impaired in scopolamine and dizocilpine treated groups relative to control vehicle but improved it in SB-399885-treated animals. SB-399885 improved memory consolidation seems to be associated with decreased 5-HT(6) receptors expression in 15 out 17 brain areas. Scopolamine or dizocilpine decreased 5-HT(6) receptors expression in nine different brain areas and increased it in CA3 hippocampus or other eight areas, respectively. In brain areas thought to be in charge of procedural memory such basal ganglia (i.e., nucleus accumbens, caudate putamen, and fundus striate) data showed that relative to control animals amnesic groups showed diminished (scopolamine) or augmented (dizocilpine) 5-HT(6) receptor expression. SB-399885 showing improved memory displayed an intermediate expression in these same brain regions. A similar intermediate expression occurs with regard to amygdala, septum, and some cortical areas in charge of explicit memory storage. However, relative to control group amnesic and SB-399885 rats in the hippocampus, region where explicit memory is formed, showed a complex 5-HT(6) receptors expression. In conclusion, these results indicate neural circuits underlying the effects of 5-HT(6) receptor antagonists in autoshaping task and offer some general clues about cognitive processes in general.

  6. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes.

    Science.gov (United States)

    de Jong, Simone; Boks, Marco P M; Fuller, Tova F; Strengman, Eric; Janson, Esther; de Kovel, Carolien G F; Ori, Anil P S; Vi, Nancy; Mulder, Flip; Blom, Jan Dirk; Glenthøj, Birte; Schubart, Chris D; Cahn, Wiepke; Kahn, René S; Horvath, Steve; Ophoff, Roel A

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network.

  7. High fat diet produces brain insulin resistance, synaptodendritic abnormalities and altered behavior in mice.

    Science.gov (United States)

    Arnold, Steven E; Lucki, Irwin; Brookshire, Bethany R; Carlson, Gregory C; Browne, Caroline A; Kazi, Hala; Bang, Sookhee; Choi, Bo-Ran; Chen, Yong; McMullen, Mary F; Kim, Sangwon F

    2014-07-01

    Insulin resistance and other features of the metabolic syndrome are increasingly recognized for their effects on cognitive health. To ascertain mechanisms by which this occurs, we fed mice a very high fat diet (60% kcal by fat) for 17days or a moderate high fat diet (HFD, 45% kcal by fat) for 8weeks and examined changes in brain insulin signaling responses, hippocampal synaptodendritic protein expression, and spatial working memory. Compared to normal control diet mice, cerebral cortex tissues of HFD mice were insulin-resistant as evidenced by failed activation of Akt, S6 and GSK3β with ex-vivo insulin stimulation. Importantly, we found that expression of brain IPMK, which is necessary for mTOR/Akt signaling, remained decreased in HFD mice upon activation of AMPK. HFD mouse hippocampus exhibited increased expression of serine-phosphorylated insulin receptor substrate 1 (IRS1-pS(616)), a marker of insulin resistance, as well as decreased expression of PSD-95, a scaffolding protein enriched in post-synaptic densities, and synaptopodin, an actin-associated protein enriched in spine apparatuses. Spatial working memory was impaired as assessed by decreased spontaneous alternation in a T-maze. These findings indicate that HFD is associated with telencephalic insulin resistance and deleterious effects on synaptic integrity and cognitive behaviors.

  8. Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain.

    Science.gov (United States)

    Scudiero, Rosaria; Cigliano, Luisa; Verderame, Mariailaria

    2017-01-01

    Neurodegeneration is one of the main physiological consequences of aging on brain. Metallothioneins (MTs), low molecular weight, cysteine-rich proteins that bind heavy-metal ions and oxygen-free radicals, are commonly expressed in various tissues of mammals. MTs are involved in the regulation of cell proliferation and protection, and may be engaged in aging. Expression of the ubiquitous MTs (1 and 2) and the brain specific MT3 have been studied in many neurodegenerative disorders. The research results indicate that MTs may play important, although not yet fully known, roles in brain diseases; in addition, data lack the ability to identify the MT isoforms functionally involved. The aim of this study was to analyse the level of gene expression of selected MT isoforms during brain aging. By using real-time PCR analysis, we determined the MT1/2 and MT3 expression profiles in cerebral cortex and hippocampus of adolescent (2months), adult (4 and 8months), and middle-aged (16months) rats. We show that the relative abundance of all types of MT transcripts changes during aging in both hippocampus and cortex; the first effect is a generalized decrease in the content of MTs transcripts from 2- to 8-months-old rats. After passing middle age, at 16months, we observe a huge increase in MT3 transcripts in both cortical and hippocampal areas, while the MT1/2 mRNA content increases slightly, returning to the levels measured in adolescent rats. These findings demonstrate an age-related expression of the MT3 gene. A possible link between the increasing amount of MT3 in brain aging and its different metal-binding behaviour is discussed.

  9. miR-186 is decreased in aged brain and suppresses BACE1 expression.

    Science.gov (United States)

    Kim, Jaekwang; Yoon, Hyejin; Chung, Dah-Eun; Brown, Jennifer L; Belmonte, Krystal C; Kim, Jungsu

    2016-05-01

    Accumulation of amyloid β (Aβ) in the brain is a key pathological hallmark of Alzheimer's disease (AD). Because aging is the most prominent risk factor for AD, understanding the molecular changes during aging is likely to provide critical insights into AD pathogenesis. However, studies on the role of miRNAs in aging and AD pathogenesis have only recently been initiated. Identifying miRNAs dysregulated by the aging process in the brain may lead to novel understanding of molecular mechanisms of AD pathogenesis. Here, we identified that miR-186 levels are gradually decreased in cortices of mouse brains during aging. In addition, we demonstrated that miR-186 suppresses β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) expression by directly targeting the 3'UTR of Bace1 mRNA in neuronal cells. In contrast, inhibition of endogenous miR-186 significantly increased BACE1 levels in neuronal cells. Importantly, miR-186 over-expression significantly decreased Aβ level by suppressing BACE1 expression in cells expressing human pathogenic mutant amyloid precursor protein. Taken together, our data demonstrate that miR-186 is a potent negative regulator of BACE1 in neuronal cells and it may be one of the molecular links between brain aging and the increased risk for AD during aging. We identified that miR-186 levels are gradually decreased in mouse cortices during aging. Furthermore, we demonstrated that miR-186 is a novel negative regulator of beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) expression in neuronal cells. Therefore, we proposed that reduction in miR-186 levels during aging may lead to the up-regulation of BACE1 in the brain, thereby increasing a risk for Alzheimer's disease in aged individuals. Read the Editorial Highlight for this article on page 308.

  10. Expression and antioxidation of Nrf2/ARE pathway in traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Zhen-Guo Cheng; Guo-Dong Zhang; Peng-Qiang Shi; Bao-Shun Du

    2013-01-01

    Objective: To explore the expression of Nrf2/ARE pathway in hindbrain tissue after the traumatic brain injury (TBI) and its anti-oxidative stress effect in the secondary nerve injury. Methods:The mice with Nrf2 gene knockout were used for the establishment of brain injury model. The experimental animals were divided into four groups: (Nrf2+/+) sham-operation group, (Nrf2+/+) brain injury group, (Nrf2-/-) sham-operation group and (Nrf2-/-) brain injury group. The specimen 24 h after cerebral trauma was selected. Then RT-PCR method was adopted to detect the expression of Nrf2 mRNA in brain; Western blotting method was adopted to detect the levels of Nrf2, HO-1 and NQO1 proteins in brain; ELISA method was adopted to detect the oxidative stress indicators:protein carbonyls, 4-hydroxy-2-nonenal (4-HNE) and 8-hydroxy-2’-deoxyguanosine (8-OHdG). Results: The Nrf2 mRNA and protein of Nrf2-/- mice were not expressed, and the difference of the relative amount of Nrf2 mRNA between Nrf2+/+ TBI group and Nrf2+/+ sham-operation group was not statistically significant (P>0.05); the level of Nrf2 protein in Nrf2+/+ TBI group increased significantly compared with the Nrf2+/+ sham-operation group (P0.05); there was only a little amount of expression of protein carbonyls, 4-HNE and 8-OHdG proteins in brain tissues in the Nrf2+/+ and Nrf2-/- sham-operation groups, and the difference was not statistically significant (P>0.05); after brain injury, the three oxidative stress indicators were significantly up-regulated in the Nrf2+/+ and Nrf2-/-groups, and the up-regulation of the latter group was more significant (P<0.01). Conclusions:After TBI the Nrf2/ARE pathway is activated and the activity of Nrf2 transcription regulation increases. However, the regulation dose not occur in the gene transcription level and only could increase the Nrf2 protein level, while the mRNA expression level has no obvious change. The nerve cell protective effect of Nrf2/ARE pathway in TBI achieves through

  11. Decreases in rat brain aquaporin-4 expression following intracerebroventricular administration of an endothelin ET B receptor agonist.

    Science.gov (United States)

    Koyama, Yutaka; Tanaka, Kazuhiro

    2010-01-29

    Aquaporins (AQPs) comprise a family of water channel proteins, some of which are expressed in brain. Expressions of brain AQPs are altered after brain insults, such as ischemia and head trauma. However, little is known about the regulation of brain AQP expression. Endothelins (ETs), vasoconstrictor peptides, regulate several pathophysiological responses of damaged nerve tissues via ET(B) receptors. To show possible roles of ET(B) receptors in the regulation of brain AQP expression, the effects of intracerebroventricular administration of an ET(B) agonist were examined in rat brain. In the cerebrum, the copy numbers of AQP4 mRNAs were highest among AQP1, 3, 4, 5 and 9. Continuous administration of 500 pmol/day Ala(1,3,11,15)-ET-1, an ET(B) selective agonist, into rat brain for 7 days decreased the level of AQP4 mRNA in the cerebrum, but had no effect on AQP1, 3, 5 and 9 mRNA levels. The level of AQP4 protein in the cerebrum decreased by the administration of Ala(1,3,11,15)-ET-1. Immunohistochemical observations of Ala(1,3,11,15)-ET-1-infused rats showed that GFAP-positive astrocytes, but not neurons, activated microglia or brain capillary endothelial cells, had immunoreactivity for AQP4. These findings indicate that activation of brain ET(B) receptors causes a decrease in AQP4 expression, suggesting that ET down-regulates brain AQP4 via ET(B) receptors.

  12. High-resolution digital brain atlases: a Hubble telescope for the brain.

    Science.gov (United States)

    Jones, Edward G; Stone, James M; Karten, Harvey J

    2011-05-01

    We describe implementation of a method for digitizing at microscopic resolution brain tissue sections containing normal and experimental data and for making the content readily accessible online. Web-accessible brain atlases and virtual microscopes for online examination can be developed using existing computer and internet technologies. Resulting databases, made up of hierarchically organized, multiresolution images, enable rapid, seamless navigation through the vast image datasets generated by high-resolution scanning. Tools for visualization and annotation of virtual microscope slides enable remote and universal data sharing. Interactive visualization of a complete series of brain sections digitized at subneuronal levels of resolution offers fine grain and large-scale localization and quantification of many aspects of neural organization and structure. The method is straightforward and replicable; it can increase accessibility and facilitate sharing of neuroanatomical data. It provides an opportunity for capturing and preserving irreplaceable, archival neurohistological collections and making them available to all scientists in perpetuity, if resources could be obtained from hitherto uninterested agencies of scientific support. © 2011 New York Academy of Sciences.

  13. Regulation of P-glycoprotein expression in brain capillaries in Huntington's disease and its impact on brain availability of antipsychotic agents risperidone and paliperidone.

    Science.gov (United States)

    Kao, Yu-Han; Chern, Yijuang; Yang, Hui-Ting; Chen, Hui-Mei; Lin, Chun-Jung

    2016-08-01

    Huntington's disease (HD) is a neurodegenerative disease marked by an expanded polyglutamine (polyQ) tract on the huntingtin (HTT) protein that may cause transcriptional dysfunction. This study aimed to investigate the regulation and function of P-glycoprotein, an important efflux transporter, in brain capillaries in HD. The results showed that, compared with the littermate controls, R6/2 HD transgenic mice with the human mutant HTT gene had higher levels of P-glycoprotein mRNA and protein and enhanced NF-κB activity in their brain capillaries. Higher P-glycoprotein expression was also observed in the brain capillaries of human HD patients. Consistent with this enhanced P-glycoprotein expression, brain extracellular levels and brain-to-plasma ratios of the antipsychotic agents risperidone and paliperidone were significantly lower in R6/2 mice than in their littermate controls. Exogenous expression of human mutant HTT protein with expanded polyQ (mHTT-109Q) in HEK293T cells enhanced the levels of P-glycoprotein transcripts and NF-κB activity compared with cells expressing normal HTT-25Q. Treatment with the IKK inhibitor, BMS-345541, decreased P-glycoprotein mRNA level in cells transfected with mHTT-109Q or normal HTT-25Q In conclusion, mutant HTT altered the expression of P-glycoprotein through the NF-κB pathway in brain capillaries in HD and markedly affected the availability of P-glycoprotein substrates in the brain.

  14. Conscious and unconscious processing of facial expressions: evidence from two split-brain patients.

    Science.gov (United States)

    Prete, Giulia; D'Ascenzo, Stefania; Laeng, Bruno; Fabri, Mara; Foschi, Nicoletta; Tommasi, Luca

    2015-03-01

    We investigated how the brain's hemispheres process explicit and implicit facial expressions in two 'split-brain' patients (one with a complete and one with a partial anterior resection). Photographs of faces expressing positive, negative or neutral emotions were shown either centrally or bilaterally. The task consisted in judging the friendliness of each person in the photographs. Half of the photograph stimuli were 'hybrid faces', that is an amalgamation of filtered images which contained emotional information only in the low range of spatial frequency, blended to a neutral expression of the same individual in the rest of the spatial frequencies. The other half of the images contained unfiltered faces. With the hybrid faces the patients and a matched control group were more influenced in their social judgements by the emotional expression of the face shown in the left visual field (LVF). When the expressions were shown explicitly, that is without filtering, the control group and the partially callosotomized patient based their judgement on the face shown in the LVF, whereas the complete split-brain patient based his ratings mainly on the face presented in the right visual field. We conclude that the processing of implicit emotions does not require the integrity of callosal fibres and can take place within subcortical routes lateralized in the right hemisphere.

  15. Oligodendrocyte transcription factor 1 mRNA and protein expression in organotypic rat brain slices

    Institute of Scientific and Technical Information of China (English)

    Hong Cui; Lijun Yang; Dezhuang Huang; Wandong Zhang; Weijuan Han; Yanqing Yao; Wenxing Jiang

    2010-01-01

    Numerous studies have confirmed that oligodendrocyte transcription factor 1 (Olig-1) is vital for myelin repair. However, the effects of hypoxia and ischemia on Olig-1 expression remain unknown.In this study, Olig-1 mRNA and protein expressions were analyzed by in situ hybridization and immunohistochemistry, to determine the expression profile of Olig-1 in rat brain slices exposed to hypoxia and ischemia. Brains were obtained from 2-day-old Sprague-Dawley rats, and sections were randomly assigned to control and hypoxia/ischemia groups. Hematoxylin-eosin staining revealed karyorrhexis and karyopyknosis in cells from the hypoxia/ischemia group. Under electron microscopy, mitochondria swelling and neuropil edema were observed in the hypoxia/ischemia group. Olig-1 mRNA and protein expressions were increased at 1 day after hypoxia and ischemia treatment. These results suggest that in situ hybridization and immunohistochemistry could be used simultaneously to detect mRNA and protein expression in brain slices.

  16. Mapping brain response to social stress in rodents with c-fos expression: a review.

    Science.gov (United States)

    Martinez, M; Calvo-Torrent, A; Herbert, J

    2002-02-01

    Social defeat is an important event in the life of many animals, and forms part of the process of social control. Adapting to social defeat is thus an intrinsic part of social "homeostasis", and mal-adaptation may have pathological sequelae. Experimental models of social defeat (e.g. inter-male aggression) have existed for many years. However, very few studies have investigated the changes in brain activity in male animals exposed to the social stress of being defeated by another conspecific male, and in all these studies the expression of the immediate-early gene c-fos has been used as the marker of neuronal activity. In general, the results obtained inform that many areas of the brain, especially those involved in the general stress response, increase their activity when animals are exposed to an acute defeat. However, when animals are defeated repeatedly over many consecutive days, the level of activation of the brain shows different patterns of adaptation depending on the brain areas (varying from complete habituation to persistent activation). Discrepancies between studies may be due to differences in the experimental procedure. On the other hand, further research has to be conducted in order to understand what these changes in the brain activity mean in relation to the other stress responses to social defeat. Furthermore, knowing that the corresponding protein products of many immediate-early genes are transcription factors that can promote or inhibit the expression of target genes, research following this approach is also necessary.

  17. Optimizing brain tumor resection. High-field interventional MR imaging.

    Science.gov (United States)

    Tummala, R P; Chu, R M; Liu, H; Truwit, C L; Hall, W A

    2001-11-01

    High-field strength iMRI guidance is an effective tool for brain tumor resection. Although its use lengthens the average time for a craniotomy, the reward is a more extensive tumor excision compared with conventional neurosurgery without an increased risk to the patient (Table 4). Although intraoperative patient transfer into and out of the magnet is cumbersome, the possibility for complete resection, especially for a low-grade glioma, makes the effort worthwhile. The cost and technical support required for this system presently limits its use to only a few sites worldwide. As with any technology, further refinements will make this system less expensive and more attainable. Practical consideration aside, high-field strength iMRI is presently [table: see text] the most effective tool available for brain tumor resection. Because of its novelty, future studies are necessary to determine if this technology lowers the incidence of and extends the duration to tumor recurrence as the preliminary data in children suggests. These are the ultimate measures of efficacy for any brain tumor treatment. Based on the rapid advancement of technology, will today's high-field strength interventional magnet become tomorrow's low-field system? Very high-field strength designs may improve diagnostic capabilities through higher resolution, but their interventional applications may be hindered by increased sensitivity for clinically insignificant abnormalities and decreased specificity for clinically relevant lesions. As new technology is developed, clinicians must continue to explore and refine the existing high-field strength iMRI to make it cost-effective and widely applicable.

