WorldWideScience

Sample records for high boiling residual

  1. 二甲基氯硅烷生产高沸物的综合利用研究进展%Progress in Application of Methyl Chlorosilane High-Boiling Point Residue

    Institute of Scientific and Technical Information of China (English)

    高风; 李永刚; 汪民康; 张文超; 周魁; 林萌; 黄世强

    2012-01-01

    The progress of comprehensive utilization of high-boiling point residue resulting from the production of methylchlorosilane by direct method within China and abroad was reviewed. The advantages and disadvantages of the methods were also summarized, and the directions for utilization of the high-boiling point residue were pointed.%介绍了国内外应用直接法生产甲基氯硅烷过程中产生的高沸物的综合利用研究进展,总结对比了各种方法的优势和不足,展望了高沸物综合利用前景并指出其发展方向.

  2. High flux film and transition boiling

    Science.gov (United States)

    Witte, L. C.

    1993-02-01

    An investigation was conducted on the potential for altering the boiling curve through effects of high velocity and high subcooling. Experiments using water and Freon-113 flowing over cylindrical electrical heaters in crossflow were made to see how velocity and subcooling affect the boiling curve, especially the film and transition boiling regions. We sought subcooling levels down to near the freezing points of these two liquids to prove the concept that the critical heat flux and the minimum heat flux could be brought together, thereby averting the transition region altogether. Another emphasis was to gain insight into how the various boiling regions could be represented mathematically on various parts of the heating surface. Motivation for the research grew out of a realization that the effects of very high subcooling and velocity might be to avert the transition boiling altogether so that the unstable part of the boiling curve would not limit the application of high flux devices to temperatures less than the burnout temperatures. Summaries of results from the study are described. It shows that the potential for averting the transition region is good and points the way to further research that is needed to demonstrate the potential.

  3. High flux film and transition boiling

    Energy Technology Data Exchange (ETDEWEB)

    Witte, L.C.

    1990-01-01

    This report is a bench-scale experiment on transition boiling. The author gives a detailed description on experimental apparatus and conditions. The visual observed boiling phenomena; nucleate boiling and film boiling, and the effect of heat transfer are also elucidated. 10 refs., 11 figs., 1 tab.

  4. High level disinfection of a home care device; to boil or not to boil?

    Science.gov (United States)

    Winthrop, K L; Homestead, N

    2012-03-01

    We developed a percutaneous electrical transducer for home therapy of chronic pain, a device that requires high level disinfection between uses. The utility of boiling water to provide high level disinfection was evaluated by inoculating transducer pads with potential skin pathogens (Staphylococcus aureus, Mycobacterium terrae, Pseudomonas aeruginosa, Candida albicans) and subjecting them to full immersion in water boiling at 4200 feet elevation (95 °C). Log10 reductions in colony-forming units (cfu) at 10 min were 7.1, >6.3 and >5.5 for S. aureus, P. aeruginosa and C. albicans, respectively, but only 4.6 for M. terrae. At 15 min the reductions had increased to 7.5, >6.8, >6.6 and >7.5 cfu, respectively.

  5. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    Science.gov (United States)

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High heat flux transport by microbubble emission boiling

    Science.gov (United States)

    Suzuki, Koichi

    2007-10-01

    In highly subcooled flow boiling, coalescing bubbles on the heating surface collapse to many microbubbles in the beginning of transition boiling and the heat flux increases higher than the ordinary critical heat flux. This phenomenon is called Microbubble Emission Boiling, MEB. It is generated in subcooled flow boiling and the maximum heat flux reaches about 1 kW/cm2(10 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s for a small heating surface of 10 mm×10 mm which is placed at the bottom surface of horizontal rectangular channel. The high pressure in the channel is observed at collapse of the coalescing bubbles and it is closely related the size of coalescing bubbles. Periodic pressure waves are observed in MEB and the heat flux increases linearly in proportion to the pressure frequency. The frequency is considered the frequency of liquid-solid exchange on the heating surface. For the large sized heating surface of 50 mm length×20 mm width, the maximum heat flux obtained is 500 W/cm2 (5 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s. This is considerably higher heat flux than the conventional cooling limit in power electronics. It is difficult to remove the high heat flux by MEB for a longer heating surface than 50 mm by single channel type. A model of advanced cooling device is introduced for power electronics by subcooled flow boiling with impinging jets. Themaxumum cooling heat flux is 500 W/cm2 (5 MW/m2). Microbubble emission boiling is useful for a high heat flux transport technology in future power electronics used in a fuel-cell power plant and a space facility.

  7. Full evaporation headspace gas chromatography for sensitive determination of high boiling point volatile organic compounds in low boiling matrices.

    Science.gov (United States)

    Mana Kialengila, Didi; Wolfs, Kris; Bugalama, John; Van Schepdael, Ann; Adams, Erwin

    2013-11-08

    Determination of volatile organic components (VOC's) is often done by static headspace gas chromatography as this technique is very robust and combines easy sample preparation with good selectivity and low detection limits. This technique is used nowadays in different applications which have in common that they have a dirty matrix which would be problematic in direct injection approaches. Headspace by nature favors the most volatile compounds, avoiding the less volatile to reach the injector and column. As a consequence, determination of a high boiling solvent in a lower boiling matrix becomes challenging. Determination of VOCs like: xylenes, cumene, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), benzyl alcohol (BA) and anisole in water or water soluble products are an interesting example of the arising problems. In this work, a headspace variant called full evaporation technique is worked out and validated for the mentioned solvents. Detection limits below 0.1 μg/vial are reached with RSD values below 10%. Mean recovery values ranged from 92.5 to 110%. The optimized method was applied to determine residual DMSO in a water based cell culture and DMSO and DMA in tetracycline hydrochloride (a water soluble sample). Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Science 101: Why Does It Take Longer to Boil Potatoes at High Altitudes?

    Science.gov (United States)

    Robertson, Bill

    2017-01-01

    Why Does It Take Longer to Boil Potatoes at High Altitudes? This column provides background science information for elementary teachers. This month's issue looks at why water boils at different temperatures at different altitudes.

  9. Proteomic Investigation of Protein Profile Changes and Amino Acid Residue Level Modification in Cooked Lamb Meat: The Effect of Boiling.

    Science.gov (United States)

    Yu, Tzer-Yang; Morton, James D; Clerens, Stefan; Dyer, Jolon M

    2015-10-21

    Hydrothermal treatment (heating in water) is a common method of general food processing and preparation. For red-meat-based foods, boiling is common; however, how the molecular level effects of this treatment correlate to the overall food properties is not yet well-understood. The effects of differing boiling times on lamb meat and the resultant cooking water were here examined through proteomic evaluation. The longer boiling time was found to result in increased protein aggregation involving particularly proteins such as glyceraldehyde-3-phosphate dehydrogenase, as well as truncation in proteins such as in α-actinin-2. Heat-induced protein backbone cleavage was observed adjacent to aspartic acid and asparagine residues. Side-chain modifications of amino acid residues resulting from the heating, including oxidation of phenylalanine and formation of carboxyethyllysine, were characterized in the cooked samples. Actin and myoglobin bands from the cooked meat per se remained visible on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, even after significant cooking time. These proteins were also found to be the major source of observed heat-induced modifications. This study provides new insights into molecular-level modifications occurring in lamb meat proteins during boiling and a protein chemistry basis for better understanding the effect of this common treatment on the nutritional and functional properties of red-meat-based foods.

  10. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling.

    Science.gov (United States)

    Lozowicka, Bozena; Jankowska, Magdalena; Hrynko, Izabela; Kaczynski, Piotr

    2016-01-01

    The effects of washing with tap and ozone water, ultrasonic cleaning and boiling on 16 pesticide (ten fungicides and six insecticides) residue levels in raw strawberries were investigated at different processing times (1, 2 and 5 min). An analysis of these pesticides was conducted using gas chromatography with nitrogen-phosphorous and electron capture detection (GC-NPD/ECD). The processing factor (PF) for each pesticide in each processing technique was determined. Washing with ozonated water was demonstrated to be more effective (reduction from 36.1 to 75.1 %) than washing with tap water (reduction from 19.8 to 68.1 %). Boiling decreased the residues of the most compounds, with reductions ranging from 42.8 to 92.9 %. Ultrasonic cleaning lowered residues for all analysed pesticides with removal of up to 91.2 %. The data indicated that ultrasonic cleaning and boiling were the most effective treatments for the reduction of 16 pesticide residues in raw strawberries, resulting in a lower health risk exposure. Calculated PFs for alpha-cypermethrin were used to perform an acute risk assessment of dietary exposure. To investigate the relationship between the levels of 16 pesticides in strawberry samples and their physicochemical properties, a principal component analysis (PCA) was performed. Graphical abstract ᅟ.

  11. High Heat Flux Burnout in Subcooled Flow Boiling

    Institute of Scientific and Technical Information of China (English)

    G.P.Celata; M.Cumo; 等

    1995-01-01

    The paper reports the results of an experimental research carried out at the Heat transfer divison of the Energy Department,C.R.Casaccia,on the thermal hydraulic characterization of subcooled flow boiling CHF under typical conditions of thermonuclear fusion reactors.I.e.high liquid velocity and subcooling.The experiment was carried out exploring the following parameters:channel diameter(from 2.5to 8.0 mm),heated length(10 and 15cm) ,liquid velocity (from 2 to 40m/s),exit pressure(from atmospheric to 5.0 MPa),inlet temperature(from 30 to 80℃),channel orientation (vertical and horizontal),A maximum CHF value of 60.6MW/m2 has been obtained under the following conditions:Tin-30°,p=2.5MPa,u=40m/s,D=2.5mm(smooth channel) Turbulence promoters(helically coiled wires)have been employed to further enhance the CHF attainable with subcooled flow boiling.Helically coiled wires allow an increase of 50% of the maximum CHF obtained with smooth channels.

  12. High conversion pressurized water reactor with boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Margulis, M., E-mail: maratm@post.bgu.ac.il [The Unit of Nuclear Engineering, Ben Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E., E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom)

    2015-10-15

    Highlights: • Conceptual design of partially boiling PWR core was proposed and studied. • Self-sustainable Th–{sup 233}U fuel cycle was utilized in this study. • Seed-blanket fuel assembly lattice optimization was performed. • A coupled Monte Carlo, fuel depletion and thermal-hydraulics studies were carried out. • Thermal–hydraulic analysis assured that the design matches imposed safety constraints. - Abstract: Parametric studies have been performed on a seed-blanket Th–{sup 233}U fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts suggested substantial reduction in the core power density is needed in order to operate under nominal PWR system conditions. Boiling flow regime in the seed region allows more heat to be removed for a given coolant mass flow rate, which in turn, may potentially allow increasing the power density of the core. In addition, reduced moderation improves the breeding performance. A two-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to be 104 W/cm{sup 3}, created a map of potentially feasible designs. It was found that several options have the potential to achieve end of life fissile inventory ratio above unity, which implies potential feasibility of a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. Finally, a preliminary three-dimensional coupled neutronic and thermal–hydraulic analysis for a single seed-blanket fuel assembly was performed. The results indicate that axial void distribution changes drastically with burnup. Therefore

  13. Numerical prediction of nucleate pool boiling heat transfer coefficient under high heat fluxes

    OpenAIRE

    Pezo Milada L.; Stevanović Vladimir D.

    2016-01-01

    This paper presents CFD (Computational Fluid Dynamics) approach to prediction of the heat transfer coefficient for nucleate pool boiling under high heat fluxes. Three-dimensional numerical simulations of the atmospheric saturated pool boiling are performed. Mathematical modelling of pool boiling requires a treatment of vapor-liquid two-phase mixture on the macro level, as well as on the micro level, such as bubble growth and departure from the heating surfa...

  14. Aging study of boiling water reactor high pressure injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  15. A high-fidelity approach towards simulation of pool boiling

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios; Alahyari, Abbas A. [United Technologies Research Center, East Hartford, Connecticut 06108 (United States)

    2016-01-15

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.

  16. A high-fidelity approach towards simulation of pool boiling

    Science.gov (United States)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios; Alahyari, Abbas A.

    2016-01-01

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.

  17. Boiling Heat-Transfer Processes and Their Application in the Cooling of High Heat Flux Devices

    Science.gov (United States)

    1993-06-01

    large for very smooth surfaces or highly wettable fluids (e.g., refrigerants or liquid metals) which can lead to explosive boiling (known as bumping) that...of the high wettability of liquid metals, high superheats are normally required to initiate boiling, in some cases having an explosive transition that...About the same time, Staub and Walmet (Ref. 175) identified the two regions before and after the point of significant vapor generation (SNVG) where the

  18. High-speed infrared thermography for the measurement of microscopic boiling parameters on micro- and nano-structured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngjae; Kim, Hyungdae [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Hyungmo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Joonwon [POSTECH, Pohang (Korea, Republic of)

    2014-10-15

    Micro- and nano-scale structures on boiling surfaces can enhance nucleate boiling heat transfer coefficient (HTC) and critical heat flux (CHF). A few studies were conducted to explain the enhancements of HTC and CHF using the microscopic boiling parameters. Quantitative measurements of microscopic boiling parameters are needed to understand the physical mechanism of the boiling heat transfer augmentation on structured surfaces. However, there is no existing experimental techniques to conveniently measure the boiling parameters on the structured surfaces because of the small (high-speed infrared (IR) thermography to visualize liquid-vapor phase distribution during nucleate pool boiling on micro- and nano-structured surfaces. The visualization results are analyzed to obtain the microscopic boiling parameters. Finally, quantitative microscopic boiling parameters are used to interpret the enhancement of HTC and CHF. In this study, liquid-vapor phase distributions of each surface were clearly visualized by IR thermography during the nucleate boiling phenomena. From the visualization results, following microscopic boiling parameters were quantitatively measured by image processing. - Number density of dry patch, NDP IR thermography technique was demonstrated by nucleate pool boiling experiments with M- and N surfaces. The enhancement of HTC and CHF could be explained by microscopic boiling parameters.

  19. High fidelity simulation of nucleate boiling and transition to critical heat flux on enhanced structures

    Science.gov (United States)

    Yazdani, Miad; Alahyari, Abbas; Radcliff, Thomas; Soteriou, Marios

    2015-11-01

    Surface enhancement is often is the primary approach for improved heat transfer performance of two-phase thermal systems particularly when they operate in nucleate boiling regime. This paper exploits the modeling capability developed by Yazdani et al. for simulation of nucleate boiling and transition to critical heat flux to study the nucleation phenomenon on various enhanced structures. The multi-scale of two-phase flow associated with boiling phenomena is addressed through combination of deterministic CFD for the macro-scale transport, asymptotic based representation of micro-layer, and stochastic representation of surface roughness so as to allow a high-fidelity simulation of boiling on an arbitrary surface. In addition, given the excessive complexity of surface structures often used for enhancement of boiling heat transfer, a phase-field-based method is developed to generate the structures where the numerical parameters in the phase-field model determine the topology of a given structure. The ``generated'' structure is then embedded into the two-phase flow model through virtual boundary method for the boiling simulation. The model is validated against experimental data for the boiling curve and the critical heat flux as well as nucleation and bubble dynamics characteristics.

  20. Experience in operation of the experimental atomic power plant ''ARBUS'' with the high-boiling organic coolant-moderator ditolylmethane

    Energy Technology Data Exchange (ETDEWEB)

    Tzikanov, V.A.; Aleksenko, Yu.N.; Tetyukov, V.D.; Kuprienko, V.A.; Kobzar, I.G.; Khramchenkov, V.A.; Mexcheryakov, M.P.; Zinoviev, V.I.

    1978-04-01

    Radiolytic damage to the ditolylmethane organic coolant-moderator of the ARBUS reactor was removed by vacuum distillation. The majority of the degraded ditolylmethane formed gaseous and high-boiling materials, which were easily removed by the vacuum distillation. Unsaturated hydrocarbons and low-boiling residues were a minor contribution to the impurities produced by radiolysis in the primary coolant loop. Radioactivity in the primary coolant loop was found to be caused primarily from corrosion products of the system, /sup 16/N from dissolved oxygen, and impurities in the coolant-moderator. These also were significantly reduced in the vacuum distillation process.

  1. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling.

    Science.gov (United States)

    Khokhlova, Tatiana D; Canney, Michael S; Khokhlova, Vera A; Sapozhnikov, Oleg A; Crum, Lawrence A; Bailey, Michael R

    2011-11-01

    In high intensity focused ultrasound (HIFU) applications, tissue may be thermally necrosed by heating, emulsified by cavitation, or, as was recently discovered, emulsified using repetitive millisecond boiling caused by shock wave heating. Here, this last approach was further investigated. Experiments were performed in transparent gels and ex vivo bovine heart tissue using 1, 2, and 3 MHz focused transducers and different pulsing schemes in which the pressure, duty factor, and pulse duration were varied. A previously developed derating procedure to determine in situ shock amplitudes and the time-to-boil was refined. Treatments were monitored using B-mode ultrasound. Both inertial cavitation and boiling were observed during exposures, but emulsification occurred only when shocks and boiling were present. Emulsified lesions without thermal denaturation were produced with shock amplitudes sufficient to induce boiling in less than 20 ms, duty factors of less than 0.02, and pulse lengths shorter than 30 ms. Higher duty factors or longer pulses produced varying degrees of thermal denaturation combined with mechanical emulsification. Larger lesions were obtained using lower ultrasound frequencies. The results show that shock wave heating and millisecond boiling is an effective and reliable way to emulsify tissue while monitoring the treatment with ultrasound.

  2. High-Speed Visualization of Bubble Behaviors for Pool Boiling of R-141b

    Institute of Scientific and Technical Information of China (English)

    Yanhua DIAO; Yaohua ZHAO; Qiuliang WANG

    2006-01-01

    A visualization study on the behavior of bubbles has been carried out for pool boiling of R141b on a horizontal transparent heater at pressure 0.1 MPa. The behaviors of bubbles were recorded by a high-speed camera placed beneath the heater surface. The departure diameter, departure time of bubbles and nucleation site density at different heat flux were obtained. The visualization results show that bubble departure diameter and departure time decrease, while the nucleation site density increases as the heat flux increases. It is also observed that there is no liquid recruited into the microlayer in the experiment. Based on the experimental results, boiling curve for R141b was predicted by using the dynamic microlayer model. As a result, the agreement between the predictive result based on the dynamic microlayer model and the experiment data for boiling curve of R141b is good at high heat flux.

  3. Simulation of high-intensity focused ultrasound lesions in presence of boiling.

    Science.gov (United States)

    Grisey, Anthony; Yon, Sylvain; Letort, Véronique; Lafitte, Pauline

    2016-01-01

    The lesions induced by high-intensity focused ultrasound (HIFU) thermal ablations are particularly difficult to simulate due to the complexity of the involved phenomena. In particular, boiling has a strong influence on the lesion shape. Thus, it must be accounted for if it happens during the pulses to be modeled. However, no acoustic model enables the simulation of the resulting wave scattering. Therefore, we propose an equivalent model for the heat deposition pattern in the presence of boiling. Firstly, the acoustic field is simulated with k-Wave and the heat source term is calculated. Then, a thermal model is designed, including the equivalent model for boiling. It is rigorously calibrated and validated through the use of diversified ex vivo and in vivo data, including usually unexploited data types related to the bubble clouds. The proposed model enabled to efficiently simulate unitary pulses properties, including the sizes of the lesions, their morphology, the boiling onset time, and the influence of the boiling onset time on the lesions sizes. In this article, the whole procedure of model design, calibration, and validation is discussed. In addition to depicting the creative use of data, our modeling approach focuses on the understanding of the mechanisms influencing the shape of the lesion. Further work is required to study the influence of the remaining bubble clouds in the context of pulse groups.

  4. Effect of Residual Noncondensables on Pressurization and Pressure Control of a Zero-Boil-Off Tank in Microgravity

    Science.gov (United States)

    Kassemi, Mohammad; Hylton, Sonya; Kartizova, Olga

    2013-01-01

    The Zero-Boil-Off Tank (ZBOT) Experiment is a small-scale experiment that uses a transparent ventless Dewar and a transparent simulant phase-change fluid to study sealed tank pressurization and pressure control with applications to on-surface and in-orbit storage of propellant cryogens. The experiment will be carried out under microgravity conditions aboard the International Space Station in the 2014 timeframe. This paper presents preliminary results from ZBOT's ground-based research that focuses on the effects of residual noncondensable gases in the ullage on both pressurization and pressure reduction trends in the sealed Dewar. Tank pressurization is accomplished through heating of the test cell wall in the wetted and un-wetted regions simultaneously or separately. Pressure control is established through mixing and destratification of the bulk liquid using a temperature controlled forced jet flow with different degrees of liquid jet subcooling. A Two-Dimensional axisymmetric two-phase CFD model for tank pressurization and pressure control is also presented. Numerical prediction of the model are compared to experimental 1g results to both validate the model and also indicate the effect of the noncondensable gas on evolution of pressure and temperature distributions in the ullage during pressurization and pressure control. Microgravity simulations case studies are also performed using the validated model to underscore and delineate the profound effect of the noncondensables on condensation rates and interfacial temperature distributions with serious implications for tank pressure control in reduced gravity.

  5. Numerical simulation of flow boiling for organic fluid with high saturation temperature in vertical porous coated tube

    Energy Technology Data Exchange (ETDEWEB)

    Yang Dong, E-mail: dyang@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi Province 710049 (China); Pan Jie; Wu Yanhua; Chen Tingkuan [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi Province 710049 (China); Zhou, Chenn Q. [Department of Mechanical Engineering, Purdue University Calumet, Hammond, IN 46323 (United States)

    2011-08-15

    Highlights: > A model is developed for the prediction of flow boiling in vertical porous tubes. > The model assumes that the nucleate boiling plays an important role. > The present model can predict most of the experimental values within {+-}20%. > The results indicate the nucleate boiling contribution decreases from 50% to 15%. - Abstract: A semi-analytical model is developed for the prediction of flow boiling heat transfer inside vertical porous coated tubes. The model assumes that the forced convection and nucleate boiling coexist together in the annular flow regime. Conservations of mass, momentum, and energy are used to solve for the liquid film thickness and temperature. The heat flux due to nucleate boiling consists of those inside and outside micro-tunnels. To close the equations, a detailed analysis of various forces acting on the bubble is presented to predict its mean departure diameter. The active nucleation site density of porous layer is determined from the pool boiling correlation by introducing suppression factor. The flow boiling heat transfer coefficients of organic fluid (cumene) with high saturation temperature in a vertical flame-spraying porous coated tube are studied numerically. It is shown that the present model can predict most of the experimental values within {+-}20%. The numerical results also indicate that the nucleate boiling contribution to the overall heat transfer coefficient decreases from 50% to 15% with vapor quality increasing from 0.1 to 0.5.

  6. Visualization Study on High Heat Flux Boiling and Critical Heat Flux

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Satbyoul; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    In this study, an integrated visible and infrared-based experimental method is introduced to simultaneously measure the details of high-resolution liquid-vapor phase and heat transfer distributions on a heated wall. The dynamics and heat transfer at high heat flux boiling and critical heat flux were observed. The experiment was conducted in pool of saturated water under atmospheric pressure. There have been many studies to examine the physical mechanisms of nucleation boiling and critical heat flux over several decades. Several visible and infrared-based optical techniques for time-resolved high resolution measurements for liquid-vapor phase and heater surface temperature during boiling have been introduced to understand the characteristics and mechanisms of them. Liquid-vapor phase, temperature, and heat flux distributions on the heated surface were measured during pool boiling of water using the integrated total reflection and infrared thermometry technique. Qualitative examination of the data for high heat flux boiling and CHF was performed. The main contributions of this work are summarized below. The existence and behavior of dry patches lead the way toward CHF condition. Therefore, the mechanistic modeling of the CHF phenomenon necessarily needs to include the physical parameters related to dynamics of the large dry patch such as life time and size. In addition to the dynamic behavior of the dry patch, the thermal behavior of the hot patch is also important. Even though the dry area was rewetted, the stored thermal energy in the hot patch can be remained if the rewetting time is short and the subsequent dry patch is regenerated quickly.

  7. Magnetic resonance imaging of boiling induced by high intensity focused ultrasound.

    Science.gov (United States)

    Khokhlova, Tatiana D; Canney, Michael S; Lee, Donghoon; Marro, Kenneth I; Crum, Lawrence A; Khokhlova, Vera A; Bailey, Michael R

    2009-04-01

    Both mechanically induced acoustic cavitation and thermally induced boiling can occur during high intensity focused ultrasound (HIFU) medical therapy. The goal was to monitor the temperature as boiling was approached using magnetic resonance imaging (MRI). Tissue phantoms were heated for 20 s in a 4.7-T magnet using a 2-MHz HIFU source with an aperture and radius of curvature of 44 mm. The peak focal pressure was 27.5 MPa with corresponding beam width of 0.5 mm. The temperature measured in a single MRI voxel by water proton resonance frequency shift attained a maximum value of only 73 degrees C after 7 s of continuous HIFU exposure when boiling started. Boiling was detected by visual observation, by appearance on the MR images, and by a marked change in the HIFU source power. Nonlinear modeling of the acoustic field combined with a heat transfer equation predicted 100 degrees C after 7 s of exposure. Averaging of the calculated temperature field over the volume of the MRI voxel (0.3 x 0.5 x 2 mm(3)) yielded a maximum of 73 degrees C that agreed with the MR thermometry measurement. These results have implications for the use of MRI-determined temperature values to guide treatments with clinical HIFU systems.

  8. Numerical prediction of nucleate pool boiling heat transfer coefficient under high heat fluxes

    Directory of Open Access Journals (Sweden)

    Pezo Milada L.

    2016-01-01

    Full Text Available This paper presents CFD (Computational Fluid Dynamics approach to prediction of the heat transfer coefficient for nucleate pool boiling under high heat fluxes. Three-dimensional numerical simulations of the atmospheric saturated pool boiling are performed. Mathematical modelling of pool boiling requires a treatment of vapor-liquid two-phase mixture on the macro level, as well as on the micro level, such as bubble growth and departure from the heating surface. Two-phase flow is modelled by the two-fluid model, which consists of the mass, momentum and energy conservation equations for each phase. Interface transfer processes are calculated by the closure laws. Micro level phenomena on the heating surface are modelled with the bubble nucleation site density, the bubble resistance time on the heating wall and with the certain level of randomness in the location of bubble nucleation sites. The developed model was used to determine the heat transfer coefficient and results of numerical simulations are compared with available experimental results and several empirical correlations. A considerable scattering of the predictions of the pool boiling heat transfer coefficient by experimental correlations is observed, while the numerically predicted values are within the range of results calculated by well-known Kutateladze, Mostinski, Kruzhilin and Rohsenow correlations. The presented numerical modeling approach is original regarding both the application of the two-fluid two-phase model for the determination of heat transfer coefficient in pool boiling and the defined boundary conditions at the heated wall surface. [Projekat Ministarstva nauke Republike Srbije, br. 174014

  9. 离子液体-顶空气相色谱法检测酮康唑中的多种高沸点有机残留溶剂%ILs as Headspace Matrix Medium for Determining High-boiling Organic Residual Solvent in Ketoconazole by HS-GC

    Institute of Scientific and Technical Information of China (English)

    李韶勇; 张琳; 倪美萍; 蒋晔

    2013-01-01

    ILs.The headspace vial was sealed and radiated under 150 W of microwave power for 75 s to accelarate the dissolution of Ketoconanzale.The sample solution was mainteined at the equilibration temperatute of 110 ℃ for 30 min and a volume of 1 mL headspace gas was directly injected into GC for analysis.A phenomenex ZB-1 capillary column (0.53 mm×60 m) with 5.00 μm film thickness was utilized for chromatographic separation of the solvents with FID as detector.A temperature programme was also employed.RESULTS An excellent seperation of ethanol,dichloromethane,ethyl acetate,butyl alcohol,pyridine,DMF and DMSO was achieved.The calibration curve was linear in the range of 1.25-200 mg·L-1 for ethanol,1.50-24.0 mg·L-1 for dichloromethane,12.5-200 mg·L-1 for ethyl acetate,12.5-200 mg·L-1 for butyl alcohol,0.500-8.00 mg·L-1 for pyridine,2.20-3.52 mg·L-1 for DMF and 12.5-200 mg·L-1 for DMSO.All the average recovery were limited in 89.8%-98.2% and RSD were less than 4.0%.For ethyl,the headspace efficiency of ILs increased with the growth of cation alkyl chain.For ethyl,DMF and DMSO,the headspace efficiency of ILs decreased with the growth of cation alkyl chain.However,the anion of ILs has minor impact on headspace efficiency.Ultimately,[Bmim][PF6] was chosen as the best headspace solvent.CONCLUSION The proposed method is easy,fast and sensitive.It is suitable for the simultaneous determination of ethanol,dichloromethane,ethyl acetate,butyl alcohol,pyridine,DMF and DMSO in Ketoconanzale,providing a new mean for the detection of residual solvent with high-boiling point.The headspace efficiency of ILs increased with the decrease of the cationic polarity for protic solvents and reduced with the decrease of cation polarity for aprotic solvents with nucleophilic ability,while the polarity of the anion has little influence on headspace efficiency.The results above mentioned provides a reference for choosing suitable ILs as headspace solvent to determinate residual solvent.

  10. Difference Of Evaporation and Boiling for Heterogeneous Water Droplets in a High-Temperature Gas

    Directory of Open Access Journals (Sweden)

    Legros Jean Claude

    2015-01-01

    Full Text Available Experimental investigation of vapor formation was carried out on water droplets on fixed graphite substrate and heterogeneous droplets (containing solid single inclusions when heating in high-temperature gas. High-speed video shooting (up to 105 frames per second, optical method (Particle Image Velocimetry and TEMA Automotive software were used. We revealed two phase change mechanisms of heterogeneous liquid droplets. Effect of evaporation and boiling on evaporation times of water droplets was determined.

  11. Numerical simulation in a subcooled water flow boiling for one-sided high heat flux in reactor divertor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P., E-mail: pinliu@aust.edu.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001 (China); Peng, X.B., E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Y.T. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, X.D. [Institute of Air Conditioning and Refrigeration, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Huang, S.H. [University of Science and Technology of China, Hefei 230026 (China); Mao, X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • The Eulerian multiphase models coupled with Non-equilibrium Boiling model can effectively simulate the subcooled water flow boiling. • ONB and FDB appear earlier and earlier with the increase of heat fluxes. • The void fraction increases gradually along the flow direction. • The inner CuCrZr tube deteriorates earlier than the outer tungsten layer and the middle OFHC copper layer. - Abstract: In order to remove high heat fluxes for plasma facing components in International Thermonuclear Experimental Reactor (ITER) divertor, a numerical simulation of subcooled water flow boiling heat transfer in a vertically upward smooth tube was conducted in this paper on the condition of one-sided high heat fluxes. The Eulerian multiphase model coupled with Non-equilibrium Boiling model was adopted in numerical simulation of the subcooled boiling two-phase flow. The heat transfer regions, thermodynamic vapor quality (x{sub th}), void fraction and temperatures of three components on the condition of the different heat fluxes were analyzed. Numerical results indicate that the onset of nucleate boiling (ONB) and fully developed boiling (FDB) appear earlier and earlier with increasing heat flux. With the increase of heat fluxes, the inner CuCrZr tube will deteriorate earlier than the outer tungsten layer and the middle oxygen-free high-conductivity (OFHC) copper layer. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor.

  12. Boiling Heat Transfer in High Temperature Generator of Absorption Chiller/Heater

    Science.gov (United States)

    Furukawa, Masahiro; Enomoto, Eiichi; Sekoguchi, Kotohiko

    The heat transfer performance of forced convective boiling was tested using a high temperature generator of absorption chiller/heater, the rear furnace wall of which was composed of two different surfaces; i. e., plain and sprayed heated surfaces. These two surfaces were bisymmetrically set. Wall surface temperatures of both the fire and fluid sides were measured at three locations along the upward flow direction in each heated surface for determining the heat flux and heat transfer coefficient. Nickel-chromium and alumina were employed as the spray materials. The test results show that the sprayed surface can yield a marked elevation in the heat transfer performance due to boiling on the plain surface. Therefore the level of heated surface temperature is largely reduced by means of the spraying surface treatment. This implies that the spraying would much improve a corrosive condition of the heated surface.

  13. Analysis of heat transfer under high heat flux nucleate boiling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Dinh, N. [3145 Burlington Laboratories, Raleigh, NC (United States)

    2016-07-15

    Analysis was performed for a heater infrared thermometric imaging temperature data obtained from high heat flux pool boiling and liquid film boiling experiments BETA. With the OpenFOAM solver, heat flux distribution towards the coolant was obtained by solving transient heat conduction of heater substrate given the heater surface temperature data as boundary condition. The so-obtained heat flux data was used to validate them against the state-of-art wall boiling model developed by D. R. Shaver (2015) with the assumption of micro-layer hydrodynamics. Good agreement was found between the model prediction and data for conditions away from the critical heat flux (CHF). However, the data indicate a different heat transfer pattern under CHF, which is not captured by the current model. Experimental data strengthen the notion of burnout caused by the irreversible hot spot due to failure of rewetting. The observation forms a basis for a detailed modeling of micro-layer hydrodynamics under high heat flux.

  14. Automated high-speed video analysis of the bubble dynamics in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Ilchenko, Volodymyr; Sattelmayer, Thomas [Technische Univ. Muenchen, Lehrstuhl fuer Thermodynamik, Garching (Germany)

    2004-04-01

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The test-section consists of a rectangular channel with a one side heated copper strip and a very good optical access. For the optical observation of the bubble behaviour the high-speed cinematography is used. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, a huge number of bubble cycles could be analysed. The structure of the developed algorithms for the detection of the bubble diameter, the bubble lifetime, the lifetime after the detachment process and the waiting time between two bubble cycles is described. Subsequently, the results from using these automated procedures are presented. A remarkable novelty is the presentation of all results as distribution functions. This is of physical importance because the commonly applied spatial and temporal averaging leads to a loss of information and, moreover, to an unjustified deterministic view of the boiling process, which exhibits in reality a very wide spread of bubble sizes and characteristic times. The results show that the mass flux dominates the temporal bubble behaviour. An increase of the liquid mass flux reveals a strong decrease of the bubble life - and waiting time. In contrast, the variation of the heat flux has a much smaller impact. It is shown in addition that the investigation of the bubble history using automated algorithms delivers novel information with respect to the bubble lift-off probability. (Author)

  15. A Photographic study of subcooled flow boiling burnout at high heat flux and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Celata, G.P.; Mariani, A.; Zummo, G. [ENEA, National Institute of Thermal-Fluid Dynamics, Rome (Italy); Cumo, M. [University of Rome (Italy); Gallo, D. [University of Palermo (Italy). Department of Nuclear Engineering

    2007-01-15

    The present paper reports the results of a visualization study of the burnout in subcooled flow boiling of water, with square cross section annular geometry (formed by a central heater rod contained in a duct characterized by a square cross section). The coolant velocity is in the range 3-10m/s. High speed movies of flow pattern in subcooled flow boiling of water from the onset of nucleate boiling up to physical burnout of the heater are recorded. From video images (single frames taken with a stroboscope light and an exposure time of 1{mu}s), the following general behaviour of vapour bubbles was observed: when the rate of bubble generation is increasing, with bubbles growing in the superheated layer close to the heating wall, their coalescence produces a type of elongated bubble called vapour blanket. One of the main features of the vapour blanket is that it is rooted to the nucleation site on the heated surface. Bubble dimensions are given as a function of thermal-hydraulic tested conditions for the whole range of velocity until the burnout region. A qualitative analysis of the behaviour of four stainless steel heater wires with different macroscopic surface finishes is also presented, showing the importance of this parameter on the dynamics of the bubbles and on the critical heat flux. (author)

  16. A Review of Boiling Heat Transfer Processes at High Heat Flux

    Science.gov (United States)

    1991-04-01

    liquid metals) which can lead to explosive boiling (known as bumping) that can lead to structural damage to hardware. 3 Transition boiling occurs between...to initiate boiling, in some cases having an explosive transition that can cause structural damage to hardware. A thorough understanding of boiling...graphical correlations for the pressure drops encountered in their experiments. About the same time, Staub and Walmet (Ref. 173) identified the two regions

  17. High-intensity focused ultrasound monitoring using harmonic motion imaging for focused ultrasound (HMIFU) under boiling or slow denaturation conditions.

    Science.gov (United States)

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E

    2015-07-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal, and mechanical effects was investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n = 13) under slow denaturation or boiling regimes. A passive cavitation detector (PCD) was used to assess the acoustic cavitation activity, and a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating the tissue initial-softening-then- stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46 ± 0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown under both boiling and slow denaturation regimes to be effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise.

  18. Anti-obesity effects of boiled tuna extract in mice with obesity induced by a high-fat diet.

    Science.gov (United States)

    Kim, Youngmin; Kwon, Mi-Jin; Choi, Jeong-Wook; Lee, Min-Kyeong; Kim, Chorong; Jung, Jaehun; Aprianita, Heny; Nam, Heesop; Nam, Taek-Jeong

    2016-10-01

    The aim of this study was to examine the anti-obesity effects of boiled tuna extract in C57BL/6N mice with obesity induced by a high-fat diet (HFD). We determined the anti-obesity effects of boiled tuna extract (100, 200, or 400 mg/kg) on the progression of HFD-induced obesity for 10 weeks. The mice were divided into 5 groups as follows: the normal diet (ND) group (n=10); the HFD group (n=10); the mice fed HFD and 100 mg/kg boiled tuna extract group (n=10); those fed a HFD and 200 mg/kg boiled tuna extract group (n=10); and those fed a HFD and 400 mg/kg boiled tuna extract group (n=10). Changes in body weight, fat content, serum lipid levels and lipogenic enzyme levels were measured. The consumption of boiled tuna extract lowered epididymal tissue weight and exerted anti-obesity effects, as reflected by the serum glucose, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL‑C), low-density lipoprotein cholesterol (LDL-C), insulin and leptin levels. In addition, we demonstrated changes in liver adipogenic- and lipogenic-related protein expression by western blot analysis. Boiled tuna extract downregulated the levels of the CCAAT/enhancer-binding protein α, β and δ (C/EBPα, β, δ), and peroxisome proliferator-activated receptor-γ (PPAR-γ) adipocyte marker genes. Boiled tuna extract also attenuated adipogenic and lipogenic gene expression, namely the levels of fatty acid synthase (FAS), lipoprotein lipase (LPL), acetyl-CoA carboxylase (ACC), glucose transporter type 4 (Glut4) and phosphorylated adenosine monophosphate-activated protein kinase α and β (AMPKα, β) in a dose-dependent manner. Moreover, the consumption of boiled tuna extract restored the levels of superoxide dismutase (SOD), catalase (CAT), glutamic oxaloacetic transaminase (GOT), glutamic-pyruvate transaminase (GPT), aspartate transaminase (AST) and alanine transaminase (ALT) to those of the control group. These results

  19. Aspects of subcooled boiling

    Energy Technology Data Exchange (ETDEWEB)

    Bankoff, S.G. [Northwestern Univ., Evanston, IL (United States)

    1997-12-31

    Subcooled boiling boiling refers to boiling from a solid surface where the bulk liquid temperature is below the saturation temperature (subcooled). Two classes are considered: (1) nucleate boiling, where, for large subcoolings, individual bubbles grow and collapse while remaining attached to the solid wall, and (2) film boiling, where a continuous vapor film separates the solid from the bulk liquid. One mechanism by which subcooled nucleate boiling results in very large surface heat transfer coefficient is thought to be latent heat transport within the bubble, resulting from simultaneous evaporation from a thin residual liquid layer at the bubble base, and condensation at the polar bubble cap. Another is the increased liquid microconvection around the oscillating bubble. Two related problems have been attacked. One is the rupture of a thin liquid film subject to attractive and repulsive dispersion forces, leading to the formation of mesoscopic drops, which then coalesce and evaporate. Another is the liquid motion in the vicinity of an oscillating contact line, where the bubble wall is idealized as a wedge of constant angle sliding on the solid wall. The subcooled film boiling problem has been attacked by deriving a general long-range nonlinear evolution equation for the local thickness of the vapor layer. Linear and weakly-nonlinear stability results have been obtained. A number of other related problems have been attacked.

  20. Void fraction in horizontal bulk flow boiling at high flow qualities

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Fancisco J.; Monne, Carlos [Dpto. de Ingenieria Mecanica, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain); Pascau, Antonio [Dpto. de Ciencia de los Materiales y Fluidos, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain)

    2008-04-15

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities ({<=}0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality ({<=}0.2). (author)

  1. High Intensity Focused Ultrasound Monitoring using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) under boiling or slow denaturation conditions

    Science.gov (United States)

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal and mechanical effects were investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n=13) under slow denaturation or boiling regimes. Passive Cavitation Detector (PCD) was used to assess the acoustic cavitation activity while a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating tissue the initial-softening-then-stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46±0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise. PMID:26168177

  2. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, K. [Kobe Univ. of Mercantile Marine (Japan); Shiotsu, M.; Sakurai, A. [Kyoto Univ. (Japan)

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  3. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound.

    Science.gov (United States)

    Canney, Michael S; Khokhlova, Vera A; Bessonova, Olga V; Bailey, Michael R; Crum, Lawrence A

    2010-02-01

    Nonlinear propagation causes high-intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have been investigated previously and found to not significantly alter high-intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm(2) was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared with calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating as a result of shock waves is therefore important to HIFU, and clinicians should be aware of the potential for very rapid boiling because it alters treatments.

  4. Biomass to fuels : Upgrading of flash pyrolysis oil by reactive distillation using a high boiling alcohol and acid catalysts

    NARCIS (Netherlands)

    Mahfud, F.H.; Melian Cabrera, I.V.; Manurung, R.M.; Heeres, H.J.

    2007-01-01

    We here report our studies on the upgrading of flash pyrolysis oil using an improved alcohol treatment method. The method consists of treating pyrolysis oil with a high boiling alcohol like n-butanol in the presence of a (solid) acid catalyst at 323-353 K under reduced pressure (<10 kPa). Using this

  5. Microgravity experiments on boiling and applications: research activity of advanced high heat flux cooling technology for electronic devices in Japan.

    Science.gov (United States)

    Suzuki, Koichi; Kawamura, Hiroshi

    2004-11-01

    Research and development on advanced high heat flux cooling technology for electronic devices has been carried out as the Project of Fundamental Technology Development for Energy Conservation, promoted by the New Energy and Industrial Technology Development Organization of Japan (NEDO). Based on the microgravity experiments on boiling heat transfer, the following useful results have obtained for the cooling of electronic devices. In subcooled flow boiling in a small channel, heat flux increases considerably more than the ordinary critical heat flux with microbubble emission in transition boiling, and dry out of the heating surface is disturbed. Successful enhancement of heat transfer is achieved by a capillary effect from grooved surface dual subchannels on the liquid supply. The critical heat flux increases 30-40 percent more than for ordinary subchannels. A self-wetting mechanism has been proposed, following investigation of bubble behavior in pool boiling of binary mixtures under microgravity. Ideas and a new concept have been proposed for the design of future cooling system in power electronics.

  6. Development of a high-performance boiling heat exchanger by improved liquid supply to narrow channels.

    Science.gov (United States)

    Ohta, Haruhiko; Ohno, Toshiyuki; Hioki, Fumiaki; Shinmoto, Yasuhisa

    2004-11-01

    A two-phase flow loop is a promising method for application to thermal management systems for large-scale space platforms handling large amounts of energy. Boiling heat transfer reduces the size and weight of cold plates. The transportation of latent heat reduces the mass flow rate of working fluid and pump power. To develop compact heat exchangers for the removal of waste heat from electronic devices with high heat generation density, experiments on a method to increase the critical heat flux for a narrow heated channel between parallel heated and unheated plates were conducted. Fine grooves are machined on the heating surface in a transverse direction to the flow and liquid is supplied underneath flattened bubbles by the capillary pressure difference from auxiliary liquid channels separated by porous metal plates from the main heated channel. The critical heat flux values for the present heated channel structure are more than twice those for a flat surface at gap sizes 2 mm and 0.7 mm. The validity of the present structure with auxiliary liquid channels is confirmed by experiments in which the liquid supply to the grooves is interrupted. The increment in the critical heat flux compared to those for a flat surface takes a maximum value at a certain flow rate of liquid supply to the heated channel. The increment is expected to become larger when the length of the heated channel is increased and/or the gravity level is reduced.

  7. Ethylene diamine-assisted synthesis of iron oxide nanoparticles in high-boiling polyolys.

    Science.gov (United States)

    Arndt, Darius; Zielasek, Volkmar; Dreher, Wolfgang; Bäumer, Marcus

    2014-03-01

    The decomposition of iron(III) acetylacetonate in high-boiling polyols such as diethylene glycole is an efficient way to produce water-soluble iron oxide nanoparticles (IONPs) with small sizes. We present an extension of this method by introducing ethylene diamine (EDA) or diethylene triamine (DTA) as a structure-directing agent and adding polyvinylpyrrolidone (PVP) as a stabilizing agent. The synthesis was studied with respect to effects of the chain length of the polyol used as solvent, the chain length of the structure-directing agent, the presence of PVP, the heating rate, and the nature of the precursor. By varying these parameters, we were able to show, that probably an interplay of the structure-directing agent and the polyol plays an important role for the stabilization and growth of the different facets of the IONP crystal. The chain length of the polyol used as solvent alters the influence of EDA or DTA as stabilizer of {111} facets, leading to IONPs with spherical, tetrahedral, or nanoplate morphology and mean diameters ranging from 4 nm up to 25 nm. PVP in the reaction medium narrows down particle size and shape distributions and promotes the formation of very stable, water-based colloidal solutions. The saturation magnetization of the particles was determined by a superconducting quantum interference device (SQUID) and their ability to act as a T2-contrast agent was tested by magnetic resonance imaging (MRI). Copyright © 2013 Elsevier Inc. All rights reserved.

  8. A high-fidelity approach towards heat transfer prediction of pool boiling

    Science.gov (United States)

    Yazdani, Miad; Alahyari, Abbas; Radcliff, Thomas

    2014-11-01

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change with an unprecedented fidelity and cost. The particular focus is to predict the heat transfer coefficient of pool-boiling regime and its transition to critical heat flux on surfaces of arbitrary shape and roughness distribution. The large-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf methods for interface tracking and interphase mass and energy transfer. The small-scale of the microlayer which forms at early stage of bubble nucleation is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the surface roughness and its role in bubble nucleation and growth is represented based on thermodynamics of nucleation process which allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the model's prediction of pool-boiling heat transfer coefficient is verified against reputable correlations for various roughness distributions and different surface alignment. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement features on thermal and hydrodynamic characteristics of these surfaces.

  9. Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens

    Science.gov (United States)

    Merte, Herman, Jr.

    1988-01-01

    Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.

  10. Effects of boiling duration in processing of White Paeony Root on its overall quality evaluated by ultra-high performance liquid chromatography quadrupole/time-of-flight mass spectrometry based metabolomics analysis and high performance liquid chromatography quantification.

    Science.gov (United States)

    Ming, Kong; Xu, Jun; Liu, Huan-Huan; Xu, Jin-Di; Li, Xiu-Yang; Lu, Min; Wang, Chun-Ru; Chen, Hu-Biao; Li, Song-Lin

    2017-01-01

    Boiling processing is commonly used in post-harvest handling of White Paeony Root (WPR), in order to whiten the herbal materials and preserve the bright color, since such WPR is empirically considered to possess a higher quality. The present study was designed to investigate whether and how the boiling processing affects overall quality of WPR. First, an ultra-high performance liquid chromatography quadrupole/time-of-flight mass spectrometry-based metabolomics approach coupled with multivariate statistical analysis was developed to compare the holistic quality of boiled and un-boiled WPR samples. Second, ten major components in WPR samples boiled for different durations were quantitatively determined using high performance liquid chromatography to further explore the effects of boiling time on the holistic quality of WPR, meanwhile the appearance of the processed herbal materials was observed. The results suggested that the boiling processing conspicuously affected the holistic quality of WPR by simultaneously and inconsistently altering the chemical compositions and that short-time boiling processing between 2 and 10 min could both make the WPR bright-colored and improve the contents of major bioactive components, which were not achieved either without boiling or with prolonged boiling. In conclusion, short-term boiling (2-10 min) is recommended for post-harvest handling of WPR.

  11. Boiling Heat Transfer Measurements on Highly Conductive Surfaces Using Microscale Heater and Temperature Arrays

    Science.gov (United States)

    Kim, J.; Bae, S. W.; Whitten, M. W.; Mullen, J. D.; Quine, R. W.; Kalkur, T. S.

    1999-01-01

    Two systems have been developed to study boiling heat transfer on the microscale. The first system utilizes a 32 x 32 array of diodes to measure the local temperature fluctuations during boiling on a silicon wafer heated from below. The second system utilizes an array of 96 microscale heaters each maintained at constant surface temperature using electronic feedback loops. The power required to keep each heater at constant temperature is measured, enabling the local heat transfer coefficient to be determined. Both of these systems as well as some preliminary results are discussed.

  12. 硅烷高沸物的综合利用%Comprehensive utilization of high boiling silane

    Institute of Scientific and Technical Information of China (English)

    刘玲

    2000-01-01

    介绍了合成有机硅过程中产生的硅烷高沸物的组成、处理方法及其综合利用技术进展情况。简述了利用硅烷高沸物制备单硅烷、硅油、有机硅防水剂、有机硅树脂、消泡剂等产品的生产方法及技术特点。%The advances of components, treatment and comprehensive utilization of high boiling silane resulting from the synthesis of organo-silicone were introduced. The production methods and technical features of monosilane, silicone oil, silicone water-proofing agent and silicone resin using the high boiling silane were described.

  13. Residual stress in high modulus carbon fibers

    Science.gov (United States)

    Chen, K. J.; Diefendorf, R. J.

    1982-01-01

    The modulus and residual strain in carbon fibers are measured by successively electrochemically milling away the fiber surface. Electrochemical etching is found to remove the carbon fiber surface very uniformly, in contrast to air and wet oxidation. The precision of fiber diameter measurements is improved by using a laser diffraction technique instead of optical methods. More precise diameter measurements reveal that past correlations of diameter and fiber modulus are largely measurement artifact. The moduli of most carbon fibers decrease after the outer layers of the fibers are removed. Owing to experimental difficulties, the moduli and strengths of the fibers at their centers are not determined, and moduli are estimated on the basis of microstructure. The calculated residual stresses are found to be insensitive to these moduli estimates as well as the exact form of regression equation used to describe the moduli and residual strain distributions. Axial compressive residual stresses are found to be very high for some higher modulus carbon fibers. It is pointed out that the compressive stress makes the fibers insensitive to surface flaws when loaded in tension but it may initiate failure by buckling when loaded in compression.

  14. Histological and biochemical analysis of mechanical and thermal bioeffects in boiling histotripsy lesions induced by high intensity focused ultrasound.

    Science.gov (United States)

    Wang, Yak-Nam; Khokhlova, Tatiana; Bailey, Michael; Hwang, Joo Ha; Khokhlova, Vera

    2013-03-01

    Recent studies have shown that shockwave heating and millisecond boiling in high-intensity focused ultrasound fields can result in mechanical fractionation or emulsification of tissue, termed boiling histotripsy. Visual observations of the change in color and contents indicated that the degree of thermal damage in the emulsified lesions can be controlled by varying the parameters of the exposure. The goal of this work was to examine thermal and mechanical effects in boiling histotripsy lesions using histologic and biochemical analysis. The lesions were induced in ex vivo bovine heart and liver using a 2-MHz single-element transducer operating at duty factors of 0.005-0.01, pulse durations of 5-500 ms and in situ shock amplitude of 73 MPa. Mechanical and thermal damage to tissue was evaluated histologically using conventional staining techniques (hematoxylin and eosin, and nicotinamide adenine dinucleotide-diaphorase). Thermal effects were quantified by measuring denaturation of salt soluble proteins in the treated region. According to histologic analysis, the lesions that visually appeared as a liquid contained no cellular structures larger than a cell nucleus and had a sharp border of one to two cells. Both histologic and protein analysis showed that lesions obtained with short pulses (thermal damage. Increasing the pulse duration resulted in an increase in thermal damage. However, both protein analysis and nicotinamide adenine dinucleotide-diaphorase staining showed less denaturation than visually observed as whitening of tissue. The number of high-intensity focused ultrasound pulses delivered per exposure did not change the lesion shape or the degree of thermal denaturation, whereas the size of the lesion showed a saturating behavior suggesting optimal exposure duration. This study confirmed that boiling histotripsy offers an effective, predictable way to non-invasively fractionate tissue into sub-cellular fragments with or without inducing thermal damage.

  15. Oscillate Boiling

    CERN Document Server

    Li, Fenfang; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2016-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about $10\\,\\mu$m in diameter onto a 165\\,nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatably at several $100\\,$kHz. The microbubble's oscillations are accompanied with bubble pinch-off leading to a stream of gaseous bubbles into the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by the non-spherical collapses and by surface pinning. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may allow to overcome the heat transfer thresholds observed dur...

  16. BOILING REACTORS

    Science.gov (United States)

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  17. Experimental investigation of film boiling on spheres using high-speed video

    Directory of Open Access Journals (Sweden)

    Fedoseenko Ivan

    2012-04-01

    Full Text Available The experimental investigation of saturated Freon-113 film boiling on spheres with different diameters at atmospheric pressure under conditions of free convection is executed. It was found that with increasing diameter of the sphere and the temperature difference is changing the wave motion of the vapor film with two-dimensional to three-dimensional mode. Also, found that in a range of regime parameters at which observed a three-dimensional interface motion, the destruction method of two-dimensional wave is similar to a series of three or more waves. I.e. was some system memory. When the temperature difference close to critical after the passage of a wave are possible the local contacts of liquid with a heated surface of the sphere. However, these contacts do not lead to degradation of the wave motion of the interface, and the film boiling crisis of saturated Freon-113 occurs smoothly in contrast to the crisis at boiling of saturated and subcooled water.

  18. Boiling liquid cauldron status report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.A.

    1980-12-28

    The progress made over the past year in assessing the feasibility of the high-temperature, boiling cauldron blanket concept for the tanden mirror reactor is reviewed. The status of the proposed experiments and recently revised estimates of the vapor void fraction in the boiling pool are discussed.

  19. Measurement of nucleation site density, bubble departure diameter and frequency in pool boiling of water using high-speed infrared and optical cameras

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, Craig; Buongiorno, Jacopo; Hu, Lin-wen; McKrell, Thomas [Massachusetts Institute of Technology, Cambridge, MA (United States)], e-mail: jacopo@mit.edu

    2009-07-01

    A high-speed video and IR thermometry based technique has been used to obtain time and space resolved information on bubble nucleation and boiling heat transfer. This approach provides a fundamental and systematic method for investigating nucleate boiling in a very detailed fashion. Data on bubble departure diameter and frequency, growth and wait times, and nucleation site density are measured with relative ease. The data have been compared to the traditional decades-old and poorly-validated nucleate-boiling models and correlations. The agreement between the data and the models is relatively good. This study also shows that new insights into boiling heat transfer mechanisms can be obtained with the present technique. For example, our data and analysis suggest that a large contribution to bubble growth comes from heat transfer through the superheated liquid layer in addition to micro layer evaporation. (author)

  20. Gravimetric analysis of the solubility of methane in high boiling hydrocarbons and petroleum products; Gravimetrische Bestimmung der Loeslichkeit von Methan in hoeher siedenden Kohlenwasserstoffen und Erdoelprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Laux, H.; Rahimian, I. [Institut fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany)

    2001-05-01

    The solubility of methane has a great influence on the colloid stability of crude oils at the conditions of production. Adequate data are needed for the modelling of the beginning of asphaltene precipitation as the result of the destabilization. Because such data are limited in the literature a magnetic suspension balance was used. By means of the magnetic suspension balance the solubility of gases in high boiling products can be determined by the weight difference resulting from the steped pressure reduction. The solubility of methane was investigated in different n-alkanes and squalane as well as a wax, a slack wax, a extract from the solvent raffination and a atmospheric crude oil residue. The aim was to investigate the influence of the molare weight, the structure and the composition of mixture on the solubility of methane. The pressure was varied in the region to 120 bar, the temperature was predominantly 75 C. The influence of the temperature on the solubility of methane was studied in the slack wax and the atmospheric residue. The results and the advantage as well as the disadvantage of the using of the magnetic suspension balance will be discussed. (orig.)

  1. Procedure of Active Residual Heat Removal after Emergency Shutdown of High-Temperature-Gas-Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2014-01-01

    Full Text Available After emergency shutdown of high-temperature-gas-cooled reactor, the residual heat of the reactor core should be removed. As the natural circulation process spends too long period of time to be utilized, an active residual heat removal procedure is needed, which makes use of steam generator and start-up loop. During this procedure, the structure of steam generator may suffer cold/heat shock because of the sudden load of coolant or hot helium at the first few minutes. Transient analysis was carried out based on a one-dimensional mathematical model for steam generator and steam pipe of start-up loop to achieve safety and reliability. The results show that steam generator should be discharged and precooled; otherwise, boiling will arise and introduce a cold shock to the boiling tubes and tube sheet when coolant began to circulate prior to the helium. Additionally, in avoiding heat shock caused by the sudden load of helium, the helium circulation should be restricted to start with an extreme low flow rate; meanwhile, the coolant of steam generator (water should have flow rate as large as possible. Finally, a four-step procedure with precooling process of steam generator was recommended; sensitive study for the main parameters was conducted.