  18. Chronic maternal morphine alters calbindin D-28k expression pattern in postnatal mouse brain.

    Science.gov (United States)

    Mithbaokar, Pratibha; Fiorito, Filomena; Della Morte, Rossella; Maharajan, Veeramani; Costagliola, Anna

    2016-01-01

    The distribution pattern of calbindin (CB)-D28k-expressing neurons results to be altered in several brain regions of chronic morphine exposed adult mice. In this study, the influence of chronic maternal exposure to morphine on the distribution pattern of CB-D28k-expressing neurons in the brain of mouse offspring was investigated. Females of CD-1 mice were daily administered with saline or morphine for 7 days before mating, during the whole gestation period, and until 21 day post-partum. Their offspring were sacrificed on postnatal day 18, and the brains were examined by histology using cresyl violet and by immunohistochemistry using a rabbit polyclonal anti-CB-D28k antibody. Histology revealed no significant differences in the distribution pattern and the number of neurons between the offspring forebrain of the control group of mice and the two groups of mice treated with different doses of morphine. However, immunohistochemical analysis revealed that the number of CB-D28k-immunoreactive neurons remarkably decreased in the cingulate cortex, in the layers II-IV of the parietal cortex and in all regions of the hippocampus, while it increased in the layers V-VI of the parietal cortex and in the subicular region of the offspring brain of morphine treated mice. Overall, our findings demonstrate that maternal exposure to morphine alters the pattern of CB-D28k-expressing neuron pattern in specific regions of murine developing brain, in a layer- and dose-dependent way, thus suggesting that these alterations might represent a mechanism by which morphine modifies the functional aspects of developing brain.

  19. Brain expression of Kv3 subunits during development, adulthood and aging and in a murine model of Alzheimer's disease.

    Science.gov (United States)

    Boda, Enrica; Hoxha, Eriola; Pini, Alessandro; Montarolo, Francesca; Tempia, Filippo

    2012-03-01

    In neurons, voltage-dependent Kv3 potassium channels are essential for the generation of action potentials at high frequency. A dysregulation of the Kv3.1 and Kv3.4 channel subunits has been suggested to contribute to neuronal and glial alterations in Alzheimer's disease, but a quantitative evaluation of these subunits in a mouse model of the pathology is still lacking. We analysed the profile of expression of the four Kv3 subunits by quantitative reverse transcription PCR and Western blot in the whole mouse brain and in dissected brain regions (olfactory bulb, septum, neocortex, hippocampus, brainstem and cerebellum) from 14 days after conception to 18 months after birth. In addition, we measured the levels of Kv3.1 and Kv3.4 messenger RNAs (mRNAs) and proteins in neocortex and hippocampus of APPPS1 mice, a transgenic model of Alzheimer's disease. Although all Kv3 transcripts were significantly expressed in embryonic age in whole brain extracts, only Kv3.1, Kv3.2 and Kv3.4 subunit proteins were present, suggesting a novel role for Kv3 channels at this developmental stage. With the exception of Kv3.4, during postnatal development, Kv3 transcripts and proteins showed a progressive increase in expression and reached an asymptote in adulthood, suggesting that the increase in Kv3 expression during development might contribute to the maturation of the electrical activity of neurons. During aging, Kv3 expression was rather stable. In contrast, in the neocortex of aged APPPS1 mice, Kv3.1 mRNA and protein levels were significantly lower compared to wild type, suggesting that a decrease in Kv3 currents could play a role in the cognitive symptoms of Alzheimer's disease.

  20. Stress-related gene expression in brain and adrenal gland of porcine fetuses and neonates.

    Science.gov (United States)

    Schwerin, Manfred; Kanitz, Ellen; Tuchscherer, Margret; Brüssow, Klaus-Peter; Nürnberg, Gerd; Otten, Winfried

    2005-03-01

    This study was conducted to examine stress-induced effects on gene expression of specific markers for HPA axis and neuronal activity in fetuses and neonatal pigs. Brain, pituitary gland, and adrenal gland were obtained to determine the mRNA levels for corticotropin-releasing hormone (CRH), CRH receptor 1 (CRHR1), pro-opiomelanocortin (POMC), ACTH receptor (MC2R), c-jun and c-fos. The suitability of these molecular markers was determined in neonatal pigs which were maternally deprived for two hours. It was found that maternal deprivation caused significantly higher transcript levels of c-fos and CRH in brain accompanied by a down-regulation of CRHR1 mRNA and an up-regulation of c-jun in the pituitary gland. To determine the effect of elevated maternal cortisol levels on gene expression of these molecular markers in fetuses, pregnant sows were treated with 100 IU ACTH (Synacthen Depot) s.c. every two days between Day 49 and Day 75 of gestation (normal gestation length 114 days). Animals were killed 48 hours after the last ACTH administration and fetuses of each sow were isolated. The ACTH treatment of sows significantly increased mRNA expression of c-fos but not of CRH in the fetal brain, and significantly decreased MC2R mRNA expression in the adrenal gland. However, HPA axis seems not to be fully developed in Day 77-fetuses because fetal pituitary CRHR1 and POMC mRNA expression was low in most of the fetuses. Although the expression of endocrine regulatory factors was partially incomplete in fetuses at the beginning of the third-trimester, ACTH dependent activation of c-fos mRNA in brain indicates a stress-related increase of neuronal activity. Based on these results it is assumed that prenatal stress in pigs may also have effects on the activity of the HPA axis in the offspring.

  1. Brief isoflurane anaesthesia affects differential gene expression, gene ontology and gene networks in rat brain.

    Science.gov (United States)

    Lowes, Damon A; Galley, Helen F; Moura, Alessandro P S; Webster, Nigel R

    2017-01-15

    Much is still unknown about the mechanisms of effects of even brief anaesthesia on the brain and previous studies have simply compared differential expression profiles with and without anaesthesia. We hypothesised that network analysis, in addition to the traditional differential gene expression and ontology analysis, would enable identification of the effects of anaesthesia on interactions between genes. Rats (n=10 per group) were randomised to anaesthesia with isoflurane in oxygen or oxygen only for 15min, and 6h later brains were removed. Differential gene expression and gene ontology analysis of microarray data was performed. Standard clustering techniques and principal component analysis with Bayesian rules were used along with social network analysis methods, to quantitatively model and describe the gene networks. Anaesthesia had marked effects on genes in the brain with differential regulation of 416 probe sets by at least 2 fold. Gene ontology analysis showed 23 genes were functionally related to the anaesthesia and of these, 12 were involved with neurotransmitter release, transport and secretion. Gene network analysis revealed much greater connectivity in genes from brains from anaesthetised rats compared to controls. Other importance measures were also altered after anaesthesia; median [range] closeness centrality (shortest path) was lower in anaesthetized animals (0.07 [0-0.30]) than controls (0.39 [0.30-0.53], pgenes after anaesthesia and suggests future targets for investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effect of Hemin on Brain Alterations and Neuroglobin Expression in Water Immersion Restraint Stressed Rats

    Directory of Open Access Journals (Sweden)

    Merhan Ragy

    2016-01-01

    Full Text Available In the brain, the heme oxygenase (HO system has been reported to be very active and its modulation seems to play a crucial role in the pathophysiology of neurodegenerative disorders. Hemin as HO-1 inducer has been shown to attenuate neuronal injury so the goal of this study was to assess the effect of hemin therapy on the acute stress and how it would modulate neurological outcome. Thirty male albino rats were divided into three groups: control group and stressed group with six-hour water immersion restraint stress (WIRS and stressed group, treated with hemin, in which each rat received a single intraperitoneal injection of hemin at a dose level of 50 mg/kg body weight at 12 hours before exposure to WIRS. Stress hormones, oxidative stress markers, malondialdehyde (MDA, and total antioxidant capacity (TAC were measured and expressions of neuroglobin and S100B mRNA in brain tissue were assayed. Our results revealed that hemin significantly affects brain alterations induced by acute stress and this may be through increased expression of neuroglobin and through antioxidant effect. Hemin decreased blood-brain barrier damage as it significantly decreased the expression of S100B. These results suggest that hemin may be an effective therapy for being neuroprotective against acute stress.

  3. Quantitative and functional interrogation of parent-of-origin allelic expression biases in the brain.

    Science.gov (United States)

    Perez, Julio D; Rubinstein, Nimrod D; Fernandez, Daniel E; Santoro, Stephen W; Needleman, Leigh A; Ho-Shing, Olivia; Choi, John J; Zirlinger, Mariela; Chen, Shau-Kwaun; Liu, Jun S; Dulac, Catherine

    2015-07-03

    The maternal and paternal genomes play different roles in mammalian brains as a result of genomic imprinting, an epigenetic regulation leading to differential expression of the parental alleles of some genes. Here we investigate genomic imprinting in the cerebellum using a newly developed Bayesian statistical model that provides unprecedented transcript-level resolution. We uncover 160 imprinted transcripts, including 41 novel and independently validated imprinted genes. Strikingly, many genes exhibit parentally biased--rather than monoallelic--expression, with different magnitudes according to age, organ, and brain region. Developmental changes in parental bias and overall gene expression are strongly correlated, suggesting combined roles in regulating gene dosage. Finally, brain-specific deletion of the paternal, but not maternal, allele of the paternally-biased Bcl-x, (Bcl2l1) results in loss of specific neuron types, supporting the functional significance of parental biases. These findings reveal the remarkable complexity of genomic imprinting, with important implications for understanding the normal and diseased brain.

  4. Transcriptomic analyses reveal novel genes with sexually dimorphic expression in the zebrafish gonad and brain.

    Directory of Open Access Journals (Sweden)

    Rajini Sreenivasan

    Full Text Available BACKGROUND: Our knowledge on zebrafish reproduction is very limited. We generated a gonad-derived cDNA microarray from zebrafish and used it to analyze large-scale gene expression profiles in adult gonads and other organs. METHODOLOGY/PRINCIPAL FINDINGS: We have identified 116638 gonad-derived zebrafish expressed sequence tags (ESTs, 21% of which were isolated in our lab. Following in silico normalization, we constructed a gonad-derived microarray comprising 6370 unique, full-length cDNAs from differentiating and adult gonads. Labeled targets from adult gonad, brain, kidney and 'rest-of-body' from both sexes were hybridized onto the microarray. Our analyses revealed 1366, 881 and 656 differentially expressed transcripts (34.7% novel that showed highest expression in ovary, testis and both gonads respectively. Hierarchical clustering showed correlation of the two gonadal transcriptomes and their similarities to those of the brains. In addition, we have identified 276 genes showing sexually dimorphic expression both between the brains and between the gonads. By in situ hybridization, we showed that the gonadal transcripts with the strongest array signal intensities were germline-expressed. We found that five members of the GTP-binding septin gene family, from which only one member (septin 4 has previously been implicated in reproduction in mice, were all strongly expressed in the gonads. CONCLUSIONS/SIGNIFICANCE: We have generated a gonad-derived zebrafish cDNA microarray and demonstrated its usefulness in identifying genes with sexually dimorphic co-expression in both the gonads and the brains. We have also provided the first evidence of large-scale differential gene expression between female and male brains of a teleost. Our microarray would be useful for studying gonad development, differentiation and function not only in zebrafish but also in related teleosts via cross-species hybridizations. Since several genes have been shown to play similar

  5. Matrix metalloproteinase-9 expression and blood brain barrier permeability in the rat brain after cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Lifang Lei; Xiaohong Zi; Qiuyun Tu

    2008-01-01

    BACKGROUND: The integrity of the blood brain barrier (BBB) plays an important role in the patho-physiological process of cerebral ischemia/reperfusion injury. It has been recently observed that metalloproteinase-9 (MMP-9) is closely related to cerebral ischemia/reperfusion injuryOBJECTIVE: This study was designed to observe MMP-9 expression in the rat brain after cerebral ischemia/reperfusion injury and to investigate its correlation to BBB permeability.DESIGN, TIME AND SETTING: This study, a randomized controlled animal experiment, was performed at the Institute of Neurobiology, Central South University between September 2005 and March 2006.MATERIALS: Ninety healthy male SD rats, aged 3-4 months, weighing 200-280g, were used in the present study. Rabbit anti-rat MMP-9 polyclonal antibody (Boster, Wuhan, China) and Evans blue (Sigma, USA) were also used.METHODS: All rats were randomly divided into 9 groups with 10 rats in each group: normal control group, sham-operated group, and ischemia for 2 hours followed by reperfusion for 3,6,12 hours, 1,2,4 and 7 days groups. In the ischemia/reperfusion groups, rats were subjected to ischemia/reperfusion injury by suture occlusion of the right middle cerebral artery. In the sham-operated group, rats were merely subjected to vessel dissociation. In the normal control group, rats were not modeled.MAIN OUTCOME MEASURES: BBB permeability was assessed by determining the level of effusion of Evans blue. MMP-9 expression was detected by an immunohistochemical method.RESULTS: All 90 rats were included in the final analysis. BBB permeability alteration was closely correlated to ischemia/reperfusion time. BBB permeability began to increase at ischemia/reperfusion for 3 hours, then it gradually reached a peak level at ischemia/reperfusion for 1 day, and thereafter it gradually decreased. MMP-9 expression began to increase at ischemia/reperfusion for 3 hours, then gradually reached its peak level 2 days after perfusion, and thereafter

  6. Expression of the 5-HT receptors in rat brain during memory consolidation.

    Science.gov (United States)

    Meneses, A; Manuel-Apolinar, L; Rocha, L; Castillo, E; Castillo, C

    2004-07-09

    Serotonin (5-hydroxytryptamine, 5-HT) system displays more than 14 receptors subtypes on brain areas involved in learning and memory processes, and pharmacological manipulation of specific receptors selectively affects memory formation. In order to begin the search of 5-HT receptors expression during memory formation, in this work, we aimed to determine, by autoradiography (using 3H 5-HT as ligand, 2 nM, specific activity 123 Ci/mmol), 5-HT receptors (5-HTR) expression in passive (untrained) and autoshaping trained (3 sessions) adult (3 months) and old (9 months) male rats. Thus, trained adult rats had better retention than old animals. Raphe nuclei of adult and old trained rats expressed less receptors on medial and dorsal, respectively. Hippocampal CA1 area and dentate gyrus of adult trained rats expressed less 5-HTR, while dentate gyrus of old increased them. Basomedial amygdaloid nucleus in old trained rats expressed more 5-HTR; while in the basolateral amygdaloid nucleus they were augmented in both groups. Training decreased or did not change 5-HTR in caudate-putamen of adult or old animals. The above profile of 5-HTR expression is consistent with previous reports, and suggests that memory formation and aging modulates 5-HTR expression in brain areas relevant to memory systems.

  7. The impact of gene expression analysis on evolving views of avian brain organization.

    Science.gov (United States)

    Montiel, Juan F; Molnár, Zoltán

    2013-11-01

    Recent studies have presented data on adult and developing avian brain organization. Jarvis et al. ([2013] J Comp Neurol. 521:3614-3665) identify four pallial and two subpallial gene expression domains and demonstrate that the mesopallium and adjoining divisions of the hyperpallium (hyperpallium intercalatum and hyperpallium densocellulare), have very similar gene expression profiles to each other, distinct from those of the nidopallium, the arcopallium, and the more distant divisions of the hyperpallium (hyperpallium apicale). The study proposes an update of the current nomenclature (Jarvis et al. [2005] Nat Rev Neurosci. 6:151-159). The authors perform densitometric quantifications of the in situ expression of 50 selected genes, use correlations of distances between vectors that represent these gene expression patterns within the 23 avian brain regions of their study, and group them according to similarity in their expression profiles. The generated cluster tree further supports their argument for a new terminology. The authors hypothesize that the mesopallium and adjoining divisions of the hyperpallium have a common developmental origin, and in the accompanying paper (Chen et al. [2013] J Comp Neurol. 521:3666-3701) show that these structures/subdivisions initially form continuous gene expression domains. With subsequent development these domains fold into distinct subdivisions in the dorsal and ventral avian pallium, forming mirror images to each other. Jarvis et al. ([2013] J Comp Neurol. 521:3614-3665) also demonstrate interesting principles of the functional organization of the avian brain by showing that specific sensory stimulation or motor behavior elicits gene expression in functional units perpendicular to the axis of the gene expression reversal and compare their arrangements and cell types with mammalian cortical columns.

  8. Functional expression of choline transporter like-protein 1 (CTL1) and CTL2 in human brain microvascular endothelial cells.

    Science.gov (United States)

    Iwao, Beniko; Yara, Miki; Hara, Naomi; Kawai, Yuiko; Yamanaka, Tsuyoshi; Nishihara, Hiroshi; Inoue, Takeshi; Inazu, Masato

    2016-02-01

    In this study, we examined the molecular and functional characterization of choline transporter in human brain microvascular endothelial cells (hBMECs). Choline uptake into hBMECs was a saturable process that was mediated by a Na(+)-independent, membrane potential and pH-dependent transport system. The cells have two different [(3)H]choline transport systems with Km values of 35.0 ± 4.9 μM and 54.1 ± 8.1 μM, respectively. Choline uptake was inhibited by choline, acetylcholine (ACh) and the choline analog hemicholinium-3 (HC-3). Various organic cations also interacted with the choline transport system. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA were highly expressed, while mRNA for high-affinity choline transporter 1 (CHT1) and organic cation transporters (OCTs) were not expressed in hBMECs. CTL1 and CTL2 proteins were localized to brain microvascular endothelial cells in human brain cortical sections. Both CTL1 and CTL2 proteins were expressed on the plasma membrane and mitochondria. CTL1 and CTL2 proteins are mainly expressed in plasma membrane and mitochondria, respectively. We conclude that choline is mainly transported via an intermediate-affinity choline transport system, CTL1 and CTL2, in hBMECs. These transporters are responsible for the uptake of extracellular choline and organic cations. CTL2 participate in choline transport mainly in mitochondria, and may be the major site for the control of choline oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Physical weight loading induces expression of tryptophan hydroxylase 2 in the brain stem.