  2. Pool boiling with high heat flux enabled by a porous artery structure

    Science.gov (United States)

    Bai, Lizhan; Zhang, Lianpei; Lin, Guiping; Peterson, G. P.

    2016-06-01

    A porous artery structure utilizing the concept of "phase separation and modulation" is proposed to enhance the critical heat flux of pool boiling. A series of experiments were conducted on a range of test articles in which multiple rectangular arteries were machined directly into the top surface of a 10.0 mm diameter copper rod. The arteries were then covered by a 2.0 mm thickness microporous copper plate through silver brazing. The pool wall was fabricated from transparent Pyrex glass to allow a visualization study, and water was used as the working fluid. Experimental results confirmed that the porous artery structure provided individual flow paths for the liquid supply and vapor venting, and avoided the detrimental effects of the liquid/vapor counter flow. As a result, a maximum heat flux of 610 W/cm2 over a heating area of 0.78 cm2 was achieved with no indication of dryout, prior to reaching the heater design temperature limit. Following the experimental tests, the mechanisms responsible for the boiling critical heat flux and performance enhancement of the porous artery structure were analyzed.

  3. Cooling of high power LED chip by boiling on the longitudinal finned surfaces

    Directory of Open Access Journals (Sweden)

    Shatskiy Evgeniy

    2016-01-01

    Full Text Available In this work, we have created a new experimental setup for studying heat transfer from a local heat source. The boiling heat transfer on the local heaters with a diameter of 5 and 1 mm has been investigated. It is shown that on the finned surfaces the overheating relative to the saturation temperature in comparison with a smooth surface decreases up to three times for the heater with a diameter of 5 mm. There is up to two times increase in heat transfer coefficient on finned surfaces as compared to the smooth ones. For finned surfaces on the heater with a diameter of 1 mm the surface overheating relative to the saturation temperature decreases in four times. More than three times increase is observed for the heat transfer coefficient on finned surfaces as compared to the smooth ones.

  4. Design Technique for the High-Boiling Propellant Storage and Preparation Facility at the Cosmodrome «Vostochny»

    Directory of Open Access Journals (Sweden)

    O. E. Denisov

    2014-01-01

    to tanks of the rocket-carriers through the pipeline.A direct supply of the prepared component to the rocket-carrier tanks allows a significantly decreasing equipment demand at the launch complex (LC owing to almost full abandonment of the near-launch storehouses and propellant-feed systems.The pipeline fuel remnants are discharged through the branch in the sump from which fuel can be directed to the storage capacities to have its future preparation again.Existing LC versus LC with the storage facility:- Each LC has a separate near-launch storehouse;- Each near-launch storehouse contains several charges to feed fuel tanks of rocket-carrier;- Each LC has the unique systems of propellant preparation.Application of storage facility:- storage facility allows bulk receipt and storage of high-boiling propellant to meet needs of all LC of the spaceport;- there are all means at the storage facility to prepare high-boiling propellant in all required parameters;- high-boiling propellant can be supplied from the storage facility using both transport capacities, and pipelines directly to the rocket-carrier tanks.Advantages:+ possibility to receive and store the bulk high-boiling propellant+ decreasing total demand of technological systems+ simplified spaceport infrastructureDisadvantages:- decreasing reliability rates caused by a lack of reservation of technological systems

  5. Assessing the mammalian toxicity of high-boiling petroleum substances under the rubric of the HPV program.

    Science.gov (United States)

    Gray, Thomas M; Simpson, Barry J; Nicolich, Mark J; Murray, F Jay; Verstuyft, Allen W; Roth, Randy N; McKee, Richard H

    2013-11-01

    In 1998, the US EPA announced the HPV Challenge Program, a voluntary chemical data collection effort. The Petroleum HPV Testing Group (PHPVTG(1)) volunteered to provide data on approximately 110 high boiling petroleum substances (HBPS), i.e. substances with final boiling points ≥ approximately 650°F (343°C). These HBPS are substances of unknown and variable composition (UVCBs) that are composed of numerous individual constituents. Toxicity studies have shown that some HBPS can produce systemic (repeat-dose) and developmental effects, and some are mutagenic under in vitro conditions. The papers in this supplement show that these effects are related to the profiles of aromatic constituents in these substances. Further, it is shown that the effects on selected repeat-dose and developmental toxicity endpoints and mutagenic activity in bacterial assays can be predicted from compositional information using models based on the aromatic-ring class profile, "ARC profile" as defined by gas chromatographic separation of the DMSO-soluble fraction of the starting materials. This chromatographic method and the predictive models provide an efficient means of characterizing for screening purposes the potential for repeat-dose, developmental effects and bacterial mutagenicity of HBPS and can reduce the number of animal tests that would be required if these tests were conducted on all 110 HBPS. Copyright © 2012. Published by Elsevier Inc.

  6. Intensive evaporation and boiling of a heterogeneous liquid droplet with an explosive disintegration in high-temperature gas area

    Directory of Open Access Journals (Sweden)

    Piskunov Maxim V.

    2016-01-01

    Full Text Available The using of the high-speed (not less than 105 frames per second video recording tools (“Phantom” and the software package ("TEMA Automotive" allowed carrying out an experimental research of laws of intensive vaporization with an explosive disintegration of heterogeneous (with a single solid nontransparent inclusion liquid droplet (by the example of water in high-temperature (500-800 K gases (combustion products. Times of the processes under consideration and stages (liquid heat-up, evaporation from an external surface, bubble boiling at internal interfaces, growth of bubble sizes, explosive droplet breakup were established. Necessary conditions of an explosive vaporization of a heterogeneous droplet were found out. Mechanisms of this process and an influence of properties of liquid and inclusion material on them were determined.

  7. Developmental toxicity following oral administration of a high-boiling coal liquid to pregnant rats

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, P.L.; Rommereim, D.N.; Sikov, M.R.

    1984-01-01

    Heavy distillate (HD), the highest-boiling coal liquid from the solvent-refined coal-II process (SRC-II), was administered by intragastric (IG) intubation to pregnant rats. Five dose levels of HD (0.09, 0.14, 0.18, 0.36 and 0.74 g kg/sup -1/), were given daily from 12 to 16 days of gestation and the rats were killed at 20 days of gestation. Maternal body weights and weights of the liver, kidneys, spleen, adrenals, thymus, ovaries and the gravid uterus were obtained. Gravid uteri were evaluated for prenatal mortality. Live fetuses were examined for malformations and weighed; fetal lungs were excised and weighed. Maternal (extragestational) weight gains and thymic weights diminished in all groups that received the SRC material. Adrenal weights were increased in all treated animals, except for those in the lowest-dose group (0.9 g kg/sup -1/). There was significant maternal mortality at 0.74 g kg/sup -1/ and increased intrauterine mortality at doses of 0.37 and 0.74 g kg/sup -1/. Placental weight was depressed, and the incidence of fetal anomalies was increased at 0.14 g kg/sup -1/ and all higher dose levels. 19 references, 1 figure, 5 tables.

  8. Duality of boiling systems and uncertainty phenomena

    Institute of Scientific and Technical Information of China (English)

    柴立合; 彭晓峰; 王补宣

    2000-01-01

    Interactions among dry patches at high heat flux are theoretically analyzed. The high heat flux boiling experiments on metal plate wall with different materials and thickness are correspondingly conducted. The duality of boiling system, i.e. hydrodynamic performance and self-organized performance is identified. A unified explanation of hydrodynamic models and dry patches models is given. The scatter and uncertainty in boiling data can be mainly attributed to the intrinsic duality, but not the sole surface effects. The present experimental results explain why the deviation point at high flux boiling is seen only on occasion and why the self-organization of dry patches is often ignored in available literature.

  9. Enhanced heat transfer in confined pool boiling

    Energy Technology Data Exchange (ETDEWEB)

    Rops, C.M. [TNO Science and Industry, P.O. Box 155, 2600 AD Delft (Netherlands)], E-mail: cor.rops@tno.nl; Lindken, R. [Laboratory for Aero and Hydrodynamics, Delft University of Technology (Netherlands); Velthuis, J.F.M. [TNO Science and Industry, P.O. Box 155, 2600 AD Delft (Netherlands); Westerweel, J. [Laboratory for Aero and Hydrodynamics, Delft University of Technology (Netherlands)

    2009-08-15

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found that a reduction of the pool diameter leads to an enhancement of the nucleate boiling heat flux for most of the boiling curve. Our experimental results indicate that this enhancement is not affected by the depth of the boiling pot, the material of the bounding wall, or the diameter of the inlet water supply. High-speed camera imaging shows that the heat transfer enhancement for the spatially confined pool boiling occurs in conjunction with a stable circulating flow, which is in contrast to the chaotic and mainly upward motion for boiling in larger pool diameters. An explanation for the enhancement of the heat transfer and the associated change in flow pattern is found in the singularisation of the nucleate boiling process.

  10. A study of boiling heat transfer as applied to the cooling of ball bearings in the high pressure oxygen turbopump of the space shuttle main engine

    Science.gov (United States)

    Schreiber, Will

    1986-01-01

    Two sets of ball bearings support the main shaft within the High Pressure Oxygen Turbopump (HPOTP) in the Space Shuttle Main Engine (SSME). In operation, these bearings are cooled and lubricated with high pressure liquid oxygen (LOX) flowing axially through the bearing assembly. Currently, modifications in the assembly design are being contemplated in order to enhance the lifetime of the bearings and to allow the HPOTP to operate under larger loads. An understanding of the fluid dynamics and heat transfer characteristics of the flowing LOX is necessary for the implementation of these design changes. The proposed computational model of the LOX fluid dynamics, in addition to dealing with a turbulent flow in a complex geometry, must address the complication associated with boiling and two-phase flow. The feasibility of and possible methods for modeling boiling heat transfer are considered. The theory of boiling as pertains to this particular problem is reviewed. Recommendations are given for experiments which would be necessary to establish validity for correlations needed to model boiling.

  11. Instability in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of instability in flow boiling in microchannels occurring in high heat flux electronic cooling. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Microchannels,” and "Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,"by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  12. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard; Klug, Matthew T.; Hörantner, Maximilian T.; Johnston, Michael B.; Nicholas, Robin J.; Moore, David T.; Snaith, Henry J.

    2017-01-01

    Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aprotic solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.

  13. Pyrosequencing reveals high-temperature cellulolytic microbial consortia in Great Boiling Spring after in situ lignocellulose enrichment.

    Directory of Open Access Journals (Sweden)

    Joseph P Peacock

    Full Text Available To characterize high-temperature cellulolytic microbial communities, two lignocellulosic substrates, ammonia fiber-explosion-treated corn stover and aspen shavings, were incubated at average temperatures of 77 and 85°C in the sediment and water column of Great Boiling Spring, Nevada. Comparison of 109,941 quality-filtered 16S rRNA gene pyrosequences (pyrotags from eight enrichments to 37,057 quality-filtered pyrotags from corresponding natural samples revealed distinct enriched communities dominated by phylotypes related to cellulolytic and hemicellulolytic Thermotoga and Dictyoglomus, cellulolytic and sugar-fermenting Desulfurococcales, and sugar-fermenting and hydrogenotrophic Archaeoglobales. Minor enriched populations included close relatives of hydrogenotrophic Thermodesulfobacteria, the candidate bacterial phylum OP9, and candidate archaeal groups C2 and DHVE3. Enrichment temperature was the major factor influencing community composition, with a negative correlation between temperature and richness, followed by lignocellulosic substrate composition. This study establishes the importance of these groups in the natural degradation of lignocellulose at high temperatures and suggests that a substantial portion of the diversity of thermophiles contributing to consortial cellulolysis may be contained within lineages that have representatives in pure culture.

  14. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles

    Science.gov (United States)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-09-01

    A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.

  15. Pool Boiling of Hydrocarbon Mixtures on Water

    Energy Technology Data Exchange (ETDEWEB)

    Boee, R.

    1996-09-01

    In maritime transport of liquefied natural gas (LNG) there is a risk of spilling cryogenic liquid onto water. The present doctoral thesis discusses transient boiling experiments in which liquid hydrocarbons were poured onto water and left to boil off. Composition changes during boiling are believed to be connected with the initiation of rapid phase transition in LNG spilled on water. 64 experimental runs were carried out, 14 using pure liquid methane, 36 using methane-ethane, and 14 using methane-propane binary mixtures of different composition. The water surface was open to the atmosphere and covered an area of 200 cm{sup 2} at 25 - 40{sup o}C. The heat flux was obtained by monitoring the change of mass vs time. The void fraction in the boiling layer was measured with a gamma densitometer, and a method for adapting this measurement concept to the case of a boiling cryogenic liquid mixture is suggested. Significant differences in the boil-off characteristics between pure methane and binary mixtures revealed by previous studies are confirmed. Pure methane is in film boiling, whereas the mixtures appear to enter the transitional boiling regime with only small amounts of the second component added. The results indicate that the common assumption that LNG will be in film boiling on water because of the high temperature difference, may be questioned. Comparison with previous work shows that at this small scale the results are influenced by the experimental apparatus and procedures. 66 refs., 76 figs., 28 tabs.

  16. Pressure gradients and boiling as mechanisms for localizing ore in porphyry systems

    Science.gov (United States)

    Cunningham, Charles G.

    1978-01-01

    Fluid inclusions in ore zones of porphyry systems indicate that extensive boiling of hydrothermal fluids accompanies deposition of ore and gangue minerals. The boiling commonly accompanied a change from a lithostatic to a hydrostatic environment during evolution of an epizonal stock. Pressure gradients near the margin of the stock can determine whether ore or only a diffuse zone of mineralization is formed. A sharp drop in pressure in an epizonal environment is more likely to cause extensive boiling than a comparable change in a deeper environment, as the slope of the boiling curve steepens with an increase 'in pressure. The drop in pressure causes the hydrothermal fluids to boil and creates a crackle (stockwork) breccia, which hosts the veinlets of gangue quartz and ore minerals. The boiling selectively partitions CO2, H2S, and HCl into the vapor phase, changing the pH, composition, ionic strength, and thus the solubility product of metal complexes in the remaining liquid and causing the ore and gangue to come out of solution. Fluid inclusions trapped from boiling solutions can exhibit several forms, depending on the physical and chemical conditions of the hydrothermal fluid from which they were trapped. In one case, inclusions when heated can homogenize to either liquid or vapor at the same temperature, which is the true boiling temperature. In another case, homogenization of various inclusions can occur through a range of temperatures. The latter case results from the trapping of mixture of liquid and vapor. Variations in salinity can result from boiling of the hydrothermal fluid, or intermittent incorporation of high-salinity fluids from the magma, or trapping of fluids of varying densities at pressure-temperature conditions above the critical point of the fluid. In places, paleopressure-temperature transition zones can be recognized by fluid-inclusion homogenization temperatures and phase relationships and by the presence of anhydrite daughter minerals

  17. Accident source terms for boiling water reactors with high burnup cores.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Powers, Dana Auburn; Leonard, Mark Thomas

    2007-11-01

    The primary objective of this report is to provide the technical basis for development of recommendations for updates to the NUREG-1465 Source Term for BWRs that will extend its applicability to accidents involving high burnup (HBU) cores. However, a secondary objective is to re-examine the fundamental characteristics of the prescription for fission product release to containment described by NUREG-1465. This secondary objective is motivated by an interest to understand the extent to which research into the release and behaviors of radionuclides under accident conditions has altered best-estimate calculations of the integral response of BWRs to severe core damage sequences and the resulting radiological source terms to containment. This report, therefore, documents specific results of fission product source term analyses that will form the basis for the HBU supplement to NUREG-1465. However, commentary is also provided on observed differences between the composite results of the source term calculations performed here and those reflected NUREG-1465 itself.

  18. Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents

    DEFF Research Database (Denmark)

    Chang, J.F.; Sun, B.Q.; Breiby, Dag Werner

    2004-01-01

    Chloroform is a general solvent for poly(3-hexylthiophene) (P3HT) active layers in field-effect transistors. However, its low boiling point and rapid evaporation limit the time for crystallization during the spin-coating process, and field-effect mobilities achieved for P3HT films spin-coated from...

  19. Experimental Study on Boiling Crisis in Pool Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Satbyoul; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    They postulated that failure in re-wetting of a dry patch by a cooling liquid is governed by microhydrodynamics near the wall. Chu et al. commonly observed that active coalescence of newly generated bubbles with preexisting bubbles results in a residual dry patch and prevents the complete rewetting of the dry patch, leading to CHF. In this work, to reveal the key physical mechanism of CHF during the rewetting process of a dry patch, dynamics of dry patches and thermal pattern of a boiling surface are simultaneously observed using TR and IR thermometry techniques. Local dynamics of dry patch and thermal pattern on a boiling surface in synchronized manner for both space and time using TR and IR thermometry were measured during pool boiling of water. Observation and quantitative examination of CHF was performed. - The hydrodynamic and thermal behaviors of irreversible dry patch were observed. The dry patches coalesce into a large dry patch and it locally dried out. Due to the failure of liquid rewetting, the dry patch is not completely rewetted, resulting in the burn out at which temperature is -140°C. - When temperature of a dry patch rises beyond the instantaneous nucleation temperature, several bubbles nucleate at the head of the advancing liquid meniscus and prevents the liquid front, and eventually the overheated dry patch remains alive after the departure of the massive bubble.

  20. Simulated distillation by chromatography with supercritical fluid on high boiling petroleum fractions; Simulierte Destillation hochsiedender Erdoelfraktionen basierend auf der Chromatographie mit ueberkritischen Fluiden (SFC)

    Energy Technology Data Exchange (ETDEWEB)

    Kelemidou, K. [Inst. fuer Erdoel- und Erdgasforschung (IfE), Clausthal-Zellerfeld (Germany); Severin, D. [Inst. fuer Erdoel- und Erdgasforschung (IfE), Clausthal-Zellerfeld (Germany)

    1996-01-01

    Simulated Destillation (SD) is a suitable method to characterize highboiling petroleum fractions. SD is currently based on GC, which causes a limitation of the upper boiling end. Therefore chromatography with supercritical fluid (SFC) is applied as an alternative method for SD. Five highboiling fractions were separated by short path molecular distillation from a vacuum distillation residue and investigated by SFC. The conversion of the time in the boiling point axis was performed using Polywax 655 as a calibration mixture. The reproducibility of SFC using a pressure program was tested with Polywax 655, too. The comparison of SFC and GC based SD shows that SFC is a suitable alternative for highboiling petroleum fractions. (orig.) [Deutsch] Die Siedetemperaturverteilung, ermittelt ueber die Simulierte Destillation (SD), ist zur Charaktersisierung technischer Kohlenwasserstoffgemische in hohem Masse geeignet. Bislang wurde hierzu ausschliesslich die Gaschromatographie verwendet. Da hochsiedende Fraktionen nicht komplett GC-gaengig sind, wird versucht, die Chromatographie mit ueberkritischen Fluiden (SFC) alternativ fuer die Simulierte Destillation einzusetzen. Fuenf kurzwegmolekulardestillativ aus einem Vakuumdestillationsrueckstand gewonnene Fraktionen wurden mit der SFC chromatographiert. Zur Kalibrierung der Retentionsachse in eine Siedetemperaturachse wurde das n-Alkangemisch Polywax 655 verwendet. Mit Polywax 655 wurde auch die Reproduzierbarkeit der SFC geprueft. Der Vergleich mit der Simulierten Destillation, die auf der GC beruht, zeigt, dass die SFC eine durchaus geeignete Basis fuer die Simulierte Destillation hochsiedender Erdoelfraktionen bildet. (orig.)

  1. Experimental boiling heat transfer coefficients in the high temperature generator of a double effect absorption machine for the lithium bromide/water mixture

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, J.D. [Escuela Tecnica Superior Ingenieria Industrial, UNED, c/Juan del Rosal 12, 28040 Madrid (Spain); Izquierdo, M. [Instituto de Ciencias de la Construccion Eduardo Torroja (CSIC), c/Serrano Galvache 4, 28033 Madrid (Spain); Escuela Politecnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganes, Madrid (Spain); Lizarte, R. [Escuela Politecnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganes, Madrid (Spain); Palacios, E. [Escuela Universitaria Ingenieria Tecnica Industrial, Universidad Politecnica de Madrid, C/ Ronda de Valencia 3, 28012 Madrid (Spain); Infante Ferreira, C.A. [Delft University of Technology, Engineering Thermodynamics, Leeghwaterstraat 44, 2628 CA Delft (Netherlands)

    2009-06-15

    The aim of this work is to determine the boiling heat transfer coefficients in the high temperature desorber (HTD) of an air-cooled double effect lithium bromide/water absorption prototype. The HTD is a plate heat exchanger (PHE) with thermal oil on one side, and a lithium bromide solution on the other side. Several experiments were performed with this PHE while the prototype was working with an outdoor dry bulb temperature around 42 C and condensation temperature around 55 C. The registered data allowed to calculate the global heat transfer coefficient and the heat transfer coefficient for the LiBr/water mixture in forced convective boiling. The pressure drop produced by the boiling of the refrigerant has been calculated as well. It has been verified that the largest part of the heat supplied in the generator is required for desorbing the refrigerant (except for the maximum solution mass flow), while the sensible heat varies from 10% to 50% of the total heat supplied. (author)

  2. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study.

    Science.gov (United States)

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2014-03-07

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with

  3. Multi-parametric monitoring and assessment of High Intensity Focused Ultrasound (HIFU) boiling by Harmonic Motion Imaging for Focused Ultrasound (HMIFU): An ex vivo feasibility study

    Science.gov (United States)

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E.

    2014-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase-shift during high energy HIFU treatment with tissue boiling. Forty three (n=43) thermal lesions were formed in ex vivo canine liver specimens (n=28). Two dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10-s, 20-s and 30-s HIFU durations at three different acoustic powers of 8, 10, and 11W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and Passive Cavitation Detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δφ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite unpredictable changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property change throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration

  4. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  5. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  6. A high-sensitivity magnetocardiography system with a divided gradiometer array inside a low boil-off Dewar

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y H; Yu, K K; Kim, J M; Kwon, H; Kim, K, E-mail: yhlee@kriss.re.k [Korea Research Institute of Standards and Science, 1 Doryong, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2009-11-15

    We fabricated a low-noise 64-channel first-order axial gradiometer system for measuring magnetocardiography (MCG) signals. The key technical features of the system are the compact structure of the gradiometer, division of the sensor array plate, direct mounting of the sensor plates into the Dewar bottom, reduced neck diameter of the liquid He Dewar, and compact readout electronics. To make the refill interval of liquid He longer, the distance between the compensation coil of the gradiometer and the input coil pads of the superconducting quantum interference device (SQUID) was reduced to 20 mm. By using direct ultrasonic bonding of Nb wires between the pickup coil wires and input coil pads, the superconductive connection structure became simple. The baseline of the first-order gradiometer is 70 mm, a little longer than for typical conventional axial gradiometers, to provide a larger signal amplitude for deep sources. The 64-channel gradiometer array consists of four blocks, and each block is fixed separately onto the bottom of the Dewar. The neck diameter of the He Dewar (192 mm) is smaller than the bottom diameter (280 mm) in which the gradiometers are distributed. The average boil-off rate of the Dewar is 3 l per day when the 64-channel system is in operation every day. Double relaxation oscillation SQUIDs (DROSs) having large flux-to-voltage transfer coefficients were used to operate SQUIDs via compact electronics. The magnetically shielded room (MSR) has a wall thickness of 80 mm, and consists of two layers of permalloy and one layer of aluminum. When the 64-channel system was installed inside the MSR, the field noise level of the system was about 3.5 fT{sub rms} Hz{sup -1/2} at 100 Hz. MCG measurements with high signal quality were done successfully using the developed system. In addition to the parameter analysis method, we developed software for the three-dimensional imaging of the myocardial current on a realistic image of the heart based on the anatomical

  7. Numerical solution of one-dimensional transient, two-phase flows with temporal fully implicit high order schemes: Subcooled boiling in pipes

    Energy Technology Data Exchange (ETDEWEB)

    López, R., E-mail: ralope1@ing.uc3m.es; Lecuona, A., E-mail: lecuona@ing.uc3m.es; Nogueira, J., E-mail: goriba@ing.uc3m.es; Vereda, C., E-mail: cvereda@ing.uc3m.es

    2017-03-15

    Highlights: • A two-phase flows numerical algorithm with high order temporal schemes is proposed. • Transient solutions route depends on the temporal high order scheme employed. • ESDIRK scheme for two-phase flows events exhibits high computational performance. • Computational implementation of the ESDIRK scheme can be done in a very easy manner. - Abstract: An extension for 1-D transient two-phase flows of the SIMPLE-ESDIRK method, initially developed for incompressible viscous flows by Ijaz is presented. This extension is motivated by the high temporal order of accuracy demanded to cope with fast phase change events. This methodology is suitable for boiling heat exchangers, solar thermal receivers, etc. The methodology of the solution consist in a finite volume staggered grid discretization of the governing equations in which the transient terms are treated with the explicit first stage singly diagonally implicit Runge-Kutta (ESDIRK) method. It is suitable for stiff differential equations, present in instant boiling or condensation processes. It is combined with the semi-implicit pressure linked equations algorithm (SIMPLE) for the calculation of the pressure field. The case of study consists of the numerical reproduction of the Bartolomei upward boiling pipe flow experiment. The steady-state validation of the numerical algorithm is made against these experimental results and well known numerical results for that experiment. In addition, a detailed study reveals the benefits over the first order Euler Backward method when applying 3rd and 4th order schemes, making emphasis in the behaviour when the system is subjected to periodic square wave wall heat function disturbances, concluding that the use of the ESDIRK method in two-phase calculations presents remarkable accuracy and computational advantages.

  8. The Relationship Between the Color Characteristics of the RGB Colorimetric System and the Physicochemical Properties of Petroleums and high Boiling Hydrocarbon Distillates

    Science.gov (United States)

    Dolomatov, M. Yu.; Yarmuhametova, G. U.

    2016-09-01

    An interrelation was established between physicochemical properties of oils and high boiling hydrocarbon distillates and their solutions' color characteristics defi ned in the RGB colorimetric system using a standard radiation source CIE D65. It was shown that by using color characteristics of solutions of the specifi ed objects, it was possible to determine their relative density, molecular mass, activation energy of viscous fl ow, and the coking value. Research results were confi rmed by statistical data processing using the methods of multivariate regression and correlation analysis.

  9. Odd-Boiled Eggs

    Science.gov (United States)

    Kaminsky, Kenneth; Scheman, Naomi

    2010-01-01

    At a Shabbat lunch in Madrid not long ago, the conversation turned to the question of boiling eggs. One of the guests mentioned that a Dutch rabbi he knew had heard that in order to make it more likely that boiled eggs be kosher, you should add an egg to the pot if the number you began with was even. According to the laws of Kashruth, Jews may not…

  10. Improving efficiency and color purity of poly(9,9-dioctylfluorene) through addition of a high boiling-point solvent of 1-chloronaphthalene

    Science.gov (United States)

    Liang, Junfei; Yu, Lei; Zhao, Sen; Ying, Lei; Liu, Feng; Yang, Wei; Peng, Junbiao; Cao, Yong

    2016-07-01

    In this work, the β-phase of poly(9,9-dioctylfluorene) (PFO) was used as a probe to study the effects of the addition of a high boiling-point solvent of 1-chloronaphthalene on the nanostructures and electroluminescence of PFO films. Both absorption and photoluminescence spectra showed that the content of the β-phase in PFO film was obviously enhanced as a result of the addition of a small amount of 1-chloronaphthalene into the processing solvent of p-xylenes. Apparently rougher morphology associated with the effectively enhanced ordering of polymer chains across the entire film was observed for films processed from p-xylene solutions consisting of a certain amount of 1-chloronaphthalene, as revealed by atomic force microscopy and grazing incidence x-ray diffraction measurements. In addition to the effects on the nanostructures of films, of particular interest is that the performance and color purity of polymer light-emitting devices can be noticeably enhanced upon the addition of 1-chloronaphthalene. These observations highlight the importance of controlling the nanostructures of the emissive layer, and demonstrate that the addition of a low volume ratio of high boiling-point additive can be a promising strategy to attain high-performance polymer light-emitting diodes.

  11. Nucleate boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es

    2009-07-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)

  12. Modelling Of Residual Stresses Induced By High Speed Milling Process

    Science.gov (United States)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-05-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction. Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge® software, is based on data taken from Outeiro & al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature. Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R&D to those given by numerical simulations is achieved.

  13. Using Boiling for Treating Waste Activated Sludge

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this work we investigated the feasibility of using short time, low superheat boiling to treat biological sludge. The treated sludge exhibited reduced filterability and enhanced settleability. The boiling treatment released a large amount of extra-cellular polymers (ECPs) from the solid phase and reduced the microbial density levels of the total coliform bacteria and the heterotrophic bacteria. A diluted sludge is preferable for its high degree of organic hydrolysis and sufficient reduction in microbial density levels.

  14. Separation of metallic residues from the dissolution of a high-burnup BWR fuel using nitrogen trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, Bruce K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buck, Edgar C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Frances N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mausolf, Edward J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scheele, Randall D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-23

    Nitrogen trifluoride (NF3) was used to fluorinate the metallic residue from the dissolution of a high burnup, boiling water reactor fuel (~70 MWd/kgU). The metallic residue included the noble metal phase (containing ruthenium, rhodium, palladium, technetium, and molybdenum), and smaller amounts of zirconium, selenium, tellurium, and silver. Exposing the noble metal phase to 10% NF3 in argon between 400 and 550°C, removed molybdenum and technetium near 400°C as their volatile fluorides, and ruthenium near 500C as its volatile fluoride. The events were thermally and temporally distinct and the conditions specified are a recipe to separate these transition metals from each other and from the noble metal phase nonvolatile residue. Depletion of the volatile fluorides resulted in substantial exothermicity. Thermal excursion behavior was recorded under non-adiabatic, isothermal conditions that typically minimize heat release. Physical characterization of the metallic noble phase and its thermal behavior are consistent with high kinetic velocity reactions encouraged by the nanoparticulate phase or perhaps catalytic influences of the mixed platinum metals with nearly pure phase structure. Post-fluorination, only two phases were present in the residual nonvolatile fraction. These were identified as a nano-crystalline, metallic palladium cubic phase and a hexagonal rhodium trifluoride (RhF3) phase. The two phases were distinct as the sub-µm crystallites of metallic palladium were in contrast to the RhF3 phase, which grew from the parent nano-crystalline noble-metal phase during fluorination, to acicular crystals exceeding 20-µm in length.

  15. [Residual risk: The roles of triglycerides and high density lipoproteins].

    Science.gov (United States)

    Grammer, Tanja; Kleber, Marcus; Silbernagel, Günther; Scharnagl, Hubert; März, Winfried

    2016-06-01

    In clinical trials, the reduction of LDL-cholesterol (LDL-C) with statins reduces the incidence rate of cardiovascular events by approximately one third. This means, that a sizeable "residual risk" remains. Besides high lipoprotein (a), disorders in the metabolism of triglyceride-rich lipoproteins and high density liproteins have been implicated as effectors of the residual risk. Both lipoprotein parameters correlate inversely with each other. Therefore, the etiological contributions of triglycerides and / or of HDL for developing cardiovascular disease can hardly be estimated from either observational studies or from intervention studies. The largely disappointing results of intervention studies with inhibitors of the cholesteryl ester transfer protein and in particular the available set of genetically-epidemiological studies suggest that in the last decade, the importance of HDL cholesterol has been overvalued, while the importance of triglycerides has been underestimated. High triglycerides not always atherogenic, but only if they are associated with the accumulation relatively cholesterol-enriched, incompletely catabolized remnants of chylomicrons and very low density lipoproteins (familial type III hyperlipidemia, metabolic syndrome, diabetes mellitus). The normalization of the concentration of triglycerides and remnants by inhibiting the expression of apolipoprotein C3 is hence a new, promising therapeutic target.

  16. Numerical Investigation of Boiling

    Science.gov (United States)

    Sagan, Michael; Tanguy, Sebastien; Colin, Catherine

    2012-11-01

    In this work, boiling is numerically investigated, using two phase flow direct numerical simulation based on a level set / Ghost Fluid method. Nucleate boiling implies both thermal issue and multiphase dynamics issues at different scales and at different stages of bubble growth. As a result, the different phenomena are investigated separately, considering their nature and the scale at which they occur. First, boiling of a static bubble immersed in an overheated liquid is analysed. Numerical simulations have been performed at different Jakob numbers in the case of strong density discontinuity through the interface. The results show a good agreement on bubble radius evolution between the theoretical evolution and numerical simulation. After the validation of the code for the Scriven test case, interaction of a bubble with a wall is studied. A numerical method taking into account contact angle is evaluated by comparing simulations of the spreading of a liquid droplet impacting on a plate, with experimental data. Then the heat transfer near the contact line is investigated, and simulations of nucleate boiling are performed considering different contact angles values. Finally, the relevance of including a model to take into account the evaporation of the micro layer is discussed.

  17. Cryogenic Boil-Off Reduction System

    Science.gov (United States)

    Plachta, David W.; Guzik, Monica C.

    2014-03-01

    A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.

  18. The law of stable equilibrium and the entropy-based boiling curve for flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Collado, F.J. [Universidad de Zaragoza (Spain). Dpto. Ingenieria Mecanica Motores Termicos

    2005-05-01

    Convective flow boiling in sub-cooled fluids is recognized as one of the few means of accommodating very high heat fluxes. There are many available correlations for predicting the inner wall temperature of the heated duct in the several regimes of the empirical Nukiyama boiling curve, although unfortunately there is no physical fundamentals of such curve. Recently, the author has shown that the classical entropy balance could contain key information about boiling heat transfer. So, it was found that the average thermal gap in the heated channel (the inner wall temperature minus the average temperature of the coolant fluid) was strongly correlated with the efficiency of a theoretical reversible engine placed in this thermal gap. From this new correlation, a new boiling curve plotting the wall temperature versus the average fluid temperature was derived and successfully checked against low- and high-pressure water data. This curve suggested a new and simple definition of the critical heat flux (CHF) namely, the value of the coolant average temperature at the maximum. In this work, after briefly reviewing the entropy balance of a non-equilibrium boiling flow and its relationship with the thermodynamic average temperature and the law of stable equilibrium (LSE), the possibilities of the new approach for the design of flow boiling cooling systems are highlighted. Finally, the strong correlation found between the reversible engine efficiency and the thermal driving force is verified again, now with high-pressure refrigerant 22 (R-22) data. (author)

  19. Thermodynamics of Flow Boiling Heat Transfer

    Science.gov (United States)

    Collado, F. J.

    2003-05-01

    Convective boiling in sub-cooled water flowing through a heated channel is essential in many engineering applications where high heat flux needs to be accommodated. It has been customary to represent the heat transfer by the boiling curve, which shows the heat flux versus the wall-minus-saturation temperature difference. However it is a rather complicated problem, and recent revisions of two-phase flow and heat transfer note that calculated values of boiling heat transfer coefficients present many uncertainties. Quite recently, the author has shown that the average thermal gap in the heated channel (the wall temperature minus the average temperature of the coolant) was tightly connected with the thermodynamic efficiency of a theoretical reversible engine placed in this thermal gap. In this work, whereas this correlation is checked again with data taken by General Electric (task III) for water at high pressure, a possible connection between this wall efficiency and the reversible-work theorem is explored.

  20. Geysering in boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Aritomi, Masanori; Takemoto, Takatoshi [Tokyo Institute of Technology, Tokyo (Japan); Chiang, Jing-Hsien [Japan NUS Corp. Ltd., Toyko (Japan)] [and others

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  1. Oscillate boiling from microheaters

    Science.gov (United States)

    Li, Fenfang; Gonzalez-Avila, S. Roberto; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2017-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about 10 μ m in diameter onto a 165-nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatedly at several 100 kHz albeit with constant laser power input. The microbubble's oscillations are accompanied with bubble pinch-off, leading to a stream of gaseous bubbles in the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by surface attachment and by the nonspherical collapses. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater, reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may overcome the heat transfer thresholds observed during the nucleate boiling crisis and offers a new pathway for heat transfer under microgravity conditions.

  2. Boiling incipience and convective boiling of neon and nitrogen

    Science.gov (United States)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. This design precludes nucleate boiling in the flow channels as they are too small to handle vapor flow. Consequently, it was necessary to determine boiling incipience under the operating conditions of the magnet system. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of plus or minus 15 percent

  3. Influence of Pressure on Stable Film Boiling of Subcooled Liquid

    Science.gov (United States)

    Zabirov, A. R.; Yagov, V. V.; Kaban'kov, O. N.; Leksin, M. A.; Kanin, P. K.

    2016-11-01

    Film boiling of subcooled liquids is an integral part of the hardening process. Understanding of the mechanisms underlying film boiling is important for modeling processes in atomic power engineering and cryogenic technology. Stationary processes of film boiling of subcooled liquids under conditions of their free motion near cylindrical heaters, just as subcooled liquid turbulent flow past high-temperature surfaces, represent quite a different type of process. In cooling metal spheres heated to a high temperature by a subcooled water, a special regime of film boiling is observed (microbubble boiling) distinguished by high intensity of heat transfer. Such a regime has not been revealed up to now for nonaqueous liquids. The paper presents new experimental data on heat transfer regimes in cooling nickel spheres in subcooled isopropanol and perfluorohexane at pressures of up to 1 MPa. It has been established that stable film boiling is the main regime of heat transfer that accounts for the larger part of the total time of cooling. The regimes of highly intensive film boiling heat transfer were not observed in the entire range of operational parameters even in the case of extreme subcoolings of liquid below their saturation temperature (to 170 K). The intensity of heat transfer in stable film boiling increases noticeably with subcooling of a chilling liquid.

  4. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  5. Direct Numerical Simulation and Visualization of Subcooled Pool Boiling

    Directory of Open Access Journals (Sweden)

    Tomoaki Kunugi

    2014-01-01

    Full Text Available A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify their heat transfer characteristics and discuss the mechanism. During these decades, many DNS procedures have been developed according to the recent high performance computers and computational technologies. In this paper, the state of the art of direct numerical simulation of the pool boiling phenomena during mostly two decades is briefly summarized at first, and then the nonempirical boiling and condensation model proposed by the authors is introduced into the MARS (MultiInterface Advection and Reconstruction Solver developed by the authors. On the other hand, in order to clarify the boiling bubble behaviors under the subcooled conditions, the subcooled pool boiling experiments are also performed by using a high speed and high spatial resolution camera with a highly magnified telescope. Resulting from the numerical simulations of the subcooled pool boiling phenomena, the numerical results obtained by the MARS are validated by being compared to the experimental ones and the existing analytical solutions. The numerical results regarding the time evolution of the boiling bubble departure process under the subcooled conditions show a very good agreement with the experimental results. In conclusion, it can be said that the proposed nonempirical boiling and condensation model combined with the MARS has been validated.

  6. The entropy balance for boiling flow

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco-Javier E-mail: fjk@posta.unizar.es

    2001-10-01

    Subcooled forced convection boiling of water is recognized as one of the best means of accommodating the very high heat fluxes that plasma facing components of fusion reactors have to withstand. The boiling curve, giving the wall temperature in function of the applied flux and flow conditions, is essential for the design of such cooling configurations. In this paper, a new entropy balance for subcooled boiling flow, which allows the wall temperature to be obtained, is presented and successfully compared with experimental data from the Joint US-EURATOM R and D Program. The derivation of this entropy balance is based on a new strict application of the Reynolds theorem to multiphase flows recently proposed by the author.

  7. Development of high-adhesion and boiling water-resistant glass paint%高附着耐水煮玻璃漆的研制

    Institute of Scientific and Technical Information of China (English)

    刘忠; 沈球旺; 周荣华; 崔岳崧

    2009-01-01

    合成了玻璃环氧底漆,讨论了附着力促进剂、树脂和固化剂种类及用量对涂料性能的影响.结果表明,以1.5%3-缩水甘油醚氧基丙基三甲氧基硅烷为附着力促进剂,以E-20环氧树脂为成膜物、腰果壳油改性酚醛胺为固化剂制成底漆,配合丙烯酸聚氨酯黑面漆,获得了高附着,耐水煮的玻璃漆.%An epoxy primer used on glass was synthesized, and the effects of categories and dosages of adhesion promoters, resins and curing agents were discussed. The results showed that a glass paint with high adhesion and boiling water resistance is obtained when acrylic polyurethane black top paint is combined with the primer prepared with 1.5% of 3-glycidoxypropyltrimethoxysilane as adhesion promoter, E-20 epoxy resin as film-forming material and cashew nut oil modified phenolic aldehyde amine as curing agent.

  8. Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon

    Science.gov (United States)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.

    1993-01-01

    The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.

  9. Experimental study on the explosive boiling in saturated liquid nitrogen

    Institute of Scientific and Technical Information of China (English)

    DONG Zhaoyi; HUAI Xiulan; LIU Dengying

    2005-01-01

    Studies on the heat-transfer characteristics of liquid nitrogen (LN2) have received increasing attention. When there is a transient high heatflux input to the LN2, explosive boiling may take place. In this paper, using the high-power short-duration pulsed laser heating method and the high-speed photography technology, the experimental result of explosive boiling in saturated LN2 is illustrated; and the two exclusive characteristics of explosive boiling in LN2: changeover time and the relative long-time adherence of the bubble cluster to the surface, are investigated.

  10. Local fluctuation control of papain by changing a highly fluctuating residue

    Science.gov (United States)

    Nishiyama, Katsuhiko

    2013-01-01

    To control the local fluctuation of the amino acid residues of papain, ARG59, a highly fluctuating residue in papain, has been changed to GLY. We investigated the binding properties of 2-10GLY (peptides with between 2 and 10 glycine residues) to the modified papain structure via molecular dynamics and docking simulations. The change of the ARG59 residue to GLY alters the binding sites for some peptides, and changed its substrate specificity. Furthermore, the modification alters the binding stability of some peptides. Thus, control of the local fluctuations of residues in proteins has the potential to alter the protein's function.

  11. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo

    2016-11-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  12. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo

    2017-08-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  13. Cryogenic Propellant Boil-Off Reduction System

    Science.gov (United States)

    Plachta, D. W.; Christie, R. J.; Carlberg, E.; Feller, J. R.

    2008-03-01

    Lunar missions under consideration would benefit from incorporation of high specific impulse propellants such as LH2 and LO2, even with their accompanying boil-off losses necessary to maintain a steady tank pressure. This paper addresses a cryogenic propellant boil-off reduction system to minimize or eliminate boil-off. Concepts to do so were considered under the In-Space Cryogenic Propellant Depot Project. Specific to that was an investigation of cryocooler integration concepts for relatively large depot sized propellant tanks. One concept proved promising—it served to efficiently move heat to the cryocooler even over long distances via a compressed helium loop. The analyses and designs for this were incorporated into NASA Glenn Research Center's Cryogenic Analysis Tool. That design approach is explained and shown herein. Analysis shows that, when compared to passive only cryogenic storage, the boil-off reduction system begins to reduce system mass if durations are as low as 40 days for LH2, and 14 days for LO2. In addition, a method of cooling LH2 tanks is presented that precludes development issues associated with LH2 temperature cryocoolers.

  14. Electrically Driven Liquid Film Boiling Experiment

    Science.gov (United States)

    Didion, Jeffrey R.

    2016-01-01

    This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.

  15. Calculation of Boil-Off Gas (BOG Generation of KC-1 Membrane LNG Tank with High Density Rigid Polyurethane Foam by Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Jeong Hyeonwon

    2017-03-01

    Full Text Available Recently, a new type of LNG tank named “KC-1 membrane LNG tank” has been developed by Korean Gas Corporation (KOGAS, and Samsung Heavy Industries (SHI is currently building KC-1 membrane type LNG carriers. Unlike other LNG tanks, the KC-1 membrane LNG tank has a single-insulation structure rather than a double-insulation structure. For a given tank’s boundary condition, heat transfer analysis is performed from the external to the internal environment of the LNG tank by numerical simulation for three tanks. In each tank, the main thermally resistant layer of insulation is assembled with a High density rigid Polyurethane Foam (H-PUF, which is blown with one of three different types of hydrofluorocarbons-namely-HFC-365mfc, 245fa, and 245fa-e (enhanced. Advantage of such blowing agents is that it has a lower Ozone Depletion Potential (ODP than HCFC-141b or carbon dioxide (CO2 that has been used in the past as well as having low thermal conductivity. A Reduced Order Model is utilized to a 3-dimensional section of the insulation to calculate equivalent thermal conductivity. The equivalent thermal conductivity of the insulation is then applied to the rest of LNG tank, reducing the size of tank simulation domain as well as computation time. Tank’s two external and internal boundary conditions used are those defined by the International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC and the United States Coast Guard (USCG conditions. Boil-off Rate (BOR of the tank that has the insulation with H-PUF blown with HFC-245fa resulted in 0.0927 %/day and 0.0745 %/day for IGC and USCG conditions, respectively.

  16. Research progresses and future directions on pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2015-12-01

    Full Text Available This paper reviews the previous work carried on pool boiling heat transfer during heating of various liquids and commodities categorized as refrigerants and dielectric fluids, pure liquids, nanofluids, hydrocarbons and additive mixtures, as well as natural and synthetic colloidal solutions. Nucleate pool boiling is an efficient and effective method of boiling because high heat fluxes are possible with moderate temperature differences. It is characterized by the growth of bubbles on a heated surface. It occurs during boiling of liquids for excess temperature ranging from 5 to 30 °C in various processes related to high vaporization of liquid for specific purposes like sugarcane juice heating for jaggery making, milk heating for khoa making, steam generation, cooling of electronic equipments, refrigeration and etcetera. In this review paper, pool boiling method during heating of liquids for specific purpose is depicted. It is inferred that enhancement in pool boiling heat transfer is a challenging and complex task. Also, recent research and use of various correlations for natural convection pool boiling is reviewed.

  17. Film boiling of mercury droplets

    Science.gov (United States)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. For these data, diffusion from the upper surface of the drop is a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  18. Subcooled boiling of nano-particle suspensions on Pt wires

    Institute of Scientific and Technical Information of China (English)

    LI Chunhui; WANG Buxuan; PENG Xiaofeng

    2004-01-01

    An experimental investigation is conducted to explore the subcooled boiling characteristics of nano-particle suspensions on Pt wires. Some phenomena are observed for the boiling of water-SiO2 nano-particle suspensions on Pt wires. The experiments show that there exist not any evident differences for boiling of pure water and of nano-particle suspensions at high heat fluxes. However, bubble overlap phenomenon can be easily found for nano-particle suspensions at low heat fluxes, which probably results from the increase of the attracter force between bubbles and of the bubble mass.

  19. 由扩散泵硅油高沸物制备高温润滑脂的性能%Property of High Temperature Grease with High-boiling Components of Diffusion Pump Silicone Oil

    Institute of Scientific and Technical Information of China (English)

    诸国建; 郑乾亮; 沈志晨; 惠逸磷

    2015-01-01

    Two silicone high temperature greases were prepared with high-boiling components of diffusion pump silicone oil as the base oil, and metal fatty acid soap as the thickener. Experiments show that both the physical and chemical indicators of the greases are good. The high-boiling components can be thickened by metal fatty acid soap, among which the silicone grease in which a single lithium-based soap with fatty acids can be used at a temperature not higher than 120℃. The silicone high-temperature lubricant grease of lithium soap with a fatty acid complex can be used below 200℃, temperature up to 250℃ for short-term use.%以制扩散泵用硅油的高沸物为基础油、脂肪酸锂单皂或脂脂酸锂复合皂为稠化剂,制备出2种有机硅高温润滑脂。测试表明,两种润滑脂的理化指标都不错。脂肪酸金属皂能够稠化高沸物,其中用脂肪酸锂基单皂制备的有机硅润滑脂能在温度不高于120℃条件下使用;而用脂肪酸复合锂皂制备的有机硅高温润滑脂可在200℃以下使用,短期使用温度可达250℃。

  20. Enhanced heat transfer in confined pool boiling

    NARCIS (Netherlands)

    Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.

    2009-01-01

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found

  1. Enhanced heat transfer in confined pool boiling

    NARCIS (Netherlands)

    Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.

    2009-01-01

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found

  2. Nanowires for enhanced boiling heat transfer.

    Science.gov (United States)

    Chen, Renkun; Lu, Ming-Chang; Srinivasan, Vinod; Wang, Zhijie; Cho, Hyung Hee; Majumdar, Arun

    2009-02-01

    Boiling is a common mechanism for liquid-vapor phase transition and is widely exploited in power generation and refrigeration devices and systems. The efficacy of boiling heat transfer is characterized by two parameters: (a) heat transfer coefficient (HTC) or the thermal conductance; (b) the critical heat flux (CHF) limit that demarcates the transition from high HTC to very low HTC. While increasing the CHF and the HTC has significant impact on system-level energy efficiency, safety, and cost, their values for water and other heat transfer fluids have essentially remained unchanged for many decades. Here we report that the high surface tension forces offered by liquids in nanowire arrays made of Si and Cu can be exploited to increase both the CHF and the HTC by more than 100%.

  3. Film boiling on vertical surfaces.

    Science.gov (United States)

    Suryanarayana, N. V.; Merte, H., Jr.

    1972-01-01

    Film boiling of a saturated liquid on a vertical surface is analyzed to determine the local heat-transfer rates as a function of height and heater-surface superheat. Experiments show that the laminar-flow model is inadequate. A turbulent-vapor-flow model is used, and the influence of the interfacial oscillations is incorporated on a semiempirical basis. Measurements of local film boiling were obtained with a transient technique using saturated liquid nitrogen.

  4. S-RHT FIXED-BED HYDROTREATING TECHNOLOGY FOR RESIDUE WITH HIGH SULFUR CONTENT

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To meet the demands of processing residue with high sulfur content, Fushun Research Institute of Petroleum and Petrochemicals (FRIPP) successfully developed the fixed-bed residue hydrotreating technology (S-RHT), which is suitable for treating high sulfur residue to produce diesel oil with low sulfur content. the hydrotreated 350 ℃+ residue is also a good feedstock for RFCC. Based on this technology, Maoming Petrochemical Company constructed the hydrotreating unit with a capacity of 2 Mt/a to treat high sulfur residue, in which loaded FZC series catalysts were developed by FRIPP. The unit was first put into commercial operation at the end of 1999. The commercial operation showed that the catalysts have good activities and the products meet the designed specifications.

  5. A High-Temperature, High-Throughput Method for Monitoring Residual Formaldehyde in Vaccine Formulations.

    Science.gov (United States)

    Stallings, Kendra D; Kitchener, Rebecca L; Hentz, Nathaniel G

    2014-06-01

    Formaldehyde has long been used in the chemical inactivation of viral material during vaccine production. Viral inactivation is required so that the vaccine does not infect the patient. Formaldehyde is diluted during the vaccine manufacturing process, but residual quantities of formaldehyde are still present in some current vaccines. Although formaldehyde is considered safe for use in vaccines by the Food and Drug Administration, excessive exposure to this chemical may lead to cancer or other health-related issues. An assay was developed that is capable of detecting levels of residual formaldehyde in influenza vaccine samples. The assay employs incubation of dosage formulation suspensions with hydralazine hydrochloride under mildly acidic conditions and elevated temperatures, where formaldehyde is derivatized to yield fluorescent s-triazolo-[3,4-a]-phthalazine. The assay has been traditionally run by high-performance liquid chromatography, where runtimes of 15 minutes per sample can be expected. Our laboratory has developed a plate-based version that drastically improved the throughput to a runtime of 96 samples per minute. The assay was characterized and validated with respect to reaction temperature, evaporation, stability, and selectivity to monitor residual formaldehyde in various influenza vaccine samples, including in-process samples. Heat transfer and evaporation will be especially considered in this work. Since the assay is plate based, it is automation friendly. The new assay format has attained detection limits of 0.01 µg/mL residual formaldehyde, which is easily able to detect and quantify formaldehyde at levels used in many current vaccine formulations (<5 µg/0.5-mL dose).

  6. Heat transfer and pressure drop in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of heat transfer and pressure drop in flow boiling in micro channels occurring in high heat flux electronic cooling. A companion edition in the Springer Brief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Micro channels,” by the same author team, this volume is idea for professionals, researchers and graduate students concerned with electronic cooling.

  7. Enhanced Droplet Control by Transition Boiling

    Science.gov (United States)

    Grounds, Alex; Still, Richard; Takashina, Kei

    2012-10-01

    A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer.

  8. Thermal and long-term freezing stability of ivermectin residues in sheep milk

    NARCIS (Netherlands)

    Cerkvenik, V.; Doganoc, D.Z.; Skubic, V.; Beek, W.M.J.; Keukens, H.J.

    2001-01-01

    The stability of ivermectin residues in sheep milk under conditions of pasteurization (74 °C, 40 s), high pasteurization (80 °C, 1 min), and boiling (100 °C, 10 s) based on residue content (at a level of concentration of about 2 ?g/kg and 30 ?g/kg of H2B1a) and sort of ingestion (in vitro, in vivo)

  9. The effect of multiple bending of wire on the residual stresses of high carbon steel wires

    Directory of Open Access Journals (Sweden)

    R. Kruzel

    2013-01-01

    Full Text Available Steel tire cord, springs and rope wires belong to the group of metal products from which the low residual stresses are required. In this paper the effect of multiple bending of wire on residual stresses of high carbon steel wires has been assessed. It was found that the application of the multi-roller straightening machine in the banding wire process enables to reduce the residual stresses in the drawn wires. It should be also noted that the value of the residual stresses depends on the type of straightener construction. The residual stresses on the basis of stress-strain curve has been determined. It has been stated that the application of seven-rolls straightener gives the best effect of straightening.

  10. CFD for Subcooled Flow Boiling: Parametric Variations

    Directory of Open Access Journals (Sweden)

    Roland Rzehak

    2013-01-01

    Full Text Available We investigate the present capabilities of CFD for wall boiling. The computational model used combines the Euler/Euler two-phase flow description with heat flux partitioning. Very similar modeling was previously applied to boiling water under high pressure conditions relevant to nuclear power systems. Similar conditions in terms of the relevant nondimensional numbers have been realized in the DEBORA tests using dichlorodifluoromethane (R12 as the working fluid. This facilitated measurements of radial profiles for gas volume fraction, gas velocity, liquid temperature, and bubble size. Robust predictive capabilities of the modeling require that it is validated for a wide range of parameters. It is known that a careful calibration of correlations used in the wall boiling model is necessary to obtain agreement with the measured data. We here consider tests under a variety of conditions concerning liquid subcooling, flow rate, and heat flux. It is investigated to which extent a set of calibrated model parameters suffices to cover at least a certain parameter range.

  11. CHF Phenomena by Photographic Study of Boiling Behavior due to Transient Heat Inputs

    Directory of Open Access Journals (Sweden)

    Jongdoc Park

    2012-01-01

    Full Text Available The transient boiling heat transfer characteristics in a pool of water and highly wetting liquids such as ethanol and FC-72 due to an exponentially increasing heat input of various rates were investigated using the 1.0 mm diameter experimental heater shaped in a horizontal cylinder for wide ranges of pressure and subcooling. The trend of critical heat flux (CHF values in relation to the periods was divided into three groups. The CHF belonging to the 1st group with a longer period occurs with a fully developed nucleate boiling (FDNB heat transfer process. For the 2nd group with shorter periods, the direct transition to film boiling from non boiling occurs as an explosive boiling. The direct boiling transition at the CHF from non-boiling regime to film boiling occurred without a heat flux increase. It was confirmed that the initial boiling behavior is significantly affected by the property and the wettability of the liquid. The photographic observations on the vapor bubble behavior during transitions to film boiling were performed using a high-speed video camera system.

  12. Experimental Investigation of Coolant Boiling in a Half-Heated Circular Tube - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wenhua [Argonne National Lab. (ANL), Argonne, IL (United States); Singh, Dileep [Argonne National Lab. (ANL), Argonne, IL (United States); France, David M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    Coolant subcooled boiling in the cylinder head regions of heavy-duty vehicle engines is unavoidable at high thermal loads due to high metal temperatures. However, theoretical, numerical, and experimental studies of coolant subcooled flow boiling under these specific application conditions are generally lacking in the engineering literature. The objective of this project was to provide such much-needed information, including the coolant subcooled flow boiling characteristics and the corresponding heat transfer coefficients, through experimental investigations.

  13. Electrohydrodynamics of boiling on microstructured surfaces for space applications

    Science.gov (United States)

    Saccone, Giacomo; Moran, Jeffrey L.; Bucci, Matteo; Buongiorno, Jacopo; di Marco, Paolo; Mit-Nuclear Science; Engineering Team; University Of Pisa-Destec Dept. Team

    2016-11-01

    Surface wettability is a major parameter in boiling heat transfer. It affects the departure of bubbles from the boiling surface and consequently determines the maximum heat flux transferrable in safe conditions, known as critical heat flux (CHF). Surface wettability can be enhanced through passive techniques, including micro-engineered surfaces and coatings, or through active techniques, e.g. by applying a tunable electric field (electrowetting) that modifies the bubble shape in such a way as to drive bubble detachment. The latter technique is particularly interesting for space applications, where the electric field is used to create a body force that compensates for the absence of gravity. The present work is focused on boiling heat transfer on surfaces whose wettability has been modified by passive and active techniques. We have built a pool boiling apparatus composed of a micro-structured heater acting as boiling surface and an axisymmetric electrode High-speed optical and infrared imaging have been used to investigate the dynamics of boiling phenomena. The aims of this project are twofold: to achieve a superior understanding of wetting phenomena, and to improve the efficiency of cooling devices for space applications.