    Directory of Open Access Journals (Sweden)

    Joon W Shim

    Full Text Available Sustaining brain serotonin is essential in mental health. Physical activities can attenuate mental problems by enhancing serotonin signaling. However, such activity is not always possible in disabled individuals or patients with dementia. Knee loading, a form of physical activity, has been found to mimic effects of voluntary exercise. Focusing on serotonergic signaling, we addressed a question: Does local mechanical loading to the skeleton elevate expression of tryptophan hydroxylase 2 (tph2 that is a rate-limiting enzyme for brain serotonin? A 5 min knee loading was applied to mice using 1 N force at 5 Hz for 1,500 cycles. A 5-min treadmill running was used as an exercise (positive control, and a 90-min tail suspension was used as a stress (negative control. Expression of tph2 was determined 30 min - 2 h in three brain regions --frontal cortex (FC, ventromedial hypothalamus (VMH, and brain stem (BS. We demonstrated for the first time that knee loading and treadmill exercise upregulated the mRNA level of tph2 in the BS, while tail suspension downregulated it. The protein level of tph2 in the BS was also upregulated by knee loading and downregulated by tail suspension. Furthermore, the downregulation of tph2 mRNA by tail suspension can be partially suppressed by pre-application of knee loading. The expression of tph2 in the FC and VMH was not significantly altered with knee loading. In this study we provided evidence that peripheral mechanical loading can activate central tph2 expression, suggesting that physical cues may mediate tph2-cathalyzed serotonergic signaling in the brain.

  10. Brain targeted PLGA nanocarriers alleviating amyloid-Β expression and preserving basal survivin in degenerating mice model.

    Science.gov (United States)

    Sriramoju, Bhasker; Neerati, Prasad; Kanwar, Rupinder K; Kanwar, Jagat R

    2015-11-01

    The chronic systemic administration of d-Galactose in C57BL/6J mice showed a relatively high oxidative stress, amyloid-β expression and neuronal cell death. Enhanced expression of pyknotic nuclei, caspase-3 and reduced expression of neuronal integrity markers further confirmed the aforesaid insults. However, concomitant treatment with the recombinant protein (SurR9-C84A) and the anti-transferrin receptor antibody conjugated SurR9-C84A (SurR9+TFN) nanocarriers showed a significant improvement in the disease status and neuronal health. The beauty of this study is that the biodegradable Food and Drug Administration (FDA) approved poly(lactic-co-glycolic acid) (PLGA) nanocarriers enhanced the biological half-life and the efficacy of the treatments. The nanocarriers were effective in lowering the amyloid-β expression, enhancing the neuronal integrity markers and maintaining the basal levels of endogenous survivin that is essential for evading the caspase activation and apoptosis. The current study herein reports for the first time that the brain targeted SurR9-C84A nanocarriers alleviated the d-Galactose induced neuronal insults and has potential for future brain targeted nanomedicine application.

  11. Location and expression of neurotrophin-3 and its receptor in the brain of human embryos during early development

    Institute of Scientific and Technical Information of China (English)

    Jian Li; Yongjie Mi; Dajun Ma

    2008-01-01

    BACKGROUND: Cell culture in vitro trials have demonstrated that neurotrophin-3 (NT-3) can enhance the survival of sensory neurons and sympathetic neurons, and can also support embryo-derived motor neurons.This effect is dependent on nerve growth factor on the surface of cells. Understanding the role of NT-3 and its receptor in the early development of human embryonic brains will help to investigate the correlation between early survival of nerve cells and the microenvironment of neural regeneration.OBJECTIVE: To observe the proliferation of cerebral neurons in the development of human embryonic brain, and to investigate the location, expression and distribution of NT-3 and its receptor TrkC during human brain development.DESIGN, TIME AND SETTING: An observation study on cells was performed in the Department of Human Anatomy, Histology and Embryology, Chengdu Medical College in September 2007.MATERIALS: Fifteen specimens of fresh human embryo, aged 6 weeks, were used in this study.METHODS: The proliferation of cerebral neurons was detected using proliferating cell nuclear antigen, and the immunocytochemistry ABC technique was applied to observe the location, expression and distribution of NT-3 and its receptor TrkC in the brain of the human embryo.MAIN OUTCOME MEASURES: Location, expression and distribution of NT-3 and its receptor in the brain of the human embryo.RESULTS: In the early period (aged 6 weeks) of human embryonic development, proliferating cell nuclear antigen-positive reactive substances were mainly observed in the nucleus of the forebrain ventricular zone and subventricular zone, and the intensity was stronger in the subventricular zone than the forebrain ventricle.NT-3 positive reactive substance was mainly distributed in the cytoblastema of the forebrain neuroepithelial layer and nerve cell process, while TrkC was mainly distributed in the cell membrane of the forebrain ventricular zone and subventricular zone. During embryonic development, NT-3 and

  12. Diminished hippocalcin expression in Huntington's disease brain does not account for increased striatal neuron vulnerability as assessed in primary neurons.

    Science.gov (United States)

    Rudinskiy, Nikita; Kaneko, Yoshio A; Beesen, Ayshe Ana; Gokce, Ozgun; Régulier, Etienne; Déglon, Nicole; Luthi-Carter, Ruth

    2009-10-01

    Hippocalcin is a neuronal calcium sensor protein previously implicated in regulating neuronal viability and plasticity. Hippocalcin is the most highly expressed neuronal calcium sensor in the medium spiny striatal output neurons that degenerate selectively in Huntington's disease (HD). We have previously shown that decreased hippocalcin expression occurs in parallel with the onset of disease phenotype in mouse models of HD. Here we show by in situ hybridization histochemistry that hippocalcin RNA is also diminished by 63% in human HD brain. These findings lead us to hypothesize that diminished hippocalcin expression might contribute to striatal neurodegeneration in HD. We tested this hypothesis by assessing whether restoration of hippocalcin expression would decrease striatal neurodegeneration in cellular models of HD comprising primary striatal neurons exposed to mutant huntingtin, the mitochondrial toxin 3-nitropropionic acid or an excitotoxic concentration of glutamate. Counter to our hypothesis, hippocalcin expression did not improve the survival of striatal neurons under these conditions. Likewise, expression of hippocalcin together with interactor proteins including the neuronal apoptosis inhibitory protein did not increase the survival of striatal cells in cellular models of HD. These results indicate that diminished hippocalcin expression does not contribute to HD-related neurodegeneration.

  13. Neuron-specific expression of p48 Ebp1 during murine brain development and its contribution to CNS axon regeneration.

    Science.gov (United States)

    Ko, Hyo Rim; Hwang, Inwoo; Ahn, So Yoon; Chang, Yun Sil; Park, Won Soon; Ahn, Jee-Yin

    2017-03-01

    P48 Ebp1 is expressed in rapidly proliferating cells such as cancer cells and accelerates cell growth and survival. However, its expression pattern and role in central nervous system development have not been studied. Here, we demonstrated the spatiotemporal expression pattern of p48 Ebp1 during embryonic development and the postnatal period. During embryonic development, p48 Ebp1 was highly expressed in the brain. Expression gradually decreased after birth but was still more abundant than p42 expression after birth. Strikingly, we found that p48 Ebp1 was expressed in a cell type specific manner in neurons but not astrocytes. Moreover, p48 Ebp1 physically interacted with beta tubulin but not alpha tubulin. This fits with its accumulation in distal microtubule growth cone regions. Furthermore, in injured hippocampal slices, p48 Ebp1 introduction promoted axon regeneration. Thus, we speculate that p48 Ebp1 might contribute to microtubule dynamics acting as an MAP and promotes CNS axon regeneration. [BMB Reports 2017; 50(3): 126-131].

  14. Convergent evolution of complex brains and high intelligence.

    Science.gov (United States)

    Roth, Gerhard

    2015-12-19

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates.

  15. Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats

    OpenAIRE

    2011-01-01

    Abstract Background Traumatic brain injury (TBI) evokes a systemic immune response including leukocyte migration into the brain and release of pro-inflammatory cytokines; however, the mechanisms underlying TBI pathogenesis and protection are poorly understood. Due to the high incidence of head trauma in the sports field, battlefield and automobile accidents identification of the molecular signals involved in TBI progression is critical for the development of novel therapeutics. Methods In thi...

  16. Abnormal brain processing of pain in migraine without aura: a high-density EEG brain mapping study

    DEFF Research Database (Denmark)

    Egsgaard, L L; Jensen, R; Buchgreitz, L

    2010-01-01

    In the present study we used high-density EEG brain mapping to investigate spatio-temporal aspects of brain activity in response to experimentally induced muscle pain in 17 patients with migraine without aura and 15 healthy controls. Painful electrical stimuli were applied to the trapezius muscle...... to the tonic muscle pain condition (z = 29 mm vs. z =¿-13 mm, P aura....

  17. Gene expression of ecdysteroid-regulated gene E74 of the honeybee in ovary and brain.

    Science.gov (United States)

    Paul, R K; Takeuchi, H; Matsuo, Y; Kubo, T

    2005-01-01

    To facilitate studies of hormonal control in the honeybee (Apis mellifera L.), a cDNA for a honeybee homologue of the ecdysteroid-regulated gene E74 (AmE74) was isolated and its expression was analysed. Northern blot analysis indicated strong expression in the adult queen abdomen, and no significant expression in the adult drone and worker abdomens. In situ hybridization demonstrated that this gene was expressed selectively in the ovary and gut in the queen abdomen. Furthermore, this gene was also expressed selectively in subsets of mushroom body interneurones in the brain of the adult worker bees. These findings suggest that AmE74 is involved in neural function as well as in reproduction in adult honeybees.

  18. Vocal area-related expression of the androgen receptor in the budgerigar (Melopsittacus undulatus) brain.

    Science.gov (United States)

    Matsunaga, Eiji; Okanoya, Kazuo

    2008-05-01

    The androgen receptor is a steroid hormone receptor widely expressed in the vocal control nuclei in songbirds. Here, we analysed androgen receptor expression in the brains of juvenile and adult budgerigars. With a species-specific probe for budgerigar androgen receptor mRNA, we found that the androgen receptor was expressed in the vocal areas, such as the central nucleus of the lateral nidopallium, the anterior arcopallium, the oval nucleus of the mesopallium, the oval nucleus of the anterior nidopallium and the tracheosyringeal hypoglossal nucleus. With the present data, together with previous reports, it turned out that the androgen receptor expression in telencephalic vocal control areas is similar amongst three groups of vocal learners--songbirds, hummingbirds and parrots, suggesting the possibility that the androgen receptor might play a role in vocal development and that the molecular mechanism regulating the androgen receptor expression in the vocal areas might be important in the evolution of vocal learning.

  19. Regional expression of aquaporin 1, 4, and 9 in the brain during pregnancy.

    Science.gov (United States)

    Wiegman, Marchien J; Bullinger, Lisa V; Kohlmeyer, Meghan M; Hunter, Timothy C; Cipolla, Marilyn J

    2008-05-01

    Pregnancy is a state of physiologic adaptation, with significant changes in cardiovascular, renal, and hemodynamic systems. Aquaporins (AQPs) may play a role in facilitating these changes. While AQP expression has been assessed in several organs during pregnancy, little is known about its expression in the brain during pregnancy. Therefore, this study assesses the regional expression of AQP1, 4, and 9 during pregnancy and the postpartum period using real-time quantitative polymerase chain reaction. The authors show that AQP1, 4, and 9 are expressed in the anterior and posterior cerebrum, cerebellum, and brainstem of nonpregnant, midpregnant, late pregnant, and postpartum rats. The regional distribution pattern of AQP4 and 9 remained similar during gestation, whereas this pattern changed for AQP1. The expression levels of AQP1, 4, and 9 in the brainstem did not change with gestation, whereas changes were found in the anterior cerebrum for AQP4 and in the posterior cerebrum and cerebellum for all AQPs.

  20. Dietary intake alters behavioral recovery and gene expression profiles in the brain of juvenile rats that have experienced a concussion.

    Science.gov (United States)

    Mychasiuk, Richelle; Hehar, Harleen; Ma, Irene; Esser, Michael J

    2015-01-01

    Concussion and mild traumatic brain injury (mTBI) research has made minimal progress diagnosing who will suffer from lingering symptomology or generating effective treatment strategies. Research demonstrates that dietary intake affects many biological systems including brain and neurological health. This study determined if exposure to a high fat diet (HFD) or caloric restriction (CR) altered post-concussion susceptibility or resiliency using a rodent model of pediatric concussion. Rats were maintained on HFD, CR, or standard diet (STD) throughout life (including the prenatal period and weaning). At postnatal day 30, male and female rats experienced a concussion or a sham injury which was followed by 17 days of testing. Prefrontal cortex and hippocampus tissue was collected for molecular profiling. Gene expression changes in BDNF, CREB, DNMT1, FGF-2, IGF1, LEP, PGC-1α, SIRT1, Tau, and TERT were analyzed with respect to injury and diet. Analysis of telomere length (TL) using peripheral skin cells and brain tissue found that TL in skin significantly correlated with TL in brain tissue and TL was affected by dietary intake and injury status. With respect to mTBI outcomes, diet was correlated with recovery as animals on the HFD often displayed poorer performance than animals on the CR diet. Molecular analysis demonstrated that diet induced epigenetic changes that can be associated with differences in individual predisposition and resiliency to post-concussion syndrome.

  1. Expression weighted cell type enrichments reveal genetic and cellular nature of major brain disorders

    Directory of Open Access Journals (Sweden)

    Nathan Gerald Skene

    2016-01-01

    Full Text Available The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer’s disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer’s and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesised that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer’s disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models.

  2. Brain stem global gene expression profiles in human spina bifida embryos

    Institute of Scientific and Technical Information of China (English)

    Hong Zhao; Xiang Li; Wan-I Lie; Quanren He; Ting Zhang; Xiaoying Zheng; Ran Zhou; Jun Xie

    2011-01-01

    Environmental and genetic factors influence the occurrence of neural tube defects, such as spina bifida.Specific disease expression patterns will help to elucidate the pathogenesis of disease.However, results obtained from animal models, which often exhibit organism specificity, do not fully explain the mechanisms of human spina bifida onset.In the present study, three embryos with a gestational age of approximately 17 weeks and a confirmed diagnosis of spina bifida, as well as 3 age-matched normal embryos, were obtained from abortions.Fetal brain stem tissues were dissected for RNA isolation, and microarray analyses were conducted to examine profiles of gene expression in brain stems of spina bifida and normal embryos using Affymetrix HG-U1 33A 2.0 GeneChip arrays.Of the 14 500 gene transcripts examined, a total of 182 genes exhibited at least 2.5-fold change in expression, including 140 upregulated and 42 downregulated genes.These genes were placed into 19 main functional categories according to the Gene Ontology Consortium database for biological functions.Of the 182 altered genes, approximately 50% were involved in cellular apoptosis, growth, adhesion, cell cycle, stress, DNA replication and repair, signal transduction, nervous system development, oxidoreduction, immune responses, and regulation of gene transcription.Gene expression in multiple biological pathways was altered in the brain stem of human spina bifida embryos.

  3. Expression profiles of metastatic brain tumor from lung adenocarcinomas on cDNA microarray.

    Science.gov (United States)

    Kikuchi, Takefumi; Daigo, Yataro; Ishikawa, Nobuhisa; Katagiri, Toyomasa; Tsunoda, Tatsuhiko; Yoshida, Seiichi; Nakamura, Yusuke

    2006-04-01

    Distant metastasis is one of the crucial parameters determining the type of treatment and prognosis of patients. Previous studies discovered important factors involved in multiple steps of metastasis, the precise mechanisms of metastasis still remain to be clarified. To identify genes associated with this complicated biological feature of cancer, we analyzed expression profiles of 16 metastatic brain tumors derived from primary lung adenocarcinoma (ADC) using cDNA microarray representing 23,040 genes. We applied bioinformatic algorithm to compare the expression data of these 16 brain metastatic loci with those of 37 primary NSCLCs including 22 ADCs, and found that metastatic tumor cells has very different characteristics of gene expression patterns from primary ones. Two hundred and forty-four genes that showed significantly different expression levels between the two groups included plasma membrane bounding proteins, cellular antigens, and cytoskeletal proteins that might play important roles in altering cell-cell communication, attachment, and cell motility, and enhance the metastatic ability of cancer cells. Our results provide valuable information for development of predictive markers as well as novel therapeutic target molecules for metastatic brain tumor of ADC of the lung.

  4. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    Science.gov (United States)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P hypertensive chickens, superoxide dismutase activity was decreased (forebrain, midbrain, and hindbrain), while catalase activity was increased (forebrain and midbrain) ( P hypertensive chickens. Probably, these situations in the oxidant and antioxidant status of the brain especially hindbrain may change its function at cardiovascular center and sympathetic nervous system to exacerbate pulmonary hypertension.

  5. Sample matching by inferred agonal stress in gene expression analyses of the brain

    Directory of Open Access Journals (Sweden)

    Bunney William E

    2007-09-01

    Full Text Available Abstract Background Gene expression patterns in the brain are strongly influenced by the severity and duration of physiological stress at the time of death. This agonal effect, if not well controlled, can lead to spurious findings and diminished statistical power in case-control comparisons. While some recent studies match samples by tissue pH and clinically recorded agonal conditions, we found that these indicators were sometimes at odds with observed stress-related gene expression patterns, and that matching by these criteria still sometimes results in identifying case-control differences that are primarily driven by residual agonal effects. This problem is analogous to the one encountered in genetic association studies, where self-reported race and ethnicity are often imprecise proxies for an individual's actual genetic ancestry. Results We developed an Agonal Stress Rating (ASR system that evaluates each sample's degree of stress based on gene expression data, and used ASRs in post hoc sample matching or covariate analysis. While gene expression patterns are generally correlated across different brain regions, we found strong region-region differences in empirical ASRs in many subjects that likely reflect inter-individual variabilities in local structure or function, resulting in region-specific vulnerability to agonal stress. Conclusion Variation of agonal stress across different brain regions differs between individuals, revealing a new level of complexity for gene expression studies of brain tissues. The Agonal Stress Ratings quantitatively assess each sample's extent of regulatory response to agonal stress, and allow a strong control of this important confounder.

  6. Molecular cloning of partial cDNAs for rat DNA topoisomerase II isoforms and their differential expression in brain development.

    Science.gov (United States)

    Tsutsui, K; Tsutsui, K; Okada, S; Watanabe, M; Shohmori, T; Seki, S; Inoue, Y

    1993-09-05

    cDNA segments for DNA topoisomerase II were amplified from rat brain RNA after reverse transcription by the polymerase chain reaction, using degenerate oligonucleotide primers deduced from the conserved regions of topoisomerase II of higher eukaryotes. The cDNA product from a successful amplification was homogeneous in length but heterogeneous in sequence. Restriction mapping of the cloned cDNA fragments revealed that they consisted of two distinct sequence groups. DNA sequencing of representative clones from each group, designated A and B, showed that they are highly homologous to cDNAs of human topoisomerase II isoforms, alpha and beta, respectively. Northern blot analysis indicated that the transcript level for rat topoisomerase II alpha was high in embryonic brain and in the cerebellum of 2-day newborns, followed by rapid decrease to a undetectable level at 4 weeks after birth. In contrast, rat topoisomerase II beta transcript was present throughout the embryonic and postnatal stages. In the developing cerebellum, cells expressing topoisomerase II alpha were confirmed exclusively to the outer mitotic zone of the external granular layer, whereas the transcript of topoisomerase II beta was detected over the entire cortical region. These results clearly indicate that the isoform alpha is expressed only in proliferating cells. The differential expression of topoisomerase II isozymes was also observed among developed tissues. Therefore, the isozymes are most likely to be involved in the following different physiological processes: topoisomerase II alpha in cell proliferation, and topoisomerase II beta in some processes unrelated to cell proliferation.

  7. Seasonal changes and sexual dimorphism in gene expression of StAR protein, steroidogenic enzymes and sex hormone receptors in the frog brain.

    Science.gov (United States)

    Santillo, Alessandra; Falvo, Sara; Di Fiore, Maria Maddalena; Chieffi Baccari, Gabriella

    2016-12-24

    The brain of amphibians contains all the key enzymes of steroidogenesis and has a high steroidogenic activity. In seasonally-breeding amphibian species brain steroid levels fluctuate synchronously with the reproductive cycle. Here we report a study of gene expression of StAR protein, key steroidogenic enzymes and sex hormone receptors in the telencephalon (T) and diencephalon-mesencephalon (D-M) of male and female reproductive and post-reproductive Pelophylax esculentus, a seasonally breeding anuran amphibian. Significant differences in gene expression were observed between (a) the reproductive and post-reproductive phase, (b) the two brain regions and (c) male and female frogs. During the reproductive phase, star gene expression increased in the male (both T and D-M) but not in the female brain. Seasonal fluctuations in expression levels of hsd3b1, hsd17b1, srd5a1 and cyp19a1 genes for neurosteroidogenic enzymes occurred in D-M region of both sexes, with the higher levels in reproductive period. Moreover, the D-M region generally showed higher levels of gene expression than the T region in both sexes. Gene expression was higher in females than males for most genes, suggesting higher neurosteroid production in female brain. Seasonal and sex-linked changes were also observed in gene expression for androgen (ar) and estrogen (esr1, esr2) receptors, with the males showing the highest ar levels in reproductive phase and the highest esr1 and esr2 levels in post-reproductive phase; in contrast, females showed the maximum expression for all three genes in reproductive phase. The results are the first evidence for seasonal changes and sexual dimorphism of gene expression of the neurosteroidogenic pathway in amphibians.

  8. RDX induces aberrant expression of microRNAs in mouse brain and liver.

    Science.gov (United States)

    Zhang, Baohong; Pan, Xiaoping

    2009-02-01

    Although microRNAs (miRNAs) have been found to play an important role in many biological and metabolic processes, their functions in animal response to environmental toxicant exposure are largely unknown. We used hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a common environmental contaminant, as a toxicant stressor to investigate toxicant-induced changes in miRNA expression in B6C3F1 mice and the potential mechanism of RDX-induced toxic action. B6C3F1 mice were fed diets with or without 5 mg/kg RDX for 28 days. After the feeding trials, we isolated RNAs from both brain and liver tissues and analyzed the expression profiles of 567 known mouse miRNAs using microarray and quantitative real-time polymerase chain reaction technologies. RDX exposure induced significant changes in miRNA expression profiles. A total of 113 miRNAs, belonging to 75 families, showed significantly altered expression patterns after RDX exposure. Of the 113 miRNAs, 10 were significantly up-regulated and 3 were significantly down-regulated (p RDX exposure. Specifically, expression of seven miRNAs was up-regulated in the brain but down-regulated in the liver or up-regulated in the liver but down-regulated in the brain (p < 0.01). Many aberrantly expressed miRNAs were related to various cancers, toxicant-metabolizing enzymes, and neurotoxicity. We found a significant up-regulation of oncogenic miRNAs and a significant down-regulation of tumor-suppressing miRNAs, which included let-7, miR-17-92, miR-10b, miR-15, miR-16, miR-26, and miR-181. Environmental toxicant exposure alters the expression of a suite of miRNAs.

  9. Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.

    Science.gov (United States)

    Smith, Maren L; Lopez, Marcelo F; Archer, Kellie J; Wolen, Aaron R; Becker, Howard C; Miles, Michael F

    2016-01-01

    Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal

  10. Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.

    Directory of Open Access Journals (Sweden)

    Maren L Smith

    Full Text Available Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD. Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC. In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a

  11. Expression of Zinc Finger Protein 804A (ZNF804A) in the brain

    DEFF Research Database (Denmark)

    Benedikz, Eirikur

    to further scrutiny. Recently ZNF804A was the first gene to achieve genome-wide significance for psychosis and several genome-wide association studies have since confirmed an association between schizophrenia and ZNF804A. The function of ZNF804A and its role in the disease are unknown. Interestingly...... the schizophrenia susceptibility genotype of ZNF804A is associated with altered connectivity in the dorsolateral prefrontal cortex, the hippocampus, and the amygdala. Altered connectivity within and between these brain regions has been associated with schizophrenia. In this study we have analyzed the mRNA levels...... of ZNF804A in different brain regions and at different ages in rats using qPCR. Our results show that expression of ZNF804A is developmentally regulated and increases significantly in the brain of embryonic day 18 rats (the developmental equivalent of a 9 week old human fetus). In cortex and cerebellum...

  12. Expression of the Murine Duchenne Muscular Dystrophy Gene in Muscle and Brain

    Science.gov (United States)

    Chamberlain, Jeffrey S.; Pearlman, Joel A.; Muzny, Donna M.; Gibbs, Richard A.; Ranier, Joel E.; Reeves, Alice A.; Caskey, C. Thomas

    1988-03-01

    Complementary DNA clones were isolated that represent the 5' terminal 2.5 kilobases of the murine Duchenne muscular dystrophy (Dmd) messenger RNA (mRNA). Mouse Dmd mRNA was detectable in skeletal and cardiac muscle and at a level approximately 90 percent lower in brain. Dmd mRNA is also present, but at much lower than normal levels, in both the muscle and brain of three different strains of dystrophic mdx mice. The identification of Dmd mRNA in brain raises the possibility of a relation between human Duchenne muscular dystrophy (DMD) gene expression and the mental retardation found in some DMD males. These results also provide evidence that the mdx mutations are allelic variants of mouse Dmd gene mutations.

  13. TLR4, ATF-3 and IL8 inflammation mediator expression correlates with seizure frequency in human epileptic brain tissue.

    Science.gov (United States)

    Pernhorst, Katharina; Herms, Stefan; Hoffmann, Per; Cichon, Sven; Schulz, Herbert; Sander, Thomas; Schoch, Susanne; Becker, Albert J; Grote, Alexander

    2013-10-01

    Data from animal models has nicely shown that inflammatory processes in the central nervous system (CNS) can modulate seizure frequency. However, a potential relationship between the modulation of seizure frequency and gene expression of key inflammatory factors in human epileptic tissue is still unresolved. Brain tissue from pharmacoresistant patients with mesial temporal lobe epilepsy (mTLE) provides a unique prerequisite for clinico-neuropathological correlations. Here, we have concentrated on gene expression of the human key inflammatory mediators, TLR4, ATF-3 and IL8, in correlation to seizure frequency and additional clinical parameters in human epileptic brain tissue of pharmacoresistant mTLE patients. Furthermore, we characterized the cell types expressing the respective proteins in epileptic hippocampi. Total RNAs were isolated from n=26 hippocampi of pharmacoresistant mTLE patients using AllPrep DNA/RNA Mini Kit. cRNA was used for hybridization on Human HT-12 v3 Expression BeadChips with Illumina Direct Hybridization Assay Kit and resulting gene expression data was normalized based on the Illumina BeadStudio software suite by means of quantile normalization with background subtraction. Corresponding human hippocampal sections for immunohistochemistry were probed with antibodies against TLR4, ATF-3, IL8 and glial fibrillary acidic protein (GFAP), neuronal nuclear protein (NeuN) and the microglial marker HLA-DR. We observed abundant TLR4 gene expression to relate to seizure frequency per month. For ATF-3, we found an inverse correlation of expression to seizure frequency. Lower expression of IL8 was significantly associated with high seizure frequency. Further, we detected TLR4 expression in neurons and GFAP-positive astrocytes of pharmacoresistant mTLE patients. Only neurons of human epileptic hippocampi express ATF-3. IL8 was expressed in microglia and reactive astrocytes. Our results suggest a differential correlation of key inflammatory factor

  14. Significance of High-frequency Electrical Brain Activity.

    Science.gov (United States)

    Kobayashi, Katsuhiro; Akiyama, Tomoyuki; Agari, Takashi; Sasaki, Tatsuya; Shibata, Takashi; Hanaoka, Yoshiyuki; Akiyama, Mari; Endoh, Fumika; Oka, Makio; Date, Isao

    2017-06-01

     Electroencephalogram (EEG) data include broadband electrical brain activity ranging from infra-slow bands (frequency bands (e.g., the approx. 10 Hz alpha rhythm) to high-frequency bands of up to 500 Hz. High-frequency oscillations (HFOs) including ripple and fast ripple oscillations (80-200 Hz and>200 / 250 Hz, respectively) are particularly of note due to their very close relationship to epileptogenicity, with the possibility that they could function as a surrogate biomarker of epileptogenicity. In contrast, physiological high-frequency activity plays an important role in higher brain functions, and the differentiation between pathological / epileptic and physiological HFOs is a critical issue, especially in epilepsy surgery. HFOs were initially recorded with intracranial electrodes in patients with intractable epilepsy as part of a long-term invasive seizure monitoring study. However, fast oscillations (FOs) in the ripple and gamma bands (40-80 Hz) are now noninvasively detected by scalp EEG and magnetoencephalography, and thus the scope of studies on HFOs /FOs is rapidly expanding.

  15. RNA expression profiling in brains of familial hemiplegic migraine type 1 knock-in mice.

    Science.gov (United States)

    de Vries, Boukje; Eising, Else; Broos, Ludo A M; Koelewijn, Stephany C; Todorov, Boyan; Frants, Rune R; Boer, Judith M; Ferrari, Michel D; Hoen, Peter A C 't; van den Maagdenberg, Arn M J M

    2014-03-01

    Various CACNA1A missense mutations cause familial hemiplegic migraine type 1 (FHM1), a rare monogenic subtype of migraine with aura. FHM1 mutation R192Q is associated with pure hemiplegic migraine, whereas the S218L mutation causes hemiplegic migraine, cerebellar ataxia, seizures, and mild head trauma-induced brain edema. Transgenic knock-in (KI) migraine mouse models were generated that carried either the FHM1 R192Q or the S218L mutation and were shown to exhibit increased CaV2.1 channel activity. Here we investigated their cerebellar and caudal cortical transcriptome. Caudal cortical and cerebellar RNA expression profiles from mutant and wild-type mice were studied using microarrays. Respective brain regions were selected based on their relevance to migraine aura and ataxia. Relevant expression changes were further investigated at RNA and protein level by quantitative polymerase chain reaction (qPCR) and/or immunohistochemistry, respectively. Expression differences in the cerebellum were most pronounced in S218L mice. Particularly, tyrosine hydroxylase, a marker of delayed cerebellar maturation, appeared strongly upregulated in S218L cerebella. In contrast, only minimal expression differences were observed in the caudal cortex of either mutant mice strain. Despite pronounced consequences of migraine gene mutations at the neurobiological level, changes in cortical RNA expression in FHM1 migraine mice compared to wild-type are modest. In contrast, pronounced RNA expression changes are seen in the cerebellum of S218L mice and may explain their cerebellar ataxia phenotype.

  16. Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes.

    Directory of Open Access Journals (Sweden)

    Lívia Maria Moda

    Full Text Available The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3 through fifth (L5 larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F, two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S. Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot, which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1 and fasciculation (GlcAT-P, fax, and shot. Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and

  17. Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes.

    Science.gov (United States)

    Moda, Lívia Maria; Vieira, Joseana; Guimarães Freire, Anna Cláudia; Bonatti, Vanessa; Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Simões, Zilá Luz Paulino

    2013-01-01

    The differential feeding regimes experienced by the queen and worker larvae of the honeybee Apis mellifera shape a complex endocrine response cascade that ultimately gives rise to differences in brain morphologies. Brain development analyzed at the morphological level from the third (L3) through fifth (L5) larval instars revealed an asynchrony between queens and workers. In the feeding phase of the last larval instar (L5F), two well-formed structures, pedunculi and calyces, are identifiable in the mushroom bodies of queens, both of which are not present in workers until a later phase (spinning phase, L5S). Genome-wide expression analyses and normalized transcript expression experiments monitoring specific genes revealed that this differential brain development starts earlier, during L3. Analyzing brains from L3 through L5S1 larvae, we identified 21 genes with caste-specific transcription patterns (e.g., APC-4, GlcAT-P, fax, kr-h1 and shot), which encode proteins that are potentially involved in the development of brain tissues through controlling the cell proliferation rate (APC4, kr-h1) and fasciculation (GlcAT-P, fax, and shot). Shot, whose expression is known to be required for axon extension and cell proliferation, was found to be transcribed at significantly higher levels in L4 queens compared with worker larvae. Moreover, the protein encoded by this gene was immunolocalized to the cytoplasm of cells near the antennal lobe neuropiles and proximal to the Kenyon cells in the brains of L4 queens. In conclusion, during the larval period, the brains of queens are larger and develop more rapidly than workers' brains, which represents a developmental heterochrony reflecting the effect of the differential feeding regime of the two castes on nervous system development. Furthermore, this differential development is characterized by caste-specific transcriptional profiles of a set of genes, thus pointing to a link between differential nutrition and differential

  18. Environmental enrichment attenuates cognitive deficits, but does not alter neurotrophin gene expression in the hippocampus following lateral fluid percussion brain injury.

    Science.gov (United States)

    Hicks, R R; Zhang, L; Atkinson, A; Stevenon, M; Veneracion, M; Seroogy, K B

    2002-01-01

    Environmental enrichment attenuates neurological deficits associated with experimental brain injury. The molecular events that mediate these environmentally induced improvements in function after injury are largely unknown, but neurotrophins have been hypothesized to be a neural substrate because of their role in cell survival and neural plasticity. Furthermore, exposure to complex environments in normal animals increases neurotrophin gene expression. However, following an ischemic injury, environmental enrichment decreases neurotrophin mRNA levels. Whether these contrasting findings are attributable to differences between injured and uninjured animals or are dependent upon the specific type of brain injury has not been determined. We examined the effects of 14 days of environmental enrichment following a lateral fluid percussion brain injury on behavior and gene expression of brain-derived neurotrophic factor, its high-affinity receptor, TrkB, and neurotrophin-3 in the rat hippocampus. Environmental enrichment attenuated learning deficits in the injured animals, but neither the injury nor housing conditions influenced neurotrophin/receptor mRNA levels. From these data we suggest that following brain trauma, improvements in learning associated with environmental enrichment are not mediated by alterations in brain-derived neurotrophic factor, TrkB or neurotrophin-3 gene expression.

  19. Maternal zinc deficiency impairs brain nestin expression in prenatal and postnatal mice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Effects of maternal dietary zinc deficiency on prenatal and postnatal brain development were investigated in ICR strain mice.From d 1 of pregnancy(E0)until postnatal d 20(P20),maternal mice were fed experimental diets that contained 1 mg Zn/kg/day(severe zinc deficient,SZD),5 mg Zn/kg/day(marginal zinc deficient,MZD),30 mg Zn/kg/day(zinc adequately supplied,ZA)or 100 mg Zn/kg/day(zinc supplemented,ZS and pair-fed,PF).Brains of offspring from these dietary groups were examined at various developmental stages for expression of nestin,an intermediate filament protein found in neural stem cells and young neurons,Immunocytochemistry showed nestin expression in neural tube 10.5 d post citrus(dpc)as well as in the cerebral cortex and neural tube from 10.5 dpc to postnatal d 10(P10).Nestin immunoreactivities in both brain and neural tube of those zinc-supplemented control groups(ZA,ZS,PF)were stronger than those in zinc-deficient groups(SZD and MZD).Western blot analysis confirmed that nestin levels in pooled brain extracts from each of the zinc-supplemented groups(ZA,ZS,PF)were much higher than those from the zinc-deficient groups(SZD and MZD)from 10.5 dpc to P10.Immunostaining and Western blots showed no detectable nestin in any of the experimental and control group brains after P20.These observations of an association between maternal zinc deficiency and decreased nestin protein levels in brains of offspring suggest that zinc deficiency suppresses development of neural stem cells,an effect which may lead to neuroanatomical and behavioral abnormalities in adults.