  14. Flow boiling in expanding microchannels

    CERN Document Server

    Alam, Tamanna

    2017-01-01

    This Brief presents an up to date summary of details of the flow boiling heat transfer, pressure drop and instability characteristics; two phase flow patterns of expanding microchannels. Results obtained from the different expanding microscale geometries are presented for comparison and addition to that, comparison with literatures is also performed. Finally, parametric studies are performed and presented in the brief. The findings from this study could help in understanding the complex microscale flow boiling behavior and aid in the design and implementation of reliable compact heat sinks for practical applications.

  15. Residual stresses in high-velocity oxy-fuel metallic coatings

    Science.gov (United States)

    Totemeier, T. C.; Wright, R. N.; Swank, W. D.

    2004-06-01

    X-ray based residual stress measurements were made on type 316 stainless steel and Fe3Al coatings that were high-velocity oxy-fuel (HVOF) sprayed onto low-carbon and stainless steel substrates. Nominal coating thicknesses varied from 250 to 1500 µm. The effect of HVOF spray particle velocity on residual stress and deposition efficiency was assessed by preparing coatings at three different torch chamber pressures. The effect of substrate thickness on residual stress was determined by spraying coatings onto thick (6.4 mm) and thin (1.4 mm) substrates. Residual stresses were compressive for both coating materials and increased in magnitude with spray velocity. For coatings applied to thick substrates, near-surface residual stresses were essentially constant with increasing coating thickness. Differences in thermal expansion coefficient between low-carbon and stainless steels led to a 180 MPa difference in residual stress for Fe3Al coatings. Deposition efficiency for both materials is maximized at an intermediate (˜600 m/s) velocity. Considerations for X-ray measurement of residual stresses in HVOF coatings are also presented.

  16. Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Sigdel, A.K. [Department of Physics and Astronomy, University of Denver, Denver, CO 80208 (United States); National Center for Photovoltaics, National Renewal Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States); Gennett, T.; Berry, J.J.; Perkins, J.D.; Ginley, D.S. [National Center for Photovoltaics, National Renewal Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States); Packard, C.E., E-mail: cpackard@mines.edu [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States); National Center for Photovoltaics, National Renewal Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States)

    2013-10-15

    With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter–material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity–growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.

  17. Study of film boiling collapse behavior during vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  18. Boiling heat transfer in dilute emulsions

    CERN Document Server

    Roesle, Matthew Lind

    2013-01-01

    Boiling Heat Transfer in Dilute Emulsions synthesizes recent advances and established understanding on the subject of boiling in dilute emulsions. Experimental results from various sources are collected and analyzed, including contemporary experiments that correlate visualization with heat transfer data. Published models of boiling heat transfer in dilute emulsions, and their implementation, are described and assessed against experimental data.

  19. Surface boiling of superheated liquid

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-01-01

    A basic vaporization mechanism that possibly affects the qualitative and quantitative prediction of the consequences of accidental releases of hazardous superheated liquids was experimentally and analytically investigated. The studies are of relevance for the instantaneous failure of a containment vessel filled with liquefied gas. Even though catastrophical vessel failure is a rare event, it is considered to be a major technological hazard. Modeling the initial phase of depressurisation and vaporization of the contents is an essential step for the subsequent analysis of the spread and dispersion of the materials liberated. There is only limited understanding of this inertial expansion stage of the superheated liquid, before gravity and atmospheric turbulence begin to dominate the expansion. This work aims at a better understanding of the vaporization process and to supply more precise source-term data. It is also intended to provide knowledge for the prediction of the behavior of large-scale releases by the investigation of boiling on a small scale. Release experiments with butane, propane, R-134a and water were conducted. The vaporization of liquids that became superheated by sudden depressurisation was studied in nucleation-site-free glass receptacles. Several novel techniques for preventing undesired nucleation and for opening the test-section were developed. Releases from pipes and from a cylindrical geometry allowed both linear one-dimensional, and radial-front two-dimensional propagation to be investigated. Releases were made to atmospheric pressure over a range of superheats. It was found that, above a certain superheat temperature, the free surface of the metastable liquid rapidly broke up and ejected a high-velocity vapor/liquid stream. The zone of intense vaporization and liquid fragmentation proceeded as a front that advanced into the test fluids. No nucleation of bubbles in the bulk of the superheated liquid was observed. (author) figs., tabs., refs.

  20. 高强度聚焦超声焦域处气泡的空化与沸腾%Cavitation and Boiling of Bubbles at the Focal Region During High Intensity Focused Ultrasound Exposure

    Institute of Scientific and Technical Information of China (English)

    钟明松; 艾慧坚

    2012-01-01

    高强度聚焦超声(HIFU)致使组织产生热凝固性坏死,是一个非常复杂的瞬态过程.焦域处气泡的空化与沸腾行为在整个损伤过程中扮演着重要的角色.本文综述国内外学者对HIFU辐照过程中相关气泡行为的研究,就焦域处气泡的空化和沸腾的产生、相关的检测手段及其与强回声、靶区温升和损伤形态的关系进行概述.%High intensity focused ultrasound (HIFU) is a very complex transient process and can cause tissue coagulation necrosis. The cavitation and boiling behaviour of bubbles in the focal region play very important roles throughout an injury process. This paper reviews the research done by domestic and foreign scholars on behaviours of bubbles in HIFU irradiation process and summarizes in the focal region bubble cavitation and boiling generation! Related detective means and relationships with hyperecho, temperature rise of the focus and injury shape.

  1. A Prototype Therapy System for Transcutaneous Application of Boiling Histotripsy.

    Science.gov (United States)

    Maxwell, Adam D; Yuldashev, Petr V; Kreider, Wayne; Khokhlova, Tatiana D; Schade, George R; Hall, Timothy L; Sapozhnikov, Oleg A; Bailey, Michael R; Khokhlova, Vera A

    2017-08-14

    Boiling histotripsy is a method of focused ultrasound surgery that noninvasively applies millisecond-length pulses with high-amplitude shock fronts to generate liquefied lesions in tissue. Such a technique requires unique outputs compared to a focused ultrasound thermal therapy apparatus, particularly to achieve high in situ pressure levels through intervening tissue. This article describes the design and characterization of a system capable of producing the necessary pressure to transcutaneously administer boiling histotripsy therapy through clinically relevant overlying tissue paths using pulses with duration up to 10 ms. A high-voltage electronic pulser was constructed to drive a 1-MHz focused ultrasound transducer to produce shock waves with amplitude capable of generating boiling within the pulse duration in tissue. The system output was characterized by numerical modeling with the 3D Westervelt equation using boundary conditions established by acoustic holography measurements of the source field. Such simulations were found to be in agreement with directly measured focal waveforms. An existing derating method for nonlinear therapeutic fields was used to estimate in situ pressure levels at different tissue depths. The system was tested in ex vivo bovine liver samples to create boiling histotripsy lesions at depths up to 7 cm. Lesions were also created through excised porcine body wall (skin, adipose, muscle) with 3-5 cm thickness. These results indicate that the system is capable of producing the necessary output for transcutaneous ablation with boiling histotripsy.

  2. Study of rapid transient explosive boiling under short-pulsed laser heating

    Institute of Scientific and Technical Information of China (English)

    JIN Renxi; HUAI Xiulan; LIU Dengying

    2004-01-01

    Using acetone, ethanol, water and acetone-water mixture as test liquids, the rapid transient explosive boiling (RTEB) taking place under short-pulsed laser heating is observed in experiment. The behaviors of temperature variation are investigated via transient temperature measurement. The vapor bubble behaviors of RTEB are captured by high-speed photography, and the difference between RTEB and normal boiling is analyzed. The boiling heat transfer of RTEB is also discussed. It shows that the character of RTEB is far different from normal boiling.

  3. Pool boiling visualization on open microchannel surfaces

    Directory of Open Access Journals (Sweden)

    Kaniowski Robert

    2017-01-01

    Full Text Available The paper presents visualization investigations into pool boiling heat transfer for open minichannel surfaces. The experiments were carried out wih saturated water at atmospheric pressure. Parallel microchannels fabricated by machining were about 0.3 mm wide and 0.2 to 0.4 mm deep. High-speed videos were used as an aid to understanding the heat transfer mechanism. The visualization study aimed at identifying nucleation sites of the departing bubbles and determining their diameters and frequency at various superheats.

  4. Subcooled pool boiling CHF in ethanol

    OpenAIRE

    Park, Jongdoc; Fukuda, Katsuya; Liu, Qiusheng

    2006-01-01

    Steady-state and transient critical heat fluxes (CHFs) were measured using a 1.0 mm diameter horizontal cylinder in a pool of highly wetting liquid, such as ethanol, due to steady and transient heat generation rate for wide range of subcoolings and pressures. Boiling CHF was assumed to happen based on a kind of hydrodynamic instability (HI) at CHF, and the model is supposed that the increase in vapor generation from the cylinder surface causes a limit of the steady-state vapor escape flow whe...

  5. Specific binding of eukaryotic ORC to DNA replication origins depends on highly conserved basic residues.

    Science.gov (United States)

    Kawakami, Hironori; Ohashi, Eiji; Kanamoto, Shota; Tsurimoto, Toshiki; Katayama, Tsutomu

    2015-10-12

    In eukaryotes, the origin recognition complex (ORC) heterohexamer preferentially binds replication origins to trigger initiation of DNA replication. Crystallographic studies using eubacterial and archaeal ORC orthologs suggested that eukaryotic ORC may bind to origin DNA via putative winged-helix DNA-binding domains and AAA+ ATPase domains. However, the mechanisms how eukaryotic ORC recognizes origin DNA remain elusive. Here, we show in budding yeast that Lys-362 and Arg-367 residues of the largest subunit (Orc1), both outside the aforementioned domains, are crucial for specific binding of ORC to origin DNA. These basic residues, which reside in a putative disordered domain, were dispensable for interaction with ATP and non-specific DNA sequences, suggesting a specific role in recognition. Consistent with this, both residues were required for origin binding of Orc1 in vivo. A truncated Orc1 polypeptide containing these residues solely recognizes ARS sequence with low affinity and Arg-367 residue stimulates sequence specific binding mode of the polypeptide. Lys-362 and Arg-367 residues of Orc1 are highly conserved among eukaryotic ORCs, but not in eubacterial and archaeal orthologs, suggesting a eukaryote-specific mechanism underlying recognition of replication origins by ORC.

  6. Optimization of Residual Stress of High Temperature Treatment Using Genetic Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    M. Susmikanti

    2015-12-01

    Full Text Available In a nuclear industry area, high temperature treatment of materials is a factor which requires special attention. Assessment needs to be conducted on the properties of the materials used, including the strength of the materials. The measurement of material properties under thermal processes may reflect residual stresses. The use of Genetic Algorithm (GA to determine the optimal residual stress is one way to determine the strength of a material. In residual stress modeling with several parameters, it is sometimes difficult to solve for the optimal value through analytical or numerical calculations. Here, GA is an efficient algorithm which can generate the optimal values, both minima and maxima. The purposes of this research are to obtain the optimization of variable in residual stress models using GA and to predict the center of residual stress distribution, using fuzzy neural network (FNN while the artificial neural network (ANN used for modeling. In this work a single-material 316/316L stainless steel bar is modeled. The minimal residual stresses of the material at high temperatures were obtained with GA and analytical calculations. At a temperature of 6500C, the GA optimal residual stress estimation converged at –711.3689 MPa at adistance of 0.002934 mm from center point, whereas the analytical calculation result at that temperature and position is -975.556 MPa . At a temperature of 8500C, the GA result was -969.868 MPa at 0.002757 mm from the center point, while with analytical result was -1061.13 MPa. The difference in residual stress between GA and analytical results at a temperatureof6500C is about 27 %, while at 8500C it is 8.67 %. The distribution of residual stress showed a grouping concentrated around a coordinate of (-76; 76 MPa. The residuals stress model is a degree-two polynomial with coefficients of 50.33, -76.54, and -55.2, respectively, with a standard deviation of 7.874.

  7. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Issa Cherif [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Bose, Tanmoy [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Pekpe, Komi Midzodzi, E-mail: midzodzi.pekpe@univ-lille1.fr [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Cassar, Jean-Philippe [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Mohanty, A.R. [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Paumel, Kévin [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance (France)

    2014-10-15

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected.

  8. On mechanism of explosive boiling in nanosecond regime

    Science.gov (United States)

    Çelen, Serap

    2016-06-01

    Today laser-based machining is used to manufacture vital parts for biomedical, aviation and aerospace industries. The aim of the paper is to report theoretical, numerical and experimental investigations of explosive boiling under nanosecond pulsed ytterbium fiber laser irradiation. Experiments were performed in an effective peak power density range between 1397 and 1450 MW/cm2 on pure titanium specimens. The threshold laser fluence for phase explosion, the pressure and temperature at the target surface and the velocity of the expulsed material were reported. A narrow transition zone was realized between the normal vaporization and phase explosion fields. The proof of heterogeneous boiling was given with detailed micrographs. A novel thermal model was proposed for laser-induced splashing at high fluences. Packaging factor and scattering arc radius terms were proposed to state the level of the melt ejection process. Results of the present investigation explain the explosive boiling during high-power laser interaction with metal.

  9. Neutron diffraction analysis of residual strain/stress distribution in the vicinity of high strength welds

    Directory of Open Access Journals (Sweden)

    Hamák I.

    2010-06-01

    Full Text Available Residual stresses resulting from non homogeneous heat distribution during welding process belong to most significant factor influencing behavior of welded structures. These stresses are responsible for defect occurrence during welding and they are also responsible for crack initiation and propagation at the either static or dynamic load. The significant effect of weld metal chemical composition as well as the effect of fatigue load and local plastic deformation on residual stress distribution and fatigue life have been recognized for high strength steels welds. The changes in residual stress distribution have then positive effect on cold cracking behavior and also on fatigue properties of the welds [1-3]. Several experimental methods, both destructive and non-destructive, such as hole drilling method, X-ray diffraction, neutron diffraction and others, have been used to examine residual stress distribution in all three significant orientations in the vicinity of the welds. The present contribution summarizes the results of neutron diffraction measurements of residual stress distribution in the vicinity of single-pass high-strength-steel welds having different chemical composition as well as the influence of fatigue load and local plastic deformation. It has been observed that the chemical composition of the weld metal has a significant influence on the stress distribution around the weld. Similarly, by aplying both cyclic load or pre-stress load on the specimens, stress relaxation was observed even in the region of approximately 40 mm far from the weld toe.

  10. Unsteady heat transfer during subcooled film boiling

    Science.gov (United States)

    Yagov, V. V.; Zabirov, A. R.; Lexin, M. A.

    2015-11-01

    Cooling of high-temperature bodies in subcooled liquid is of importance for quenching technologies and also for understanding the processes initiating vapor explosion. An analysis of the available experimental information shows that the mechanisms governing heat transfer in these processes are interpreted ambiguously; a more clear-cut definition of the Leidenfrost temperature notion is required. The results of experimental observations (Hewitt, Kenning, and previous investigations performed by the authors of this article) allow us to draw a conclusion that there exists a special mode of intense heat transfer during film boil- ing of highly subcooled liquid. For revealing regularities and mechanisms governing intense transfer of energy in this process, specialists of Moscow Power Engineering Institute's (MPEI) Department of Engineering Thermal Physics conduct systematic works aimed at investigating the cooling of high-temperature balls made of different metals in water with a temperature ranging from 20 to 100°C. It has been determined that the field of temperatures that takes place in balls with a diameter of more than 30 mm in intense cooling modes loses its spherical symmetry. An approximate procedure for solving the inverse thermal conductivity problem for calculating the heat flux density on the ball surface is developed. During film boiling, in which the ball surface temperature is well above the critical level for water, and in which liquid cannot come in direct contact with the wall, the calculated heat fluxes reach 3-7 MW/m2.

  11. Heater size effect on subcooled pool boiling of FC-72

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Rishi; Kim, Jungho [University of Maryland, College Park, MD (United States). Dept. of Mechanical Engineering

    2009-07-01

    Extensive research has been conducted on pool boiling using heaters larger than the capillary length. For large heaters and/or high gravity conditions, boiling is dominated by buoyancy, and the heat transfer is heater size independent. Much less is known about boiling on small heaters and at low gravity levels. The ratio of heater size L{sub h} to capillary length L{sub c} is an important parameter in the determination of heater size dependence on heat transfer. As the ratio L{sub h}/L{sub c} decreases due to a decrease in either heater size or gravity, surface tension forces become dominant. It is proposed that transition from buoyancy to surface tension dominated boiling occurs when the heater size and bubble departure diameter are of the same order. Previous work in variable gravity with flat surfaces has shown that the heat transfer was heater size independent only when the ratio L{sub h}/L{sub c} was considerably larger than 1. An array of 96 platinum resistance heater elements in a 10 x 10 configuration with individual elements 0.7 x 0.7 mm{sup 2} in size was used to vary heater size and measure the heat transfer. The threshold value of L{sub h}/L{sub c} above which pool boiling is heater size independent was found to be about 2.8. (author)

  12. Assessing the microbiological performance and potential cost of boiling drinking water in urban Zambia.

    Science.gov (United States)

    Psutka, Rebecca; Peletz, Rachel; Michelo, Sandford; Kelly, Paul; Clasen, Thomas

    2011-07-15

    Boiling is the most common method of disinfecting water in the home and the benchmark against which other point-of-use water treatment is measured. In a six-week study in peri-urban Zambia, we assessed the microbiological effectiveness and potential cost of boiling among 49 households without a water connection who reported "always" or "almost always" boiling their water before drinking it. Source and household drinking water samples were compared weekly for thermotolerant coliforms (TTC), an indicator of fecal contamination. Demographics, costs, and other information were collected through surveys and structured observations. Drinking water samples taken at the household (geometric mean 7.2 TTC/100 mL, 95% CI, 5.4-9.7) were actually worse in microbiological quality than source water (geometric mean 4.0 TTC/100 mL, 95% CI, 3.1-5.1) (p boiled at the time of collection from the home, suggesting over-reporting and inconsistent compliance. However, these samples were of no higher microbiological quality. Evidence suggests that water quality deteriorated after boiling due to lack of residual protection and unsafe storage and handling. The potential cost of fuel or electricity for boiling was estimated at 5% and 7% of income, respectively. In this setting where microbiological water quality was relatively good at the source, safe-storage practices that minimize recontamination may be more effective in managing the risk of disease from drinking water at a fraction of the cost of boiling.

  13. Analysis of Some Pesticide Residues in Cauliflower by High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Sheheli Islam

    2009-01-01

    Full Text Available Problem statement: Increased use of chemicals on vegetables started gaining momentum and continued its up-trend in Bangladesh. Wide spread use of pesticides in agriculture concern of residue accumulation, which may remain in food and agricultural environment causing concern of human health and risking ecological balance. Attempt made to ensure that their applications were correct and safe and result in no residues in food beyond codex developed maximum residue limits. Approach: This study reported a method based on High Performance Liquid Chromatography (HPLC for determination of pesticide residues used in Cauliflower. Cauliflower sprayed with, 4 different pesticides (diazinon, malathion, chlorpyrifos and cypermethrin at recommended dose and double of recommended dose were analyzed for their residual contents. Samples were collected at same day after application of pesticide. Commercial samples of cauliflowers were collected from different markets of Dhaka city. Reversed-phase HPLC system with UV detection was used for the separation, identification and quantification of all these analytes using acetonitrile-water (70:30, v/v as mobile phase. Results: Limit of detection of 0.02 mg kg-1 was obtained. Calibration curves that constructed for the analytes spiked into samples followed linear relationships with good correlation coefficients (R2>0.990. In the analysis, from vegetables treated with diazinon and chlorpyrifos at recommended and double of recommended doses, residual amounts above respective MRL values were found. Conclusion: Method used permitted the determination of these pesticides in cauliflower at concentration level demanded by current legislation. Attention paid on excess use or abuse of pesticides by judicious application for safety of public health in Bangladesh. Additional data to monitor residues in food and to fill gaps in current knowledge would be helpful in assessing human exposure risks from ingestion of contaminated

  14. HIGH-THROUGHPUT IDENTIFICATION OF CATALYTIC REDOX-ACTIVE CYSTEINE RESIDUES

    Science.gov (United States)

    Cysteine (Cys) residues often play critical roles in proteins; however, identification of their specific functions has been limited to case-by-case experimental approaches. We developed a procedure for high-throughput identification of catalytic redox-active Cys in proteins by se...

  15. A perspective on high throughput analysis of pesticide residues in foods

    Institute of Scientific and Technical Information of China (English)

    Kai ZHANG; Jon W WONG; Perry G WANG

    2011-01-01

    The screening of pesticide residues plays a vital role in food safety. Applications of high throughput analytical procedures are desirable for screening a large number of pesticides and food samples in a time-effi- cient and cost-effective manner. This review discusses how sample throughput of pesticide analysis could be improved with an emphasis on sample preparation, instrumentation and data analysis.

  16. Zero boil-off system testing

    Science.gov (United States)

    Plachta, D. W.; Johnson, W. L.; Feller, J. R.

    2016-03-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  17. High quality image-pair-based deblurring method using edge mask and improved residual deconvolution

    Science.gov (United States)

    Cui, Guangmang; Zhao, Jufeng; Gao, Xiumin; Feng, Huajun; Chen, Yueting

    2017-04-01

    Image deconvolution problem is a challenging task in the field of image process. Using image pairs could be helpful to provide a better restored image compared with the deblurring method from a single blurred image. In this paper, a high quality image-pair-based deblurring method is presented using the improved RL algorithm and the gain-controlled residual deconvolution technique. The input image pair includes a non-blurred noisy image and a blurred image captured for the same scene. With the estimated blur kernel, an improved RL deblurring method based on edge mask is introduced to obtain the preliminary deblurring result with effective ringing suppression and detail preservation. Then the preliminary deblurring result is served as the basic latent image and the gain-controlled residual deconvolution is utilized to recover the residual image. A saliency weight map is computed as the gain map to further control the ringing effects around the edge areas in the residual deconvolution process. The final deblurring result is obtained by adding the preliminary deblurring result with the recovered residual image. An optical experimental vibration platform is set up to verify the applicability and performance of the proposed algorithm. Experimental results demonstrate that the proposed deblurring framework obtains a superior performance in both subjective and objective assessments and has a wide application in many image deblurring fields.

  18. 有机硅高沸物制备硅油脱模剂的研究进展%Progress on Silicone Oil Mold-release Agent by Silicone High-boiling Compound

    Institute of Scientific and Technical Information of China (English)

    王宇光; 王晓英; 刘颖

    2013-01-01

    简述了有机硅高沸物制备硅油脱模剂的原理及流程,介绍了近年来有机硅高沸物制备硅油脱模剂的研究进展,并对国内有机硅高沸物制备硅油脱模剂的发展方向提出了建议.%This paper described the principles and processes of silicone oil mold-release agent preparation by high-boiling point organic silicon compounds, and introduced research reviews on the preparation of silicone oil mold-release agent, and some suggestions on development direction of silicone oil mold-release agent were proposed.

  19. High-temperature vitrification of Hanford residual-liquid waste in a continuous melter

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, S.M.

    1980-04-01

    Over 270 kg of high-temperature borosilicate glass have been produced in a series of three short-term tests in the High-Temperature Ceramic Melter vitrification system at PNL. The glass produced was formulated to vitrify simulated Hanford residual-liquid waste. The tests were designed to (1) demonstrate the feasibility of utilizing high-temperature, continuous-vitrification technology for the immobilization of the residual-liquid waste, (2) test the airlift draining technique utilized by the high-temperature melter, (3) compare glass produced in this process to residual-liquid glass produced under laboratory conditions, (4) investigate cesium volatility from the melter during waste processing, and (5) determine the maximum residual-liquid glass production rate in the high-temperature melter. The three tests with the residual-liquid composition confirmed the viability of the continuous-melting vitrification technique for the immobilization of this waste. The airlift draining technique was demonstrated in these tests and the glass produced from the melter was shown to be less porous than the laboratory-produced glass. The final glass produced from the second test was compared to a glass of the same composition produced under laboratory conditions. The comparative tests found the glasses to be indistinguishable, as the small differences in the test results fell within the precision range of the characterization testing equipment. The cesium volatility was examined in the final test. This examination showed that 0.44 wt % of the cesium (assumed to be cesium oxide) was volatilized, which translates to a volatilization rate of 115 mg/cm/sup 2/-h.

  20. Visualization of pool boiling from complex surfaces with internal tunnels

    Directory of Open Access Journals (Sweden)

    Pastuszko Robert

    2012-04-01

    Full Text Available The paper presents experimental investigations of boiling heat transfer for a system of connected narrow horizontal and vertical tunnels. These extended surfaces, named narrow tunnel structure (NTS, can be applied to electronic element cooling. The experiments were carried out with ethanol at atmospheric pressure. The tunnel external covers were manufactured out of 0.1 mm thick perforated copper foil (hole diameters 0.5 mm, sintered with the mini-fins, formed on the vertical side of the 10 mm high rectangular fins and horizontal inter-fin surface. Visualization studies were conducted with a transparent structured model of joined narrow tunnels limited with the perforated foil. The visualization investigations aimed to formulate assumptions for the boiling model through distinguishing boiling types and defining all phases of bubble growth.

  1. Micro-column enhanced boiling structure and its ramification

    Institute of Scientific and Technical Information of China (English)

    汤勇; 陆龙生; 袁冬; 苏达士

    2008-01-01

    Enhanced boiling experiments of two different enhanced structures were carried out in a thermosyphon loop evaporator chamber. One was micro-columns array structure (MCAS), which was fabricated on copper plate surface with interaction high speed wire electrode discharge machining (HS-WEDM). The other was the ramification of MCAS, named micro-column-array and sintered-copper compound structure (MSCS), which was fabricated with sintered method on micro-column array structure. Considering the wall superheat and critical heat flux (CHF), comparisons were made between them. The results show that both MCAS and MSCS can enhance the boiling heat transfer. It is also found that the enhanced boiling heat transfer ability of MSCS is changed obviously while the porosity of the sintered copper layer is changed.

  2. Research on the Characters of Boiling Heat Transfer from High Temperature Sphere to Water%高温球体与水的沸腾传热特性研究

    Institute of Scientific and Technical Information of China (English)

    沈正祥; 李金柱; 吕中杰; 黄风雷

    2013-01-01

    With the purpose of investigating the characteristics of heat transfer between high temperature liquid and water,the film boiling process from hot sphere surface was analyzed by an improved boiling model and free surface tracking method.The results show that,when the temperature of sphere is constant,the film thickness increases from stagnation point of particle,the temperature contribution decreases with non-linear posture and the velocity contribution is parabolic in film.With the increase of initial temperature of sphere,both the film thickness and peak value of vapor velocity raise,while the overall heat transfer coefficient decreases.Meanwhile,the numerical technique captures the evolution of instability at interface and the process of bubble growing,which reveal the dynamic process of boiling clearly.%为研究高温流体与水的传热特性,采用理论分析与自由界面追踪数值技术对高温球体表面的沸腾传热过程进行研究,得到球体表面传热特性的变化规律.分析结果表明,当球体温度不变时,蒸气膜层厚度自前滞点往后逐渐增大,膜层内温度呈非线性分布降低,速率呈抛物型分布.当球体温度提高时蒸气膜层厚度变大,相应的蒸气速率峰值也变大,球面传热系数却变小.数值仿真结果显示了气-液界面上不稳定性波动发展和气泡成长过程,较为真实地反映出沸腾传热的动态过程.

  3. Hysteresis of boiling for different tunnel-pore surfaces

    Directory of Open Access Journals (Sweden)

    Pastuszko Robert

    2015-01-01

    Full Text Available Analysis of boiling hysteresis on structured surfaces covered with perforated foil is proposed. Hysteresis is an adverse phenomenon, preventing high heat flux systems from thermal stabilization, characterized by a boiling curve variation at an increase and decrease of heat flux density. Experimental data were discussed for three kinds of enhanced surfaces: tunnel structures (TS, narrow tunnel structures (NTS and mini-fins covered with the copper wire net (NTS-L. The experiments were carried out with water, R-123 and FC-72 at atmospheric pressure. A detailed analysis of the measurement results identified several cases of type I, II and III for TS, NTS and NTS-L surfaces.

  4. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes.

    Science.gov (United States)

    Qu, Wen-Hui; Xu, Yuan-Yuan; Lu, An-Hui; Zhang, Xiang-Qian; Li, Wen-Cui

    2015-08-01

    In this report, corncob residue, the main by-product in the furfural industry, is used as a precursor to prepare porous carbon by a simple and direct thermal treatment: one-step activation without pre-carbonization. As a consequence, the corncob residue derived porous carbon achieves a high surface area of 1210 m(2) g(-1) after ash-removal. The carbon material has the advantages of low cost and low environmental impact, with a superior electrochemical performance compared to those polymer-based synthetic carbons as electrode material for a supercapacitor. The carbon electrode exhibits a high capacitance of 314 F g(-1) in 6M KOH electrolyte. The corresponding sample also shows a superb cycling stability. Almost no capacitance decay was observed after 100,000 cycles. The excellent electrochemical performance is due to the combination of a high specific surface area with a fraction of mesopores and highly stable structure.

  5. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    Science.gov (United States)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  6. Gravity Effects in Microgap Flow Boiling

    Science.gov (United States)

    Robinson, Franklin; Bar-Cohen, Avram

    2017-01-01

    Increasing integration density of electronic components has exacerbated the thermal management challenges facing electronic system developers. The high power, heat flux, and volumetric heat generation of emerging devices are driving the transition from remote cooling, which relies on conduction and spreading, to embedded cooling, which facilitates direct contact between the heat-generating device and coolant flow. Microgap coolers employ the forced flow of dielectric fluids undergoing phase change in a heated channel between devices. While two phase microcoolers are used routinely in ground-based systems, the lack of acceptable models and correlations for microgravity operation has limited their use for spacecraft thermal management. Previous research has revealed that gravitational acceleration plays a diminishing role as the channel diameter shrinks, but there is considerable variation among the proposed gravity-insensitive channel dimensions and minimal research on rectangular ducts. Reliable criteria for achieving gravity-insensitive flow boiling performance would enable spaceflight systems to exploit this powerful thermal management technique and reduce development time and costs through reliance on ground-based testing. In the present effort, the authors have studied the effect of evaporator orientation on flow boiling performance of HFE7100 in a 218 m tall by 13.0 mm wide microgap cooler. Similar heat transfer coefficients and critical heat flux were achieved across five evaporator orientations, indicating that the effect of gravity was negligible.

  7. Relaxation of residual stresses in 20%SiCw/6061Al composite as-extruded at high temperature

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The residual stress in a 20%SiCw/6061Al composite as-extruded was investigated by using X-ray stress measurement method. It was found that, high residual stress existed in the composite and residual stress distribution in each direction are not uniform. Relaxation process of residual stress in the composite was dynamically measured during annealing at high temperature. It is verified that the relaxation of residual stress obeys the power law at high temperature. With the creep mechanism, the relaxation behavior of residual stresses at high temperature was analyzed. The results show that, the stress exponent and activation energy for stress relaxation of the composite are obviously higher than those of the matrix alloy.

  8. Gamma heated subassembly for sodium boiling experiments

    Energy Technology Data Exchange (ETDEWEB)

    Artus, S.C.

    1975-01-01

    The design of a system to boil sodium in an LMFBR is examined. This design should be regarded as a first step in a series of boiling experiments. The reactor chosen for the design of the boiling apparatus is the Experimental Breeder Reactor-II (EBR-II), located at the National Reactor Testing Station in Idaho. Criteria broadly classified as design objectives and design requirements are discussed.

  9. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure.

    Science.gov (United States)

    Fu, Yinan; Wand, A Joshua

    2013-08-01

    High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.

  10. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yinan; Wand, A. Joshua, E-mail: wand@mail.med.upenn.edu [University of Pennsylvania, Department of Biochemistry and Biophysics, Johnson Research Foundation (United States)

    2013-08-15

    High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.

  11. Enhancement of high-solids enzymatic hydrolysis of corncob residues by bisulfite pretreatment for biorefinery.

    Science.gov (United States)

    Xing, Yang; Bu, Lingxi; Zheng, Tianran; Liu, Shijie; Jiang, Jianxin

    2016-12-01

    Co-production of glucose, furfural and other green materials based on a lignocellulosic biorefinery is a promising way to realize the commercial application of corncob residues. An effective process was developed for glucose production using low temperature bisulfite pretreatment and high-solids enzymatic hydrolysis. Corncob residues from furfural production (FRs) were pretreated with 0.1g NaHSO3/g dry substrate at 100°C for 3h. Lignin was sulfonated and sulfonic groups were produced during pretreatment, which resulted in decreasing the zeta potential of the samples. Compared with raw material, bisulfite pretreatment of FRs increased the glucose yield from 18.6 to 99.45% after 72h hydrolysis at a solids loading of 12.5%. The hydrolysis residues showed a relatively high thermal stability and concentrated high derivatives. Direct pretreatment followed by enzymatic hydrolysis is an environmentally-friendly and economically-feasible method for the production of glucose and high-purity lignin, which could be further converted into high-value products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Defluoridation of drinking water by boiling with brushite and calcite.

    Science.gov (United States)

    Larsen, M J; Pearce, E I F

    2002-01-01

    Existing methods for defluoridating drinking water involve expensive high technology or are slow, inefficient and/or unhygienic. A new method is now suggested, encompassing brushite and calcite suspension followed by boiling. Our aim was to examine the efficiency of the method and the chemical reactions involved. Brushite, 0.3-0.5 g, and an equal weight of calcite were suspended in 1 litre water containing 5-20 ppm fluoride. The suspensions were boiled in an electric kettle, left to cool and the calcium salts to sediment. Solution ion concentrations were determined and sediments were examined by X-ray diffraction. In distilled water initially containing 5, 10 and 20 ppm fluoride the concentration was reduced to 0.06, 0.4 and 5.9 ppm, respectively. Using Aarhus tap water which contained 2.6 mmol/l calcium the final concentrations were 1.2, 2.5 and 7.7 ppm, respectively, and runs without calcite gave results similar to those with calcite. Without boiling the fluoride concentration remained unaltered, as did the brushite and calcite salts, despite occasional agitation by hand. All solutions were supersaturated with respect to fluorapatite and hydroxyapatite and close to saturation with respect to brushite. Boiling produced well-crystallised apatite and traces of calcite, while boiling of brushite alone left a poorly crystallised apatite. We conclude that boiling a brushite/calcite suspension rapidly converts the two salts to apatite which incorporates fluoride if present in solution, and that this process may be exploited to defluoridate drinking water.

  13. Distribution of multiple pesticide residues in apple segments after home processing

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Poulsen, Mette Erecius; Hansen, H. C. B.

    2003-01-01

    The effects of washing, storing, boiling, peeling, coring and juicing on pesticide residue were investigated for field-sprayed Discovery and Jonagold apples. Residues of chlorpyrifos, cypermethrin, deltamethrin, diazinon, endosulfan, endosulfan sulfate, fenitrothion, fenpropathrin, iprodione...... significantly reduced five of the pesticide residues: diazinon, chlorpyrifos, fenitrothion, kresoxim-methyl and tolylfluanid, by 25-69%. Residues of the metabolite endosulfan sulfate were increased by 34% during storage. Boiling significantly reduced residues of fenitrothion and tolylfluanid by 32 and 81...

  14. Determination of clomazone residues in soybean and soil by high performance liquid chromatography with DAD detection.

    Science.gov (United States)

    Hu, Jiye; Cao, Di; Deng, Zhubo

    2011-04-01

    A simple analysis method to detect clomazone residues in soybean and soil was developed using solid phase extraction coupled with high performance liquid chromatography with diode-array detection. The pesticide residues present in soybean and soil matrices were extracted with methanol-water and extracts purified with Florisil cartridges. The analytes from soybean and soil matrix were eluted with petroleum ether-acetic ether (10 mL, 95:5, v/v) and petroleum ether-acetic ether (2 mL, 95:5, v/v), respectively. The overall recovery of fortified soybean and soil at the levels of 0.01, 0.1 and 0.5 mg/kg ranged from 89.75% to 106.6%, and the coefficients of variation (CV) ranged from 1.68% to 4.93% (n = 3). The limit of quantification (LOQ) is 0.01 mg/kg. This method has been applied to the analysis of clomazone in real samples of soybean and soil. The dissipation of residue over the time in soil coincided with C = 1.189e(-0.0926t ) and the half-lives (T(1/2)) was 7.48 days. The final residue in soybean was lower than 0.01 mg/kg at harvest time. Direct confirmation of the analyte in real samples was achieved by gas chromatography-mass spectrometry.

  15. Finite element analysis of residual stress in the welded zone of a high strength steel

    Indian Academy of Sciences (India)

    Li Yajiang; Wang Juan; Chen Maoai; Shen Xiaoqin

    2004-04-01

    The distribution of the residual stress in the weld joint of HQ130 grade high strength steel was investigated by means of finite element method (FEM) using ANSYS software. Welding was carried out using gas shielded arc welding with a heat input of 16 kJ/cm. The FEM analysis on the weld joint reveals that there is a stress gradient around the fusion zone of weld joint. The instantaneous residual stress on the weld surface goes up to 800 ∼ 1000 MPa and it is 500 ∼ 600 MPa, below the weld. The stress gradient near the fusion zone is higher than any other location in the surrounding area. This is attributed as one of the significant reasons for the development of cold cracks at the fusion zone in the high strength steel. In order to avoid such welding cracks, the thermal stress in the weld joint has to be minimized by controlling the weld heat input.

  16. Experimental Study and Heat Transfer Analysis on the Boiling of Saturated Liquid Nitrogen under Transient Pulsed Laser Irradiation

    Institute of Scientific and Technical Information of China (English)

    Zhaoyi DONG; Xiulan HUAI

    2005-01-01

    The boiling behavior of the liquid nitrogen (LN2) under the transient high heat flux urgently needs to be researched systematically. In this paper, the high power short pulse duration laser was used to heat the saturated LN2 rapidly, and the high-speed photography aided by the spark light system was employed to take series of photos which displayed the process of LN2's boiling behavior under such conditions. Also, a special temperature measuring system was applied to record the temperature variation of the heating surface. The experiments indicated that an explosive boiling happened within LN2 by the laser heating, and a conventional boiling followed up after the newly-defined changeover time. By analyzing the temperature variation of the heating surface, it is found that the latent heat released by the crack of the bubbles in the bubble cluster induced by the explosive boiling is an important factor that greatly influences the boiling heat transfer mechanism.

  17. The Physics of Boiling at Burnout

    Science.gov (United States)

    Theofanous, T. G.; Tu, J. P.; Dinh, T. N.; Salmassi, T.; Dinh, A. T.; Gasljevic, K.

    2000-01-01

    The basic elements of a new experimental approach for the investigation of burnout in pool boiling are presented. The approach consists of the combined use of ultrathin (nano-scale) heaters and high speed infrared imaging of the heater temperature pattern as a whole, in conjunction with highly detailed control and characterization of heater morphology at the nano and micron scales. It is shown that the burnout phenomenon can be resolved in both space and time. Ultrathin heaters capable of dissipating power levels, at steady-state, of over 1 MW/square m are demonstrated. A separation of scales is identified and it is used to transfer the focus of attention from the complexity of the two-phase mixing layer in the vicinity of the heater to a micron-scaled microlayer and nucleation and associated film-disruption processes within it.

  18. Experimental study on convective boiling heat transfer in narrow-gap annulus tubes

    Institute of Scientific and Technical Information of China (English)

    LI Bin; ZHAO Jian-Fu; ZHOU Fang-De; TANG Ze-Mei; HU Wen-Rui

    2004-01-01

    Since convective boiling or highly subcooled single-phase forced convection in micro-channels is an effective cooling mechanism with a wide range of applications, more experimental and theoretical studies are required to explain and verify the forced convection heat transfer phenomenon in narrow channels. In this experimental study, we model the convective boiling behavior of water with low latent heat substance Freon 113 (R-113), with the purpose of saving power consumption and visualizing experiments. Both heat transfer and pressure drop characteristics were measured in subcooled and saturated concentric narrow gap forced convection boiling. Data were obtained to qualitatively identify the effects of gap size, pressure, flow rate and wall superheat on boiling regimes and the transition between various regimes. Some significant differences from unconfined forced convection boiling were found,and also, the flow patterns in narrow vertical annulus tubes have been studied quantitatively.

  19. Boiling flow through diverging microchannel

    Indian Academy of Sciences (India)

    V S Duryodhan; S G Singh; Amit Agrawal

    2013-12-01

    An experimental study of flow boiling through diverging microchannel has been carried out in this work, with the aim of understanding boiling in nonuniform cross-section microchannel. Diverging microchannel of 4° of divergence angle and 146 m hydraulic diameter (calculated at mid-length) has been employed for the present study with deionised water as working fluid. Effect of mass flux (118–1182 kg/m2-s) and heat flux (1.6–19.2 W/cm2) on single and two-phase pressure drop and average heat transfer coefficient has been studied. Concurrently, flow visualization is carried out to document the various flow regimes and to correlate the pressure drop and average heat transfer coefficient to the underlying flow regime. Four flow regimes have been identified from the measurements: bubbly, slug, slug–annular and periodic dry-out/rewetting. Variation of pressure drop with heat flux shows one maxima which corresponds to transition from bubbly to slug flow. It is shown that significantly large heat transfer coefficient (up to 107 kW/m2-K) can be attained for such systems, for small pressure drop penalty and with good flow stability.

  20. Boiling process in oil coolers on porous elements

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.

    2016-01-01

    Full Text Available Holography and high-speed filming were used to reveal movements and deformations of the capillary and porous material, allowing to calculate thermo-hydraulic characteristics of boiling liquid in the porous structures. These porous structures work at the joint action of capillary and mass forces, which are generalised in the form of dependences used in the calculation for oil coolers in thermal power plants (TPP. Furthermore, the mechanism of the boiling process in porous structures in the field of mass forces is explained. The development process of water steam formation in the mesh porous structures working at joint action of gravitational and capillary forces is investigated. Certain regularities pertained to the internal characteristics of boiling in cells of porous structure are revealed, by means of a holographic interferometry and high-speed filming. Formulas for calculation of specific thermal streams through thermo-hydraulic characteristics of water steam formation in mesh structures are obtained, in relation to heat engineering of thermal power plants. This is the first calculation of heat flow through the thermal-hydraulic characteristics of the boiling process in a reticulated porous structure obtained by a photo film and holographic observations.

  1. Transient boiling crisis of cryogenic liquids

    NARCIS (Netherlands)

    Deev, [No Value; Kharitonov, VS; Kutsenko, KV; Lavrukhin, AA

    2004-01-01

    This paper introduces a new physical model of boiling crisis under rapid increase of power on the heated surface. The calculation of the time interval of the transition to film boiling in cryogenic liquids was carried out depending on heat flux and pressure. The obtained results are in good

  2. Transient boiling crisis of cryogenic liquids

    NARCIS (Netherlands)

    Deev, [No Value; Kharitonov, VS; Kutsenko, KV; Lavrukhin, AA

    2004-01-01

    This paper introduces a new physical model of boiling crisis under rapid increase of power on the heated surface. The calculation of the time interval of the transition to film boiling in cryogenic liquids was carried out depending on heat flux and pressure. The obtained results are in good agreemen

  3. Boiling turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Lakkaraju, R.

    2013-01-01

    A fundamental understanding of liquid-vapor phase transitions, mainly boiling phenomenon, is essential due to its omnipresence in science and technology. In industries, many empirical correlations exist on the heat transport to get an optimized and efficient thermal design of the boiling equipment.

  4. Boiling turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Lakkaraju, R.

    2013-01-01

    A fundamental understanding of liquid-vapor phase transitions, mainly boiling phenomenon, is essential due to its omnipresence in science and technology. In industries, many empirical correlations exist on the heat transport to get an optimized and efficient thermal design of the boiling equipment.

  5. Heat Transfer Performances of Pool Boiling on Metal-Graphite Composite Surfaces

    Science.gov (United States)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2000-01-01

    Nucleate boiling, especially near the critical heat flux (CHF), can provide excellent economy along with high efficiency of heat transfer. However, the performance of nucleate boiling may deteriorate in a reduced gravity environment and the nucleate boiling usually has a potentially dangerous characteristic in CHF regime. That is, any slight overload can result in burnout of the boiling surface because the heat transfer will suddenly move into the film-boiling regime. Therefore, enhancement of nucleate boiling heat transfer becomes more important in reduced gravity environments. Enhancing nucleate boiling and critical heat flux can be reached using micro-configured metal-graphite composites as the boiling surface. Thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix, which is independent of gravity, will play an important role in bubble detachment. Thus boiling heat transfer performance does not deteriorate in a reduced-gravity environment. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. Experimental studies were performed on nucleate pool boiling of pentane on cooper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composite surfaces with various fiber volume concentrations for heat fluxes up to 35 W per square centimeter. It is revealed that a significant enhancement in boiling heat transfer performance on the composite surfaces is achieved, due to the presence of micro-graphite fibers embedded in the matrix. The onset of nucleate boiling (the isolated bubble regime) occurs at wall superheat of about 10 C for the Cu-Gr surface and 15 C for the Al-Gr surface, much lower than their respective pure metal surfaces. Transition from an isolated bubble regime to a coalesced bubble regime in boiling occurs at a superheat of

  6. Steam gasification of a thermally pretreated high lignin corn stover simultaneous saccharification and fermentation digester residue

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Daniel T.; Taasevigen, Danny; Garcia-Perez, Manuel; McDonald, Armando G.; Li, Guosheng; Wolcott, Michael

    2017-01-01

    Efficient conversion of all components in lignocellulosic biomass is essential to realizing economic feasibility of biorefineries. However, when utilizing biochemical pathways, lignin cannot be fermented. Furthermore, the high lignin and high ash residue resulting from simultaneous saccharification and fermentation (SSF) reactors is difficult to thermochemically process due to feed line plugging and bed agglomeration. In this study a corn stover SSF digester residue was thermally pretreated at 300°C for 22.5 minutes (min) and then gasified in a bubbling fluidized bed gasifier to study the effect of thermal pretreatment on its processing behavior. Untreated, pelletized SSF residue was gasified at the same conditions to establish the baseline processing behavior. Results indicate that the thermal pretreatment process removes a substantial portion of the polar and non-polar extractives, with a resultant increase in the concentration of lignin, cellulose, and ash. Feed line plugging was not observed, although bed agglomeration was occurring at similar rates for both feedstocks, suggesting that overall ash content is the most important factor affecting bed agglomeration. Benzene, phenol, and polyaromatic hydrocarbons in the tar were present at higher concentrations in the treated material, with higher tar loading in the product gas. Total product gas generation is lower for the treated material, although the overall gas composition does not change.

  7. Determination of Residual Monomers in Polycarboxylate Superplasticizer Using High Performance Liquid Chromatography

    Institute of Scientific and Technical Information of China (English)

    GUO Liping; WANG Shaofeng; ZHANG Anfu; LEI Jiaheng; DU Xiaodi

    2011-01-01

    A procedure was developed for the determination of residual monomers in polycarboxylate superplasticizer (PCs) by reversed-phase high performance liquid chromatography (RP-HPLC). Four kinds of residual monomers were well separated and determined on a SinoChrom ODS-BP (C18) column with mobile phases composed of acetonitrile and phosphate buffer solution. The monomers were detected by UV detector at 205 nm and quantitatively analyzed with an external standard method. For those residual monomers, the linear response ranged from 4.0× 10-6 mol·L-1 to 2.0× 10-3 mol·L-1. The determination limit of acrylic acid, sodium methylallyl sulfonate and 2-Acrylamido-2-methylpropane sulfonic acid was 0.02× 10-5 mol·L-1, while that of methoxy-polyethylene glycol monoacrylate was 0.1 × 10-5 mol· L-1. The relative standard deviation (RSD) of high concentration samples was less than 1%, while that of the low concentration samples was between 1%-4%. The standard (additional) recovery ratio was 97.4% -104.2%.

  8. Upgrading of coal ashes and desulphurisation residues to provide high value products

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, F.D.; Repetto, F.; Calabro, B.; Heijnen, W.M.M.; Larbi, J.A. [Mitsui Babcock Energy Limited, Renfrew (United Kingdom)

    1999-07-01

    Mitsui Babcock Energy Limited, Technology Centre have co-ordinated a collaborative project whose aim has been to investigate the possibility of preparing ettringite-based products and calcium sulphoaluminate cements from coal ashes and sulphoaluminate cements from coal ashes and desulphurisation residues. The results show that ettringite based plasters prepared using fly ash and gypsum exhibited poor mechanical strengths and unacceptable drying shrinkage. The ettringate produced was unstable. Laboratory synthesis of CSA binders using blends of gypsum or spray dry desulphurisation residue (calcium sulphite), calcium carbonate and fly ashes (including those with high unburned carbon contents)is possible at temperatures in the range 1200 - 1250{degree}C. Mortars prepared using the best CSA binder and tested according to ENV 197-1 (1996) yielded compressive strengths of 4, 6 and 12 MPa at 2, 7 and 28 days respectively. CSA-based binders have the potential for use as blended cements with OPC or as replacements for OPC in special ateas of application. If the feed mixture composition and process parameters are optimised, it is likely that significant improvements in properties can be made. Comparison of costs indicated that the CAS binder production process was the most cost effective method for disposal of waste coal ashes and desulphurisation residues. profits were more than 100 percent higher than for thermal upgrading of high carbon ashes, which could provide attractive income streams for electricity generators. A commercialisation strategy for CSA cements has been developed. 2 figs.; 10 tabs.

  9. Shifts in leaf N:P stoichiometry during rehabilitation in highly alkaline bauxite processing residue sand.

    Science.gov (United States)

    Goloran, Johnvie B; Chen, Chengrong; Phillips, Ian R; Elser, James J

    2015-10-07

    Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over time in rehabilitated sodic and alkaline BRS affected leaf N to P stoichiometry of native species used for rehabilitation. Both Ca and soil pH influenced the shifts in leaf N:P ratios of the study species as supported by consistently significant positive relationships (P stoichiometry can effectively provide a meaningful assessment on understanding nutrient limitation and productivity of native species used for vegetating highly sodic and alkaline BRS, and is a crucial indicator for assessing ecological rehabilitation performance.

  10. Boiling as Household Water Treatment in Cambodia: A Longitudinal Study of Boiling Practice and Microbiological Effectiveness

    Science.gov (United States)

    Brown, Joseph; Sobsey, Mark D.

    2012-01-01

    This paper focuses on the consistency of use and microbiological effectiveness of boiling as it is practiced in one study site in peri-urban Cambodia. We followed 60 randomly selected households in Kandal Province over 6 months to collect longitudinal data on water boiling practices and effectiveness in reducing Escherichia coli in household drinking water. Despite > 90% of households reporting that they used boiling as a means of drinking water treatment, an average of only 31% of households had boiled water on hand at follow-up visits, suggesting that actual use may be lower than self-reported use. We collected 369 matched untreated and boiled water samples. Mean reduction of E. coli was 98.5%; 162 samples (44%) of boiled samples were free of E. coli (boiled water in a covered container was associated with safer product water than storage in an uncovered container. PMID:22826487

  11. Boiling of the interface between two immiscible liquids below the bulk boiling temperatures of both components.

    Science.gov (United States)

    Pimenova, Anastasiya V; Goldobin, Denis S

    2014-11-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.

  12. Fluid phase thermodynamics : I) nucleate pool boiling of oxygen under magnetically enhanced gravity and II) superconducting cavity resonators for high-stability frequency references and precision density measurements of helium-4 gas

    Science.gov (United States)

    Corcovilos, Theodore Allen

    Although fluids are typically the first systems studied in undergraduate thermodynamics classes, we still have only a rudimentary phenomenological understanding of these systems outside of the classical and equilibrium regimes. Two experiments will be presented. First, we present progress on precise measurements of helium-4 gas at low temperatures (1 K-5 K). We study helium because at low densities it is an approximately ideal gas but at high densities the thermodynamic properties can be predicted by numerical solutions of Schroedinger's equation. By utilizing the high resolution and stability in frequency of a superconducting microwave cavity resonator we can measure the dielectric constant of helium-4 to parts in 109, corresponding to an equivalent resolution in density. These data will be used to calculate the virial coefficients of the helium gas so that we may compare with numerical predictions from the literature. Additionally, our data may allow us to measure Boltzmann's constant to parts in 108, a factor of 100 improvement over previous measurements. This work contains a description of the nearly-completed apparatus and the methods of operation and data analysis for this experiment. Data will be taken by future researchers.The second experiment discussed is a study of nucleate pool boiling. To date, no adequate quantitative model exists of this everyday phenomenon. In our experiment, we vary one parameter inaccessible to most researchers, gravity, by applying a magnetic force to our test fluid, oxygen. Using this technique, we may apply effective gravities of 0-80 times Earth's gravitational acceleration (g). In this work we present heat transfer data for the boiling of oxygen at one atmosphere ambient pressure for effective gravity values between 1g and 16g . Our data describe two relationships between applied heat flux and temperature differential: at low heat flux the system obeys a power law and at high heat flux the behavior is linear. We find that the

  13. Boiling on fins with wire screen of variable effective conductivity

    Directory of Open Access Journals (Sweden)

    Orzechowski Tadeusz

    2017-01-01

    Full Text Available The high scale of integration of modern equipment used for medical, military and other purposes puts heavy demands as regards the removal of great heat fluxes. This can be achieved only in exchangers that apply the phase change phenomena. Among many methods to improve boiling heat transfer, the wire mesh covering demonstrates some advantages due to the possibilities of designing the desired microstructure parameters, availability on the market, and low cost. The wire mesh microstucture with specified geometrical parameters produces anisotropy in conductivity. The different arrangement of the mesh layers relative to the direction of the heat flux is a cause of the change of temperature distribution within the layer. The consequence is a respective change in the discharge conditions of the gas phase and liquid feed. The experiments were conducted on fins covered with a single layer of copper mesh with lumen of 38 % and boiling FC-72 at ambient pressure. Compared with the smooth surface, the wire mesh structures yield an increase in the heat transfer rate at boiling. It is also shown that nucleate boiling is initiated at lower wall superheat. Formulas for longitudinal and perpendicular thermal conductivity are given for different mesh structure arrangements.

  14. On the eruptive boiling in silicon-based microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P.C.; Pan, Chin [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30043 (China)

    2008-09-15

    This study investigates experimentally eruptive boiling in a silicon-based rectangular microchannel with a hydraulic diameter of 33.7 {mu}m, a width of 99.8 {mu}m and a depth-to-width ratio of 0.203. The microchannel is made of SOI wafer and prepared using bulk micro-machining and anodic bonding. The surface roughness for both the bottom and the side walls was measured using an atomic force microscope. The evolution of the eruptive boiling of water in the smooth microchannel was clearly observed using an ultra high-speed video camera (up to 50,000 frames/s) at mass fluxes of 417 and 625 kg/m{sup 2} s and a heat flux from 14.9 to 372 kW/m{sup 2}. It is confirmed that eruptive boiling is a form of rapid bubble nucleation after which the bubble merges with a slug bubble downstream in a short distance or evolve to a slug bubble. The bubble frequency in all of the cases studied is provided. Eruptive boiling may be predicted classically with nano-sized cavities that are consistent with the measured surface roughness. (author)

  15. Pool boiling on the superhydrophilic surface with TiO2 nanotube arrays

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Surface with TiO2 nanotube arrays(TNTAs)is superhydrophilic and of great specific area.This paper investigates the pool boiling characteristics at the thermal interface with TNTAs.The results show that the TNTAs interface can enhance the pool boiling heat transfer compared to the pure Ti metal plate.The bubbles formed at the initial nucleation state are very small and released in higher frequency.The pool boiling heat transfer enhancement at the TNTAs interface may be attributed to the high density of nucleate site,high intrinsic heating area of nanotubes layer,superhydrophilicity and the vertically oriented nanotube structure.

  16. Visualization of boiling flow structure in a natural circulation boiling loop

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Arnab; Paruya, Swapan, E-mail: swapanparuya@gmail.com

    2015-04-15

    Highlights: • Vapor–liquid jet flows in natural circulation boiling loop. • Flow patterns and their transitions during geysering instability in the loop. • Evaluation of the efficiency of the needle probe in detecting the vapor–liquid and boiling flow structure. - Abstract: The present study reports vapor–liquid jet flows, flow patterns and their transitions during geysering instability in a natural circulation boiling loop under varied inlet subcooling ΔT{sub sub} (30–50 °C) and heater power Q (4–5 kW). Video imaging, voltage measurement using impedance needle probe, measurement of local pressure and loop flow rate have been carried out in this study. Power spectra of the voltage, the pressure and the flow rate reveal that at a high ΔT{sub sub} the jet flows have long period (21.36–86.95 s) and they are very irregular with a number of harmonics. The period decreases and becomes regular with a decrease of ΔT{sub sub}. The periods of the jet flows at ΔT{sub sub} = 30–50 °C and Q = 4 kW are in close agreement with those obtained from the video imaging. The probe was found to be more efficient than the pressure sensor in detecting the jet flows within an uncertainty of 9.5% and in detecting a variety of bubble classes. Both the imaging and the probe consistently identify the bubbly flow/vapor-mushrooms transition or the bubbly flow/slug flow transition on decreasing ΔT{sub sub} or on increasing Q.

  17. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  18. Highly sensitive ion pair liquid chromatographic determination of albendazole marker residue in animal tissues.

    Science.gov (United States)

    Fletouris, Dimitrios J; Papapanagiotou, Elias P; Nakos, Dimitrios S; Psomas, Ioannis E

    2005-02-23

    A simple, rapid, and highly sensitive ion pair liquid chromatographic method for the determination of albendazole sulfoxide, albendazole 2-aminosulfone, and albendazole sulfone, which constitute the marker residue of albendazole in animal tissues (muscle, fat, liver, and kidney), is described. Tissue samples were extracted with acetonitrile, and the extracts were partitioned, as ion pairs, into dichloromethane. The organic layer was evaporated to dryness, and the residue was reconstituted in phosphate buffer and extracted with ethyl acetate. Separation was carried out isocratically with a mobile phase containing both positively and negatively charged pairing ions. Detection was performed fluorometrically, with excitation and emission wavelengths set at 290 and 320 nm, respectively. Overall recoveries were better than 76%, and the overall relative standard deviation was better than 7.3% in all tissues examined. The limits of quantification were 20, 1, and 0.5 ng/g for sulfoxide, 2-aminosulfone, and sulfone metabolites, respectively. The method was successfully applied to determine residues in tissues of two sheep orally administered an albendazole formulation.

  19. Pesticide residues in passifloras crops in regions of high production in Colombia

    Directory of Open Access Journals (Sweden)

    Dario A. Bastidas

    2013-08-01

    Full Text Available As one of the most bio-diverse countries in the world, Colombia boasts a wide diversity of highly palatable tropical fruits. Even though Colombian fruit production has primarily targeted the domestic market, several fruit species, such as passion fruit (PassifloraSpp, are steadily gaining ground in the broader international arena.  Production of these crops and respond to raising domestic and international demand, many Colombian small-scale farmers use pesticides for pest and disease control. Inadequate use of pesticides could possibly entail public health risks, environmental contamination and ultimately interfere with international trade. Surveys were carried out to passifloras producers of three spices of passiflora crops, yellow passion fruit, sweet passion fruit and purple passion fruit  from the largest producers municipalities in Colombia with the aim to know the integrate pest control and agricultural practices related with pesticides applied in the crops. Ramdomly sampling was realized and samples were analyzed by multiresidue analysis methodology validated in the laboratory and based on IAEA-QuEChERS method. With the results of survey and laboratory analysis it is showed the presence of pesticide residues that exceed maximum residue limits in some samples and the pesticides identified in the samples correspond to those used by farmers. It was found that the presence of residues is mainly due to the shortcomings in the proper use of agricultural practices related primarily to the implementation of agricultural products no registered for such crops.

  20. [Determination of clavulanic acid residue in milk by high performance liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    Yang, Gang; Huang, Xianhui; Guo, Chunna; Fang, Qiuhua; He, Limin

    2012-06-01

    An analytical method was developed for the determination of clavulanic acid (CLAV) in milk by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). A 2 g milk sample was deproteinized by ethanol. The supernatant was transferred into a pear-shaped bottle to be evaporated to about 0.5 mL, and the residue was dissolved with ammonium acetate solution. The sample was determined by HPLC-MS/MS after the purification. The chromatographic separation was achieved on a Luna 5u C8 column using 0.1% formic acid in water and acetonitrile as mobile phases with gradient elution. The identification of CLAV was carried out by MS/MS equipped with electrospray ionization in negative scanning and multiple reaction monitoring (MRM) modes. Matrix-matched calibration standard was used for the quantification. The calibration curve showed perfect linear in the range of 10 - 400 microg/kg with the correlation coefficient of 0.999. The limit of detection (LOD, S/N > or = 3) was 10 microg/kg in milk, and the limit of quantification (LOQ, S/N > or = 10) was 20 microg/kg. The mean recoveries varied from 80.00% to 91.25% at the four spiked levels of LOQ, 1/2MRL (the maximum residue limit), MRL, and 2MRL with the relative standard deviations of 5.60% -8.77%. In conclusion, the established method can be applied for the determination of CLAV residues in milk.

  1. Mathematical and experimental modeling of nucleate boiling heat transfer in liquid nitrogen

    Science.gov (United States)

    Fusco, Ciro

    The investigation of nucleate boiling heat transfer, because of its complexity, is usually carried out experimentally and by using phenomenological approximations. The purpose of this work is to capture the essential features of nucleate boiling heat transfer in liquid nitrogen and to formulate a theoretical description useful for the prediction of the temperature fluctuations and beat flux. Experimental analysis was coupled with mathematical modeling to elucidate nucleate boiling heat transfer. The experimental setting consists of a platinum wire immersed in liquid nitrogen. A current is passed through the wire while the resistance is measured. The orientation of the wire can be changed from horizontal to vertical. The fluctuations of the wire temperature are measured. Using high-speed analysis, we characterized nucleate boiling heat transfer from the wire as occurring in two distinct phases or regimes: discrete nucleate boiling and transition boiling. We defined discrete nucleate boiling as the phase during which the active nucleation sites are clearly distinguishable from one another with no bubble coalescence occurring between adjacent sites. The high-speed analysis helped also to compute the frequencies, diameters, and nucleation density of departing bubbles as well as the energy loss by a single bubble during the discrete nucleate boiling regime. These parameters were subsequently used to formulate a mathematical model to simulate by discrete time steps the discrete nucleate boiling heat transfer from the platinum wire. The average temperature of the wire can be adequately modeled with only one variable, the power input. In addition to predicting the average temperature of the wire in the discrete nucleate boiling regime the model predicts well the average temperature of the wire in the conduction and convection regime and the transition regime. The model also reproduces the fluctuation of temperature in the discrete nucleate boiling regime. The mathematical

  2. Nucleate Pool Boiling Experiments (NPBX) on the International Space Station

    Science.gov (United States)

    Dhir, Vijay Kumar; Warrier, Gopinath R.; Aktinol, Eduardo; Chao, David; Eggers, Jeffery; Sheredy, William; Booth, Wendell

    2012-11-01

    During the period of March-May 2011, a series of boiling experiments was carried out in the Boiling Experimental Facility (BXF) located in the Microgravity Science Glovebox (MSG) of the International Space Station (ISS). The BXF Facility was carried to ISS on Space Shuttle Mission STS-133 on February 24, 2011. Nucleate Pool Boiling Experiment (NPBX) was one of the two experiments housed in the BXF. Results of experiments on single bubble dynamics (e.g., inception and growth), multiple bubble dynamics (lateral merger and departure, if any), nucleate pool boiling heat transfer, and critical heat flux are described. In the experiments Perfluoro-n-hexane was used as the test liquid. The system pressure was varied from 51 to 243 kPa, pool temperature was varied from 30° to 59°C, and test surface temperature was varied from 40° to 80°C. The test surface was a polished aluminum disc (1 mm thick, 89.5 mm in diameter) heated from below with strain gage heaters. Five cylindrical cavities were formed on the surface with four cavities located at the corners of a square and one in the middle. During experiments the magnitude of mean gravity level normal to the heater surface varied from 1.2 × 10 - 7g e to 6 × 10 - 7g e . The results of the experiments show that a single bubble continues to grow to occupy the size of the chamber without departing from the heater surface. During lateral merger of bubbles, at high superheats a large bubble may lift off from the surface but continues to hover near the surface. Neighboring bubbles are continuously pulled into the large bubble. At low superheats bubbles at neighboring sites simply merge to yield a larger bubble. The larger bubble mostly locates in the middle of the heated surface and serves as a vapor sink. The latter mode continues to persist when boiling is occurring all over the heater surface. Heat fluxes for steady state nucleate boiling and critical heat fluxes are found to be much lower than those obtained under earth

  3. Modeling acid-gas generation from boiling chloride brines

    Directory of Open Access Journals (Sweden)

    Sonnenthal Eric

    2009-11-01

    Full Text Available Abstract Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual

  4. Modeling acid-gas generation from boiling chloride brines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  5. Residual Stress Reversal in Highly Strained Shot Peened Structural Elements. Degree awarded by Florida Univ.

    Science.gov (United States)

    Mitchell, William S.; Throckmorton, David (Technical Monitor)

    2002-01-01

    The purpose of this research was to further the understanding of a crack initiation problem in a highly strained pressure containment housing. Finite Element Analysis methods were used to model the behavior of shot peened materials undergoing plastic deformation. Analytical results are in agreement with laboratory tensile tests that simulated the actual housing load conditions. These results further validate the original investigation finding that the shot peened residual stress had reversed, changing from compressive to tensile, and demonstrate that analytical finite element methods can be used to predict this behavior.

  6. Lucas Polynomial Approach for System of High-Order Linear Differential Equations and Residual Error Estimation

    Directory of Open Access Journals (Sweden)

    Muhammed Çetin

    2015-01-01

    Full Text Available An approximation method based on Lucas polynomials is presented for the solution of the system of high-order linear differential equations with variable coefficients under the mixed conditions. This method transforms the system of ordinary differential equations (ODEs to the linear algebraic equations system by expanding the approximate solutions in terms of the Lucas polynomials with unknown coefficients and by using the matrix operations and collocation points. In addition, the error analysis based on residual function is developed for present method. To demonstrate the efficiency and accuracy of the method, numerical examples are given with the help of computer programmes written in Maple and Matlab.

  7. Study of Residual Stresses and Distortion in Structural Weldments in High-Strength Steels.

    Science.gov (United States)

    1981-11-30

    and Cracking due to Stress Relieving Heat Treatment of HY80 Steel ", Welding in the World, 10 (1/2), 1972. -114- elastic-plastic and creep analysis...900°F (500C) is adequate. In these steels stress relief treatments are beneficial for the prevention of stress corrosion and reheat cracking . For...of * Contract NOO014-75-C-0469 (M.I.T. OSP #82558) STUDY OF RESIDUAL STRESSES AND DISTORTION IN - . -- ISTRUCTURAL WELT*IENTS IN HIGH-STRENGTH STEELS

  8. Effect of ice contamination of liquid-nitrogen drops in film boiling

    Science.gov (United States)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. Experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation is presented. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  9. Effect of ice contamination on liquid-nitrogen drops in film boiling

    Science.gov (United States)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. This paper presents experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  10. RESIDUAL FLEXURAL STRENGTH OF RECYCLED BRICK AGGREGATE CONCRETE EXPOSED TO HIGH TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Kasi Rekha

    2015-12-01

    Full Text Available The practice of using crushed brick in concrete is picking up due to its value addition to the mechanical properties of concrete. In the present experimental investigation the brick from the demolition waste is used as a coarse aggregate to study the flexural behaviour of recycled brick aggregate (RBA concrete after exposure to high temperatures. The recycled brick aggregate is replaced to granite aggregate up to 25% by its volume to produce RBA concrete. Beam specimens of size 100mm × 100mm × 500mm were used to study the flexural strength (modulus of rupture of both RBA concrete and granite aggregate (GA concrete. Both the concretes were heated to desired temperatures from 100oC to 1000oC in an interval of 100oC for three hours in bogie hearth furnace. The residual flexural strengths of both heated RBA and GA concretes were presented in this research to study the performance of RBAconcrete at high temperatures. The RBA concrete performed better than that of GA concrete in flexure at high temperatures by exhibiting higher residual strength.

  11. Residual stress in hydroxyapatite coating: nonlinear analysis and high-energy synchrotron measurements.

    Science.gov (United States)

    Fogarassy, Paul; Cofino, Bruno; Millet, Pierre; Lodini, Alain

    2005-07-01

    The thermal deposition of hydroxyapatite (HA) on titanium alloy substrate (Ti-6A1-4V) leads to a structure that has very good osseointegration properties. However, clinical failures have been occasionally reported at the interface between substrate and coating. Lifetime is the main parameter in such prostheses; therefore, in order to improve their quality, it is necessary to evaluate the level of stresses near the interface. The high-energy synchrotron radiation combines the advantages of a bulk analysis and reduced volume of the gauge. The objective of our study was to calculate the residual stress using a nonlinear finite-element model and to measure residual stress level near the interface, in the hydroxyapatite coating and in titanium alloy substrate with a nondestructive and high-resolution experiment. The high-energy synchrotron radiation of the BM16 beam-line at ESRF (Grenoble-France) was used with a resolution of down to 10 micrometers. The experimental measurements validate the results found by means of nonlinear finite-element analysis of the plasma spraying induced stress.

  12. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  13. 高温表面淹没过程中膜态沸腾的实验研究%Experimental Study on Film Boiling of High Temperature Surface During Immersion Quenching Process

    Institute of Scientific and Technical Information of China (English)

    刘斌; 潘良明; 陈德奇; 刘宏波

    2012-01-01

    Film boiling was widely applied in the process of metal heat treatment. The surface temperature and heat transfer coefficient of high temperature surface during immersion quenching process were experimentally studied. During the quenching process, the experimental results reveal that the transfer coefficient goes up to a peak near-lineally and then drops down at the gradually dropping temperature. The results show that the relationship between liquid level increasing speed and transfer coefficient is complicated and is not at a monotonous trend. According to the experimental results, a prediction model about the surface temperature vs time is established, which can predict the surface temperature well.%膜态沸腾在金属热处理等过程中有广泛的应用.本文研究了注水过程中高温表面膜态沸腾表面温度和表面换热系数的变化规律.实验发现:换热系数随表面温度的下降接近直线上升到最大值然后下降,液位上升速度对换热系数的影响较复杂,并不是单调的.根据实验数据,建立了表面温度随时间变化的预测模型,模型能很好地预测表面温度的变化规律.

  14. Analysis of the Residual Stresses in Helical Cylindrical Springs at High Temperature

    Directory of Open Access Journals (Sweden)

    H. Sun

    2015-01-01

    Full Text Available Creep is one of the basic properties of materials, its speed significantly depends on the temperature. Helical cylindrical springs are widely used in the elements of heating systems. This results in necessity of taking into account the effect of temperature on the stress-strain state of the spring. The object of research is a helical cylindrical spring used at high temperatures. Under this condition the spring state stability should be ensured.The paper studies relaxation of stress state and generation of residual stresses. Calculations are carried out in ABAQUS environment. The purpose of this work is to discuss the law of relaxation and residual stress in the spring.This paper describes the basic creep theories of helical cylindrical spring material. The calculation formulas of shear stress relaxation for a fixed compression ratio are obtained. Distribution and character of stress contour lines in the cross section of spring are presented. The stress relaxation – time relationships are discussed. The approximate formula for calculating relaxation shear stresses in the cross section of helical springs is obtained.The paper investigates creep ratio and law of residual stress variation in the cross-section of spring at 650℃. Computer simulation in ABAQUS environment was used. Research presents a finite element model of the spring creep in the cross-section.The paper conducts analysis of the stress changes for the creep under constant load. Under constant load stresses are quickly decreased in the around area of cross-section and are increased in the centre, i.e. the maximum and minimum stresses come close with time. Research work shows the possibility for using the approximate formula to calculate the relaxation shear stress in the cross section of spring and can provide a theoretical basis for predicting the service life of spring at high temperatures.In research relaxation processes of stress state are studied. Finite element model is cre

  15. Criticality in the slowed-down boiling crisis at zero gravity.

    Science.gov (United States)

    Charignon, T; Lloveras, P; Chatain, D; Truskinovsky, L; Vives, E; Beysens, D; Nikolayev, V S

    2015-05-01

    Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are carried out in the reduced gravity to preserve the conventional bubble geometry. Weightlessness is created artificially in two-phase hydrogen by compensating gravity with magnetic forces. We were able to reveal the fractal structure of the contour of the percolating cluster of the dry areas at the heater that precedes the boiling crisis. We provide a direct statistical analysis of dry spot areas that confirms the boiling crisis at zero gravity as a scale-free phenomenon. It was observed that, in agreement with theoretical predictions, saturated boiling CHF tends to zero (within the precision of our thermal control system) in zero gravity, which suggests that the boiling crisis may be observed at any heat flux provided the experiment lasts long enough.

  16. Hypergravity to Explore the Role of Buoyancy in Boiling in Porous Media

    Science.gov (United States)

    Lioumbas, John S.; Krause, Jutta; Karapantsios, Thodoris D.

    2013-02-01

    Boiling in porous media is an active topic of research since it is associated with various applications, e.g. microelectronics cooling, wetted porous media as thermal barriers, food frying. Theoretical expressions customary scale boiling heat and mass transfer rates with the value of gravitational acceleration. Information obtained at low gravity conditions show a deviation from the above scaling law but refers exclusively to non-porous substrates. In addition, the role of buoyancy in boiling at varying gravitational levels (i.e. from microgravity—important to satellites and future Lunar and Martial missions, to high-g body forces—associated with fast aerial maneuvers) is still unknown since most experiments were conducted over a limited range of g-value. The present work aims at providing evidence regarding boiling in porous media over a broad range of hypergravity values. For this, a special device has been constructed for studying boiling inside porous media in the Large Diameter Centrifuge (LDC at ESA/ESTEC). LDC offers the unique opportunity to cancel the shear stresses and study only the effect of increased normal forces on boiling in porous media. The device permits measurement of the temperature field beneath the surface of the porous material and video recordings of bubble activity over the free surface of the porous material. The preliminary results presented from experiments conducted at terrestrial and hypergravity conditions, reveal for the first time the influence of increased levels of gravity on boiling in porous media.

  17. A Study of Nucleate Boiling with Forced Convection in Microgravity

    Science.gov (United States)

    Merte, Herman, Jr.

    1999-01-01

    bubble and the heater surface. The enhancement of the boiling process with low velocities in earth gravity for those orientations producing the formation of a liquid macrolayer described above, accompanied by "sliding" vapor bubbles, has been demonstrated. The enhancement was presented as a function of orientation, subcooling, and heated length, while a criterion for the heat transfer for mixed natural/forced convection nucleate boiling was given previously. A major unknown in the prediction and application of flow boiling heat transfer in microgravity is the upper limit of the heat flux for the onset of dryout (or critical heat flux - CHF), for given conditions of fluid-heater surfaces, including geometry, system pressure and bulk liquid subcooling. It is clearly understood that the behavior in microgravity will be no different than on earth with sufficiently high flow velocities, and would require no space experimentation. However, the boundary at which this takes place is still an unknown. Previous results of CHF measurements were presented for low velocity flow boiling at various orientations in earth gravity as a function of flow velocity and bulk liquid subcooling, along with preliminary measurements of bubble residence times on a flat heater surface. This showed promise as a parameter to be used in modeling the CHF, both in earth gravity and in microgravity. The objective of the work here is to draw attention to and show results of current modeling efforts for the CHF, with low velocities in earth gravity at different orientations and subcoolings. Many geometrical possibilities for a heater surface exist in flowing boiling, with boiling on the inner and outer surfaces of tubes perhaps being the most common. If the vapor bubble residence time on and departure size from the heater surface bear a relationship to the CHF, as results to be given indicate, it is important that visualization of and access to vapor bubble growth be conveniently available for research

  18. Morphology and structural properties of high-amylose rice starch residues hydrolysed by amyloglucosidase.

    Science.gov (United States)

    Man, Jianmin; Yang, Yang; Huang, Jun; Zhang, Changquan; Zhang, Fengmin; Wang, Youping; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2013-06-15

    High-amylose starches are attracting considerable attention because of their potential health benefits and industrial uses. Enzyme hydrolysis of starch is involved in many biological and industrial processes. In this paper, starches were isolated from high-amylose transgenic rice (TRS) and its wild type rice, Te-qing (TQ). The morphological and structural changes of starch residues following Aspergillus niger amyloglucosidase (AAG) hydrolysis were investigated. AAG hydrolysed TQ starch from the granule surface, and TRS starch from the granule interior. During AAG hydrolysis, the content of amorphous structure increased, the contents of ordered structure and single helix decreased, and gelatinisation enthalpy decreased in TQ and TRS starch residues. The A-type polymorph of TRS C-type starch was hydrolysed faster than the B-type polymorph. The short-range ordered structure and B-type polymorph in the peripheral region of the subgranule and the surrounding band of TRS starch increased the resistance of TRS starch to AAG hydrolysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion.

    Science.gov (United States)

    Man, Jianmin; Yang, Yang; Zhang, Changquan; Zhou, Xinghua; Dong, Ying; Zhang, Fengmin; Liu, Qiaoquan; Wei, Cunxu

    2012-09-12

    High-amylose cereal starch has a great benefit on human health through its resistant starch content. In this paper, starches were isolated from mature grains of high-amylose transgenic rice line (TRS) and its wild-type rice cultivar Te-qing (TQ) and digested in vitro and in vivo. The structural changes of digestive starch residues were characterized using DSC, XRD, (13)C CP/MAS NMR, and ATR-FTIR. TQ starch was very susceptible to digestion; its residues following in vitro and in vivo digestion showed similar structural characteristics with TQ control starch, which suggested that both amorphous and crystalline structures were simultaneously digested. Both amorphous and the long-range order structures were also simultaneously hydrolyzed in TRS starch, but the short-range order (double helix) structure in the external region of TRS starch granule increased with increasing digestion time. The A-type polymorph of TRS C-type starch was hydrolyzed more rapidly than the B-type polymorph. These results suggested that B-type crystallinity and short-range order structure in the external region of starch granule made TRS starch resistant to digestion.

  20. 21 CFR 872.6710 - Boiling water sterilizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...

  1. Residual feed intake is repeatable for lactating Holstein dairy cows fed high and low starch diets.

    Science.gov (United States)

    Potts, S B; Boerman, J P; Lock, A L; Allen, M S; VandeHaar, M J

    2015-07-01

    Residual feed intake (RFI) is a tool to quantify feed efficiency in livestock and is commonly used to assess feed efficiency independent of production level, body weight (BW), or BW change. Lactating Holstein cows (n=109; 44 primiparous and 65 multiparous), averaging (mean ± standard deviation, SD) 665±77kg of BW, 42±9kg of milk/d, and 120±30 d postpartum, were fed diets of high (HI) or low (LO) starch content in 4 crossover experiments with two 28-d treatment periods. The LO diets were ~40% neutral detergent fiber (NDF) and ~14% starch and the HI diets were ~26% NDF and ~30% starch. Individual dry matter intake (DMI) of a cow was modeled as a function of milk energy output, metabolic BW, body energy change, and fixed effects of parity, experiment, cohort nested within experiment, and diet nested within cohort and experiment; RFI for each cow was the residual error term. Cows were classified as high (>0.5 SD of the mean), medium (±0.5 SD of the mean), or low (feed, income over feed cost, and DMI were also highly repeatable (r=0.72, 0.84, and 0.92, respectively). We achieved significant changes in milk yield and component concentration as well as energy partitioning between HI and LO diets and still determined RFI to be repeatable across diets. We conclude that RFI is reasonably repeatable for a wide range of dietary starch levels fed to mid-lactation cows, so that cows that have low RFI when fed high corn diets will likely also have low RFI when fed diets high in nonforage fiber sources. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Boiling significantly promotes photodegradation of perfluorooctane sulfonate.

    Science.gov (United States)

    Lyu, Xian-Jin; Li, Wen-Wei; Lam, Paul K S; Yu, Han-Qing

    2015-11-01

    The application of photochemical processes for perfluorooctane sulfonate (PFOS) degradation has been limited by a low treatment efficiency. This study reports a significant acceleration of PFOS photodegradation under boiling condition compared with the non-boiling control. The PFOS decomposition rate increased with the increasing boiling intensity, but declined at a higher hydronium level or under oxygenation. These results suggest that the boiling state of solution resulted in higher effective concentrations of reactants at the gas-liquid interface and enhanced the interfacial mass transfer, thereby accelerating the PFOS decomposition. This study broadens our knowledge of PFOS photodegradation process and may have implications for development of efficient photodegradation technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Microlayer during boiling in narrow slot channels

    Science.gov (United States)

    Diev, Mikhail D.; Leontiev, Alexander I.

    1997-01-01

    An international space station Alpha will have a two-phase thermal control system. Boiling of a liquid ammonia will be a process of heat collection in evaporative heat exchangers. Unfortunately, only little data is available for boiling heat transfer in microgravity. Geometries of boiling channels working good in normal gravity are not appropriate in microgravity, and special means should be worked out to avoid some undesired events. From this point of view, the narrow slot channels may be assumed as a promising geometry for microgravity operation. During boiling in narrow slots, the vapor bubbles are flattened between the channel walls. The vapor phase and the channel wall are separated by a thin liquid film which is known as a microlayer. The paper presents the experimental results compared to the theoretical analysis, the paper also shows the narrow slot channels as a perspective configuration for microgravity applications.

  4. How To Boil the Perfect Egg

    Institute of Scientific and Technical Information of China (English)

    小雨

    2007-01-01

    A British inventor says he has cracked(破解)the age-old riddle(难题)of how to boil the perfect egg,get rid of(摆脱)the water. Simon Rhymes uses powerful light bulbs instead of boiling water to cook the egg. The gadget(小发明)does the job in six minutes,and then chons off(削)the top of

  5. The investigation of boiling crisis of nanofluids

    Directory of Open Access Journals (Sweden)

    Minakov Andrey

    2016-01-01

    Full Text Available Saturated boiling of nanofluids on a cylindrical heater with different diameters is experimentally studied. Studied nanofluids were prepared using distilled water and different metal oxides nanoparticles. The volume concentration of the nanoparticles was changed from 0.05 to 1%. It has been measured that the critical heat flux for nanofluids was much higher than for water. A strong dependence of CHF on the material and size of the nanoparticles and duration of boiling and size of heater was shown.

  6. Increasing Boiling Heat Transfer using Low Conductivity Materials.

    Science.gov (United States)

    Rahman, Md Mahamudur; Pollack, Jordan; McCarthy, Matthew

    2015-08-18

    We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches.

  7. Hexa-arginine enhanced uptake and residualization of selective high affinity ligands by Raji lymphoma cells

    Directory of Open Access Journals (Sweden)

    Mirick Gary

    2009-04-01

    Full Text Available Abstract Background A variety of arginine-rich peptide sequences similar to those found in viral proteins have been conjugated to other molecules to facilitate their transport into the cytoplasm and nucleus of targeted cells. The selective high affinity ligand (SHAL (DvLPBaPPP2LLDo, which was developed to bind only to cells expressing HLA-DR10, has been conjugated to one of these peptide transduction domains, hexa-arginine, to assess the impact of the peptide on SHAL uptake and internalization by Raji cells, a B-cell lymphoma. Results An analog of the SHAL (DvLPBaPPP2LLDo containing a hexa-arginine peptide was created by adding six D-arginine residues sequentially to a lysine inserted in the SHAL's linker. SHAL binding, internalization and residualization by Raji cells expressing HLA-DR10 were examined using whole cell binding assays and confocal microscopy. Raji cells were observed to bind two fold more 111In-labeled hexa-arginine SHAL analog than Raji cells treated with the parent SHAL. Three fold more hexa-arginine SHAL remained associated with the Raji cells after washing, suggesting that the peptide also enhanced residualization of the 111In transported into cells. Confocal microscopy showed both SHALs localized in the cytoplasm of Raji cells, whereas a fraction of the hexa-arginine SHAL localized in the nucleus. Conclusion The incorporation of a hexa-D-arginine peptide into the linker of the SHAL (DvLPBaPPP2LLDo enhanced both the uptake and residualization of the SHAL analog by Raji cells. In contrast to the abundant cell surface binding observed with Lym-1 antibody, the majority of (DvLPBaPPP2LArg6AcLLDo and the parent SHAL were internalized. Some of the internalized hexa-arginine SHAL analog was also associated with the nucleus. These results demonstrate that several important SHAL properties, including uptake, internalization, retention and possibly intracellular distribution, can be enhanced or modified by conjugating the SHALs to a

  8. Residual Stresses in Inertia-Friction-Welded Dissimilar High-Strength Steels

    Science.gov (United States)

    Moat, R. J.; Hughes, D. J.; Steuwer, A.; Iqbal, N.; Preuss, M.; Bray, S. E.; Rawson, M.

    2009-09-01

    The welding of dissimilar alloys is seen increasingly as a way forward to improve efficiencies in modern aeroengines, because it allows one to tailor varying material property demands across a component. Dissimilar inertia friction welding (IFW) of two high-strength steels, Aermet 100 and S/CMV, has been identified as a possible joint for rotating gas turbine components and the resulting welds are investigated in this article. In order to understand the impact of the welding process and predict the life expectancy of such structures, a detailed understanding of the residual stress fields present in the welded component is needed. By combining energy-dispersive synchrotron X-ray diffraction (EDSXRD) and neutron diffraction, it has been possible to map the variations in lattice spacing of the ferritic phase on both sides of two tubular Aermet 100-S/CMV inertia friction welds (as-welded and postweld heat-treated condition) with a wall thickness of 37 mm. Laboratory-based XRD measurements were required to take into account the variation in the strain-free d-spacing across the weld region. It was found that, in the heat-affected zone (HAZ) slightly away from the weld line, residual stress fields showed tensile stresses increasing most dramatically in the hoop direction toward the weld line. Closer to the weld line, in the plastically affected zone, a sharp drop in the residual stresses was observed on both sides, although more dramatically in the S/CMV. In addition to residual stress mapping, synchrotron XRD measurements were carried out to map microstructural changes in thin slices cut from the welds. By studying the diffraction peak asymmetry of the 200- α diffraction peak, it was possible to demonstrate that a martensitic phase transformation in the S/CMV is responsible for the significant stress reduction close to the weld line. The postweld heat treatment (PWHT) chosen to avoid any overaging of the Aermet 100 and to temper the S/CMV martensite resulted in little

  9. Determination of sulphachloropyrazine-diaveridine residues by high performance liquid chromatography in broiler edible tissues

    Science.gov (United States)

    LI, Yongjun; BU, Shijin

    2015-01-01

    Diaveridine (DVD) is used in combination with sulphachloropyrazine (SPZ) as an effective antibacterial agent and antiprotozoal agent, respectively, in humans and animals. To gain a better understanding of the metabolism of SPZ and DVD in the food-producing animals, a high performance liquid chromatography (HPLC) method to determine and quantify sulphachloropyrazine (SPZ) and diaveridine (DVD) suspension residues from broilers is reported. Thirty healthy chickens were orally administered with sulphachloropyrazine-diaveridine (SPZ-DVD) suspension in water of 300 mg/l (SPZ) per day for seven successive days. Six chickens per day were slaughtered at 0, 1, 3, 5 and 7 days after the last administration. This procedure permitted SPZ and DVD to be separated from muscle tissue, liver, kidneys and skin with fat after extraction with acetonitrile and acetone under slightly acidic conditions. From the detected residuals in different tissues, we found that SPZ was quickly eliminated in liver and muscle, and slowly eliminated in kidney and skin with fat. DVD was quickly eliminated in liver and slowly eliminated in kidney. The withdrawal period of SPZ was 3.26, 3.72, 4.39 and 5.43 days in muscle, liver, kidney and skin with fat, respectively. The withdrawal period of DVD was 4.77, 4.94, 6.74 and 4.58 days in muscle, liver, kidney and skin with fat, respectively. Therefore, the suggested withdrawal period for SPZ-DVD suspension should be 7 days after dosing for seven successive days. PMID:26212255

  10. Recycling of automobile shredder residue with a microwave pyrolysis combined with high temperature steam gasification.

    Science.gov (United States)

    Donaj, Pawel; Yang, Weihong; Błasiak, Włodzimierz; Forsgren, Christer

    2010-10-15

    Presently, there is a growing need for handling automobile shredder residues--ASR or "car fluff". One of the most promising methods of treatment ASR is pyrolysis. Apart of obvious benefits of pyrolysis: energy and metals recovery, there is serious concern about the residues generated from that process needing to be recycled. Unfortunately, not much work has been reported providing a solution for treatment the wastes after pyrolysis. This work proposes a new system based on a two-staged process. The ASR was primarily treated by microwave pyrolysis and later the liquid and solid products become the feedstock for the high temperature gasification process. The system development is supported within experimental results conducted in a lab-scale, batch-type reactor at the Royal Institute of Technology (KTH). The heating rate, mass loss, gas composition, LHV and gas yield of producer gas vs. residence time are reported for the steam temperature of 1173 K. The sample input was 10 g and the steam flow rate was 0.65 kg/h. The conversion reached 99% for liquids and 45-55% for solids, dependently from the fraction. The H(2):CO mol/mol ratio varied from 1.72 solids and 1.4 for liquid, respectively. The average LHV of generated gas was 15.8 MJ/Nm(3) for liquids and 15 MJ/Nm(3) for solids fuels.

  11. High level compressive residual stresses produced in aluminum alloys by laser shock processing

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Rosas, G. [Centro de Ingenieria y Desarrollo Industrial, CIDESI, Av. Playa Pie de la Cuesta, 702 Desarrollo San Pablo, c.p. 76130 Santiago de Queretaro, Queretaro (Mexico)]. E-mail: ggomez@cidesi.mx; Rubio-Gonzalez, C. [Centro de Ingenieria y Desarrollo Industrial, CIDESI, Av. Playa Pie de la Cuesta, 702 Desarrollo San Pablo, c.p. 76130 Santiago de Queretaro, Queretaro (Mexico); Ocana, J.L [Departamento de Fisica Aplicada a la Ingenieria Industrial, ETSII, Universidad Politecnica de Madrid (Spain); Molpeceres, C. [Departamento de Fisica Aplicada a la Ingenieria Industrial, ETSII, Universidad Politecnica de Madrid (Spain); Porro, J.A. [Departamento de Fisica Aplicada a la Ingenieria Industrial, ETSII, Universidad Politecnica de Madrid (Spain); Chi-Moreno, W. [Instituto Tecnologico de Morelia (Mexico); Morales, M. [Departamento de Fisica Aplicada a la Ingenieria Industrial, ETSII, Universidad Politecnica de Madrid (Spain)

    2005-11-15

    Laser shock processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results for metal surface treatments in underwater laser irradiation at 1064 nm. A convergent lens is used to deliver 1.2 J/cm{sup 2} in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG, two laser spot diameters were used: 0.8 and 1.5 mm. Results using pulse densities of 2500 pulses/cm{sup 2} in 6061-T6 aluminum samples and 5000 pulses/cm{sup 2} in 2024 aluminum samples are presented. High level of compressive residual stresses are produced -1600 MPa for 6061-T6 Al alloy, and -1400 MPa for 2024 Al alloy. It has been shown that surface residual stress level is higher than that achieved by conventional shot peening and with greater depths. This method can be applied to surface treatment of final metal products.

  12. Determination of Residual Acrylamide in Medical Polyacrylamide Hydrogel by High Performance Liquid Chromatography tandem Mass Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    WEI-WEI LI; HUI LI; ZHI-FEI LIU; QUN QIAO

    2009-01-01

    Objective To determine residual acrylamide in medical polyacrylamide hydrogel by high performance liquid chromatography tandem mass spectroscopy (HPLC-MS). Methods After 13C3 labeled acrylamide was added, the sample was extracted with water and then cleaned up with ExtrelutTM 20. The polyaerylamide hydrogel sample and 20 clinical cases were analyzed by HPLC-MS/MS and isotope dilution quantifying technique in selected reaction monitoring (SRM) mode. Results Acrylamide was separated from polyacrylamide hydrogel. The concentration of acrylamide in polyacrylamide hydrogel ranged from 3.9×109 to 3.1×108g/L in the 20 clinical cases. The peak area was favorable linear and the range was up to 3 000 μg/L. The recovery rate was 103.1% with a relative standard deviation (RSD) of 6.20%, when the mark level was 50 μg/L. Conclusion HPLC-MS is a rapid, accurate, and sensitive method for the determination of residual acrylamide in medical polyacrylamide hydrogel.

  13. Flow boiling heat transfer in circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang REN; Jiangdong ZHENG; Sefiane KHELLII; Arumemi-Ikhide MICHAEL

    2009-01-01

    In order to enhance heat transfer and mitigate contamination in the boiling processes, a new type of vapor-liquid-solid (3-phase) circulating fluidized bed boil-ing system has been designed, combining a circulating fluidized bed with boiling heat transfer. Experimental results show an enhancement of the boiling curve. Flow visualization studies concerning flow hydrodynamics within the riser column are also conducted whose results are presented and discussed.

  14. Investigation of film boiling thermal hydraulics under FCI conditions. Results of a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Dinh, A.T.; Nourgaliev, R.R.; Sehgal, B.R. [Div. of Nuclear Power Safety Royal Inst. of Tech. (RIT), Brinellvaegen 60, 10044 Stockholm (Sweden)

    1998-01-01

    Film boiling on the surface of a high-temperature melt jet or of a melt particle is one of key phenomena governing the physics of fuel-coolant interactions (FCIs) which may occur during the course of a severe accident in a light water reactor (LWR). A number of experimental and analytical studies have been performed, in the past, to address film boiling heat transfer and the accompanying hydrodynamic aspects. Most of the experiments have, however, been performed for temperature and heat flux conditions, which are significantly lower than the prototypic conditions. For ex-vessel FCIs, high liquid subcooling can significantly affect the FCI thermal hydraulics. Presently, there are large uncertainties in predicting natural-convection film boiling of subcooled liquids on high-temperature surfaces. In this paper, research conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning film-boiling thermal hydraulics under FCI condition is presented. Notably, the focus is placed on the effects of (1) water subcooling, (2) high-temperature steam properties, (3) the radiation heat transfer and (4) mixing zone boiling dynamics, on the vapor film characteristics. Numerical investigations are performed using a novel CFD modeling concept named as the local-homogeneous-slip model (LHSM). Results of the analytical and numerical studies are discussed with respect to boiling dynamics under FCI conditions. (author)

  15. Large surface radiative forcing from topographic blowing snow residuals measured in the High Arctic at Eureka

    Directory of Open Access Journals (Sweden)

    G. Lesins

    2009-03-01

    Full Text Available Ice crystals, also known as diamond dust, are suspended in the boundary layer air under clear sky conditions during most of the Arctic winter in Northern Canada. Occasionally ice crystal events can produce significantly thick layers with optical depths in excess of 2.0 even in the absence of liquid water clouds. Four case studies of high optical depth ice crystal events at Eureka in the Nunavut Territory of Canada during the winter of 2006/07 are presented. They show that the measured ice crystal surface infrared downward radiative forcing ranged from 8 to 36 W m−2 in the wavelength band from 5.6 to 20 μm for 532 nm optical depths ranging from 0.2 to 1.7. MODIS infrared and visible images and the operational radiosonde wind profile were used to show that these high optical depth events were caused by surface snow being blown off 600 to 800 m high mountain ridges about 20 to 30 km North-West of Eureka and advected by the winds towards Eureka as they settled towards the ground within the highly stable boundary layer. This work presents the first study that demonstrates the important role that surrounding topography plays in determining the occurrence of high optical depth ice crystal events from residual blowing snow that becomes a source of boundary layer ice crystals distinct from the classical diamond dust phenomenon.

  16. Residual stress analysis of aluminium welds with high energy synchrotron radiation at the HARWI II beamline

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Torben; Martins, Rene V.; Schreyer, Andreas [GKSS Research Centre, Geesthacht (Germany)

    2008-07-01

    In civil aircraft production advanced welding techniques, like laser beam welding or friction stir welding, are used to reduce weight and production costs. By the welding process residual stresses are introduced in the weld zone and the surrounding area. These stresses may depend on diverse factors and can have disadvantageous influence on the service performance of the weld. For strain scanning GKSS research centre built up the high energy materials science beamline HARWI II at HASYLAB. The use of high energetic photons from about 80 keV-120 keV enables diffraction experiments in transmission geometry, which provides the information about the macroscopic stresses. A large sample-detector-distance ensures a high angular resolution for the peak position determination. The heavy load diffractometer allows making use of massive sample environments. For example laser beam welded t- and butt-joints were investigated with high spatial resolution. The large grain size of the specimen makes the measurements with high spatial resolution more difficult due to the poor grain statistics. The influences of the gauge volume size and grain statistics on the strain measurements were systematically investigated. For the t-joint configuration two dimensional stress maps were calculated from the data. For the near future an in-situ FSW experiment is planed to investigate the metallophysical processes during the welding.

  17. Critical heat flux maxima during boiling crisis on textured surfaces

    Science.gov (United States)

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.

    2015-01-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098

  18. A high precision technique to correct for residual atmospheric dispersion in high-contrast imaging systems

    CERN Document Server

    Pathak, P; Jovanovic, N; Lozi, J; Martinache, F; Minowa, Y; Kudo, T; Takami, H; Hayano, Y; Narita, N

    2016-01-01

    Direct detection and spectroscopy of exoplanets requires high contrast imaging. For habitable exoplanets in particular, located at small angular separation from the host star, it is crucial to employ small inner working angle (IWA) coronagraphs that efficiently suppress starlight. These coronagraphs, in turn, require careful control of the wavefront which directly impacts their performance. For ground-based telescopes, atmospheric refraction is also an important factor, since it results in a smearing of the PSF, that can no longer be efficiently suppressed by the coronagraph. Traditionally, atmospheric refraction is compensated for by an atmospheric dispersion compensator (ADC). ADC control relies on an a priori model of the atmosphere whose parameters are solely based on the pointing of the telescope, which can result in imperfect compensation. For a high contrast instrument like the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system, which employs very small IWA coronagraphs, refraction-induced sm...

  19. Preliminary Validation of High Performance Liquid Chromatography Method for Detection of Methyltestosterone Residue in Carp Muscle

    Institute of Scientific and Technical Information of China (English)

    JIANG Jie; LIN Hong; FU Xiaoting; LI Mingming

    2005-01-01

    The use of synthetic anabolic steroid methyltestosterone (MT) as growth promoter is prohibited in China. Validations of analytical methods for MT residue in food and the results obtained have become indispensable. The high performance liquid chromatography (HPLC) method for the detection of MT with liquid-liquid extraction by trichloromethanemethanol in carp muscle tissue was preliminarily validated with reference to the following parameters: recovery (accuracy)at the 1, 5 and 10 mgkg-1 level, between-run and within-run CV values (repeatability, also called relative standard deviation(RSD)) and limit of detection. The recoveries were above 80% and the between-run and within-run CV values below 10%for muscle tissue. The limit of detection was 0.05 mgkg-1.

  20. Expression profile of hypothalamic neuropeptides in chicken lines selected for high or low residual feed intake.

    Science.gov (United States)

    Sintubin, P; Greene, E; Collin, A; Bordas, A; Zerjal, T; Tesseraud, S; Buyse, J; Dridi, S

    2014-08-01

    The R(+) and R(-) chicken lines have been divergently selected for high (R(+)) or low (R(-)) residual feed intake. For the same body weight and egg production, the R(+) chickens consume 40% more food than their counterparts R(-) lines. In the present study we sought to determine the hypothalamic expression profile of feeding-related neuropeptides in these lines maintained under fed or food-deprived conditions. In the fed condition, the suppressor of cytokine signaling 3 (SOCS3) was 17-fold lower (Pfeeding-related genes that are differently expressed in the hypothalamus of R(+) and R(-) chickens and that might explain the difference in feed intake observed between the two lines. Published by Elsevier Ltd.

  1. Global gene expression profiling reveals genes expressed differentially in cattle with high and low residual feed intake.

    Science.gov (United States)

    Chen, Y; Gondro, C; Quinn, K; Herd, R M; Parnell, P F; Vanselow, B

    2011-10-01

    Feed efficiency is an economically important trait in beef production. It can be measured as residual feed intake. This is the difference between actual feed intake recorded over a test period and the expected feed intake of an animal based on its size and growth rate. DNA-based marker-assisted selection would help beef breeders to accelerate genetic improvement for feed efficiency by reducing the generation interval and would obviate the high cost of measuring residual feed intake. Although numbers of quantitative trait loci and candidate genes have been identified with the advance of molecular genetics, our understanding of the physiological mechanisms and the nature of genes underlying residual feed intake is limited. The aim of the study was to use global gene expression profiling by microarray to identify genes that are differentially expressed in cattle, using lines genetically selected for low and high residual feed intake, and to uncover candidate genes for residual feed intake. A long-oligo microarray with 24 000 probes was used to profile the liver transcriptome of 44 cattle selected for high or low residual feed intake. One hundred and sixty-one unique genes were identified as being differentially expressed between animals with high and low residual feed intake. These genes were involved in seven gene networks affecting cellular growth and proliferation, cellular assembly and organization, cell signalling, drug metabolism, protein synthesis, lipid metabolism, and carbohydrate metabolism. Analysis of functional data using a transcriptional approach allows a better understanding of the underlying biological processes involved in residual feed intake and also allows the identification of candidate genes for marker-assisted selection. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  2. Bioenergy from agricultural residues in Ghana

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe

    (boiling-, soaking in aqueous ammonia-, and white rot fungi pretreatments) are viable alternatives to the high-tech method hydrothermal treatment. However, these methods are not as versatile as hydrothermal treatment as they each have satisfactory effect on only a few of the biomasses. Silage pretreatment...... is also assessed but is not adequate as stand-alone pretreatment of dry lignified biomass. However, combined with hydrothermal treatment, silage treatment decreases the optimal pretreatment temperature significantly, thereby reducing the energy inputs for hydrothermal pretreatments.   It is recommended...... as these are verified substrates for low-tech systems. Beside manure, the most recommendable agricultural feedstock for anaerobic digestion are processing residues with high biomethane potentials (BMP) such as starchy peelings, cocoa husks, maize husks and maize cobs. Biomethane based on agricultural processing...

  3. A molecular dynamics study of phobic/philic nano-patterning on pool boiling heat transfer

    Science.gov (United States)

    Diaz, Ricardo; Guo, Zhixiong

    2017-03-01

    Molecular dynamics (MD) simulations were employed to investigate the pool boiling heat transfer of a liquid argon thin film on a flat, horizontal copper wall structured with vertical nanoscale pillars. The efficacy of phobic/philic nano-patterning for enhancing boiling heat transfer was scrutinized. Both nucleate and explosive boiling modes were considered. An error analysis demonstrated that the typical 2.5σ cutoff in MD simulations could under-predict heat flux by about 8.7 %, and 6σ cutoff was chosen here in order to maintain high accuracy. A new coordination number criterion was also introduced to better quantify evaporation characteristics. Results indicate that the argon-phobic/philic patterning tends to either have no effect, or decrease overall boiling heat flux, while the argon-philic nano-pillar/argon-philic wall shows the best heat transfer performance.

  4. Boiling crisis as inhibition of bubble detachment by the vapor recoil force

    CERN Document Server

    Nikolayev, Vadim; Garrabos, Yves

    2016-01-01

    Boiling crisis is a transition between nucleate and film boiling. In this communication we present a physical model of the boiling crisis based on the vapor recoil effect. Our numerical simulations of the thermally controlled bubble growth at high heat fluxes show how the bubble begins to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes the vapor spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further bubble spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. Under such conditions, we observed an increase of the apparent contact angle and spreading of the dry spot under the bubble, thus confirming our model of the boiling crisis.

  5. A molecular dynamics study of phobic/philic nano-patterning on pool boiling heat transfer

    Science.gov (United States)

    Diaz, Ricardo; Guo, Zhixiong

    2016-07-01

    Molecular dynamics (MD) simulations were employed to investigate the pool boiling heat transfer of a liquid argon thin film on a flat, horizontal copper wall structured with vertical nanoscale pillars. The efficacy of phobic/philic nano-patterning for enhancing boiling heat transfer was scrutinized. Both nucleate and explosive boiling modes were considered. An error analysis demonstrated that the typical 2.5σ cutoff in MD simulations could under-predict heat flux by about 8.7 %, and 6σ cutoff was chosen here in order to maintain high accuracy. A new coordination number criterion was also introduced to better quantify evaporation characteristics. Results indicate that the argon-phobic/philic patterning tends to either have no effect, or decrease overall boiling heat flux, while the argon-philic nano-pillar/argon-philic wall shows the best heat transfer performance.

  6. A Novel Kinetic Model of Liquid Nitrogen's Explosive Boiling at the Initial Stage

    Institute of Scientific and Technical Information of China (English)

    HUAI Xiu-Lan; DONG Zhao-Yi; LI Zhi-Gang; YIN Tie-Nan; ZOU Yu

    2007-01-01

    The liquid nitrogen's explosive boiling characteristics under transient high heat flux have attracted increasing attentions of researchers over the world due to its wide applications. Although some experiments have been performed, the process and the characteristics at the initial stage, especially within 1μs, have not been described reasonably yet. Based on the related experiments and theoretical analysis, a novel kinetic model combined with quasi-fluid idea is presented to analyse the characteristics of liquid nitrogen's explosive boiling at the initial stage. The results indicate that the model can appropriately describe the liquid nitrogen's explosive boiling. The behaviour and the heat transfer characteristics of a single bubble are very different from those of the bubble cluster, thus the behaviour of individual bubbles could not be directly applied to describe the explosive boiling process at the initial stage.

  7. Experimental Investigation on Pool Boiling Heat Transfer With Ammonium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Mr.P. Atcha Rao

    2015-11-01

    Full Text Available We have so many applications related to Pool Boiling. The Pool Boiling is mostly useful in arid areas to produce drinking water from impure water like sea water by distillation process. It is very difficult to distill the only water which having high surface tension. The surface tension is important factor to affect heat transfer enhancement in pool boiling. By reducing the surface tension we can increase the heat transfer rate in pool boiling. From so many years we are using surfactants domestically. It is proven previously by experiments that the addition of little amount of surfactant reduces the surface tension and increase the rate of heat transfer. There are different groups of surfactants. From those I‟m conducting experimentation with anionic surfactant Ammonium Dodecyl Sulfate (ADS, which is most human friendly and three times best soluble than Sodium Dodecyl Sulfate, to test the heat transfer enhancement.

  8. Pool boiling on rectangular fins with tunnel-pore structure

    Directory of Open Access Journals (Sweden)

    Pastuszko A.

    2013-04-01

    Full Text Available Complex experimental investigations were conducted in the area of pool boiling heat transfer on extended surfaces with internal tunnels limited by perforated foil. The experiments were carried out for water and R-123 at atmospheric pressure. The tunnel surfaces were fabricated from 0.05 – 0.1 mm thick perforated copper foil (pore diameters: 0.3, 0.4, 0.5 mm sintered with mini-fins formed by 5 and 10 mm high rectangular fins and horizontal inter-fin surface. The effect of the main fin height, pore diameters and tunnel pitch on nucleate pool boiling was examined. Substantial enhancement of heat transfer coefficient was observed for the investigated surfaces. The highest increase in the heat transfer coefficient was obtained for the 10 mm high fins – about 50kW/m2K for water and 15 kW/m2K for R-123. The investigated surfaces showed boiling heat transfer coefficients similar to those of existing tunnel-pore structures.

  9. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    CERN Document Server

    Li, Q; Francois, M M; He, Y L; Luo, K H

    2015-01-01

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 87, 053301 (2013)]. The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid-vapor phase change. Using the model, the liquid-vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Furthermore, the effects of the he...

  10. Influence of Processing Parameters on Residual Stress of High Velocity Oxy-Fuel Thermally Sprayed WC-Co-Cr Coating

    Science.gov (United States)

    Gui, M.; Eybel, R.; Asselin, B.; Radhakrishnan, S.; Cerps, J.

    2012-10-01

    Residual stress in high velocity oxy-fuel (HVOF) thermally sprayed WC-10Co-4Cr coating was studied based on design of experiment (DOE) with five factors of oxygen flow, fuel gas hydrogen flow, powder feed rate, stand-off distance, and surface speed of substrate. In each DOE run, the velocity and temperature of in-flight particle in flame, and substrate temperature were measured. Almen-type N strips were coated, and their deflections after coating were used for evaluation of residual stress level in the coating. The residual stress in the coating obtained in all DOE runs is compressive. In the present case of HVOF thermally sprayed coating, the residual stress is determined by three types of stress: peening, quenching, and cooling stress generated during spraying or post spraying. The contribution of each type stress to the final compressive residual stress in the coating depends on material properties of coating and substrate, velocity and temperature of in-flight particle, and substrate temperature. It is found that stand-off distance is the most important factor to affect the final residual stress in the coating, following by two-factor interaction of oxygen flow and hydrogen flow. At low level of stand-off distance, higher velocity of in-flight particle in flame and higher substrate temperature post spraying generate more peening stress and cooling stress, resulting in higher compressive residual stress in the coating.

  11. Antibiotic residues in milk and eggs of commercial and local farms at Chittagong, Bangladesh

    Directory of Open Access Journals (Sweden)

    Suchayan Chowdhury

    2015-04-01

    Full Text Available Aim: The study was conducted to detection and determination of concentration or level of antibiotic residues in milk and egg of local and commercial farms at Chittagong during December 2011 to June 2012. Materials and Methods: A total of 400 (200 milk and 200 egg samples were collected from local and commercial dairy cows and local scavenging and commercial poultry farms, respectively. Microbial inhibition test and thin layer chromatography were used for screening and ultra-high performance liquid chromatography was used to estimate the concentrations of antibiotic residues in samples. Results: Tetracycline, amoxicillin, and ciprofloxacin residues were significantly (p ≤ 0.05 higher in commercial farms than local. The boiling insignificantly (p˃0.05 reduced residues level in milk and egg. The average concentrations of amoxicillin residue in local milk, commercial milk, local egg, and commercial egg were 9.84 μg/ml, 56.16 μg/ml, 10.46 μg/g and 48.82 μg/g, respectively, in raw samples and were reduced to 9.81 μg/ml, 55.54 μg/ml, 10.29 μg/g, and 48.38 μg/g, respectively, after boiling. Conclusions: Proper maintaining of the withdrawal period and development of active surveillance system are highly recommended for public health security.

  12. Determination of Amitraz (Varroaset) Residue in Honey by High Performance Liquid Chromatography (HPLC)

    OpenAIRE

    ÇOBANOĞLU, Sultan; TÜZE, Şebnem

    2008-01-01

    Amitraz (Varroaset) is an acaricide applied against Varroa destructor Anderson & Trueman (Acarina: Varroidae) infestations on honeybees (Apis mellifera L.) (Hymenoptera: Apidae). Amitraz residue in honey was determined by HPLC in Ankara, Turkey. Honey samples were collected from beekeepers during the harvesting period in AyaG, Kızılcahamam and Polatlı towns in Ankara. Amitraz residue was found in various levels in six (15%) out of 32 honey samples. The residue amounts in the 6 samples wer...

  13. A review of film boiling at cryogenic temperatures.

    Science.gov (United States)

    Hsu, Y. Y.

    1972-01-01

    Film boiling occurs in the quenching of metals, the chilling of biological species, the regenerative cooling of rockets, and the cooling down of a cryogenic fuel tank. Occasionally film boiling is also found in a nuclear reactor or in a cryomagnet. Aspects of film boiling involving an unconstrained liquid mass are considered, giving attention to the evaporation time, the Leidenfrost temperature, solid-liquid contacts, the thermal properties of the solid, effects of coating or scale, wettability, the metastable condition, and the velocity effect on drops. Developments discussed with regard to pool boiling are related to vertical surfaces, film boiling from horizontal surfaces, film boiling from a horizontal cylinder, film boiling from a sphere, and film boiling of helium. Processes of film boiling in a channel are also analyzed.

  14. Residual Cardiovascular Risk in Chronic Kidney Disease: Role of High-density Lipoprotein

    Science.gov (United States)

    Kon, Valentina; Yang, Haichun; Fazio, Sergio

    2016-01-01

    Although reducing low-density lipoprotein-cholesterol (LDL-C) levels with lipid-lowering agents (statins) decreases cardiovascular disease (CVD) risk, a substantial residual risk (up to 70% of baseline) remains after treatment in most patient populations. High-density lipoprotein (HDL) is a potential contributor to residual risk, and low HDL-cholesterol (HDL-C) is an established risk factor for CVD. However, in contrast to conventional lipid-lowering therapies, recent studies show that pharmacologic increases in HDL-C levels do not bring about clinical benefits. These observations have given rise to the concept of dysfunctional HDL where increases in serum HDL-C may not be beneficial because HDL loss of function is not corrected by or even intensified by the therapy. Chronic kidney disease (CKD) increases CVD risk, and patients whose CKD progresses to end-stage renal disease (ESRD) requiring dialysis are at the highest CVD risk of any patient type studied. The ESRD population is also unique in its lack of significant benefit from standard lipid-lowering interventions. Recent studies indicate that HDL-C levels do not predict CVD in the CKD population. Moreover, CKD profoundly alters metabolism and composition of HDL particles and impairs their protective effects on functions such as cellular cholesterol efflux, endothelial protection, and control of inflammation and oxidation. Thus, CKD-induced perturbations in HDL may contribute to the excess CVD in CKD patients. Understanding the mechanisms of vascular protection in renal disease can present new therapeutic targets for intervention in this population. PMID:26009251

  15. A High-precision Technique to Correct for Residual Atmospheric Dispersion in High-contrast Imaging Systems

    Science.gov (United States)

    Pathak, P.; Guyon, O.; Jovanovic, N.; Lozi, J.; Martinache, F.; Minowa, Y.; Kudo, T.; Takami, H.; Hayano, Y.; Narita, N.