  20. Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees

    Directory of Open Access Journals (Sweden)

    Robinson Gene E

    2007-06-01

    Full Text Available Abstract Background Honey bees are known for several striking social behaviors, including a complex pattern of behavioral maturation that gives rise to an age-related colony division of labor and a symbolic dance language, by which successful foragers communicate the location of attractive food sources to their nestmates. Our understanding of honey bees is mostly based on studies of the Western honey bee, Apis mellifera, even though there are 9–10 other members of genus Apis, showing interesting variations in social behavior relative to A. mellifera. To facilitate future in-depth genomic and molecular level comparisons of behavior across the genus, we performed a microarray analysis of brain gene expression for A. mellifera and three key species found in Asia, A. cerana, A. florea and A. dorsata. Results For each species we compared brain gene expression patterns between foragers and adult one-day-old bees on an A. mellifera cDNA microarray and calculated within-species gene expression ratios to facilitate cross-species analysis. The number of cDNA spots showing hybridization fluorescence intensities above the experimental threshold was reduced by an average of 16% in the Asian species compared to A. mellifera, but an average of 71% of genes on the microarray were available for analysis. Brain gene expression profiles between foragers and one-day-olds showed differences that are consistent with a previous study on A. mellifera and were comparable across species. Although 1772 genes showed significant differences in expression between foragers and one-day-olds, only 218 genes showed differences in forager/one-day-old expression between species (p Conclusion We conclude that the A. mellifera cDNA microarray can be used effectively for cross-species comparisons within the genus. Our results indicate that there is a widespread conservation of the molecular processes in the honey bee brain underlying behavioral maturation. Species differences in

  1. Expression patterns of the Drosophila neuropeptide CCHamide-2 and its receptor may suggest hormonal signaling from the gut to the brain.

    Directory of Open Access Journals (Sweden)

    Shizhong Li

    Full Text Available The insect neuropeptides CCHamide-1 and -2 are recently discovered peptides that probably occur in all arthropods. Here, we used immunocytochemistry, in situ hybridization, and quantitative PCR (qPCR, to localize the two peptides in the fruitfly Drosophila melanogaster. We found that CCHamide-1 and -2 were localized in endocrine cells of the midgut of larvae and adult flies. These endocrine cells had the appearance of sensory cells, projecting processes close to or into the gut lumen. In addition, CCHamide-2 was also localized in about forty neurons in the brain hemispheres and ventral nerve cord of larvae. Using qPCR we found high expression of the CCHamide-2 gene in the larval gut and very low expression of its receptor gene, while in the larval brain we found low expression of CCHamide-2 and very high expression of its receptor. These expression patterns suggest the following model: Endocrine CCHamide-2 cells in the gut sense the quality of food components in the gut lumen and transmit this information to the brain by releasing CCHamide-2 into the circulation; subsequently, after binding to its brain receptors, CCHamides-2 induces an altered feeding behavior in the animal and possibly other homeostatic adaptations.

  2. Cloning, high-level expression, purification and characterization of a ...

    African Journals Online (AJOL)

    Cloning, high-level expression, purification and characterization of a staphylokinase variant, SakøC, ... African Journal of Biotechnology ... Hence in this study, we reported the cloning, high-level expression, purification and characterization of ...

  3. Action of the pyrethroid insecticide cypermethrin on rat brain IIa sodium channels expressed in xenopus oocytes.

    Science.gov (United States)

    Smith, T J; Soderlund, D M

    1998-12-01

    Pyrethroid insecticides bind to a unique site on voltage-dependent sodium channels and prolong sodium currents, leading to repetitive bursts of action potentials or use-dependent nerve block. To further characterize the site and mode of action of pyrethroids on sodium channels, we injected synthetic mRNA encoding the rat brain IIa sodium channel alpha subunit, either alone or in combination with synthetic mRNA encoding the rat sodium channel beta1 subunit, into oocytes of the frog Xenopus laevis and assessed the actions of the pyrethroid insecticide [1R,cis,alphaS]-cypermethrin on expressed sodium currents by two-electrode voltage clamp. In oocytes expressing only the rat brain IIa alpha subunit, cypermethrin produced a slowly-decaying sodium tail current following a depolarizing pulse. In parallel experiments using oocytes expressing the rat brain IIa alpha subunit in combination with the rat beta1 subunit, cypermethrin produced qualitatively similar tail currents following a depolarizing pulse and also induced a sustained component of the sodium current measured during a step depolarization of the oocyte membrane. The voltage dependence of activation and steady-state inactivation of the cypermethrin-dependent sustained current were identical to those of the peak transient sodium current measured in the absence of cypermethrin. Concentration-response curves obtained using normalized tail current amplitude as an index of the extent of sodium channel modification by cypermethrin revealed that coexpression of the rat brain IIa alpha subunit with the rat beta1 subunit increased the apparent affinity of the sodium channel binding site for cypermethrin by more than 20-fold. These results confirm that the pyrethroid binding site is intrinsic to the sodium channel alpha subunit and demonstrate that coexpression of the rat brain IIa alpha subunit with the rat beta1 subunit alters the apparent affinity of this site for pyrethroids.

  4. Perception of Emotional Facial Expressions in Amyotrophic Lateral Sclerosis (ALS) at Behavioural and Brain Metabolic Level

    Science.gov (United States)

    Aho-Özhan, Helena E. A.; Keller, Jürgen; Heimrath, Johanna; Uttner, Ingo; Kassubek, Jan; Birbaumer, Niels; Ludolph, Albert C.; Lulé, Dorothée

    2016-01-01

    Introduction Amyotrophic lateral sclerosis (ALS) primarily impairs motor abilities but also affects cognition and emotional processing. We hypothesise that subjective ratings of emotional stimuli depicting social interactions and facial expressions is changed in ALS. It was found that recognition of negative emotions and ability to mentalize other’s intentions is reduced. Methods Processing of emotions in faces was investigated. A behavioural test of Ekman faces expressing six basic emotions was presented to 30 ALS patients and 29 age-, gender and education matched healthy controls. Additionally, a subgroup of 15 ALS patients that were able to lie supine in the scanner and 14 matched healthy controls viewed the Ekman faces during functional magnetic resonance imaging (fMRI). Affective state and a number of daily social contacts were measured. Results ALS patients recognized disgust and fear less accurately than healthy controls. In fMRI, reduced brain activity was seen in areas involved in processing of negative emotions replicating our previous results. During processing of sad faces, increased brain activity was seen in areas associated with social emotions in right inferior frontal gyrus and reduced activity in hippocampus bilaterally. No differences in brain activity were seen for any of the other emotional expressions. Inferior frontal gyrus activity for sad faces was associated with increased amount of social contacts of ALS patients. Conclusion ALS patients showed decreased brain and behavioural responses in processing of disgust and fear and an altered brain response pattern for sadness. The negative consequences of neurodegenerative processes in the course of ALS might be counteracted by positive emotional activity and positive social interactions. PMID:27741285

  5. Perception of Emotional Facial Expressions in Amyotrophic Lateral Sclerosis (ALS) at Behavioural and Brain Metabolic Level.

    Science.gov (United States)

    Aho-Özhan, Helena E A; Keller, Jürgen; Heimrath, Johanna; Uttner, Ingo; Kassubek, Jan; Birbaumer, Niels; Ludolph, Albert C; Lulé, Dorothée

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) primarily impairs motor abilities but also affects cognition and emotional processing. We hypothesise that subjective ratings of emotional stimuli depicting social interactions and facial expressions is changed in ALS. It was found that recognition of negative emotions and ability to mentalize other's intentions is reduced. Processing of emotions in faces was investigated. A behavioural test of Ekman faces expressing six basic emotions was presented to 30 ALS patients and 29 age-, gender and education matched healthy controls. Additionally, a subgroup of 15 ALS patients that were able to lie supine in the scanner and 14 matched healthy controls viewed the Ekman faces during functional magnetic resonance imaging (fMRI). Affective state and a number of daily social contacts were measured. ALS patients recognized disgust and fear less accurately than healthy controls. In fMRI, reduced brain activity was seen in areas involved in processing of negative emotions replicating our previous results. During processing of sad faces, increased brain activity was seen in areas associated with social emotions in right inferior frontal gyrus and reduced activity in hippocampus bilaterally. No differences in brain activity were seen for any of the other emotional expressions. Inferior frontal gyrus activity for sad faces was associated with increased amount of social contacts of ALS patients. ALS patients showed decreased brain and behavioural responses in processing of disgust and fear and an altered brain response pattern for sadness. The negative consequences of neurodegenerative processes in the course of ALS might be counteracted by positive emotional activity and positive social interactions.

  6. Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells.

    Science.gov (United States)

    Bagci-Onder, Tugba; Du, Wanlu; Figueiredo, Jose-Luiz; Martinez-Quintanilla, Jordi; Shah, Khalid

    2015-06-01

    Characterizing clinically relevant brain metastasis models and assessing the therapeutic efficacy in such models are fundamental for the development of novel therapies for metastatic brain cancers. In this study, we have developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, we show a widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. We also show extravasation of tumour cells and the close association of tumour cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in the clinics. Next, we explored the ability of engineered adult stem cells to track metastatic deposits in this model and show that engineered stem cells either implanted or injected via circulation efficiently home to metastatic tumour deposits in the brain. Based on the recent findings that metastatic tumour cells adopt unique mechanisms of evading apoptosis to successfully colonize in the brain, we reasoned that TNF receptor superfamily member 10A/10B apoptosis-inducing ligand (TRAIL) based pro-apoptotic therapies that induce death receptor signalling within the metastatic tumour cells might be a favourable therapeutic approach. We engineered stem cells to express a tumour selective, potent and secretable variant of a TRAIL, S-TRAIL, and show that these cells significantly suppressed metastatic tumour growth and prolonged the survival of mice bearing metastatic breast tumours. Furthermore, the incorporation of pro-drug converting enzyme, herpes simplex virus thymidine kinase, into therapeutic S-TRAIL secreting stem cells allowed their eradication post-tumour treatment. These studies are the first of their kind that provide insight into targeting brain metastasis with stem-cell mediated delivery of pro-apoptotic ligands and have important clinical implications.

  7. Brain-derived neurotrophic factor and Bcl-2 expression in rat brain areas following chronic morphine treatment

    Institute of Scientific and Technical Information of China (English)

    Huiping Yu; Hua Hu; Huaqing Meng; Wei Deng; Yixiao Fu; Qinghua Luo

    2011-01-01

    The ventral tegmental area and the locus coeruleus are associated with psychological and physical dependence of opioid addiction. To date, very little is known about brain-derived neurotrophic factor (BDNF) and Bcl-2 gene and protein changes following morphine addiction. The present study utilized immunohistochemistry and in situ hybridization techniques, which revealed that there were increased BDNF levels, but decreased Bcl-2 levels in the prefrontal cortex, locus coeruleus, hippocampus, and the ventral tegmental area during morphine-dependence formation and abstinence. However, the levels of BDNF remained unchanged, and Bcl-2 expression was increased in the nucleus accumbens. These results showed that BDNF and Bcl-2 are involved in the development of morphine dependence, and precipitation of abstinence syndrome.

  8. Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements.

    Directory of Open Access Journals (Sweden)

    Carl O Olson

    Full Text Available MeCP2 is a critical epigenetic regulator in brain and its abnormal expression or compromised function leads to a spectrum of neurological disorders including Rett Syndrome and autism. Altered expression of the two MeCP2 isoforms, MeCP2E1 and MeCP2E2 has been implicated in neurological complications. However, expression, regulation and functions of the two isoforms are largely uncharacterized. Previously, we showed the role of MeCP2E1 in neuronal maturation and reported MeCP2E1 as the major protein isoform in the adult mouse brain, embryonic neurons and astrocytes. Recently, we showed that DNA methylation at the regulatory elements (REs within the Mecp2 promoter and intron 1 impact the expression of Mecp2 isoforms in differentiating neural stem cells. This current study is aimed for a comparative analysis of temporal, regional and cell type-specific expression of MeCP2 isoforms in the developing and adult mouse brain. MeCP2E2 displayed a later expression onset than MeCP2E1 during mouse brain development. In the adult female and male brain hippocampus, both MeCP2 isoforms were detected in neurons, astrocytes and oligodendrocytes. Furthermore, MeCP2E1 expression was relatively uniform in different brain regions (olfactory bulb, striatum, cortex, hippocampus, thalamus, brainstem and cerebellum, whereas MeCP2E2 showed differential enrichment in these brain regions. Both MeCP2 isoforms showed relatively similar distribution in these brain regions, except for cerebellum. Lastly, a preferential correlation was observed between DNA methylation at specific CpG dinucleotides within the REs and Mecp2 isoform-specific expression in these brain regions. Taken together, we show that MeCP2 isoforms display differential expression patterns during brain development and in adult mouse brain regions. DNA methylation patterns at the Mecp2 REs may impact this differential expression of Mecp2/MeCP2 isoforms in brain regions. Our results significantly contribute

  9. Influence of blood glucose on the expression of glucose transporter proteins 1 and 3 in the brain of diabetic rats

    Institute of Scientific and Technical Information of China (English)

    HOU Wei-kai; FU Chun-li; ZHANG Wen-wen; CHEN Li; XIAN Yu-xin; ZHANG Li; LAI Hong; HOU Xin-guo; XU Yu-xin; YU Ting; XU Fu-yu; SONG Jun

    2007-01-01

    Background The delivery of glucose from the blood to the brain involves its passage across the endothelial cells of the blood-brain barrier (BBB), which is mediated by the facilitative glucose transporter protein 1 (GLUT1), and then across the neural cell membranes, which is mediated by GLUT3. This study aimed to evaluate the dynamic influence of hyperglycemia on the expression of these GLUTs by measuring their expression in the brain at different blood glucose levels in a rat model of diabetes. This might help to determine the proper blood glucose threshold level in the treatment of diabetic apoplexy.Methods Diabetes mellitus was induced with streptozotocin (STZ) in 30 rats. The rats were randomly divided into 3 groups: diabetic group without blood glucose control (group DM1), diabetic rats treated with low dose insulin (group DM2),and diabetic rats treated with high dose insulin (group DM3). The mRNA and protein levels of GLUT1 and GLUT3 were assayed by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry, respectively.Results Compared with normal control rats, the GLUT1 mRNA was reduced by 46.08%, 29.80%, 19.22% (P<0.01) in DM1, DM2, and DM3 group, respectively; and the GLUT3 mRNA was reduced by 75.00%, 46.75%, and 17.89% (P<0.01)in DM1, DM2, and DM3 group, respectively. The abundance of GLUT1 and GLUT3 proteins had negative correlation with the blood glucose level (P<0.01). The density of microvessels in the brain of diabetic rats did not change significantly compared with normal rats.Conclusions Chronic hyperglycemia downregulates GLUT1 and GLUT3 expression at both mRNA and protein levels in the rat brain, which is not due to the decrease of the density of microvessels. The downregulation of GLUT1 and GLUT3 expression might be the adaptive reaction of the body to prevent excessive glucose entering the cell that may lead to cell damage.

  10. Early Brain changes May Help Predict Autism Among High-Risk Infants

    Science.gov (United States)

    ... Media Resources Interviews & Selected Staff Profiles Multimedia Early brain changes may help predict autism among high-risk ... Share this: Page Content NIH-funded researchers link brain changes at 6 and 12 months of age ...

  11. Harmful Algal Bloom Toxins: c-Fos Protein Expression in the Brain of Killifish, Fundulus heteroclitus

    Science.gov (United States)

    2006-04-21

    a biomarker of neuronal and regional brain activity when animals are exposed to different types of stressful stimuli (Martinez et al., 2002...2002). c-fos can be induced in rats through glutamate receptor agonists, ion channel flux, dioxins , and the mind altering drugs haloperidol and...Hashiguchi, W., Kuchiiwa, T., Nakagawa, S., 2002. 2,3,7,8- Tetrachlorodibenzo-p- dioxin treatment induces c-Fos expression in the forebrain of the Long-Evans

  12. Conditioned Flavor Aversion and Brain Fos Expression Following Exposure to Arsenic

    OpenAIRE

    2007-01-01

    Recent advances in the knowledge of the cellular effects of arsenic have provided insights into the molecular mechanisms of arsenic-associated carcinogenesis, immunotoxicity and cardiovascular disease. In the present experiments we tested the hypothesis that the arrival of arsenic to the gastrointestinal (GI) tract is detected by the gut-brain axis, which includes hindbrain and forebrain nuclei activated by GI stimulation. As a marker of neuronal activation we measured Fos expression using im...

  13. Significant effects of antiretroviral therapy on global gene expression in brain tissues of patients with HIV-1-associated neurocognitive disorders.

    Directory of Open Access Journals (Sweden)

    Alejandra Borjabad

    2011-09-01

    Full Text Available Antiretroviral therapy (ART has reduced morbidity and mortality in HIV-1 infection; however HIV-1-associated neurocognitive disorders (HAND persist despite treatment. The reasons for the limited efficacy of ART in the brain are unknown. Here we used functional genomics to determine ART effectiveness in the brain and to identify molecular signatures of HAND under ART. We performed genome-wide microarray analysis using Affymetrix U133 Plus 2.0 Arrays, real-time PCR, and immunohistochemistry in brain tissues from seven treated and eight untreated HAND patients and six uninfected controls. We also determined brain virus burdens by real-time PCR. Treated and untreated HAND brains had distinct gene expression profiles with ART transcriptomes clustering with HIV-1-negative controls. The molecular disease profile of untreated HAND showed dysregulated expression of 1470 genes at p<0.05, with activation of antiviral and immune responses and suppression of synaptic transmission and neurogenesis. The overall brain transcriptome changes in these patients were independent of histological manifestation of HIV-1 encephalitis and brain virus burdens. Depending on treatment compliance, brain transcriptomes from patients on ART had 83% to 93% fewer dysregulated genes and significantly lower dysregulation of biological pathways compared to untreated patients, with particular improvement indicated for nervous system functions. However a core of about 100 genes remained similarly dysregulated in both treated and untreated patient brain tissues. These genes participate in adaptive immune responses, and in interferon, cell cycle, and myelin pathways. Fluctuations of cellular gene expression in the brain correlated in Pearson's formula analysis with plasma but not brain virus burden. Our results define for the first time an aberrant genome-wide brain transcriptome of untreated HAND and they suggest that antiretroviral treatment can be broadly effective in reducing

  14. A comparative antibody analysis of Pannexin1 expression in four rat brain regions reveals varying subcellular localizations

    Directory of Open Access Journals (Sweden)

    Angela C Cone

    2013-02-01

    Full Text Available Pannexin1 (Panx1 channels release cytosolic ATP in response to signaling pathways. Panx1 is highly expressed in the central nervous system. We used four antibodies with different Panx1 anti-peptide epitopes to analyze four regions of rat brain. These antibodies labeled the same bands in Western blots and had highly similar patterns of immunofluorescence in tissue culture cells expressing Panx1, but Western blots of brain lysates from Panx1 knockout and control mice showed different banding patterns. Localizations of Panx1 in brain slices were generated using automated wide-field mosaic confocal microscopy for imaging large regions of interest while retaining maximum resolution for examining cell populations and compartments. We compared Panx1 expression over the cerebellum, hippocampus with adjacent cortex, thalamus and olfactory bulb. While Panx1 localizes to the same neuronal cell types, subcellular localizations differ. Two antibodies with epitopes against the intracellular loop and one against the carboxy terminus preferentially labeled cell bodies, while an antibody raised against an N-terminal peptide highlighted neuronal processes more than cell bodies. These labeling patterns may be a reflection of different cellular and subcellular localizations of full-length and/or modified Panx1 channels where each antibody is highlighting unique or differentially accessible Panx1 populations. However, we cannot rule out that one or more of these antibodies have specificity issues. All data associated with experiments from these four antibodies are presented in a manner that allows them to be compared and our claims thoroughly evaluated, rather than eliminating results that were questionable. Each antibody is given a unique identifier through the NIF Antibody Registry that can be used to track usage of individual antibodies across papers and all image and metadata are made available in the public repository, the Cell Centered Database, for on

  15. A Comparative Antibody Analysis of Pannexin1 Expression in Four Rat Brain Regions Reveals Varying Subcellular Localizations

    Science.gov (United States)

    Cone, Angela C.; Ambrosi, Cinzia; Scemes, Eliana; Martone, Maryann E.; Sosinsky, Gina E.