    2016-12-01

    Direct detection and spectroscopy of exoplanets requires high-contrast imaging. For habitable exoplanets in particular, located at a small angular separation from the host star, it is crucial to employ small inner working angle (IWA) coronagraphs that efficiently suppress starlight. These coronagraphs, in turn, require careful control of the wavefront that directly impacts their performance. For ground-based telescopes, atmospheric refraction is also an important factor, since it results in a smearing of the point-spread function (PSF), that can no longer be efficiently suppressed by the coronagraph. Traditionally, atmospheric refraction is compensated for by an atmospheric dispersion compensator (ADC). ADC control relies on an a priori model of the atmosphere whose parameters are solely based on the pointing of the telescope, which can result in imperfect compensation. For a high-contrast instrument like the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system, which employs very small IWA coronagraphs, refraction-induced smearing of the PSF has to be less than 1 mas in the science band for optimum performance. In this paper, we present the first on-sky measurement and correction of residual atmospheric dispersion. Atmospheric dispersion is measured from the science image directly, using an adaptive grid of artificially introduced speckles as a diagnostic to feedback to the telescope’s ADC. With our current setup, we were able to reduce the initial residual atmospheric dispersion from 18.8 mas to 4.2 in broadband light (y- to H-band) and to 1.4 mas in the H-band only. This work is particularly relevant to the upcoming extremely large telescopes (ELTs) that will require fine control of their ADC to reach their full high-contrast imaging potential.

  16. Effect of Running Parameters on Flow Boiling Instabilities in Microchannels.

    Science.gov (United States)

    Zong, Lu-Xiang; Xu, Jin-Liang; Liu, Guo-Hua

    2015-04-01

    Flow boiling instability (FBI) in microchannels is undesirable because they can induce the mechanical vibrations and disturb the heat transfer characteristics. In this study, the synchronous optical visualization experimental system was set up. The pure acetone liquid was used as the working fluid, and the parallel triangle silicon microchannel heat sink was designed as the experimental section. With the heat flux ranging from 0-450 kW/m2 the microchannel demand average pressure drop-heater length (Δp(ave)L) curve for constant low mass flux, and the demand pressure drop-mass flux (Δp(ave)G) curve for constant length on main heater surface were obtained and studied. The effect of heat flux (q = 188.28, 256.00, and 299.87 kW/m2), length of main heater surface (L = 4.5, 6.25, and 8.00 mm), and mass flux (G = 188.97, 283.45, and 377.94 kg/m2s) on pressure drops (Ap) and temperatures at the central point of the main heater surface (Twc) were experimentally studied. The results showed that, heat flux, length of the main heater surface, and mass flux were identified as the important parameters to the boiling instability process. The boiling incipience (TBI) and critical heat flux (CHF) were early induced for the lower mass flux or the main heater surface with longer length. With heat flux increasing, the pressure drops were linearly and slightly decreased in the single liquid region but increased sharply in the two phase flow region, in which the flow boiling instabilities with apparent amplitude and long period were more easily triggered at high heat flux. Moreover, the system pressure was increased with the increase of the heat flux.

  17. Commercial Application of the Second Generation RHT Catalysts for Hydroprocessing the Residue with Low Sulfur and High Nitrogen Contents

    Institute of Scientific and Technical Information of China (English)

    Shao Zhicai; Zhao Xinqiang; Liu Tao; Dai Lishun; Nie Hong

    2014-01-01

    The RHT technology and the second generation RHT catalysts were applied in design of an 1.7Mt/a VRDS unit at the SINOPEC Changling Branch Co. The commercial application result demonstrated that the RHT catalysts showed good activity and stability in processing low-sulfur and high-nitrogen residue. The ifrst long period run of unit for processing high Fe and high Ca content residue was achieved. The reasons for excessive pressure drop of R-101 were ascribed to Fe and Ca deposition as well as coke formation.

  18. Fermentative high-titer ethanol production from Douglas-fir forest residue without detoxification using SPORL: high SO2 loading at low temperature

    Science.gov (United States)

    Feng Gu; William Gilles; Roland Gleisner; J.Y. Zhu

    2016-01-01

    This study evaluated high sulfur dioxide (SO2) loading in applying Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL) to Douglas-fir forest residue (FS-10) for ethanol production through yeast fermentation. Three pretreatments were conducted at 140

  19. Experimental Investigation of Flow Boiling in Parallel Mini-channels

    Science.gov (United States)

    Wu, Wan.; Zhang, M. T.; Zhang, X. B.; Xia, J. J.; Wen, S.-Z.; Wang, Z.-R.; He, Z.-H.; Huang, Z.-C.

    2015-07-01

    Flow boiling in micro-channels and mini-channels has received significant attention due to its capability for dissipating highflux heat, especially in the thermal management of high precision electronics. A heat sink with narrow rectangular mini-channels is designed to investigate flow boiling in the mini-channels, including the effect of gravity. It contains 14 parallel channels with a cross section, of 1×4mm 2, of which the hydraulic diameter is 1.6mm. The cooling capability, the temperature uniformity, and the temperature stability of the flow boiling in minichannels are investigated with R22, with total mass flow flux ranges from 35 to 70kg/m 2s. The results show that the cooling capability of the heat- sink is up to 340W(˜ 3.0W/cm 2), and the temperature difference is below 4 ∘C(even down to 2 ∘C) on the heat sink. The temperature uniformity isn't quite sensitive to heat flux. The instability has not been observed in the present researches.

  20. Prediction of boiling points of organic compounds by QSPR tools.

    Science.gov (United States)

    Dai, Yi-min; Zhu, Zhi-ping; Cao, Zhong; Zhang, Yue-fei; Zeng, Ju-lan; Li, Xun

    2013-07-01

    The novel electro-negativity topological descriptors of YC, WC were derived from molecular structure by equilibrium electro-negativity of atom and relative bond length of molecule. The quantitative structure-property relationships (QSPR) between descriptors of YC, WC as well as path number parameter P3 and the normal boiling points of 80 alkanes, 65 unsaturated hydrocarbons and 70 alcohols were obtained separately. The high-quality prediction models were evidenced by coefficient of determination (R(2)), the standard error (S), average absolute errors (AAE) and predictive parameters (Qext(2),RCV(2),Rm(2)). According to the regression equations, the influences of the length of carbon backbone, the size, the degree of branching of a molecule and the role of functional groups on the normal boiling point were analyzed. Comparison results with reference models demonstrated that novel topological descriptors based on the equilibrium electro-negativity of atom and the relative bond length were useful molecular descriptors for predicting the normal boiling points of organic compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    Science.gov (United States)

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  2. Management of high sulfur coal combustion residues, issues and practices: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.P.; Beasley, G.A. [eds.

    1994-10-01

    Papers presented at the following sessions are included in this proceedings: (1) overview topic; (2) characterization of coal combustion residues; (3) environmental impacts of residues management; (4) materials handling and utilization, Part I; and (5) materials handling and utilization, Part II. Selected paper have been processed separately for inclusion in the Energy Science and Technology Database.

  3. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    Science.gov (United States)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  4. Burnout in subcooled flow boiling of water. A visual experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Celata, G.P.; Mariani, A.; Zummo, G. [ENEA, Engineering Div., National Institute of Thermal Fluid-Dynamics, Rome (Italy); Cumo, M. [University of Rome la Sapienza, Rome (Italy)

    2000-12-01

    The objective of the present work is to perform a photographic study of the burnout in highly subcooled flow boiling, in order to provide a qualitative description of the flow pattern under different conditions of boiling regime: ONB (onset of nucleate boiling), subcooled flow boiling and thermal crisis. In particular, the flow visualisation is focused on the phenomena occurring on the heated wall during the thermal crisis up to the physical burnout of the heater. Vapour bubble parameters are measured from flow images recorded, while the wall temperature is measured with an indirect method, by recording the heater elongation during all flow regimes studied. The combination of bubble parameters and wall temperature measurements as well as direct observations of the flow pattern, for all flow regimes, are collected in graphs which provide a useful global point of view of boiling phenomena, especially during boiling crisis. Under these conditions, a detailed analysis of the mechanisms leading to the critical heat flux is reported, and the so called events sequence, from thermal crisis occurrence up to heater burnout, is illustrated. (authors)

  5. High-performance liquid chromatography method validation for determination of tetracycline residues in poultry meat

    Directory of Open Access Journals (Sweden)

    Vikas Gupta

    2014-01-01

    Full Text Available Background: In this study, a method for determination of tetracycline (TC residues in poultry with the help of high-performance liquid chromatography technique was validated. Materials and Methods: The principle step involved in ultrasonic-assisted extraction of TCs from poultry samples by 2 ml of 20% trichloroacetic acid and phosphate buffer (pH 4, which gave a clearer supernatant and high recovery, followed by centrifugation and purification by using 0.22 μm filter paper. Results: Validity study of the method revealed that all obtained calibration curves showed good linearity (r2 > 0.999 over the range of 40-4500 ng. Sensitivity was found to be 1.54 and 1.80 ng for oxytetracycline (OTC and TC. Accuracy was in the range of 87.94-96.20% and 72.40-79.84% for meat. Precision was lower than 10% in all cases indicating that the method can be used as a validated method. Limit of detection was found to be 4.8 and 5.10 ng for OTC and TC, respectively. The corresponding values of limit of quantitation were 11 and 12 ng. Conclusion: The method reliably identifies and quantifies the selected TC and OTC in the reconstituted poultry meat in the low and sub-nanogram range and can be applied in any laboratory.

  6. Indoor residual spraying of insecticide and malaria morbidity in a high transmission intensity area of Uganda.

    Directory of Open Access Journals (Sweden)

    Ruth Kigozi

    Full Text Available Recently the use of indoor residual spraying of insecticide (IRS has greatly increased in Africa; however, limited data exist on the quantitative impacts of IRS on health outcomes in highly malaria endemic areas.Routine data were collected on more than 90,000 patient visits at a single health facility over a 56 month period covering five rounds of IRS using three different insecticides. Temporal associations between the timing of IRS and the probability of a patient referred for microscopy having laboratory confirmed malaria were estimated controlling for seasonality and age. Considering patients less than five years of age there was a modest decrease in the odds of malaria following the 1(st round of IRS using DDT (OR = 0.76, p<0.001 and the 2(nd round using alpha-cypermethrin (OR = 0.83, p = 0.002. Following rounds 3-5 using bendiocarb there was a much greater decrease in the odds of malaria (ORs 0.34, 0.16, 0.17 respectively, p<0.001 for all comparisons. Overall, the impact of IRS was less pronounced among patients 5 years or older.IRS was associated with a reduction in malaria morbidity in an area of high transmission intensity in Uganda and the benefits appeared to be greatest after switching to a carbamate class of insecticide.

  7. Boiling on Microconfigured Composite Surfaces Enhanced

    Science.gov (United States)

    Chao, David F.

    2000-01-01

    Boiling heat transfer is one of the key technologies for the two-phase active thermal-control system used on space platforms, as well as for the dynamic power systems aboard the International Space Station. Because it is an effective heat transfer mode, boiling is integral to many space applications, such as heat exchangers and other cooling devices. Nucleate boiling near the critical heat flux (CHF) can transport very large thermal loads with a much smaller device and much lower pumping power than for single-phase heat exchangers. However, boiling performance sharply deteriorates in a reduced-gravity environment, and operation in the CHF regime is somewhat perilous because of the risk of burnout to the device surface. New materials called microconfigured metal-graphite composites can enhance boiling. The photomicrograph shows the microconfiguration (x3000) of the copper-graphite (Cu-Gr) surface as viewed by scanning electronic microscope. The graphite fiber tips appear as plateaus with rugged surfaces embedded in the copper matrix. It has been experimentally demonstrated that this type of material manifests excellent boiling heat transfer performance characteristics and an increased CHF. Nonisothermal surfaces were less sensitive to variations of wall superheat in the CHF regime. Because of the great difference in conductivity between the copper base and the graphite fiber, the composite surfaces have a nonisothermal surface characteristic and, therefore, will have a much larger "safe" operating region in the CHF regime. In addition, the thermocapillary forces induced by the temperature differences between the fiber tips and the metal matrix play an important role in bubble detachment, and may not be adversely affected in a reduced-gravity environment. All these factors indicate that microconfigured composites may improve the reliability and economy (dominant factors in all space applications) of various thermal components found on spacecraft during future

  8. Digestion and metabolism of low and high residual feed intake Nellore bulls.

    Science.gov (United States)

    Bonilha, Sarah Figueiredo Martins; Branco, Renata Helena; Mercadante, Maria Eugênia Zerlotti; Dos Santos Gonçalves Cyrillo, Joslaine Noely; Monteiro, Fábio Morato; Ribeiro, Enilson Geraldo

    2017-03-01

    Understanding the reasons why animals of similar performances have different feed requirements is important to increase profits for cattle producers and to decrease the environmental footprint of beef cattle production. This study was carried out aiming to identify the associations between residual feed intake (RFI) and animal performance, nutrient digestibility, and blood metabolites related to energy balance of young Nellore bulls during the finishing period. Animals previously classified as low (n = 13) and high RFI (n = 12), with average initial body weight of 398 kg and age of 503 days were used. Cattle were fed a high energy diet and were slaughtered when rib fat thickness measured by ultrasound between the 12th and 13th ribs reached the minimum of 4 mm. A completely randomized design was adopted, being data analyzed with a mixed model that included the random effect of slaughter group, the fixed effect of RFI class, and linear effect of the covariate feedlot time. No differences were found (p > 0.10) between RFI classes for performance, dry matter, and nutrients intake. However, dry (p = 0.0911) and organic matter (p = 0.0876) digestibility tended to be lower, and digestibility of neutral detergent fiber corrected for ash and protein (p = 0.0017), and total digestible nutrients (p = 0.0657) were lower for high RFI animals, indicating lesser capacity of food utilization. Difference between low and high RFI animals was also found for blood cortisol at the end of the trial (p = 0.0044), having low RFI animals lower cortisol concentrations. Differences in the ability to digest food can affect the efficiency of transforming feed into meat by Nellore cattle.

  9. High-Temperature Deformation Constitutive Law for Dissimilar Weld Residual Stress Modeling: Effect of Thermal Load on Strain Hardening

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xinghua [ORNL; Wang, Yanli [ORNL; Crooker, Paul [Electric Power Research Institute (EPRI); Feng, Zhili [ORNL

    2015-01-01

    Weld residual stress is one of the primary driving forces for primary water stress corrosion cracking in dissimilar metal welds (DMWs). To mitigate tensile residual stress in DMWs, it is critical to understand residual stress distribution by modeling techniques. Recent studies have shown that weld residual stress prediction using today s DMW residual stress models strongly depends on the strain-hardening constitutive model chosen. The commonly used strain-hardening models (isotropic, kinematic, and mixed) are all time-independent and inadequate to account for the time-dependent (viscous) plastic deformation at the elevated temperatures experienced during welding. For materials with profound strain-hardening, such as stainless steels and nickel-based alloys that are widely used in nuclear reactor and piping systems, the equivalent plastic strain the determinate factor of the flow stress can be highly dependent on the recovery and recrystallization processes. These processes are in turn a strong function of temperature, time, and deformation rate. Recently, the authors proposed a new temperature- and time-dependent strain-hardening constitutive model: the dynamic strain-hardening constitutive model. The application of such a model has resulted in improved weld residual stress prediction compared to the residual stress measurement results from the contour and deep-hole drilling methods. In this study, the dynamic strain-hardening behavior of Type 304 stainless steel and Alloy 82 used in pressure vessel nozzle DMWs is experimentally determined. The kinetics of the recovery and recrystallization of flow stress are derived from experiments, resulting in a semi-empirical equation as a function of pre-strain, time, and temperature that can be used for weld residual stress modeling. The method used in this work also provides an approach to study the kinetics of recovery and recrystallization of other materials with significant strain-hardening.

  10. BOILING SLURRY REACTOR AND METHOD FO CONTROL

    Science.gov (United States)

    Petrick, M.; Marchaterre, J.F.

    1963-05-01

    The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)

  11. Dynamical Behavior of Discrete Bubble and Heat Transfer of Nucleate Pool Boiling in Short-Term Microgravity

    Science.gov (United States)

    Zhao, Jian-Fu

    2012-07-01

    Boiling in microgravity is an increasing significant subject of investigation. Motivation for the study comes not only from many potential space applications due to its high efficiency to transfer high heat flux with liquid-vapor phase change, but also from powerful platform of microgravity to reveal the mechanism of heat transfer underneath the phenomenon of boiling. In the present paper, the growth of a discrete bubble during nucleate pool boiling and heat transfer in short-term microgravity is studied experimentally utilizing the drop tower Beijing. A P-doped N-type square silicon chip with the dimensions of 10x10x0.5 mm ^{3} was used as the heater. Two 0.25-mm diameters copper wires for power supply was soldered to the side surfaces of the chip at the opposite ends. The normal resistant of the chip is 75 Ω. The chip was heated by using Joule effect. A D.C. power supply of constant current was used to input energy to the heater element. A 0.12-mm diameter, T-type thermocouple adhered on the centre of the backside of the chip was used for the measurement of wall temperature, while two other T-type thermocouples were used for the bulk liquid temperature. FC-72 was used as working fluid. The concentration of air was determined by using Henry law as 0.0046 moles gas/mole liquid. The pressure and the bulk liquid temperature in the boiling chamber were nominally 102.0 kPa and 12.0 °C, respectively. The shapes of the bubbles were recorded using a high speed camera at a speed of 250 fps with a shutter speed of 1/2000 s. Based on the image manipulation, the effective diameter of the discrete bubble is obtained. The experiments were conducted utilizing the drop tower Beijing, which can provide a short-term microgravity condition. The residual gravity of 10 ^{-2 ... -3} g _{0} can be maintained throughout the short duration of 3.6 s. To avoid the influence of natural convection in normal gravity environment, the heating switched on at the release of the drop capsule

  12. Thermodynamic considerations on a boil-off gas recovery system; Considerations thermo-dynamiques sur le systeme de recuperation du gaz d'evaporation (boil-off)

    Energy Technology Data Exchange (ETDEWEB)

    Lanzi, D.; Vareschi, G. [SNAM S.p.A. (Italy); Sguera, O. [Snamprogetti S.p.A. (Italy)

    2000-07-01

    The Panigaglia LNG re-gasification terminal is equipped with a system recovering the boil-off gas produced during both the unloading and the re-gasification phases. The system consists of a compression station and an absorption column that condenses the boil-off by means of two packing bodies, made of INTALOX METAL ring-type, DN 1'' or 2'', depending on the quantity of boil-off available. The above configuration, which was built during the 1991 terminal revamping, was designed to optimise the previous plant facilities and compression works by compressing the boil-off up to 30 bar. At present, to reduce the operating costs deriving from the electric power consumption due to compression of the gas to high pressures, the possibility of running the column at a pressure less than 25 bar has been evaluated. A new processing solution has been studied. This configuration permits using the LNG coming from the low-pressure pumps and therefore an LNG temperature of 15 deg. C less than the one used in the original system. The maximum boil-off rate that can be absorbed has been calculated at different operating pressures. The thermodynamic (material and energy balance) behaviour of the column has been checked and the thermodynamic studies and statistical analysis have given satisfactory and consistent results. In parallel, the operating parameters referred to a period of about one year, during both the unloading and the operating phases, have been identified and analysed. (authors)

  13. Influence of polymerization method, curing process, and length of time of storage in water on the residual methyl methacrylate content in dental acrylic resins.

    Science.gov (United States)

    Bayraktar, Gulsen; Guvener, Bora; Bural, Canan; Uresin, Yagiz

    2006-02-01

    This study compared the influence of different polymerization methods (heat, auto-, and microwave energy), different curing processes (in the case of heat- and autopolymerized specimens), and length of storage of the polymerized specimens in distilled water at 37 degrees C on the residual methyl methacrylate (MMA) content in dental acrylic resin specimens. Residual MMA of 120 resin specimens were measured using high-performance liquid chromatography. For the heat-polymerized resins, the lowest residual MMA content was obtained when they were given a long-term terminal boil and then stored in the distilled water for at least 1 day. For the autopolymerized resins, the lowest residual MMA content was obtained when they were additionally cured in water at 60 degrees C and then stored in the distilled water at least 1 day. For the microwave-polymerized resins, the lowest residual MMA content was obtained when they were stored in the distilled water at least 1 month. The lowest overall residual MMA content was obtained from heat-polymerized specimens that were given a long-term terminal boil cure and then stored in the distilled water at least 1 day. Different polymerization methods and curing processes have different effects on residual MMA content. It is thus shown that storing a dental acrylic resin specimen in distilled water at 37 degrees C is a simple but effective method of reducing its residual MMA content.

  14. Determination of the persistence of dimetridazole, metronidazole and ronidazole residues in black tiger shrimp (Penaeus monodon) tissue and their stability during cooking.

    Science.gov (United States)

    Gadaj, Anna; Cooper, Kevin M; Karoonuthaisiri, Nitsara; Furey, Ambrose; Danaher, Martin

    2015-01-01

    The depletion of three banned nitroimidazole drugs - dimetridazole (DMZ), metronidazole (MNZ) and ronidazole (RNZ) - was investigated in black tiger shrimp (Penaeus monodon) following in-water medication. The highest concentrations of residues were measured immediately after the 24-h immersion (d0). At this time, MNZ and MNZ-OH residues were measured in shrimp tissue samples at concentrations ranging from 361 to 4189 and from 0.28 to 6.6 μg kg(-1), respectively. DMZ and its metabolites HMMNI ranged in concentration between 31,509 and 37,780 and between 15.0 and 31.9 μg kg(-1), respectively. RNZ and HMMNI concentrations ranged from 14,530 to 24,206 and from 25.0 to 55 μg kg(-1), respectively. MNZ, DMZ and RNZ were the more persistent marker residues and can be detected for at least 8 days post-treatment. MNZ-OH was only detectable on d0 following treatment with MNZ. HMMNI residues were only detectable up to d1 (0.97-3.2 μg kg(-1)) or d2 (1.2-4.5 μg kg(-1)) following DMZ and RNZ treatment, respectively. The parent drugs MNZ, DMZ and RNZ were still measureable on d8 at 0.12-1.0, 40.5-55 and 8.8-18.7 μg kg(-1), respectively. The study also investigated the stability of nitroimidazole residues under various cooking procedures (frying, grilling, boiling, and boiling followed by microwaving). The experiments were carried out in shrimp muscle tissue containing both high and low concentrations of these residues. Different cooking procedures showed the impact on nitroimidazole residue concentration in shrimp tissue. Residue concentration depleted significantly, but partially, by boiling and/or microwaving, but the compounds were largely resistant to conventional grilling or frying. Cooking cannot therefore be considered as a safeguard against harmful nitroimidazole residues in shrimp.

  15. In situ degradation of antibiotic residues in medical intravenous infusion bottles using high energy electron beam irradiation

    Science.gov (United States)

    Wang, Min; Zhang, Lele; Zhang, Guilong; Pang, Tao; Zhang, Xin; Cai, Dongqing; Wu, Zhengyan

    2017-01-01

    This study reported an immediate approach for the degradation of three antibiotic (amoxicillin, ofloxacin, and cefradine) residues in medical intravenous infusion bottles (MIIBs) using high energy electron beam (HEEB) irradiation. The effects of irradiation doses, initial concentrations, initial pH, and scavengers of active radicals on the degradation of three antibiotic residues (ARs) were investigated, and the results displayed that 97.02%, 97.61% and 96.87% of amoxicillin, ofloxacin, and cefradine residues could be degraded in situ through HEEB irradiation respectively. Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis demonstrated that ARs were mainly decomposed into inorganic ions and alkanes. Typically, the detailed degradation mechanism of ARs was also investigated, and the dominant active particle inducing the degradation of antibiotics during the HEEB irradiation process was demonstrated to be hydroxyl radical.

  16. Study of Residual Stress Tensors in High-Speed Milled Specimens of Aluminium Alloys Using a Method of Indent Pairs

    Directory of Open Access Journals (Sweden)

    Felipe Víctor Díaz

    2010-12-01

    Full Text Available From data obtained using a method of indent pairs it was possible to analyse different residual stress states generated in high-speed milled specimens of AA 6082-T6 and AA 7075-T6 aluminium alloys. The present method integrates a special device of indentation into a universal measuring machine, allowing the introduction of elongated indents to significantly reduce the absolute error of measurement. Diverse protocols for operations of high-speed face milling allow us to compare residual stress tensors inherent to climb and conventional cutting zones. Through an exhaustive analysis of the Mohr’s circles corresponding to those zones, a relationship was detected, which expresses the sensitivity of both alloys to develop surface residual stresses.

  17. Identification of acid-base catalytic residues of high-Mr thioredoxin reductase from Plasmodium falciparum.

    Science.gov (United States)

    McMillan, Paul J; Arscott, L David; Ballou, David P; Becker, Katja; Williams, Charles H; Müller, Sylke

    2006-11-03

    High-M(r) thioredoxin reductase from the malaria parasite Plasmodium falciparum (PfTrxR) contains three redox active centers (FAD, Cys-88/Cys-93, and Cys-535/Cys-540) that are in redox communication. The catalytic mechanism of PfTrxR, which involves dithiol-disulfide interchanges requiring acid-base catalysis, was studied by steady-state kinetics, spectral analyses of anaerobic static titrations, and rapid kinetics analysis of wild-type enzyme and variants involving the His-509-Glu-514 dyad as the presumed acid-base catalyst. The dyad is conserved in all members of the enzyme family. Substitution of His-509 with glutamine and Glu-514 with alanine led to TrxR with only 0.5 and 7% of wild type activity, respectively, thus demonstrating the crucial roles of these residues for enzymatic activity. The H509Q variant had rate constants in both the reductive and oxidative half-reactions that were dramatically less than those of wild-type enzyme, and no thiolateflavin charge-transfer complex was observed. Glu-514 was shown to be involved in dithiol-disulfide interchange between the Cys-88/Cys-93 and Cys-535/Cys-540 pairs. In addition, Glu-514 appears to greatly enhance the role of His-509 in acid-base catalysis. It can be concluded that the His-509-Glu-514 dyad, in analogy to those in related oxidoreductases, acts as the acid-base catalyst in PfTrxR.

  18. An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.

    Science.gov (United States)

    Goodwin, Alan; Orlik, Yuri

    2000-01-01

    Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)

  19. Utilization of residues from agro-forest industries in the production of high value bacterial cellulose.

    Science.gov (United States)

    Carreira, Pedro; Mendes, Joana A S; Trovatti, Eliane; Serafim, Luísa S; Freire, Carmen S R; Silvestre, Armando J D; Neto, Carlos Pascoal

    2011-08-01

    Bacterial cellulose (BC), a very peculiar form of cellulose, is gaining considerable importance due to its unique properties. In this study, several residues, from agro-forestry industries, namely grape skins aqueous extract, cheese whey, crude glycerol and sulfite pulping liquor were evaluated as economic carbon and nutrient sources for the production of BC. The most relevant BC amounts attained with the residues from the wine and pulp industries were 0.6 and 0.3 g/L, respectively, followed by biodiesel crude residue and cheese whey with productions of about, 0.1 g/L after 96 h of incubation. Preliminary results on the addition of other nutrient sources (yeast extract, nitrogen and phosphate) to the residues-based culture media indicated that, in general, these BC productions could be increased by ~200% and ~100% for the crude glycerol and grape skins, respectively, after the addition organic or inorganic nitrogen.

  20. Effects of High Temperature on the Residual Performance of Portland Cement Concretes

    Directory of Open Access Journals (Sweden)

    Evandro Tolentino

    2002-09-01

    Full Text Available In this work we analyzed the "residual" performance of Portland cement concretes heat-treated at 600 °C after cooling down to room temperature. Concretes with characteristic compressive strength at 28 days of 45 MPa and of 60 MPa were studied. The heat-treatment was carried out without any imposed load. We measured the residual compressive strength and modulus of elasticity. The geometry of the structure was described by mercury intrusion porosimetry and nitrogen sorption tests. We observed a decrease of residual compressive strength and modulus of elasticity, with the raise of heat-treatment temperature, as a result of heat-induced material degradation. The results also indicated that the microstructural damage increased steadily with increasing temperature. Based on the results of this experimental work we concluded that residual mechanical properties of concrete are dependent of their original non heat-treated values.

  1. Quantitative determination of Closantel residues in milk by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Stoev, G; Dakova, T; Michailova, A

    1999-06-18

    A HPLC method with fluorescence detection for quantitative determination of Closantel residues in milk has been developed and validated. The proposed cleaning procedure with acetonitrile and acetone extraction, and solid-phase clean-up with Florisil enables concentrations of Closantel below 50 micrograms/l to be determined. The method was shown to be sufficient, precise, accurate, selective and rugged. The method was applied in the regular monitoring of Closantel residues in milk and of the pharmacokinetic behavior of Closantel in sheep.

  2. The Separation of Trace Substance With High Boiling Point and Refractory Volatility From Liquor%白酒中微量高沸点难挥发性物质的分离

    Institute of Scientific and Technical Information of China (English)

    戴惠东; 张良均; 黎金霞

    2013-01-01

      采用复合溶剂间歇萃取精馏提取白酒中的微量高沸点难挥发性物质(主要是邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二异丁酯(DIBP)),并同时考察溶剂种类、溶剂流率和回流比对分离效果的影响。实验结果表明:复合溶剂的最佳配比为7∶3(正戊烷与无水乙醚质量比);随着溶剂流率与回流比的增大,复合溶剂分离效果增强;在最佳配比下,当回流比为2、溶剂流率为13mL/min 时,塔釜中邻苯二甲酸二丁酯和邻苯二甲酸二异丁酯的质量分数可达95.56%。%The trace substances with high boiling point and refractory volatility in liquor (mainly are Dibutyl phthalate, DBP and Diisobutyl phthalate, DIBP) were extracted by batch extractive distillation with mixed solvent, at the same time the effect of different types of solvent, solvent flow rate and reflux ratio on separation efficiency was investigated. The results shows that the best proportion of n-pentane to diethyletheranhydrous is 7∶3, and the separation effect is improved with the increasing of solvent rate and reflux ratio, and under the conditions that the optimum value of solvent m (n-pentane):m (diethyletheranhydrous)=7∶3, reflux ratio is 2, and flow rate of solvent is 13mL/min, the mass fraction of DBP and DIBP in the bottom reaches 98.56%.

  3. Boiling heat transfer region with independence of the wall temperature

    Science.gov (United States)

    Mühlenbruch, G. H. D.; Schmidt, J.

    Extensive measurements of the intensive cooling of hot-rolled wires with temperatures between 1000 °C and 1100 °C are analysed. The analysis proves the existence of a convection-controlled boiling region, which has been previously observed by few authors in the case of high mass fluxes and high liquid subcooling. This region is characterised by an independence of the heat flux of the surface temperature. The heat flux depends essentially on the Reynolds number, the main influence parameter of the single phase convection, and on the liquid subcooling.

  4. Experimental and theoretical study on rapid transient nucleated boiling

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A laser heater has been used to impose a pulsed high power laser beam on a metal film inunersed in liquid to generate a very high rate of temperature rise up to 9.3 × 106K/s in the metal film. The rapid transient boiling phenomena have been observed and the temperature variations in the metal film have been measured. Theoretical calculations have been carried out with the fluctuation nucleation theory and the heat conduction theory to compare with the experimental results, and some results are reported.

  5. Overview and Computational Approach for Studying the Physicochemical Characterization of High-Boiling-Point Petroleum Fractions (350°C+ Approche informatique pour l’étude des propriétés physico-chimiques de fraction pétrolière lourde (350°C+

    Directory of Open Access Journals (Sweden)

    Plazas Tovar L.

    2012-06-01

    Full Text Available The processing and upgrading of high-boilingpoint petroleum fractions, containing a large number of components from different groups (paraffins, olefins, naphthenes, aromatics require an in-depth evaluation. In order to characterize them, their thermodynamic and thermophysical properties must be determined. This work presents a computational approach based on the breakdown of the petroleum fraction into pseudocomponents defined by a trial-and-error exercise in which the mass- and molar-balance errors were minimized. Cases studies are illustrated to three heavy residues 400°C+ from “W, Y and Z” crude oil. This procedure requires the boiling point distillation curve and the density of the whole fraction as the input bulk properties. The methods proposed according to available correlations in the literature and standard industrial methods were mainly used to estimate properties that include the basic properties (normal boiling point, density and Watson factor characterization, the thermodynamic properties (molar mass and critical properties and the thermophysical and transport properties (kinematic viscosity, thermal conductivity, specific heat capacity and vapor pressure. The methodology developed has shown to be a useful tool for calculating a remarkably broad range of physicochemical properties of high-boiling-point petroleum fractions with good accuracy when the bulk properties are available, since computational approach gave an overall absolute deviation lower than 10% when compared with the experimental results obtained in the research laboratories LDPS/LOPCA/UNICAMP. Le traitement et la valorisation des fractions pétrolières lourdes nécessitent une étude très détaillée dans la mesure où le pétrole contient un très grand nombre de composants différents (paraffines, oléfines, naphtènes, arômes. Afin de caractériser les fractions, il est indispensable de déterminer les propriétés thermodynamiques et thermophysiques des

  6. Bubble Behavior in Nucleate Boiling Experiment Aboard the Space Shuttle

    OpenAIRE

    Koeln, Justin P.; Boulware, Jeffrey C.; Ban, Heng

    2009-01-01

    Boiling dynamics in microgravity need to be better understood before heat transfer systems based on boiling mechanism can be developed for space applications. This paper presents the results of a nucleate boiling experiment aboard Space Shuttle Endeavor (STS- 108). The experiment utilized nickel-chromium resistance wire to boil water in microgravity, and the data was recorded with a CCD camera and six thermistors. This data was analyzed to determine the behavior of bubble formation, detachmen...

  7. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...

  8. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...

  9. Big Bubbles in Boiling Liquids: Students' Views

    Science.gov (United States)

    Costu, Bayram

    2008-01-01

    The aim of this study was to elicit students' conceptions about big bubbles in boiling liquids (water, ethanol and aqueous CuSO[subscript 4] solution). The study is based on twenty-four students at different ages and grades. The clinical interviews technique was conducted to solicit students' conceptions and the interviews were analyzed to…

  10. Contact Angle Effects in Boiling Heat Transfer

    OpenAIRE

    Urquiola, Erwin; Fujita, Yasunobu

    2002-01-01

    This paper reports boiling experiments with pure water and surfactant solutions of SDS on horizontal heating surface. The static contact angle, rather than the surface tension value, was found to be the leading factor for the results and probably its prev

  11. Natural saltwater upconing by boils: field measurements and numerical modeling

    NARCIS (Netherlands)

    De Louw, Perry G.B.; Vandenbohede, A.; Oude Essink, Gualbert; Werner, Adrian D.

    2013-01-01

    Natural saltwater upconing caused by the preferential groundwater discharge of boils is a key proce ss in the salinization of Dutch deep polders. The factors controlling upconing by boil discharge and boil water salinities are poorly constrained and have not been previously documented. We addressed

  12. Evaluation of gas chromatography – electron ionization – full scan high resolution Orbitrap mass spectrometry for pesticide residue analysis

    NARCIS (Netherlands)

    Mol, Hans G.J.; Tienstra, Marc; Zomer, Paul

    2016-01-01

    Gas chromatography with electron ionization and full scan high resolution mass spectrometry with an Orbitrap mass analyzer (GC-EI-full scan Orbitrap HRMS) was evaluated for residue analysis. Pesticides in fruit and vegetables were taken as an example application. The relevant aspects for GC-MS

  13. A highly Conserved Aspartic Acid Residue of the Chitosanase from Bacillus Sp. TS Is Involved in the Substrate Binding.

    Science.gov (United States)

    Zhou, Zhanping; Zhao, Shuangzhi; Liu, Yang; Chang, Zhengying; Ma, Yanhe; Li, Jian; Song, Jiangning

    2016-11-01

    The chitosanase from Bacillus sp. TS (CsnTS) is an enzyme belonging to the glycoside hydrolase family 8. The sequence of CsnTS shares 98 % identity with the chitosanase from Bacillus sp. K17. Crystallography analysis and site-direct mutagenesis of the chitosanase from Bacillus sp. K17 identified the important residues involved in the catalytic interaction and substrate binding. However, despite progress in understanding the catalytic mechanism of the chitosanase from the family GH8, the functional roles of some residues that are highly conserved throughout this family have not been fully elucidated. This study focused on one of these residues, i.e., the aspartic acid residue at position 318. We found that apart from asparagine, mutation of Asp318 resulted in significant loss of enzyme activity. In-depth investigations showed that mutation of this residue not only impaired enzymatic activity but also affected substrate binding. Taken together, our results showed that Asp318 plays an important role in CsnTS activity.

  14. Analysis of Corrosion Residues Collected from the Aluminum Basket Rails of the High-Burnup Demonstration Cask.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    On September, 2015, an inspection was performed on the TN-32B cask that will be used for the high-burnup demonstration project. During the survey, wooden cribbing that had been placed within the cask eleven years earlier to prevent shifting of the basket during transport was removed, revealing two areas of residue on the aluminum basket rails, where they had contacted the cribbing. The residue appeared to be a corrosion product, and concerns were raised that similar attack could exist at more difficult-to-inspect locations in the canister. Accordingly, when the canister was reopened, samples of the residue were collected for analysis. This report presents the results of that assessment, which determined that the corrosion was due to the presence of the cribbing. The corrosion was associated with fungal material, and fungal activity likely contributed to an aggressive chemical environment. Once the cask has been cleaned, there will be no risk of further corrosion.

  15. Uric acid and high-residual platelet reactivity in patients treated with clopidogrel or ticagrelor.

    Science.gov (United States)

    Barbieri, L; Verdoia, M; Pergolini, P; Nardin, M; Rolla, R; Marino, P; Bellomo, G; Suryapranata, H; De Luca, G

    2016-04-01

    High residual platelet reactivity (HRPR) is still an important challenge, despite the advent of new potent ADP-antagonists. Therefore it is of extreme importance to identify factors that can influence platelet activation. Serum uric acid (SUA) has been largely addressed in the past as a possible risk factor for coronary artery disease, with a possible association with platelets hyperreactivity. So far no studies have assessed the role of serum uric acid on the response to dual antiplatelet therapy. Therefore, the aim of our study was to evaluate the impact of uric acid levels on platelet function in patients treated with dual antiplatelet therapy (DAPT) with clopidogrel or ticagrelor. We scheduled for platelet function assessment at 30-90 days post-discharge patients treated with DAPT (ASA + clopidogrel or ticagrelor) for an ACS or elective percutaneous coronary intervention (PCI). Platelet function was assessed by whole blood impedance aggregometry (Multiplate(®)-Roche Diagnostics AG), HRPR was considered for ASPI test >862 AU(∗)min (for ASA) and ADP test values ≥417 AU* min (for ADP-antagonists). We included a total of 493 patients (262 were on ASA and clopidogrel and 231 on ASA and ticagrelor). Patients were divided according to quartiles of serum uric acid levels measured at the time of platelet aggregation assessment (Group 1 6.9, n = 122). Patients with higher uric acid levels were older, more often smokers, with history of hypertension and previous coronary artery bypass surgery and renal failure and were more often on therapy with diuretics at admission. Patients with higher SUA had higher triglycerides and fibrinogen. Uric acid levels did not influence ASPI, COL, TRAP and ADP tests. High residual platelet reactivity (HRPR) was observed in 1.5% of patients treated with ASA, with no difference according to SUA quartiles (p = 0.60), confirmed at multivariate analysis after correction for baseline confounders (adjusted OR[95%CI] = 1.05 [0.44-2.52], p = 0

  16. Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy.

    Science.gov (United States)

    Dinoso, J B; Kim, S Y; Wiegand, A M; Palmer, S E; Gange, S J; Cranmer, L; O'Shea, A; Callender, M; Spivak, A; Brennan, T; Kearney, M F; Proschan, M A; Mican, J M; Rehm, C A; Coffin, J M; Mellors, J W; Siliciano, R F; Maldarelli, F

    2009-06-09

    In HIV-1-infected individuals on currently recommended antiretroviral therapy (ART), viremia is reduced to controversy over whether the residual viremia results from ongoing cycles of viral replication. To address this question, we conducted 2 prospective studies to assess the effect of ART intensification with an additional potent drug on residual viremia in 9 HIV-1-infected individuals on successful ART. By using an HIV-1 RNA assay with single-copy sensitivity, we found that levels of viremia were not reduced by ART intensification with any of 3 different antiretroviral drugs (efavirenz, lopinavir/ritonavir, or atazanavir/ritonavir). The lack of response was not associated with the presence of drug-resistant virus or suboptimal drug concentrations. Our results suggest that residual viremia is not the product of ongoing, complete cycles of viral replication, but rather of virus output from stable reservoirs of infection.

  17. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    Science.gov (United States)

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.; Ruff, J. P. C.; Park, J.-S.; Okasinski, J.; Beaudoin, A. J.; Miller, M. P.

    2017-03-01

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present work, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to develop significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. The experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.

  18. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    Science.gov (United States)

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.; Ruff, J. P. C.; Park, J.-S.; Okasinski, J.; Beaudoin, A. J.; Miller, M. P.

    2017-05-01

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present work, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to develop significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. The experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.

  19. The effect of residual stress on performance of high temperature coatings

    Science.gov (United States)

    1972-01-01

    Techniques for measurement of residual stress in MoSi2 coatings and the determination of stress in coatings prepared by metalliding, pack and slurry processes are discussed. The stress level can be determined by stress induced deflections or by X-ray techniques. The deflection method is most direct. It is based on the fact that a thin substrate, coated on one side only, is usually curved at room temperature. The radius of curvature is easily measured and readily related to residual stress.

  20. Raw milk from vending machines: Effects of boiling, microwave treatment, and refrigeration on microbiological quality.

    Science.gov (United States)

    Tremonte, Patrizio; Tipaldi, Luca; Succi, Mariantonietta; Pannella, Gianfranco; Falasca, Luisa; Capilongo, Valeria; Coppola, Raffaele; Sorrentino, Elena

    2014-01-01

    In Italy, the sale of raw milk from vending machines has been allowed since 2004. Boiling treatment before its use is mandatory for the consumer, because the raw milk could be an important source of foodborne pathogens. This study fits into this context with the aim to evaluate the microbiological quality of 30 raw milk samples periodically collected (March 2013 to July 2013) from 3 vending machines located in Molise, a region of southern Italy. Milk samples were stored for 72 h at 4 °C and then subjected to different treatments, such as boiling and microwaving, to simulate domestic handling. The results show that all the raw milk samples examined immediately after their collection were affected by high microbial loads, with values very close to or even greater than those acceptable by Italian law. The microbial populations increased during refrigeration, reaching after 72 h values of about 8.0 log cfu/mL for Pseudomonas spp., 6.5 log cfu/mL for yeasts, and up to 4.0 log cfu/mL for Enterobacteriaceae. Boiling treatment, applied after 72 h to refrigerated milk samples, caused complete decontamination, but negatively affected the nutritional quality of the milk, as demonstrated by a drastic reduction of whey proteins. The microwave treatment at 900 W for 75 s produced microbiological decontamination similar to that of boiling, preserving the content in whey proteins of milk. The microbiological characteristics of raw milk observed in this study fully justify the obligation to boil the raw milk from vending machines before consumption. However, this study also showed that domestic boiling causes a drastic reduction in the nutritional value of milk. Microwave treatment could represent a good alternative to boiling, on the condition that the process variables are standardized for safe domestic application. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Correlation of pool boiling curves for the homogeous group freons

    Energy Technology Data Exchange (ETDEWEB)

    Westwater, J.W. (Dept. of Chemical Engineering, Univ. of Illnois, Urban, IL (US)); Zinn, J.C. (Monsanto, Co., St. Louis, MO (US)); Brodbeck, K.J. (Clorox Corp., Pleasanton, CA (US))

    1989-02-01

    A knowledge of the complete boiling curve q verses {Delta}T for a liquid, including the regimes of nucleate boiling, transition boiling, and a film boiling is needed for the design and operation of various types of heat transfer equipment. No general method exists for predicting the complete curve. Most difficult is the prediction of the nucleate boiling curve, the transition curve, and the temperature that separates the two. If the curve for every liquid at every pressure must be determined experimentally, we are faced with a formidable task. This paper shows that some simplification is possible for members of a homologous group.

  2. Microbiological Effectiveness of Disinfecting Water by Boiling in Rural Guatemala

    Science.gov (United States)

    Rosa, Ghislaine; Miller, Laura; Clasen, Thomas

    2010-01-01

    Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations. PMID:20207876

  3. Flow boiling in microgap channels experiment, visualization and analysis

    CERN Document Server

    Alam, Tamanna; Jin, Li-Wen

    2013-01-01

    Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c

  4. Spalling behavior and residual resistance of fibre reinforced Ultra-High performance concrete after exposure to high temperatures

    Directory of Open Access Journals (Sweden)

    Xiong, Ming-Xiang

    2015-12-01

    Full Text Available Experimental results of spalling and residual mechanical properties of ultra-high performance concrete after exposure to high temperatures are presented in this paper. The compressive strength of the ultra-high performance concrete ranged from 160 MPa~185 MPa. This study aimed to discover the effective way to prevent spalling for the ultra-high performance concrete and gauge its mechanical properties after it was subjected to fire. The effects of fiber type, fiber dosage, heating rate and curing condition were investigated. Test results showed that the compressive strength and elastic modulus of the ultra-high performance concrete declined slower than those of normal strength concrete after elevated temperatures. Polypropylene fiber rather than steel fiber was found effective to prevent spalling but affected workability. The effective fiber type and dosage were recommended to prevent spalling and ensure sufficient workability for casting and pumping of the ultra-high performance concrete.En este trabajo se presentan los resultados más relevantes del trabajo experimental realizado para valorar la laminación y las propiedades mecánicas residuales de hormigón de ultra-altas prestaciones tras su exposición a altas temperaturas. La resistencia a la compresión del hormigón de ultra-altas prestaciones osciló entre 160 MPa~185 MPa. El objetivo de este estudio fue descubrir una manera eficaz de prevenir desprendimientos y/o laminaciones en este hormigón y medir sus propiedades mecánicas después de ser sometido al fuego. Las variables estudiadas fueron la presencia y dosificación de fibras, velocidad de calentamiento y condiciones de curado. Los resultados mostraron, tras la exposición a altas temperaturas, que la resistencia a compresión y el módulo de elasticidad del hormigón de ultra-altas prestaciones disminuían más lento que las de un hormigón con resistencia normal. La fibra de polipropileno resultó más eficaz para prevenir

  5. Reduction of Residual Stress and Distortion in HY100 and HY130 High Strength Steels During Welding

    Science.gov (United States)

    1989-06-01

    High Yields) Steels for pressure hulls and special applications like flight decks where aluminum is impractical to use. HY80 is the most famous and...most widely used of the HYQ & T steels developed. Interest waned in widely using the steels with strengths above HY80 because of cracking problems...Reduction of Residual Stress and Distortion in HYI00 and HYI30 High Strength Steels During Welding CY) by _RICHARD ALLEN BASS B.S. Electrical

  6. Effect of Uniformly and Nonuniformly Coated Al2O3 Nanoparticles over Glass Tube Heater on Pool Boiling

    Directory of Open Access Journals (Sweden)

    Nitin Doifode

    2016-01-01

    Full Text Available Effect of uniformly and nonuniformly coated Al2O3 nanoparticles over plain glass tube heater on pool boiling heat transfer was studied experimentally. A borosilicate glass tube coated with Al2O3 nanoparticle was used as test heater. The boiling behaviour was studied by using high speed camera. Result obtained for pool boiling shows enhancement in heat transfer for nanoparticle coated surface heater and compared with plain glass tube heater. Also heat transfer coefficient for nonuniformly coated nanoparticles was studied and compared with uniformly coated and plain glass tube. Coating effect of nanoparticles over glass tube increases its surface roughness and thereby creates more nucleation sites.

  7. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies.

    Science.gov (United States)

    Ponce-Robles, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S

    2017-03-01

    Industrial preparation of cork consists of its immersion for approximately 1 hour in boiling water. The use of herbicides and pesticides in oak tree forests leads to absorption of these compounds by cork; thus, after boiling process, they are present in wastewater. Cork boiling wastewater shows low biodegradability and high acute toxicity involving partial inhibition of their biodegradation when conventional biological treatment is applied. In this work, a treatment line strategy based on the combination of advanced physicochemical technologies is proposed. The final objective is the reuse of wastewater in the cork boiling process; thus, reducing consumption of fresh water in the industrial process itself. Coagulation pre-treatment with 0.5 g/L of FeCl3 attained the highest turbidity elimination (86 %) and 29 % of DOC elimination. Similar DOC removal was attained when using 1 g/L of ECOTAN BIO (selected for ozonation tests), accompanied of 64 % of turbidity removal. Ozonation treatments showed less efficiency in the complete oxidation of cork boiling wastewater, compared to solar photo-Fenton process, under the studied conditions. Nanofiltration system was successfully employed as a final purification step with the aim of obtaining a high-quality reusable permeate stream. Monitoring of unknown compounds by LC-QTOF-MS allowed the qualitative evaluation of the whole process. Acute and chronic toxicity as well as biodegradability assays were performed throughout the whole proposed treatment line.

  8. Thermohydrodynamics of boiling in a van der Waals fluid.

    Science.gov (United States)

    Laurila, T; Carlson, A; Do-Quang, M; Ala-Nissila, T; Amberg, G

    2012-02-01

    We present a modeling approach that enables numerical simulations of a boiling Van der Waals fluid based on the diffuse interface description. A boundary condition is implemented that allows in and out flux of mass at constant external pressure. In addition, a boundary condition for controlled wetting properties of the boiling surface is also proposed. We present isothermal verification cases for each element of our modeling approach. By using these two boundary conditions we are able to numerically access a system that contains the essential physics of the boiling process at microscopic scales. Evolution of bubbles under film boiling and nucleate boiling conditions are observed by varying boiling surface wettability. We observe flow patters around the three-phase contact line where the phase change is greatest. For a hydrophilic boiling surface, a complex flow pattern consistent with vapor recoil theory is observed.

  9. Experimental investigation on the phenomena around the onset nucleate boiling during the impacting of a droplet on the hot surface

    Science.gov (United States)

    Mitrakusuma, Windy H.; Deendarlianto, Kamal, Samsul; Indarto, Nuriyadi, M.

    2016-06-01

    Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO2 coating (UVN), and stainless steel with TiO2 coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussion will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.

  10. Milk residues and performance of lactating dairy cows administered high doses of monensin.

    Science.gov (United States)

    Bagg, Randal; Vessie, Gordon H; Dick, C Paul; Duffield, Todd; Wilson, Jeff B; Aramini, Jeff J

    2005-07-01

    Milk residues and performance were evaluated in lactating cows that were fed up to 10 times the recommended dose of monensin. Following an acclimatization period of 14 d, during which cows were fed a standard lactating cow total mixed ration containing 24 ppm monensin, 18 lactating Holstein dairy cows were grouped according to the level of feed intake and then randomly assigned within each group to 1 of 3 challenge rations delivering 72, 144, and 240 ppm monensin. Outcome measurements included individual cow daily feed intakes, daily milk production, body weights, and monensin residues in composite milk samples from each cow. There were no detectable monensin residues (cows receiving a dose of 72 ppm monensin exhibited up to a 20% reduction in dry matter intake, and a 5% to 15% drop in milk production from the pre-challenge period. Cows receiving doses of 144 and 240 ppm monensin exhibited rapid decreases in feed intake of up to 50% by the 2nd d and milk production losses of up to 20% and 30%, respectively, within 4 d. Lactating cows receiving up to 4865 mg monensin per day had no detectable monensin residues (dairy cattle receiving monensin at recommended levels are safe for human consumption.

  11. High residue amounts of kaolin further increase photosynthesis and fruit color in 'Empire' apple

    Science.gov (United States)

    Kaolin (Surround WP, NovaSource, Phoenix, AZ, USA) is commonly used to reduce sunburn damage in fruit crops and to reduce heat stress on foliage. It is typically applied at rates of 3% to 6%, resulting in leaf and fruit residue levels of 1-3 g/m2. Crop modeling of the effect of kaolin on leaf/cano...

  12. Manufacture of Boron-free Magnesia with High Purity from Residual Brine

    Institute of Scientific and Technical Information of China (English)

    Fa Qiang LI; Bao Ping LING; Pei Hua MA

    2004-01-01

    A novel method for removing boron with ion exchange resin from residual brines to manufacture boron-free magnesia is described. The concentration of boron in the target magnesia manufactured thereby from Qinghai salt lakes is lower than 5μg/g, and the typical D50 size of product is 10.625μm.

  13. RESIDUAL OPERATIONAL RESOURCE ASSESSMENT OF HIGH TEMPERATURE ELEMENTS OF POWER ENGINEERING EQUIPMENT

    Directory of Open Access Journals (Sweden)

    S. E. Khoroshilov

    2014-01-01

    Full Text Available The paper proposes a specific assessment of heat resistant steel residual resource which  is  based  on  time determination of pore output on grain boundary with due account of an operational temperature, chemical composition and structure of the investigated steel.

  14. Residual Mechanical Properties of Concrete Made with Crushed Clay Bricks and Roof Tiles Aggregate after Exposure to High Temperatures

    Directory of Open Access Journals (Sweden)

    Ivana Miličević

    2016-04-01

    Full Text Available This paper presents the residual mechanical properties of concrete made with crushed bricks and clay roof tile aggregates after exposure to high temperatures. One referent mixture and eight mixtures with different percentages of replacement of natural aggregate by crushed bricks and roof tiles are experimentally tested. The properties of the concrete were measured before and after exposure to 200, 400, 600 and 800 °C. In order to evaluate the basic residual mechanical properties of concrete with crushed bricks and roof tiles after exposure to high temperatures, ultrasonic pulse velocity is used as a non-destructive test method and the results are compared with those of a destructive method for validation. The mixture with the highest percentage of replacement of natural aggregate by crushed brick and roof tile aggregate has the best physical, mechanical, and thermal properties for application of such concrete in precast concrete elements exposed to high temperatures.

  15. Effect of household processing on fenazaquin residues in okra fruits.

    Science.gov (United States)

    Duhan, Anil; Kumari, Beena; Gulati, Rachna

    2010-02-01

    Fenazaquin (4-[[4 (1,1-dimethylethyl) phenyl] ethoxy]quinazoline) is a new acaricide of the quinazoline class. Residue levels of fenazaquin were determined in unprocessed and processed okra fruits to evaluate the effect of different processes (washing, boiling and washing followed by boiling) in reduction of residues of this pesticide in okra. The study was carried out on okra crop (Variety, Varsha Uphar) in research farm of Chaudhary Charan Singh Haryana Agricultural University, Hisar with application of fenazaquin (Magister 10 EC) @ 125 ga.i./ha (Single Dose, T(1)) and 250 g a.i./ha (Double Dose, T(2)). Samples of okra fruits were collected on 0, 3, 7, 15 days after treatment and at harvest (30 days). Residues were estimated by gas chromatograph equipped with capillary column and nitrogen phosphorus detector. Residues reached below maximum residue limit of 0.01 mg/kg at harvest. The residues dissipated with half-life period of 3.13 days at lower dose and 4.43 days at higher dose. Processing is shown to be very effective in reducing the levels of fenazaquin residues in okra fruits. Maximum reduction (60-61%) was observed by washing + boiling followed by boiling/cooking (38-40%) and then by washing (31-32%).

  16. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    张利斌; 李修伦

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39 mm ID and 2.0 m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  17. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39mm ID and 2.0m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum. The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  18. Dynamic Bubble Behaviour during Microscale Subcooled Boiling

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; PENG Xiao-Feng; David M.Christopher

    2005-01-01

    @@ Bubble cycles, including initiation, growth and departure, are the physical basis of nucleate boiling. The presentinvestigation, however, reveals unusual bubble motions during subcooled nucleate boiling on microwires 25 orl00μm in diameter. Two types of bubble motions, bubble sweeping and bubble return, are observed in theexperiments. Bubble sweeping describes a bubble moving back and forth along the wire, which is motion parallelto the wire. Bubble return is the bubble moving back to the wire after it has detached or leaping above thewire. Theoretical analyses and numerical simulations are conducted to investigate the driving mechanisms forboth bubble sweeping and return. Marangoni flow from warm to cool regions along the bubble interface is foundto produce the shear stresses needed to drive these unusual bubble movements.

  19. Pool Boiling Heat Transfer on structured Surfaces

    Science.gov (United States)

    Addy, J.; Olbricht, M.; Müller, B.; Luke, A.

    2016-09-01

    The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.