    2012-01-01

    Pannexin1 (Panx1) channels release cytosolic ATP in response to signaling pathways. Panx1 is highly expressed in the central nervous system. We used four antibodies with different Panx1 anti-peptide epitopes to analyze four regions of rat brain. These antibodies labeled the same bands in Western blots and had highly similar patterns of immunofluorescence in tissue culture cells expressing Panx1, but Western blots of brain lysates from Panx1 knockout and control mice showed different banding patterns. Localizations of Panx1 in brain slices were generated using automated wide field mosaic confocal microscopy for imaging large regions of interest while retaining maximum resolution for examining cell populations and compartments. We compared Panx1 expression over the cerebellum, hippocampus with adjacent cortex, thalamus, and olfactory bulb. While Panx1 localizes to the same neuronal cell types, subcellular localizations differ. Two antibodies with epitopes against the intracellular loop and one against the carboxy terminus preferentially labeled cell bodies, while an antibody raised against an N-terminal peptide highlighted neuronal processes more than cell bodies. These labeling patterns may be a reflection of different cellular and subcellular localizations of full-length and/or modified Panx1 channels where each antibody is highlighting unique or differentially accessible Panx1 populations. However, we cannot rule out that one or more of these antibodies have specificity issues. All data associated with experiments from these four antibodies are presented in a manner that allows them to be compared and our claims thoroughly evaluated, rather than eliminating results that were questionable. Each antibody is given a unique identifier through the NIF Antibody Registry that can be used to track usage of individual antibodies across papers and all image and metadata are made available in the public repository, the Cell Centered Database, for on-line viewing, and

  16. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    Energy Technology Data Exchange (ETDEWEB)

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F. [Univ. of California, San Francisco, CA (United States)

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  17. Differential aquaporin 4 expression during edema build-up and resolution phases of brain inflammation

    Directory of Open Access Journals (Sweden)

    Brochet Bruno

    2011-10-01

    Full Text Available Abstract Background Vasogenic edema dynamically accumulates in many brain disorders associated with brain inflammation, with the critical step of edema exacerbation feared in patient care. Water entrance through blood-brain barrier (BBB opening is thought to have a role in edema formation. Nevertheless, the mechanisms of edema resolution remain poorly understood. Because the water channel aquaporin 4 (AQP4 provides an important route for vasogenic edema resolution, we studied the time course of AQP4 expression to better understand its potential effect in countering the exacerbation of vasogenic edema. Methods Focal inflammation was induced in the rat brain by a lysolecithin injection and was evaluated at 1, 3, 7, 14 and 20 days using a combination of in vivo MRI with apparent diffusion coefficient (ADC measurements used as a marker of water content, and molecular and histological approaches for the quantification of AQP4 expression. Markers of active inflammation (macrophages, BBB permeability, and interleukin-1β and markers of scarring (gliosis were also quantified. Results This animal model of brain inflammation demonstrated two phases of edema development: an initial edema build-up phase during active inflammation that peaked after 3 days (ADC increase was followed by an edema resolution phase that lasted from 7 to 20 days post injection (ADC decrease and was accompanied by glial scar formation. A moderate upregulation in AQP4 was observed during the build-up phase, but a much stronger transcriptional and translational level of AQP4 expression was observed during the secondary edema resolution phase. Conclusions We conclude that a time lag in AQP4 expression occurs such that the more significant upregulation was achieved only after a delay period. This change in AQP4 expression appears to act as an important determinant in the exacerbation of edema, considering that AQP4 expression is insufficient to counter the water influx during the build

  18. Global analysis of gene expression in the developing brain of Gtf2ird1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Jennifer O'Leary

    Full Text Available BACKGROUND: Williams-Beuren Syndrome (WBS is a neurodevelopmental disorder caused by a hemizygous deletion of a 1.5 Mb region on chromosome 7q11.23 encompassing 26 genes. One of these genes, GTF2IRD1, codes for a putative transcription factor that is expressed throughout the brain during development. Genotype-phenotype studies in patients with atypical deletions of 7q11.23 implicate this gene in the neurological features of WBS, and Gtf2ird1 knockout mice show reduced innate fear and increased sociability, consistent with features of WBS. Multiple studies have identified in vitro target genes of GTF2IRD1, but we sought to identify in vivo targets in the mouse brain. METHODOLOGY/PRINCIPAL FINDINGS: We performed the first in vivo microarray screen for transcriptional targets of Gtf2ird1 in brain tissue from Gtf2ird1 knockout and wildtype mice at embryonic day 15.5 and at birth. Changes in gene expression in the mutant mice were moderate (0.5 to 2.5 fold and of candidate genes with altered expression verified using real-time PCR, most were located on chromosome 5, within 10 Mb of Gtf2ird1. siRNA knock-down of Gtf2ird1 in two mouse neuronal cell lines failed to identify changes in expression of any of the genes identified from the microarray and subsequent analysis showed that differences in expression of genes on chromosome 5 were the result of retention of that chromosome region from the targeted embryonic stem cell line, and so were dependent upon strain rather than Gtf2ird1 genotype. In addition, specific analysis of genes previously identified as direct in vitro targets of GTF2IRD1 failed to show altered expression. CONCLUSIONS/SIGNIFICANCE: We have been unable to identify any in vivo neuronal targets of GTF2IRD1 through genome-wide expression analysis, despite widespread and robust expression of this protein in the developing rodent brain.

  19. Specific expression profile and prognostic significance of peroxiredoxins in grade II-IV astrocytic brain tumors

    OpenAIRE

    Kinnula Vuokko L; Parkkila Seppo; Kallio Heini; Rodriguez Alejandra; Rantala Immo; Järvelä Sally; Soini Ylermi; Haapasalo Hannu

    2010-01-01

    Abstract Background Peroxiredoxins (Prxs) have recently been suggested to have a role in tumorigenesis. Methods We studied the expression of Prx I-VI and their relationship to patient survival in 383 grade II-IV diffuse astrocytic brain tumors. Results Prx I positivity was found in 68%, Prx II in 84%, Prx III in 90%, Prx IV in 5%, Prx V in 4% and Prx VI in 47% of the tumors. Prx I and Prx II expression decreased significantly with increasing malignancy grade (p < 0.001 and p < 0.001). Patient...

  20. SAMSN1 is highly expressed and associated with a poor survival in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Yong Yan

    Full Text Available OBJECTIVES: To study the expression pattern and prognostic significance of SAMSN1 in glioma. METHODS: Affymetrix and Arrystar gene microarray data in the setting of glioma was analyzed to preliminarily study the expression pattern of SAMSN1 in glioma tissues, and Hieratical clustering of gene microarray data was performed to filter out genes that have prognostic value in malignant glioma. Survival analysis by Kaplan-Meier estimates stratified by SAMSN1 expression was then made based on the data of more than 500 GBM cases provided by The Cancer Genome Atlas (TCGA project. At last, we detected the expression of SAMSN1 in large numbers of glioma and normal brain tissue samples using Tissue Microarray (TMA. Survival analysis by Kaplan-Meier estimates in each grade of glioma was stratified by SAMSN1 expression. Multivariate survival analysis was made by Cox proportional hazards regression models in corresponding groups of glioma. RESULTS: With the expression data of SAMSN1 and 68 other genes, high-grade glioma could be classified into two groups with clearly different prognoses. Gene and large sample tissue microarrays showed high expression of SAMSN1 in glioma particularly in GBM. Survival analysis based on the TCGA GBM data matrix and TMA multi-grade glioma dataset found that SAMSN1 expression was closely related to the prognosis of GBM, either PFS or OS (P<0.05. Multivariate survival analysis with Cox proportional hazards regression models confirmed that high expression of SAMSN1 was a strong risk factor for PFS and OS of GBM patients. CONCLUSION: SAMSN1 is over-expressed in glioma as compared with that found in normal brains, especially in GBM. High expression of SAMSN1 is a significant risk factor for the progression free and overall survival of GBM.

  1. Anatomical evidence for transsynaptic influences of estrogen on brain-derived neurotrophic factor expression.

    Science.gov (United States)

    Blurton-Jones, M; Kuan, P N; Tuszynski, M H

    2004-01-12

    Several studies have demonstrated that estrogen modulates brain-derived neurotrophic factor (BDNF) mRNA and protein within the adult hippocampus and cortex. However, mechanisms underlying this regulation are unknown. Although an estrogen response element (ERE)-like sequence has been identified within the BDNF gene, such a classical mechanism of estrogen-induced transcriptional activation requires the colocalized expression of estrogen receptors within cells that produce BDNF. Developmental studies have demonstrated such a relationship, but to date no studies have examined colocalization of estrogen receptors and BDNF within the adult brain. By utilizing double-label immunohistochemistry for BDNF, estrogen receptor-alpha (ER-alpha), and estrogen receptor-beta (ER-beta), we found only sparse colocalization between ER-alpha and BDNF in the hypothalamus, amygdala, prelimbic cortex, and ventral hippocampus. Furthermore, ER-beta and BDNF do not colocalize in any brain region. Given the recent finding that cortical ER-beta is almost exclusively localized to parvalbumin-immunoreactive GABAergic neurons, we performed BDNF/parvalbumin double labeling and discovered that axons from cortical ER-beta-expressing inhibitory neurons terminate on BDNF-immunoreactive pyramidal cells. Collectively, these findings support a potential transsynaptic relationship between estrogen state and cortical BDNF: By directly modulating GABAergic interneurons, estrogen may indirectly influence the activity and expression of BDNF-producing cortical neurons.

  2. Expression of Ambra1 in mouse brain during physiological and Alzheimer type aging.

    Science.gov (United States)

    Sepe, Sara; Nardacci, Roberta; Fanelli, Francesca; Rosso, Pamela; Bernardi, Cinzia; Cecconi, Francesco; Mastroberardino, Pier G; Piacentini, Mauro; Moreno, Sandra

    2014-01-01

    Autophagy is a major protein degradation pathway, essential for stress-induced and constitutive protein turnover. In nervous tissue, autophagy is constitutively active and crucial to neuronal survival. The efficiency of the autophagic pathway reportedly undergoes age-related decline, and autophagy defects are observed in neurodegenerative diseases. Since Ambra1 plays a fundamental role in regulating the autophagic process in developing nervous tissue, we investigated the expression of this protein in mature mouse brain and during physiological and Alzheimer type aging. The present study accomplished the first complete map of Ambra1 protein distribution in the various brain areas, and highlights differential expression in neuronal/glial cell populations. Differences in Ambra1 content are possibly related to specific neuronal features and properties, particularly concerning susceptibility to neurodegeneration. Furthermore, the analysis of Ambra1 expression in physiological and pathological brain aging supports important, though conflicting, functions of autophagy in neurodegenerative processes. Thus, novel therapeutic approaches, based on autophagy modulation, should also take into account the age-dependent roles of this mechanism in establishing, promoting, or counteracting neurodegeneration.

  3. Gene expression analysis in gonads and brain of catfish Clarias batrachus after the exposure of malathion.

    Science.gov (United States)

    Prathibha, Y; Murugananthkumar, R; Rajakumar, A; Laldinsangi, C; Sudhakumari, C C; Mamta, S K; Dutta-Gupta, A; Senthilkumaran, B

    2014-04-01

    Pesticides like malathion have the potential to disrupt development and reproduction of aquatic organisms including fishes. To investigate the likely consequences of malathion exposure at low doses in juvenile catfish, Clarias batrachus, we studied the expression pattern of genes encoding certain transcription factors, activin A, sex steroid or orphan nuclear receptors and steroidogenic enzymes which are known to be involved in gonadal development along with histological changes. To compare further, we also analyzed certain brain specific genes related to gonadal axis. Fifty days post hatch catfish fingerlings were exposed continuously to 1 and 10 µg/L of malathion for 21 days. Results from these experiments indicated that transcript levels of various genes were altered by the treatments, which may further affect the gonadal development either directly or indirectly through brain. Histological analysis revealed slow progression of spermatogenesis in testis, while in ovary, the oil droplet oocytes were found to be higher after treatment (10 µg/L). Our findings revealed that the exposure of malathion, even at low doses, hinder or modulate early gonadal development differentially by targeting gene expression pattern of transcription factors, activin A, sex steroid or orphan nuclear receptors and steroidogenic enzymes with an evidence on histological changes. Further, some of the genes showed differential expression at the level of brain in male and female sex after the exposure of malathion.

  4. Brain Fos expression and intestinal motor alterations during nematode-induced inflammation in the rat.

    Science.gov (United States)

    Castex, N; Fioramonti, J; Ducos de Lahitte, J; Luffau, G; More, J; Bueno, L

    1998-01-01

    Brain-gut interactions and intestinal motility were studied during pulmonary and jejunal inflammation induced by Nippostrongylus brasiliensis. Jejunal electromyographic activity was continuously recorded from day 1 before to day 28 after infection. Expression of c-fos was assessed in the brain by immunohistochemistry, and myeloperoxidase (MPO) activity was determined in lung and intestine on days 1,7,14, 21, and 28 postinfection. The cyclic intestinal motor pattern was replaced by an irregular activity from day 4, corresponding to larvae migration to the intestine, to day 14. c-fos was expressed in the caudal nucleus of the solitary tract (NTS) and lateral parabrachial nucleus (LPB) on day 1 (lung stage of N. brasiliensis) and in the medial part of the NTS, the LPB, and locus ceruleus on day 7. Pulmonary and intestinal MPO activity was increased from days 1 to 21 postinfection. During N. brasiliensis infection, c-fos expression indicates that specific and different brain nuclei are activated at the onset of pulmonary and intestinal inflammation, which is associated with motor disorders.

  5. Alpha1,3-fucosyltransferase IX (Fut9) determines Lewis X expression in brain.

    Science.gov (United States)

    Nishihara, Shoko; Iwasaki, Hiroko; Nakajima, Kazuyuki; Togayachi, Akira; Ikehara, Yuzuru; Kudo, Takashi; Kushi, Yasunori; Furuya, Akiko; Shitara, Kenya; Narimatsu, Hisashi

    2003-06-01

    The expression of the Lewis X (Lex) carbohydrate structure in brain is developmentally regulated and is thought to play a role in cell-cell interaction during neuronal development. Mice possess three functional alpha1,3-fucosyltransferase genes: Fut4, Fut7, and Fut9. Fut7 is known to have no activity to synthesize Lex. In the present study, the relative activities of Fut4 and Fut9 for Lex synthesis were determined using recombinant enzymes. Fut9 exhibited very strong activity for oligosaccharide acceptors and glycolipid acceptors, that is, more than 10- and 100-fold, respectively, than that of Fut4. Furthermore, both cerebrum and cerebellum at various stages of development (E17, P0, P7, P30, P100) expressed 15-100 times more Fut9 transcript than Fut4 transcript. Neurons and astrocytes in primary culture also expressed 10-15 times more Fut9 than Fut4 transcript. Moreover, alpha1,3-Fut activity toward a polylactosamine chain in homogenates of brain tissues and primary cultured cells showed a pattern typical of Fut9, not Fut4. The developmental profile of activity for the synthesis of Lex was well correlated with that of Fut9 transcript. Immunohistochemistry with anti-Fut9 monoclonal antibody revealed the distribution of the Lex structure. These results showed that Fut9 is the most responsible enzyme for the synthesis of Lex in brain.

  6. Changes in brain protein expression are linked to magnesium restriction-induced depression-like behavior.

    Science.gov (United States)

    Whittle, Nigel; Li, Lin; Chen, Wei-Qiang; Yang, Jae-Won; Sartori, Simone B; Lubec, Gert; Singewald, Nicolas

    2011-04-01

    There is evidence to suggest that low levels of magnesium (Mg) are associated with affective disorders, however, causality and central neurobiological mechanisms of this link are largely unproven. We have recently shown that mice fed a low Mg-containing diet (10% of daily requirement) display enhanced depression-like behavior sensitive to chronic antidepressant treatment. The aim of the present study was to utilize this model to gain insight into underlying mechanisms by quantifying amygdala/hypothalamus protein expression using gel-based proteomics and correlating changes in protein expression with changes in depression-like behavior. Mice fed Mg-restricted diet displayed reduced brain Mg tissue levels and altered expression of four proteins, N(G),N(G)-dimethylarginine dimethylaminohydrolase 1 (DDAH1), manganese-superoxide dismutase (MnSOD), glutamate dehydrogenase 1 (GDH1) and voltage-dependent anion channel 1. The observed alterations in protein expression may indicate increased nitric oxide production, increased anti-oxidant response to increased oxidative stress and potential alteration in energy metabolism. Aberrant expressions of DDAH1, MnSOD and GDH1 were normalized by chronic paroxetine treatment which also normalized the enhanced depression-like behavior, strengthening the link between the changes in these proteins and depression-like behavior. Collectively, these findings provide first evidence of low magnesium-induced alteration in brain protein levels and biochemical pathways, contributing to central dysregulation in affective disorders.

  7. Increased expression of neurotrophin 4 following focal cerebral ischemia in adult rat brain with treadmill exercise.

    Directory of Open Access Journals (Sweden)

    Jin-Young Chung

    Full Text Available Neurotrophin 4 (NT-4 belongs to the family of neurotrophic factors, and it interacts with the tyrosine kinase B (trkB receptor. NT-4 has neuroprotective effects following cerebral ischemia. Its role might be similar to brain-derived neurotrophic factor (BDNF, because both interact with trkB. Exercise also improves neural function by increasing neurotrophic factors. However, expression profiles of NT-4 in the brain during exercise are unknown. Here, we assessed the expressions of NT-4 and its receptor, trkB, following cerebral ischemia and hypothesized that exercise changes the expressions of NT-4 and trkB. Results showed that in a permanent middle cerebral artery occlusion rat model, ischemia decreased NT-4 and trkB expression. Immunohistochemistry showed their immunoreactivities around the region of the ischemic area. Treadmill exercise changed the expression of NT-4, which increased in the contralateral hemisphere in rats with ischemic injury. TrkB also showed similar patterns to its neurotophins. The change in NT-4 suggested that exercise might have primed NT4 production so that further injury causes slightly greater increases in NT4 compared with non-exercise controls.

  8. Imipramine induces brain-derived neurotrophic factor mRNA expression in cultured astrocytes.

    Science.gov (United States)

    Takano, Katsura; Yamasaki, Hiroshi; Kawabe, Kenji; Moriyama, Mitsuaki; Nakamura, Yoichi

    2012-01-01

    Depression is one of the most prevalent and livelihood-threatening forms of mental illnesses and the neural circuitry underlying depression remains incompletely understood. Recent studies suggest that the neuronal plasticity involved with brain-derived neurotrophic factor (BDNF) plays an important role in the recovery from depression. Some antidepressants are reported to induce BDNF expression in vivo; however, the mechanisms have been considered solely in neurons and not fully elucidated. In the present study, we evaluated the effects of imipramine, a classic tricyclic antidepressant drug, on BDNF expression in cultured rat brain astrocytes. Imipramine dose-dependently increased BDNF mRNA expression in astrocytes. The imipramine-induced BDNF increase was suppressed with inhibitors for protein kinase A (PKA) or MEK/ERK. Moreover, imipramine exposure activated transcription factor cAMP response element binding protein (CREB) in a dose-dependent manner. These results suggested that imipramine induced BDNF expression through CREB activation via PKA and/or ERK pathways. Imipramine treatment in depression might exert antidepressant action through BDNF production from astrocytes, and glial BDNF expression might be a target of developing novel antidepressants.

  9. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Pawel K., E-mail: olsze005@umn.edu [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Minnesota Obesity Center, Saint Paul, MN 55108 (United States); Fredriksson, Robert; Eriksson, Jenny D. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Mitra, Anaya [Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Radomska, Katarzyna J. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Gosnell, Blake A. [Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Solvang, Maria N. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Levine, Allen S. [Minnesota Obesity Center, Saint Paul, MN 55108 (United States); Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Schioeth, Helgi B. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden)

    2011-05-13

    Highlights: {yields} The majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto. {yields} The level of colocalization is similar in the male and female brain. {yields} Fto overexpression in hypothalamic neurons increases oxytocin mRNA levels by 50%. {yields} Oxytocin does not affect Fto expression through negative feedback mechanisms. -- Abstract: Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance through a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.

  10. Investigating the brain basis of facial expression perception using multi-voxel pattern analysis.

    Science.gov (United States)

    Wegrzyn, Martin; Riehle, Marcel; Labudda, Kirsten; Woermann, Friedrich; Baumgartner, Florian; Pollmann, Stefan; Bien, Christian G; Kissler, Johanna

    2015-08-01

    Humans can readily decode emotion expressions from faces and perceive them in a categorical manner. The model by Haxby and colleagues proposes a number of different brain regions with each taking over specific roles in face processing. One key question is how these regions directly compare to one another in successfully discriminating between various emotional facial expressions. To address this issue, we compared the predictive accuracy of all key regions from the Haxby model using multi-voxel pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data. Regions of interest were extracted using independent meta-analytical data. Participants viewed four classes of facial expressions (happy, angry, fearful and neutral) in an event-related fMRI design, while performing an orthogonal gender recognition task. Activity in all regions allowed for robust above-chance predictions. When directly comparing the regions to one another, fusiform gyrus and superior temporal sulcus (STS) showed highest accuracies. These results underscore the role of the fusiform gyrus as a key region in perception of facial expressions, alongside STS. The study suggests the need for further specification of the relative role of the various brain areas involved in the perception of facial expression. Face processing appears to rely on more interactive and functionally overlapping neural mechanisms than previously conceptualised.

  11. Expression and splicing of ABC and SLC transporters in the human blood-brain barrier measured with RNAseq.

    Science.gov (United States)

    Suhy, Adam M; Webb, Amy; Papp, Audrey C; Geier, Ethan G; Sadee, Wolfgang

    2017-05-30

    The blood-brain barrier (BBB) expresses numerous membrane transporters that supply needed nutrients to the central nervous system (CNS), consisting mostly of solute carriers (SLC transporters), or remove unwanted substrates via extrusion pumps through the action of ATP binding cassette (ABC) transporters. Previous work has identified many BBB transporters using hybridization arrays or qRT-PCR, using targeted probes. Here we have performed next-generation sequencing of the transcriptome (RNAseq) extracted from cerebral cortex tissues and brain microvessel endothelial cells (BMEC) obtained from two donors. The same RNA samples had previously been measured for transporter expression using qRT-PCR (Geier et al., 2013), yielding similar expression levels for overlapping mRNAs (R=0.66, pRNAseq confirms a number of transporters highly enriched in BMECs (e.g., ABCB1, ABCG2, SLCO2B1, and SLC47A1), but also detects novel BMEC transporters. Multiple splice isoforms detected by RNAseq are either robustly enriched or depleted in BMECs, indicating differential RNA processing in the BBB. The Complete RNAseq data are publically available (GSE94064). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of unexpected chords and of performer's expression on brain responses and electrodermal activity.

    Directory of Open Access Journals (Sweden)

    Stefan Koelsch

    Full Text Available BACKGROUND: There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates event-related brain potentials (ERPs, skin conductance responses (SCRs and heart rate (HR elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts played by the pianists (with emotional expression, we also created versions without variations in tempo and loudness (without musical expression to investigate effects of musical expression on ERPs and SCRs. Compared to expected chords, unexpected chords elicited an early right anterior negativity (ERAN, reflecting music-syntactic processing and an N5 (reflecting processing of meaning information in the ERPs, as well as clear changes in the SCRs (reflecting that unexpected chords also elicited emotional responses. The ERAN was not influenced by emotional expression, whereas N5 potentials elicited by chords in general (regardless of their chord function differed between the expressive and the non-expressive condition. CONCLUSIONS/SIGNIFICANCE: These results show that the neural mechanisms of music-syntactic processing operate independently of the emotional qualities of a stimulus, justifying the use of stimuli without emotional expression to investigate the cognitive processing of musical structure. Moreover, the data indicate that musical expression affects the neural mechanisms underlying the processing of musical meaning. Our data are the first to reveal influences of musical performance on ERPs and SCRs, and to show physiological responses to unexpected chords in naturalistic music.

  13. Blood-Brain Barrier Changes in High Altitude.

    Science.gov (United States)

    Lafuente, José V; Bermudez, Garazi; Camargo-Arce, Lorena; Bulnes, Susana

    2016-01-01

    Cerebral syndromes related to high-altitude exposure are becoming more frequent as the number of trips to high altitudes has increased in the last decade. The commonest symptom is headache, followed by acute mountain sickness (AMS) and high-altitude cerebral edema (HACE), which can be fatal. The pathophysiology of these syndromes is not fully understood. The classical "tight-fit hypothesis" posits that there are some anatomical variations that would obstruct the sinovenous outflow and worsen vasogenic edema and intracranial hypertension reactive to hypoxia. This could explain microhemorrhages seen in autopsies. However, recent magnetic resonance imaging studies have demonstrated some components of cytotoxic edema in HACE absent in AMS, suggesting a dysfunction in water balance at the cellular level. Currently, the "red-ox theory" supports trigemino-vascular system activation by free radicals formed after hypoxia and the consequent oxidative stress cascades. Apart from trigemino-vascular system activation, free radicals can also provoke membrane destabilisation mediated by lipid peroxidation, inflammation, and local hypoxia inducible factor-1α and vascular endothelial growth factor activation, resulting in gross blood-brain barrier (BBB) dysfunction. Besides alterations in endothelial cells such as increased pinocytotic vesicles and disassembly of interendothelial tight junction proteins, capillary permeability may also increase with subsequent swelling of astrocyte end-feet. In conclusion, although the pathophysiology of AMS and HACE is not completely understood, recent evidence proposes a multifactorial entity, with brain swelling and compromise of the BBB considered to play an important role. A fuller comprehension of these processes is crucial to reduce and prevent BBB alterations during high-altitude exposure.

  14. Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression.

    Science.gov (United States)

    Adlard, P A; Cotman, C W

    2004-01-01

    Exercise is increasingly recognized as an intervention that can reduce CNS dysfunctions such as cognitive decline, depression and stress. Previously we have demonstrated that brain-derived neurotrophic factor (BDNF) is increased in the hippocampus following exercise. In this study we tested the hypothesis that exercise can counteract a reduction in hippocampal BDNF protein caused by acute immobilization stress. Since BDNF expression is suppressed by corticosterone (CORT), circulating CORT levels were also monitored. In animals subjected to 2 h immobilization stress, CORT was elevated immediately following, and at 1 h after the cessation of stress, but remained unchanged from baseline up to 24 h post-stress. The stress protocol resulted in a reduction in BDNF protein at 5 and 10 h post-stress that returned to baseline at 24 h. To determine if exercise could prevent this stress-induced reduction in BDNF protein, animals were given voluntary access to running wheels for 3 weeks prior to the stress. Stressed animals, in the absence of exercise, again demonstrated an initial elevation in CORT (at 0 h) and a subsequent decrease in hippocampal BDNF at the 10 h time point. Exercising animals, both non-stressed and stressed, demonstrated circulating CORT and hippocampal BDNF protein levels that were significantly elevated above control values at both time points examined (0 and 10 h post-stress). Thus, the persistently high CORT levels in exercised animals did not affect the induction of BDNF with exercise, and the effect of immobilization stress on BDNF protein was overcome. To examine the role of CORT in the stress-related regulation of BDNF protein, experiments were carried out in adrenalectomized (ADX) animals. BDNF protein was not downregulated as a result of immobilization stress in ADX animals, while there continued to be an exercise-induced upregulation of BDNF. This study demonstrates that CORT modulates stress-related alterations in BDNF protein. Further, exercise

  15. Increased dopamine receptor expression and anti-depressant response following deep brain stimulation of the medial forebrain bundle.

    Science.gov (United States)

    Dandekar, Manoj P; Luse, Dustin; Hoffmann, Carson; Cotton, Patrick; Peery, Travis; Ruiz, Christian; Hussey, Caroline; Giridharan, Vijayasree V; Soares, Jair C; Quevedo, Joao; Fenoy, Albert J

    2017-08-01

    Among several potential neuroanatomical targets pursued for deep brain stimulation (DBS) for treating those with treatment-resistant depression (TRD), the superolateral-branch of the medial forebrain bundle (MFB) is emerging as a privileged location. We investigated the antidepressant-like phenotypic and chemical changes associated with reward-processing dopaminergic systems in rat brains after MFB-DBS. Male Wistar rats were divided into three groups: sham-operated, DBS-Off, and DBS-On. For DBS, a concentric bipolar electrode was stereotactically implanted into the right MFB. Exploratory activity and depression-like behavior were evaluated using the open-field and forced-swimming test (FST), respectively. MFB-DBS effects on the dopaminergic system were evaluated using immunoblotting for tyrosine hydroxylase (TH), dopamine transporter (DAT), and dopamine receptors (D1-D5), and high-performance liquid chromatography for quantifying dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in brain homogenates of prefrontal cortex (PFC), hippocampus, amygdala, and nucleus accumbens (NAc). Animals receiving MFB-DBS showed a significant increase in swimming time without alterations in locomotor activity, relative to the DBS-Off (p<0.039) and sham-operated groups (p<0.014), indicating an antidepressant-like response. MFB-DBS led to a striking increase in protein levels of dopamine D2 receptors and DAT in the PFC and hippocampus, respectively. However, we did not observe appreciable differences in the expression of other dopamine receptors, TH, or in the concentrations of dopamine, DOPAC, and HVA in PFC, hippocampus, amygdala, and NAc. This study was not performed on an animal model of TRD. MFB-DBS rescues the depression-like phenotypes and selectively activates expression of dopamine receptors in brain regions distant from the target area of stimulation. Copyright © 2017. Published by Elsevier B.V.

  16. [Expression of c-fos mRNA following moderate lateral fluid percussion brain injury in rats].

    Science.gov (United States)

    Zhang, Y; Chen, G; Sun, G; Liu, M; Liao, Z; Wu, J; Wu, M

    2000-09-01

    This experiment was designed to study the expression of c-fos mRNA in brain following moderate lateral fluid percussion brain injury in rats and to observe the temporal pattern of its expressions following percussion. Male Sprague-Dawley rats were divided into normal control, sham operation control and injury groups. The rats of the injury group were subjected to moderate lateral fluid percussion injury (0.2 MPa). The injury group was then subdivided into 5 min, 15 min, 30 min, 1 h, 2 h groups according to the time elapsed after injury. The expression of c-fos mRNA was studied with reverse transcription polymerase chain reaction(RT-PCR) semi-quantitatively. c-fos mRNA in cortex and brain stem was expressed weakly in control groups. After 5 min of percussion, the expression of c-fos mRNA increased progressively and remained elevated up to 2 h after brain injury. This result suggested that the induction and expression of the c-fos mRNA in cortex and brain stem after fluid percussion brain injury were increased rapidly. The temporal pattern of induction in cortex was similar to that in brain stem.

  17. Recognizing dynamic facial expressions of emotion: Specificity and intensity effects in event-related brain potentials.

    Science.gov (United States)

    Recio, Guillermo; Schacht, Annekathrin; Sommer, Werner

    2014-02-01

    Emotional facial expressions usually arise dynamically from a neutral expression. Yet, most previous research focused on static images. The present study investigated basic aspects of processing dynamic facial expressions. In two experiments, we presented short videos of facial expressions of six basic emotions and non-emotional facial movements emerging at variable and fixed rise times, attaining different intensity levels. In event-related brain potentials (ERP), effects of emotion but also for non-emotional movements appeared as early posterior negativity (EPN) between 200 and 350ms, suggesting an overall facilitation of early visual encoding for all facial movements. These EPN effects were emotion-unspecific. In contrast, relative to happiness and neutral expressions, negative emotional expressions elicited larger late positive ERP components (LPCs), indicating a more elaborate processing. Both EPN and LPC amplitudes increased with expression intensity. Effects of emotion and intensity were additive, indicating that intensity (understood as the degree of motion) increases the impact of emotional expressions but not its quality. These processes can be driven by all basic emotions, and there is little emotion-specificity even when statistical power is considerable (N (Experiment 2)=102). Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Expression of Nogo receptor 1 in microglia during development and following traumatic brain injury.

    Science.gov (United States)

    Liu, Gaoxiang; Ni, Jie; Mao, Lei; Yan, Ming; Pang, Tao; Liao, Hong

    2015-11-19

    As the receptor of myelin associated inhibitory factors Nogo receptor 1 (NgR1) plays an important role in central nervous system (CNS) injury and regeneration. It is found that NgR1 complex acts in neurons to transduce the signals intracelluarly including induction of growth cone collapse, inhibition of axonal regeneration and regulation of nerve inflammation. In recent studies, NgR1 has also been found to be expressed in the microglia. However, NgR1 expressed in microglia in the developing nervous systems and following CNS injury have not been widely investigated. In this study, we detected the expression and cellular localization of NgR1 in microglia during development and following traumatic brain injury (TBI) in mice. The results showed that NgR1 was mainly expressed in microglia during embryonic and postnatal periods. The expression levels peaked at P4 and decreased thereafter into adulthood, while increased significantly with aging representatively at 17 mo. On the other hand, there was no significant difference in the number of double positive NgR1(+)Iba1(+) cells between normal and TBI group. In summary, we first detected the expression of NgR1 in microglia during development and found that NgR1 protein expression increased significantly in microglia with aging. These findings will contribute to make a foundation for subsequent study about the role of NgR1 expressed in microglia on the CNS disorders.

  19. Annona muricata modulate brain-CXCL10 expression during cerebral malaria phase

    Science.gov (United States)

    Djamiatun, Kis; Matug, Sumia M. A.; Prasetyo, Awal; Wijayahadi, Noor; Nugroho, Djoko

    2017-02-01

    Cerebral malaria (CM) contributes in malaria mortality. People in endemic region get benefices by using A. muricata-leaf extract (AME) before qualified for receiving standard anti-malaria, because AME restrains malaria infection and modulate immune responses. CXCL10 expressed by astrocytes limit brain inflammation. Vascular leakage was found in the brain of experimental CM. Additionally, biomarker related with vascular leakage, angiopoietin-2 (Ang-2) levels increase in CM-patients. Objectives of this study were to determine the efficacy of ethanolic-AME in regulating brain-CXCL10-expression and Ang-2 levels during CM-phase. The study was post-test-only-control-group design. Thirty Swiss-mice were randomly divided in 6 groups. C+ and C- groups were PbA-inoculated and healthy-mice, respectively. X1 and X2 groups were healthy-mice treated with AME 100 and 150 mg/Kg BW/day, respectively. X3 and X4 groups were PbA-inoculated and received either dose mentioned above. CXCL10 was stained by IHC, and determined by Allred score. Plasma-Ang-2 was measured by elisa-method. Kruskal-Wallis-test showed the difference of CXCL10-expression among the studied groups (p=0.003). CXCL10-expression of C+ group was lower than healthy-mice which were C-, X1 and X2 groups (p=0.008, p=0.045, and p=0.012). CXCL10-expression of X3 was comparable to healthy mice (C-, X1 and X2), and was higher than C+ and X4 groups (p=0.012 and p=0.028). CXCL10-expression of X4 group was lower than C- and X2 groups (p=0.011 and p=0.016). Kruskal-Wallis-test showed no difference of Ang-2-levels among 6 groups (p = 0.175). The conclusion is A. muricata influences brain-CXCL10 expression during CM phase, but has no association with Ang-2 levels during CM phase.