  20. Laboratory experiments, high angular-resolution EBSD, and micromechanical modelling reveal residual stresses and their distribution in deformed olivine

    Science.gov (United States)

    Hansen, Lars; Wallis, David; Kempton, Imogen; Lebensohn, Ricardo; Wilkinson, Angus

    2017-04-01

    During high-temperature deformation of rocks, stresses are predicted to be distributed heterogeneously throughout the constituent grains. After unloading, much of this stress is potentially retained in the aggregate as residual stress, a phenomenon that may have large-scale geodynamic implications. After large stress changes in the solid Earth (e.g., glacial unloading or post-seismic relaxation), residual stresses can affect the immediate mechanical response of the rocks. Furthermore, examination of residual stresses in naturally deformed rocks additionally presents an opportunity to learn about ancient deformation events. These residual stresses arise from the anisotropic nature of the mechanical properties of minerals and from the heterogeneous substructures that form within grains (e.g., dislocation arrays and subgrain boundaries). This heterogeneity is therefore related to mechanical interactions on short (e.g., between individual dislocations), intermediate (e.g., between groups of dislocations), and long (e.g., between grains of differing orientation) spatial scales. We examine residual stresses in upper mantle analogues with three different methods. First, stress-dip tests were conducted on olivine single crystals at temperatures greater than 1250°C in a new uniaxial deformation apparatus with a piezoelectric actuator. These experiments reveal that the average residual stresses stored in deformed single crystals can be on the order of 50% of the applied differential stress. However, the magnitude of residual stress is likely a function of crystal orientation during deformation. Second, high angular-resolution electron backscatter diffraction (HR-EBSD) allows the residual stresses in deformed single crystals and polycrystals to be mapped with <1 micron spatial resolution. HR-EBSD mapping reveals stress heterogeneities on the order of differential stresses applied during deformation. Stresses averaged over each map are in reasonable agreement with the outcome

  1. Self-propelled film-boiling liquids

    OpenAIRE

    Linke, H.; Aleman, B. J.; Melling, L. D.; Taormina, M. J.; Francis, M J; Dow-Hygelund, C. C.; Narayanan, V.; Taylor, R. P.; Stout, A.

    2005-01-01

    We report that liquids perform self-propelled motion when they are placed in contact with hot surfaces with asymmetric (ratchet-like) topology. The pumping effect is observed when the liquid is in the film-boiling regime, for many liquids and over a wide temperature range. We propose that liquid motion is driven by a viscous force exerted by vapor flow between the solid and the liquid.

  2. Design, Construction, and Qualification of a Microscale Heater Array for Use in Boiling Heat Transfer

    Science.gov (United States)

    Rule, T. D.; Kim, J.; Kalkur, T. S.

    1998-01-01

    Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of wall temperature and heat flux near the wall would add to the database of knowledge which is necessary to understand the mechanisms of nucleate boiling. A heater array has been developed which contains 96 heater elements within a 2.5 mm square area. The temperature of each heater element is held constant by an electronic control system similar to a hot-wire anemometer. The voltage that is being applied to each heater element can be measured and digitized using a high-speed A/D converter, and this digital information can be compiled into a series of heat-flux maps. Information for up to 10,000 heat flux maps can be obtained each second. The heater control system, the A/D system and the heater array construction are described in detail. Results are presented which show that this is an effective method of measuring the local heat flux during nucleate and transition boiling. Heat flux maps are obtained for pool boiling in FC-72 on a horizontal surface. Local heat flux variations are shown to be three to six times larger than variations in the spatially averaged heat flux.

  3. Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Braz Filho, Francisco A.; Ribeiro, Guilherme B., E-mail: gbribeiro@ieav.cta.br; Caldeira, Alexandre D.

    2016-11-15

    Highlights: • CFD multiphase model is used to predict subcooled flow boiling characteristics. • Better agreement is achieved for higher saturation pressures. • Onset of nucleate boiling and saturated boiling are well predicted. • CFD multiphase model tends to underestimate the void fraction. • Factors were adjusted in order to improve the void fraction results. - Abstract: The present study concerns a detailed analysis of flow boiling phenomena under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. Two different uniform heat fluxes and three saturation pressures were applied to the channel wall, whereas water mass flux of 900 kg/m{sup 2} s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of the CFD technique for estimation of the wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Changes in factors applied in the modeling of the interfacial heat transfer coefficient and bubble departure frequency were suggested, allowing a better prediction of the void fraction along the heated channel. The commercial CFD solver FLUENT 14.5 was used for the model implementation.

  4. Boiling heat transfer of nanofluids--special emphasis on critical heat flux.

    Science.gov (United States)

    Kim, Sung Joong; Kim, Hyungdae

    2013-11-01

    As innovative nanotechnology-based heat-transfer media, nanofluids have evoked considerable interest among researchers owing to their improved thermal properties as well as their extendable applications to various high-power thermal systems. This paper presents a comprehensive review of recent research developments and patents pertaining to nanofluid boiling heat transfer. Nanofluids definitely offer a wide range of potential improvements in boiling heat-transfer performance. However, experimental data available from different studies are currently beset by numerous contradictions, suggesting that the fundamental mechanisms of nanofluid boiling heat transfer are not yet well understood. Consequently application of these technologies has been limited in some aspects. Only a small number of patents related to nanofluid boiling heat transfer have thus far been reported in the literature. Based on the present review, future technological development and research requirements in this area are outlined in line with technical challenges. To utilize nanofluid boiling heat-transfer technologies for practical applications, more systematic and fundamental studies are required to understand the physical mechanisms involved.

  5. Early Onset of Nucleate Boiling on Gas-covered Biphilic Surfaces.

    Science.gov (United States)

    Shen, Biao; Yamada, Masayuki; Hidaka, Sumitomo; Liu, Jiewei; Shiomi, Junichiro; Amberg, Gustav; Do-Quang, Minh; Kohno, Masamichi; Takahashi, Koji; Takata, Yasuyuki

    2017-05-17

    For phase-change cooling schemes for electronics, quick activation of nucleate boiling helps safeguard the electronics components from thermal shocks associated with undesired surface superheating at boiling incipience, which is of great importance to the long-term system stability and reliability. Previous experimental studies show that bubble nucleation can occur surprisingly early on mixed-wettability surfaces. In this paper, we report unambiguous evidence that such unusual bubble generation at extremely low temperatures-even below the boiling point-is induced by a significant presence of incondensable gas retained by the hydrophobic surface, which exhibits exceptional stability even surviving extensive boiling deaeration. By means of high-speed imaging, it is revealed that the consequently gassy boiling leads to unique bubble behaviour that stands in sharp contrast with that of pure vapour bubbles. Such findings agree qualitatively well with numerical simulations based on a diffuse-interface method. Moreover, the simulations further demonstrate strong thermocapillary flows accompanying growing bubbles with considerable gas contents, which is associated with heat transfer enhancement on the biphilic surface in the low-superheat region.

  6. Steady State Vapor Bubble in Pool Boiling

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  7. Flow boiling test of GDP replacement coolants

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. [comp.

    1995-08-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C{sub 4}F{sub 10} and C{sub 4}F{sub 8}, were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C{sub 4}F{sub 10} mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C{sub 4}F{sub 10} weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd.

  8. Pressure drop in saturated flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J. [Universidad de Zaragoza, Zaragoza (Spain)

    2003-07-01

    A new mass balance for flow boiling have been recently suggested by the author following a quite simple idea: if the phases have different velocities, they can not cover the same distance -the control volume length for a 1-d system- in the same time. Thus, the time scales of the phases have to be different, and we should scale the time dependent magnitudes of one phase to the other one before combining them. Furthermore, it is reasonable to think that conservation equations should have to include in some manner this evident physical fact. In complete coherence with the former mass balance, a new energy balance, which does include the slip ratio has been also stated. This work, whilst reviews these new fundamentals for saturated flow boiling, stresses those aspects related with the prediction of the pressure drop in saturated flow boiling. The new correlations found for the data carefully measured by Thom during the Cambridge project would confirm the new two-phase flowapproach.

  9. Steady State Vapor Bubble in Pool Boiling.

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-02-03

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  10. Evaluation of onset of nucleate boiling models

    Energy Technology Data Exchange (ETDEWEB)

    Huang, LiDong [Heat Transfer Research, Inc., College Station, TX (United States)], e-mail: lh@htri.net

    2009-07-01

    This article discusses available models and correlations for predicting the required heat flux or wall superheat for the Onset of Nucleate Boiling (ONB) on plain surfaces. It reviews ONB data in the open literature and discusses the continuing efforts of Heat Transfer Research, Inc. in this area. Our ONB database contains ten individual sources for ten test fluids and a wide range of operating conditions for different geometries, e.g., tube side and shell side flow boiling and falling film evaporation. The article also evaluates literature models and correlations based on the data: no single model in the open literature predicts all data well. The prediction uncertainty is especially higher in vacuum conditions. Surface roughness is another critical criterion in determining which model should be used. However, most models do not directly account for surface roughness, and most investigators do not provide surface roughness information in their published findings. Additional experimental research is needed to improve confidence in predicting the required wall superheats for nucleation boiling for engineering design purposes. (author)

  11. Experimental research on heat transfer to liquid sodium and its incipient boiling wall superheat in an annulus

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Liquid sodium is mainly used as a cooling fluid in the liquid metal fast breeder reactor (LMFBR), whose heat transfer, whether convective heat transfer or boiling heat transfer, is different from that of water. So it is important for both normal and accidental operations of LMFBR to perform experimental research on heat transfer to liquid sodium and its boiling heat transfer. This study deals with heat transfer with high temperature (300-700℃) and low Pe number (20~70) and heat transfer with low temperature (250~270℃) and high Pe number (125~860), and its incipient boiling wall superheat in an annulus. Research on heat transfer involves theoretical research and experiments on heat transfer to liquid sodium. It also focuses on the theoretical analysis and experimental research on its incipient boiling wall superheat at positive pressure in an annulus. Semiempirical correlations were obtained and they were well coincident with the experimental data.

  12. Effect of Low-Temperature and High-Pressure Boiling and NaCl Addition on Protein Content and Flavor Components of Bovine Bone Broth%低温高压及预先添加NaCl对牛骨汤的煮制效果及风味成分的影响

    Institute of Scientific and Technical Information of China (English)

    刘文营; 李迎楠; 成晓瑜; 贾晓云; 曲超; 李家鹏; 陈文华

    2016-01-01

    研究加压煮制对牛骨汤煮制效果的影响,并对预先添加NaCl对骨汤风味的影响进行分析。结果表明:低温高压相较于常规煮制,蛋白质溶出速率有显著提升。气质联用对风味物质进行检测结果显示:肉汤中酯类、杂环物质、酮类、烃类、酸类、醛类、芳香族化合物和醇类等均有不同程度的变化;加入NaCl煮制时肉汤中酯类、酸类、芳香族和醇类物质种类和相对含量均有不同程度的增加,杂环物质种类和相对含量较仅加压制备样品有显著下降;酮类、醛类和醇类物质种类均有不同程度的增加,但是相对含量均较对照组要小;烃类物质种类没有发生变化,但是相对含量明显增加。因此,加压煮制过程中添加NaCl,对牛骨汤中挥发性物质的种类有明显影响。%The effect of boiling under pressurized condition on the protein content of bovine bone broth was investigated as well as the effect of NaCl addition during boiling on its lfavor components. The dissolution rate of protein was signiifcantly accelerated under low-temperature and high-pressure conditions compared with the conventional boiling method. The esters, heterocyclic compounds, hydrocarbons, ketones, acids, aldehydes, aromatic compounds and alcohols in the broth changed to different extents as detected by GC-MS. The composition and relative contents of esters, acids, aromatic compounds and alcohols were increased upon NaCl addition during boiling, while those of heterocyclic compounds in the sample boiled under pressurized condition without NaCl addition were signiifcantly reduced. In addition, the numbers of ketones, aldehydes and alcohols were increased, but their relative contents were lower than in the control group. The composition of hydrocarbons did not change although their relative contents were signiifcantly enhanced. Thus, NaCl addition during boiling had a signiifcant effect on the composition of

  13. Milk residues and performance of lactating dairy cows administered high doses of monensin

    OpenAIRE

    Bagg, Randal; Vessie, Gordon H.; Dick, C. Paul; Duffield, Todd; Wilson, Jeff B.; Aramini, Jeff J

    2005-01-01

    Milk residues and performance were evaluated in lactating cows that were fed up to 10 times the recommended dose of monensin. Following an acclimatization period of 14 d, during which cows were fed a standard lactating cow total mixed ration containing 24 ppm monensin, 18 lactating Holstein dairy cows were grouped according to the level of feed intake and then randomly assigned within each group to 1 of 3 challenge rations delivering 72, 144, and 240 ppm monensin. Outcome measurements include...

  14. Anaerobic Treatment of Agricultural Residues and Wastewater - Application of High-Rate Reactors

    OpenAIRE

    Parawira, Wilson

    2004-01-01

    The production of methane via anaerobic digestion of agricultural residues and industrial wastewater would benefit society by providing a clean fuel from renewable feedstocks. This would reduce the use of fossil-fuel-derived energy and reduce environmental impact, including global warming and pollution. Limitation of carbon dioxide and other emissions through emission regulations, carbon taxes, and subsidies on biomass energy is making anaerobic digestion a more attractive and competitive tec...

  15. Highly sensitive and selective colorimetric detection of cartap residue in agricultural products.

    Science.gov (United States)

    Liu, Wei; Zhang, Daohong; Tang, Yafan; Wang, Yashan; Yan, Fei; Li, Zhonghong; Wang, Jianlong; Zhou, H Susan

    2012-11-15

    The residue of pesticide has posed a serious threat to human health. Fast, broad-spectrum detection methods are necessary for on-site screening of various types of pesticides. With citrate-coated Au nanoparticles (Au NPs) as colorimetric probes, a visual and spectrophotometric method for rapid assay of cartap, which is one of the most important pesticides in agriculture, is reported for the first time. Based on the color change of Au colloid solution from wine-red to blue resulting from the aggregation of Au NPs, cartap could be detected in the concentration range of 0.05-0.6 mg/kg with a low detection limit of 0.04 mg/kg, which is much lower than the strictest cartap safety requirement of 0.1 mg/kg. Due to the limited research on the rapid detection of cartap based on Au NPs, the performance of the present method was evaluated through aggregation kinetics, interference influence, and sample pretreatment. To further demonstrate the selectivity and applicability of the method, cartap detection is realized in cabbage and tea with excellent analyte concentration recovery. These results demonstrate that the present method provides an easy and effective way to analyze pesticide residue in common products, which is of benefit for the rapid risk evaluation and on-site screening of pesticide residue.

  16. A Boiling-Potassium Fluoride Reactor for an Artificial-Gravity NEP Vehicle

    Science.gov (United States)

    Sorensen, Kirk; Juhasz, Albert

    2007-01-01

    Several years ago a rotating manned spacecraft employing nuclear-electric propulsion was examined for Mars exploration. The reactor and its power conversion system essentially served as the counter-mass to an inflatable manned module. A solid-core boiling potassium reactor based on the MPRE concept of the 1960s was baselined in that study. This paper proposes the use of a liquid-fluoride reactor, employing direct boiling of potassium in the core, as a means to overcome some of the residual issues with the MPRE reactor concept. Several other improvements to the rotating Mars vehicle are proposed as well, such as Canfield joints to enable the electric engines to track the inertial thrust vector during rotation, and innovative "cold-ion" engine technologies to improve engine performance.

  17. ENTRIA 2014. Memorandum on the disposal of high-level radioactive residuals; ENTRIA 2014. Memorandum zur Entsorgung hochradioaktiver Reststoffe

    Energy Technology Data Exchange (ETDEWEB)

    Roehlig, Klaus-Juergen; Walther, Clemens; Bach, Friedrich-Wilhelm [Niedersaechsische Technische Hochschule, Braunschweig, Clausthal-Zellerfeld, Hannover (Germany); and others

    2014-04-30

    The memorandum on the disposal of high-level radioactive residuals covers the following issues: description of the problem: a ''wicked problem'', risks and NIMBY, the site selection law, international boundary conditions; disposal strategy and types of facilities: safety and reversibility, long-term surface storage, deep storage; risk and safety; procedural justice and the site selection process; social innovations and the requirement of long-term institutions; conclusion - central stress fields.

  18. Determination of Sudan Residues in Sausage by Matrix Solid-Phase Dispersion and High-Performance Liquid Chromatography.

    Science.gov (United States)

    Zhai, Yujuan; Cheng, Jianhua

    2015-09-01

    A method based on matrix solid-phase dispersion and high-performance liquid chromatography was applied to the determination of four Sudan red residues in sausage. The proposed method required only 0.5 g sample. The neutral alumina was used as the dispersant sorbent while n-hexane containing 10% (v/v) acetone was used as the eluting solvent. The recoveries in samples ranged from 76.4 to 111.0% and relative standard deviations were sausage.

  19. Optimized Combination of Residue Hydrodesulfurization and Residue Fluid Catalytic Cracking

    Institute of Scientific and Technical Information of China (English)

    Chen Junwu

    2003-01-01

    @@1 Introduction Combination of residue hydrodesulfurization (HDS) and resi-due fluid catalytic cracking (RFCC) is a unique technologyfor processing high-sulfur residue. This paper discusses theoptimized combination of these two processes.

  20. Stability monitoring for boiling water reactors

    Science.gov (United States)

    Cecenas-Falcon, Miguel

    1999-11-01

    A methodology is presented to evaluate the stability properties of Boiling Water Reactors based on a reduced order model, power measurements, and a non-linear estimation technique. For a Boiling Water Reactor, the feedback reactivity imposed by the thermal-hydraulics has an important effect in the system stability, where the dominant contribution to this feedback reactivity is provided by the void reactivity. The feedback reactivity is a function of the operating conditions of the system, and cannot be directly measured. However, power measurements are relatively easy to obtain from the nuclear instrumentation and process computer, and are used in conjunction with a reduced order model to estimate the gain of the thermal-hydraulics feedback using an Extended Kalman Filter. The reduced order model is obtained by estimating the thermal-hydraulic transfer function from the frequency-domain BWR code LAPUR, and the stability properties are evaluated based on the pair of complex conjugate eigenvalues. Because of the recursive nature of the Kalman Filter, an estimate of the decay ratio is generated every sampling time, allowing continuous estimation of the stability parameters. A test platform based on a nuclear-coupled boiling channel is developed to validate the capability of the BWR stability monitoring methodology. The thermal-hydraulics for the boiling channel is modeled and coupled with neutron kinetics to analyze the non-linear dynamics of the closed-loop system. The model uses point kinetics to study core-wide oscillations, and normalized modal kinetics are introduced to study out-of-phase oscillations. The coolant flow dynamics is dominant in the power fluctuations observed by in-core nuclear instrumentation, and additive white noise is added to the solution for the channel flow in the thermal-hydraulic model to generate noisy power time series. The operating conditions of the channel can be modified to accommodate a wide range of stability conditions

  1. Experimental study about ONB and subcooled boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Changhong, P.; Myint, A.; Yun, G.; Dounan, J. [State Key Laboratory of Multiphase Flow in power engineering, Department of Nuclear and Thermal Power Engineering, Xian (China)

    2004-07-01

    Water subcooled boiling heat transfer were experimentally investigated in the vertical annuli with narrow gap. Subcooled flow boiling covers the region from the location where the bubbles forms on the wall to the location where the bulk temperature reaches saturated temperature. Three locations in the subcooled flow boiling have been identified by earlier researchers as the onset of nucleate boiling (ONB), the beginning of fully developed boiling, and the location where the thermodynamic quality is zero that is inferred from the enthalpy balance equation. The heat transfer regions are identified as single-phase heat transfer prior to ONB, partial boiling (PB) and fully developed boiling (FDB). In this study, the available models for predicting heat transfer in the different regions and the modified correlation can predict our experimental data: -) the heat flux of ONB can be predicted by the Unal correlation, nevertheless the h{sub FC} is calculated by the modified Dittus-Boelter correlations in the narrow annuli, -) Griffith's method can be modified to identify the beginning of fully develop boiling, -) in the partial boiling region, the heat transfer coefficient can be calculated by h{sub PB} equals (1-a)*h{sub L} + a*h{sub FDB}, and -) in the fully developed region, the correlation for saturated flow boiling can be employed to describe the heat transfer.

  2. Analysis of migrants from nylon 6 packaging films into boiling water.

    Science.gov (United States)

    Barkby, C T; Lawson, G

    1993-01-01

    Ultra-violet spectrophotometry (UV), high performance liquid chromatography (HPLC) and liquid chromatography coupled to mass spectroscopy (LC-MS) were used to identify and quantify oligomers extracted with boiling water from two different nylon 6 films used in boil-in-bag food packaging. The results indicated the loss of up to 1.5% of the original nylon film weight, into the boiling water, as caprolactam and cyclic oligomers up to the nonamer. Extraction time, thickness and type of film used, were found to be parameters which affected the levels of these migrants. These results will be relevant to situations in which food is cooked in the water used to heat the pouch contents.

  3. Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires.

    Science.gov (United States)

    Li, D; Wu, G S; Wang, W; Wang, Y D; Liu, Dong; Zhang, D C; Chen, Y F; Peterson, G P; Yang, Ronggui

    2012-07-11

    Thermal management has become a critical issue for high heat flux electronics and energy systems. Integrated two-phase microchannel liquid-cooling technology has been envisioned as a promising solution, but with great challenges in flow instability. In this work, silicon nanowires were synthesized in situ in parallel silicon microchannel arrays for the first time to suppress the flow instability and to augment flow boiling heat transfer. Significant enhancement in flow boiling heat transfer performance was demonstrated for the nanowire-coated microchannel heat sink, such as an early onset of nucleate boiling, a delayed onset of flow oscillation, suppressed oscillating amplitudes of temperature and pressure drop, and an increased heat transfer coefficient.

  4. Impact of boiling conditions on the molecular and sensory profile of a vegetable broth.

    Science.gov (United States)

    Mougin, Alice; Mauroux, Olivier; Matthey-Doret, Walter; Barcos, Eugenia Maria; Beaud, Fernand; Bousbaine, Ahmed; Viton, Florian; Smarrito-Menozzi, Candice

    2015-02-11

    Low-pressure cooking has recently been identified as an alternative to ambient and high-pressure cooking to provide food with enhanced organoleptic properties. This work investigates the impact of the cooking process at different pressures on the molecular and sensory profile of a vegetable broth. Experimental results showed similar sensory and chemical profiles of vegetable broths when boiling at 0.93 and 1.5 bar, while an enhancement of sulfur volatile compounds correlated with a greater leek content and savory aroma was observed when boiling at low pressure (80 °C/0.48 bar). Thus, low-pressure cooking would allow preserving the most labile volatiles likely due to the lower water boiling temperature and the reduced level of oxygen. This study evidenced chemical and sensory impact of pressure during cooking and demonstrated that the flavor profile of culinary preparations can be enhanced by applying low-pressure conditions.

  5. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    OpenAIRE

    Glòria Carrasco-Turigas; Villanueva, Cristina M.; Fernando Goñi; Panu Rantakokko; Nieuwenhuijsen, Mark J.

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-conta...

  6. An electrical simulator of a nuclear fuel rod cooled by nucleate boiling

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Antonio Carlos Lopes da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: aclc@cdtn.br; Machado, Luiz; Koury, Ricardo Nicolau Nassar [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], e-mail: luizm@demec.ufmg.br; Bonjour, Jocelyn [CETHIL, UMR5008, CNRS, INSA-Lyon (France)], e-mail: jocelyn.bonjour@insa-lyon.fr; Passos, Julio Cesar [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. LEPTEN/Boiling], e-mail: jpassos@emc.ufsc.br

    2009-07-01

    This study investigates an electrical heated test section designed to simulate a nuclear fuel rod. This simulator comprises a stainless steel vertical tube, with length and outside diameter of 600 mm and 10 mm, respectively, inside which there is a high power electrical resistor. The heat generated is removed by means of enhanced confined subcooled nucleate boiling of water in an annular space containing 153 small metal inclined discs. The tests were performed under electrical power and pressure up to 48 kW and 40 bar, respectively. The results show that the experimental boiling heat transfer coefficients are in good agreement with those calculated using the Jens-Lottes correlation. (author)

  7. On the lateral fluid motion during pool boiling via preferentially located cavities

    Science.gov (United States)

    Kapsenberg, F.; Strid, L.; Thiagarajan, N.; Narayanan, V.; Bhavnani, S. H.

    2014-04-01

    Passively generated lateral motion of fluid during pool boiling on asymmetrically textured meso-scale structures is discussed in this Letter. The surface texture is in the form of 30°-60° mm-scale ratchets with re-entrant cavities located on the 30° face. High speed visualization of growing bubbles from cavities indicates growth and departure normal to the 30° face of the ratchets. A semi-empirical model of net axial liquid velocity due to the non-vertical bubble growth is developed and validated in a pool boiling experiment.

  8. Determination of Beta-Lactam residues in milk by high performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Roseane Brandão de Brito

    2006-01-01

    Full Text Available A high performance liquid chromatographic method to assay beta-lactam residues in milk was developed and validated. Milk samples were spiked with standard solutions and deproteinated. The extract was cleaned-up on C18 SPE cartridge, the antibiotics eluted with acetonitrile:water (50:50 v/v and derivatized with acetic anhydride and 1-methyl-imidazole solution containing HgCl2. The chromatographic analysis was performed on C18 column using mobile phase consisting of acetonitrile and phosphate buffer (pH 6.5 in the presence of Na2S2O3 gradient and detection at 325 nm. The method was selective for ampicillin, penicillin G and penicillin V, the latter used as internal standard. Average recoveries for ampicillin and penicillin G ranged, respectively, from 60.0% to 104.9% and from 82.7% to 109.2%, with coefficients of variation from 11.1% to 24.6%, and from 2.1% to 25.2%, indicating accuracy and precision. Detection limit of 4.0 µg/L for ampicillin and 3.0 µg/L for penicillin G, and quantification limits of 4.0 µg/L for both were estimated.Um método para determinar resíduos de antibióticos beta-lactâmicos em leite por cromatografia líquida de alta eficiência (CLAE foi desenvolvido e validado. Amostras brancas foram adicionadas de padrão e desproteinizadas. O extrato foi purificado por extração em fase sólida C18, os antibióticos eluídos com acetonitrila:água (50:50 v/v e posteriormente derivatizados com anidrido acético e solução de 1-metil-imidazol contendo HgCl2. A análise cromatográfica foi realizada utilizando coluna C18, fase móvel composta por acetonitrila e tampão fosfato pH 6,5, na presença de Na2S2O3 em gradiente e detecção a 325 nm. O método foi seletivo para ampicilina, penicilina G e penicilina V, sendo este último utilizado como padrão interno. As médias de recuperação para ampicilina e penicilina G situaram-se, respectivamente, na faixa de 60,0% a 104,9% e de 82,7% a 109,2%, com coeficientes de varia

  9. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    OpenAIRE

    Li, Q; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-01-01

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 87, 053301 (2013)]. The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid-vapor phase change. Using the model, the liquid-vapor boiling process is simulated. The boiling curve togeth...

  10. High-Performance Liquid Chromatographic Determination of Oxytetracycline Residue in Cured Meat Products

    OpenAIRE

    ŞENYUVA, Hamide; ÖZDEN, Tuncel; SARICA, Deniz Yurtsever

    2000-01-01

    The development of a sensitive automated method for residue control of oxytetracycline (OTC) in cured meat (soudjouk) is described. The principle steps involve the extraction of OTC from cured meat in the presence of citric acid with nitric acid, methanol and de-ionized water, and then the determination by HPLC. In HPLC, Hypersil BDC C18 column was used and OTC was separated at 24 oC using a mobile phase of H2O (pH=2.10 with H2SO4): ACN (85:15, v/v) at a flow rate of 1.5 ml/min. A variable wa...

  11. Residual stress in copper containing a high concentration of krypton precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Haerting, M.; Yaman, M.; Bucher, R.; Britton, D.T. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa)

    2002-08-01

    A study of the residual stress and bubble pressure in bulk samples of copper, containing 3 at.-% krypton, using X-ray diffraction techniques is presented here. The authors have confirmed that the Kr forms solid precipitates with an fcc structure, which is consistent with an estimated pressure of 2.4 GPa. Stress measurements in the surrounding Cu matrix indicate a zero normal stress, confirming that the matrix experiences only a shear strain. The magnitude of the shear stress is estimated from the bubble pressure to be below the yield stress of the matrix, thus explaining the long term stability of the bubbles. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  12. The barley straw residues avoid high erosion rates in persimmon plantations. Eastern Spain

    Science.gov (United States)

    Cerdà, Artemi; González Pelayo, Óscar; Giménez-Morera, Antonio; Jordán, Antonio; Novara, Agata; Pereira, Paulo; Mataix-Solera, Jorge

    2015-04-01

    the bare control plots to 47 gr in the straw covered plots, which resulted in a low erosion rate when the soil is covered with straw (0.23 Mg ha-1 y-1), but extremely high when the soil is not covered (5.07 Mg ha-1 y-1). The results show also a delayed runoff generation due to the effect of the straw. From ponding to surface runoff the bare plots last 198 seconds, but under straw covered soils the time is 506 seconds. Moreover, when runoff is found on the soil surface the time to reach the plot outlet is much delayed under the straw cover, as range from 156 seconds on the bare plots to 406 to the straw covered plots. The management of the agriculture soils in many parts of the Planet is triggering land degradation (Borelli et al., 2013; Haregeweyn et al., 2013; Zhao et al., 2013). The most intense soil erosion rates use to affect agriculture land (Cerdà et al., 2009), and in Eastern Spain it was found that citrus orchards are being seeing as one of the crops with the highest erosion rates due to the managements that avoid the catch crops, weeds or litter, and this is also found in China (Cerdà and Jurgensen, 2008; 2009; Cerdà et al., 2009a; 2009b; Cerdà et al., 2011; 2012) and in China (Wu et al., 1997; Xu et al., 2010; Wang et al., 2011; Wu et al., 2011; Liu et al., 2011; Lü et al., 2011; Xu et al., 2012). The worse land managements found in many of the citrus plantations results in soil degradation too (Lu et al., 1997; Lü et al., 2012; Xu et al., 2012) and we can confirm here that the new Persimmon plantations are triggering the same effect and it is necessary to develop new strategies to reduce the soil losses. The use of cover crops to reduce the soil losses (Lavigne et al., 2012; Le Bellec et al., 2012) and the use of residues such as dried citrus peel has been found successful, but also it is well know the effect of the litter it is a key cover to avoid soil erosion. Meginnis (1935) was one of the pioneers on the research of the cover of litter to avoid

  13. Direct Numerical Simulation of Boiling Multiphase Flows: State-of-the-Art, Modeling, Algorithmic and Computer Needs

    Energy Technology Data Exchange (ETDEWEB)

    Nourgaliev R.; Knoll D.; Mousseau V.; Berry R.

    2007-04-01

    The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling -- FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical boiling flows in LWR reactors, requiring high-fidelity treatment of interfacial dynamics, phase-change, hydrodynamics, compressibility, heat transfer, and non-equilibrium thermodynamics and chemistry of liquid/vapor and fluid/solid-wall interfaces. Finally, we outline the framework for the {\\sf Fervent} code, being developed at INL for DNS of reactor-relevant boiling multiphase flows, with the purpose of gaining insight into the physics of multiphase flow regimes, and generating a basis for effective-field modeling in terms of its formulation and closure laws.

  14. Experimental Research on Flash Boiling Spray of Dimethyl Ether

    Institute of Scientific and Technical Information of China (English)

    Peng Zhang

    2014-01-01

    The high-speed digital imaging technique is applied to observe the developing process of flash boiling spray of dimethyl ether at low ambient pressure, and the effects of nozzle opening pressure and nozzle hole diameter on the spray shape, spray tip penetration and spray angle during the injection are investigated. The experimental results show that the time when the vortex ring structure of flash boiling spray forms and its developing process are determined by the combined action of the bubble growth and breakup in the spray and the air drag on the leading end of spray;with the enhancement of nozzle opening pressure, the spray tip penetration increases and the spray angle decreases. The influence of nozzle hole diameter on the spray tip penetration is relatively complicated, the spray tip penetration is longer with a smaller nozzle hole diameter at the early stage of injection, while the situation is just opposite at the later stage of injection. This paper establishes that the variation of spray angle is consistent with that of nozzle hole diameter.

  15. Experimental research on flash boiling spray of dimethyl ether

    Science.gov (United States)

    Zhang, Peng

    2014-12-01

    The high-speed digital imaging technique is applied to observe the developing process of flash boiling spray of dimethyl ether at low ambient pressure, and the effects of nozzle opening pressure and nozzle hole diameter on the spray shape, spray tip penetration and spray angle during the injection are investigated. The experimental results show that the time when the vortex ring structure of flash boiling spray forms and its developing process are determined by the combined action of the bubble growth and breakup in the spray and the air drag on the leading end of spray; with the enhancement of nozzle opening pressure, the spray tip penetration increases and the spray angle decreases. The influence of nozzle hole diameter on the spray tip penetration is relatively complicated, the spray tip penetration is longer with a smaller nozzle hole diameter at the early stage of injection, while the situation is just opposite at the later stage of injection. This paper establishes that the variation of spray angle is consistent with that of nozzle hole diameter.

  16. Effect of superheat and electric field on saturated film boiling

    Science.gov (United States)

    Pandey, Vinod; Biswas, Gautam; Dalal, Amaresh

    2016-05-01

    The objective of this investigation is to study the influence of superheat temperature and applied uniform electric field across the liquid-vapor interface during film boiling using a coupled level set and volume of fluid algorithm. The hydrodynamics of bubble growth, detachment, and its morphological variation with electrohydrodynamic forces are studied considering the medium to be incompressible, viscous, and perfectly dielectric at near critical pressure. The transition in interfacial instability behavior occurs with increase in superheat, the bubble release being periodic both in space and time. Discrete bubble growth occurs at a smaller superheat whereas vapor columns form at the higher superheat values. Destabilization of interfacial motion due to applied electric field results in decrease in bubble separation distance and increase in bubble release rate culminating in enhanced heat transfer rate. A comparison of maximum bubble height owing to application of different intensities of electric field is performed at a smaller superheat. The change in dynamics of bubble growth due to increasing superheat at a high intensity of electric field is studied. The effect of increasing intensity of electric field on the heat transfer rate at different superheats is determined. The boiling characteristic is found to be influenced significantly only above a minimum critical intensity of the electric field.

  17. Water flow boiling behaviors in hydrophilic and hydrophobic microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chiwoong; Yu, Dongin; Kim, Moohwan [Pohang University of Science and Technology (Korea, Republic of). Dept. of Mechanical Engineering

    2009-07-01

    The wettability is one of issues on two-phase flow in a microchannel. However, previous studies of wettability effect on two-phase flow have conducted only isothermal condition. Moreover, most studies have used conventional micro/mini-tubes due to difficulties of their fabrication. The objective of our study is to understand the wettability effect on flow boiling in a rectangular microchannel. In the first, new micro-electro-mechanical-system (MEMS) fabrication technique was developed to obtain a single glass rectangular microchannel and localized six micro heaters. A photosensitive glass was used as base material. The photosensitive glass is hydrophilic, so the hydrophobic microchannel was prepared by coating SAM, flow boiling experiments were conducted in hydrophilic and hydrophobic microchannels with micro heaters. The experiment range was the mass flux of 25 and 75 kg/m{sup 2}s, the heat flux of 30 - 430 k W/m2 and quality of 0 - 0.3. A working fluid was de-ionized and degassed water. The local heat transfer coefficient was evaluated at the local micro heater section. Also, flow regimes in the microchannel were visualized by using a high-speed camera with a long-distance microscope. Heat transfer was analyzed with visualization results. Heat transfer in the hydrophobic microchannel was enhanced by higher nucleation site density and delayed local dryout. The pressure drop in the hydrophobic microchannel was higher than that in the hydrophilic microchannel. (author)

  18. Reduction of the Residual Porosity in Parts Manufactured by Selective Laser Melting Using Skywriting and High Focus Offset Strategies

    Science.gov (United States)

    Mancisidor, A. M.; Garciandia, F.; Sebastian, M. San; Álvarez, P.; Díaz, J.; Unanue, I.

    Residual porosity is observed in Inconel 718 samples manufactured by SLM within the optimum process window regardless the process parameters whose origin has been directly related to the starting and finishing of the laser scanning tracks. This porosity is concentrated preferentially in overlaps of fields (stripes and chessboard strategies) and borders. Location of pores has been demonstrated on long stripes, where laser stops only at borders, not in the hatch. It has been concluded that porosity is due to a high interaction time of the laser with powder which increases the energy in those points. Two different strategies have been validated to reduce this effect and thus diminish porosity. These strategies are the skywriting function, where the laser is switched off during the accelerating and decelerating portions and to increase the focus offset. The defocusing strategy is not as effective as the skywriting reducing the residual porosity.

  19. Extraction of high added value biological compounds from sardine, sardine-type fish and mackerel canning residues--a review.

    Science.gov (United States)

    Ferraro, Vincenza; Carvalho, Ana P; Piccirillo, Clara; Santos, Manuela M; Castro, Paula M L; Pintado, Manuela E

    2013-08-01

    Different valuable compounds, which can be employed in medicine or in other industries (i.e. food, agrochemical, pharmaceutical) can be recovered from by-products and waste from the fish canning industries. They include lipids, proteins, bio-polymers, minerals, amino acids and enzymes; they can be extracted from wastewaters and/or from solid residues (head, viscera, skin, tails and flesh) generated along the canning process, through the filleting, cooking, salting or smoking stages. In this review, the opportunities for the extraction and the valorisation of bioactive compounds from sardine, sardine-type fish and mackerel canning residues are examined and discussed. These are amongst the most consumed fishes in the Mediterranean area; moreover, canning is one of the most important and common methods of preservation. The large quantities of by-products generated have great potentials for the extraction of biologically desirable high added value compounds.

  20. A review on boiling heat transfer enhancement with nanofluids.

    Science.gov (United States)

    Barber, Jacqueline; Brutin, David; Tadrist, Lounes

    2011-04-04

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

  1. Water boiling inside carbon nanotubes: toward efficient drug release.

    Science.gov (United States)

    Chaban, Vitaly V; Prezhdo, Oleg V

    2011-07-26

    We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNTs) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting transition into an unusual phase, where pressure is gas-like and grows linearly with temperature, while the diffusion constant is temperature-independent. Precise control over boiling by CNT diameter, together with the rapid growth of inside pressure above the boiling point, suggests a novel drug delivery protocol. Polar drug molecules are packaged inside CNTs; the latter are delivered into living tissues and heated by laser. Solvent boiling facilitates drug release.

  2. Infrared thermometry study of nanofluid pool boiling phenomena

    Science.gov (United States)

    2011-01-01

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754

  3. A study of flow boiling phenomena using real time neutron radiography

    Science.gov (United States)

    Novog, David Raymond

    The operation and safety of both fossil-fuel and nuclear power stations depend on adequate cooling of the thermal source involved. This is usually accomplished using liquid coolants that are forced through the high temperature regions by a pumping system; this fluid then transports the thermal energy to another section of the power station. However, fluids that undergo boiling during this process create vapor that can be detrimental, and influence safe operation of other system components. The behavior of this vapor, or void, as it is generated and transported through the system is critical in predicting the operational and safety performance. This study uses two advanced penetrating radiation techniques, Real Time Neutron Radiography (RTNR), and High Speed X-Ray Tomography (HS-XCT), to examine void generation and transport behavior in a flow boiling system. The geometries studied were tube side flow boiling in a cylindrical configuration, and a similar flow channel with an internal twisted tape swirl flow generator. The heat transfer performance and pressure drop characteristics were monitored in addition to void distribution measurements, so that the impact of void distribution could be determined. The RTNR and heat transfer pipe flow studies were conducted using boiling Refrigerant 134a at pressures from 500 to 700 kPa, inlet subcooling from 3 to 12°C and mass fluxes from 55 to 170kg/m 2-s with heat fluxes up to 40 kW/m2. RTNR and HS-XCT were used to measure the distribution and size of the vapor phases in the channel for cylindrical tube-side flow boiling and swirl-flow boiling geometries. The results clearly show that the averaged void is similar for both geometries, but that there is a significant difference in the void distribution, velocity and transport behavior from one configuration to the next. Specifically, the void distribution during flow boiling in a cylindrical-tube test section showed that the void fraction was largest near the tube center and

  4. CT colonography in a Korean population with a high residue diet: Comparison between wet and dry preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H. [Department of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Choi, B.I. [Department of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)]. E-mail: choibi@radcom.snu.ac.kr; Han, J.K. [Department of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Hospital, Seoul (Korea, Republic of); Lee, J.M. [Department of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Hospital, Seoul (Korea, Republic of); Eun, H.W. [Ewha Woman' s University Hospital, Seoul (Korea, Republic of); Lee, J.Y. [Department of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Lee, K.H. [Seoul National University Bundang Hospital, Seoul (Korea, Republic of); Han, C.J. [Health Care System, Seoul National University Hospital, Seoul (Korea, Republic of); Choi, Y.H. [Department of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Shin, K.-S. [Chungnam National University Hospital, Seoul (Korea, Republic of)

    2006-06-15

    AIM: To compare wet and dry preparation methods for computed tomography colonography (CTC) in terms of preparation quality, interpretation time, and diagnostic performance for polyp detection in a population with a high residue diet. MATERIALS AND METHODS: Eighty-six patients were divided into two groups. Group 1 (n=24) received a wet preparation of 4 l polyethylene glycol (PEG) solution, and group 2 (n=62) received a dry preparation of phosphor-soda. Abnormal findings, including polyps, and the time required to interpret the CTC images in both groups were documented by a radiologist. CTC findings were compared to those of colonoscopy as a reference standard. Two radiologists evaluated the quality of CTC with regard to residual fluid, faeces, and colonic distension using a four-point scale in consensus. Statistical differences for residual fluid, faeces, distensibility on CTC, and interpretation time between the two groups were analysed. The diagnostic performance of CTC in both groups was also compared. RESULTS: One-hundred and ninety polyps in 70 patients were identified using colonoscopy. Regarding the quality of images produced the wet preparation was significantly better than the dry preparation (p<0.05). The average interpretation time was significantly shorter for the wet group (11.7 min) than the dry group (16.4 min) (p<0.05). For per-patient analysis, the positive predictive value (PPV) was significantly better for the wet (100%) than the dry group (79.6%; p=0.025). Sensitivities and PPV for {>=}10 mm polyps were comparable between two groups (p>0.05). CONCLUSION: In a population with a high-residue diet, CTC with wet preparation can be interpreted in a time-efficient manner and is comparable with CTC with dry preparation.

  5. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue.

    Science.gov (United States)

    Pinto, Ana F; Romão, Célia V; Pinto, Liliana C; Huber, Harald; Saraiva, Lígia M; Todorovic, Smilja; Cabelli, Diane; Teixeira, Miguel

    2015-01-01

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the -EKHVP- motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic Crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (-E23T24HVP-), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild-type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.

  6. The RING 2.0 web server for high quality residue interaction networks.

    Science.gov (United States)

    Piovesan, Damiano; Minervini, Giovanni; Tosatto, Silvio C E

    2016-07-08

    Residue interaction networks (RINs) are an alternative way of representing protein structures where nodes are residues and arcs physico-chemical interactions. RINs have been extensively and successfully used for analysing mutation effects, protein folding, domain-domain communication and catalytic activity. Here we present RING 2.0, a new version of the RING software for the identification of covalent and non-covalent bonds in protein structures, including π-π stacking and π-cation interactions. RING 2.0 is extremely fast and generates both intra and inter-chain interactions including solvent and ligand atoms. The generated networks are very accurate and reliable thanks to a complex empirical re-parameterization of distance thresholds performed on the entire Protein Data Bank. By default, RING output is generated with optimal parameters but the web server provides an exhaustive interface to customize the calculation. The network can be visualized directly in the browser or in Cytoscape. Alternatively, the RING-Viz script for Pymol allows visualizing the interactions at atomic level in the structure. The web server and RING-Viz, together with an extensive help and tutorial, are available from URL: http://protein.bio.unipd.it/ring.

  7. An adsorbent with a high adsorption capacity obtained from the cellulose sludge of industrial residues.

    Science.gov (United States)

    Orlandi, Géssica; Cavasotto, Jéssica; Machado, Francisco R S; Colpani, Gustavo L; Magro, Jacir Dal; Dalcanton, Francieli; Mello, Josiane M M; Fiori, Márcio A

    2017-02-01

    One of the major problems in effluent treatment plants of the cellulose and paper industry is the large amount of residual sludge generated. Therefore, this industry is trying to develop new methods to treat such residues and to use them as new products, such as adsorbents. In this regard, the objective of this work was to develop an adsorbent using the raw activated sludge generated by the cellulose and paper industry. The activated cellulose sludge, after being dried, was chemically activated with 42.5% (v/v) phosphoric acid at 85 °C for 1 h and was charred at 500 °C, 600 °C and 700 °C for 2 h. The efficiency of the obtained adsorbent materials was evaluated using kinetic tests with methylene blue solutions. Using the adsorption kinetics, it was verified that the three adsorbents showed the capacity to adsorb dye, and the adsorbent obtained at a temperature of 600 °C showed the highest adsorption capacity of 107.1 mg g(-1). The kinetic model that best fit the experimental data was pseudo-second order. The Langmuir-Freudlich isotherm adequately described the experimental data. As a result, the cellulose sludge generated by the cellulose and paper industries could be used as an adsorbent.

  8. Development of a screening tool to prioritize testing for the carcinogenic hazard of residual aromatic extracts and related petroleum streams.

    Science.gov (United States)

    Goyak, Katy O; Kung, Ming H; Chen, Min; Aldous, Keith K; Freeman, James J

    2016-12-15

    Residual aromatic extracts (RAE) are petroleum substances with variable composition predominantly containing aromatic hydrocarbons with carbon numbers greater than C25. Because of the high boiling nature of RAEs, the aromatics present are high molecular weight, with most above the range of carcinogenic polycyclic aromatic hydrocarbons (PAHs). However, refinery distillations are imperfect; some PAHs and their heteroatom-containing analogs (collectively referred to as polycyclic aromatic content or PAC) may remain in the parent stream and be extracted into the RAE, and overall PAC content is related to the carcinogenic potential of an RAE. We describe here a real-time analytical chemistry-based tool to assess the carcinogenic hazard of RAE via the development of a functional relationship between carcinogenicity and boiling point. Samples representative of steps along the RAE manufacturing process were obtained from five refineries to evaluate relationships between mutagenicity index (MI), PAC ring content and gas chromatographic distillation (GCD) curves. As expected, a positive linear relationship between MI and PAC ring content occurred, most specifically for 3-6 ring PAC (R(2)=0.68). A negative correlation was found between MI and temperature at 5% vaporization by GCD (R(2)=0.72), indicating that samples with greater amounts of lower boiling constituents were more likely to be carcinogenic. The inverse relationship between boiling range and carcinogenicity was further demonstrated by fractionation of select RAE samples (MI=0.50+0.07; PAC=1.70+0.51wt%; n=5) into low and high boiling fractions, where lower boiling fractions were both more carcinogenic than the higher boiling fractions (MI=2.36±0.55 and 0.17±0.11, respectively) and enriched in 3-6 ring PACs (5.20+0.70wt% and 0.97+0.35wt%, respectively). The criteria defining carcinogenicity was established as 479°C for the 5% vaporization points by GCD, with an approximate 95% probability of a future sample having

  9. Experimental investigation on the boiling heat transfer of nanofluids on a flat plate in the presence of a magnetic field

    Science.gov (United States)

    Abdollahi, Ali; Reza Salimpour, Mohammad

    2016-11-01

    In this paper, the pool boiling heat transfer of Fe3O4 -deionized (DI) water as a magnetic nanofluid has been experimentally analyzed in the atmospheric pressure. The applied nanofluid within this research has been synthesized through a single step to retain a high stability. The repeatability and precision of the testing device with deionized water show a good agreement with the equations introduced in previous studies. Parametric studies on magnetic field, surface roughness, and magnetic nanofluid concentration are performed to reveal various aspects of the boiling heat transfer. In order to study the surface roughness, two surfaces with high average roughness (480nm) and low average roughness (7.3nm) were used. The obtained results indicate that the boiling heat transfer on the rough surface increases when raising the nanofluid concentration up to 0.1% volume concentration. In addition, it is observed that there is an optimum 0.1% volume concentration for the nanofluid which makes the boiling heat transfer coefficient increase up to 43%. Moreover, the heat transfer of a nanofluid with volume concentration of 0.1% is greater for the rough surface compared with the smooth one. The results of the experiments indicate that adding nanoparticles would not necessarily increase the boiling heat transfer coefficient. In fact, the surface roughness and the magnetic field gradient on the boiling surface were the main factors that could affect the boiling heat transfer coefficient significantly. The simultaneous analysis of magnetic field, surface roughness, and nanofluid concentration reveals that the boiling heat transfer coefficient of the magnetic nanofluid with 0.1% volume concentration in the presence of a magnetic field on the rough surface is higher than on the smooth surface. Our findings show that this increase is associated to the increase of nucleation sites concentration and bubble formation sites for the rough surface.

  10. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  11. Relief of Residual Stresses in 800 MPa Grade High Strength Steel Weldments by Explosion Treatment and its Effect on Mechanical Properties

    Institute of Scientific and Technical Information of China (English)

    Changzhong WU; Huaining CHEN; Jing CHEN; Quanhong LIN; Jianjun GUAN

    2006-01-01

    The explosion treatment technique has been used in the relief of residual stresses in 800 MPa grade high strength steel manual welded joints. The residual stresses on surface and through thickness of the weldment were measured for both as-welded and explosion-treated sample, the mechanical properties of welded joints under different conditions were also tested. The effect of explosion treatment on the fracture toughness of materials with a residual defect was investigated by crack opening displacement (COD) test. The results show that explosion treatment can reduce not only the surface residual stress but also the residual stress through thickness in the welded joints. The effect of explosion treatment on the mechanical properties and a residual defect in welded joint were inconspicuous.

  12. Boiling Experiment Facility for Heat Transfer Studies in Microgravity

    Science.gov (United States)

    Delombard, Richard; McQuillen, John; Chao, David

    2008-01-01

    Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.

  13. Investigation of Enhanced Boiling Heat Transfer from Porous Surfaces

    Institute of Scientific and Technical Information of China (English)

    LinZhiping; MaTongze; 等

    1994-01-01

    Experimental investigations of boiling heat transfer from porous surfaces at atmospheric pressure were performne.The porous surfaces are plain tubes coverd with metal screens.V-shaped groove tubes covered with screens,plain tubes sintered with screens.and V-shaped groove tubes sintered with screens,The experimental results show that sintering metal screens around spiral V-shaped groove tubes can greatly improve the boiling heat transfer,The boiling hystesis was observed in the experiment.This paper discusses the mechanism of the boiling heat transfer from those kinds of porous surfaces stated above.

  14. Boiling point: government neglect, corporate abuse, and Canada's water crisis

    National Research Council Canada - National Science Library

    Barlow, Maude

    2016-01-01

    "In Boiling Point, bestselling author and activist Maude Barlow lays bare the issues facing Canada's water reserves, including long-outdated water laws, unmapped and unprotected groundwater reserves...

  15. Pool boiling heat transfer performance of Newtonian nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Saide; Etemad, Seyed Gholamreza [Isfahan University of Technology, Department of Chemical Engineering, Isfahan (Iran); Thibault, Jules [University of Ottawa, Department of Chemical and Biological Engineering, Ottawa, ON (Canada)

    2009-10-15

    Experimental measurements were carried out on the boiling heat transfer characteristics of {gamma}-Al{sub 2}O{sub 3}/water and SnO{sub 2}/water Newtonian nanofluids. Nanofluids are liquid suspensions containing nanoparticles with sizes smaller than 100 nm. In this research, suspensions with different concentrations of {gamma}-Al{sub 2}O{sub 3} and SnO{sub 2} nanoparticles in water were studied under nucleate pool boiling heat transfer conditions. Results show that nanofluids possess noticeably higher boiling heat transfer coefficients than the base fluid. The boiling heat transfer coefficients depend on the type and concentration of nanoparticles. (orig.)

  16. Boiling heat transfer modern developments and advances

    CERN Document Server

    Lahey, Jr, RT

    2013-01-01

    This volume covers the modern developments in boiling heat transfer and two-phase flow, and is intended to provide industrial, government and academic researchers with state-of-the-art research findings in the area of multiphase flow and heat transfer technology. Special attention is given to technology transfer, indicating how recent significant results may be used for practical applications. The chapters give detailed technical material that will be useful to engineers and scientists who work in the field of multiphase flow and heat transfer. The authors of all chapters are members of the

  17. Explosive Boiling of Superheated Cryogenic Liquids

    CERN Document Server

    Baidakov, V G

    2007-01-01

    The monograph is devoted to the description of the kinetics of spontaneous boiling of superheated liquefied gases and their solutions. Experimental results are given on the temperature of accessible superheating, the limits of tensile strength of liquids due to processes of cavitation and the rates of nucleation of classical and quantum liquids. The kinetics of evolution of the gas phase is studied in detail for solutions of cryogenic liquids and gas-saturated fluids. The properties of the critical clusters (bubbles of critical sizes) of the newly evolving gas phase are analyzed for initial st

  18. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has not been compared with correlation's.......Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...

  19. Modal control of unstable boiling states in three-dimensional nonlinear pool-boiling

    NARCIS (Netherlands)

    van Gils, R.W.; Speetjens, M.F.M; Zwart, Heiko J.; Nijmeijer, H.

    2014-01-01

    Topic is feedback stabilisation of a nonlinear pool-boiling system in three spatial dimensions (3D). Regulation of its unstable (non-uniform) equilibria has great potential for application in micro-electronics cooling and thermal-management systems. Here, as a first step, stabilisation of such 3D

  20. Modal control of unstable boiling states in three-dimensional nonlinear pool-boiling

    NARCIS (Netherlands)

    Gils, van R.W.; Speetjens, M.F.M; Zwart, H.J.; Nijmeijer, H.

    2014-01-01

    Topic is feedback stabilisation of a nonlinear pool-boiling system in three spatial dimensions (3D). Regulation of its unstable (non-uniform) equilibria has great potential for application in micro-electronics cooling and thermal-management systems. Here, as a first step, stabilisation of such 3D eq

  1. Highly sensitive rapid fluorescence detection of protein residues on surgical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, Valeri I [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Bartona, James S [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Richardson, Patricia R [School of Chemistry, University of Edinburgh, Edinburgh, EH9 3JJ (United Kingdom); Jones, Anita C [School of Chemistry, University of Edinburgh, Edinburgh, EH9 3JJ (United Kingdom)

    2006-07-15

    There is a risk of contamination of surgical instruments by infectious protein residues, in particular, prions which are the agents for Creutzfeldt-Jakob Disease in humans. They are exceptionally resistant to conventional sterilization, therefore it is important to detect their presence as contaminants so that alternative cleaning procedures can be applied. We describe the development of an optimized detection system for fluorescently labelled protein, suitable for in-hospital use. We show that under optimum conditions the technique can detect {approx}10 attomole/cm{sup 2} with a scan speed of {approx}3-10 cm{sup 2}/s of the test instrument's surface. A theoretical analysis and experimental measurements will be discussed.

  2. THE EFFECT OF COOKING AND STORAGE ON FLORFENICOL AND FLORFENICOL AMINE RESIDUES IN EGGS

    Directory of Open Access Journals (Sweden)

    Ayhan Filazi

    2015-09-01

    Full Text Available The aim of this study was to evaluate the effects of storage conditions (room temperature, refrigerator and cooking methods (frying, boiling on florfenicol (FF and florfenicol amine (FFA residue levels in eggs. Without any significant difference between storage conditions at 20˚C and +4˚C, residue levels decreased within days, but were still present on day 28. Frying and boiling for 1 and 5 min yielded similar results to the storage conditions just described; there was a significant decrease in residue levels, but still not enough for decomposing. These findings indicate that FF and FFA residues are heat-labile.

  3. Development and qualification of a high sensitivity, high throughput Q-PCR assay for quantitation of residual host cell DNA in purification process intermediate and drug substance samples.

    Science.gov (United States)

    Zhang, Wei; Wu, Meng; Menesale, Emily; Lu, Tongjun; Magliola, Aeona; Bergelson, Svetlana

    2014-11-01

    Methods of high sensitivity, accuracy and throughput are needed for quantitation of low level residual host cell DNA in purification process intermediates and drug substances of therapeutic proteins. In this study, we designed primer/probe sets targeting repetitive Alu repeats or Alu-equivalent sequences in the human, Chinese hamster and murine genomes. When used in quantitative polymerase chain reactions (Q-PCRs), these primer/probe sets showed high species specificity and gave significantly higher sensitivity compared to those targeting the low copy number GAPDH gene. This allowed for detection of residual host cell DNA of much lower concentrations and, for some samples, eliminated the need for DNA extraction. By combining the high sensitivity Alu Q-PCR with high throughput automated DNA extraction using an automated MagMAX magnetic particle processor, we successfully developed and qualified a highly accurate, specific, sensitive and efficient method for the quantitation of residual host cell DNA in process intermediates and drug substances of multiple therapeutic proteins purified from cells of multiple species. Compared to the previous method using manual DNA extraction and primer/probe sets targeting the GAPDH gene, this new method increased our DNA extraction throughput by over sevenfold, and lowered the lower limit of quantitation by up to eightfold.

  4. Parametric investigation on transient boiling heat transfer of metal rod cooled rapidly in water pool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chi Young [Department of Fire Protection Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513 (Korea, Republic of); Kim, Sunwoo, E-mail: swkim@alaska.edu [Mechanical Engineering Department, University of Alaska Fairbanks, P. O. Box 755905, Fairbanks, AK 99775-5905 (United States)

    2017-03-15

    Highlights: • Effects of liquid subcooling, surface coating, material property, and surface oxidation are examined. • Liquid subcooling affects remarkably the quenching phenomena. • Cr-coated surfaces for ATF might extend the quenching duration. • Solids with low heat capacity shorten the quenching duration. • Surface oxidation can affect strongly the film boiling heat transfer and MFB point. - Abstract: In this work, the effects of liquid subcooling, surface coating, material property, and surface oxidation on transient pool boiling heat transfer were investigated experimentally using the vertical metal rod and quenching method. The change in rod temperature was measured with time during quenching, and the visualization of boiling around the test specimen was performed using the high-speed video camera. As the test materials, the zircaloy (Zry), stainless steel (SS), niobium (Nb), and copper (Cu) were tested. In addition, the chromium-coated niobium (Cr-Nb) and chromium-coated stainless steel (Cr-SS) were prepared for accident tolerant fuel (ATF) application. Low liquid subcooling and Cr-coating shifted the quenching curve to the right, which indicates a prolongation of quenching duration. On the other hand, the material with small heat capacity and surface oxidation caused the quenching curve to move to the left. To examine the influence of the material property and surface oxidation on the film boiling heat transfer performance and minimum film boiling (MFB) point in more detail, the wall temperature and heat flux were calculated from the present transient temperature profile using the inverse heat transfer analysis, and then the curves of wall temperature and heat flux in the film boiling regime were obtained. In the present experimental conditions, the effect of material property on the film boiling heat transfer performance and MFB point seemed to be minor. On the other hand, based on the experimental results of the Cu test specimen, the surface

  5. High-resolution historical emission inventories of crop residue burning in fields in China for the period 1990-2013

    Science.gov (United States)

    Li, Jing; Li, Yaqi; Bo, Yu; Xie, Shaodong

    2016-08-01

    High-resolution historical emission inventories of crop residue burning in fields in China were developed for the period 1990-2013. More accurate time-varying statistical data and locally observed emission factors were utilized to estimate crop residue open burning emissions at provincial level. Then pollutants emissions were allocated to a high spatial resolution of 10 km × 10 km and a high temporal resolution of 1 day based on the Moderate Resolution Imaging Spectroradiometer (MODIS) Fire Product (MOD/MYD14A1). Results show that China's CO emissions have increased by 5.67 times at an annual average rate of 24% from 1.06 Tg in 1990 to 7.06 Tg in 2013; the emissions of CO2, CH4, NMVOCs, N2O, NOx, NH3, SO2, PM2.5, OC, and BC have increased by 595%, 500%, 608%, 584%, 600%, 600%, 543%, 571%, 775%, and 500%, respectively, over the past 24 years. Spatially, the regions with high emissions had been notable expanding over the years, especially in the central eastern districts, the Northeastern of China, and the Sichuan Basin. Strong temporal pattern were observed with the highest emissions in June, followed by March to May and October. This work provides a better understanding of the spatiotemporal representation of agricultural fire emissions in China and can benefit both air quality modeling and management with improved accuracy.

  6. Flow Structures Around Micro-bubbles During Subcooled Nucleate Boiling

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; PENG Xiao-Feng; David M. Christopher; WANG Bu-Xuan

    2005-01-01

    The flow structures were investigated around micro bubbles on extremely thin wires during subcooled nucleate boiling. Jet flows emanating from the bubbles were observed visually with the fluid field measurement using high-speed photography and a PIV system. The jet flows induced a strong pumping effect around a bubble. The multi-jet structure was further observed experimentally, indicating the evolution of flow structure around micro bubbles. Numerical simulations explore that the jet flows were induced by a strong Marangoni effect due to high temperature gradients near the wire. The bubble interface with multi-jet structure has abnormal temperature distribution such that the coolest parts were observed at two sides of a bubble extending into the subcooled bulk liquid rather than at the top. Evaporation and condensation on the bubble interface play important roles not only in controlling the intensity of the jet flow, but also in bringing out the multi-jet structure.

  7. Optimizing the Combination of Smoking and Boiling on Quality of Korean Traditional Boiled Loin (M. longissimus dorsi).

    Science.gov (United States)

    Choi, Yun-Sang; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Jung, Tae-Jun; Kim, Young-Boong; Kim, Cheon-Jei

    2015-01-01

    The combined effects of smoking and boiling on the proximate composition, technological quality traits, shear force, and sensory characteristics of the Korean traditional boiled loin were studied. Cooking loss, processing loss, and shear force were lower in the smoked/boiled samples than those in the control (without smoking treatment) (pboiled loin samples between the control and treatment did not differ significantly in protein, fat, or ash contents, or pH values (p>0.05). The treated samples had higher score for overall acceptability than the control (pboiled loin treated with smoking for 60 min before boiling had improved physicochemical properties and sensory characteristics.

  8. Flow impinging effect of critical heat flux and nucleation boiling heat transfer on a downward facing heating surface

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Huai-En; Chen, Mei-Shiue; Chen, Jyun-Wei; Lin, Wei-Keng; Pei, Bau-Shei [National Tsing Hua Univ., Taiwan (China). Inst. of Nuclear Engineering and Science

    2015-05-15

    Boiling heat transfer has a high heat removal capability in convective cooling. However, the heat removal capability of downward-facing boiling is significantly worse than that of upward-facing cases because of the confined buoyancy effect. This study was inspired by the conception of external reactor vessel cooling (ERVC) condition relevant to the in-vessel retention (IVR) design of Westinghouse AP1000 plant. In the present study, a small-scale test facility had been established to investigate the local phenomena of boiling heat transfer under a downward-facing horizontal heated surface with impinging coolant flow. In this study, the surface temperature, heat flux information and several specific scenes of bubbles are taken down throughout the boiling processes for detailed investigation. It is observed that bubbles are confined under the downward-facing heated surface, which causes a worse heat transfer rate and a lower critical heat flux (CHF) limit than upward-facing boiling. Nevertheless, the impinging coolant flow is found to disturb the thermal boundary layer formed by the heated surface, so the CHF increases with an increase of coolant flow rate. In addition, during nucleate boiling, it is discovered that the growth, combination and dissipation of bubbles induce turbulent wakes and therefore enhance the heat transfer capability.

  9. Development boiling to sprinkled tube bundle

    Directory of Open Access Journals (Sweden)

    Kracík Petr

    2016-01-01

    Full Text Available This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes’ interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.

  10. Development boiling to sprinkled tube bundle

    Science.gov (United States)

    Kracík, Petr; Pospíšil, Jiří

    2016-03-01

    This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes' interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.

  11. Residual thermal stress of a mounted KDP crystal after cooling and its effects on second harmonic generation of a high-average-power laser

    Science.gov (United States)

    Su, Ruifeng; Liu, Haitao; Liang, Yingchun; Yu, Fuli

    2017-01-01

    Thermal problems are huge challenges for solid state lasers that are interested in high output power, cooling of the nonlinear optics is insufficient to completely solve the problem of thermally induced stress, as residual thermal stress remains after cooling, which is first proposed, to the best of our knowledge. In this paper a comprehensive model incorporating principles of thermodynamics, mechanics and optics is proposed, and it is used to study the residual thermal stress of a mounted KDP crystal after cooling process from mechanical perspective, along with the effects of the residual thermal stress on the second harmonic generation (SHG) efficiency of a high-average-power laser. Effects of the structural parameters of the mounting configuration of the KDP crystal on the residual thermal stress are characterized, as well as the SHG efficiency. The numerical results demonstrate the feasibility of solving the problems of residual thermal stress from the perspective on structural design of mounting configuration.

  12. Low NO/x/ combustion systems for burning heavy residual fuels and high-fuel-bound nitrogen fuels

    Science.gov (United States)

    White, D. J.; Batakis, A.; Lecren, R. T.; Yacobucci, H. G.

    1981-01-01

    Design concepts are presented for lean-lean and staged rich-lean combustors. The combustors are designed for the dry reduction of thermal NO(x), control of NO(x) from fuels containing high levels of organic nitrogen, and control of smoke from low hydrogen content fuels. The combustor concepts are tested with a wide variety of fuels including a middle distillate, a petroleum based heavy residual, a coal derived synthetic, and ratios of blends of these fuels. The configurations of the lean-lean and rich-lean combustion systems are provided along with a description of the test rig and test procedure.

  13. Accuracy of high-field intraoperative MRI in the detectability of residual tumor in glioma grade IV resections

    Energy Technology Data Exchange (ETDEWEB)

    Hesselmann, Volker; Mager, Ann-Kathrin [Asklepios-Klinik Nord, Hamburg (Germany). Radiology/Neurologie; Goetz, Claudia; Kremer, Paul [Asklepios-Klinik Nord, Hamburg (Germany). Dept. of Neurosurgery; Detsch, Oliver [Asklepios-Klinik Nord, Hamburg (Germany). Dept. of Anaesthesiology and Intensive Care Medicine; Theisgen, Hannah-Katharina [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Dept. of Neurosurgery; Friese, Michael; Gottschalk, Joachim [Asklepios-Klinik Nord, Hamburg (Germany). Dept. of Pathology and Neuropathology; Schwindt, Wolfram [Univ. Hospital Muenster (Germany). Dept. of Clinical Radiology

    2017-06-15

    To assess the sensitivity/specificity of tumor detection by T1 contrast enhancement in intraoperative MRI (ioMRI) in comparison to histopathological assessment as the gold standard in patients receiving surgical resection of grade IV glioblastoma. 68 patients with a primary or a recurrent glioblastoma scheduled for surgery including fluorescence guidance and neuronavigation were included (mean age: 59 years, 26 female, 42 male patients). The ioMRI after the first resection included transverse FLAIR, DWI, T2-FFE and T1 - 3 d FFE ± GD-DPTA. The second resection was performed whenever residual contrast-enhancing tissue was detected on ioMRI. Resected tissue samples were histopathologically evaluated (gold standard). Additionally, we evaluated the early postoperative MRI scan acquired within 48 h post-OP for remaining enhancing tissue and compared them with the ioMRI scan. In 43 patients ioMRI indicated residual tumorous tissue, which could be confirmed in the histological specimens of the second resection. In 16 (4 with recurrent, 12 with primary glioblastoma) cases, ioMRI revealed truly negative results without residual tumor and follow-up MRI confirmed complete resection. In 7 cases (3 with recurrent, 4 with primary glioblastoma) ioMRI revealed a suspicious result without tumorous tissue in the histopathological workup. In 2 (1 for each group) patients, residual tumorous tissue was detected in spite of negative ioMRI. IoMRI had a sensitivity of 95 % (94 % recurrent and 96 % for primary glioblastoma) and a specificity of 69.5 % (57 % and 75 %, respectively). The positive predictive value was 86 % (84 % for recurrent and 87 % for primary glioblastoma), and the negative predictive value was 88 % (80 % and 92 %, respectively). ioMRI is effective for detecting remaining tumorous tissue after glioma resection. However, scars and leakage of contrast agent can be misleading and limit specificity. Intraoperative MRI (ioMRI) presents with a high sensitivity for residual

  14. Electric fields effect on the rise of single bubbles during boiling

    Energy Technology Data Exchange (ETDEWEB)

    Siedel, Samuel; Cioulachtjian, Serge; Bonjour, Jocelyn [CETHIL - UMR 5008 CNRS INSA-Lyon Univ. Lyon 1, INLSA-Lyon (France)], e-mail: jocelyn.bonjour@insa-lyon.fr

    2009-07-01

    An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity. (author)

  15. Acoustic field interaction with a boiling system under terrestrial gravity and microgravity.

    Science.gov (United States)

    Sitter, J S; Snyder, T J; Chung, J N; Marston, P L

    1998-11-01

    Pool boiling experiments from a platinum wire heater in FC-72 liquid were conducted under terrestrial and microgravity conditions, both with and without the presence of a high-intensity acoustic standing wave within the fluid. The purpose of this research was to study the interaction between an acoustic field and a pool boiling system in normal gravity and microgravity. The absence of buoyancy in microgravity complicates the process of boiling. The acoustic force on a vapor bubble generated from a heated wire in a standing wave was shown to be able to play the role of buoyancy in microgravity. The microgravity environment was achieved with 0.6 and 2.1-s drop towers. The sound was transmitted through the fluid medium by means of a half wavelength sonic transducer driven at 10.18 kHz. At high enough acoustic pressure amplitudes cavitation and streaming began playing an important role in vapor bubble dynamics and heat transfer. Several different fixed heat fluxes were chosen for the microgravity experiment and the effects of acoustics on the surface temperature of the heater were recorded and the vapor bubble movement was filmed. Video images of the pool boiling processes and heat transfer data are presented.

  16. Multiphysics modeling of two-phase film boiling within porous corrosion deposits

    Science.gov (United States)

    Jin, Miaomiao; Short, Michael

    2016-07-01

    Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits. Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys.

  17. Boiling treatment of ABS and PS plastics for flotation separation.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Wu, Bao-xin; Liu, Qun

    2014-07-01

    A new physical method, namely boiling treatment, was developed to aid flotation separation of acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS) plastics. Boiling treatment was shown to be effective in producing a hydrophilic surface on ABS plastic. Fourier Transform Infrared analysis was conducted to investigate the mechanism of boiling treatment of ABS. Surface rearrangement of polymer may be responsible for surface change of boiling treated ABS, and the selective influence of boiling treatment on the floatability of boiling treated plastics may be attributed to the difference in the molecular mobility of polymer chains. The effects of flotation time, frother concentration and particle size on flotation behavior of simple plastic were investigated. Based on flotation behavior of simple plastic, flotation separation of boiling treatment ABS and PS with different particle sizes was achieved efficiently. The purity of ABS and PS was up to 99.78% and 95.80%, respectively; the recovery of ABS and PS was up to 95.81% and 99.82%, respectively. Boiling treatment promotes the industrial application of plastics flotation and facilitates plastic recycling.

  18. Thermal-hydraulic performance of convective boiling jet array impingement

    Science.gov (United States)

    Jenkins, R.; De Brún, C.; Kempers, R.; Lupoi, R.; Robinson, A. J.

    2016-09-01

    Jet impingement boiling is investigated with regard to heat transfer and pressure drop performance using a novel laser sintered 3D printed jet impingement manifold design. Water was the working fluid at atmospheric pressure with inlet subcooling of 7oC. The convective boiling performance of the impinging jet system was investigated for a flat copper target surface for 2700≤Re≤5400. The results indicate that the heat transfer performance of the impinging jet is independent of Reynolds number for fully developed boiling. Also, the investigation of nozzle to plate spacing shows that low spacing delays the onset of nucleate boiling causing a superheat overshoot that is not observed with larger gaps. However, no sensitivity to the gap spacing was measured once boiling was fully developed. The assessment of the pressure drop performance showed that the design effectively transfers heat with low pumping power requirements. In particular, owing to the insensitivity of the heat transfer to flow rate during fully developed boiling, the coefficient of performance of jet impingement boiling in the fully developed boiling regime deteriorates with increased flow rate due to the increase in pumping power flux.

  19. Critical heat flux in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2015-01-01

    This Brief concerns the important problem of critical heat flux in flow boiling in microchannels. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,” by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  20. Rewetting and Flow Film Boiling Along Hot Surface

    Institute of Scientific and Technical Information of China (English)

    王补宣Thermal Engineering Department; Tsinghua University; Beijing 100084; PRC; 彭晓峰

    1994-01-01

    The recent investigations on the rewettmg and film boiling of liquid flowing along a hot/heated surface are briefly reviewed and discussed.Some advanced theoretical analyses are conducted and new conclusions achieved.These investigations describe the fundamental characteristics of liquid flow boiling and further the complicated rewetting phenomena,and have resulted in considerable insight intothe mechanism.

  1. Prospective Primary School Teachers' Perceptions on Boiling and Freezing

    Science.gov (United States)

    Senocak, Erdal

    2009-01-01

    The aim of this study was to investigate the perceptions of prospective primary school teachers on the physical state of water during the processes of boiling and freezing. There were three stages in the investigation: First, open-ended questions concerning the boiling and freezing of water were given to two groups of prospective primary school…

  2. Tsetse salivary gland proteins 1 and 2 are high affinity nucleic acid binding proteins with residual nuclease activity.

    Directory of Open Access Journals (Sweden)

    Guy Caljon

    Full Text Available Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2 display DNA/RNA non-specific, high affinity nucleic acid binding with K(D values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents.

  3. Comparison of direct boiling method with commercial kits for extracting fecal microbiome DNA by Illumina sequencing of 16S rRNA tags.

    Science.gov (United States)

    Peng, Xin; Yu, Ke-Qiang; Deng, Guan-Hua; Jiang, Yun-Xia; Wang, Yu; Zhang, Guo-Xia; Zhou, Hong-Wei

    2013-12-01

    Low cost and high throughput capacity are major advantages of using next generation sequencing (NGS) techniques to determine metagenomic 16S rRNA tag sequences. These methods have significantly changed our view of microorganisms in the fields of human health and environmental science. However, DNA extraction using commercial kits has shortcomings of high cost and time constraint. In the present study, we evaluated the determination of fecal microbiomes using a direct boiling method compared with 5 different commercial extraction methods, e.g., Qiagen and MO BIO kits. Principal coordinate analysis (PCoA) using UniFrac distances and clustering showed that direct boiling of a wide range of feces concentrations gave a similar pattern of bacterial communities as those obtained from most of the commercial kits, with the exception of the MO BIO method. Fecal concentration by boiling method affected the estimation of α-diversity indices, otherwise results were generally comparable between boiling and commercial methods. The operational taxonomic units (OTUs) determined through direct boiling showed highly consistent frequencies with those determined through most of the commercial methods. Even those for the MO BIO kit were also obtained by the direct boiling method with high confidence. The present study suggested that direct boiling could be used to determine the fecal microbiome and using this method would significantly reduce the cost and improve the efficiency of the sample preparation for studying gut microbiome diversity. © 2013 Elsevier B.V. All rights reserved.

  4. Computation of boiling water on circular finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Fan, C.C.; Liaw, S.P. [National Taiwan Ocean Univ., Keelung (Taiwan, Province of China). Dept. of Mechanical and Marine Engineering

    1999-04-01

    This study investigates the maximum heat transfer rate and the critical temperature of circular finned tubes in a boiling liquid. The analysis is conducted numerically by solving a two-dimensional heat conduction equation in a steady state. The dependence between heat flux and the temperature at the inner wall of the tube is quantified. Varying the width, height, and pitch of fins, an optimal finned tube with efficient heat transfer rate can be obtained. In the theoretical approach the successive over relaxation (S.O.R.) accompanied with Multi-grid scheme is used. The local heat transfer rates are assumed to follow power-law-type temperature dependence. The initial guess at very high temperatures or so-called a cooling process is also executed in a same way. The results reveal that increasing either the width or the height of a fin increases the total heat transfer rate.

  5. Interface oscillation of subcooled flow boiling in locally heated microchannels

    Science.gov (United States)

    Liu, J. T.; Peng, X. F.

    2009-02-01

    An investigation was conducted to understand flow boiling of subcooled de-ionized water in locally heated parallel microchannels. High-speed visualization technology was employed to visually observe the transient phase change process in an individual microchannel. Signal analysis method was employed in studying the interface movement and phase change process. The phase change at locally heated condition was different from those at entirely heated condition where elongated bubble(s) stayed quasi-stable for a long time without venting out. Diversified and intensive interface oscillation was observed occurring on both of the upstream and downstream bubble caps. Evaporation and condensation modes were characterized with distinguished oscillation frequencies. The film-driven oscillations of both evaporating and condensing interfaces generally operated at higher frequencies than the oscillations driven by nucleation or dropwise condensation.

  6. Boiling visualization on vertical fins with tunnel-pore structures

    Directory of Open Access Journals (Sweden)

    Kaniowski Robert

    2012-04-01

    Full Text Available The paper presents experimental studies of nucleate boiling heat transfer from a system of connected horizontal and vertical subsurface tunnels. The experiments were carried out for water at atmospheric pressure. The tunnel external covers were manufactured out of perforated copper foil (holes diameter 0.3 mm, sintered with the mini-fins, formed on the vertical side of the 10 mm high rectangular fins and horizontal inter-fin surface. The image acquisition speed was 493 fps (at resolution 400 × 300 pixels with Photonfocus PHOT MV-D1024-160-CL camera. Visualization investigations aimed to identify nucleation sites and flow patterns and to determine the bubble departure diameter and frequency at various superheats for vertical tunnels. At low superheat vapor bubbles are generated nearly exclusively by the vertical tunnel. At medium values of superheat, pores of the horizontal tunnel activate.

  7. Investigation of vapor film motion regularities at boiling liquids

    Directory of Open Access Journals (Sweden)

    Zeigarnik Y.U.

    2013-04-01

    Full Text Available The experimental investigation of the saturated Freon-113 and distilled water film boiling on spheres with different diameters at atmospheric pressure under conditions of free convection is executed. With high-speed video average thickness and cumulative distribution function of vapor film as a function of the angle was measured. It was found that with increasing the angle the average thickness of vapor film can change by different laws depending on diameter of the sphere and the temperature difference. It was found also that the increase in the average vapor film thickness with increasing angle is more connected with the increase of large components of cumulative distribution function. It also noted the presence of quasi-periodic pulsations of the vapor film thickness in the lower part, which eventually largely determine the behavior of the interface at large angles.

  8. Flow boiling of water on nanocoated surfaces in a microchannel

    CERN Document Server

    Phan, Hai Trieu; Marty, Philippe; Colasson, Stéphane; Gavillet, Jérôme

    2010-01-01

    Experiments were performed to study the effects of surface wettability on flow boiling of water at atmospheric pressure. The test channel is a single rectangular channel 0.5 mm high, 5 mm wide and 180 mm long. The mass flux was set at 100 kg/m2 s and the base heat flux varied from 30 to 80 kW/m2. Water enters the test channel under subcooled conditions. The samples are silicone oxide (SiOx), titanium (Ti), diamond-like carbon (DLC) and carbon-doped silicon oxide (SiOC) surfaces with static contact angles of 26{\\deg}, 49{\\deg}, 63{\\deg} and 103{\\deg}, respectively. The results show significant impacts of surface wettability on heat transfer coefficient.

  9. Numerical study of subcooled boiling phenomena using a component analysis code, CUPID

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ba-Ro; Lee, Yeon-Gun [Jeju National University, Jeju (Korea, Republic of)

    2015-10-15

    In this study, a couple of subcooled boiling experiments at high- (> 10 bar) and low-pressure (near atmospheric pressure) conditions are analyzed using a three-dimensional thermal-hydraulic component code, CUPID. And then the analysis results compared with the results using MARS-KS code. Subcooled boiling experiments at high- and low pressure conditions are analyzed using a three dimensional thermal-hydraulic component code, CUPID. The predictions of the CUPID code shows good agreement with Christenses's data and Bartolomey's data obtained at high pressure conditions. Subcooled boiling is encountered in many industrial applications in the power and process industry. In nuclear reactors, under certain conditions, subcooled boiling may be encountered in the core. The movement of bubbles generated by subcooled boiling affect the heat transfer characteristics and the pressure drop of the system. Thus some experimental and analysis using safety codes works have been already performed by previous investigators. It has been reported that the existing safety analysis codes have some weaknesses in predicting subcooled boiling phenomena at low pressure conditions. Thus, it is required to improve the predictive capability of thermal-hydraulic analysis codes on subcooled boiling phenomenon at low-pressure conditions. At low pressure condition, the CUPID code generally is overestimated prediction of the void fraction. Thus, we did selected submodels in the heat partitioning model by sensitivity analysis. Selected submodels of M{sub c}ase 4 are Kocamustafaogullari and Ishii correlation model of active nucleate site density, N' and Fritz correlation model of bubble departure diameter, d{sub Bd} . And then, case 5 - 8 are reanalysis using submodels of M{sub c}ase 4. The calculated void fraction is compared the default CUPID code model to the modified CUPID code model. As a result, average void fraction error was reduced from 0.081 to 0.011 and 0.128 to 0.024, 0

  10. Influence of the wettability on the boiling onset.

    Science.gov (United States)

    Bourdon, B; Rioboo, R; Marengo, M; Gosselin, E; De Coninck, J

    2012-01-17

    Experimental investigation of pool boiling is conducted in stationary conditions over very smooth bronze surfaces covered by a very thin layer of gold presenting various surface treatments to isolate the role of wettability. We show that even with surfaces presenting mean roughness amplitudes below 10 nm the role of surface topography is of importance. The study shows also that wettability alone can trigger the boiling and that the boiling position on the surface can be controlled by chemical grafting using for instance alkanethiol. Moreover, boiling curves, that is, heat flux versus the surface superheat (which is the difference between the solid surface temperature and the liquid saturation temperature), are recorded and enabled to quantify, for this case, the significant reduction of the superheat at the onset of incipient boiling due to wettability. © 2011 American Chemical Society

  11. Mechanistic Multidimensional Modeling of Forced Convection Boiling Heat Transfer

    Directory of Open Access Journals (Sweden)

    Michael Z. Podowski

    2009-01-01

    Full Text Available Due to the importance of boiling heat transfer in general, and boiling crisis in particular, for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems, extensive efforts have been made in the past to develop a variety of methods and tools to evaluate the boiling heat transfer coefficient and to assess the onset of temperature excursion and critical heat flux (CHF at various operating conditions of boiling channels. The objective of this paper is to present mathematical modeling concepts behind the development of mechanistic multidimensional models of low-quality forced convection boiling, including the mechanisms leading to temperature excursion and the onset of CHF.

  12. Boiling in porous media; Ebullition en milieux poreux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-11

    This conference day of the French society of thermal engineers was devoted to the analysis of heat transfers and fluid flows during boiling phenomena in porous media. This book of proceedings comprises 8 communications entitled: `boiling in porous medium: effect of natural convection in the liquid zone`; `numerical modeling of boiling in porous media using a `dual-fluid` approach: asymmetrical characteristic of the phenomenon`; `boiling during fluid flow in an induction heated porous column`; `cooling of corium fragment beds during a severe accident. State of the art and the SILFIDE experimental project`; `state of knowledge about the cooling of a particulates bed during a reactor accident`; `mass transfer analysis inside a concrete slab during fire resistance tests`; `heat transfers and boiling in porous media. Experimental analysis and modeling`; `concrete in accidental situation - influence of boundary conditions (thermal, hydric) - case studies`. (J.S.)

  13. An experimental investigation of critical heat flux performance of hypervapotron in subcooled boiling

    Science.gov (United States)

    Chen, Peipei

    The successful use of subcooled flow boiling for high heat flux components requires that the critical heat flux (CHF), i.e., a fast reduction in the boiling heat transfer, must be avoided. Among the many techniques available to enhance CHF, particular attention has been focused on the hypervapotron concept. In this study, the CHF characteristics of the hypervapotron were experimentally investigated using a simulant fluid, R134a, which has been found to be an effective modeling fluid to simulate CHF in water-cooled environments. An experimental and modeling study of the subcooled boiling heat transfer on plain surface and hypervapotron has been conduced. A test facility was designed and constructed to perform required boiling heat transfer experiments. A high speed visualization system was utilized to give details of bubble formation and departure and of nucleation site density. Surface measurements of various specimens were performed to investigate the relationship between nucleation sites and surface microstructure. Full characterization of the hypervapotron effect as a function of fluid thermal hydraulic conditions was accomplished. A non-dimensional CHF correlation for smooth rectangular channels and the hypervapotron channel was developed and compared with experimental data in this work. In addition, a hot-spot model was developed to give predictions of critical heat flux on both plain and hypervapotron surfaces. It was developed on observations of bubble formation, departure and coalescence, and on the confirmation of nucleation structure on the heating surface. Finally, a numerical code was successfully developed to give CHF predictions for hypervapotron configurations. The simulation indicates that the better performance of CHF in hypervapotron configurations is a result of high conductivity material with augmented heating surfaces in subcooled boiling environment. Different fin dimensions were also tested numerically to compare the experimental results, and

  14. High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration

    Directory of Open Access Journals (Sweden)

    Ileana Frasier

    2016-04-01

    Full Text Available The objective of the study was to evaluate the effect of a change in management on the soil microbial community and C sequestration. We conducted a 3-year field study in La Pampa (Argentina with rotation of sorghum (Sorghum bicolor in zero tillage alternating with rye (Secale cereale and vetch (Vicia villosa ssp. dasycarpa. Soil was sampled once a year at two depths. Soil organic matter fractions, dissolved organic matter, microbial biomass (MBC and community composition (DNA extraction, qPCR, and phospholipid FAME profiles were determined. Litter, aerial- and root biomass were collected and all material was analyzed for C and N. Results showed a rapid response of microbial biomass to a bacterial dominance independent of residue quality. Vetch had the highest diversity index, while the fertilized treatment had the lowest one. Vetch–sorghum rotation with high N mineralization rates and diverse microbial community sequestered more C and N in stable soil organic matter fractions than no-till sorghum alone or with rye, which had lower N turnover rates. These results reaffirm the importance of enhanced soil biodiversity for maintaining soil ecosystem functioning and services. The supply of high amounts of N-rich residues as provided by grass–legume cover crops could fulfill this objective.

  15. High hole mobility p-type GaN with low residual hydrogen concentration prepared by pulsed sputtering

    Science.gov (United States)

    Arakawa, Yasuaki; Ueno, Kohei; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-08-01

    We have grown Mg-doped GaN films with low residual hydrogen concentration using a low-temperature pulsed sputtering deposition (PSD) process. The growth system is inherently hydrogen-free, allowing us to obtain high-purity Mg-doped GaN films with residual hydrogen concentrations below 5 × 1016 cm-3, which is the detection limit of secondary ion mass spectroscopy. In the Mg profile, no memory effect or serious dopant diffusion was detected. The as-deposited Mg-doped GaN films showed clear p-type conductivity at room temperature (RT) without thermal activation. The GaN film doped with a low concentration of Mg (7.9 × 1017 cm-3) deposited by PSD showed hole mobilities of 34 and 62 cm2 V-1 s-1 at RT and 175 K, respectively, which are as high as those of films grown by a state-of-the-art metal-organic chemical vapor deposition apparatus. These results indicate that PSD is a powerful tool for the fabrication of GaN-based vertical power devices.

  16. Technique for the residual life assessment of high temperature components based on creep-rupture testing on welded miniature specimens

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, A.; Guardamagna, C.; Moscotti, L.; Ranzani, L. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-06-01

    Following the present trend in the development of advanced methodologies for residual life assessment of high temperature components operating in power plants, particularly in non destructive methods, a testing technique has been set up at ENEL-CRAM based on creep-rupture testa in an argon on welded miniature specimens. Five experimental systems for creep-rupture tests in an argon atmosphere have been set up which include high accuracy systems, vacuum chambers and exrwnsometer devices. With the aim of establishing and validating the suitability of the experimental methodology, creep-rupture and interrupted creep testing programmes have been performed on miniature specimens (2 mm diameter and 10 mm gauge lenght). On the basis of experience gathered by various European research laboratories, a miniature specimen construction procedure has been developed using a laser welding technique for joining threaded heads to sample material. Low alloy ferritic steels, such as virgin 2.25CrlMo, 0.5Cr 0.5Mo 0.25V, and IN 738 superalloy miniature specimens have been investigated and the results, compared with those from standard specimens, show a regular trend in deformation vs time. Additional efforts to provide guidelines for material sampling from each plant component will be required in order to reduce uncertainties in residual life prediction.

  17. High-resolution residual geoid and gravity anomaly data of the northern Indian Ocean - An input to geological understanding

    Science.gov (United States)

    Sreejith, K. M.; Rajesh, S.; Majumdar, T. J.; Srinivasa Rao, G.; Radhakrishna, M.; Krishna, K. S.; Rajawat, A. S.

    2013-01-01

    Geoid data are more sensitive to density distributions deep within the Earth, thus the data are useful for studying the internal processes of the Earth leading to formation of geological structures. In this paper, we present much improved version of high resolution (1' × 1') geoid anomaly map of the northern Indian Ocean generated from the altimeter data obtained from Geodetic Missions of GEOSAT and ERS-1 along with ERS-2, TOPEX/POSIDEON and JASON satellites. The geoid map of the Indian Ocean is dominated by a significant low of -106 m south of Sri Lanka, named as the Indian Ocean Geoid Low (IOGL), whose origin is not clearly known yet. The residual geoid data are retrieved from the geoid data by removing the long-wavelength core-mantle density effects using recent spherical harmonic coefficients of Earth Gravity Model 2008 (EGM2008) up to degree and order 50 from the observed geoid data. The coefficients are smoothly rolled off between degrees 30-70 in order to avoid artifacts related to the sharp truncation at degree 50. With this process we observed significant improvement in the residual geoid data when compared to the previous low-spatial resolution maps. The previous version was superposed by systematic broad regional highs and lows (like checker board) with amplitude up to ±12 m, though the trends of geoid in general match in both versions. These methodical artifacts in the previous version may have arisen due to the use of old Rapp's geo-potential model coefficients, as well as sharp truncation of reference model at degree and order 50. Geoid anomalies are converted to free-air gravity anomalies and validated with cross-over corrected ship-borne gravity data of the Arabian Sea and Bay of Bengal. The present satellite derived gravity data matches well with the ship-borne data with Root Mean Square Error (RMSE) of 5.1-7.8 mGal, and this is found to be within the error limits when compared with other globally available satellite data. Spectral analysis of

  18. SiNx coatings deposited by reactive high power impulse magnetron sputtering: Process parameters influencing the residual coating stress

    Science.gov (United States)

    Schmidt, S.; Hänninen, T.; Wissting, J.; Hultman, L.; Goebbels, N.; Santana, A.; Tobler, M.; Högberg, H.

    2017-05-01

    The residual coating stress and its control is of key importance for the performance and reliability of silicon nitride (SiNx) coatings for biomedical applications. This study explores the most important deposition process parameters to tailor the residual coating stress and hence improve the adhesion of SiNx coatings deposited by reactive high power impulse magnetron sputtering (rHiPIMS). Reactive sputter deposition and plasma characterization were conducted in an industrial deposition chamber equipped with pure Si targets in N2/Ar ambient. Reactive HiPIMS processes using N2-to-Ar flow ratios of 0 and 0.28-0.3 were studied with time averaged positive ion mass spectrometry. The coatings were deposited to thicknesses of 2 μm on Si(001) and to 5 μm on polished CoCrMo disks. The residual stress of the X-ray amorphous coatings was determined from the curvature of the Si substrates as obtained by X-ray diffraction. The coatings were further characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and nanoindentation in order to study their elemental composition, morphology, and hardness, respectively. The adhesion of the 5 μm thick coatings deposited on CoCrMo disks was assessed using the Rockwell C test. The deposition of SiNx coatings by rHiPIMS using N2-to-Ar flow ratios of 0.28 yield dense and hard SiNx coatings with Si/N ratios <1. The compressive residual stress of up to 2.1 GPa can be reduced to 0.2 GPa using a comparatively high deposition pressure of 600 mPa, substrate temperatures below 200 °C, low pulse energies of <2.5 Ws, and moderate negative bias voltages of up to 100 V. These process parameters resulted in excellent coating adhesion (ISO 0, HF1) and a low surface roughness of 14 nm for coatings deposited on CoCrMo.

  19. Transient measurement of temperature oscillation during noisy film boiling in superfluid helium II

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Peng

    2001-01-01

    [1]Kobayashi, H.?Yasukochi, K., Maximum and minimum heat flux and temperature fluctuation in film-boiling states in superfluid helium, Adv. Cryog. Eng., 1980, 25: 372.[2]Kobayashi, H.?Yasukochi, K., A sample configuration effect on the heat transfer from metal surfaces to pressurized He II, Proc. ICEC, 1980, 8: 217.[3]Schwerdtner, M. V., Stamm, G., Tosi, A. N. et al. The boiling-up process in He II. Optical measurements and visualization, Cryogenics, 1992, 32: 775.[4]Schwerdtner, M. V., Poppes, W., Schmidt, D. W., Distortion of temperature signals in He II due to probe geometry, and a new improved probe, Cryogenics, 1989, 29: 132.[5]Shimazaki, T., Murakami, M.?Iida, T., Second sound wave heat transfer, thermal boundary layer formation and boiling: highly transient heat transport phenomena in He II, Cryogenics, 1995, 35: 645.[6]Zhang, P., Study of physical mechanism of film boiling in He II, Doctoral dissertation, Shanghai Jiaotong University, China, 1998.[7]Arp, V., State equation of liquid helium-4 from 0.8 to 2.5K, J. Low Temp. Phys., 1990, 79: 93.[8]Zhang, P., Kimura, S., Murakami, M. et al., Non-planar and non-linear second sound wave in He II, Chinese Physics Letters, 2000, 17: 43.

  20. Transient interaction of a boiling melt with a pulsed Nd:YAG-laser

    Science.gov (United States)

    Samarjy, R. S. M.; Kaplan, A. F. H.

    2017-01-01

    The boiling front induced by a pulsed Nd:YAG-laser at very slow translation speed was studied. The purpose is to understand fundamental melt movement mechanisms. The melt was observed by high speed imaging, with and without illumination. When switching on the laser beam a hole is drilled through a bulk of melt. The hole expands and the boiling pressure gradually opens the melt bridge, instead developing an interaction front similar to cutting. These conditions remain in quasi-steady state during the pulse. The ablation pressure from boiling shears waves down the front and keeps the melt downwards in a stable position. When switching off, the waves smoothen and in absence of boiling the surface tension drags the melt back upwards, to semi-torus-like Catenoid shape. Evidence on the large melt pool and its shape was achieved by three-dimensional reconstruction from cross section macrographs. The basic findings how melt can move with and without ablation pressure can enable controlled melt dynamics for various laser processing techniques, like remote cutting, ablation, keyhole welding or drilling.

  1. Transition process leading to microbubble emission boiling on horizontal circular heated surface in subcooled pool

    Science.gov (United States)

    Ueno, Ichiro; Ando, Jun; Horiuchi, Kazuna; Saiki, Takahito; Kaneko, Toshihiro

    2016-11-01

    Microbubble emission boiling (MEB) produces a higher heat flux than critical heat flux (CHF) and therefore has been investigated in terms of its heat transfer characteristics as well as the conditions under which MEB occurs. Its physical mechanism, however, is not yet clearly understood. We carried out a series of experiments to examine boiling on horizontal circular heated surfaces of 5 mm and of 10 mm in diameter, in a subcooled pool, paying close attention to the transition process to MEB. High-speed observation results show that, in the MEB regime, the growth, condensation, and collapse of the vapor bubbles occur within a very short time. In addition, a number of fine bubbles are emitted from the collapse of the vapor bubbles. By tracking these tiny bubbles, we clearly visualize that the collapse of the vapor bubbles drives the liquid near the bubbles towards the heated surface, such that the convection field around the vapor bubbles under MEB significantly differs from that under nucleate boiling. Moreover, the axial temperature gradient in a heated block (quasi-heat flux) indicates a clear difference between nucleate boiling and MEB. A combination of quasi-heat flux and the measurement of the behavior of the vapor bubbles allows us to discuss the transition to MEB. This work was financially supported by the 45th Research Grant in Natural Sciences from The Mitsubishi Foundation (2014 - 2015), and by Research Grant for Boiler and Pressurized Vessels from The Japan Boiler Association (2016).

  2. Effects of Hull Scratching, Soaking, and Boiling on Antinutrients in Japanese Red Sword Bean (Canavalia gladiata).

    Science.gov (United States)

    Une, Satsuki; Nonaka, Koji; Akiyama, Junich

    2016-10-01

    The effects of hull processing, soaking, and boiling on the content or activity of antinutrients in the red sword bean (RSB; Canavalia gladiata) were investigated. RSB seeds were compared with kidney bean (KB; Phaseolus vulgaris) seeds that are starch based and often used as processed products in Japan. RSB seeds had higher weight, thicker hull, and higher protein content, but lower moisture content compared with KB seeds. Because of the strong and thick hull, the relative water absorption of untreated RSB seeds was very low after soaking. Seeds were soaked after dehulling, scratching, and roasting. The results showed that hull scratching was the optimal method for increasing water absorption during soaking compared with dehulling and roasting. After soaking, the water used for soaking was discarded, since it had a high content of polyphenols and bitter taste, and RSB seeds were boiled in fresh water for 20, 40, and 60 min. The results showed that polyphenol and tannin contents, antioxidant activity, and hemagglutinating activity, as well as maltase, sucrase, and trypsin inhibitor activities in scratched RSB seeds decreased significantly after boiling compared with those in raw seeds, whereas amylase inhibitor activity showed no significant change. Overall, it was concluded that the combination of hull scratching, soaking, and boiling in fresh water can reduce thermal-stable or sensitive antinutrients in RSB and thus, significantly improve its nutritional value. © 2016 Institute of Food Technologists®.

  3. Single-bubble dynamics in pool boiling of one-component fluids.

    Science.gov (United States)

    Xu, Xinpeng; Qian, Tiezheng

    2014-06-01

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  4. Single-bubble dynamics in pool boiling of one-component fluids

    KAUST Repository

    Xu, Xinpeng

    2014-06-04

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  5. Evaluation of the residual antigenicity of dairy whey hydrolysates obtained by combination of enzymatic hydrolysis and high-pressure treatment.

    Science.gov (United States)

    Peñas, Elena; Restani, Patrizia; Ballabio, Cinzia; Préstamo, Guadalupe; Fiocchi, Alessandro; Gomez, Rosario

    2006-07-01

    Dairy whey was hydrolyzed for 15 min with five food-grade enzymes (Alcalase, Neutrase, Corolase 7089, Corolase PN-L, and Papain) at atmospheric pressure (0.1 MPa) and in combination with high pressure (HP) at 100, 200, and 300 MPa, applied prior to or during enzymatic digestion. The peptide profile of the hydrolysates obtained was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and their residual antigenicity was assessed by immuno-blotting with anti-beta-lactoglobulin monoclonal antibodies and the sera from pediatric patients allergic to cow's milk proteins. Moreover, to evaluate the presence of residual trace amounts of casein in bovine whey hydrolysates, immunoblotting with anti-cow's milk protein polyclonal antibodies was performed. SDS-PAGE analysis showed that HP treatment increased hydrolysis by the proteases assayed, especially when it was applied during the enzymatic digestion. Positive reactions at the band corresponding to beta-lactoglobulin were detected for Corolase PN-L and Corolase 7089 hydrolysates, except for those obtained under 300 MPa by the last protease. However, the immunochemical reaction was lower in the hydrolysis products obtained under HP than in those obtained at atmospheric pressure and after the HP treatment. On the contrary, no residual immunochemical reactivity associated with beta-lactoglobulin was observed in the hydrolysates obtained by Alcalase and Neutrase under HP, and none was observed in any of the hydrolysis products obtained by Papain. The presence of traces of casein was not significant. These results suggest that HP combined with selected food-grade proteases is a treatment that can remove the antigenicity of whey protein hydrolysates for their use as ingredients of hypoallergenic infant formulae.

  6. [Determination of 14 sulfonamide residues in shrimps by high performance liquid chromatography coupled with post-column derivatization].

    Science.gov (United States)

    Huang, Dongmei; Huang, Xuanyun; Gu, Runrun; Hui, Yunhua; Tian, Liangliang; Feng, Bing; Zhang, Xuan; Yu, Huijuan

    2014-08-01

    A method for the determination of 14 sulfonamide residues in shrimps by high performance liquid chromatography coupled with post-column derivatization was established. The sulfonamide residues were extracted with ethyl acetate after adding sulfapyridine as internal standard. The extracts were vacuum-concentrated and reverse-extracted by 2 mol/L hydrochloric acid solution for clean-up, and then the hydrochloric acid solution was defatted with n-hex- ane. The solution after filtration was blended with a mixed solution of methanol, acetonitrile and 3. 5 mol/L sodium acetate solution (5:5:20, v/v/v). The sulfonamides were separated on a C18 column by RP-HPLC and on-line derivatized with a fluorescamine and detected with a fluorescence detector. The standard addition method was used for quantitative analysis. The parameters of post-column derivatization system, such as concentration of fluorescamine solution, velocity of reagent solution and reaction temperature, were optimized. The calibration curves of the method showed good linearity in the range of 5 - 200 μg/L. The limits of quantification (LOQ, S/N= 10) were 1.0-5.0 μg/kg for the 14 sulfonamides. The recoveries were 77.8%- 103. 6% in the spiked range of 1. 0-100.0 μg/kg in shrimps with the relative standard deviations of 2.9%-9.1% (n= 6). The results indicated that the method is sensitive, efficient and more accurate. It is suitable for the simultaneous determination of the 14 sulfonamide residues in shrimps.

  7. Hybrid modelling of a sugar boiling process

    CERN Document Server

    Lauret, Alfred Jean Philippe; Gatina, Jean Claude

    2012-01-01

    The first and maybe the most important step in designing a model-based predictive controller is to develop a model that is as accurate as possible and that is valid under a wide range of operating conditions. The sugar boiling process is a strongly nonlinear and nonstationary process. The main process nonlinearities are represented by the crystal growth rate. This paper addresses the development of the crystal growth rate model according to two approaches. The first approach is classical and consists of determining the parameters of the empirical expressions of the growth rate through the use of a nonlinear programming optimization technique. The second is a novel modeling strategy that combines an artificial neural network (ANN) as an approximator of the growth rate with prior knowledge represented by the mass balance of sucrose crystals. The first results show that the first type of model performs local fitting while the second offers a greater flexibility. The two models were developed with industrial data...

  8. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    transfer coefficient but the ratio between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has......Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...... the whole surface and with measured temperature difference between the inner surface and the evaporation temperature a mean heat transfer coefficient is calculated. The calculated heat transfer coefficient has been compared with the Chart Correlation of Shah. The Chart Correlation predicts too low heat...

  9. Sodium boiling detection in LMFBRs by acoustic-neutronic cross correlation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, S.A.

    1977-01-01

    The acoustic and neutronic noise signals caused by boiling are the signals primarily considered likely to detect sodium boiling in an LMFBR. Unfortunately, these signals may have serious signal-to-noise problems due to strong background noise sources. Neutronic-acoustic cross correlation techniques are expected to provide a means of improving the signal-to-noise ratio. This technique can improve the signal-to-noise ratio because the neutronic and acoustic signals due to boiling are highly correlated near the bubble repetition frequency, while the background noise sources are expected to be uncorrelated (or at most weakly correlated). An experiment was designed to show that the neutronic and acoustic noise signals are indeed highly correlated. The experiment consisted of simulating the void and pressure effects of local sodium boiling in the core of a zero-power reactor (ARK). The analysis showed that the neutronic and acoustic noise signals caused by boiling are almost perfectly correlated in a wide frequency band about the bubble repetition frequency. The results of the experiments were generalized to full-scale reactors to compare the inherent effectiveness of the methods which use the neutronic or acoustic signals alone with a hybrid method, which cross correlates the neutronic and acoustic signals. It was concluded that over a zone of the reactor where the void coefficient is sufficiently large (approximately 85 percent the core volume), the cross correlation method can provide a more rapid detection system for a given signal-to-noise ratio. However, where the void coefficient is small, one must probably rely on the acoustic method alone.

  10. Multiphysics modeling of two-phase film boiling within porous corrosion deposits

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Miaomiao, E-mail: mmjin@mit.edu; Short, Michael, E-mail: hereiam@mit.edu

    2016-07-01

    Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits. Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys. - Highlights: • A two-phase model of CRUD's effects on fuel cladding is developed and improved. • This model eliminates the formerly erroneous assumption of wick boiling. • Higher fuel cladding temperatures are predicted when accounting for two-phase flow. • Double-peaks in thermal conductivity vs. heat flux in experiments are explained. • A “double dryout” mechanism in CRUD is proposed based on the model and experiments.

  11. Relationship between residual feed intake and digestibility for lactating Holstein cows fed high and low starch diets.

    Science.gov (United States)

    Potts, S B; Boerman, J P; Lock, A L; Allen, M S; VandeHaar, M J

    2017-01-01

    We determined if differences in digestibility among cows explained variation in residual feed intake (RFI) in 4 crossover design experiments. Lactating Holstein cows (n=109; 120±30d in milk; mean ± SD) were fed diets high (HS) or low (LS) in starch. The HS diets were 30% (±1.8%) starch and 27% (±1.2%) neutral detergent fiber (NDF); LS diets were 14% (±2.2%) starch and 40% (±5.3%) NDF. Each experiment consisted of two 28-d treatment periods, with apparent total-tract digestibility measured using indigestible NDF as an internal marker during the last 5d of each period. Individual cow dry matter (DM) intake and milk yield were recorded daily, body weight was measured 3 to 5 times per week, and milk components were analyzed 2 d/wk. Individual DM intake was regressed on milk energy output, metabolic body weight, body energy gain, and fixed effects of parity, experiment, cohort (a group of cows that received treatments in the same sequence) nested within experiment, and diet nested within cohort and experiment, with the residual being RFI. High RFI cows ate more than expected and were deemed less efficient. Residual feed intake correlated negatively with digestibility of starch for both HS (r=-0.31) and LS (r=-0.23) diets, and with digestibilities of DM (r=-0.30) and NDF (r=-0.23) for LS diets but was not correlated with DM or NDF digestibility for HS diets. For each cohort within an experiment, cows were classified as high RFI (HRFI; >0.5 SD), medium RFI (MRFI; ±0.5 SD), and low RFI (LRFI; intake is associated with increased passage rate and digestibility depression. Based on these data, we conclude that a cow's digestive ability explains none of the variation in RFI for cows eating high starch diets but 9 to 31% of the variation in RFI when cows are fed low starch diets. Perhaps differences in other metabolic processes, such as tissue turnover, heat production, or others related to maintenance, can account for more variation in RFI than digestibility. Copyright

  12. Filtrates & Residues: Experimental Work with Tin (II) Chloride in a High School.

    Science.gov (United States)

    Sanchez, Manuela Martin

    1988-01-01

    Presents a high school chemistry lab experiment using tin (II) chloride to explore the concepts of hydrolysis, Le Chatelier's principle, and electrolysis. Presents methodology and the chemistry involved. Offers questions for the students. (MVL)

  13. High Temperature Exposure of HPC – Experimental Analysis of Residual Properties and Thermal Response

    Directory of Open Access Journals (Sweden)

    Pavlík Zbyšek

    2016-01-01

    Full Text Available The effect of high temperature exposure on properties of a newly designed High Performance Concrete (HPC is studied in the paper. The HPC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000°C respectively. Among the basic physical properties, bulk density, matrix density and total open porosity are measured. The mechanical resistivity against disruptive temperature action is characterised by compressive strength, flexural strength and dynamic modulus of elasticity. To study the chemical and physical processes in HPC during its high-temperature exposure, Simultaneous Thermal Analysis (STA is performed. Linear thermal expansion coefficient is determined as function of temperature using thermodilatometry (TDA. In order to describe the changes in microstructure of HPC induced by high temperature loading, MIP measurement of pore size distribution is done. Increase of the total open porosity and connected decrease of the mechanical parameters for temperatures higher than 200 °C were identified.

  14. Residual formability of preformed and subsequently welded advanced high strength steels (Reform): Final Report

    OpenAIRE

    Standfuß, Jens; Jahn, Axel; Weber, P; Neges, J.; Wischmann, S.; Höfemann, M.; Sierlinger, R.; Cretteur, L.; Veldt, T. van der; Veit, R.; Trattnig, G.; Pickett, A.; D Aiuto, F.

    2014-01-01

    The research project Reform was situated within the scope of research and technological development of steel and its utilisation. The central point of investigation was the determination of the load capability of preformed and subsequently welded parts made of high-strength steels. In order to cover a wide spectrum of automotive steel applications and with respect to the current development of modern high-strength steels, - two dual phase steels (HCT780X, HCT980X), - one trip steel (HCT690T),...

  15. [Determination of glyphosate and aminomethylphosphonic acid residues in foods using high performance liquid chromatography-mass spectrometry/mass spectrometry].

    Science.gov (United States)

    Li, Bo; Deng, Xiaojun; Guo, Dehua; Jin, Shuping

    2007-07-01

    A method for the determination of glyphosate (PMG) and aminomethylphosphonic acid (AMPA) residues in plant products, such as rice, wheat, vegetables, fruits and tea, pig and chicken muscles, aquatic products, chestnut, honey, etc., was developed using high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). In this method, PMG and AMPA were extracted with water from samples, defatted using an extraction step with dichloromethane, and purified using a cation-exchange (CAX) solid phase extraction cartridge. Then, these were derived using fluorenylmethylchloroformate (FMOC-Cl) in borate buffer for subsequent HPLC-MS/MS analysis. Isotope-labeled PMG 1, 2(13)- C(15) N was used as the internal standard for the quantitative analysis of two residues. For all samples, the recoveries ranged from 80.0% to 104% and the relative standard deviations (RSDs) ranged from 6.7% to 18.2%. The limit of quantification (LOQ) was determined to be 0.05 mg/kg with a linear range of 0.20-10 microg/L. It is demonstrated that this method is reliable and sensitive for the analysis of PMG and APMA with low concentrations in foods.

  16. Transition boiling heat transfer and the film transition regime

    Science.gov (United States)

    Ramilison, J. M.; Lienhard, J. H.

    1987-01-01

    The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.

  17. Transition boiling heat transfer and the film transition regime

    Science.gov (United States)

    Ramilison, J. M.; Lienhard, J. H.

    1987-01-01

    The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.

  18. Residual gas entering high density hydrogen plasma: rarefaction due to rapid heating

    NARCIS (Netherlands)

    N. den Harder,; D.C. Schram,; W. J. Goedheer,; de Blank, H. J.; M. C. M. van de Sanden,; van Rooij, G. J.

    2015-01-01

    The interaction of background molecular hydrogen with magnetized (0.4 T) high density (1–5 × 10 20  m −3 ) low temperature (∼3 eV) hydrogen plasma was inferred from the Fulcher band emission in the linear plasma generator Pilot-PSI. In the plasma center,

  19. Residual stress in a M3:2 PM high speed steel; effect of mechanical loading

    DEFF Research Database (Denmark)

    Højerslev, Christian; Odén, Magnus; Carstensen, Jesper V.;

    2001-01-01

    X-ray lattice strains were investigated in an AISI M3:2 PM high-speed steel in the as heat treated condition and after exposure to alternating mechanical load. The volume changes during heat treatment were monitored with dilatometry. Hardened and tempered AISI M3:2 steel consists of tempered lath...

  20. High Flux Laser Radiation and Residual Gas Interactions with Carbon-Based Structural Materials.

    Science.gov (United States)

    and (111) single crystal faces of Ti reacted with CO. The interest in titanium carbide is based on its importance as a high temperature material...artificial superlattices of titanium carbides and comparing their properties to that of naturally occurring titanium carbide which is a cubic metallic...conductor. Keywords: Carbon Monoxide; Titanium; Carbon; Sodium Chloride; Titanium Carbide .

  1. Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity

    Science.gov (United States)

    Chung, Jacob N.

    1998-01-01

    wall temperature and heat flux near the wall would add to the database of knowledge which is necessary to understand the mechanisms of nucleate boiling. A heater array has been developed which contains 96 heater elements within a 2.5 mm square area. The temperature of each heater element is held constant by an electronic control system similar to a hot-wire anemometer. The voltage that is being applied to each heater element can be measured and digitized using a high-speed Analog to Digital (A/D) converter, and this digital information can be compiled into a series of heat-flux maps. Information for up to 10,000 heat flux maps can be obtained each second. The heater control system, the A/D system and the heater array construction are described in detail. Results are presented which show that this is an effective method of measuring the local heat flux during nucleate and transition boiling. Heat flux maps are obtained for pool boiling in FC-72 on a horizontal surface. Local heat flux variations are shown to be three to six times larger than variations in the spatially averaged heat flux.

  2. Integration of High Residue/No-till and Farmscaping Systems in Organic Production of Broccoli

    OpenAIRE

    Benson, Gordon Brinkley, 1964-

    2006-01-01

    High-biomass cover cropping enhances marketable yields in organic production of vegetables, linked to the improvement of soil quality and weed control. Although, during transition from chemical to organic cover-cropping production, especially with no-till systems, reduction of nitrogen availability to the main crop and increase in weed and pest pressure may occur. In 2004-2005, summer and fall broccoli (Brassica oleraceae L. Botrytis Group) crops were grown in twin rows on permanent (contro...

  3. High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids

    Science.gov (United States)

    2015-06-22

    applications involving complex geometries . The ability to predict the gradients on irregular grids is even more critical for grid adaptation, a vital technique...require curved geometries to be represented by high-order curved elements (see Ref. 3). • Non-Unified Approach: Instead of the fully integrated...least-squares solution of Cauchy- Riemann equations on unstructured triangular grids. Int. J. Numer. Meth. Fluids, 53:443–454, 2007. 24Katate Masatsuka. I

  4. Residual stress measurement with high energy x-rays at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Winholtz, R. A.; Haeffner, D. R.; Green, R.E.L.; Varma, R.; Hammond, D.

    2000-03-02

    Preliminary measurements with high energy x-rays from the SRI CAT 1-ID beam line at the Advanced Photon show great promise for the measurement of stress and strain using diffraction. Comparisons are made with neutron measurements. Measurements of strains in a 2 mm thick 304 stainless steel weld show that excellent strain and spatial resolutions are possible. With 200 {micro}m slits, strain resolutions of 1 x 10{sup {minus}5} were achieved.

  5. Fit3D: a web application for highly accurate screening of spatial residue patterns in protein structure data.

    Science.gov (United States)

    Kaiser, Florian; Eisold, Alexander; Bittrich, Sebastian; Labudde, Dirk

    2016-03-01

    The clarification of linkage between protein structure and function is still a demanding process and can be supported by comparison of spatial residue patterns, so-called structural motifs. However, versatile up-to-date resources to search for local structure similarities are rare. We present Fit3D, an easily accessible web application for highly accurate screening of structural motifs in 3D protein data. The web application is accessible at https://biosciences.hs-mittweida.de/fit3d and program sources of the command line version were released under the terms of GNU GPLv3. Platform-independent binaries and documentations for offline usage are available at https://bitbucket.org/fkaiser/fit3d florian.kaiser@hs-mittweida.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Preliminary validation of high performance liquid chromatography method for detection of methyl-testosterone residue in carp muscle

    Science.gov (United States)

    Jiang, Jie; Lin, Hong; Fu, Xiaoting; Li, Mingming

    2005-07-01

    The use of synthetic anabolic steroid methyltestosterone (MT) as growth promoter is prohibited in China. Validations of analytical methods for MT residue in food and the results obtained have become indispensable. The high performance liquid chromatography (HPLC) method for the detection of MT with liquid-liquid extraction by trichloromethane-methanol in carp muscle tissue was preliminarily validated with reference to the following parameters: recovery (accuracy) at the 1, 5 and l0 mgkg-1 level, between-run and within-run CV values (repeatability, also called relative standard deviation (RSD)) and limit of detection. The recoveries were above 80% and the between-run and within-run CV values below 10% for muscle tissue. The limit of detection was 0.05 mgkg-1.

  7. Speeding-up the computation of high-lift aerodynamics using a residual-based reduced-order model

    DEFF Research Database (Denmark)

    Mifsud, M.; Zimmermann, R.; Goertz, Stefan

    2014-01-01

    In this article, we propose a strategy for speeding-up the computation of the aerodynamics of industrial high-lift configurations using a residual-based reduced-order model (ROM). The ROM is based on the proper orthogonal decomposition (POD) of a set of solutions to the Navier–Stokes equations...... is augmented with the latest CFD computed flow solution. Using this strategy, a considerable reduction in the total number of iterations to reach the converged steady-state solution is achieved when compared with conventional computational techniques used in industry for a series of computations such as drag...... governing fluid flow at different parameter values, from which a set of orthogonal basis vectors is evaluated. By considering an initial set of few snapshots at different angles of attack, a ROM is constructed which is used to predict a solution at an angle of attack which is just outside the space spanned...

  8. Development and validation of a high-performance liquid chromatographic method for the determination of clomazone residues in surface water.

    Science.gov (United States)

    Zanella, R; Primel, E G; Gonçalves, F F; Martins, A F

    2000-12-29

    A method is described for the determination of clomazone residues in surface water by high-performance liquid chromatography with UV detection. The method involves solid-phase extraction with C18 extraction tubes. Clomazone was separated on a C18 column with a mobile phase of methanol-water (65:35, v/v) at pH 4.0 and a flow-rate of 1.0 ml/min. After optimization of the extraction and separation conditions, the method was validated. The method developed can be used for determination of clomazone in surface water, at the limit of 0.1 mcirog/l set by the European Union drinking water directive, with a 400-fold preconcentration.

  9. Bubble Coalescence Heat Transfer During Subcooled Nucleate Pool Boiling

    Institute of Scientific and Technical Information of China (English)

    Abdoulaye Coulibaly; LIN Xipeng; Bi Jingliang; David M Christopher

    2012-01-01

    Bubble coalescence during subcooled nucleate pool boiling was investigated experimentally using constant wall temperature boundary conditions while the wall heat flux was measured at a various locations to understand the effects of coalescence on the heat transfer. The observations showed that the coalesced bubble moved and oscillated on the heater surface with significant heat transfer variations prior to departure. Some observations also showed coalescence with no increase in the heat transfer rate. The heat flux for boiling with coalescence fluctuated much more than for single bubble boiling due to the vaporization of the liquid layer trapped between the bubbles.

  10. Boiling Heat Transfer on Porous Surfaces with Vapor Channels

    Institute of Scientific and Technical Information of China (English)

    吴伟; 杜建华; 王补宣

    2002-01-01

    Boiling heat transfer on porous coated surfaces with vapor channels was investigated experimentally to determine the effects of the size and density of the vapor channels on the boiling heat transfer. Observations showed that bubbles escaping from the channels enhanced the heat transfer. Three regimes were identified: liquid flooding, bubbles in the channel and the bottom drying out region. The maximum heat transfer occurred for an optimum vapor channel density and the boiling heat transfer performance was increased if the channels were open to the bottom of the porous coating.

  11. Modeling of Heat Exchange with Developed Nucleate Boiling on Tenons

    Directory of Open Access Journals (Sweden)

    A. V. Оvsiannik

    2007-01-01

    Full Text Available The paper proposes a thermal and physical model for heat exchange processes with developed nucleate boiling on the developed surfaces (tenons with various contours of heat transfer surface. Dependences for calculating convective heat exchange factor have been obtained on the basis of modeling representation. Investigations have shown that an intensity of convective heat exchange does not depend on tenon profile when boiling takes place on the tenons. The intensity is determined by operating conditions, thermal and physical properties of liquid, internal characteristics of boiling processes and geometrical characteristics of a tenon.

  12. High-resolution phylogenetic analysis of residual bacterial species of fouled membranes after NaOCl cleaning.

    Science.gov (United States)

    Navarro, Ronald R; Hori, Tomoyuki; Inaba, Tomohiro; Matsuo, Kazuyuki; Habe, Hiroshi; Ogata, Atsushi

    2016-05-01

    Biofouling is one of the major problems during wastewater treatment using membrane bioreactors (MBRs). In this regard, sodium hypochlorite (NaOCl) has been widely used to wash fouled membranes for maintenance and recovery purposes. Advanced chemical and biological characterization was conducted in this work to evaluate the performance of aqueous NaOCl solutions during washing of polyacrylonitrile membranes. Fouled membranes from MBR operations supplemented with artificial wastewater were washed with 0.1% and 0.5% aqueous NaOCl solutions for 5, 10 and 30 min. The changes in organics composition on the membrane surface were directly monitored by an attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectrometer. In addition, high-throughput Illumina sequencing of 16S rRNA genes was applied to detect any residual microorganisms. Results from ATR-FT-IR analysis indicated the complete disappearance of functional groups representing different fouling compounds after at least 30 min of treatment with 0.1% NaOCl. However, the biomolecular survey revealed the presence of residual bacteria even after 30 min of treatment with 0.5% NaOCl solution. Evaluation of microbial diversity of treated samples using Chao1, Shannon and Simpson reciprocal indices showed an increase in evenness while no significant decline in richness was observed. These implied that only the population of dominant species was mainly affected. The high-resolution phylogenetic analysis revealed the presence of numerous operational taxonomic units (OTUs) whose close relatives exhibit halotolerance. Some OTUs related to thermophilic and acid-resistant strains were also identified. Finally, the taxonomic analysis of recycled membranes that were previously washed with NaOCl also showed the presence of numerous halotolerant-related OTUs in the early stage of fouling. This further suggested the possible contribution of such chemical tolerance on their survival against NaOCl washing, which in turn

  13. High residue levels and the chemical form of mercury in tissues and organs of seabirds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.Y.; Murakami, Toru; Saeki, Kazutoshi; Tatsukawa, Ryo [Ehime Univ. (Japan). Dept. of Environment Conservation

    1995-12-31

    Total and organic (methyl) mercury in liver, muscle, kidney and feather of 9 species of seabirds were analyzed to determine the levels and their distribution and to clarify the occurrences of high mercury levels and their detoxification process in seabirds. Total mercury levels in liver showed great variations in intra and interspecies, while organic mercury levels were less variable. As compared with species in relatively low mercury levels, the species which accumulated the high concentration of mercury like black-footed albatross exhibited the different distribution of mercury in the body: in total mercury burden, albatross species contained less than 10% in feather and over 50% in liver, while other species contained over 40% in feather and less than 20% in liver. The order of organic mercury concentrations in tissues were as follows: liver > kidney > muscle in seabirds examined, except oldsquaw. The mean percentage of organic mercury in total was 35%, 66%, and 36% in liver, muscle and kidney, respectively, for all the species. The significant negative correlations were found between organic mercury percentage to total mercury and total mercury concentrations in the liver and muscle of black-footed albatross and in the liver of laysan albatross. Furthermore, in liver, muscle, and kidney of all the species, the percentages of organic mercury had a negative trend with an increase of total mercury concentrations. The results suggest that albatross species may be capable for demethylating organic mercury in the tissues (mainly in liver), and for storing the mercury as immobilizable inorganic form in the liver as substitution for delivering organic mercury to other organs. It is noteworthy that the species with high degree of demethylation showed the lower mercury burdens in feather and slow moulting pattern.

  14. Effects of High Salt Concentration and Residue on Copper and Aluminum Corrosion

    Institute of Scientific and Technical Information of China (English)

    HUO Ying; TAN Mike; Yong jun; SHU Li

    2013-01-01

    Traditional researches on metal corrosion under salt solutions deposit conditions are usually carried out by visual,electron microscopic observations and simple electrochemical measurement via a traditional one-piece electrode.These techniques have difficulties in measuring localized corrosion that frequently occur in inhomogeneous media.This paper reports the results from the experiments using specially shaped coupons and a relatively new method of measuring heterogeneous electrochemical processes,namely,the wire beam electrode(WBE).Preliminary results from copper and aluminum corrosion in highly concentrated sodium chloride solutions with and without solid deposits show that the method is useful in simulating and studying corrosion especially localized corrosion in pipelines.

  15. Models and Stability Analysis of Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    John Dorning

    2002-04-15

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is

  16. Genotoxicity studies in the ST cross of the Drosophila wing spot test of sunflower and soybean oils before and after frying and boiling procedures.

    Science.gov (United States)

    Demir, Eşref; Marcos, Ricard; Kaya, Bülent

    2012-10-01

    Sunflower and soybean oils were tested for genotoxicity in the Drosophila wing somatic mutation and recombination assay. Results indicate that both oils produce genotoxic effects when tested without any previous frying or boiling processes. Boiling sunflower oil during fifteen, thirty and sixty minutes significantly increased its genotoxic response; nevertheless, after frying potatoes this oil showed a significant decrease in the genotoxic activity. On the other hand, boiling and frying soybean oil in the same conditions results in a decrease of its genotoxic potential. We have also detected that the amount of total polar materials increases significantly in oils submitted to frying or boiling process. Nevertheless, in oils obtained after frying potatoes, the amount of TPM was higher than after boiling. It is suggested that this effect is probably due to the amount of non-volatile TPM, the fatty acid composition of the oils, the types of frying oil, the high frying temperature and time, and the number of boiling and frying. This is the first study reporting genotoxicity data in Drosophila for the boiling and frying of both sunflower and soybean oils. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Residual stress in a M3:2 PM high speed steel; effect of mechanical loading

    DEFF Research Database (Denmark)

    Højerslev, Christian; Odén, Magnus; Carstensen, Jesper V.

    2001-01-01

    X-ray lattice strains were investigated in an AISI M3:2 PM high-speed steel in the as heat treated condition and after exposure to alternating mechanical load. The volume changes during heat treatment were monitored with dilatometry. Hardened and tempered AISI M3:2 steel consists of tempered lath...... martensite and the carbides M6C,V8C7 and M23C6. In the as heat treated condition the stress state is triaxial. The primary carbides M6C and V8C7 experience a compressive state of stress. Exposure to an alternating mechanical load, changes the states of stress of V8C7 and tempered martensite, but does...... not appear to change the state of stress in M6C....

  18. Residuation theory

    CERN Document Server

    Blyth, T S; Sneddon, I N; Stark, M

    1972-01-01

    Residuation Theory aims to contribute to literature in the field of ordered algebraic structures, especially on the subject of residual mappings. The book is divided into three chapters. Chapter 1 focuses on ordered sets; directed sets; semilattices; lattices; and complete lattices. Chapter 2 tackles Baer rings; Baer semigroups; Foulis semigroups; residual mappings; the notion of involution; and Boolean algebras. Chapter 3 covers residuated groupoids and semigroups; group homomorphic and isotone homomorphic Boolean images of ordered semigroups; Dubreil-Jacotin and Brouwer semigroups; and loli

  19. Unexpected high decomposition of legume residues in dry season soils from tropical coffee plantations and crop lands

    OpenAIRE

    Abera, Girma; Wolde-Meskel, Endalkachew; Bakken, Lars

    2014-01-01

    International audience; Crop residues are essential fertilizer source of low-input farming systems in Sub-Saharan Africa. However, crop residues provide nutrients only if they decompose in the soil. Decomposition is assumed to be very low during the dry season due to the scarcity of water, but there are few quantitative knowledge on decomposition under such conditions. Therefore, we studied the decomposition of legume residues, haricot bean (Phaseolus vulgaris L.), and pigeon pea (Cajanus caj...

  20. Residual feed intake of lactating Holstein-Friesian cows predicted from high-density genotypes and phenotyping of growing heifers.

    Science.gov (United States)

    Davis, S R; Macdonald, K A; Waghorn, G C; Spelman, R J

    2014-03-01

    A genomic prediction for residual feed intake (RFI) developed in growing dairy heifers (RFIgro) was used to predict and test breeding values for RFI in lactating cows (RFIlac) from an independent, industry population. A selection of 3,359 cows, in their third or fourth lactation during the study, of above average genetic merit for milk production, and identified as at least 15/16ths Holstein-Friesian breed, were selected for genotyping from commercial dairy herds. Genotyping was carried out using the bovine SNP50 BeadChip (Illumina Inc., San Diego, CA) on DNA extracted from ear-punch tissue. After quality control criteria were applied, genotypes were imputed to the 624,930 single nucleotide polymorphisms used in the growth study. Using these data, genomically estimated breeding values (GEBV) for RFIgro were calculated in the selected cow population based on a genomic prediction for RFIgro estimated in an independent group of growing heifers. Cows were ranked by GEBV and the top and bottom 310 identified for possible purchase. Purchased cows (n=214) were relocated to research facilities and intake and body weight (BW) measurements were undertaken in 99 "high" and 98 "low" RFIgro animals in 4 consecutive groups [beginning at d 61 ± 1.0 standard error (SE), 91 ± 0.5 SE, 145 ± 1.3 SE, and 191 ± 1.5 SE d in milk, respectively] to measure RFI during lactation (RFIlac). Each group of ~50 cows (~25 high and ~25 low RFIgro) was in a feed intake facility for 35 d, fed pasture-alfalfa cubes ad libitum, milked twice daily, and weighed every 2 to 3 d. Milk composition was determined 3 times weekly. Body weight change and BW at trial mid-point were estimated by regression of pre- and posttrial BW measurements. Residual feed intake in lactating cows was estimated from a linear model including BW, BW change, and milk component yield (as MJ/d); RFIlac differed consistently between the high and low selection classes, with the overall means for RFIlac being +0.32 and -0.31 kg of

  1. An Analytical Approach for Relating Boiling Points of Monofunctional Organic Compounds to Intermolecular Forces

    Science.gov (United States)

    Struyf, Jef

    2011-01-01

    The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…

  2. 40 CFR 180.1056 - Boiled linseed oil; exemption from requirement of tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boiled linseed oil; exemption from... From Tolerances § 180.1056 Boiled linseed oil; exemption from requirement of tolerance. Boiled linseed... “boiled linseed oil.” This exemption is limited to use on rice before edible parts form. ...

  3. An Analytical Approach for Relating Boiling Points of Monofunctional Organic Compounds to Intermolecular Forces

    Science.gov (United States)

    Struyf, Jef

    2011-01-01

    The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…

  4. Zero Boil Off System for Cryogen Storage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to develop a zero boil off (ZBO) dewar using a two-stage pulse-tube cooler together with two innovative, continuous-flow cooling loops and an...

  5. Boiling local heat transfer enhancement in minichannels using nanofluids.

    Science.gov (United States)

    Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

    2013-03-18

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

  6. Boiling of HFE-7100 on a Straight Pin Fin

    Institute of Scientific and Technical Information of China (English)

    Z. W. Liu; W.W. Lin; D.J. Lee; J.P. Hsu

    2001-01-01

    This paper deals with an experimental investigation of pin fin boiling of saturated and subcooled HFE-7100 under atmospheric pressure. Fin base temperature and heat flux data are measured along with the fin tip temperature. The basic features of boiling stability of HFE-7100 boiling on pin fin had been reported for the first time. For a given liquid/heating surface combination there exist upper steady-state (USS) branch and lower steady-state (LSS)branch, and a large, unstable regime located in between. Zones with different stability characteristics are mapped according to boiling on fins with different aspect ratios. Liquid subcooling can largely enhance heat transfer performance. A longer fin can provide a safer operation.

  7. High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP receptor expression and function.

    Directory of Open Access Journals (Sweden)

    Anke Bill

    Full Text Available The human prostacyclin receptor (hIP receptor is a seven-transmembrane G protein-coupled receptor (GPCR that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs.

  8. High temperature transformations of waste printed circuit boards from computer monitor and CPU: Characterisation of residues and kinetic studies.

    Science.gov (United States)

    Rajagopal, Raghu Raman; Rajarao, Ravindra; Sahajwalla, Veena

    2016-11-01

    This paper investigates the high temperature transformation, specifically the kinetic behaviour of the waste printed circuit board (WPCB) derived from computer monitor (single-sided/SSWPCB) and computer processing boards - CPU (multi-layered/MLWPCB) using Thermo-Gravimetric Analyser (TGA) and Vertical Thermo-Gravimetric Analyser (VTGA) techniques under nitrogen atmosphere. Furthermore, the resulting WPCB residues were subjected to characterisation using X-ray Fluorescence spectrometry (XRF), Carbon Analyser, X-ray Photoelectron Spectrometer (XPS) and Scanning Electron Microscopy (SEM). In order to analyse the material degradation of WPCB, TGA from 40°C to 700°C at the rates of 10°C, 20°C and 30°C and VTGA at 700°C, 900°C and 1100°C were performed respectively. The data obtained was analysed on the basis of first order reaction kinetics. Through experiments it is observed that there exists a substantial difference between SSWPCB and MLWPCB in their decomposition levels, kinetic behaviour and structural properties. The calculated activation energy (EA) of SSWPCB is found to be lower than that of MLWPCB. Elemental analysis of SSWPCB determines to have high carbon content in contrast to MLWPCB and differences in materials properties have significant influence on kinetics, which is ceramic rich, proving to have differences in the physicochemical properties. These high temperature transformation studies and associated analytical investigations provide fundamental understanding of different WPCB and its major variations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Early detection of tumor relapse/regrowth by consecutive minimal residual disease monitoring in high-risk neuroblastoma patients

    Science.gov (United States)

    Hirase, Satoshi; Saitoh, Atsuro; Hartomo, Tri Budi; Kozaki, Aiko; Yanai, Tomoko; Hasegawa, Daiichiro; Kawasaki, Keiichiro; Kosaka, Yoshiyuki; Matsuo, Masafumi; Yamamoto, Nobuyuki; Mori, Takeshi; Hayakawa, Akira; Iijima, Kazumoto; Nishio, Hisahide; Nishimura, Noriyuki

    2016-01-01

    Neuroblastoma is an aggressive pediatric tumor accounting for ~15% of cancer-associated mortalities in children. Despite the current intensive therapy, >50% of high-risk patients experience tumor relapse or regrowth caused by the activation of minimal residual disease (MRD). Although several MRD detection protocols using various reverse transcription-quantitative polymerase chain reaction (RT-qPCR) markers have been reported to evaluate the therapeutic response and disease status of neuroblastoma patients, their clinical significance remains elusive. The present study reports two high-risk neuroblastoma patients, whose MRD was consecutively monitored using 11 RT-qPCR markers (CHRNA3, CRMP1, DBH, DCX, DDC, GABRB3, GAP43, ISL1, KIF1A, PHOX2B and TH) during their course of treatment. The two patients initially responded to the induction therapy and reached MRD-negative status. The patients' MRD subsequently became positive with no elevation of their urinary homovanillic acid, urinary vanillylmandelic acid and serum neuron-specific enolase levels at 13 or 19 weeks prior to the clinical diagnosis of tumor relapse or regrowth. The present cases highlight the possibility of consecutive MRD monitoring using 11 markers to enable an early detection of tumor relapse or regrowth in high-risk neuroblastoma patients. PMID:27446404

  10. Self-Sustaining Thorium Boiling Water Reactors

    Directory of Open Access Journals (Sweden)

    Ehud Greenspan

    2012-10-01

    Full Text Available A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar to the Reduced moderation Boiling Water Reactor (RBWR proposed by Hitachi to fit within an ABWR pressure vessel, with the following exceptions: use of thorium instead of depleted uranium for the fertile fuel; elimination of the internal blanket; and elimination of absorbers from the axial reflectors, while increasing the length of the fissile zone. The preliminary analysis indicates that it is feasible to design such cores to be fuel-self-sustaining and to have a comfortably low peak linear heat generation rate when operating at the nominal ABWR power level of nearly 4000 MWth. However, the void reactivity feedback tends to be too negative, making it difficult to have sufficient shutdown reactivity margin at cold zero power condition. An addition of a small amount of plutonium from LWR used nuclear fuel was found effective in reducing the magnitude of the negative void reactivity effect and enables attaining adequate shutdown reactivity margin; it also flattens the axial power distribution. The resulting design concept offers an efficient incineration of the LWR generated plutonium in addition to effective utilization of thorium. Additional R&D is required in order to arrive at a reliable practical and safe design.

  11. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles

    Directory of Open Access Journals (Sweden)

    Canan Bural

    2011-08-01

    Full Text Available OBJECTIVES: Residual methyl methacrylate (MMA may leach from the acrylic resin denture bases and have adverse effects on the oral mucosa. This in vitro study evaluated and correlated the effect of the leaching residual MMA concentrations ([MMA]r on in vitro cytotoxicity of L-929 fibroblasts. MATERIAL AND METHODS: A total of 144 heat-polymerized acrylic resin specimens were fabricated using 4 different polymerization cycles: (1 at 74ºC for 9 h, (2 at 74ºC for 9 h and terminal boiling (at 100ºC for 30 min, (3 at 74ºC for 9 h and terminal boiling for 3 h, (4 at 74ºC for 30 min and terminal boiling for 30 min. Specimens were eluted in a complete cell culture medium at 37ºC for 1, 2, 5 and 7 days. [MMA]r in eluates was measured using high-performance liquid chromatography. In vitro cytotoxicity of eluates on L-929 fibroblasts was evaluated by means of cell proliferation using a tetrazolium salt XTT (sodium 3´-[1-phenyl-aminocarbonyl-3,4-tetrazolium]bis(4-methoxy-6-nitrobenzenesulphonic acid assay. Differences in [MMA]r of eluates and cell proliferation values between polymerization cycles were statistically analyzed by Kruskal-Wallis, Friedman and Dunn's multiple comparison tests. The correlation between [MMA]r of eluates and cell proliferation was analyzed by Pearson's correlation test (p<0.05. RESULTS: [MMA]r was significantly (p<0.001 higher in eluates of specimens polymerized with cycle without terminal boiling after elution of 1 and 2 days. Cell proliferation values for all cycles were significantly (p<0.01 lower in eluates of 1 day than those of 2 days. The correlation between [MMA]r and cell proliferation values was negative after all elution periods, showing significance (p<0.05 for elution of 1 and 2 days. MMA continued to leach from acrylic resin throughout 7 days and leaching concentrations markedly reduced after elution of 1 and 2 days. CONCLUSION: Due to reduction of leaching residual MMA concentrations, use of terminal boiling in

  12. Residual Stress Development due to High-Frequency Post Weld Impact Treatments for High-Strength Steels

    NARCIS (Netherlands)

    Gao, H.

    2014-01-01

    Allseas Engineering bv is an engineering center of the Allseas group, a major player in the offshore pipe lay market and recently expanding the activities to the offshore heavy lift sector. Because of the necessity to design and build lifting structures and equipment of a tremendously high capacity,

  13. Experimental study of multi-scale heat transfer characteristics at pool boiling

    Science.gov (United States)

    Serdyukov, V.; Surtaev, A.

    2017-01-01

    This study presents the results of the experimental investigation of local and integral characteristics of heat transfer at liquid pool boiling. Saturated ethanol and water were used as the working fluids. Thin, resistively heated indium-tin oxide films deposited onto the sapphire substrates were used as the heaters. The synchronized measurements of the heater surface temperature field and dynamics of vapor bubbles were performed by high-speed infrared thermography with the frame rate of 1000 fps and resolution of up to 0.13 μm/px and high-speed video recording. In this paper new data on major local boiling characteristics, such as nucleation site density, dynamics of vapor bubbles, temporal characteristics and nucleation frequency at different heat fluxes and superheating and their comparison with correlations are presented.

  14. Correlations estimate volume distilled using gravity, boiling point

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, A.; Consuelo Perez de Alba, M. del; Manriquez, L.; Guardia Mendoz, P. de la [Inst. Mexicano del Petroleo, Mexico City (Mexico)

    1995-10-23

    Mathematical nd graphic correlations have been developed for estimating cumulative volume distilled as a function of crude API gravity and true boiling point (TBP). The correlations can be used for crudes with gravities of 21--34{degree} API and boiling points of 150--540 C. In distillation predictions for several mexican and Iraqi crude oils, the correlations have exhibited accuracy comparable to that of laboratory measurements. The paper discusses the need for such a correlation and the testing of the correlation.

  15. Taylor stability of viscous fluids with application to film boiling

    Science.gov (United States)

    Dhir, V. K.; Lienhard, J. H.

    1973-01-01

    The dispersion relation is evaluated numerically for Taylor waves in a viscous unstable interface with surface tension. The solution takes account of transverse curvature and the numerical evaluations apply to horizontal cylindrical, as well as to plane, interfaces. The result is verified with frequency and wavelength data obtained during film boiling on horizontal wires. A very general empirical correlation is given, en passant, for the vapor blanket thickness during film boiling.

  16. Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions

    Science.gov (United States)

    Chao, David F.; Hasan, Mohammad M.

    2000-01-01

    Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced

  17. Food processing as a means for pesticide residue dissipation

    Directory of Open Access Journals (Sweden)

    Đorđević Tijana

    2016-01-01

    Full Text Available Pesticides are one of the major inputs used for increasing agricultural productivity of crops. However, their inadequate application may produce large quantities of residues in the environment and, once the environment is contaminated with pesticides, they may easily enter into the human food chain through plants, creating a potentially serious health hazard. Nowadays, consumers are becoming more aware of the importance of safe and high quality food products. Thus it is pertinent to explore simple, cost-effective strategies for decontaminating food from pesticides. Various food processing techniques, at industrial and/or domestical level, have been found to significantly reduce the contents of pesticide residues in most food materials. The extent of reduction varies with the nature of pesticides, type of commodity and processing steps. Pesticides, especially those with limited movement and penetration ability, can be removed with reasonable efficiency by washing, and the effectiveness of washing depends on pesticide solubility in water or in different chemical solvents. Peeling of fruit and vegetable skin can dislodge pesticide residues to varying degrees, depending on constitution of a commodity, chemical nature of the pesticide and environmental conditions. Different heat treatments (drying, pasteurization, sterilization, blanching, steaming, boiling, cooking, frying or roasting during various food preparation and preservation processes can cause losses of pesticide residues through evaporation, co-distillation and/or thermal degradation. Product manufactures, from the simplest grain milling, through oil extraction and processing, juicing/pureeing or canning of fruits and vegetables, to complex bakery and dairy production, malting and brewing, wine making and various fermentation processes, play a role in the reduction of pesticide contents, whereby each operation involved during processing usually adds to a cumulative effect of reduction of

  18. Influence of Boiling Duration of GCSB-5 on Index Compound Content and Antioxidative and Anti-inflammatory Activity.

    Science.gov (United States)

    Lee, In-Hee; Chung, Hwa-Jin; Shin, Joon-Shik; Ha, In-Hyuk; Kim, Me-Riong; Koh, Wonil; Lee, Jinho

    2017-01-01

    GCSB-5, an herbal drug composition with an anti-inflammatory effect, is prepared by boiling, which is the most common herbal extraction method in traditional Korean medicine. Several parameters are involved in the process, i.e., extractant type, herb-to-extractant ratio, extraction temperature and pressure, and total boiling time. The aim of this study was to examine the influence of boiling time on index compound amount and the antioxidative and anti-inflammatory activities of GCSB-5. Different samples of GCSB-5 were obtained by decocting for 30, 60, 90, 120, 150, and 240 min. Each sample was tested for hydrogen ion concentration (pH), total soluble solid content (TSSC), marker compound profiles, and antioxidative and anti-inflammatory activity. pH was found to decrease while TSSC increased with extended decoction. Marker compound contents for GCSB-5 (acanthoside D for Acanthopanax sessiliflorus Seem, 20-hydroxyecdysone for Achyranthes japonica Nakai, and pinoresinol diglucoside for Eucommia ulmoides Oliver) remained relatively constant regardless of the length of boiling. Total D-glucose amount increased with longer boiling. The antioxidative and anti-inflammatory potentials of GCSB-5 were not substantially affected by decoction duration. Biological characteristics and marker compound content of GCSB-5 were not altered significantly in prolonged boiling. Longer boiling duration of GCSB-5 did not increase yield in a time-dependent manner, but yields of 210 and 240 min samples were significantly higherHydrogen ion concentration of GCSB-5 samples decreased while total soluble solid content and D-glucose concentration levels increased with boiling durationAlthough concentrations of some index compounds increased with extended boiling duration of GCSB-5, increase was small and not in a direct proportional relationshipAntioxidative and anti-inflammatory properties of GCSB-5 were not substantially affected by decoction duration. Abbreviations used: CAM: Complementary

  19. Infrared thermometry study of nanofluid pool boiling phenomena

    Directory of Open Access Journals (Sweden)

    Hu Lin-wen

    2011-01-01

    Full Text Available Abstract Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%. In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50% and an increase in the CHF (by as much as 100%. The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement.

  20. Infrared thermometry study of nanofluid pool boiling phenomena.

    Science.gov (United States)

    Gerardi, Craig; Buongiorno, Jacopo; Hu, Lin-Wen; McKrell, Thomas

    2011-03-16

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement.

  1. High titer and yield ethanol production from undetoxified whole slurry of Douglas-fir forest residue using pH profiling in SPORL.

    Science.gov (United States)

    Cheng, Jinlan; Leu, Shao-Yuan; Zhu, Jy; Gleisner, Rolland

    2015-01-01

    Forest residue is one of the most cost-effective feedstock for biofuel production. It has relatively high bulk density and can be harvested year round, advantageous for reducing transportation cost and eliminating onsite storage. However, forest residues, especially those from softwood species, are highly recalcitrant to biochemical conversion. A severe pretreatment for removing this recalcitrance can result in increased sugar degradation to inhibitors and hence cause difficulties in fermentation at high solid loadings. Here, we presented high titer ethanol production from Douglas-fir forest residue without detoxification. The strong recalcitrance of the Douglas-fir residue was removed by sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL). Sugar degradation to inhibitors was substantially reduced using a novel approach of "pH profiling" by delaying acid application in pretreatment, which facilitated the simultaneous enzymatic saccharification and fermentation of undetoxified whole slurry at a solid loading of 21%. "pH profiling" reduced furan production by approximately 70% in using SPORL pretreating Douglas-fir forest residue (FS-10) comparing with the control run while without sacrificing enzymatic saccharification of the resultant substrate. pH profiling also reduced carbohydrate degradation. The improved carbohydrate yield in pretreated solids and reduced fermentation inhibitors with pH profiling resulted in a terminal ethanol titer of 48.9 ± 1.4 g/L and yield of 297 ± 9 L/tonne FS-10, which are substantially higher, i.e., by 27% in titer and by 38% in yield, than those of a control SPORL run without pH profiling. Economical and large-volume production of commodity biofuels requires the utilization of feedstocks with low value (therefore low cost) and sustainably producible in large quantities, such as forest residues. However, most existing pretreatment technologies cannot remove the strong recalcitrance of forest

  2. WE-G-204-06: Grid-Line Artifact Minimization for High Resolution Detectors Using Iterative Residual Scatter Correction

    Energy Technology Data Exchange (ETDEWEB)

    Rana, R; Bednarek, D; Rudin, S [Toshiba Stroke & Vascular Research Center, University at Buffalo, Buffalo, NY (United States)

    2015-06-15

    Purpose: Anti-scatter grid-line artifacts are more prominent for high-resolution x-ray detectors since the fraction of a pixel blocked by the grid septa is large. Direct logarithmic subtraction of the artifact pattern is limited by residual scattered radiation and we investigate an iterative method for scatter correction. Methods: A stationary Smit-Rοntgen anti-scatter grid was used with a high resolution Dexela 1207 CMOS X-ray detector (75 µm pixel size) to image an artery block (Nuclear Associates, Model 76-705) placed within a uniform head equivalent phantom as the scattering source. The image of the phantom was divided by a flat-field image obtained without scatter but with the grid to eliminate grid-line artifacts. Constant scatter values were subtracted from the phantom image before dividing by the averaged flat-field-with-grid image. The standard deviation of pixel values for a fixed region of the resultant images with different subtracted scatter values provided a measure of the remaining grid-line artifacts. Results: A plot of the standard deviation of image pixel values versus the subtracted scatter value shows that the image structure noise reaches a minimum before going up again as the scatter value is increased. This minimum corresponds to a minimization of the grid-line artifacts as demonstrated in line profile plots obtained through each of the images perpendicular to the grid lines. Artifact-free images of the artery block were obtained with the optimal scatter value obtained by this iterative approach. Conclusion: Residual scatter subtraction can provide improved grid-line artifact elimination when using the flat-field with grid “subtraction” technique. The standard deviation of image pixel values can be used to determine the optimal scatter value to subtract to obtain a minimization of grid line artifacts with high resolution x-ray imaging detectors. This study was supported by NIH Grant R01EB002873 and an equipment grant from Toshiba

  3. Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: A pilot-scale evaluation

    Science.gov (United States)

    J.Y. Zhu; M. Subhosh Chandra; Feng Gu; Roland Gleisner; J.Y. Zhu; John Sessions; Gevan Marrs; Johnway Gao; Dwight Anderson

    2015-01-01

    This study demonstrated at the pilot-scale (50 kg) use of Douglas-fir forest harvest residue, an underutilized forest biomass, for the production of high titer and high yield bioethanol using sulfite chemistry without solid–liquor separation and detoxification. Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL) was directly applied to the...

  4. High-on-Aspirin Residual Platelet Reactivity Evaluated Using the Multiplate® Point-of-Care Device

    Directory of Open Access Journals (Sweden)

    Mărginean Alina

    2016-03-01

    Full Text Available Objective: The aim of this study was to evaluate the prevalence of aspirin non-responsiveness using whole blood multiple electrode aggregometry and to investigate the role of different clinical and laboratory variables associated with the lack of response. Methods: The present study included 116 aspirin treated patients presented with acute coronary syndromes or stroke. Response to aspirin was assessed by impedance aggregometry using arachidonic acid as agonist, in a final concentration of 0.5 mM (ASPI test. Results: In our data set 81% (n=94 were responders and 19% (n=22 non-responders showing high-on-aspirin platelet reactivity. Correlation analysis showed that the ward of admittance, low-density lipoproteins (LDL, concomitant antibiotic treatment, beta-adrenergic receptor blockers, history of myocardial infarction as well as PCI performed on Cardiology patients have different degrees of association with aspirin response. Conclusion: Concomitant treatment with beta-adrenergic receptor inhibitors, history of myocardial infarction and Cardiology ward admittance significantly increased the chance of responding to aspirin treatment whereas antibiotic therapy and low-density lipoproteins cholesterol seemed to increase the risk of high-on-aspirin residual platelet reactivity.

  5. Experiments of Pool Boiling Performance (Boiling Heat Transfer and Critical Heat Flux) on Designed Micro-Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seol Ha; Kang, Jun Young; Lee, Gi Chol; Kiyofumia, Moriyama; Kim, Moo Hwan; Park, Hyun Sun [POSTECH, Pohang (Korea, Republic of)

    2015-05-15

    In general, the evaluation of the boiling performance mainly focuses on two physical parameters: boiling heat transfer (BHT) and critical heat flux (CHF). In the nuclear power plants, both BHT and CHF contribute the nuclear system efficiency and safety, respectively. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on Pin-fin effect analysis. In terms of CHF, critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on the roughness ratio. The extended heat transfer area contributes the boiling heat transfer increase on the structured surface, and its quantitative analysis has been performed. In terms of CHF, the critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. We suggested a capillary limit to CHF delay for modeling capillary induced liquid inflow through microstructured surfaces. The critical size of the capillary limit on the prepared structured surface, determined by a model, could be reasonable explanation points for the experimental results (optimal size for CHF delay). The present experimental results also showed clearly the critical size (10 - 20 μm) for CHF delay, predicted by capillary limit analysis. This study provides fundamental insight into BHT and CHF enhancement of structured surfaces, and an optimal design guide for the required CHF and boiling heat-transfer performance. Finally, this study can contribute the basic understanding of the boiling on designed microstructure surface, and it also suggest the optimal micro scaled structured surface of boiling

  6. Neutralized wettability effect of superhydrophilic Cr-layered surface on pool boiling critical heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hong Hyun; Jeong, Ui Ju; Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The former method is deemed challenging due to longer development period and license issue. In this regard, FeCrAl, Cr, and SiC have been received positive attention as ATF coating materials because they are highly resistant to high temperature steam reaction causing massive hydrogen generation. In this study, Cr was selected as a target deposition material on the metal substrate because we found that Cr-layered surface becomes superhydrophilic, favorable to delaying the triggering of the critical heat flux (CHF). Thus in order to investigate the effect of Cr-layered superhydrophilic surfaces (under explored coating conditions) on pool boiling heat transfer, pool boiling experiment was conducted in the saturated deionized water under atmospheric pressure. As a physical vapor deposition (PVD) method, the DC magnetron sputtering technique was introduced to develop Cr-layered nanostructure. As a control variable of DC sputtering, substrate temperature was selected. Surface wettability and nanostructure were analyzed as major surface parameters on the CHF. We believe that highly dense micro/nano structure without nucleation cavities and inner pores neutralized the wettability effect on the CHF. Moreover, superhydrophilic surface with deficient cavity density rather hinders active nucleation. This emphasizes the importance of micro/nano structure surface for enhanced boiling heat transfer.

  7. Entropy generation analysis for film boiling: A simple model of quenching

    Science.gov (United States)

    Lotfi, Ali; Lakzian, Esmail

    2016-04-01

    In this paper, quenching in high-temperature materials processing is modeled as a superheated isothermal flat plate. In these phenomena, a liquid flows over the highly superheated surfaces for cooling. So the surface and the liquid are separated by the vapor layer that is formed because of the liquid which is in contact with the superheated surface. This is named forced film boiling. As an objective, the distribution of the entropy generation in the laminar forced film boiling is obtained by similarity solution for the first time in the quenching processes. The PDE governing differential equations of the laminar film boiling including continuity, momentum, and energy are reduced to ODE ones, and a dimensionless equation for entropy generation inside the liquid boundary and vapor layer is obtained. Then the ODEs are solved by applying the 4th-order Runge-Kutta method with a shooting procedure. Moreover, the Bejan number is used as a design criterion parameter for a qualitative study about the rate of cooling and the effects of plate speed are studied in the quenching processes. It is observed that for high speed of the plate the rate of cooling (heat transfer) is more.

  8. Deep desulfurization of full range and low boiling diesel streams from Kuwait Lower Fars heavy crude

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, A.; Al-Hindi, A.; Stanislaus, A. [Petroleum and Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research (Kuwait)

    2007-09-15

    Information on feed quality and, in particular, various types of sulfur compounds present in the diesel (gas oil) fractions produced form different crudes and their HDS reactivities under different operating conditions are of a great value for the optimization and economics of the deep HDS process. This paper deals with deep desulfurization of gas oils obtained from a new heavy Kuwaiti crude, namely, Lower Fars (LF) which will be processed in the future at Kuwaiti refineries. Comparative studies were carried out to examine the extent of deep HDS, and the quality of diesel product using two gas oil feeds with different boiling ranges. The results revealed that the full range diesel feed stream produced from the LF crude was very difficult to desulfurize due to its low quality caused by high aromatics content (low feed saturation) together with the presence of high concentrations of organic nitrogen compounds and sterically hindered alkyl DBTs. The low-boiling range gas oil showed better desulfurization compared with the full range gas oil, however, deep desulfurization to 50 ppm sulfur was not achieved even at a temperature as high as 380 C for both feeds. The desulfurized diesel product from the low-boiling gas-oil feed was better in quality with respect to the S, N and PNA contents and cetane index than the full-range gas-oil feed. (author)

  9. RUBI -a Reference mUltiscale Boiling Investigation for the Fluid Science Laboratory

    Science.gov (United States)

    Schweizer, Nils; Stelzer, Marco; Schoele-Schulz, Olaf; Picker, Gerold; Ranebo, Hans; Dettmann, Jan; Minster, Olivier; Toth, Balazs; Winter, Josef; Tadrist, Lounes; Stephan, Peter; Grassi, Walter; di Marco, Paolo; Colin, Catherine; Piero Celata, Gian; Thome, John; Kabov, Oleg

    Boiling is a two-phase heat transfer process where large heat fluxes can be transferred with small driving temperature differences. The high performance of boiling makes the process very interesting for heat transfer applications and it is widely used in industry for example in power plants, refrigeration systems, and electronics cooling. Nevertheless, due to the large number of involved phenomena and their often highly dynamic nature a fundamental understanding and closed theoretical description is not yet accomplished. The design of systems incorporating the process is generally based on empirical correlations, which are commonly accompanied by large uncertainties and, thus, has to be verified by expensive test campaigns. Hence, strong efforts are currently made to develop applicable numerical tools for a reliable prediction of the boiling heat transfer performance and limits. In order to support and validate this development and, in particular as a precondition, to enhance the basic knowledge about boiling the comprehensive multi-scale experiment RUBI (Reference mUlti-scale Boiling Investigation) for the Fluid Science Laboratory on board the ISS is currently in preparation. The scientific objectives and requirements of RUBI have been defined by the members of the ESA topical team "Boiling and Multiphase Flow" and addresses fundamental aspects of boiling phenomena. The main objectives are the measurement of wall temperature and heat flux distribution underneath vapour bubbles with high spatial and tem-poral resolution by means of IR thermography accompanied by the synchronized high-speed observation of the bubble shapes. Furthermore, the fluid temperature in the vicinity and inside of the bubbles will be measured by a micro sensor array. Additional stimuli are the generation of an electric field above the heating surface and a shear flow created by a forced convection loop. The objective of these stimuli is to impose forces on the bubbles and investigate the

  10. Protein metabolism, feed energy partitioning, behavior patterns and plasma cortisol in Nellore steers with high and low residual feed intake

    Directory of Open Access Journals (Sweden)

    Rodrigo da Costa Gomes

    2013-01-01

    Full Text Available The objective was to evaluate protein turnover, nitrogen balance, feed energy partitioning, behavior patterns and plasma cortisol in Nellore (B. indicus cattle with high and low residual feed intake (RFI = actual minus expected dry matter intake. Seventy-two Nellore steers (16 to 21 months-old, 334±19 kg initial body weight were fed a feedlot diet for 70 days ad libitum. Daily dry matter intake (DMI and average daily gain (ADG were recorded individually and RFI was calculated. The 12 steers of lowest (Low-RFI, most efficient RFI and the 12 ones of highest RFI (High-RFI, least efficient were evaluated with respect to their behavior patterns and plasma cortisol concentration. Urine was collected for determination of daily 3-methylhistidine excretion (3MH and myofibrillar protein breakdown rates. Urinary, gaseous and fecal energy losses were determined as well as the N retention and excretion. High-RFI steers tended to have shorter lying and idle periods and greater feeding time and plasma cortisol levels than low-RFI cattle. No RFI effects were seen for urine 3MH excretion and for rates of protein degradation and synthesis. No effects of efficiency class were observed for N excretion or N retention. No RFI effects were observed for dry matter digestibility, digestible energy (DE and metabolizable energy (ME content and DE/ME ratio. Methane energy losses were lower for low-compared with high-RFI steers. Protein turnover seems not to affect feed efficiency in Nellore steers. Improved RFI in Nellore steers is probably associated with lower degrees of activity and responsiveness to stress and lower losses of dietary energy as methane.

  11. Boiling Heat Transfer Mechanisms in Earth and Low Gravity: Boundary Condition and Heater Aspect Ratio Effects

    Science.gov (United States)

    Kim, Jungho

    2004-01-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. Recently, time and space resolved heat transfer data were obtained in both earth and low gravity environments using an array of microheaters varying in size between 100 microns to 700 microns. These heaters were operated in both constant temperature as well as constant heat flux mode. Heat transfer under nucleating bubbles in earth gravity were directly measured using a microheater array with 100 m resolution operated in constant temperature mode with low and high subcooled bulk liquid along with images from below and from the side. The individual bubble departure diameter and energy transfer were larger with low subcooling but the departure frequency increased at high subcooling, resulting in higher overall heat transfer. The bubble growth for both subcoolings was primarily due to energy transfer from the superheated liquid layer relatively little was due to wall heat transfer during the bubble growth process. Oscillating bubbles and sliding bubbles were also observed in highly subcooled boiling. Transient conduction and/or microconvection was the dominant heat transfer mechanism in the above cases. A transient conduction model was developed and compared with the experimental data with good agreement. Data was also obtained with the heater array operated in a constant heat flux mode and measuring the temperature distribution across

  12. Void fraction prediction in saturated flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Francisco J Collado [Dpto de Ingenieria Mecanica-Motores Termicos, CPS-B, Universidad de Zaragoza, Maria de Luna 50018-Zaragoza (Spain)

    2005-07-01

    Full text of publication follows: An essential element in thermal-hydraulics is the accurate prediction of the vapor void fraction, or fraction of the flow cross-sectional area occupied by steam. Recently, the author has suggested to calculate void fraction working exclusively with thermodynamic properties. It is well known that the usual 'flow' quality, merely a mass flow rate ratio, is not at all a thermodynamic property because its expression in function of thermodynamic properties includes the slip ratio, which is a parameter of the process not a function of state. By the other hand, in the classic and well known expression of the void fraction - in function of the true mass fraction of vapor (also called 'static' quality), and the vapor and liquid densities - does not appear the slip ratio. Of course, this would suggest a direct procedure for calculating the void fraction, provided we had an accurate value of the true mass fraction of vapor, clearly from the heat balance. However the classic heat balance is usually stated in function of the 'flow' quality, what sounds really contradictory because this parameter, as we have noted above, is not at all a thermodynamic property. Then we should check against real data the actual relationship between the thermodynamic properties and the applied heat. For saturated flow boiling just from the inlet of the heated tube, and not having into account the kinetic and potential terms, the uniform applied heat per unit mass of inlet water and per unit length (in short, specific linear heat) should be closely related to a (constant) slope of the mixture enthalpy. In this work, we have checked the relation between the specific linear heat and the thermodynamic enthalpy of the liquid-vapor mixture using the actual mass fraction. This true mass fraction is calculated using the accurate measurements of the outlet void fraction taken during the Cambridge project by Knights and Thom in the sixties for

  13. Observation of Boiling Structure and CHF Phenomena between Parallel Vertical Plates Submerged in a Pool

    Energy Technology Data Exchange (ETDEWEB)

    Chu, In-Cheol; Euh, Dong Jin; Song, Chul-Hwa [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The dynamic behavior of dry areas or phase distribution on the heating surface were observed by total reflection technique and DEPIcT. Instantaneous two-dimensional temperature distribution of a boiling surface was measured by infrared thermometry. These studies reported that the key physics of the CHF triggering mechanism was the dynamic behavior of the dry area under the massive bubble hovering on a surface and the appearance of a non-rewetting dry area. The gap between parallel vertical fuel plates ranges from 2 to 3 mm, typically for the research reactors. In addition, boiling in a confined narrow channel is encountered in high-performance heat exchangers and electronics component cooling. The CHF value for a vertical plate in a pool is strongly affected by the existence of the narrow confinement. However, the studies to identify the local boiling structure on a heating surface and CHF mechanism for this kind of geometry are quite lacking. In this study, CHF phenomena as well as global and local boiling structures near a heating surface were observed for a vertical narrow channel submerged in a pool, using total reflection and shadow graph visualization techniques. In-depth visualization studies were made to observe the global and local boiling structures, dynamic behavior of the dry area, and its rewetting process in a vertical narrow channel submerged in a pool of saturated Freon R-113. Based on this observation, new CHF mechanism was suggested for the present boiling configuration. The periodic feature of a slug flow prevailed above the heat flux of 77.2% CHF. The heating surface under the slug bubble was almost dry, but this large dry patch was effectively rewetted as the slug tail region rushed into the region covered by the slug bubble. The dry area fraction in the slug tail region increased gradually with an increase in the heat flux, and the rewetting efficiency of the slug tail region became deteriorated due to an enhancement of bubble nucleation

  14. Heat transfer mechanisms in microgravity flow boiling.

    Science.gov (United States)

    Ohta, Haruhiko

    2002-10-01

    The objective of this paper is to clarify the mechanisms of heat transfer and dryout phenomena in flow boiling under microgravity conditions. Liquid-vapor behavior in annular flow, encountered in the moderate quality region, has extreme significance for practical application in space. To clarify the gravity effect on the heat transfer observed for an upward flow in a tube, the research described here started from the measurement of pressure drop for binary gas-liquid mixture under various gravity conditions. The shear stress acting on the surface of the annular liquid film was correlated by an empirical method. Gravity effects on the heat transfer due to two-phase forced convection were investigated by the analysis of velocity and temperature profiles in the film. The results reproduce well the trends of heat transfer coefficients varying with the gravity level, quality, and mass velocity. Dryout phenomena in the moderate quality region were observed in detail by the introduction of a transparent heated tube. At heat fluxes just lower and higher than CHF value, a transition of the heat transfer coefficient was calculated from oscillating wall temperature, where a series of opposing heat transfer trends--the enhancement due to the quenching of dried areas or evaporation from thin liquid films and the deterioration due to the extension of dry patches--were observed between the passage of disturbance waves. The CHF condition that resulted from the insufficient decrease of wall temperature in the period of enhanced heat transfer was overcome by a temperature increase in the deterioration period. No clear effect of gravity on the mechanisms of dryout was observed within the range of experiments.

  15. Studying heat transfer enhancement for water boiling on a surface with micro- and nanorelief

    Science.gov (United States)

    Kuzma-Kichta, Yu. A.; Lavrikov, A. V.; Shustov, M. V.; Chursin, P. S.; Chistyakova, A. V.; Zvonarev, Yu. A.; Zhukov, V. M.; Vasil'eva, L. T.

    2014-03-01

    We present the results from a study of heat transfer enhancement for bulk water boiling at atmospheric pressure on a surface with micro- and nanorelief, including a relief formed from silicon carbide and aluminum oxide nanoparticles. Horizontally oriented steel tube 1.2 mm in diameter and copper plate 15 × 3 mm in size were selected as test sections. The process was recorded by means of a video camera, and the values of heat transfer, critical heat fluxes, and contact angles were measured. The use of surface with micro- and nanorelief makes it possible to obtain a significantly higher critical heat flux and boiling heat transfer coefficient owing to a change of surface wettability. The results of investigations can find use in compact heat exchangers, refrigerating plants, heat pipes, in the mirrors of high-capacity lasers, in the targets and resonators of charged particle accelerators and for external cooling of reactor vessels under emergency conditions.

  16. Zero Boil-Off System Design and Thermal Analysis of the Bimodal Thermal Nuclear Rocket

    Science.gov (United States)

    Christie, Robert J.; Plachta, David W.

    2006-01-01

    Mars exploration studies at NASA are evaluating vehicles that incorporate Bimodal Nuclear Thermal Rocket (BNTR) propulsion which use a high temperature nuclear fission reactor and hydrogen to produce thermal propulsion. The hydrogen propellant is to be stored in liquid state for periods up to 18 months. To prevent boil-off of the liquid hydrogen, a system of passive and active components are needed to prevent heat from entering the tanks and to remove any heat that does. This report describes the design of the system components used for the BNTR Crew Transfer Vehicle and the thermal analysis performed. The results show that Zero Boil-Off (ZBO) can be achieved with the electrical power allocated for the ZBO system.

  17. Bubble dynamics and heat transfer for pool boiling on hydrophilic, superhydrophobic and biphilic surfaces

    Science.gov (United States)

    Teodori, E.; Palma, T.; Valente, T.; Moita, A. S.; Moreira, A. L. N.

    2016-09-01

    This paper proposes a detailed analysis of bubble dynamics to describe pool boiling heat transfer in extreme wetting scenarios (superhydrophobic vs hydrophilic). A mechanistic approach, based on extensive post-processing allows quantifying the relative advantage of the superhydrophobic surfaces to endorse the onset of boiling at very low superheats (1-2K) vs their worse heat transfer performance associated to the swift formation of an insulating vapour film. Based on this analysis, a simple biphilic surface is created. The results suggest that for high heat fluxes, bubble dynamics is dominated by the emission of very small bubbles, which seems to affect the interaction mechanisms, precluding the emission of the large bubbles from the surface, thus compromising the good performance of the biphilic surfaces.

  18. Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, M. Q., E-mail: mqjiang@imech.ac.cn, E-mail: lhdai@lnm.imech.ac.cn [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Materials Physics, Westfälische Wilhelms-Universität Münster, Münster 48149 (Germany); Wei, Y. P. [Key Laboratory of Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wilde, G. [Institute of Materials Physics, Westfälische Wilhelms-Universität Münster, Münster 48149 (Germany); Dai, L. H., E-mail: mqjiang@imech.ac.cn, E-mail: lhdai@lnm.imech.ac.cn [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-01-12

    We report an explosive boiling in a Zr-based (Vitreloy 1) bulk metallic glass irradiated by a nanosecond pulse laser with a single shot. This critical phenomenon is accompanied by the ejection of high-temperature matter from the target and the formation of a liquid-gas spinodal pattern on the irradiated area. An analytical model reveals that the glassy target experiences the normal heating (melting) and significant superheating, eventually culminating in explosive boiling near the spinodal limit. Furthermore, the time lag of nucleation and the critical radius of vapor bubbles are theoretically predicted, which are in agreement with the experimental observations. This study provides the investigation on the instability of a metallic glass liquid near the thermodynamic critical temperature.

  19. Performance evaluation of the cavities on nucleate boiling at microscale level

    CERN Document Server

    Mu, Yu-Tong; Kang, Qinjun; Tao, Wen-Quan

    2015-01-01

    Nucleate boiling heat transfer (NBHT) from enhanced structures is an effective way to dissipate high heat flux. In the present study, the cavities behaviours for nucleation on roughened surface are numerically studied on the entire ebullition cycle based on a phase-change lattice Boltzmann method without introducing any artificial disturbances. The adopted model is firstly validated with the Laplace law and the two phase coexistence curve, and then applied to investigate the effects of cavity structure on NBHT. The bubble departure diameter, departure frequency and total boiling heat flux of an ebullition cycle are also explored. It is demonstrated that the cavity widths and the cavity grooves show significant influence on the features of NBHT. Cavity with circular groove in the present research shows the best performance for NBHT in terms of the averaged heat flux and bubble release frequency. When a specific cavity is combined with other different cavities on roughened surfaces its nucleation process on dif...

  20. [Determination of 18 pesticide residues in red wine by ultra high performance liquid chromatography-high resolution mass spectrometry with isotope dilution technique].

    Science.gov (United States)

    Chen, Dawei; Lü, Bing; Ding, Hao; Zou, Jianhong; Yang, Xin; Zhao, Yunfeng; Miao, Hong

    2014-05-01

    A method for the simultaneous determination of 18 pesticide residues in red wine was developed using ultra high performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) with isotope dilution technique. The red wine samples were extracted with acetonitrile, and the extracts were cleaned up with dispersive solid phase extraction (dSPE) using the mixture of N-propyl ethylene diamine (PSA) and C18 powder as sorbent. The extracted components were separated on a BEH C18 column by gradient elution. The qualitative and quantitative analyses were operated under full scan/data dependent MS/MS (ddms2) and targeted selective ion monitoring (tSIM) by high resolution mass spectrometry, respectively. Carbendazim-D4, chlorpyrifos-D10, imidacloprid-D4, methoxyfenozide-D9, pyrimethanil-D5 and tebuconazole-D6 were used as the internal standards to reduce the matrix effects. The response of each pesticide showed a good linearity in the range of 0.5-50 microg/kg with the correlation coefficient more than 0.999. The limits of detection and quantification for the 18 pesticides in the spiked blank red wine were 0.5 microg/kg and 1.0 microg/kg, respectively. The recovery results with spiked blank red wine samples at the levels of 1 to 40 microg/kg were satisfactory with average recoveries of 85.4% - 117.9% and the RSDs of 0.5%-6.1%. The method was applied for the determination of the red wine real samples from the market. Carbendazim, imidacloprid, pyrimethanil, tebuconazole and triadimenol were detected in the samples. The results show that the method is suitable for the rapid screening and quantitative analysis of pesticide residues in red wine.