  20. Expression pattern of thyroid hormone transporters in the postnatal mouse brain

    Directory of Open Access Journals (Sweden)

    Julia eMüller

    2014-06-01

    Full Text Available For a comprehensive description of the tissue-specific thyroidal state under normal as well as under pathophysiological conditions it is of utmost importance to include thyroid hormone (TH transporters in the analysis as well. The current knowledge of the cell-specific repertoire of TH transporters, however, is still rather limited, although several TH transporting proteins have been identified. Here, we describe the temporal and spatial distribution pattern of the most prominent TH transporters in the postnatal mouse brain. For that purpose, we performed radioactive in situ hybridization studies in order to analyze the cellular mRNA expression pattern of the monocarboxylate transporters Mct8 and Mct10, the L-type amino acid transporters Lat1 and Lat2 as well as the organic anion transporting peptide Oatp1c1 at different postnatal time points. Highest TH transporter expression levels in the CNS were observed at postnatal day 6 and 12, while hybridization signal intensities visibly declined after the second postnatal week. The only exception was Mct10 for which the strongest signals could be observed in white matter regions at postnatal day 21 indicating that this transporter is preferentially expressed in mature oligodendrocytes. Whereas Mct8 and Lat2 showed an overlapping neuronal mRNA expression pattern in the cerebral cortex, hippocampus and in the hypothalamus, Oatp1c1 and Lat1 specific signals were most prominent in capillary endothelial cells throughout the CNS. In the choroid plexus, expression of three transporters (Mct8, Lat2 and Oatp1c1 could be detected, whereas in other brain areas (e.g. striatum, thalamus, brain stem nuclei only one of the transporter candidates appeared to be present. Overall, our study revealed a distinct mRNA distribution pattern for each of the TH transporter candidates. Further studies will reveal to which extent these transporters contribute to the cell-specific TH uptake and efflux in the mouse CNS.

  1. Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain.

    Science.gov (United States)

    Parikh, Vinay; Khan, Mohammad M; Mahadik, Sahebarao P

    2003-01-01

    Typical and atypical antipsychotics significantly differ in their neurotransmitter receptor affinity profiles, and their efficacy and side effects in schizophrenic patients. Typical antipsychotics have been found to increase the oxidative (i.e. free radical-mediated) cellular injury in rats. Since schizophrenia also involves oxidative injury, the understanding of differential effects of these antipsychotics on expression of antioxidant enzymes and oxidative injury may be very critical. The effect of chronic exposure of haloperidol (HAL), a typical antipsychotic, was compared to effects of risperidone (RIS) or clozapine (CLZ) or olanzapine (OLZ), atypical antipsychotics on antioxidant defense enzymes and lipid peroxidation in the rat brain. The levels of antioxidant enzymes and hydroxyalkenals (HAEs) were measured in rat brain cytosol and fatty acids were measured in brain cell membranes. Chronic HAL treatment for both 45 and 90 days significantly decreased manganese-superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD) and catalase (CAT) activity with parallel marked increase in (HAEs), a marker of lipid peroxidation in rat brain. The levels of enzymatic activity very well correlated with the levels of enzyme proteins indicating that the changes were probably in the expression of net protein. However, RIS, CLZ and OLZ treatments did not produce any alterations in the levels of antioxidant enzymes and HAEs, both after 45 and 90 days. There were no alterations in the levels of saturated as well as polyunsaturated fatty acids in brain membranes. These findings indicate that chronic administration of HAL, but none of the studied atypicals induce oxidative stress by persistent changes in the levels of antioxidant enzymes and cause membrane lipid peroxidation.

  2. Loss of neprilysin alters protein expression in the brain of Alzheimer's disease model mice.

    Science.gov (United States)

    Nilsson, Per; Loganathan, Krishnapriya; Sekiguchi, Misaki; Winblad, Bengt; Iwata, Nobuhisa; Saido, Takaomi C; Tjernberg, Lars O

    2015-10-01

    Alzheimer's disease (AD) is a neurodegenerative disease displaying extracellular plaques formed by the neurotoxic amyloid β-peptide (Aβ), and intracellular neurofibrillary tangles consisting of protein tau. However, how these pathologies relate to the massive neuronal death that occurs in AD brains remain elusive. Neprilysin is the major Aβ-degrading enzyme and a lack thereof increases Aβ levels in the brain twofold. To identify altered protein expression levels induced by increased Aβ levels, we performed a proteomic analysis of the brain of the AD mouse model APPsw and compared it to that of APPsw mice lacking neprilysin. To this end we established an LC-MS/MS method to analyze brain homogenate, using an (18) O-labeled internal standard to accurately quantify the protein levels. To distinguish between alterations in protein levels caused by increased Aβ levels and those induced by neprilysin deficiency independently of Aβ, the brain proteome of neprilysin deficient APPsw mice was also compared to that of neprilysin deficient mice. By this approach we identified approximately 600 proteins and the levels of 300 of these were quantified. Pathway analysis showed that many of the proteins with altered expression were involved in neurological disorders, and that tau, presenilin and APP were key regulators in the identified networks. The data have been deposited to the ProteomeXchange Consortium with identifiers PXD000968 and PXD001786 (http://proteomecentral.proteomexchange.org/dataset/PXD000968 and (http://proteomecentral.proteomexchange.org/dataset/PXD001786). Interestingly, the levels of several proteins, including some not previously reported to be linked to AD, were associated with increased Aβ levels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Image reconstruction techniques for high resolution human brain PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Comtat, C.; Bataille, F.; Sureau, F. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    High resolution PET imaging is now a well established technique not only for small animal, but also for human brain studies. The ECAT HRRT brain PET scanner(Siemens Molecular Imaging) is characterized by an effective isotropic spatial resolution of 2.5 mm, about a factor of 2 better than for state-of-the-art whole-body clinical PET scanners. Although the absolute sensitivity of the HRRT (6.5 %) for point source in the center of the field-of-view is increased relative to whole-body scanner (typically 4.5 %) thanks to a larger co-polar aperture, the sensitivity in terms of volumetric resolution (75 (m{sup 3} at best for whole-body scanners and 16 (m{sup 3} for t he HRRT) is much lower. This constraint has an impact on the performance of image reconstruction techniques, in particular for dynamic studies. Standard reconstruction methods used with clinical whole-body PET scanners are not optimal for this application. Specific methods had to be developed, based on fully 3D iterative techniques. Different refinements can be added in the reconstruction process to improve image quality: more accurate modeling of the acquisition system, more accurate modeling of the statistical properties of the acquired data, anatomical side information to guide the reconstruction . We will present the performances these added developments for neuronal imaging in humans. (author)

  4. Peripheral inflammation is associated with remote global gene expression changes in the brain

    Science.gov (United States)

    2014-01-01

    Background Although the central nervous system (CNS) was once considered an immunologically privileged site, in recent years it has become increasingly evident that cross talk between the immune system and the CNS does occur. As a result, patients with chronic inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease or psoriasis, are often further burdened with neuropsychiatric symptoms, such as depression, anxiety and fatigue. Despite the recent advances in our understanding of neuroimmune communication pathways, the precise effect of peripheral immune activation on neural circuitry remains unclear. Utilizing transcriptomics in a well-characterized murine model of systemic inflammation, we have started to investigate the molecular mechanisms by which inflammation originating in the periphery can induce transcriptional modulation in the brain. Methods Several different systemic and tissue-specific models of peripheral toll-like-receptor-(TLR)-driven (lipopolysaccharide (LPS), lipoteichoic acid and Imiquimod) and sterile (tumour necrosis factor (TNF) and 12-O-tetradecanoylphorbol-13-acetate (TPA)) inflammation were induced in C57BL/6 mice. Whole brain transcriptional profiles were assessed and compared 48 hours after intraperitoneal injection of lipopolysaccharide or vehicle, using Affymetrix GeneChip microarrays. Target gene induction, identified by microarray analysis, was validated independently using qPCR. Expression of the same panel of target genes was then investigated in a number of sterile and other TLR-dependent models of peripheral inflammation. Results Microarray analysis of whole brains collected 48 hr after LPS challenge revealed increased transcription of a range of interferon-stimulated genes (ISGs) in the brain. In addition to acute LPS challenge, ISGs were induced in the brain following both chronic LPS-induced systemic inflammation and Imiquimod-induced skin inflammation. Unique to the brain, this transcriptional response is

  5. Testes and brain gene expression in precocious male and adult maturing Atlantic salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Houeix Benoit

    2010-03-01

    Full Text Available Abstract Background The male Atlantic salmon generally matures in fresh water upon returning after one or several years at sea. Some fast-growing male parr develop an alternative life strategy where they sexually mature before migrating to the oceans. These so called 'precocious' parr or 'sneakers' can successfully fertilise adult female eggs and so perpetuate their line. We have used a custom-built cDNA microarray to investigate gene expression changes occurring in the salmon gonad and brain associated with precocious maturation. The microarray has been populated with genes selected specifically for involvement in sexual maturation (precocious and adult and in the parr-smolt transformation. Results Immature and mature parr collected from a hatchery-reared stock in January were significantly different in weight, length and condition factor. Changes in brain expression were small - never more than 2-fold on the microarray, and down-regulation of genes was much more pronounced than up-regulation. Significantly changing genes included isotocin, vasotocin, cathepsin D, anamorsin and apolipoprotein E. Much greater changes in expression were seen in the testes. Among those genes in the testis with the most significant changes in expression were anti-Mullerian hormone, collagen 1A, and zinc finger protein (Zic1, which were down-regulated in precocity and apolipoproteins E and C-1, lipoprotein lipase and anti-leukoproteinase precursor which were up-regulated in precocity. Expression changes of several genes were confirmed in individual fish by quantitative PCR and several genes (anti-Mullerian hormone, collagen 1A, beta-globin and guanine nucleotide binding protein (G protein beta polypeptide 2-like 1 (GNB2L1 were also examined in adult maturing testes. Down-regulation of anti-Mullerian hormone was judged to be greater than 160-fold for precocious males and greater than 230-fold for November adult testes in comparison to July testes by this method. For

  6. Changes in neurotransmitter receptor expression levels in rat brain after 4-week exposure to 1-bromopropane.

    Science.gov (United States)

    Mohideen, Sahabudeen Sheik; Ichihara, Sahoko; Banu, Shameema; Liu, Fang; Kitoh, Junzoh; Ichihara, Gaku

    2009-11-01

    1-Bromopropane (1-BP), an alternative to ozone-depleting solvents, exhibits neurotoxicity and reproductive toxicity in animals and humans. The present study investigated the effects of exposure to 1-BP on expression of neurotransmitter receptor genes in the rat brain to explore possible biomarkers for central neurotoxicity and find brain regions sensitive for microarray analysis. Thirty-six F344 rats were divided at random into four equal groups of nine and exposed to 1-BP at 0, 400, 800 and 1000 ppm for 8 h/day; 7 days/week for 4 weeks. Total RNA from different brain regions was extracted and real-time PCR was conducted to quantify the mRNA levels of serotonin, dopamine and GABA receptors. Western blot analysis for specific regions of interest was also carried out to determine the protein levels. The mRNAs of 5HTr2a, D2R and GABAa1 were down regulated in a 1-BP dose-dependent manner in the hippocampus. The mRNA levels of 5HTr1a, 5HTr2a, D1R and GABAa1 were significantly decreased in the cortex of rats exposed to 800 ppm, but not to 1000 ppm. The mRNAs of 5HTr1a and 5HTr3a in the pons-medulla were decreased in rats exposed to 400 ppm or higher concentrations. The mRNA expression of D2R in the hippocampus and 5HTr1a and 5HTr3a in the pons-medulla oblongata were the most sensitive indicators of 1-BP neurotoxicity. The results suggest that mRNA expression analysis is useful in identifying brain regions susceptible to 1-BP, as well as providing potential biomarkers for central nervous system toxicity.

  7. Spatiotemporal expression of PSD-95 in Fmr1 knockout mice brain.

    Science.gov (United States)

    Zhu, Zhi-Wei; Xu, Qin; Zhao, Zheng-Yan; Gu, Wei-Zhong; Wu, Ding-Wen

    2011-06-01

    To investigate and compare the spatial and temporal expression of post-synaptic density-95 (PSD-95) in Fmr1 knockout mice (the animal model of fragile X syndrome, FXS) and wild-type mice brain, on postnatal day 7 (P7), P14, P21, P28 and P90, mice from each group were decapitated, and three principal brain regions (cerebral cortex, hippocampus and cerebellum) were obtained and stored for later experiments. PSD-95 mRNA in the three brain areas was analyzed with quantitative RT-PCR. PSD-95 protein was measured by immunohistochemical staining and Western blot. In the three principal brain areas of Fmr1 knockout mice and wild-type mice, the expression of PSD-95 mRNA and protein were detected at the lowest levels on P7, and then significantly increased on P14, reaching the peak levels in adolescents or adults. Moreover, it was found that PSD-95 mRNA and protein in the hippocampus were significantly decreased in Fmr1 knockout mice during the developmental period (P7, P14, P21 and P28) as well as at adulthood (P90) (P PSD-95 in the cortex and cerebellum between Fmr1 knockout and wild mice. The expression of PSD-95 in the hippocampus might be regulated by fragile X mental retardation protein (FMRP) during mice early developmental and adult periods. It is suggested that impairment of PSD-95 is possibly involved in hippocampal-dependent learning defects, which are common in people with FXS. © 2010 Japanese Society of Neuropathology.

  8. Downregulation of CREB expression in Alzheimer's brain and in Aβ-treated rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Pham Serena

    2011-08-01

    Full Text Available Abstract Background Oxidative stress plays an important role in neuronal dysfunction and neuron loss in Alzheimer's brain. Previous studies have reported downregulation of CREB-mediated transcription by oxidative stress and Aβ. The promoter for CREB itself contains cyclic AMP response elements. Therefore, we examined the expression of CREB in the hippocampal neurons of Tg2576 mice, AD post-mortem brain and in cultured rat hippocampal neurons exposed to Aβ aggregates. Results Laser Capture Microdissection of hippocampal neurons from Tg2576 mouse brain revealed decreases in the mRNA levels of CREB and its target, BDNF. Immunohistochemical analysis of Tg2576 mouse brain showed decreases in CREB levels in hippocampus and cortex. Markers of oxidative stress were detected in transgenic mouse brain and decreased CREB staining was observed in regions showing abundance of astrocytes. There was also an inverse correlation between SDS-extracted Aβ and CREB protein levels in Alzheimer's post-mortem hippocampal samples. The levels of CREB-regulated BDNF and BIRC3, a caspase inhibitor, decreased and the active cleaved form of caspase-9, a marker for the intrinsic pathway of apoptosis, was elevated in these samples. Exposure of rat primary hippocampal neurons to Aβ fibrils decreased CREB promoter activity. Decrease in CREB mRNA levels in Aβ-treated neurons was reversed by the antioxidant, N-acetyl cysteine. Overexpression of CREB by adenoviral transduction led to significant protection against Aβ-induced neuronal apoptosis. Conclusions Our findings suggest that chronic downregulation of CREB-mediated transcription results in decrease of CREB content in the hippocampal neurons of AD brain which may contribute to exacerbation of disease progression.

  9. Transgenic over-expression of slit2 enhances disruption of blood-brain barrier and increases cell death after traumatic brain injury in mice.

    Science.gov (United States)

    Li, Shuai; Li, Hang; He, Xiao-Fei; Li, Ge; Zhang, Qun; Liang, Feng-Ying; Jia, Huan-Huan; Li, Jiang-Chao; Huang, Ren; Pei, Zhong; Wang, Li-Jing; Zhang, Yu

    2016-09-19

    Traumatic brain injury (TBI) is the leading cause of mortality and disability among male adolescents and young adults; and mild traumatic brain injury is the most common type of traumatic brain injury. The disruption of blood-brain barrier (BBB) plays an important role in brain trauma. Previously, we have found that slit2, a member of slit protein family, increases permeability of BBB. In the present study, we examined the role of slit2 in the pathogenesis of mild TBI in a mouse model of micro TBI. Rhodamine BandPI (PropidiumIodide) staining were used to detect the permeability of BBB and cell death, respectively. The leakage of Rhodamine B and cell death were significantly increased in Slit2-Tg mice than in C57 control mice after micro TBI. The present results suggest that over expression of slit2 plays a detrimental role in the pathophysiology of mild TBI.

  10. Vegetable and fruit juice enhances antioxidant capacity and regulates antioxidant gene expression in rat liver, brain and colon.

    Science.gov (United States)

    Yuan, Linhong; Liu, Jinmeng; Zhen, Jie; Xu, Yao; Chen, Shuying; Halm-Lutterodt, Nicholas Van; Xiao, Rong

    2017-01-01

    To explore the effect of fruit and vegetable (FV) juice on biomarkers of oxidative damage and antioxidant gene expression in rats, 36 adult male Wistar rats were randomly divided into control, low FV juice dosage or high FV juice dosage treatment groups. The rats were given freshly extracted FV juice or the same volume of saline water daily for five weeks. After intervention, serum and tissues specimens were collected for biomarker and gene expression measurement. FV juice intervention increased total antioxidant capacity, glutathione, vitamin C, β-carotene, total polyphenols, flavonoids levels andglutathione peroxidaseenzyme activity in rat serum or tissues (p juice intervention caused reduction of malondialdehyde levels in rat liver (p juice to improve the antioxidant capacity and to prevent the oxidative damage in liver, brain and colon.

  11. Expression of Npas4 mRNA in telencephalic areas of adult and postnatal mouse brain

    Directory of Open Access Journals (Sweden)

    Joanne C Damborsky

    2015-11-01

    Full Text Available The transcription factor neuronal PAS domain-containing protein 4 (Npas4 is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON, piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu, septum and basolateral amygdala nucleus (BLA, basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5, transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex an