WorldWideScience

Sample records for high blending octane

  1. High-Octane Mid-Level Ethanol Blend Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Caley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, Emily [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peterson, Steve [Lexidyne, LLC, Colorado Springs, CO (United States); Leiby, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez, Rocio Uria [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oladosu, Gbadebo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Maxwell L. [Colorado School of Mines, Golden, CO (United States)

    2015-12-01

    The United States government has been promoting increased use of biofuels, including ethanol from non-food feedstocks, through policies contained in the Energy Independence and Security Act of 2007. The objective is to enhance energy security, reduce greenhouse gas (GHG) emissions, and provide economic benefits. However, the United States has reached the ethanol blend wall, where more ethanol is produced domestically than can be blended into standard gasoline. Nearly all ethanol is blended at 10 volume percent (vol%) in gasoline. At the same time, the introduction of more stringent standards for fuel economy and GHG tailpipe emissions is driving research to increase the efficiency of spark ignition (SI) engines. Advanced strategies for increasing SI engine efficiency are enabled by higher octane number (more highly knock-resistant) fuels. Ethanol has a research octane number (RON) of 109, compared to typical U.S. regular gasoline at 91-93. Accordingly, high RON ethanol blends containing 20 vol% to 40 vol% ethanol are being extensively studied as fuels that enable design of more efficient engines. These blends are referred to as high-octane fuel (HOF) in this report. HOF could enable dramatic growth in the U.S. ethanol industry, with consequent energy security and GHG emission benefits, while also supporting introduction of more efficient vehicles. HOF could provide the additional ethanol demand necessary for more widespread deployment of cellulosic ethanol. However, the potential of HOF can be realized only if it is adopted by the motor fuel marketplace. This study assesses the feasibility, economics, and logistics of this adoption by the four required participants--drivers, vehicle manufacturers, fuel retailers, and fuel producers. It first assesses the benefits that could motivate these participants to adopt HOF. Then it focuses on the drawbacks and barriers that these participants could face when adopting HOF and proposes strategies--including incentives and

  2. Catalysts for producing high octane-blending value olefins for gasoline

    NARCIS (Netherlands)

    Golombok, M.; Bruijn, de J.N.H.

    2001-01-01

    New restrictions on gasoline components mean that oxygenates and aromatics must be replaced by other high octane components. The dimerization of linear butene to form high octane gasoline blending components is evaluated under liquid phase reaction conditions over a number of different heterogeneous

  3. Summary of High-Octane Mid-Level Ethanol Blends Study

    Energy Technology Data Exchange (ETDEWEB)

    Theiss, Timothy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Alleman, Teresa [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Fioroni, Gina [National Renewable Energy Lab. (NREL), Golden, CO (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Huff, Shean P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Caley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kass, Michael D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Leiby, Paul Newsome [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez, Rocio Uria [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McCormick, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moriarty, Kristi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, Emily [National Renewable Energy Lab. (NREL), Golden, CO (United States); Oladosu, Gbadebo A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Szybist, James P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thomas, John F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); West, Brian H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    Original equipment manufacturers (OEMs) of light-duty vehicles are pursuing a broad portfolio of technologies to reduce CO2 emissions and improve fuel economy. Central to this effort is higher efficiency spark ignition (SI) engines, including technologies reliant on higher compression ratios and fuels with improved anti-knock properties, such as gasoline with significantly increased octane numbers. Ethanol has an inherently high octane number and would be an ideal octane booster for lower-octane petroleum blendstocks. In fact, recently published data from Department of Energy (DOE) national laboratories (Splitter and Szybist, 2014a, 2014b; Szybist, 2010; Szybist and West, 2013) and OEMs (Anderson, 2013) and discussions with the U.S. Environmental Protection Agency (EPA) suggest the potential of a new high octane fuel (HOF) with 25–40 vol % of ethanol to assist in reaching Renewable Fuel Standard (RFS2) and greenhouse gas (GHG) emissions goals. This mid-level ethanol content fuel, with a research octane number (RON) of about 100, appears to enable efficiency improvements in a suitably calibrated and designed engine/vehicle system that are sufficient to offset its lower energy density (Jung, 2013; Thomas, et al, 2015). This efficiency improvement would offset the tank mileage (range) loss typically seen for ethanol blends in conventional gasoline and flexible-fuel vehicles (FFVs). The prospects for such a fuel are additionally attractive because it can be used legally in over 18 million FFVs currently on the road. Thus the legacy FFV fleet can serve as a bridge by providing a market for the new fuel immediately, so that future vehicles will have improved efficiency as the new fuel becomes widespread. In this way, HOF can simultaneously help improve fuel economy while expanding the ethanol market in the United States via a growing market for an ethanol blend higher than E10. The DOE Bioenergy Technologies Office initiated a collaborative research program

  4. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Brian H [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Huff, Shean P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance

  5. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for both the 2015 SOT (Hartley et al., 2015; ANL, 2016; DOE, 2016) and the 2017 design case for feedstock logistics (INL, 2014) and for both the 2015 SOT (Tan et al., 2015a) and the 2022 target case for HOG production via IDL (Tan et al., 2015b). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. In the SCSA, the 2015 SOT case for the conversion process, as modeled in Tan et al. (2015b), uses the 2015 SOT feedstock blend of pulpwood, wood residue, and construction and demolition waste (C&D). Moreover, the 2022 design case for the conversion process, as described in Tan et al. (2015a), uses the 2017 design case blend of pulpwood, wood residue, switchgrass, and C&D. The performance characteristics of this blend are consistent with those of a single woody feedstock (e.g., pine or poplar). We also examined the influence of using a single feedstock type on SCSA results for the design case. These single feedstock scenarios could be viewed as bounding SCSA results given that the different components of the feedstock blend have varying energy and material demands for production and logistics.

  6. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  7. Ignition studies of n-heptane/iso-octane/toluene blends

    KAUST Repository

    Javed, Tamour

    2016-07-09

    Ignition delay times of four ternary blends of n-heptane/iso-octane/toluene, referred to as Toluene Primary Reference Fuels (TPRFs), have been measured in a high-pressure shock tube and in a rapid compression machine. The TPRFs were formulated to match the research octane number (RON) and motor octane number (MON) of two high-octane gasolines and two prospective low-octane naphtha fuels. The experiments were carried out over a wide range of temperatures (650–1250 K), at pressures of 10, 20 and 40 bar, and at equivalence ratios of 0.5 and 1.0. It was observed that the ignition delay times of these TPRFs exhibit negligible octane dependence at high temperatures (T > 1000 K), weak octane dependence at low temperatures (T < 700 K), and strong octane dependence in the negative temperature coefficient (NTC) regime. A detailed chemical kinetic model was used to simulate and interpret the measured data. It was shown that the kinetic model requires general improvements to better predict low-temperature conditions and particularly requires improvements for high sensitivity (high toluene concentration) TPRF blends. These datasets will serve as important benchmark for future gasoline surrogate mechanism development and validation. © 2016 The Combustion Institute

  8. Blending Octane Number of Toluene with Gasoline-like and PRF Fuels in HCCI Combustion Mode

    KAUST Repository

    Waqas, Muhammad Umer

    2018-04-03

    Future internal combustion engines demand higher efficiency but progression towards this is limited by the phenomenon called knock. A possible solution for reaching high efficiency is Octane-on-Demand (OoD), which allows to customize the antiknock quality of a fuel through blending of high-octane fuel with a low octane fuel. Previous studies on Octane-on-Demand highlighted efficiency benefits depending on the combination of low octane fuel with high octane booster. The author recently published works with ethanol and methanol as high-octane fuels. The results of this work showed that the composition and octane number of the low octane fuel is significant for the blending octane number of both ethanol and methanol. This work focuses on toluene as the high octane fuel (RON 120). Aromatics offers anti-knock quality and with high octane number than alcohols, this work will address if toluene can provide higher octane enhancement. Our aim is to investigate the impact of three gasoline-like fuels and two Primary Reference Fuels (PRFs). More specifically, fuels are FACE (Fuels for Advanced Combustion Engines) I, FACE J, FACE A, PRF 70 and PRF 84. A CFR engine was used to conduct the experiments in HCCI mode. For this combustion mode, the engine operated at four specific conditions based on RON and MON conditions. The octane numbers corresponding to four HCCI numbers were obtained for toluene concentration of 0, 2, 5, 10, 15 and 20%. Results show that the blending octane number of toluene varies non-linearly and linearly with the increase in toluene concentration depending on the base fuel, experimental conditions and the concentration of toluene. As a result, the blending octane number can range from close to 150 with a small fraction of toluene to a number closer to that of toluene, 120, with larger fractions.

  9. An Interview with Michael Horn: Blending Education for High-Octane Motivation

    Science.gov (United States)

    Patterson, Gregory A.

    2012-01-01

    Blended learning holds the potential of improving the way we educate students and of making them more motivated. Blended education--the melding of information technology based distance learning with school attendance--is perhaps the best way to educate students for 21st century skills, says Michael Horn in a "Kappan" interview. Horn points out…

  10. Kinetically based NMR method of measuring blending octane number of olefins

    NARCIS (Netherlands)

    Golombok, M.; Bruijn, J.; Morley, C.

    1995-01-01

    Olefins are highly nonlinear octane blenders so that standard GC analyses are poor predictors of blend quality. Engine rating is the only way of measuring olefin octane number nonlinearity. It is thus not possible to rapidly assess the quality of the product obtained from an olefin-producing

  11. Optimization of the octane response of gasoline/ethanol blends

    KAUST Repository

    Badra, Jihad

    2017-07-04

    The octane responses of gasoline/ethanol mixtures are not well understood because of the unidentified intermolecular interactions in such blends. In general, when ethanol is blended with gasoline, the Research Octane Number (RON) and the Motor Octane Number (MON) non-linearly increase or decrease, and the non-linearity is determined by the composition of the base gasoline and the amount of added ethanol. The complexity of commercial gasolines, comprising of hundreds of different components, makes it challenging to understand ethanol-gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates is critical to acquire knowledge about ethanol blending with complex multi-component gasoline fuels. In this study, the octane numbers (ON) of ethanol blends with five relevant gasoline surrogate molecules were measured. The molecules investigated in this study include: n-pentane, iso-pentane, 1,2,4-trimethylbenzene, cyclopentane and 1-hexene. These new measurements along with the available data of n-heptane, iso-octane, toluene, various primary reference fuels (PRF) and toluene primary reference fuels (TPRF) with ethanol are used to develop a blending rule for the octane response (RON and MON) of multi-component blends with ethanol. In addition, new ON data are collected for six Fuels for Advanced Combustion Engine (FACE) with ethanol. The relatively simple volume based model successfully predicts the octane numbers (ON) of the various ethanol/PRF and ethanol/TPRF blends with the majority of predictions being within the ASTM D2699 (RON) and D2700 (MON) reproducibility limits. The model is also successfully validated against the ON of the FACE gasolines blended with ethanol with the majority of predictions being within the reproducibility limits. Finally, insights into the possible causes of the synergistic and antagonistic effects of different molecules with ethanol are provided.

  12. Optimization of the octane response of gasoline/ethanol blends

    KAUST Repository

    Badra, Jihad; AlRamadan, Abdullah S.; Sarathy, Mani

    2017-01-01

    The octane responses of gasoline/ethanol mixtures are not well understood because of the unidentified intermolecular interactions in such blends. In general, when ethanol is blended with gasoline, the Research Octane Number (RON) and the Motor Octane Number (MON) non-linearly increase or decrease, and the non-linearity is determined by the composition of the base gasoline and the amount of added ethanol. The complexity of commercial gasolines, comprising of hundreds of different components, makes it challenging to understand ethanol-gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates is critical to acquire knowledge about ethanol blending with complex multi-component gasoline fuels. In this study, the octane numbers (ON) of ethanol blends with five relevant gasoline surrogate molecules were measured. The molecules investigated in this study include: n-pentane, iso-pentane, 1,2,4-trimethylbenzene, cyclopentane and 1-hexene. These new measurements along with the available data of n-heptane, iso-octane, toluene, various primary reference fuels (PRF) and toluene primary reference fuels (TPRF) with ethanol are used to develop a blending rule for the octane response (RON and MON) of multi-component blends with ethanol. In addition, new ON data are collected for six Fuels for Advanced Combustion Engine (FACE) with ethanol. The relatively simple volume based model successfully predicts the octane numbers (ON) of the various ethanol/PRF and ethanol/TPRF blends with the majority of predictions being within the ASTM D2699 (RON) and D2700 (MON) reproducibility limits. The model is also successfully validated against the ON of the FACE gasolines blended with ethanol with the majority of predictions being within the reproducibility limits. Finally, insights into the possible causes of the synergistic and antagonistic effects of different molecules with ethanol are provided.

  13. Well-to-Wheels Greenhouse Gas Emission Analysis of High-Octane Fuels with Ethanol Blending: Phase II Analysis with Refinery Investment Options

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; DiVita, Vincent [Jacobs Consultancy Inc., Houston, TX (United States)

    2016-08-01

    Higher-octane gasoline can enable increases in an internal combustion engine’s energy efficiency and a vehicle’s fuel economy by allowing an increase in the engine compression ratio and/or by enabling downspeeding and downsizing. Producing high-octane fuel (HOF) with the current level of ethanol blending (E10) could increase the energy and greenhouse gas (GHG) emissions intensity of the fuel product from refinery operations. Alternatively, increasing the ethanol blending level in final gasoline products could be a promising solution to HOF production because of the high octane rating and potentially low blended Reid vapor pressure (RVP) of ethanol at 25% and higher of the ethanol blending level by volume. In our previous HOF well-to-wheels (WTW) report (the so-called phase I report of the HOF WTW analysis), we conducted WTW analysis of HOF with different ethanol blending levels (i.e., E10, E25, and E40) and a range of vehicle efficiency gains with detailed petroleum refinery linear programming (LP) modeling by Jacobs Consultancy and showed that the overall WTW GHG emission changes associated with HOFVs were dominated by the positive impact associated with vehicle efficiency gains and ethanol blending levels, while the refining operations to produce gasoline blendstock for oxygenate blending (BOB) for various HOF blend levels had a much smaller impact on WTW GHG emissions (Han et al. 2015). The scope of the previous phase I study, however, was limited to evaluating PADDs 2 and 3 operation changes with various HOF market share scenarios and ethanol blending levels. Also, the study used three typical configuration models of refineries (cracking, light coking, and heavy coking) in each PADD, which may not be representative of the aggregate response of all refineries in each PADD to various ethanol blending levels and HOF market scenarios. Lastly, the phase I study assumed no new refinery expansion in the existing refineries, which limited E10 HOF production to the

  14. High Octane Fuel: Terminal Backgrounder

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, Kristi [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-11

    The Bioenergy Technologies Office of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy sponsored a scoping study to assess the potential of ethanol-based high octane fuel (HOF) to reduce energy consumption and greenhouse gas emissions. When the HOF blend is made with 25%-40% ethanol by volume, this energy efficiency improvement is potentially sufficient to offset the reduced vehicle range often associated with the decreased volumetric energy density of ethanol. The purpose of this study is to assess the ability of the fuel supply chain to accommodate more ethanol at fuel terminals. Fuel terminals are midstream in the transportation fuel supply chain and serve to store and distribute fuels to end users. While there are no technical issues to storing more ethanol at fuel terminals, there are several factors that could impact the ability to deploy more ethanol. The most significant of these issues include the availability of land to add more infrastructure and accommodate more truck traffic for ethanol deliveries as well as a lengthy permitting process to erect more tanks.

  15. Dimerisation of n-butenes for high octane gasoline components

    NARCIS (Netherlands)

    Golombok, M.; Bruijn, J.

    2000-01-01

    Dimerization of linear olefins represents an attractive route for the production of high octane number blending components. The oligomerization needs not only to be high conversion and to produce mainly dimers but also to be selective within the dimer range, as only certain isomers have advantageous

  16. Blending Octane Number of Ethanol in HCCI, SI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad

    2016-10-17

    The effect of ethanol blended with three FACE (Fuels for Advanced Combustion Engines) gasolines, I, J and A corresponding to RON 70.3, 71.8 and 83.5, respectively, were compared to PRF70 and PRF84 with the same ethanol concentrations, these being 2%, 5%, 10%, 15% and 20% by volume. A Cooperative Fuel Research (CFR) engine was used to understand the blending effect of ethanol with FACE gasolines and PRFs in spark-ignited and homogeneous charge compression ignited mode. Blending octane numbers (BON) were obtained for both the modes. All the fuels were also tested in an ignition quality tester to obtain Blending Derived Cetane numbers (BDCN). It is shown that fuel composition and octane number are important characteristics of all the base fuels that have a significant impact on octane increase with ethanol. The dependency of octane number for the base fuel on the blending octane number depended on the combustion mode operated. The aromatic composition in the base fuel, effects blending octane number of the mixture, for fuels with higher aromatic content lower blending octane numbers were observed for ethanol concentration.

  17. Blending Octane Number of Ethanol in HCCI, SI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Morganti, Kai; Al-Qurashi, Khalid; Johansson, Bengt

    2016-01-01

    The effect of ethanol blended with three FACE (Fuels for Advanced Combustion Engines) gasolines, I, J and A corresponding to RON 70.3, 71.8 and 83.5, respectively, were compared to PRF70 and PRF84 with the same ethanol concentrations, these being 2%, 5%, 10%, 15% and 20% by volume. A Cooperative Fuel Research (CFR) engine was used to understand the blending effect of ethanol with FACE gasolines and PRFs in spark-ignited and homogeneous charge compression ignited mode. Blending octane numbers (BON) were obtained for both the modes. All the fuels were also tested in an ignition quality tester to obtain Blending Derived Cetane numbers (BDCN). It is shown that fuel composition and octane number are important characteristics of all the base fuels that have a significant impact on octane increase with ethanol. The dependency of octane number for the base fuel on the blending octane number depended on the combustion mode operated. The aromatic composition in the base fuel, effects blending octane number of the mixture, for fuels with higher aromatic content lower blending octane numbers were observed for ethanol concentration.

  18. Performance and emissions of gasoline blended with terpineol as an octane booster

    KAUST Repository

    Vallinayagam, R.

    2016-11-10

    This study investigates the effect of using terpineol as an octane booster for gasoline fuel. Unlike ethanol, terpineol is a high energy density biofuel that is unlikely to result in increased volumetric fuel consumption when used in engines. In this study, terpineol is added to non-oxygenated FACE F gasoline (Research Octane Number = 94.5) in volumetric proportions of 10%, 20% and 30% and tested in a single cylinder spark ignited engine. The performance of terpineol blended fuels are compared against a standard oxygenated EURO V (ethanol blended) gasoline. It was determined that the addition of terpineol to FACE F gasoline enhanced the octane number of the blend, resulting in improved brake thermal efficiency and total fuel consumption. For FACE F + 30% terpineol, break thermal efficiency was improved by 12.1% over FACE F gasoline at full load for maximum brake torque operating point, and similar performance as EURO V gasoline was achieved. Due to its high energy density, total fuel consumption was reduced by 6.2% and 9.7% with 30% terpineol in the blend when compared to FACE F gasoline at low and full load conditions, respectively. Gaseous emissions such as total hydrocarbon and carbon monoxide emission were reduced by 36.8% and 22.7% for FACE F + 30% terpineol compared to FACE F gasoline at full load condition. On the other hand, nitrogen oxide and soot emissions are increased for terpineol blended FACE F gasoline when compared to FACE F and EURO V gasoline. © 2016 Elsevier Ltd

  19. Ignition delay measurements of light naphtha: A fully blended low octane fuel

    KAUST Repository

    Javed, Tamour; Nasir, Ehson Fawad; Ahmed, Ahfaz; Badra, Jihad; Djebbi, Khalil; Beshir, Mohamed; Ji, Weiqi; Sarathy, Mani; Farooq, Aamir

    2016-01-01

    . To the best of our knowledge, this is the first fundamental autoignition study on the reactivity of a low-octane fully blended fuel and the use of a suitably formulated multi-component surrogate to model its behavior.

  20. A blending rule for octane numbers of PRFs and TPRFs with ethanol

    KAUST Repository

    AlRamadan, Abdullah S.

    2016-04-12

    Ethanol is widely used as an octane booster in commercial gasoline fuels. Its oxygenated nature aids in reducing harmful emissions such as nitric oxides (NOx), soot and unburned hydrocarbons (HC). However, the non-linear octane response of ethanol blending with gasoline fuels is not completely understood because of the unknown intermolecular interactions in such blends. In general, when ethanol is blended with gasoline, the Research Octane Number (RON) and the Motor Octane Number (MON) non-linearly increase (synergistic) or decrease (antagonistic), and the non-linearity depends on the composition of the base gasoline. The complexity of commercial gasoline, comprising of hundreds of different components, makes it challenging to understand ethanol-gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates blends may enable a better understanding of ethanol blending with complex multi-component gasoline fuels. This study presents a blending rule to predict the octane numbers (ON) of ethanol/primary reference fuel (PRF; mixtures of iso-octane and n-heptane) and ethanol/toluene primary reference fuel (TPRF; mixtures of toluene, iso-octane and n-heptane) mixtures using the data available in literature and new data. The ON of ethanol blends with PRF-40, -50, and -60 were measured and compared with those from literature. Additional experimental data were collected to validate the developed model for ethanol blends of three different TPRFs having the same RON but different MON (i.e., different toluene contents). The three tested TPRF mixtures have octane ratings of RON 60.0/MON 58.0 (toluene 10.2 vol%), RON 60.0/MON 56.3 (toluene 19.8 vol%), and RON 60.0/MON 53.2 (toluene 40.2 vol%). The octane prediction model consists of linear and non-linear by mole regions. The transition point between the linear and non-linear regions is a function of the RON and MON of the base PRF and TPRF mixture. The non-linear by

  1. Ignition delay measurements of light naphtha: A fully blended low octane fuel

    KAUST Repository

    Javed, Tamour

    2016-06-15

    Light naphtha is a fully blended, low-octane (RON. = 64.5, MON. = 63.5), highly paraffinic (>. 90% paraffinic content) fuel, and is one of the first distillates obtained during the crude oil refining process. Light naphtha is an attractive low-cost fuel candidate for advanced low-temperature compression ignition engines where autoignition is the primary control mechanism. We measured ignition delay times for light naphtha in a shock tube and a rapid compression machine (RCM) over a broad range of temperatures (640-1250. K), pressures (20 and 40. bar) and equivalence ratios (0.5, 1 and 2). Ignition delay times were modeled using a two-component primary reference fuel (PRF) surrogate and a multi-component surrogate. Both surrogates adequately captured the measured ignition delay times of light naphtha under shock tube conditions. However, for low-temperature RCM conditions, simulations with the multi-component surrogate showed better agreement with experimental data. These simulated surrogate trends were confirmed by measuring the ignition delay times of the PRF and multi-component surrogates in the RCM at . P = 20. bar, . ϕ = 2. Detailed kinetic analyses were undertaken to ascertain the dependence of the surrogates\\' reactivity on their chemical composition. To the best of our knowledge, this is the first fundamental autoignition study on the reactivity of a low-octane fully blended fuel and the use of a suitably formulated multi-component surrogate to model its behavior.

  2. Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol

    KAUST Repository

    Singh, Eshan

    2017-03-28

    The blending of ethanol with primary reference fuel (PRF) mixtures comprising n-heptane and iso-octane is known to exhibit a non-linear octane response; however, the underlying chemistry and intermolecular interactions are poorly understood. Well-designed experiments and numerical simulations are required to understand these blending effects and the chemical kinetic phenomenon responsible for them. To this end, HCCI engine experiments were previously performed at four different conditions of intake temperature and engine speed for various PRF/ethanol mixtures. Transfer functions were developed in the HCCI engine to relate PRF mixture composition to autoignition tendency at various compression ratios. The HCCI blending octane number (BON) was determined for mixtures of 2-20 vol % ethanol with PRF70. In the present work, the experimental conditions were considered to perform zero-dimensional HCCI engine simulations with detailed chemical kinetics for ethanol/PRF blends. The simulations used the actual engine geometry and estimated intake valve closure conditions to replicate the experimentally measured start of combustion (SOC) for various PRF mixtures. The simulated HCCI heat release profiles were shown to reproduce the experimentally observed trends, specifically on the effectiveness of ethanol as a low temperature chemistry inhibitor at various concentrations. Detailed analysis of simulated heat release profiles and the evolution of important radical intermediates (e.g., OH and HO) were used to show the effect of ethanol blending on controlling reactivity. A strong coupling between the low temperature oxidation reactions of ethanol and those of n-heptane and iso-octane is shown to be responsible for the observed blending effects of ethanol/PRF mixtures.

  3. Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol

    KAUST Repository

    Singh, Eshan; Waqas, Muhammad; Johansson, Bengt; Sarathy, Mani

    2017-01-01

    The blending of ethanol with primary reference fuel (PRF) mixtures comprising n-heptane and iso-octane is known to exhibit a non-linear octane response; however, the underlying chemistry and intermolecular interactions are poorly understood. Well-designed experiments and numerical simulations are required to understand these blending effects and the chemical kinetic phenomenon responsible for them. To this end, HCCI engine experiments were previously performed at four different conditions of intake temperature and engine speed for various PRF/ethanol mixtures. Transfer functions were developed in the HCCI engine to relate PRF mixture composition to autoignition tendency at various compression ratios. The HCCI blending octane number (BON) was determined for mixtures of 2-20 vol % ethanol with PRF70. In the present work, the experimental conditions were considered to perform zero-dimensional HCCI engine simulations with detailed chemical kinetics for ethanol/PRF blends. The simulations used the actual engine geometry and estimated intake valve closure conditions to replicate the experimentally measured start of combustion (SOC) for various PRF mixtures. The simulated HCCI heat release profiles were shown to reproduce the experimentally observed trends, specifically on the effectiveness of ethanol as a low temperature chemistry inhibitor at various concentrations. Detailed analysis of simulated heat release profiles and the evolution of important radical intermediates (e.g., OH and HO) were used to show the effect of ethanol blending on controlling reactivity. A strong coupling between the low temperature oxidation reactions of ethanol and those of n-heptane and iso-octane is shown to be responsible for the observed blending effects of ethanol/PRF mixtures.

  4. Lignin conversion to high-octane fuel additives

    Energy Technology Data Exchange (ETDEWEB)

    Shabtai, J.; Zmierczak, W.; Kadangode, S. [University of Utah, Salt Lake City (United States); Chornet, E.; Johnson, D.K. [National Renewable Energy Laboratory, Golden, CO (United States)

    1999-07-01

    Continuing previous studies on the conversion of lignin to reformulated gasoline compositions, new lignin upgrading processes were developed that allow preferential production of specific high-octane fuel additives of two distinct types: (1) C{sub 7}-C{sub 10} alkylbenzenes; and (2) aryl methyl ethers, where aryl mostly = phenyl, 2-methylphenyl, 4-methylphenyl, and dimethylphenyl. Process (1) comprises base-catalyzed depolymerization (BCD) and simultaneous partial ({approx} 50%) deoxygenation of lignin at 270 - 290{sup o}C, in the presence of supercritical methanol as reaction medium, followed by exhaustive hydrodeoxygenation and attendant mild hydrocracking of the BCD product with sulfided catalysts to yield C{sub 8}-C{sub 10} alkylbenzenes as main products. Process (2) involves mild BCD at 250 - 270{sup o}C with preservation of the lignin oxygen, followed by selective C-C hydrocracking with solid superacid catalysts. This method preferentially yields a mixture of alkylated phenols, which upon acid-catalyzed etherification with methanol are converted into corresponding aryl methyl ethers (see above) possessing blending octane numbers in the range of 142-166. In a recent extension of this work, a greatly advantageous procedure for performing the BCD stage of processes (1) and (2) in water as reaction medium was developed. (author)

  5. Blending Octane Number of Toluene with Gasoline-like and PRF Fuels in HCCI Combustion Mode

    KAUST Repository

    Waqas, Muhammad Umer; Masurier, Jean-Baptiste; Sarathy, Mani; Johansson, Bengt

    2018-01-01

    Future internal combustion engines demand higher efficiency but progression towards this is limited by the phenomenon called knock. A possible solution for reaching high efficiency is Octane-on-Demand (OoD), which allows to customize the antiknock

  6. Well-to-Wheels Greenhouse Gas Emissions Analysis of High-Octane Fuels with Various Market Shares and Ethanol Blending Levels

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Divita, Vincent [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-07-14

    In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREET — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.

  7. Blending Octane Number of Ethanol on a Volume and Molar Basis in SI and HCCI Combustion Modes

    KAUST Repository

    Waqas, Muhammad Umer; Morganti, Kai; Masurier, Jean-Baptiste; Johansson, Bengt

    2017-01-01

    The blending behavior of ethanol in five different hydrocarbon base fuels with octane numbers of approximately 70 and 84 was examined under Spark-Ignited (SI) and Homogeneous Charge Compression Ignited (HCCI) operating conditions. The Blending octane number (BON) was used to characterize the blending behavior on both a volume and molar basis. Previous studies have shown that the blending behavior of ethanol generally follows several well-established rules. In particular, non-linear blending effects are generally observed on a volume basis (i.e. BON > RON or MON of pure ethanol; 108 and 89, respectively), while linear blending effects are generally observed on a molar basis (i.e. BON = RON or MON of pure ethanol). This work firstly demonstrates that the non-linear volumetric blending effects traditionally observed under SI operating conditions are also observed under HCCI operating conditions. In keeping with previous studies, the degree of this non-linearity is shown to be a function of the base fuel composition and octane number. By contrast, the molar blending approach is shown to behave differently depending on the chosen combustion mode, with some non-linearity observed under HCCI operating conditions (i.e. BON RON or MON of pure ethanol). This suggests that the well-established blending rules for SI operating conditions may not always be relevant to other combustion modes that operate with globally lean or diluted air-fuel mixtures. This has implications for the design of future fuel specifications.

  8. Blending Octane Number of Ethanol on a Volume and Molar Basis in SI and HCCI Combustion Modes

    KAUST Repository

    Waqas, Muhammad Umer

    2017-10-08

    The blending behavior of ethanol in five different hydrocarbon base fuels with octane numbers of approximately 70 and 84 was examined under Spark-Ignited (SI) and Homogeneous Charge Compression Ignited (HCCI) operating conditions. The Blending octane number (BON) was used to characterize the blending behavior on both a volume and molar basis. Previous studies have shown that the blending behavior of ethanol generally follows several well-established rules. In particular, non-linear blending effects are generally observed on a volume basis (i.e. BON > RON or MON of pure ethanol; 108 and 89, respectively), while linear blending effects are generally observed on a molar basis (i.e. BON = RON or MON of pure ethanol). This work firstly demonstrates that the non-linear volumetric blending effects traditionally observed under SI operating conditions are also observed under HCCI operating conditions. In keeping with previous studies, the degree of this non-linearity is shown to be a function of the base fuel composition and octane number. By contrast, the molar blending approach is shown to behave differently depending on the chosen combustion mode, with some non-linearity observed under HCCI operating conditions (i.e. BON RON or MON of pure ethanol). This suggests that the well-established blending rules for SI operating conditions may not always be relevant to other combustion modes that operate with globally lean or diluted air-fuel mixtures. This has implications for the design of future fuel specifications.

  9. An amateur chemist's high-octane idea

    International Nuclear Information System (INIS)

    Koch, G.

    1996-01-01

    The construction of a state-of-the-art facility near Fort Saskatchewan, Alberta, which will produce the gasoline additive methyl tertiary butyl ether (MTBE), was discussed. The additive is considered to be an effective, safe and economical product to enhance gasoline's octane. Although expensive, (US$0.95 per US gallon) it has significant environmental benefits. It is less toxic that other additives such as benzene, xylene and toluene. MTBE reduces gasoline evaporation from tailpipes, refuelling and tank venting in hot weather. The company BioClean Fuels Inc., has patented its own multiple oxygenate manufacturing process which combines the CO 2 from fermentation with the H 2 from butane to produce methanol, a key MTBE ingredient. The new facility will consume 250 million gallons of butane and 650,000 metric tonnes of barley annually to produce 19,000 barrels of MTBE per day, mostly for the California market. 1 fig

  10. Laminar Burning Velocities of Fuels for Advanced Combustion Engines (FACE) Gasoline and Gasoline Surrogates with and without Ethanol Blending Associated with Octane Rating

    KAUST Repository

    Mannaa, Ossama

    2016-05-04

    Laminar burning velocities of fuels for advanced combustion engines (FACE) C gasoline and of several blends of surrogate toluene reference fuels (TRFs) (n-heptane, iso-octane, and toluene mixtures) of the same research octane number are presented. Effects of ethanol addition on laminar flame speed of FACE-C and its surrogate are addressed. Measurements were conducted using a constant volume spherical combustion vessel in the constant pressure, stable flame regime at an initial temperature of 358 K and initial pressures up to 0.6 MPa with the equivalence ratios ranging from 0.8 to 1.6. Comparable values in the laminar burning velocities were measured for the FACE-C gasoline and the proposed surrogate fuel (17.60% n-heptane + 77.40% iso-octane + 5% toluene) over the range of experimental conditions. Sensitivity of flame propagation to total stretch rate effects and thermo-diffusive instability was quantified by determining Markstein length. Two percentages of an oxygenated fuel of ethanol as an additive, namely, 60 vol% and 85 vol% were investigated. The addition of ethanol to FACE-C and its surrogate TRF-1 (17.60% n-heptane + 77.40% iso-octane + 5% toluene) resulted in a relatively similar increase in the laminar burning velocities. The high-pressure measured values of Markstein length for the studied fuels blended with ethanol showed minimal influence of ethanol addition on the flame’s response to stretch rate and thermo-diffusive instability. © 2016 Taylor & Francis.

  11. Laminar Burning Velocities of Fuels for Advanced Combustion Engines (FACE) Gasoline and Gasoline Surrogates with and without Ethanol Blending Associated with Octane Rating

    KAUST Repository

    Mannaa, Ossama; Mansour, Morkous S.; Roberts, William L.; Chung, Suk-Ho

    2016-01-01

    Laminar burning velocities of fuels for advanced combustion engines (FACE) C gasoline and of several blends of surrogate toluene reference fuels (TRFs) (n-heptane, iso-octane, and toluene mixtures) of the same research octane number are presented. Effects of ethanol addition on laminar flame speed of FACE-C and its surrogate are addressed. Measurements were conducted using a constant volume spherical combustion vessel in the constant pressure, stable flame regime at an initial temperature of 358 K and initial pressures up to 0.6 MPa with the equivalence ratios ranging from 0.8 to 1.6. Comparable values in the laminar burning velocities were measured for the FACE-C gasoline and the proposed surrogate fuel (17.60% n-heptane + 77.40% iso-octane + 5% toluene) over the range of experimental conditions. Sensitivity of flame propagation to total stretch rate effects and thermo-diffusive instability was quantified by determining Markstein length. Two percentages of an oxygenated fuel of ethanol as an additive, namely, 60 vol% and 85 vol% were investigated. The addition of ethanol to FACE-C and its surrogate TRF-1 (17.60% n-heptane + 77.40% iso-octane + 5% toluene) resulted in a relatively similar increase in the laminar burning velocities. The high-pressure measured values of Markstein length for the studied fuels blended with ethanol showed minimal influence of ethanol addition on the flame’s response to stretch rate and thermo-diffusive instability. © 2016 Taylor & Francis.

  12. A blending rule for octane numbers of PRFs and TPRFs with ethanol

    KAUST Repository

    AlRamadan, Abdullah S.; Sarathy, Mani; Khurshid, Muneeb; Badra, Jihad

    2016-01-01

    -gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates blends may enable a better understanding of ethanol blending with complex multi-component gasoline fuels. This study presents a blending rule

  13. The development of isomerization catalysts for production of high-octane products

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, A.M. Garrido; Melo, D.M.A.; Araujo, A.S. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil). Dept. de Quimica; Souza, M.J.B.; Silva, A.O.S. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil). Dept. de Engenharia Quimica

    2004-07-01

    In current petroleum industry, paraffins larger than C5 are used for catalytic reform. The catalytic reform is one of the most important processes for petroleum refine in reason of all reactions they drive to production of high-octane products. Reformate has high-octane products, but they contain 60% aromatics. Isomerization of C5- C7 can improve the octane number. The octane number of n-heptane is zero and increases after isomerization. For tri branched C7, the octane number reaches 113, which is higher than that of benzene. So, isomerization of C5-C7 is suggested to be a reasonable way to replace or partly replace the catalytic reforming process. It can decrease aromatics content with enhancement of octane number. Liquid acid catalysts were widely used in chemical industry in past decades. However, they face strong environmental challenges. The heavy corrosion of the reactor system is one of the main problems. Thus, solid acid catalysts are investigated for the isomerization reactions. The aim of this work is to develop a catalysts for the production of reformate products. Isomerization is catalyzed by metal-acid bifunctional catalysts. The metal components aid in hydrogenation, while the support, such as, zirconium, clays or zeolites, is the acidic component. (author)

  14. Antiknock quality and ignition kinetics of 2-phenylethanol, a novel lignocellulosic octane booster

    KAUST Repository

    Shankar, Vijai; Alabbad, Mohammed; El-Rachidi, Mariam; Mohamed, Samah; Singh, Eshan; Wang, Zhandong; Farooq, Aamir; Sarathy, Mani

    2016-01-01

    High-octane quality fuels are important for increasing spark ignition engine efficiency, but their production comes at a substantial economic and environmental cost. The possibility of producing high anti-knock quality gasoline by blending high

  15. Technological processes for obtaining high octane benzene from methanol. Tekhnologicheskie protsessy polucheniya vysokooktanovogo benzina iz metanola

    Energy Technology Data Exchange (ETDEWEB)

    Kapustin, M A; Nefedov, B K

    1982-01-01

    The study is on one of the most promising processes for obtaining high octane components of motor fuel from methanol, with crude that has been made with a mixture of CO and H/sub 2/ gases, separated from coal, shale oil, natural and waste smoky gases, heavy oil sediments. The results of foreign scientific and technological studies over the last 5 years in synthesizing high octane benzene from methanol are systematized. Possible improvements over the next 10-15 years in these processes were examined.

  16. Conversion of straight-run gas-condensate benzenes into high- octane gasolines based on modified ZSM-5 zeolites

    International Nuclear Information System (INIS)

    Erofeev, V; Reschetilowski, V; Khomajakov, I; Egorova, L; Volgina, T; Tatarkina, A

    2014-01-01

    This paper describes the conversion of straight-run benzene of gas condensate into high-octane gasoline based on zeolite catalyst ZSM-5, modified in binary system oxide- based Sn (III) and Bi (III). It was defined that the introduction of the binary system oxide-based Sn(III) and Bi (III) into the basic zeolite results in the 2-fold increase of its catalytic activity.High-octane gasoline converted from straight-run benzene is characterized by a low benzol content in comparison to the high-octane benzenes produced during the catalytic reforming

  17. Performance and emissions of gasoline blended with terpineol as an octane booster

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; Roberts, William L.; Dibble, Robert W.; Sarathy, Mani

    2016-01-01

    . For FACE F + 30% terpineol, break thermal efficiency was improved by 12.1% over FACE F gasoline at full load for maximum brake torque operating point, and similar performance as EURO V gasoline was achieved. Due to its high energy density, total fuel

  18. 2-Methylfuran: A bio-derived octane booster for spark-ignition engines

    KAUST Repository

    Sarathy, Mani

    2018-04-02

    The efficiency of spark-ignition engines is limited by the phenomenon of knock, which is caused by auto-ignition of the fuel-air mixture ahead of the spark-initiated flame front. The resistance of a fuel to knock is quantified by its octane index; therefore, increasing the octane index of a spark-ignition engine fuel increases the efficiency of the respective engine. However, raising the octane index of gasoline increases the refining costs, as well as the energy consumption during production. The use of alternative fuels with synergistic blending effects presents an attractive option for improving octane index. In this work, the octane enhancing potential of 2-methylfuran (2-MF), a next-generation biofuel, has been examined and compared to other high-octane components (i.e., ethanol and toluene). A primary reference fuel with an octane index of 60 (PRF60) was chosen as the base fuel since it closely represents refinery naphtha streams, which are used as gasoline blend stocks. Initial screening of the fuels was done in an ignition quality tester (IQT). The PRF60/2-MF (80/20 v/v%) blend exhibited longer ignition delay times compared to PRF60/ethanol (80/20 v/v%) blend and PRF60/toluene (80/20 v/v%) blend, even though pure 2-MF is more reactive than both ethanol and toluene. The mixtures were also tested in a cooperative fuels research (CFR) engine under research octane number and motor octane number like conditions. The PRF60/2-MF blend again possesses a higher octane index than other blending components. A detailed chemical kinetic analysis was performed to understand the synergetic blending effect of 2-MF, using a well-validated PRF/2-MF kinetic model. Kinetic analysis revealed superior suppression of low-temperature chemistry with the addition of 2-MF. The results from simulations were further confirmed by homogeneous charge compression ignition engine experiments, which established its superior low-temperature heat release (LTHR) suppression compared to ethanol

  19. High octane gasoline components from catalytic cracking gasoline, propylene, and isobutane by disproportionation, clevage and alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Banks, R.

    1980-07-08

    A process is described for producing high octane value gasoline which comprises in a disproportionation zone subjecting propylene and a mixture of propylene and ethylene obtained as hereinafter delineated to disproportionation conditions to produce a stream containing ethylene and a stream containing butenes, passing the ethylene-containing stream from said disproportionation zone together with a catalytic cracking gasoline to a cleavage zone under disproportionation conditions and subjecting the mixture of hydrocarbons therin to cleavage to produce said mixture of propylene and ethylene, a C/sub 5//sup +/ gasoline-containing product and butenes and wherein the butenes obtained in the overall operation of the disproportionation zone and the cleavage zone are passed to an alkylation zone wherein said butenes are used to alkylate an isoparaffin to produce additional high octane value product.

  20. Production of high-octane, unleaded motor fuel by alkylation of isobutane with isoamylenes obtained by dehydrogenation of isopentane

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, T. Jr.; Hann, P.D.

    1981-01-31

    A process combination, with inter-cooperation, for producing high-octane alkylates comprising (a) dehydrogenating isopentane to isopentenes (amylenes), (b) introducing the mixture of said amylenes and unconverted isopentane into an HF alkylation unit for reaction with fresh or recycled isobutane, (c) separating the alkylation products into high octane alkylates, isopentane (for recycling to the dehydrogenation reactor) and isobutane (for recycling to the alkylation reactor).

  1. Relative Sustainability of Natural Gas Assisted High-Octane Gasoline Blendstock Production from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cai, Hao [Argonne National Laboratory

    2017-11-01

    Biomass-derived hydrocarbon fuel technologies are being developed and pursued for better economy, environment, and society benefits underpinning the sustainability of transportation energy. Increasing availability and affordability of natural gas (NG) in the US can play an important role in assisting renewable fuel technology development, primarily in terms of economic feasibility. When a biorefinery is co-processing NG with biomass, the current low cost of NG coupled with the higher NG carbon conversion efficiency potentially allow for cost competitiveness of the fuel while achieving a minimum GHG emission reduction of 50 percent or higher compared to petroleum fuel. This study evaluates the relative sustainability of the production of high-octane gasoline blendstock via indirect liquefaction (IDL) of biomass (and with NG co-feed) through methanol/dimethyl ether intermediates. The sustainability metrics considered in this study include minimum fuel selling price (MFSP), carbon conversion efficiency, life cycle GHG emissions, life cycle water consumption, fossil energy return on investment (EROI), GHG emission avoidance cost, and job creation. Co-processing NG can evidently improve the MFSP. Evaluation of the relative sustainability can shed light on the biomass-NG synergistic impacts and sustainability trade-offs associated with the IDL as high-octane gasoline blendstock production.

  2. Quantities of Interest in Jet Stirred Reactor Oxidation of a High-Octane Gasoline

    KAUST Repository

    Chen, Bingjie

    2017-03-28

    This work examines the oxidation of a well-characterized, high-octane-number FACE (fuel for advanced combustion engines) F gasoline. Oxidation experiments were performed in a jet-stirred reactor (JSR) for FACE F gasoline under the following conditions: pressure, 10 bar; temperature, 530-1250 K; residence time, 0.7s; equivalence ratios, 0.5, 1.0, and 2.0. Detailed species profiles were achieved by identification and quantification from gas chromatography with mass spectrometry (GC-MS) and Fourier transform infrared spectrometry (FTIR). Four surrogates, with physical and chemical properties that mimic the real fuel properties, were used for simulations, with a detailed gasoline surrogate kinetic model. Fuel and species profiles were well-captured and-predicted by comparisons between experimental results and surrogate simulations. Further analysis was performed using a quantities of interest (QoI) approach to show the differences between experimental and simulation results and to evaluate the gasoline surrogate kinetic model. Analysis of the multicomponent surrogate kinetic model indicated that iso-octane and alkyl aromatic oxidation reactions had impact on species profiles in the high-temperature region;. however, the main production and consumption channels were related to smaller molecule reactions. The results presented here offer new insights into the oxidation chemistry of complex gasoline fuels and provide suggestions for the future development of surrogate kinetic models.

  3. Increasing the octane number of gasoline using functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Kish, Sara Safari; Rashidi, Alimorad; Aghabozorg, Hamid Reza; Moradi, Leila

    2010-01-01

    The octane number is one of the characteristics of spark-ignition fuels such as gasoline. Octane number of fuels can be improved by addition of oxygenates such as ethanol, MTBE (methyl tert-butyl ether), TBF (tertiary butyl formate) and TBA (tertiary butyl alcohol) as well as their blends with gasoline that reduce the cost impact of fuels. Carbon nanotubes (CNTs) are as useful additives for increasing the octane number. Functionalized carbon nanotubes containing amide groups have a high reactivity and can react with many chemicals. These compounds can be solubilized in gasoline to increase the octane number. In this study, using octadecylamine and dodecylamine, CNTs were amidated and the amino-functionalized carbon nanotubes were added to gasoline. Research octane number analysis showed that these additives increase octane number of the desired samples. X-ray diffraction (XRD), Fourier transforms infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetry analyses (TGA) were used for characterization of the prepared functionalized carbon nanotubes.

  4. Increasing the octane number of gasoline using functionalized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Sara Safari [Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran (Iran, Islamic Republic of); Rashidi, Alimorad, E-mail: rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, Tehran 14665-1998 (Iran, Islamic Republic of); Aghabozorg, Hamid Reza [Catalysis Research Center, Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of); Moradi, Leila [Faculty of Chemistry, Kashan University, Kashan (Iran, Islamic Republic of)

    2010-03-15

    The octane number is one of the characteristics of spark-ignition fuels such as gasoline. Octane number of fuels can be improved by addition of oxygenates such as ethanol, MTBE (methyl tert-butyl ether), TBF (tertiary butyl formate) and TBA (tertiary butyl alcohol) as well as their blends with gasoline that reduce the cost impact of fuels. Carbon nanotubes (CNTs) are as useful additives for increasing the octane number. Functionalized carbon nanotubes containing amide groups have a high reactivity and can react with many chemicals. These compounds can be solubilized in gasoline to increase the octane number. In this study, using octadecylamine and dodecylamine, CNTs were amidated and the amino-functionalized carbon nanotubes were added to gasoline. Research octane number analysis showed that these additives increase octane number of the desired samples. X-ray diffraction (XRD), Fourier transforms infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetry analyses (TGA) were used for characterization of the prepared functionalized carbon nanotubes.

  5. Synthesis of Highly Functionalised Enantiopure Bicyclo[3.2.1]- octane Systems from Carvone

    Directory of Open Access Journals (Sweden)

    Noelia Vera

    2004-04-01

    Full Text Available The commercially available monoterpene carvone has been efficiently convertedinto the tricyclo[3.2.1.02.7]octane and bicyclo[3.2.1]octane systems characteristic of somebiologically active compounds. The sequence used for this transformation involves as keyfeatures an intramolecular Diels-Alder reaction of a 5-vinyl-1,3-cyclohexadiene and acyclopropane ring opening.

  6. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    International Nuclear Information System (INIS)

    Lockett, R D

    2006-01-01

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio φ > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks

  7. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Lockett, R D [School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V OHB (United Kingdom)

    2006-07-15

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio {phi} > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks.

  8. Antiknock quality and ignition kinetics of 2-phenylethanol, a novel lignocellulosic octane booster

    KAUST Repository

    Shankar, Vijai

    2016-06-28

    High-octane quality fuels are important for increasing spark ignition engine efficiency, but their production comes at a substantial economic and environmental cost. The possibility of producing high anti-knock quality gasoline by blending high-octane bio-derived components with low octane naphtha streams is attractive. 2-phenyl ethanol (2-PE), is one such potential candidate that can be derived from lignin, a biomass component made of interconnected aromatic groups. We first ascertained the blending anti-knock quality of 2-PE by studying the effect of spark advancement on knock for various blends 2-PE, toluene, and ethanol with naphtha in a cooperative fuels research engine. The blending octane quality of 2-PE indicated an anti-knock behavior similar or slightly greater than that of toluene, and ethylbenzene, which could be attributed to either chemical kinetics or charge cooling effects. To isolate chemical kinetic effects, a model for 2-PE auto-ignition was developed and validated using ignition delay times measured in a high-pressure shock tube. Simulated ignition delay times of 2-PE were also compared to those of traditional high-octane gasoline blending components to show that the gas phase reactivity of 2-PE is lower than ethanol, and comparable to toluene, and ethylbenzene at RON, and MON relevant conditions. The gas-phase reactivity of 2-PE is largely controlled by its aromatic ring, while the effect of the hydroxyl group is minimal. The higher blending octane quality of 2-PE compared to toluene, and ethylbenzene can be attributed primarily to the effect of the hydroxyl group on increasing heat of vaporization. © 2016 The Combustion Institute.

  9. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Khanh Duc Cung

    2017-12-01

    Full Text Available Gasoline compression ignition (GCI has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed compared to homogeneous charge compression ignition (HCCI, which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually postinjection in a multiple-injection scheme, to mitigate combustion noise. Gasoline usually has longer ignition delay than diesel. The autoignition quality of gasoline can be indicated by research octane number (RON. Fuels with high octane tend to have more resistance to autoignition, hence more time for fuel-air mixing. In this study, three fuels, namely, aromatic, alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multicylinder engine under GCI combustion mode. Considerations of exhaust gas recirculating (EGR, start of injection, and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing (location of 50% of fuel mass burned was kept constant during the experiments. This provides similar thermodynamic conditions to study the effect of fuels on emissions. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number and was also most sensitive to the change in dilution. Reasonably low combustion noise (<90 dB and stable combustion (coefficient of variance of indicated mean effective pressure <3% were maintained during the experiments. The second part of this article contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection and also more intense

  10. Refining economics of U.S. gasoline: octane ratings and ethanol content.

    Science.gov (United States)

    Hirshfeld, David S; Kolb, Jeffrey A; Anderson, James E; Studzinski, William; Frusti, James

    2014-10-07

    Increasing the octane rating of the U.S. gasoline pool (currently ∼ 93 Research Octane Number (RON)) would enable higher engine efficiency for light-duty vehicles (e.g., through higher compression ratio), facilitating compliance with federal fuel economy and greenhouse gas (GHG) emissions standards. The federal Renewable Fuels Standard calls for increased renewable fuel use in U.S. gasoline, primarily ethanol, a high-octane gasoline component. Linear programming modeling of the U.S. refining sector was used to assess the effects on refining economics, CO2 emissions, and crude oil use of increasing average octane rating by increasing (i) the octane rating of refinery-produced hydrocarbon blendstocks for oxygenate blending (BOBs) and (ii) the volume fraction (Exx) of ethanol in finished gasoline. The analysis indicated the refining sector could produce BOBs yielding finished E20 and E30 gasolines with higher octane ratings at modest additional refining cost, for example, ∼ 1¢/gal for 95-RON E20 or 97-RON E30, and 3-5¢/gal for 95-RON E10, 98-RON E20, or 100-RON E30. Reduced BOB volume (from displacement by ethanol) and lower BOB octane could (i) lower refinery CO2 emissions (e.g., ∼ 3% for 98-RON E20, ∼ 10% for 100-RON E30) and (ii) reduce crude oil use (e.g., ∼ 3% for 98-RON E20, ∼ 8% for 100-RON E30).

  11. Ignition studies of two low-octane gasolines

    KAUST Repository

    Javed, Tamour

    2017-07-24

    Low-octane gasolines (RON ∼ 50–70 range) are prospective fuels for gasoline compression ignition (GCI) internal combustion engines. GCI technology utilizing low-octane fuels has the potential to significantly improve well-to-wheel efficiency and reduce the transportation sector\\'s environmental footprint by offsetting diesel fuel usage in compression ignition engines. In this study, ignition delay times of two low-octane FACE (Fuels for Advanced Combustion Engines) gasolines, FACE I and FACE J, were measured in a shock tube and a rapid compression machine over a broad range of engine-relevant conditions (650–1200 K, 20 and 40 bar and ϕ = 0.5 and 1). The two gasolines are of similar octane ratings with anti-knock index, AKI = (RON + MON)/2, of ∼ 70 and sensitivity, S = RON–MON, of ∼ 3. However, the molecular compositions of the two gasolines are notably different. Experimental ignition delay time results showed that the two gasolines exhibited similar reactivity over a wide range of test conditions. Furthermore, ignition delay times of a primary reference fuel (PRF) surrogate (n-heptane/iso-octane blend), having the same AKI as the FACE gasolines, captured the ignition behavior of these gasolines with some minor discrepancies at low temperatures (T < 700 K). Multi-component surrogates, formulated by matching the octane ratings and compositions of the two gasolines, emulated the autoignition behavior of gasolines from high to low temperatures. Homogeneous charge compression ignition (HCCI) engine simulations were used to show that the PRF and multi-component surrogates exhibited similar combustion phasing over a wide range of engine operating conditions.

  12. Low-cost high-efficiency GDCI engines for low octane fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kolodziej, Christopher P.; Sellnau, Mark C.

    2018-01-09

    A GDCI engine has a piston arranged within a cylinder to provide a combustion chamber. According to one embodiment, the GDCI engine operates using a method that includes the steps of supplying a hydrocarbon fuel to the combustion chamber with a research octane number in the range of about 30-65. The hydrocarbon fuel is injected in completely stratified, multiple fuel injections before a start of combustion and supplying a naturally aspirated air charge to the combustion chamber.

  13. An experimental assessment on the influence of high octane fuels on biofuel based dual fuel engine performance, emission, and combustion

    Directory of Open Access Journals (Sweden)

    Masimalai Senthilkumar

    2017-01-01

    Full Text Available This paper presents an experimental study on the effect of different high octane fuels (such as eucalyptus oil, ethanol, and methanol on engine’s performance behaviour of a biofuel based dual fuel engine. A single cylinder Diesel engine was modified and tested under dual fuel mode of operation. Initially the engine was run using neat diesel, neat mahua oil as fuels. In the second phase, the engine was operated in dual fuel mode by using a specially designed variable jet carburettor to supply the high octane fuels. Engine trials were made at 100% and 40% loads (power outputs with varying amounts of high octane fuels up-to the maximum possible limit. The performance and emission characteristics of the engine were obtained and analysed. Results indicated significant improvement in brake thermal efficiency simultaneous reduction in smoke and NO emissions in dual fuel operation with all the inducted fuels. At 100% load the brake thermal efficiency increased from 25.6% to a maximum of 32.3, 30.5, and 28.4%, respectively, with eucalyptus oil, ethanol, and methanol as primary fuels. Smoke was reduced drastically from 78% with neat mahua oil a minimum of 41, 48, and 53%, respectively, with eucalyptus oil, ethanol, and methanol at the maximum efficiency point. The optimal energy share for the best engine behaviour was found to be 44.6, 27.3, and 23.2%, respectively, for eucalyptus oil, ethanol, and methanol at 100% load. Among the primary fuels tested, eucalyptus oil showed the maximum brake thermal efficiency, minimum smoke and NO emissions and maximum energy replacement for the optimal operation of the engine.

  14. PAIRWISE BLENDING OF HIGH LEVEL WASTE

    International Nuclear Information System (INIS)

    CERTA, P.J.

    2006-01-01

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending

  15. Optimization of the fluid catalytic cracking unit performance by application of a high motor Octane catalyst and reduction of gasoline vapour pressure

    International Nuclear Information System (INIS)

    Chavdarov, I.; Stratiev, D.; Shishkova, I.; Dinkov, R.; Petkov, P.

    2013-01-01

    Full text: The fluid catalytic cracking (FCC) gasoline is the main contributor to the refinery gasoline pool in the LUKOIL Neftohim Burgas (LNB) refinery. Next in quantity contributor in the refinery gasoline pool is the reformate. The FCC gasoline sensitivity (MON-RON) is about 12 points. The reformer gasoline sensitivity is 11 points. The high sensitivity of the main contributors to the LNB refinery gasoline pool leads to a shortage in the motor octane number. For that reason a selection of an FCC catalyst that is capable of increasing the motor octane number of the FCC gasoline was performed. The application of this catalyst in the LNB FCC unit has led to an increase of the motor octane number of the FCC gasoline by 0.5 points, which enabled the refinery to increase the production of automotive gasolines by 1.3 % and to increase the share of premium automotive gasoline by 5 %. This had an effect of improvement of the refinery economics by a six figure number of US $ per year. The optimization of the FCC gasoline Reid Vapor Pressure (RVP) during the winter season, consisting in a reduction of the RVP from 60 to 50 kPa and an increase of the FCC C 4 olefins yield, has led to an augmentation of high motor octane number alkylate production. As a result the refinery economics was improved by a five figure number of US $ per year. key words: FCC gasoline motor octane number, gasoline RVP, FCC operation profitability

  16. Development of high-performance blended cements

    Science.gov (United States)

    Wu, Zichao

    2000-10-01

    This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.

  17. Process Design and Economics for the Conversion of Lignocellulosic Biomass to High Octane Gasoline: Thermochemical Research Pathway with Indirect Gasification and Methanol Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hensley, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schaidle, Josh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Jeff [Harris Group, Inc., Seattle, WA (United States); Sexton, Danielle [Harris Group, Inc., Seattle, WA (United States); Yap, Raymond [Harris Group, Inc., Seattle, WA (United States); Lukas, John [Harris Group, Inc., Seattle, WA (United States)

    2015-03-01

    The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve the conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.

  18. HIGH SCHOOL STUDENTS’ VIEWS ON BLENDED LEARNING

    Directory of Open Access Journals (Sweden)

    Ibrahim Umit YAPICI,

    2012-08-01

    Full Text Available In this study, it is aimed to determine the high school students’ views on blended learning. The study was carried out in biology course for the lesson unit of “Classification of Living Things and Biodiversity” with 47 9th grade students attending Nevzat Ayaz Anatolian High School in the second term of the academic year of 2009-2010. The lessons were taught in a way appropriate to the blended learning model both via the Internet and on face-to-face basis. As the online dimension of the blended learning model, Moodle, a Learning Management System (LMS, was used. The application lasted 10 weeks. The scale of learners’ views on blended learning was applied and interviews were held to determine the views. As a result of the analysis of the scale, it was seen that their views were “highly” positive. The interviews held with the students revealed that the blended learning model provided students with various opportunities such as getting prepared for the lessons, reviewing the lessons as many times as wanted, reaching the subject-related materials without being dependent on time and place, testing oneself and communicating with the teacher and other students out of the school. The interviews also revealed that there were various problems though such as lack of Internet connection at home and problems experienced while playing the videos.

  19. High School Students' Views on Blended Learning

    Science.gov (United States)

    Yapici, Ibrahim Umit; Akbayin, Hasan

    2012-01-01

    In this study, it is aimed to determine the high school students' views on blended learning. The study was carried out in biology course for the lesson unit of "Classification of Living Things and Biodiversity" with 47 9[superscript th] grade students attending Nevzat Ayaz Anatolian High School in the second term of the academic year of…

  20. Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures

    KAUST Repository

    Singh, Eshan

    2017-02-01

    Gasoline octane number is a significant empirical parameter for the optimization and development of internal combustion engines capable of resisting knock. Although extensive databases and blending rules to estimate the octane numbers of mixtures have been developed and the effects of molecular structure on autoignition properties are somewhat understood, a comprehensive theoretical chemistry-based foundation for blending effects of fuels on engine operations is still to be developed. In this study, we present models that correlate the research octane number (RON) and motor octane number (MON) with simulated homogeneous gas-phase ignition delay times of stoichiometric fuel/air mixtures. These correlations attempt to bridge the gap between the fundamental autoignition behavior of the fuel (e.g., its chemistry and how reactivity changes with temperature and pressure) and engine properties such as its knocking behavior in a cooperative fuels research (CFR) engine. The study encompasses a total of 79 hydrocarbon gasoline surrogate mixtures including 11 primary reference fuels (PRF), 43 toluene primary reference fuels (TPRF), and 19 multicomponent (MC) surrogate mixtures. In addition to TPRF mixture components of iso-octane/n-heptane/toluene, MC mixtures, including n-heptane, iso-octane, toluene, 1-hexene, and 1,2,4-trimethylbenzene, were blended and tested to mimic real gasoline sensitivity. ASTM testing protocols D-2699 and D-2700 were used to measure the RON and MON of the MC mixtures in a CFR engine, while the PRF and TPRF mixtures’ octane ratings were obtained from the literature. The mixtures cover a RON range of 0–100, with the majority being in the 70–100 range. A parametric simulation study across a temperature range of 650–950 K and pressure range of 15–50 bar was carried out in a constant-volume homogeneous batch reactor to calculate chemical kinetic ignition delay times. Regression tools were utilized to find the conditions at which RON and MON

  1. Gasoline, Ethanol and Methanol (GEM) Ternary Blends utilization as an Alternative to Conventional Iraqi Gasoline to Suppress Emitted Sulfur and Lead Components to Environment

    OpenAIRE

    Miqdam Tariq Chaichan

    2016-01-01

    Iraqi conventional gasoline characterized by its low octane number not exceed 82 and high lead and sulfur content. In this paper tri-component or ternary, blends of gasoline, ethanol, and methanol presented as an alternative fuel for Iraqi conventional gasoline. The study conducted by using GEM blend that equals E85 blend in octane rating. The used GEM selected from Turner, 2010 collection. G37 E20 M43 (37% gasoline + 20% ethanol+ 43% methanol) was chosen as GEM in present study. This blend u...

  2. Blended Learning and Student Engagement in an Urban High School

    Science.gov (United States)

    Johnson, Courtney

    2017-01-01

    A metropolitan school district wanted to understand blended learning as it existed in one of their high schools. Blended learning had been school-wide for four years, and district administrators wanted to know how students, teachers, and school administrators perceived blended learning and its impact on student engagement. This was a…

  3. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad

    2017-03-28

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  4. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Feijs, Jeroen; Morganti, Kai; Nyrenstedt, Gustav; Johansson, Bengt

    2017-01-01

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  5. Phosphor blends for high-CRI fluorescent lamps

    Science.gov (United States)

    Setlur, Anant Achyut [Niskayuna, NY; Srivastava, Alok Mani [Niskayuna, NY; Comanzo, Holly Ann [Niskayuna, NY; Manivannan, Venkatesan [Clifton Park, NY; Beers, William Winder [Chesterland, OH; Toth, Katalin [Pomaz, HU; Balazs, Laszlo D [Budapest, HU

    2008-06-24

    A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

  6. Suppression of secondary reactions during n-butene dimerization to gasoline blending components : Chemical Reaction Engineering

    NARCIS (Netherlands)

    Golombok, M.; Bruijn, J.

    2000-01-01

    There are 72 isomers of the octene molecules and only a small number of them have high value as a blending octane component in gasoline. The amorphous silica alumina catalyst used for selectively dimerizing octenes from linear butenes can itself isomerize the target species. It is demonstrated that

  7. High performance concrete with blended cement

    International Nuclear Information System (INIS)

    Biswas, P.P.; Saraswati, S.; Basu, P.C.

    2012-01-01

    Principal objectives of the proposed project are two folds. Firstly, to develop the HPC mix suitable to NPP structures with blended cement, and secondly to study its durability necessary for desired long-term performance. Three grades of concrete to b considered in the proposed projects are M35, M50 and M60 with two types of blended cements, i.e. Portland slag cement (PSC) and Portland pozzolana cement (PPC). Three types of mineral admixtures - silica fume, fly ash and ground granulated blast furnace slag will be used. Concrete mixes with OPc and without any mineral admixture will be considered as reference case. Durability study of these mixes will be carried out

  8. A methodology to relate octane numbers of binary and ternary n-heptane, iso-octane and toluene mixtures with simulated ignition delay times

    KAUST Repository

    Badra, Jihad A.

    2015-08-11

    Predicting octane numbers (ON) of gasoline surrogate mixtures is of significant importance to the optimization and development of internal combustion (IC) engines. Most ON predictive tools utilize blending rules wherein measured octane numbers are fitted using linear or non-linear mixture fractions on a volumetric or molar basis. In this work, the octane numbers of various binary and ternary n-heptane/iso-octane/toluene blends, referred to as toluene primary reference fuel (TPRF) mixtures, are correlated with a fundamental chemical kinetic parameter, specifically, homogeneous gas-phase fuel/air ignition delay time. Ignition delay times for stoichiometric fuel/air mixtures are calculated at various constant volume conditions (835 K and 20 atm, 825 K and 25 atm, 850 K and 50 atm (research octane number RON-like) and 980 K and 45 atm (motor octane number MON-like)), and for variable volume profiles calculated from cooperative fuel research (CFR) engine pressure and temperature simulations. Compression ratio (or ON) dependent variable volume profile ignition delay times are investigated as well. The constant volume RON-like ignition delay times correlation with RON was the best amongst the other studied conditions. The variable volume ignition delay times condition correlates better with MON than the ignition delay times at the other tested conditions. The best correlation is achieved when using compression ratio dependent variable volume profiles to calculate the ignition delay times. Most of the predicted research octane numbers (RON) have uncertainties that are lower than the repeatability and reproducibility limits of the measurements. Motor octane number (MON) correlation generally has larger uncertainties than that of RON.

  9. A Group Contribution Method for Estimating Cetane and Octane Numbers

    Energy Technology Data Exchange (ETDEWEB)

    Kubic, William Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Process Modeling and Analysis Group

    2016-07-28

    Much of the research on advanced biofuels is devoted to the study of novel chemical pathways for converting nonfood biomass into liquid fuels that can be blended with existing transportation fuels. Many compounds under consideration are not found in the existing fuel supplies. Often, the physical properties needed to assess the viability of a potential biofuel are not available. The only reliable information available may be the molecular structure. Group contribution methods for estimating physical properties from molecular structure have been used for more than 60 years. The most common application is estimation of thermodynamic properties. More recently, group contribution methods have been developed for estimating rate dependent properties including cetane and octane numbers. Often, published group contribution methods are limited in terms of types of function groups and range of applicability. In this study, a new, broadly-applicable group contribution method based on an artificial neural network was developed to estimate cetane number research octane number, and motor octane numbers of hydrocarbons and oxygenated hydrocarbons. The new method is more accurate over a greater range molecular weights and structural complexity than existing group contribution methods for estimating cetane and octane numbers.

  10. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Tan, E. C. D.; Talmadge, M.; Dutta, A.; Hensley, J.; Schaidle, J.; Biddy, M.; Humbird, D.; Snowden-Swan, L. J.; Ross, J.; Sexton, D.; Yap, R.; Lukas, J.

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics of conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to

  11. Estimating fuel octane numbers from homogeneous gas-phase ignition delay times

    KAUST Repository

    Naser, Nimal

    2017-11-05

    Fuel octane numbers are directly related to the autoignition properties of fuel/air mixtures in spark ignition (SI) engines. This work presents a methodology to estimate the research and the motor octane numbers (RON and MON) from homogeneous gas-phase ignition delay time (IDT) data calculated at various pressures and temperatures. The hypothesis under investigation is that at specific conditions of pressure and temperature (i.e., RON-like and MON-like conditions), fuels with IDT identical to that of a primary reference fuel (PRF) have the same octane rating. To test this hypothesis, IDTs with a detailed gasoline surrogate chemical kinetic model have been calculated at various temperatures and pressures. From this dataset, temperatures that best represent RON and MON have been correlated at a specified pressure. Correlations for pressures in the range of 10–50 bar were obtained. The proposed correlations were validated with toluene reference fuels (TRF), toluene primary reference fuels (TPRF), ethanol reference fuels (ERF), PRFs and TPRFs with ethanol, and multi-component gasoline surrogate mixtures. The predicted RON and MON showed satisfactory accuracy against measurements obtained by the standard ASTM methods and blending rules, demonstrating that the present methodology can be a viable tool for a first approximation. The correlations were also validated against an extensive set of experimental IDT data obtained from literature with a high degree of accuracy in RON/MON prediction. Conditions in homogeneous reactors such as shock tubes and rapid compression machines that are relevant to modern SI engines were also identified. Uncertainty analysis of the proposed correlations with linear error propagation theory is also presented.

  12. Estimating fuel octane numbers from homogeneous gas-phase ignition delay times

    KAUST Repository

    Naser, Nimal; Sarathy, Mani; Chung, Suk-Ho

    2017-01-01

    Fuel octane numbers are directly related to the autoignition properties of fuel/air mixtures in spark ignition (SI) engines. This work presents a methodology to estimate the research and the motor octane numbers (RON and MON) from homogeneous gas-phase ignition delay time (IDT) data calculated at various pressures and temperatures. The hypothesis under investigation is that at specific conditions of pressure and temperature (i.e., RON-like and MON-like conditions), fuels with IDT identical to that of a primary reference fuel (PRF) have the same octane rating. To test this hypothesis, IDTs with a detailed gasoline surrogate chemical kinetic model have been calculated at various temperatures and pressures. From this dataset, temperatures that best represent RON and MON have been correlated at a specified pressure. Correlations for pressures in the range of 10–50 bar were obtained. The proposed correlations were validated with toluene reference fuels (TRF), toluene primary reference fuels (TPRF), ethanol reference fuels (ERF), PRFs and TPRFs with ethanol, and multi-component gasoline surrogate mixtures. The predicted RON and MON showed satisfactory accuracy against measurements obtained by the standard ASTM methods and blending rules, demonstrating that the present methodology can be a viable tool for a first approximation. The correlations were also validated against an extensive set of experimental IDT data obtained from literature with a high degree of accuracy in RON/MON prediction. Conditions in homogeneous reactors such as shock tubes and rapid compression machines that are relevant to modern SI engines were also identified. Uncertainty analysis of the proposed correlations with linear error propagation theory is also presented.

  13. An optimal retrieval, processing, and blending strategy for immobilization of Hanford high-level tank waste

    International Nuclear Information System (INIS)

    Hoza, M.

    1996-01-01

    Hanford tank waste will be separated into high-level and low-level portions; each portion will then be vitrified (other waste forms are also being considered for low-level waste) to produce a stable glass form for disposal. Because of the wide variability in the tank waste compositions, blending is being considered as a way to reduce the number of distinct compositions that must be vitrified and to minimize the resultant volume of vitrified waste. Three years of computational glass formulation and blending studies have demonstrated that blending of the high-level waste before vitrification can reduce the volume of high-level waste glass required by as much as 50 percent. This level of reduction would be obtained if all the high-level waste were blended together (Total Blend) prior to vitrification, requiring the retrieval and pretreatment of all tank waste before high-level vitrification was started. This paper will present an overall processing strategy that should be able to match the blending performance of the Total Blend and be more logistically feasible. The strategy includes retrieving, pretreating, blending and vitrifying Hanford tank waste. This strategy utilizes blending both before and after pretreatment. Similar wastes are blended before pretreatment, so as not to dilute species targeted for removal. The high-level portions of these pretreated early blends are then selectively blended to produce a small number of high-level vitrification feed streams

  14. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  15. Terpineol as a novel octane booster for extending the knock limit of gasoline

    KAUST Repository

    Vallinayagam, R.

    2016-09-16

    Improving the octane number of gasoline offers the potential of improved engine combustion, as it permits spark timing advancement without engine knock. This study proposes the use of terpineol as an octane booster for gasoline in a spark ignited (SI) engine. Terpineol is a bio-derived oxygenated fuel obtained from pine tree resin, and has the advantage of higher calorific value than ethanol. The ignition delay time (IDT) of terpineol was first investigated in an ignition quality tester (IQT). The IQT results demonstrated a long ignition delay of 24.7 ms for terpineol and an estimated research octane number (RON) of 104, which was higher than commercial European (Euro V) gasoline. The octane boosting potential of terpineol was further investigated by blending it with a non-oxygenated gasoline (FACE F), which has a RON (94) lower than Euro V gasoline (RON = 97). The operation of a gasoline direct injection (GDI) SI engine fueled with terpineol-blended FACE F gasoline enabled spark timing advancement and improved engine combustion. The knock intensity of FACE F + 30% terpineol was lower than FACE F gasoline at both maximum brake torque (MBT) and knock limited spark advance (KLSA) operating points. Increasing proportions of terpineol in the blend caused peak heat release rate, in-cylinder pressure, CA50, and combustion duration to be closer to those of Euro V gasoline. Furthermore, FACE F + 30% terpineol displayed improved combustion characteristics when compared to Euro V gasoline. © 2016

  16. Morphology and mechanical properties of PA12/plasticized starch blends prepared by high-shear extrusion

    International Nuclear Information System (INIS)

    Teyssandier, F.; Cassagnau, P.; Gérard, J.F.; Mignard, N.; Mélis, F.

    2012-01-01

    Highlights: ► High shear rate processing was found to greatly impact PA12/starch blend morphologies. ► The morphology was observed to be stable under subsequent processing conditions. ► The mechanical properties of the blends under high-shear rate were greatly improved. ► Polymer blend preparation via high-shear processing has proved to be very effective. ► Finally, polymer blends with improved mechanical properties were obtained. - Abstract: PA12/plasticized starch blends (PA12/TPS) were prepared by high-shear twin screw extruder. The morphology development and the mechanical properties of the blends were investigated as a function of the apparent shear rate. High-shear processing has proved to be an efficient method to finely disperse thermoplastic starch in polyamide 12 matrix. Blends containing TPS domains with a size at the nano-scale (R n ∼ 150 nm) homogeneously dispersed in PA12 matrix were obtained. From a modeling point of view, the variation of the droplet radius is closer to the Wu's predictions compared to the Serpe's predictions. From the basic hypothesis of these models, it can be then assumed that compatibilization between both phases occurs during the blend processing. Furthermore, this morphology of the blends has been proved to be stable after a reprocessing step in an internal mixer most likely due to either strong hydrogen bonds between the hydroxyl groups of starch and amide groups of polyamide 12 or to potentially cross reactions between macroradicals accounting for in situ formation of graft copolymers with the potential function of compatibilizers. Mechanical properties of the blends were found to be strongly dependent on the shear rate parameter of blend processing as the mechanical properties increase with shear rate. In agreement to the blend morphology, the elongation at break of the blends was greatly improved attesting of a good adhesion between both phases.

  17. The influence of n-butanol blending on the ignition delay times of gasoline and its surrogate at high pressures

    KAUST Repository

    Agbro, Edirin

    2016-09-24

    The influence of blending n-butanol at 20% by volume on the ignition delay times for a reference gasoline was studied in a rapid compression machine (RCM) for stoichiometric fuel/air mixtures at 20 bar and 678-858 K. Delay times for the blend lay between those of stoichiometric gasoline and stoichiometric n-butanol across the temperature range studied. At lower temperatures, delays for the blend were however, much closer to those of n-butanol than gasoline despite n-butanol being only 20% of the mixture. Under these conditions n-butanol acted as an octane enhancer over and above what might be expected from a simple linear blending law. The ability of a gasoline surrogate, based on a toluene reference fuel (TRF), to capture the main trends of the gasoline/n-butanol blending behaviour was also tested within the RCM. The 3-component TRF based on a mixture of toluene, n-heptane and iso-octane was able to capture the trends well across the temperature range studied. Simulations of ignition delay times were also performed using a detailed blended n-butanol/TRF mechanism based on the adiabatic core assumption and volume histories from the experimental data. Overall, the model captured the main features of the blending behaviour, although at the lowest temperatures, predicted ignition delays for stoichiometric n-butanol were longer than those observed. A brute-force local sensitivity analysis was performed to evaluate the main chemical processes driving the ignition behaviour of the TRF, n-butanol and blended fuels. The reactions of fuel + OH dominated the sensitivities at lower temperatures, with H abstraction from n-butanol from a and 7 sites being key for both the n-butanol and the blend. At higher temperatures the decomposition of H2O2 and reactions of HO2 and that of formaldehyde with OH became critical, in common with the ignition behaviour of other fiiels. Remaining uncertainties in the rates of these key reactions are discussed. Crown Copyright (C) 2016 Published

  18. Ignition delay time correlation of fuel blends based on Livengood-Wu description

    KAUST Repository

    Khaled, Fathi

    2017-08-17

    In this work, a universal methodology for ignition delay time (IDT) correlation of multicomponent fuel mixtures is reported. The method is applicable over wide ranges of temperatures, pressures, and equivalence ratios. n-Heptane, iso-octane, toluene, ethanol and their blends are investigated in this study because of their relevance to gasoline surrogate formulation. The proposed methodology combines benefits from the Livengood-Wu integral, the cool flame characteristics and the Arrhenius behavior of the high-temperature ignition delay time to suggest a simple and comprehensive formulation for correlating the ignition delay times of pure components and blends. The IDTs of fuel blends usually have complex dependences on temperature, pressure, equivalence ratio and composition of the blend. The Livengood-Wu integral is applied here to relate the NTC region and the cool flame phenomenon. The integral is further extended to obtain a relation between the IDTs of fuel blends and pure components. Ignition delay times calculated using the proposed methodology are in excellent agreement with those simulated using a detailed chemical kinetic model for n-heptane, iso-octane, toluene, ethanol and blends of these components. Finally, very good agreement is also observed for combustion phasing in homogeneous charge compression ignition (HCCI) predictions between simulations performed with detailed chemistry and calculations using the developed ignition delay correlation.

  19. Influence of Compression Ratio on High Load Performance and Knock Behavior for Gasoline Port-Fuel Injection, Natural Gas Direct Injection and Blended Operation in a Spark Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Pamminger, Michael; Sevik, James; Scarcelli, Riccardo; Wallner, Thomas; Hall, Carrie

    2017-03-28

    Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed on a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5. Operating conditions span mid-load, wide-open-throttle and boosted conditions, depending on the knock response of the fuel blend. Blended operation was performed using E10 gasoline and NG. An additional gasoline type fuel (E85) with higher knock resistance than E10 was used as a high-octane reference fuel, since the octane rating of E10-NG fuel blends is unknown. Spark timing was varied at different loads under stoichiometric conditions in order to study the knock response as well as the effects on performance and efficiency. As anticipated, results suggest that the knock resistance can be increased significantly by increasing the NG amount. Comparing the engine operation with the least knock resistant fuel, E10 PFI, and the fuel blend with the highest knock resistance, 75% NG DI, shows an increase in indicated mean effective pressure of about 9 bar at CR 12.5. The usage of reference fuels with known knock characteristics allowed an assessment of knock characteristic of intermediate E10-NG blend levels. Mathematical correlations were developed allowing characterizing the occurrence of knocking

  20. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends.

    Science.gov (United States)

    Ahmed, Khalil

    2015-11-01

    Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (M L) and maximum torque (M H) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.

  1. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends

    Directory of Open Access Journals (Sweden)

    Khalil Ahmed

    2015-11-01

    Full Text Available Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE compatibilized by Chloroprene rubber (CR were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (ML and maximum torque (MH of blends increased with increasing weight ratio of HDPE while scorch time (ts2 cure time (tc90, compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.

  2. Base catalyzed synthesis of bicyclo[3.2.1]octane scaffolds.

    Science.gov (United States)

    Boehringer, Régis; Geoffroy, Philippe; Miesch, Michel

    2015-07-07

    The base-catalyzed reaction of achiral 1,3-cyclopentanediones tethered to activated olefins afforded in high yields bicyclo[3.2.1]octane-6,8-dione or bicyclo[3.2.1]octane-6-carboxylate derivatives bearing respectively three or five stereogenic centers. The course of the reaction is closely related to the reaction time and to the base involved in the reaction.

  3. Fiscal 2000 report of investigation. Research study on reduction of carbon dioxide discharge by increase in octane number in gasoline through use of biomass; 2000 nendo biomass wo riyoshita gasoline no octane ka kojo ni yoru nisanka tanso haishutsu sakugen ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An investigative research was conducted on the means of reducing fuel consumption of motor vehicles and reducing greenhouse effect gases, by making octane boosters for gasoline through the use of alcohol derived from biomass feedstock. As a result of the investigation, the following proposals were made. In present gasoline-fueled motor vehicles, an increase in the octane number by 5 will allow a higher compression by 1, thereby reducing fuel consumption by 2.5% during running. The suitable octane boosters are MTBE (methyl tertiary butylether) and ETBE (ethyl tertiary butylether) both of which can be produced from either methanol or ethanol derived from biomass feedstock. Blending regular gasoline with an octane number of 90 and either MTBE or ETBE by 18% may make gasoline having an octane number of 95, leading to a reduction of carbon dioxide emission by 4.8% and 6.8% respectively. The amount of alcohol needed for these octane boosters is 2.2 megatons of methanol per year for MTBE production and 2.7 megatons of ethanol per year for ETBE; this requires 12 plants nationwide for producing the octane boosters at 0.5 megatons per year; and, in view of the cost of transportation, alcohol producing plants are desirably located near the octane booster producing plants. (NEDO)

  4. High performance lignin-acrylonitrile polymer blend materials

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.; Tran, Chau D.

    2017-11-14

    A polymer blend material comprising: (i) a lignin component having a weight-average molecular weight of up to 1,000,000 g/mol; and (ii) an acrylonitrile-containing copolymer rubber component comprising acrylonitrile units in combination with diene monomer units, and having an acrylonitrile content of at least 20 mol %; wherein said lignin component is present in an amount of at least 5 wt % and up to about 95 wt % by total weight of components (i) and (ii); and said polymer blend material possesses a tensile yield stress of at least 5 MPa, or a tensile stress of at least 5 MPa at 10% elongation, or a tensile stress of at least 5 MPa at 100% elongation. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.

  5. High-performance ferroelectric memory based on phase-separated films of polymer blends

    KAUST Repository

    Khan, Yasser; Bhansali, Unnat Sampatraj; Almadhoun, Mahmoud N.; Odeh, Ihab N.; Cha, Dong Kyu; Alshareef, Husam N.

    2013-01-01

    High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High-performance ferroelectric memory based on phase-separated films of polymer blends

    KAUST Repository

    Khan, Yasser

    2013-10-29

    High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ignition delay time measurements of primary reference fuel blends

    KAUST Repository

    Alabbad, Mohammed

    2017-02-07

    Ignition delay times of four different primary reference fuels (PRF), mixtures of n-heptane and iso-octane, were measured behind reflected shock waves in a high-pressure shock tube facility. The PRFs were formulated to match the RON of two high-octane gasolines (RON 95 and 91) and two prospective low-octane naphtha fuels (RON 80 and 70). Experiments were carried out over a wide range of temperatures (700–1200K), pressures (10, 20, and 40bar) and equivalence ratios (0.5 and 1). Kinetic modeling predictions from four chemical kinetic mechanisms are compared with the experimental data. Ignition delay correlations are developed to reproduce the measured ignition delay times. Brute force sensitivity analyses are carried out to identify reactions that affect ignition delay times at specific temperature, pressure and equivalence ratio. The large experimental data set provided in the current work will serve as a benchmark for the validation of chemical kinetic mechanisms of primary reference fuel blends.

  8. Ignition delay time measurements of primary reference fuel blends

    KAUST Repository

    Alabbad, Mohammed; Javed, Tamour; Khaled, Fathi; Badra, Jihad; Farooq, Aamir

    2017-01-01

    Ignition delay times of four different primary reference fuels (PRF), mixtures of n-heptane and iso-octane, were measured behind reflected shock waves in a high-pressure shock tube facility. The PRFs were formulated to match the RON of two high-octane gasolines (RON 95 and 91) and two prospective low-octane naphtha fuels (RON 80 and 70). Experiments were carried out over a wide range of temperatures (700–1200K), pressures (10, 20, and 40bar) and equivalence ratios (0.5 and 1). Kinetic modeling predictions from four chemical kinetic mechanisms are compared with the experimental data. Ignition delay correlations are developed to reproduce the measured ignition delay times. Brute force sensitivity analyses are carried out to identify reactions that affect ignition delay times at specific temperature, pressure and equivalence ratio. The large experimental data set provided in the current work will serve as a benchmark for the validation of chemical kinetic mechanisms of primary reference fuel blends.

  9. Effects of Heat of Vaporization and Octane Sensitivity on Knock-Limited Spark Ignition Engine Performance

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burton, Jonathan L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sindler, Petr [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Earl D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fouts, Lisa A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-03

    Knock-limited loads for a set of surrogate gasolines all having nominal 100 research octane number (RON), approximately 11 octane sensitivity (S), and a heat of vaporization (HOV) range of 390 to 595 kJ/kg at 25 degrees C were investigated. A single-cylinder spark-ignition engine derived from a General Motors Ecotec direct injection (DI) engine was used to perform load sweeps at a fixed intake air temperature (IAT) of 50 degrees C, as well as knock-limited load measurements across a range of IATs up to 90 degrees C. Both DI and pre-vaporized fuel (supplied by a fuel injector mounted far upstream of the intake valves and heated intake runner walls) experiments were performed to separate the chemical and thermal effects of the fuels' knock resistance. The DI load sweeps at 50 degrees C intake air temperature showed no effect of HOV on the knock-limited performance. The data suggest that HOV acts as a thermal contributor to S under the conditions studied. Measurement of knock-limited loads from the IAT sweeps for DI at late combustion phasing showed that a 40 vol% ethanol (E40) blend provided additional knock resistance at the highest temperatures, compared to a 20 vol% ethanol blend and hydrocarbon fuel with similar RON and S. Using the pre-vaporized fuel system, all the high S fuels produced nearly identical knock-limited loads at each temperature across the range of IATs studied. For these fuels RON ranged from 99.2 to 101.1 and S ranged from 9.4 to 12.2, with E40 having the lowest RON and highest S. The higher knock-limited loads for E40 at the highest IATs examined were consistent with the slightly higher S for this fuel, and the lower engine operating condition K values arising from use of this fuel. The study highlights how fuel HOV can affect the temperature at intake valve closing, and consequently the pressure-temperature history of the end gas leading to more negative values of K, thereby enhancing the effect of S on knock resistance.

  10. Thermodynamic and kinetic anisotropies in octane thin films.

    Science.gov (United States)

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2015-12-07

    Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵS. Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵS, while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵS) substrates undergo "pre-freezing," characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵS) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations-proposed in the above-mentioned work-in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy landscape by performing inherent

  11. Thermal and mechanical properties of injection molded recycled high density polyethylene blends with virgin isotactic polypropylene

    International Nuclear Information System (INIS)

    Madi, N.K.

    2013-01-01

    Highlights: ► Recycled high density polyethylene and isotactic polypropylene blends have been prepared by melt compounding. ► Thermal study showed that iPP is not well dispersed into the rHDPE matrix. ► Tensile testing shows that there is strong correlation between the thermal properties and the tensile behavior of rHDPE/ipp blends. - Abstract: Polymer blending has become an important field in polymer research and especially in the area of recycling. In this research the target was to reduce the polymer waste problem. Therefore, recycled high density polyethylene (rHDPE) and virgin isotactic polypropylene (vPP) blends containing upto 30 wt% of vPP have been prepared by melt compounding method using injection molding at 220 °C. The thermal properties, thermal degradation and the mechanical properties of the polymer blends were studied using differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), and tensile testing method. DSC study shows that in all the blends there are two melting peaks, one around the melting temperature of rHDPE and another one around the melting point of vPP, indicating that vPP is not well dispersed into the rHDPE matrix. The changes in the heat of fusion for the rHDPE/iPP polymer blends versus vPP content suggests that incorporating vPP affects the crystallinity of the system. TGA analysis of the polymer blends shows that parts of rHDPE with 95/5 upto 80/20 of vPP are mostly stable composition which brings about valuable stabilization to the rHDPE. Tensile testing shows that there is strong correlation between the thermal properties and the tensile behavior of rHDPE/vpp blends

  12. Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

    KAUST Repository

    Sarathy, Mani

    2018-04-03

    Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.

  13. Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

    KAUST Repository

    Sarathy, Mani; Atef, Nour; Alfazazi, Adamu; Badra, Jihad; Zhang, Yu; Tzanetakis, Tom; Pei, Yuanjiang

    2018-01-01

    Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.

  14. Lignin derivatives as potential octane boosters

    NARCIS (Netherlands)

    Tian, M.; van Haaren, R.W.G.; Reijnders, J.J.E.; Boot, M.D.

    2015-01-01

    Owing to environmental and health concerns, tetraethyl lead was gradually phased out from the early 1970's to mid-1990's in most developed countries. Advances in refining, leading to more aromatics (via reformate) and iso-paraffins such as iso-octane, along with the introduction of (bio) oxygenates

  15. A Theoretical investigation of a potential high energy density compound 3,6,7,8-tetranitro-3,6,7,8-tetraaza-tricyclo[3.1.1.1(2,4]octane

    Directory of Open Access Journals (Sweden)

    Guozheng Zhao

    2013-01-01

    Full Text Available The B3LYP/6-31G (d density functional theory (DFT method was used to study molecular geometry, electronic structure, infrared spectrum (IR and thermodynamic properties. Heat of formation (HOF and calculated density were estimated to evaluate detonation properties using Kamlet-Jacobs equations. Thermal stability of 3,6,7,8-tetranitro-3,6,7,8-tetraaza-tricyclo [3.1.1.1(2,4]octane (TTTO was investigated by calculating bond dissociation energy (BDE at the unrestricted B3LYP/6-31G(d level. Results showed the N-NO2 bond is a trigger bond during the thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM methods belongs to P2(1/C space group, with cell parameters a = 8.239 Å, b = 8.079 Å, c = 16.860 Å, Z = 4 and r = 1.922 g cm-3. Both detonation velocity of 9.79 km s-1 and detonation pressure of 44.22 GPa performed similarly to CL-20. According to the quantitative standards of energetics and stability, TTTO essentially satisfies this requirement as a high energy density compound (HEDC.

  16. Gas Separation Membranes Derived from High-Performance Immiscible Polymer Blends Compatibilized with Small Molecules.

    Science.gov (United States)

    Panapitiya, Nimanka P; Wijenayake, Sumudu N; Nguyen, Do D; Huang, Yu; Musselman, Inga H; Balkus, Kenneth J; Ferraris, John P

    2015-08-26

    An immiscible polymer blend comprised of high-performance copolyimide 6FDA-DAM:DABA(3:2) (6FDD) and polybenzimidazole (PBI) was compatibilized using 2-methylimidazole (2-MI), a commercially available small molecule. Membranes were fabricated from blends of 6FDD:PBI (50:50) with and without 2-MI for H2/CO2 separations. The membranes demonstrated a matrix-droplet type microstructure as evident with scanning electron microscopy (SEM) imaging where 6FDD is the dispersed phase and PBI is the continuous phase. In addition, membranes with 2-MI demonstrated a uniform microstructure as observed by smaller and more uniformly dispersed 6FDD domains in contrast to 6FDD:PBI (50:50) blend membranes without 2-MI. This compatibilization effect of 2-MI was attributed to interfacial localization of 2-MI that lowers the interfacial energy similar to a surfactant. Upon the incorporation of 2-MI, the H2/CO2 selectivity improved remarkably, compared to the pure blend, and surpassed the Robeson's upper bound. To our knowledge, this is the first report of the use of a small molecule to compatibilize a high-performance immiscible polymer blend. This approach could afford a novel class of membranes in which immiscible polymer blends can be compatibilized in an economical and convenient fashion.

  17. Equilibrating high-molecular-weight symmetric and miscible polymer blends with hierarchical back-mapping

    Science.gov (United States)

    Ohkuma, Takahiro; Kremer, Kurt; Daoulas, Kostas

    2018-05-01

    Understanding properties of polymer alloys with computer simulations frequently requires equilibration of samples comprised of microscopically described long molecules. We present the extension of an efficient hierarchical backmapping strategy, initially developed for homopolymer melts, to equilibrate high-molecular-weight binary blends. These mixtures present significant interest for practical applications and fundamental polymer physics. In our approach, the blend is coarse-grained into models representing polymers as chains of soft blobs. Each blob stands for a subchain with N b microscopic monomers. A hierarchy of blob-based models with different resolution is obtained by varying N b. First the model with the largest N b is used to obtain an equilibrated blend. This configuration is sequentially fine-grained, reinserting at each step the degrees of freedom of the next in the hierarchy blob-based model. Once the blob-based description is sufficiently detailed, the microscopic monomers are reinserted. The hard excluded volume is recovered through a push-off procedure and the sample is re-equilibrated with molecular dynamics (MD), requiring relaxation on the order of the entanglement time. For the initial method development we focus on miscible blends described on microscopic level through a generic bead-spring model, which reproduces hard excluded volume, strong covalent bonds, and realistic liquid density. The blended homopolymers are symmetric with respect to molecular architecture and liquid structure. To parameterize the blob-based models and validate equilibration of backmapped samples, we obtain reference data from independent hybrid simulations combining MD and identity exchange Monte Carlo moves, taking advantage of the symmetry of the blends. The potential of the backmapping strategy is demonstrated by equilibrating blend samples with different degree of miscibility, containing 500 chains with 1000 monomers each. Equilibration is verified by comparing

  18. Ternary Blend Composed of Two Organic Donors and One Acceptor for Active Layer of High-Performance Organic Solar Cells.

    Science.gov (United States)

    Lee, Jong Won; Choi, Yoon Suk; Ahn, Hyungju; Jo, Won Ho

    2016-05-04

    Ternary blends composed of two donor absorbers with complementary absorptions provide an opportunity to enhance the short-circuit current and thus the power conversion efficiency (PCE) of organic solar cells. In addition to complementary absorption of two donors, ternary blends may exhibit favorable morphology for high-performance solar cells when one chooses properly the donor pair. For this purpose, we develop a ternary blend with two donors (diketopyrrolopyrrole-based polymer (PTDPP2T) and small molecule ((TDPP)2Ph)) and one acceptor (PC71BM). The solar cell made of a ternary blend with 10 wt % (TDPP)2Ph exhibits higher PCE of 7.49% as compared with the solar cells with binary blends, PTDPP2T:PC71BM (6.58%) and (TDPP)2Ph:PC71BM (3.21%). The higher PCE of the ternary blend solar cell is attributed mainly to complementary absorption of two donors. However, a further increase in (TDPP)2Ph content in the ternary blend (>10 wt %) decreases the PCE. The ternary blend with 10 wt % (TDPP)2Ph exhibits well-developed morphology with narrow-sized fibrils while the blend with 15 wt % (TDPP)2Ph shows phase separation with large-sized domains, demonstrating that the phase morphology and compatibility of ternary blend are important factors to achieve a high-performance solar cell made of ternary blends.

  19. Experimental investigation of CI engine combustion, performance and emissions in DEE–kerosene–diesel blends of high DEE concentration

    International Nuclear Information System (INIS)

    Patil, K.R.; Thipse, S.S.

    2015-01-01

    Highlights: • First ever study on DEE–kerosene–diesel blends used in CI engine. • DEE–diesel blends have reduced the trade-off between PM and NOx of diesel engine. • Optimum performance blend has been found as DE15D. • Adulteration effects of kerosene with diesel have also been investigated. • Additions of kerosene with DE15D blend have deteriorated the overall engine performance. - Abstract: An experimental investigation had been carried out to evaluate the effects of oxygenated cetane improver diethyl ether (DEE) blends with kerosene and diesel on the combustion, performance and emission characteristics of a direct injection diesel engine. Initially, 2%, 5%, 8%, 10%, 15%, 20% and 25% DEE (by volume) were blended into diesel. The DEE–diesel blends have reduced the trade-off between PM and NOx of diesel engine and the optimum performance blend has been found as DE15D. Similarly, 5%, 10% and 15% kerosene (by volume) were blended into diesel to investigate the adulteration effect. In addition, a study was carried out to evaluate the effects of kerosene adulteration on DE15D by blending with 5%, 10% and 15% kerosene (by volume). The engine tests were carried out at 10%, 25%, 50%, 75% and 100% of full load for all test fuels. Laboratory fuel tests showed that the DEE is completely miscible with diesel and kerosene in any proportion. It was observed that the density, kinematic viscosity and calorific value of the blends decreases, while the oxygen content and cetane number of the blends increases with the concentration of DEE addition. The experimental test results showed that the DEE–kerosene–diesel blends have low brake thermal efficiency, high brake specific fuel consumption, high smoke at full load, low smoke at part load, overall low NO, almost similar CO, high HC at full load and low HC at part load as compared to DE15D blend

  20. Thermodynamic and kinetic anisotropies in octane thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haji-Akbari, Amir; Debenedetti, Pablo G., E-mail: pdebene@exchange.princeton.edu [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-12-07

    Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵ{sub S}. Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵ{sub S}, while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵ{sub S}) substrates undergo “pre-freezing,” characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵ{sub S}) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations—proposed in the above-mentioned work—in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy

  1. Thermodynamic and kinetic anisotropies in octane thin films

    International Nuclear Information System (INIS)

    Haji-Akbari, Amir; Debenedetti, Pablo G.

    2015-01-01

    Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵ S . Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵ S , while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵ S ) substrates undergo “pre-freezing,” characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵ S ) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations—proposed in the above-mentioned work—in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy landscape by performing

  2. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes.

    Science.gov (United States)

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  3. Evaluation of Anti-Knock Quality of Dicyclopentadiene-Gasoline Blends

    KAUST Repository

    Al-Khodaier, Mohannad

    2017-03-28

    Increasing the anti-knock quality of gasoline fuels can enable higher efficiency in spark ignition engines. In this study, the blending anti-knock quality of dicyclopentadiene (DCPD), a by-product of ethylene production from naphtha cracking, with various gasoline fuels is explored. The blends were tested in an ignition quality tester (IQT) and a modified cooperative fuel research (CFR) engine operating under homogenous charge compression ignition (HCCI) and knock limited spark advance (KLSA) conditions. Due to current fuel regulations, ethanol is widely used as a gasoline blending component in many markets. In addition, ethanol is widely used as a fuel and literature verifying its performance. Moreover, because ethanol exhibits synergistic effects, the test results of DCPD-gasoline blends were compared to those of ethanol-gasoline blends. The experiments conducted in this work enabled the screening of DCPD auto-ignition characteristics across a range of combustion modes. The synergistic blending nature of DCPD was apparent and appeared to be greater than that of ethanol. The data presented suggests that DCPD has the potential to be a high octane blending component in gasoline; one which can substitute alkylates, isomerates, reformates, and oxygenates.

  4. Evaluation of Anti-Knock Quality of Dicyclopentadiene-Gasoline Blends

    KAUST Repository

    Al-Khodaier, Mohannad; Bhavani Shankar, Vijai Shankar; Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Johansson, Bengt

    2017-01-01

    Increasing the anti-knock quality of gasoline fuels can enable higher efficiency in spark ignition engines. In this study, the blending anti-knock quality of dicyclopentadiene (DCPD), a by-product of ethylene production from naphtha cracking, with various gasoline fuels is explored. The blends were tested in an ignition quality tester (IQT) and a modified cooperative fuel research (CFR) engine operating under homogenous charge compression ignition (HCCI) and knock limited spark advance (KLSA) conditions. Due to current fuel regulations, ethanol is widely used as a gasoline blending component in many markets. In addition, ethanol is widely used as a fuel and literature verifying its performance. Moreover, because ethanol exhibits synergistic effects, the test results of DCPD-gasoline blends were compared to those of ethanol-gasoline blends. The experiments conducted in this work enabled the screening of DCPD auto-ignition characteristics across a range of combustion modes. The synergistic blending nature of DCPD was apparent and appeared to be greater than that of ethanol. The data presented suggests that DCPD has the potential to be a high octane blending component in gasoline; one which can substitute alkylates, isomerates, reformates, and oxygenates.

  5. A formative evaluation of a high school blended learning biology course

    Science.gov (United States)

    Nellman, Stephen William

    As growing student populations continue to tax the resources of public high schools, administrators are constantly looking for ways to address the needs of all students. One option for increasing the number of students in a classroom without sacrificing quality of instruction is to use "blended learning". Blended learning is defined by Marsh et al. (2003, p.2) as a situation where "face-to-face and distance education delivery methods and resources are merged". In such a course, students receive the benefits of classroom-based instruction, while also benefiting from several aspects of distance learning. This is especially true for science courses that rely heavily on both hands-on labs and various multimedia. The purpose of this study was a formative evaluation of a high school blended learning biology course, focusing on a genetics unit. The research question addressed by the study was "Will participants increase their domain knowledge and problem-solving skills after instruction in a high school level blended distance learning biology course? Also investigated was if higher levels of self-regulation skills were correlated to higher levels of content-understanding and problem-solving. The study was composed of a pilot study and a main study. Participants were students in an urban Southern California public high school biology course. Classroom instruction was from a single instructor, and online content was managed using the "Moodle" course management system. Participants were assessed for their gains in genetics content-understanding, genetics problem-solving skills (Punnett squares), and self-regulation. Additionally, participant reactions to the blended instruction model were surveyed. Results indicated that significant increases (pself-regulation skills were not shown to be significantly correlated to increased content-understanding, or problem-solving skills. Participants reacted positively to the blended model, suggesting that it be used more often in their

  6. Predicting octane number using nuclear magnetic resonance spectroscopy and artificial neural networks

    KAUST Repository

    Abdul Jameel, Abdul Gani

    2018-04-17

    Machine learning algorithms are attracting significant interest for predicting complex chemical phenomenon. In this work, a model to predict research octane number (RON) and motor octane number (MON) of pure hydrocarbons, hydrocarbon-ethanol blends and gasoline-ethanol blends has been developed using artificial neural networks (ANN) and molecular parameters from 1H nuclear Magnetic Resonance (NMR) spectroscopy. RON and MON of 128 pure hydrocarbons, 123 hydrocarbon-ethanol blends of known composition and 30 FACE (fuels for advanced combustion engines) gasoline-ethanol blends were utilized as a dataset to develop the ANN model. The effect of weight % of seven functional groups including paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic -CH=CH2 groups, naphthenic CH-CH2 groups, aromatic C-CH groups and ethanolic OH groups on RON and MON was studied. The effect of branching (i.e., methyl substitution), denoted by a parameter termed as branching index (BI), and molecular weight (MW) were included as inputs along with the seven functional groups to predict RON and MON. The topology of the developed ANN models for RON (9-540-314-1) and MON (9-340-603-1) have two hidden layers and a large number of nodes, and was validated against experimentally measured RON and MON of pure hydrocarbons, hydrocarbon-ethanol and gasoline-ethanol blends; a good correlation (R2=0.99) between the predicted and the experimental data was obtained. The average error of prediction for both RON and MON was found to be 1.2 which is close to the range of experimental uncertainty. This shows that the functional groups in a molecule or fuel can be used to predict its ON, and the complex relationship between them can be captured by tools like ANN.

  7. Predicting octane number using nuclear magnetic resonance spectroscopy and artificial neural networks

    KAUST Repository

    Abdul Jameel, Abdul Gani; Oudenhoven, Vincent Van; Emwas, Abdul-Hamid M.; Sarathy, Mani

    2018-01-01

    Machine learning algorithms are attracting significant interest for predicting complex chemical phenomenon. In this work, a model to predict research octane number (RON) and motor octane number (MON) of pure hydrocarbons, hydrocarbon-ethanol blends and gasoline-ethanol blends has been developed using artificial neural networks (ANN) and molecular parameters from 1H nuclear Magnetic Resonance (NMR) spectroscopy. RON and MON of 128 pure hydrocarbons, 123 hydrocarbon-ethanol blends of known composition and 30 FACE (fuels for advanced combustion engines) gasoline-ethanol blends were utilized as a dataset to develop the ANN model. The effect of weight % of seven functional groups including paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic -CH=CH2 groups, naphthenic CH-CH2 groups, aromatic C-CH groups and ethanolic OH groups on RON and MON was studied. The effect of branching (i.e., methyl substitution), denoted by a parameter termed as branching index (BI), and molecular weight (MW) were included as inputs along with the seven functional groups to predict RON and MON. The topology of the developed ANN models for RON (9-540-314-1) and MON (9-340-603-1) have two hidden layers and a large number of nodes, and was validated against experimentally measured RON and MON of pure hydrocarbons, hydrocarbon-ethanol and gasoline-ethanol blends; a good correlation (R2=0.99) between the predicted and the experimental data was obtained. The average error of prediction for both RON and MON was found to be 1.2 which is close to the range of experimental uncertainty. This shows that the functional groups in a molecule or fuel can be used to predict its ON, and the complex relationship between them can be captured by tools like ANN.

  8. Pressure-dependent kinetics of initial reactions in iso-octane pyrolysis.

    Science.gov (United States)

    Ning, HongBo; Gong, ChunMing; Li, ZeRong; Li, XiangYuan

    2015-05-07

    This study focuses on the studies of the main pressure-dependent reaction types of iso-octane (iso-C8H18) pyrolysis, including initial C-C bond fission of iso-octane, isomerization, and β-scission reactions of the alkyl radicals produced by the C-C bond fission of iso-octane. For the C-C bond fission of iso-octane, the minimum energy potentials are calculated at the CASPT2(2e,2o)/6-31+G(d,p)//CAS(2e,2o)/6-31+G(d,p) level of theory. For the isomerization and the β-scission reactions of the alkyl radicals, the optimization of the geometries and the vibrational frequencies of the reactants, transition states, and products are performed at the B3LYP/CBSB7 level, and their single point energies are calculated by using the composite CBS-QB3 method. Variable reaction coordinate transition state theory (VRC-TST) is used for the high-pressure limit rate constant calculation and Rice-Ramsperger-Kassel-Marcus/master equation (RRKM/ME) is used to calculate the pressure-dependent rate constants of these channels with pressure varying from 0.01-100 atm. The rate constants obtained in this work are in good agreement with those available from literatures. We have updated the rate constants and thermodynamic parameters for species involved in these reactions into a current chemical kinetic mechanism and also have improved the concentration profiles of main products such as C3H6 and C4H6 in the shock tube pyrolysis of iso-octane. The results of this study provide insight into the pyrolysis of iso-octane and will be helpful in the future development of branched paraffin kinetic mechanisms.

  9. A new simplex chemometric approach to identify olive oil blends with potentially high traceability.

    Science.gov (United States)

    Semmar, N; Laroussi-Mezghani, S; Grati-Kamoun, N; Hammami, M; Artaud, J

    2016-10-01

    Olive oil blends (OOBs) are complex matrices combining different cultivars at variable proportions. Although qualitative determinations of OOBs have been subjected to several chemometric works, quantitative evaluations of their contents remain poorly developed because of traceability difficulties concerning co-occurring cultivars. Around this question, we recently published an original simplex approach helping to develop predictive models of the proportions of co-occurring cultivars from chemical profiles of resulting blends (Semmar & Artaud, 2015). Beyond predictive model construction and validation, this paper presents an extension based on prediction errors' analysis to statistically define the blends with the highest predictability among all the possible ones that can be made by mixing cultivars at different proportions. This provides an interesting way to identify a priori labeled commercial products with potentially high traceability taking into account the natural chemical variability of different constitutive cultivars. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Lifecycle optimized ethanol-gasoline blends for turbocharged engines

    KAUST Repository

    Zhang, Bo

    2016-08-16

    This study presents a lifecycle (well-to-wheel) analysis to determine the CO2 emissions associated with ethanol blended gasoline in optimized turbocharged engines. This study provides a more accurate assessment on the best-achievable CO2 emission of ethanol blended gasoline mixtures in future engines. The optimal fuel blend (lowest CO2 emitting fuel) is identified. A range of gasoline fuels is studied, containing different ethanol volume percentages (E0–E40), research octane numbers (RON, 92–105), and octane sensitivities (8.5–15.5). Sugarcane-based and cellulosic ethanol-blended gasolines are shown to be effective in reducing lifecycle CO2 emission, while corn-based ethanol is not as effective. A refinery simulation of production emission was utilized, and combined with vehicle fuel consumption modeling to determine the lifecycle CO2 emissions associated with ethanol-blended gasoline in turbocharged engines. The critical parameters studied, and related to blended fuel lifecycle CO2 emissions, are ethanol content, research octane number, and octane sensitivity. The lowest-emitting blended fuel had an ethanol content of 32 vol%, RON of 105, and octane sensitivity of 15.5; resulting in a CO2 reduction of 7.1%, compared to the reference gasoline fuel and engine technology. The advantage of ethanol addition is greatest on a per unit basis at low concentrations. Finally, this study shows that engine-downsizing technology can yield an additional CO2 reduction of up to 25.5% in a two-stage downsized turbocharged engine burning the optimum sugarcane-based fuel blend. The social cost savings in the USA, from the CO2 reduction, is estimated to be as much as $187 billion/year. © 2016 Elsevier Ltd

  11. The use of synthetic blended fibers to reduce cracking risk in high performance concrete.

    Science.gov (United States)

    2014-09-01

    The aim of this project was to investigate a relatively new technique to control early-age cracking; the : use of blended size polypropylene fibers in high performance concrete mixtures. The key findings : from this work were that the use of drying s...

  12. Morphology control in polymer blend fibers—a high throughput computing approach

    Science.gov (United States)

    Sesha Sarath Pokuri, Balaji; Ganapathysubramanian, Baskar

    2016-08-01

    Fibers made from polymer blends have conventionally enjoyed wide use, particularly in textiles. This wide applicability is primarily aided by the ease of manufacturing such fibers. More recently, the ability to tailor the internal morphology of polymer blend fibers by carefully designing processing conditions has enabled such fibers to be used in technologically relevant applications. Some examples include anisotropic insulating properties for heat and anisotropic wicking of moisture, coaxial morphologies for optical applications as well as fibers with high internal surface area for filtration and catalysis applications. However, identifying the appropriate processing conditions from the large space of possibilities using conventional trial-and-error approaches is a tedious and resource-intensive process. Here, we illustrate a high throughput computational approach to rapidly explore and characterize how processing conditions (specifically blend ratio and evaporation rates) affect the internal morphology of polymer blends during solvent based fabrication. We focus on a PS: PMMA system and identify two distinct classes of morphologies formed due to variations in the processing conditions. We subsequently map the processing conditions to the morphology class, thus constructing a ‘phase diagram’ that enables rapid identification of processing parameters for specific morphology class. We finally demonstrate the potential for time dependent processing conditions to get desired features of the morphology. This opens up the possibility of rational stage-wise design of processing pathways for tailored fiber morphology using high throughput computing.

  13. Highly conductive thermoplastic composite blends suitable for injection molding of bipolar plates

    International Nuclear Information System (INIS)

    Mighri, F.; Huneault, M.A.; Champagne, M.F.

    2003-01-01

    This study aimed at developing highly conductive, lightweight, and low-cost bipolar plates for use in proton exchange membranes (PEM) fuel cells. Injection and compression molding of highly filled polypropylene, PP, and polyphenylene sulfide, PPS, based blends were used as a mean for mass production of bipolar plates. Loadings up to 60-wt% in the form of graphite, conductive carbon black and carbon fibers were investigated. The developed formulations have a combination of properties and processability suitable for bipolar plate manufacturing, such as good chemical resistance, sufficient fluidity, and good electrical and thermal conductivity. Electrical resistivities around 0.15 and 0.09 Ohm-cm were respectively achieved for the PP and PPS-based blends, respectively. Two bipolar plate designs were successfully fabricated by molding the gas flow channels over aluminum plates to form a metallic/polymer composite plate, or simply by direct injection molding of the conductive polymer composite. For the first design, overall plate resistivities of 0.2 and 0.1 Ohm-cm were respectively attained using PP and PPS based blends as conductive skin. A lower volume resistivity of around 0.06 Ohm-cm was attained for the second injected plate design with PPS based blend. (author)

  14. Blended Learning Based on Schoology: Effort of Improvement Learning Outcome and Practicum Chance in Vocational High School

    Science.gov (United States)

    Irawan, Vincentius Tjandra; Sutadji, Eddy; Widiyanti

    2017-01-01

    The aims of this study were to determine: (1) the differences in learning outcome between Blended Learning based on Schoology and Problem-Based Learning, (2) the differences in learning outcome between students with prior knowledge of high, medium, and low, and (3) the interaction between Blended Learning based on Schoology and prior knowledge to…

  15. Effects of help-seeking in a blended high school Biology class

    Science.gov (United States)

    Deguzman, Paolo

    Distance learning provides an opportunity for students to learn valuable information through technology and interactive media. Distance learning additionally offers educational institutions the flexibility of synchronous and asynchronous instruction while increasing enrollment and lowering cost. However, distance education has not been well documented within the context of urban high schools. Distance learning may allow high school students to understand material at an individualized pace for either enrichment or remediation. A successful high school student who participates in distance learning should exhibit high self regulatory skills. However, most urban high school students have not been exposed to distance learning and should be introduced to proper self regulatory strategies that should increase the likelihood of understanding the material. To help facilitate a move into distance learning, a blended distance learning model, the combination of distance learning and traditional learning, will be used. According to O'Neil's (in preparation) revised problem solving model, self regulation is a component of problem solving. Within the Blended Biology course, urban high school students will be trained in help-seeking strategies to further their understanding of genetics and Punnett Square problem solving. This study investigated the effects of help-seeking in a blended high school Biology course. The main study consisted of a help-seeking group (n=55) and a control group (n=53). Both the help-seeking group and the control group were taught by one teacher for two weeks. The help-seeking group had access to Blended Biology with Help-Seeking while the control group only had access to Blended Biology. The main study used a pretest and posttest to measure Genetics Content Understanding, Punnett Square Problem Solving, Adaptive Help-Seeking, Maladaptive Help-Seeking, and Self Regulation. The analysis showed no significant difference in any of the measures in terms of

  16. HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE

    International Nuclear Information System (INIS)

    Magoulas, V; Charles Goergen, C; Ronald Oprea, R

    2008-01-01

    The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the product throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project

  17. Experimental Study of the Effect of Octane Number on the

    Directory of Open Access Journals (Sweden)

    Raed R. Jasem

    2013-05-01

    Full Text Available The experiments had been carried out using two stroke, single cylinder type (TD113, with compression ratio of (7.3:1 Coupled to hydraulic dynamometer type (TD115.          The results showed that there is  enhancement   of the engine  performance  with increasing octane number. This appears clearly when comparing the results of performance with fuel of 75 and 95 octane number.The torque increases 10% at speed of 2750 RPM. The break power also increases 18% when the octane number changed from 75 to 95 at 3000 RPM of engine speed. The same change in octane number will increase the thermal efficiency by 9% at 2300 RPM of engine speed. The break specific fuel consumption decreases at the same ratio of thermal efficiency 9% but at 2400 RPM. The less fuel consumption happens at 2400 RPM for octane number 95. 

  18. A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics

    KAUST Repository

    Atef, Nour

    2017-02-05

    Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.

  19. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    OpenAIRE

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-01-01

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the...

  20. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  1. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal

  2. Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes

    DEFF Research Database (Denmark)

    Li, Qingfeng; Rudbeck, Hans Christian; Chromik, Andreas

    2010-01-01

    Polybenzimidazoles (PBIs) with synthetically modified structures and their blends with a partially fluorinated sulfonated aromatic polyether have been prepared and characterized for high temperature proton exchange membrane fuel cells. Significant improvement in the polymer chemical stability...

  3. Formulation of Zero-Trans Crystalized Fats Produced from Palm Stearin and High Oleic Safflower Oil Blends

    Directory of Open Access Journals (Sweden)

    Nydia E. Buitimea-Cantúa

    2017-01-01

    Full Text Available High intake of trans fat is associated with several chronic diseases such as cardiovascular disease and cancer. Fat blends, produced by direct blending process of palm stearin (PS with high oleic safflower oil (HOSO in different concentrations, were investigated. The effects of the PS addition (50, 70, or 90% and the rate of agitation (RA (1000, 2000, or 3000 rpm on physical properties, fatty acid profile (FAP, trans fatty acids (TFA, crystal structure, and consistency were researched. The blend containing 50% of each sort of oil (50% PS/50% HOSO showed that melting point and features were similar to the control shortening. The saturated fatty acids (SFA were higher followed by monounsaturated (MUFA and polyunsaturated fatty acids (PUFA. Significant differences in the content of palmitic and oleic acids among blends were observed. The 50% PS/50% HOSO blend contained higher oleic acid (42.9% whereas the 90% PS/10% HOSO was higher in palmitic acid (56.9%. The blending of PS/HOSO promoted the β crystal polymorphic forms. The direct blending process of equal amounts of PS and HOSO was an adequate strategy to formulate a new zero-trans crystallized vegetable fats with characteristics similar to commercial counterparts with well-balanced fats rich in both omega 3 and omega 6 fatty acids.

  4. Direct Creation of Highly Conductive Laser-Induced Graphene Nanocomposites from Polymer Blends.

    Science.gov (United States)

    Yazdi, Alireza Zehtab; Navas, Ivonne Otero; Abouelmagd, Ahmed; Sundararaj, Uttandaraman

    2017-09-01

    The current state-of-the-art mixing strategies of nanoparticles with insulating polymeric components have only partially utilized the unique electrical conductivity of graphene in nanocomposite systems. Herein, this paper reports a nonmixing method of direct creation of polymer/graphene nanocomposites from polymer blends via laser irradiation. Polycarbonate-laser-induced graphene (PC-LIG) nanocomposite is produced from a PC/polyetherimide (PC/PEI) blend after exposure to commercially available laser scribing with a power of ≈6 W and a speed of ≈2 cm s -1 . Extremely high electrical conductivities are obtained for the PC-LIG nanocomposites, ranging from 26 to 400 S m -1 , depending on the vol% of the starting PEI phase in the blend. To the authors' knowledge, these conductivity values are at least one order of magnitude higher than the values that are previously reported for conductive polymer/graphene nanocomposites prepared via mixing strategies. The comprehensive microscopy and spectroscopy characterizations reveal a complete graphitization of the PEI phase with columnar microstructure embedded in the PC phase. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Neutral wetting brush layers for block copolymer thin films using homopolymer blends processed at high temperatures

    International Nuclear Information System (INIS)

    Ceresoli, M; Palermo, M; Ferrarese Lupi, F; Seguini, G; Perego, M; Zuccheri, G; Phadatare, S D; Antonioli, D; Gianotti, V; Sparnacci, K; Laus, M

    2015-01-01

    Binary homopolymer blends of two hydroxyl-terminated polystyrene (PS-OH) and polymethylmethacrylate (PMMA-OH) homopolymers (Mn ∼ 16000 g mol"−"1) were grafted on SiO_2 substrates by high-temperature (T > 150 °C), short-time (t < 600 s) thermal treatments. The resulting brush layer was tested to screen preferential interactions of the SiO_2 substrate with the different symmetric and asymmetric PS-b-PMMA block copolymers deposited on top of the grafted molecules. By properly adjusting the blend composition and the processing parameters, an efficient surface neutralization path was identified, enabling the formation, in the block copolymer film, of homogeneous textures of lamellae or cylinders perpendicularly oriented with respect to the substrate. A critical interplay between the phase segregation of the homopolymer blends and their grafting process on the SiO_2 was observed. In fact, the polar SiO_2 is preferential for the PMMA-rich phase that forms a homogeneous layer on the substrate, while the PS-rich phase is located at the polymer-air interface. During the thermal treatment, phase segregation and grafting proceed simultaneously. Complete wetting of the PS rich phase on the PMMA rich phase leads to the formation of a PS/PMMA bilayer. In this case, the progressive diffusion of PS chains toward the polymer-SiO_2 interface during the thermal treatment allows tuning of the brush layer composition. (paper)

  6. Use of Savannah River Site facilities for blend down of highly enriched uranium

    International Nuclear Information System (INIS)

    Bickford, W.E.; McKibben, J.M.

    1994-02-01

    Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO 3 ) powder, uranyl nitrate [UO 2 (NO 3 ) 2 ] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO 2 ) or uranium hexafluoride (UF 3 ), the normal inputs for commercial fuel fabrication. This study's scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO 2 or UF 6 , blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM)

  7. Molecular dynamics simulations on desulfurization of n-octane/thiophene mixture using silica filled polydimethylsiloxane nanocomposite membranes

    International Nuclear Information System (INIS)

    Shariatinia, Zahra; Jalali, Azin Mazloom; Taromi, Faramarz Afshar

    2016-01-01

    Molecular dynamics (MD) simulations were performed at 298.15 K and 1 atm in order to study microstructure and transport behaviors of polydimethylsiloxane (PDMS) membranes containing 0%–8% SiO 2 nanoparticles used for the separation of thiophene from n-octane. It was found that the fractional free volume (FFV) of 0% SiO 2 was the highest (47.24%) among five nanocomposite membranes and addition of 2%–8% silica nanoparticles led to dramatic decrease in the FFV of the cells. The x-ray diffraction (XRD) patterns of all membranes showed that they had a semi-crystalline structure containing a broad peak around 15°–18°. The radial distribution function (RDF) analysis proved that the smallest C(CH 2 -octane)–O(SiO 2 ), C(PDMS)–O(SiO 2 ) and H(thiophene)–O(SiO 2 ) distances were present in 4% SiO 2 membrane reflecting the silica–octane, silica–polymer and silica–thiophene interactions were the strongest in this membrane. The mean squared displacement (MSD) and diffusion coefficients of n-octane were both small in the 6% silica membrane but they were high for thiophene suggesting this membrane was the most suitable for the desulfurization process and separation of thiophene from n-octane. (paper)

  8. Polarization behaviour of polyvinylidenefluoride-polysulfone (PVDF: PSF) blends under high field and high temperature condition

    Science.gov (United States)

    Shrivas, Sandhya; Patel, Swarnim; Dubey, R. K.; Keller, J. M.

    2018-05-01

    Thermally stimulated discharge currents of PVDF: PSF blend samples in ratio 80:20 and 95:05 prepared by the solution cast technique have been studied as a function of polarizing field and polarizing temperature, the temperature corresponding to a peak in TSDC is found to be independent of polarizing field but dependent on the polarizing temperature.

  9. An integrated video- and weight-monitoring system for the surveillance of highly enriched uranium blend down operations

    International Nuclear Information System (INIS)

    Lenarduzzi, R.; Castleberry, K.; Whitaker, M.; Martinez, R.

    1998-01-01

    An integrated video-surveillance and weight-monitoring system has been designed and constructed for tracking the blending down of weapons-grade uranium by the US Department of Energy. The instrumentation is being used by the International Atomic Energy Agency in its task of tracking and verifying the blended material at the Portsmouth Gaseous Diffusion Plant, Portsmouth, Ohio. The weight instrumentation developed at the Oak Ridge National Laboratory monitors and records the weight of cylinders of the highly enriched uranium as their contents are fed into the blending facility while the video equipment provided by Sandia National Laboratory records periodic and event triggered images of the blending area. A secure data network between the scales, cameras, and computers insures data integrity and eliminates the possibility of tampering. The details of the weight monitoring instrumentation, video- and weight-system interaction, and the secure data network is discussed

  10. Improvements to the Composition of Fusel Oil and Analysis of the Effects of Fusel Oil–Gasoline Blends on a Spark-Ignited (SI Engine’s Performance and Emissions

    Directory of Open Access Journals (Sweden)

    Suleyman Simsek

    2018-03-01

    Full Text Available With the increase of energy needs and environmental pollution, alcohol-based alternative fuels are used in spark-ignited (SI engines. Fusel oil, which is a by-product obtained through distillation of ethanol, contains some valuable alcohols. As alcohols are high-octane, they have an important place among the alternative fuels. Fusel also takes its place among those alternatives as it is high-octane and low on exhaust emissions. In this research, the effects of using blends of unleaded gasoline and improved fusel oil on engine performance and exhaust emissions were analyzed experimentally. A four-stroke, single-cylinder, spark-ignited engine was used in the experiments. The tests were conducted at a fixed speed and under different loads. The test fuels were blended supplying with fusel oil at rates incremented by 10%, up to 50%. Under each load, the engine’s performance and emissions were measured. Throughout the experiments, it has been observed that engine torque and specific fuel consumption increases as the amount of fusel oil in the blend is increased. Nitrogen oxide (NOx, carbon monoxide (CO, and hydrocarbon (HC emissions are reduced as the amount of fusel oil in the blends is increased.

  11. An Analysis of High Impact Scholarship and Publication Trends in Blended Learning

    Science.gov (United States)

    Halverson, Lisa R.; Graham, Charles R.; Spring, Kristian J.; Drysdale, Jeffery S.

    2012-01-01

    Blended learning is a diverse and expanding area of design and inquiry that combines face-to-face and online modalities. As blended learning research matures, numerous voices enter the conversation. This study begins the search for the center of this emerging area of study by finding the most cited scholarship on blended learning. Using Harzing's…

  12. Highly toughened polypropylene/ethylene–propylene-diene monomer/zinc dimethacrylate ternary blends prepared via peroxide-induced dynamic vulcanization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yukun, E-mail: cyk@scut.edu.cn [The Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640 (China); School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Xu, Chuanhui [College of Material Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Cao, Liming [The Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640 (China); School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Cao, Xiaodong [College of Material Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2013-02-15

    Polypropylene (PP)/ethylene–propylene-diene monomer (EPDM)/zinc dimethacrylate (ZDMA) blends with remarkable toughness and extensibility were successfully prepared via peroxide dynamical vulcanization. A unique structure with the EPDM particles surrounded by a transition zone containing numerous polymerized ZDMA (PZDMA) nano-particles was observed for the first time by using transmission electron microscopy (TEM) examination, which contributed to the dramatically increase of Izod impact strength. Dynamic mechanical analysis (DMA) confirmed that the possible PZDMA graft products resulted from peroxide dynamical vulcanization improved the compatibility between EPDM and PP phases. The specific morphology of the PP/EPDM/ZDMA blends indicated that ZDMA can lead to size reduction and good distribution uniformity of the crosslinked rubber particles and the increase of adhesion between PP matrix and EPDM phases during deformation. The synergic effect of the increase in the effective volume of the EPDM phase, the improved compatibility and adhesion between EPDM and PP phases and the deformation of those fine rubber particles is believed to result in the remarkable high toughness and extensibility of the PP/EPDM/ZDMA blends. Particularly for the PP/EPDM ratio of 70/30, the PP/EPDM/ZDMA (70/30/9, w/w/w) ternary blends with the Izod impact strength nearly 2 times higher than PP/EPDM (70/30, w/w) binary blends and 15–20 times higher than PP are achieved; besides, the elongation at break of PP/EPDM/ZDMA ternary blends is 4–5 times higher than that of PP/EPDM binary blends. - Highlights: ► ZDMA largely toughen peroxide dynamically vulcanized PP/EPDM blend. ► PZDMA graft products improved the compatibility and adhesion between EPDM and PP. ► Size reduction and good distribution uniformity of crosslinked rubber particles.

  13. Highly toughened polypropylene/ethylene–propylene-diene monomer/zinc dimethacrylate ternary blends prepared via peroxide-induced dynamic vulcanization

    International Nuclear Information System (INIS)

    Chen, Yukun; Xu, Chuanhui; Cao, Liming; Cao, Xiaodong

    2013-01-01

    Polypropylene (PP)/ethylene–propylene-diene monomer (EPDM)/zinc dimethacrylate (ZDMA) blends with remarkable toughness and extensibility were successfully prepared via peroxide dynamical vulcanization. A unique structure with the EPDM particles surrounded by a transition zone containing numerous polymerized ZDMA (PZDMA) nano-particles was observed for the first time by using transmission electron microscopy (TEM) examination, which contributed to the dramatically increase of Izod impact strength. Dynamic mechanical analysis (DMA) confirmed that the possible PZDMA graft products resulted from peroxide dynamical vulcanization improved the compatibility between EPDM and PP phases. The specific morphology of the PP/EPDM/ZDMA blends indicated that ZDMA can lead to size reduction and good distribution uniformity of the crosslinked rubber particles and the increase of adhesion between PP matrix and EPDM phases during deformation. The synergic effect of the increase in the effective volume of the EPDM phase, the improved compatibility and adhesion between EPDM and PP phases and the deformation of those fine rubber particles is believed to result in the remarkable high toughness and extensibility of the PP/EPDM/ZDMA blends. Particularly for the PP/EPDM ratio of 70/30, the PP/EPDM/ZDMA (70/30/9, w/w/w) ternary blends with the Izod impact strength nearly 2 times higher than PP/EPDM (70/30, w/w) binary blends and 15–20 times higher than PP are achieved; besides, the elongation at break of PP/EPDM/ZDMA ternary blends is 4–5 times higher than that of PP/EPDM binary blends. - Highlights: ► ZDMA largely toughen peroxide dynamically vulcanized PP/EPDM blend. ► PZDMA graft products improved the compatibility and adhesion between EPDM and PP. ► Size reduction and good distribution uniformity of crosslinked rubber particles

  14. Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

  15. Economic and environmental benefits of higher-octane gasoline.

    Science.gov (United States)

    Speth, Raymond L; Chow, Eric W; Malina, Robert; Barrett, Steven R H; Heywood, John B; Green, William H

    2014-06-17

    We quantify the economic and environmental benefits of designing U.S. light-duty vehicles (LDVs) to attain higher fuel economy by utilizing higher octane (98 RON) gasoline. We use engine simulations, a review of experimental data, and drive cycle simulations to estimate the reduction in fuel consumption associated with using higher-RON gasoline in individual vehicles. Lifecycle CO2 emissions and economic impacts for the U.S. LDV fleet are estimated based on a linear-programming refinery model, a historically calibrated fleet model, and a well-to-wheels emissions analysis. We find that greater use of high-RON gasoline in appropriately tuned vehicles could reduce annual gasoline consumption in the U.S. by 3.0-4.4%. Accounting for the increase in refinery emissions from production of additional high-RON gasoline, net CO2 emissions are reduced by 19-35 Mt/y in 2040 (2.5-4.7% of total direct LDV CO2 emissions). For the strategies studied, the annual direct economic benefit is estimated to be $0.4-6.4 billion in 2040, and the annual net societal benefit including the social cost of carbon is estimated to be $1.7-8.8 billion in 2040. Adoption of a RON standard in the U.S. in place of the current antiknock index (AKI) may enable refineries to produce larger quantities of high-RON gasoline.

  16. High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends with and without Impurities

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Eric; Mathieu, Olivier; Morones, Anibal; Ravi, Sankar; Keesee, Charles; Hargis, Joshua; Vivanco, Jose

    2014-12-01

    This Topical Report documents the first year of the project, from October 1, 2013 through September 30, 2014. Efforts for this project included experiments to characterize the atmospheric-pressure turbulent flame speed vessel over a range of operating conditions (fan speeds and turbulent length scales). To this end, a new LDV system was acquired and set up for the detailed characterization of the turbulence field. Much progress was made in the area of impurity kinetics, which included a numerical study of the effect of impurities such as NO2, NO, H2S, and NH3 on ignition delay times and laminar flame speeds of syngas blends at engine conditions. Experiments included a series of laminar flame speed measurements for syngas (CO/H2) blends with various levels of CH4 and C2H6 addition, and the results were compared to the chemical kinetics model of NUI Galway. Also, a final NOx kinetics mechanism including ammonia was assembled, and a journal paper was written and is now in press. Overall, three journal papers and six conference papers related to this project were published this year. Finally, much progress was made on the design of the new high-pressure turbulent flame speed facility. An overall design that includes a venting system was decided upon, and the detailed design is in progress.

  17. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  18. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF 6 and a (2) blend the pure HEU UF 6 with diluent UF 6 to produce LWR grade LEU-UF 6 . The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry

  19. Sulfur and octane trade off in FCC naphta conventional hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Badra, C. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Perez, J.A. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Salazar, J.A. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Cabrera, L. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Gracia, W. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion

    1997-06-01

    A model to predict the change of octane numbers expected in an FCC naphtha hydrotreating process as a function of the hydroprocessing severity (degree of sulfur removal) and the type of naphtha (expressed as the sulfur content and bromine number in the feedstock) is presented. When considering hydrotreating as an option for processing their catalytic naphthas, refiners search for the proper balance between the desired reduction of sulfur and olefins and the resulting undesired reduction of octane (RON and MON). In doing so, refiners should study the possibility of performing the hydrotreating at mild severities and/or the possibility of fractionating FCC naphthas to just treat a specific cut. This paper provides simple tools to study and analyze these study cases and to assess the sulfur-octane trade offs. (orig.)

  20. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate).

    Science.gov (United States)

    Lei, Yong; Wu, Qinglin

    2010-05-01

    High-melting-temperature poly(ethylene terephthalate) (PET) was successfully introduced into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre-prepared PET/high density polyethylene (HDPE) microfibrillar blends (MFBs) in the second extrusion at the temperature for processing HDPE. Addition of 25% in situ formed PET microfibers obviously increased the mechanical properties of HDPE, and more significant enhancement by the in situ formed recycled PET microfibers was observed for the recycled HDPE. Adding 2% E-GMA improved the compatibility between matrix and microfibers in MFBs, resulting further enhanced mechanical properties. The subsequent addition of 40% wood flour did not influence the size and morphology of PET microfibers, and improved the comprehensive mechanical properties of MFBs. The wood flour increased the crystallinity level of HDPE in the compatibilized MFB in which PET phase did not crystallize. The storage modulus of MFB was greatly improved by wood flour. Published by Elsevier Ltd.

  1. Biodegradability Study of the Blend Film of High Density Polyethylene and Poly(lactic acid Disposable Packages Flake

    Directory of Open Access Journals (Sweden)

    Elahe Baghi Neirizi

    2016-03-01

    Full Text Available One of the major concerns of using a non-biodegradable polymer product is its disposal at the end of its life cycle. Development of biodegradable plastics promises an alternative solution to combat this problem. Blending of poly(lactic acid with non-biodegradable polymers is a practical and economical method for modifying the biodegradability properties of non-biodegradable polymers. In this study, soil biodegradability of the blends of high density polyethylene (HDPE and variable amounts of recycled poly(lactic acid (r-PLA plastic flakes at 0, 5, 10, 20, 30, 40 and 50 wt% was studied. The behavior of the force-elongation profile of the blends having r-PLA content of lower than 30 wt% was approximately the same as that of pure HDPE while, it was completely different for the other blends. Tearing force and elongation-at-yield-point of the blends films with the 20 to 50 wt% r-PLA were decreased significantly after 60 days of soil biodegradability test. Morphological study showed that biodegradability of the blend films at surface of the samples (deep pores and grooves was increased with extended biodegradability time and higher r-PLA content, while, this variation was significant for the blend films of more than 20 wt% r-PLA content. Thermal properties evaluation by differential scanning calorimetry (DSC curves indicated that the glass transition temperature and enthalpy peaks during the heating stage were eliminated with increasing the biodegradability testing time. Also, reduction in the crystallinity degree of the r-PLA component with increasing the biodegradability testing time coincided with the earlier results.

  2. High molecular weight poly(L-lactide) and poly(ethylene oxide) blends : Thermal characterization and physical properties

    NARCIS (Netherlands)

    Nijenhuis, AJ; Colstee, E; Grijpma, DW; Pennings, AJ

    1996-01-01

    The miscibility of high molecular weight poly(L-lactide) (PLLA) with high molecular weight poly(ethylene oxide) (PEG) was studied by differential scanning calorimetry. Ail blends containing up to 50 weight% PEO showed single glass transition temperatures. The PLLA and PEO melting temperatures were

  3. Terpineol as a novel octane booster for extending the knock limit of gasoline

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; Naser, Nimal; Roberts, William L.; Dibble, Robert W.; Sarathy, Mani

    2016-01-01

    Improving the octane number of gasoline offers the potential of improved engine combustion, as it permits spark timing advancement without engine knock. This study proposes the use of terpineol as an octane booster for gasoline in a spark ignited

  4. Human norovirus surrogate reduction in milk and juice blends by high pressure homogenization.

    Science.gov (United States)

    Horm, Katie Marie; Harte, Federico Miguel; D'Souza, Doris Helen

    2012-11-01

    Novel processing technologies such as high pressure homogenization (HPH) for the inactivation of foodborne viruses in fluids that retain nutritional attributes are in high demand. The objectives of this research were (i) to determine the effects of HPH alone or with an emulsifier (lecithin) on human norovirus surrogates-murine norovirus (MNV-1) and feline calicivirus (FCV-F9)-in skim milk and orange juice, and (ii) to determine HPH effects on FCV-F9 and MNV-1 in orange and pomegranate juice blends. Experiments were conducted in duplicate at 0, 100, 200, 250, and 300 MPa for PFU/ml at 300 and 250 MPa, respectively, and ≥4- and ∼1-log PFU/ml reductions were obtained in orange juice at 300 and 250 MPa, respectively. In orange juice or milk combined with lecithin, FCV-F9 was reduced to nondetectable levels at 300 MPa, and by 1.77 and 0.78 log PFU/ml at 250 MPa. MNV-1 in milk was reduced by ∼1.3 log PFU/ml only at 300 MPa, and by ∼0.8 and ∼0.4 log PFU/ml in orange juice at 300 and 250 MPa, respectively. MNV-1 in milk or orange juice containing lecithin at 300 MPa showed 1.32- and 2.5-log PFU/ml reductions, respectively. In the pomegranate-orange juice blend, FCV-F9 was completely reduced, and MNV-1 was reduced by 1.04 and 1.78 log PFU/ml at 250 and 300 MPa, respectively. These results show that HPH has potential for commercial use to inactivate foodborne virus surrogates in juices.

  5. Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig

    International Nuclear Information System (INIS)

    Xu, Yufu; Wang, Qiongjie; Hu, Xianguo; Li, Chuan; Zhu, Xifeng

    2010-01-01

    The diesel fuel was mixed with the rice husk bio-oil using some emulsifiers based on the theory of Hydrophile-Lipophile Balance (HLB). The lubricity of the bio-oil/diesel fuel blend was studied on a High Frequency Reciprocating Test Rig (HFRR) according to ASTM D 6079-2004. The microscopic topography and chemical composition on the worn surface were analyzed respectively using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The profile and surface roughness of the rubbed trace were measured using a profilometer. The chemical group and composition were studied by a Fourier transform infrared spectrometry (FTIR). The results showed that the lubrication ability of the present fuel blend was better than that of the Chinese conventional diesel fuel (number zero). However, the anti-corrosion and anti-wear properties of the fuel blend were not satisfactory in comparison with those of conventional diesel fuel.

  6. A novel wood flour-filled composite based on microfibrillar high-density polyethylene (HDPE)/Nylon-6 blends.

    Science.gov (United States)

    Liu, Hongzhi; Yao, Fei; Xu, Yanjun; Wu, Qinglin

    2010-05-01

    A novel wood flour (WF)-filled composite based on the microfibrillar high-density polyethylene (HDPE) and Nylon-6 co-blend, in which both in situ formed Nylon-6 microfibrils and WF acted as reinforcing elements, was successfully developed using a two-step extrusion method. At the 30wt.% WF loading level, WF-filled composite based on the microfibrillized HDPE/Nylon-6 blend exhibited higher strengths and moduli than the corresponding HDPE-based composite. The incorporation of WF reduced short-term creep response of HDPE matrix and the presence of Nylon-6 microfibrils further contributed to the creep reduction. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Ab initio molecular dynamics simulation of structural transformation in zinc blende GaN under high pressure

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Gao, Fei; Zu, X.T.; Weber, W.J.

    2010-01-01

    High-pressure induced zinc blende to rocksalt phase transition in GaN has been investigated by ab initio molecular dynamics method to characterize the transformation mechanism at the atomic level. It was shown that at 100 GPa GaN passes through tetragonal and monoclinic states before rocksalt structure is formed. The transformation mechanism is consistent with that for other zinc blende semiconductors obtained from the same method. Detailed structural analysis showed that there is no bond breaking involved in the phase transition.

  8. Exploring Teachers' Blended Learning Experiences in a Rural Alabama High School

    Science.gov (United States)

    Jones, Aslean Madison

    2017-01-01

    The use of blended learning is fast becoming a practice used in public schools to address 21st century learning challenges. However, despite the growing use of instructional delivery models that blend online learning platforms with traditional instruction in brick and mortar classrooms, little is known about teachers' experiences with the…

  9. Mutual interaction between high and low stereo-regularity components for crystallization and melting behaviors of polypropylene blend fibers

    Science.gov (United States)

    Kawai, Kouya; Kohri, Youhei; Takarada, Wataru; Takebe, Tomoaki; Kanai, Toshitaka; Kikutani, Takeshi

    2016-03-01

    Crystallization and melting behaviors of blend fibers of two types of polypropylene (PP), i.e. high stereo-regularity/high molecular weight PP (HPP) and low stereo-regularity/low molecular weight PP (LPP), was investigated. Blend fibers consisting of various HPP/LPP compositions were prepared through the melt spinning process. Differential scanning calorimetry (DSC), temperature modulated DSC (TMDSC) and wide-angle X-ray diffraction (WAXD) analysis were applied for clarifying the crystallization and melting behaviors of individual components. In the DSC measurement of blend fibers with high LPP composition, continuous endothermic heat was detected between the melting peaks of LPP at around 40 °C and that of HPP at around 160 °C. Such endothermic heat was more distinct for the blend fibers with higher LPP composition indicating that the melting of LPP in the heating process was hindered because of the presence of HPP crystals. On the other hand, heat of crystallization was detected at around 90 °C in the case of blend fibers with LPP content of 30 to 70 wt%, indicating that the crystallization of HPP component was taking place during the heating of as-spun blend fibers in the DSC measurement. Through the TMDSC analysis, re-organization of the crystalline structure through the simultaneous melting and re-crystallization was detected in the cases of HPP and blend fibers, whereas re-crystallization was not detected during the melting of LPP fibers. In the WAXD analysis during the heating of fibers, amount of a-form crystal was almost constant up to the melting in the case of single component HPP fibers, whereas there was a distinct increase of the intensity of crystalline reflections from around 100 °C, right after the melting of LPP in the case of blend fibers. These results suggested that the crystallization of HPP in the spinning process as well as during the conditioning process after spinning was hindered by the presence of LPP.

  10. Mutual interaction between high and low stereo-regularity components for crystallization and melting behaviors of polypropylene blend fibers

    International Nuclear Information System (INIS)

    Kawai, Kouya; Takarada, Wataru; Kikutani, Takeshi; Kohri, Youhei; Takebe, Tomoaki; Kanai, Toshitaka

    2016-01-01

    Crystallization and melting behaviors of blend fibers of two types of polypropylene (PP), i.e. high stereo-regularity/high molecular weight PP (HPP) and low stereo-regularity/low molecular weight PP (LPP), was investigated. Blend fibers consisting of various HPP/LPP compositions were prepared through the melt spinning process. Differential scanning calorimetry (DSC), temperature modulated DSC (TMDSC) and wide-angle X-ray diffraction (WAXD) analysis were applied for clarifying the crystallization and melting behaviors of individual components. In the DSC measurement of blend fibers with high LPP composition, continuous endothermic heat was detected between the melting peaks of LPP at around 40 °C and that of HPP at around 160 °C. Such endothermic heat was more distinct for the blend fibers with higher LPP composition indicating that the melting of LPP in the heating process was hindered because of the presence of HPP crystals. On the other hand, heat of crystallization was detected at around 90 °C in the case of blend fibers with LPP content of 30 to 70 wt%, indicating that the crystallization of HPP component was taking place during the heating of as-spun blend fibers in the DSC measurement. Through the TMDSC analysis, re-organization of the crystalline structure through the simultaneous melting and re-crystallization was detected in the cases of HPP and blend fibers, whereas re-crystallization was not detected during the melting of LPP fibers. In the WAXD analysis during the heating of fibers, amount of a-form crystal was almost constant up to the melting in the case of single component HPP fibers, whereas there was a distinct increase of the intensity of crystalline reflections from around 100 °C, right after the melting of LPP in the case of blend fibers. These results suggested that the crystallization of HPP in the spinning process as well as during the conditioning process after spinning was hindered by the presence of LPP.

  11. Mutual interaction between high and low stereo-regularity components for crystallization and melting behaviors of polypropylene blend fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Kouya; Takarada, Wataru; Kikutani, Takeshi, E-mail: kikutani.t.aa@m.titech.ac.jp [Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Kohri, Youhei; Takebe, Tomoaki [Performance Materials Laboratories, Idemitsu Kosan Co.,Ltd. (Japan); Kanai, Toshitaka [KT Polymer (Japan)

    2016-03-09

    Crystallization and melting behaviors of blend fibers of two types of polypropylene (PP), i.e. high stereo-regularity/high molecular weight PP (HPP) and low stereo-regularity/low molecular weight PP (LPP), was investigated. Blend fibers consisting of various HPP/LPP compositions were prepared through the melt spinning process. Differential scanning calorimetry (DSC), temperature modulated DSC (TMDSC) and wide-angle X-ray diffraction (WAXD) analysis were applied for clarifying the crystallization and melting behaviors of individual components. In the DSC measurement of blend fibers with high LPP composition, continuous endothermic heat was detected between the melting peaks of LPP at around 40 °C and that of HPP at around 160 °C. Such endothermic heat was more distinct for the blend fibers with higher LPP composition indicating that the melting of LPP in the heating process was hindered because of the presence of HPP crystals. On the other hand, heat of crystallization was detected at around 90 °C in the case of blend fibers with LPP content of 30 to 70 wt%, indicating that the crystallization of HPP component was taking place during the heating of as-spun blend fibers in the DSC measurement. Through the TMDSC analysis, re-organization of the crystalline structure through the simultaneous melting and re-crystallization was detected in the cases of HPP and blend fibers, whereas re-crystallization was not detected during the melting of LPP fibers. In the WAXD analysis during the heating of fibers, amount of a-form crystal was almost constant up to the melting in the case of single component HPP fibers, whereas there was a distinct increase of the intensity of crystalline reflections from around 100 °C, right after the melting of LPP in the case of blend fibers. These results suggested that the crystallization of HPP in the spinning process as well as during the conditioning process after spinning was hindered by the presence of LPP.

  12. Matrimid®/polysulfone blend mixed matrix membranes containing ZIF-8 nanoparticles for high pressure stability in natural gas separation

    NARCIS (Netherlands)

    Shahid, S.; Nijmeijer, K.

    2017-01-01

    Plasticization is of important concern in high pressure natural gas separation. Majority of the pure polymers and MOF-MMM systems suffer from plasticization at low pressures. Combination of polymer blending and MMM approach could lead to plasticization resistant membranes with improved membrane

  13. Review of market for octane enhancers: Final report

    Energy Technology Data Exchange (ETDEWEB)

    J. E. Sinor Consultants, Inc.

    2000-06-20

    Crude oil is easily separated into its principal products by simple distillation. However, neither the amounts nor the quality of these natural products matches demand. Today, octane requirements must be achieved by changing the chemical composition of the straight-run gasoline fraction.

  14. Ignition studies of two low-octane gasolines

    KAUST Repository

    Javed, Tamour; Ahmed, Ahfaz; Lovisotto, Leonardo; Issayev, Gani; Badra, Jihad; Sarathy, Mani; Farooq, Aamir

    2017-01-01

    , were measured in a shock tube and a rapid compression machine over a broad range of engine-relevant conditions (650–1200 K, 20 and 40 bar and ϕ = 0.5 and 1). The two gasolines are of similar octane ratings with anti-knock index, AKI = (RON + MON)/2

  15. Development of foams from linear polypropylene (PP) and high melt strength polypropylene (HMSPP) polymeric blends

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth Carvalho Leite

    2009-01-01

    Foamed polymers are future materials, with a comprehensive application field. They can be used in order to improve appearance of insulation structures, for example, or to reduce costs involving materials. This work address to Isotactic Polypropylene / High Melt Strength Polypropylene blends, for foams production. Rheological behavior of polymer melt, especially referring to viscosity in processing temperature, plays a decisive role in applications where dominates extensional flow, as in case of foaming. If the viscosity is very low, it will correspond to a low melt strength, as in case of linear homopolymer (Isotact PP), and the foam will be prejudiced, due to the impossibility of expansion. Otherwise, if the viscosity is very high, with a high melt strength, the foam will collapse immediately after its formation. In order to get foams with an homogeneous and defined cellular structure, there were accomplished blends, 50% in weight, between linear homopolymer (isotactic PP) and HMSPP, from PP modified as per gamma radiation, in acetylene environment and at a 12.5 kGy doses. Extrusion process used a soluble foaming methodology, according to a processing/dissolution principle, which involves the dissolution of a Physical Blowing Agent (PBA), under 30 bar pressure, homogeneously mixed with polymeric melt. Extrusion conditions, that generally involve temperature, pressure and viscoelastic material flow control were experimentally investigated to define prevalent characteristics for producing foams. Nitrogen was the used PBA and process extrusion parameters were adapted to PP, HMSPP and their 50% in weight mixtures thereof. Major PP and HMSPP characteristics were obtained via melt Index and melt strength and thermal analyses (DSC/TGA), in order to make viable and to reproduce foaming as per extrusion process. Foams cellular morphology of PP, HMSPP and their 50% in weight mixtures thereof was investigated, with and without talc addition, as nucleating agent, by using

  16. A one pot solution blending method for highly conductive poly (methyl methacrylate)-highly reduced graphene nanocomposites

    Science.gov (United States)

    Balasubramaniyan, R.; Pham, Viet Hung; Jang, Jinhee; Hur, Seung Hyun; Chung, Jin Suk

    2013-11-01

    PMMA-HRG (Poly (methyl methacrylate)-highly reduced graphene) nanocomposites were prepared by a solution blending method, and the effect of HRG loading on the electrical, mechanical, and thermal properties of the materials was studied. PMMA-HRG nanocomposites achieved a percolation threshold of 0.37 vol.% (0.039 S/m) and a maximum electrical conductivity as high as 85 S/m at a loading of 2.7 vol. %. The homogeneous dispersion of HRG sheets overcame aggregation in solution and gave a uniformly distributed single layer graphene in the PMMA matrix. The T g of PMMA-HRG increased by 19°C with a loading of 0.27 vol. %, and the storage modulus of the nanocomposites increased by 37% in the glassy region with a loading of 2.7 vol. %.

  17. Development of Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemical and Biomolecular Engineering

    2016-12-20

    The overall objective of the current project was to investigate the high pressure gasification characteristics of a feed containing both coal and biomass. The two feed types differ in their ash contents and ash composition, particularly the alkali content. Gasification of a combined feed of coal and biomass has the potential for considerable synergies that might lead to a dramatic improvement in process economics and flexibility. The proposed study aimed to develop a detailed understanding of the chemistry, kinetics, and transport effects during high pressure gasification of coal-biomass blend feed. Specifically, we studied to develop: (a) an understanding of the catalytic effect of alkali and other inorganic species present in the biomass and coal, (b) an understanding of processing conditions under which synergistic effects of the blending of coal and biomass might be observed. This included the role of particle size, residence time, and proximity of the two feed types, (c) kinetics of high pressure gasification of individual feeds as well as the blends, and (d) development of mathematical models that incorporate kinetics and transport models to enable prediction of gasification rate at a given set of operating conditions, and (e) protocols to extend the results to other feed resources. The goal was to provide a fundamental understanding of the gasification process and guide in optimizing the configurations and design of the next generation of gasifiers. The approach undertaken was centered on two basic premises: (1) the gasification for small particles without internal mass transfer limitations can be treated as the sum of two processes in series (pyrolysis and char gasification) , and (2) the reactivity of the char generated during pyrolysis not only depends on the pressure and temperature but is also affected by the heating rates. Thus low heating rates (10-50 °C/min) typical of PTGA fail to produce char that would typically be formed at high heating rates

  18. Evaluation of the Chemical and Mechanical Properties of Hardening High-Calcium Fly Ash Blended Concrete.

    Science.gov (United States)

    Fan, Wei-Jie; Wang, Xiao-Yong; Park, Ki-Bong

    2015-09-07

    High-calcium fly ash (FH) is the combustion residue from electric power plants burning lignite or sub-bituminous coal. As a mineral admixture, FH can be used to produce high-strength concrete and high-performance concrete. The development of chemical and mechanical properties is a crucial factor for appropriately using FH in the concrete industry. To achieve sustainable development in the concrete industry, this paper presents a theoretical model to systematically evaluate the property developments of FH blended concrete. The proposed model analyzes the cement hydration, the reaction of free CaO in FH, and the reaction of phases in FH other than free CaO. The mutual interactions among cement hydration, the reaction of free CaO in FH, and the reaction of other phases in FH are also considered through the calcium hydroxide contents and the capillary water contents. Using the hydration degree of cement, the reaction degree of free CaO in FH, and the reaction degree of other phases in FH, the proposed model evaluates the calcium hydroxide contents, the reaction degree of FH, chemically bound water, porosity, and the compressive strength of hardening concrete with different water to binder ratios and FH replacement ratios. The evaluated results are compared to experimental results, and good consistencies are found.

  19. Blended Learning

    NARCIS (Netherlands)

    Van der Baaren, John

    2009-01-01

    Van der Baaren, J. (2009). Blended Learning. Presentation given at the Mini symposium 'Blended Learning the way to go?'. November, 5, 2009, The Hague, The Netherlands: Netherlands Defence Academy (NDLA).

  20. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Kai; Cao, Yan; Pan, Wei-ping

    2013-03-01

    Despite much research on co-combustion of tobacco stem and high-sulfur coal, their blending optimization has not been effectively found. This study investigated the combustion profiles of tobacco stem, high-sulfur bituminous coal and their blends by thermogravimetric analysis. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions were also studied by thermogravimetric and mass spectrometry analyses. The results indicated that combustion of tobacco stem was more complicated than that of high-sulfur bituminous coal, mainly shown as fixed carbon in it was divided into two portions with one early burning and the other delay burning. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions of the blends present variable trends with the increase of tobacco stem content. Taking into account the above three factors, a blending ratio of 0–20% tobacco stem content is conservatively proposed as optimum amount for blending. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Splitter, Derek A [ORNL; Szybist, James P [ORNL

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  2. A Classroom Demonstration of Water-Induced Phase Separation of Alcohol-Gasoline Biofuel Blends

    Science.gov (United States)

    Mueller, Sherry A.; Anderson, James E.; Wallington, Timothy J.

    2009-01-01

    A significant issue associated with ethanol-gasoline blends is the phase separation that occurs with the addition of small volumes of water, producing an ethanol-deficient gasoline layer and an ethanol-rich aqueous layer. The gasoline layer may have a lower-than-desired octane rating due to the decrease in ethanol content, resulting in engine…

  3. Blended Learning

    OpenAIRE

    Bauerová, Andrea

    2013-01-01

    This thesis is focused on a new approach of education called blended learning. The history and developement of Blended Learning is described in the first part. Then the methods and tools of Blended Learning are evaluated and compared to the traditional methods of education. At the final part an efficient developement of the educational programs is emphasized.

  4. Strategies for cell manipulation and skeletal tissue engineering using high-throughput polymer blend formulation and microarray techniques.

    Science.gov (United States)

    Khan, Ferdous; Tare, Rahul S; Kanczler, Janos M; Oreffo, Richard O C; Bradley, Mark

    2010-03-01

    A combination of high-throughput material formulation and microarray techniques were synergistically applied for the efficient analysis of the biological functionality of 135 binary polymer blends. This allowed the identification of cell-compatible biopolymers permissive for human skeletal stem cell growth in both in vitro and in vivo applications. The blended polymeric materials were developed from commercially available, inexpensive and well characterised biodegradable polymers, which on their own lacked both the structural requirements of a scaffold material and, critically, the ability to facilitate cell growth. Blends identified here proved excellent templates for cell attachment, and in addition, a number of blends displayed remarkable bone-like architecture and facilitated bone regeneration by providing 3D biomimetic scaffolds for skeletal cell growth and osteogenic differentiation. This study demonstrates a unique strategy to generate and identify innovative materials with widespread application in cell biology as well as offering a new reparative platform strategy applicable to skeletal tissues. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  5. Compact reaction cell for homogenizing and down-blending highly enriched uranium metal

    Science.gov (United States)

    McLean, W. II; Miller, P.E.; Horton, J.A.

    1995-05-02

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

  6. Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid

    Science.gov (United States)

    Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.

    2013-05-01

    The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.

  7. Morphology stabilization of heterogeneous blends

    International Nuclear Information System (INIS)

    1980-01-01

    A heterogeneous elastomer blend is described, consisting of at least two elastomer components which are cross-linkable by irradiation and having a stabilized morphology formed by subjecting the blend to high energy radiation to a point from below to slightly above the gel dose of the blend. (author)

  8. Highly efficient low color temperature organic LED using blend carrier modulation layer

    Science.gov (United States)

    Hsieh, Yao-Ching; Chen, Szu-Hao; Shen, Shih-Ming; Wang, Ching-Chiun; Chen, Chien-Chih; Jou, Jwo-Huei

    2012-10-01

    Color temperature (CT) of light has great effect on human physiology and psychology, and low CT light, minimizing melatonin suppression and decreasing the risk of breast, colorectal, and prostate cancer. We demonstrates the incorporation of a blend carrier modulation interlayer (CML) between emissive layers to improve the device performance of low CT organic light emitting diodes, which exhibits an external quantum efficiency of 22.7% and 36 lm W-1 (54 cd A-1) with 1880 K at 100 cd m-2, or 20.8% and 29 lm W-1 (50 cd A-1) with 1940 K at 1000 cd m-2. The result shows a CT much lower than that of incandescent bulbs, which is 2500 K with 15 lmW-1 efficiency, and even as low as that of candles, which is 2000 K with 0.1 lmW-1. The high efficiency of the proposed device may be attributed to its CML, which helps effectively distribute the entering carriers into the available recombination zones.

  9. The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis

    International Nuclear Information System (INIS)

    Doğan, Battal; Erol, Derviş; Yaman, Hayri; Kodanli, Evren

    2017-01-01

    Highlights: • Examining the performance of ethanol-gasoline blend. • Evaluation of the exhaust emissions. • Energy and exergy analysis. • Calculation of irreversibility from cooling system and the exhaust resulting. - Abstract: Ethanol which is considered as an environmentally cleaner alternative to fossil fuels is used on its own or blended with other fuels in different ratios. In this study, ethanol which has high octane rating, low exhaust emission, and which is easily obtained from agricultural products has been used in fuels prepared by blending it with gasoline in various ratios (E0, E10, E20, and E30). Ethanol-gasoline blends have been used in a four-cylinder four-stroke spark ignition engine for performance and emission analysis under full load. In the experimental studies, engine torque, fuel and cooling water flow rates, and exhaust and engine surface temperature have been measured. Engine energy distribution, irreversible processes in the cooling system and the exhaust, and the exergy distribution have been calculated using the experimental data and the formulas for the first and second laws of thermodynamics. Experiments and theoretical calculations showed that ethanol added fuels show reduction in carbon monoxide (CO), carbon dioxide (CO_2) and nitrogen oxide (NO_X) emissions without significant loss of power compared to gasoline. But it was measured that the reduction of the temperature inside the cylinder increases the hydrocarbon (HC) emission.

  10. Orientation and properties of the blends on high-molecular mass polyacrylonitrile with trihydroxyethylenedimethacrylate under electron irradiation

    International Nuclear Information System (INIS)

    Lomonosova, N.V.

    1998-01-01

    Molecular orientation of the drawn blends of high- molecular-mass poly(acrylonitrile) containing 5-50 wt % of trihydroxyethylenedimethacrylate and a change in the orientation of the drawn samples upon irradiation with accelerated electrons was studied by methods of birefringence, isometric heating, and IR dichroism. The degree of orientation of the unirradiated blends containing certain amounts of oligomer exceed that of the individual polymer. In the region of large drawing ratios, the differential degree of orientation of the polymer matrix is not affected by the irradiation, while the orientation of the oligomer component increase. High values of the strength (600-730 MPa) and the modulus (18-22 GPa) of the compositions are due to the presence of a crystalline skeleton formed by unfolded chains of the polymer matrix stabilized by the electron irradiation induced cross-linking

  11. Osmotic and activity coefficients of triorganophosphates in n-octane

    International Nuclear Information System (INIS)

    Sagert, N.H.; Lau, D.W.P.

    1982-01-01

    Vapour pressure osmometry was used to measure osmotic coefficients for tributylphosphate (TBP), tricresylphosphate (TCP), and triethylhexylphosphate (THEP) in n-octane at 30, 40, 50, and 60 0 C and at molalities up to 0.3 mol/kg. Activity coefficients and excess thermodynamic properties (unsymmetrical definition) were calculated from these osmotic coefficients. At 30 0 C, the excess Gibbs free energies for 0.1 mol of solute in 1.0 kg n-octane were -42 J, -66 J, and -20 J for TBP, TCP, and TEHP, respectively. The more ideal behavior of the TEHP-octane system is attributed to the increasing importance of hydrocarbon-hydrocarbon interactions as the chain length is increased. The excess enthalpies for 0.1 mol of solute in 1.0 kg of solvent were -100 J, and -300 J, and -150 J for TBP, TCP, and TEHP, respectively. Thus, association of these solutes arises primarily from entropic effects. Our data could generally be accommodated adequately by postulating association of monomers into dimmers. The exception was TCP at lower temperatures, where more complex models were required

  12. Aromatization of n-octane over Pd/C catalysts

    KAUST Repository

    Yin, Mengchen; Natelson, Robert H.; Campos, Andrew A.; Kolar, Praveen; Roberts, William L.

    2013-01-01

    Gas-phase aromatization of n-octane was investigated using Pd/C catalyst. The objectives were to: (1) determine the effects of temperature (400-600 °C), weight hourly space velocity (WHSV) (0.8-∞), and hydrogen to hydrocarbon molar ratio (MR) (0-6) on conversion, selectivity, and yield (2) compare the activity of Pd/C with Pt/C and Pt/KL catalysts and (3) test the suitability of Pd/C for aromatization of different alkanes including n-hexane, n-heptane, and n-octane. Pd/C exhibited the best aromatization performance, including 54.4% conversion and 31.5% aromatics yield at 500 °C, WHSV = 2 h-1, and a MR of 2. The Pd/C catalyst had higher selectivity towards the preferred aromatics including ethylbenzene and xylenes, whereas Pt/KL had higher selectivity towards benzene and toluene. The results were somewhat consistent with adsorbed n-octane cyclization proceeding mainly through the six-membered ring closure mechanism. In addition, Pd/C was also capable of catalyzing aromatization of n-hexane and n-heptane. © 2012 Elsevier Ltd. All rights reserved.

  13. Simultaneous Delivery of Highly Diverse Bioactive Compounds from Blend Electrospun Fibers for Skin Wound Healing.

    Science.gov (United States)

    Peh, Priscilla; Lim, Natalie Sheng Jie; Blocki, Anna; Chee, Stella Min Ling; Park, Heyjin Chris; Liao, Susan; Chan, Casey; Raghunath, Michael

    2015-07-15

    Blend emulsion electrospinning is widely perceived to destroy the bioactivity of proteins, and a blend emulsion of water-soluble and nonsoluble molecules is believed to be thermodynamically unstable to electrospin smoothly. Here we demonstrate a method to retain the bioactivity of disparate fragile biomolecules when electrospun. Using bovine serum albumin as a carrier protein; water-soluble vitamin C, fat soluble vitamin D3, steroid hormone hydrocortisone, peptide hormone insulin, thyroid hormone triiodothyronine (T3), and peptide epidermal growth factor (EGF) were simultaneously blend-spun into PLGA-collagen nanofibers. Upon release, vitamin C maintained the ability to facilitate Type I collagen secretion by fibroblasts, EGF stimulated skin fibroblast proliferation, and insulin potentiated adipogenic differentiation. Transgenic cell reporter assays confirmed the bioactivity of vitamin D3, T3, and hydrocortisone. These factors concertedly increased keratinocyte and fibroblast proliferation while maintaining keratinocyte basal state. This method presents an elegant solution to simultaneously deliver disparate bioactive biomolecules for wound healing applications.

  14. Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends

    Energy Technology Data Exchange (ETDEWEB)

    AlMaadeed, M.A., E-mail: m.alali@qu.edu.qa [Center for Advanced Materials, Qatar University, 2713 Doha (Qatar); Labidi, Sami [Center for Advanced Materials, Qatar University, 2713 Doha (Qatar); Krupa, Igor [QAPCO Polymer Chair, Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha (Qatar); Karkri, Mustapha [Université Paris-Est CERTES, 61 avenue du Général de Gaulle, 94010 Créteil (France)

    2015-01-20

    Highlights: • Expanded graphite (EG) and low melting point (42.3 °C) wax were added to HDPE to form phase change material. • EG was well dispersed in the composites and did not affect the melting or crystallization of the HDPE matrix. • EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. • The addition of a relatively small quantity of EG enhances the heat conduction in the composite. • HDPE/40% RT42 that contained up to 15% EG demonstrated excellent mechanical and thermal properties and can be used as PCM. - Abstract: Phase change materials fabricated from high density polyethylene (HDPE) blended with 40 or 50 wt% commercial wax (melting point of 43.08 °C) and up to 15 wt% expanded graphite (EG) were studied. Techniques including scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and an experimental device to measure diffusivity and conductivity (DICO) were used to determine the microstructural, mechanical and thermal properties of the composites. The composites possessed good mechanical properties. Additionally, no leaching was observed during material processing or characterization. Although the Young’s modulus increased with the addition of EG, no significant changes in tensile strength were detected. The maximum Young’s modulus achieved was 650 MPa for the HDPE/40% wax composite with 15 wt% EG. The EG was well dispersed within the composites and did not affect the melting or crystallization of the HDPE matrix. The incorporation of EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. The intensification of thermal conductivity occurred with increasing fractions of EG, which was attributed to the high thermal conductivity of graphite. The maximum quantity of heat stored by latent heat was found for the HDPE/40% wax composite with EG. The addition of a relatively small quantity

  15. Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends

    International Nuclear Information System (INIS)

    AlMaadeed, M.A.; Labidi, Sami; Krupa, Igor; Karkri, Mustapha

    2015-01-01

    Highlights: • Expanded graphite (EG) and low melting point (42.3 °C) wax were added to HDPE to form phase change material. • EG was well dispersed in the composites and did not affect the melting or crystallization of the HDPE matrix. • EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. • The addition of a relatively small quantity of EG enhances the heat conduction in the composite. • HDPE/40% RT42 that contained up to 15% EG demonstrated excellent mechanical and thermal properties and can be used as PCM. - Abstract: Phase change materials fabricated from high density polyethylene (HDPE) blended with 40 or 50 wt% commercial wax (melting point of 43.08 °C) and up to 15 wt% expanded graphite (EG) were studied. Techniques including scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and an experimental device to measure diffusivity and conductivity (DICO) were used to determine the microstructural, mechanical and thermal properties of the composites. The composites possessed good mechanical properties. Additionally, no leaching was observed during material processing or characterization. Although the Young’s modulus increased with the addition of EG, no significant changes in tensile strength were detected. The maximum Young’s modulus achieved was 650 MPa for the HDPE/40% wax composite with 15 wt% EG. The EG was well dispersed within the composites and did not affect the melting or crystallization of the HDPE matrix. The incorporation of EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. The intensification of thermal conductivity occurred with increasing fractions of EG, which was attributed to the high thermal conductivity of graphite. The maximum quantity of heat stored by latent heat was found for the HDPE/40% wax composite with EG. The addition of a relatively small quantity

  16. A comparative study of the oxidation characteristics of two gasoline fuels and an n-heptane/iso-octane surrogate mixture

    KAUST Repository

    Javed, Tamour

    2015-01-01

    Ignition delay times and CO, H2O, OH and CO2 time-histories were measured behind reflected shock waves for two FACE (Fuels for Advanced Combustion Engines) gasolines and one PRF (Primary Reference Fuel) blend. The FACE gasolines chosen for this work are primarily paraffinic and have the same octane rating (∼RON = 84) as the PRF blend, but contain varying amounts of iso- and n-paraffins. Species time-histories and ignition delay times were measured using laser absorption methods over a temperature range of 1350-1550 K and pressures near 2 atm. Measured species time-histories and ignition delay times of the PRF blend and the two FACE fuels agreed reasonably well. However, when compared to recent gasoline surrogate mechanisms, the simulations did not capture some of the kinetic trends found in the species profiles. To our knowledge, this work provides some of the first shock tube species time-history data for gasoline fuels and PRF surrogates and should enable further improvements in detailed kinetic mechanisms of gasoline fuels.

  17. Polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Naik, Sanjeev

    2017-08-22

    The present invention provides, among other things, extruded blends of aliphatic polycarbonates and polyolefins. In one aspect, provided blends comprise aliphatic polycarbonates such as poly(propylene carbonate) and a lesser amount of a crystalline or semicrystalline polymer. In certain embodiments, provided blends are characterized in that they exhibit unexpected improvements in their elongation properties. In another aspect, the invention provides methods of making such materials and applications of the materials in applications such as the manufacture of consumer packaging materials.

  18. THOREX processing and zeolite transfer for high-level waste stream processing blending

    International Nuclear Information System (INIS)

    Kelly, S. Jr.; Meess, D.C.

    1997-07-01

    The West Valley Demonstration Project (WVDP) completed the pretreatment of the high-level radioactive waste (HLW) prior to the start of waste vitrification. The HLW originated form the two million liters of plutonium/uranium extraction (PUREX) and thorium extraction (THOREX) wastes remaining from Nuclear Fuel Services' (NFS) commercial nuclear fuel reprocessing operations at the Western New York Nuclear Service Center (WNYNSC) from 1966 to 1972. The pretreatment process removed cesium as well as other radionuclides from the liquid wastes and captured these radioactive materials onto silica-based molecular sieves (zeolites). The decontaminated salt solutions were volume-reduced and then mixed with portland cement and other admixtures. Nineteen thousand eight hundred and seventy-seven 270-liter square drums were filled with the cement-wastes produced from the pretreatment process. These drums are being stored in a shielded facility on the site until their final disposition is determined. Over 6.4 million liters of liquid HLW were processed through the pretreatment system. PUREX supernatant was processed first, followed by two PUREX sludge wash solutions. A third wash of PUREX/THOREX sludge was then processed after the neutralized THOREX waste was mixed with the PUREX waste. Approximately 6.6 million curies of radioactive cesium-137 (Cs-137) in the HLW liquid were removed and retained on 65,300 kg of zeolites. With pretreatment complete, the zeolite material has been mobilized, size-reduced (ground), and blended with the PUREX and THOREX sludges in a single feed tank that will supply the HLW slurry to the Vitrification Facility

  19. Lecithin blended polyamide-6 high aspect ratio nanofiber scaffolds via electrospinning for human osteoblast cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Nirmala, R. [Bio-nano System Engineering, College of Engineering, Chonbuk National University, Jeonju, 561 756 (Korea, Republic of); Park, Hye-Min [Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Jeonju 561 756 (Korea, Republic of); Navamathavan, R. [School of Advanced Materials Engineering, Chonbuk National University, Jeonju 561 756 (Korea, Republic of); Kang, Hyung-Sub [Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Jeonju 561 756 (Korea, Republic of); El-Newehy, Mohamed H. [Petrochemical Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Kim, Hak Yong, E-mail: khy@jbnu.ac.kr [Petrochemical Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Center for Healthcare Technology and Development, Chonbuk National University, Jeonju, 561 756 (Korea, Republic of)

    2011-03-12

    In this study, we focused on the preparation and characterization of lecithin blended polyamide-6 nanofibers via an electrospinning process for human osteoblastic (HOB) cell culture applications. The morphological, structural characterizations and thermal properties of polyamide-6/lecithin nanofibers were determined by using scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetry (TGA). SEM images revealed that the nanofibers were well-oriented with good incorporation of lecithin. FT-IR results indicated the presence of amino groups of lecithin in the blended nanofibers. TGA analysis revealed that the onset degradation temperature decreased with increasing lecithin content in the blended nanofibers. The morphological features of cells attached on polyamide-6/lecithin nanofibers were confirmed by SEM. The adhesion, viability and proliferation properties of osteoblast cells on the polyamide-6/lecithin blended nanofibers were analyzed by in vitro cell compatibility test. This study demonstrated the non-cytotoxic behavior of electrospun polyamide-6/lecithin nanofibers for the osteoblast cell culture.

  20. Lecithin blended polyamide-6 high aspect ratio nanofiber scaffolds via electrospinning for human osteoblast cell culture

    International Nuclear Information System (INIS)

    Nirmala, R.; Park, Hye-Min; Navamathavan, R.; Kang, Hyung-Sub; El-Newehy, Mohamed H.; Kim, Hak Yong

    2011-01-01

    In this study, we focused on the preparation and characterization of lecithin blended polyamide-6 nanofibers via an electrospinning process for human osteoblastic (HOB) cell culture applications. The morphological, structural characterizations and thermal properties of polyamide-6/lecithin nanofibers were determined by using scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetry (TGA). SEM images revealed that the nanofibers were well-oriented with good incorporation of lecithin. FT-IR results indicated the presence of amino groups of lecithin in the blended nanofibers. TGA analysis revealed that the onset degradation temperature decreased with increasing lecithin content in the blended nanofibers. The morphological features of cells attached on polyamide-6/lecithin nanofibers were confirmed by SEM. The adhesion, viability and proliferation properties of osteoblast cells on the polyamide-6/lecithin blended nanofibers were analyzed by in vitro cell compatibility test. This study demonstrated the non-cytotoxic behavior of electrospun polyamide-6/lecithin nanofibers for the osteoblast cell culture.

  1. High flux polyethersulfone-polyimide blend hollow fiber membranes for gas separation

    NARCIS (Netherlands)

    Kapantaidakis, G.; Koops, G.H.

    2002-01-01

    In this work, the preparation of gas separation hollow fibers based on polyethersulfone Sumikaexcel (PES) and polyimide Matrimid 5218 (PI) blends, for three different compositions (i.e. PES/PI: 80/20, 50/50 and 20/80 wt.%), is reported. The dry/wet spinning process has been applied to prepare

  2. NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY

    International Nuclear Information System (INIS)

    Rajamani, Raj K.; Latchireddi, Sanjeeva; Devrani, Vikas; Sethi, Harappan; Henry, Roger; Chipman, Nate

    2003-01-01

    DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide

  3. Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed DI diesel engine

    International Nuclear Information System (INIS)

    Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G.; Dimaratos, A.M.; Kyritsis, D.C.

    2010-01-01

    An experimental investigation is conducted to evaluate the effects of using blends of n-butanol (normal butanol) with conventional diesel fuel, with 8%, 16% and 24% (by volume) n-butanol, on the performance and exhaust emissions of a standard, fully instrumented, four-stroke, high-speed, direct injection (DI), Ricardo/Cussons 'Hydra' diesel engine located at the authors' laboratory. The tests are conducted using each of the above fuel blends or neat diesel fuel, with the engine working at a speed of 2000 rpm and at three different loads. In each test, fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emission parameters of the three butanol-diesel fuel blends from the baseline operation of the diesel engine, i.e., when working with neat diesel fuel, are determined and compared. It is revealed that this fuel, which can be produced from biomass (bio-butanol), forms a challenging and promising bio-fuel for diesel engines. The differing physical and chemical properties of butanol against those for the diesel fuel are used to aid the correct interpretation of the observed engine behavior.

  4. Increasing Octane Value in Catalytic Cracking of n-Hexadecane with Addition of *BEA Type Zeolite

    Directory of Open Access Journals (Sweden)

    Iori Shimada

    2015-04-01

    Full Text Available In this study, multifunctional catalysts were developed by adding *BEA or MFI zeolite with high Si/Al ratio to a residual fluidized catalytic cracking (RFCC catalyst and tested in the catalytic cracking of n-hexadecane, which is a heavy crude oil model compound, for the purpose of increasing the octane value of produced gasoline under the strong hydrogen transfer activity of the RFCC catalyst. Reaction products analysis revealed that the addition of *BEA zeolite to the RFCC catalyst increased the yields of olefins and multi-branched paraffins, which resulted in improvement of the octane value without sacrificing gasoline yield. On the contrary, the addition of MFI zeolite decreased the gasoline yield because it cracks the gasoline range olefins into LPG range olefins. In general, it is difficult to increase the yield of multi-branched molecules because the multi-branched molecule is more easily cracked than linear molecules. Our results suggest the possibility for the selective acceleration of isomerization reaction by the addition of less acidic *BEA zeolite to the RFCC catalyst.

  5. Charge versus Energy Transfer Effects in High-Performance Perylene Diimide Photovoltaic Blend Films.

    Science.gov (United States)

    Singh, Ranbir; Shivanna, Ravichandran; Iosifidis, Agathaggelos; Butt, Hans-Jürgen; Floudas, George; Narayan, K S; Keivanidis, Panagiotis E

    2015-11-11

    Perylene diimide (PDI)-based organic photovoltaic devices can potentially deliver high power conversion efficiency values provided the photon energy absorbed is utilized efficiently in charge transfer (CT) reactions instead of being consumed in nonradiative energy transfer (ET) steps. Hitherto, it remains unclear whether ET or CT primarily drives the photoluminescence (PL) quenching of the PDI excimer state in PDI-based blend films. Here, we affirm the key role of the thermally assisted PDI excimer diffusion and subsequent CT reaction in the process of PDI excimer PL deactivation. For our study we perform PL quenching experiments in the model PDI-based composite made of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2-6-diyl] (PBDTTT-CT) polymeric donor mixed with the N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (PDI) acceptor. Despite the strong spectral overlap between the PDI excimer PL emission and UV-vis absorption of PBDTTT-CT, two main observations indicate that no significant ET component operates in the overall PL quenching: the PL intensity of the PDI excimer (i) increases with decreasing temperature and (ii) remains unaffected even in the presence of 10 wt % content of the PBDTTT-CT quencher. Temperature-dependent wide-angle X-ray scattering experiments further indicate that nonradiative resonance ET is highly improbable due to the large size of PDI domains. The dominance of the CT over the ET process is verified by the high performance of devices with an optimum composition of 30:70 PBDTTT-CT:PDI. By adding 0.4 vol % of 1,8-diiodooctane we verify the plasticization of the polymer side chains that balances the charge transport properties of the PBDTTT-CT:PDI composite and results in additional improvement in the device efficiency. The temperature-dependent spectral width of the PDI excimer PL band suggests the presence of energetic disorder in the

  6. Blended learning

    DEFF Research Database (Denmark)

    Staugaard, Hans Jørgen

    2012-01-01

    Forsøg på at indkredse begrebet blended learning i forbindelse med forberedelsen af projekt FlexVid.......Forsøg på at indkredse begrebet blended learning i forbindelse med forberedelsen af projekt FlexVid....

  7. Blended Learning

    Science.gov (United States)

    Imbriale, Ryan

    2013-01-01

    Teachers always have been and always will be the essential element in the classroom. They can create magic inside four walls, but they have never been able to create learning environments outside the classroom like they can today, thanks to blended learning. Blended learning allows students and teachers to break free of the isolation of the…

  8. Blended learning

    DEFF Research Database (Denmark)

    Dau, Susanne

    2016-01-01

    Blended Learning has been implemented, evaluated and researched for the last decades within different educational areas and levels. Blended learning has been coupled with different epistemological understandings and learning theories, but the fundamental character and dimensions of learning...... in blended learning are still insufficient. Moreover, blended learning is a misleading concept described as learning, despite the fact that it fundamentally is an instructional and didactic approach (Oliver & Trigwell, 2005) addressing the learning environment (Inglis, Palipoana, Trenhom & Ward, 2011......) instead of the learning processes behind. Much of the existing research within the field seems to miss this perspective. The consequence is a lack of acknowledgement of the driven forces behind the context and the instructional design limiting the knowledge foundation of learning in blended learning. Thus...

  9. Digital games and Blended Learning in language learning: a case study with high school students

    Directory of Open Access Journals (Sweden)

    Elaine Teixeira da Silva

    2017-07-01

    Full Text Available Contemporary language teaching can turn to a tool provided by the development of digital technologies - digital games. This resource is used by the vast majority of students, and its attractive features allow for meaningful learning. This method can be classified as Blended Learning since students use games to learn without the physical presence of the teacher, but still favor face-to-face learning. To verify digital games as a tool for teaching languages and for Blended Learning, a questionnaire created in Google Forms was shared with 67 interviewees with four questions related to the theme. It is a quantitative research supported by the contributions of Kenski (2007, Mattar (2011, Mendes (2011, Prensky (2012, and Tori (2010. among others.

  10. Multicomponent evaporation model for pure and blended biodiesel droplets in high temperature convective environment

    Energy Technology Data Exchange (ETDEWEB)

    Saha, K.; Abu-Ramadan, E.; Li, X. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering

    2010-07-01

    Renewable energy sources are currently being investigated for their reliability, efficiency, and applicability. Biodiesel is one of the most promising alternatives to conventional diesel fuels in compression-ignition (CI) engines. This paper reported on a study that compared pure biodiesel, pure diesel and blended fuels using a comprehensive multicomponent droplet vaporization model. The model considers the difference in the gas phase diffusivity of diesel and biodiesel vapors. The paper presented the vaporization characteristics of pure diesel, pure biodiesel fuel droplets as well as the effect of mixing them in different proportions (B20 and B50). The model successfully predicted the vaporization history of a multicomponent droplet. The modeling study revealed that biodiesel droplets evaporate at a slower rate than the diesel droplets because of relatively low vapor pressure. As such, the blending of diesel fuel with small proportions of biodiesel will result in an increase in the evaporation time of diesel fuel to some extent. 31 refs., 6 figs.

  11. Autoignition characteristics of laminar lifted jet flames of pre-vaporized iso-octane in heated coflow air

    KAUST Repository

    Al-Noman, Saeed M.; Choi, Sang Kyu; Chung, Suk-Ho

    2015-01-01

    The stabilization characteristics of laminar non-premixed jet flames of pre-vaporized iso-octane, one of the primary reference fuels for octane rating, have been studied experimentally in heated coflow air. Non-autoignited and autoignited lifted

  12. Experimental study on the potential of higher octane number fuels for low load partially premixed combustion

    NARCIS (Netherlands)

    Wang, S.; van der Waart, K.; Somers, B.; de Goey, P.

    2017-01-01

    The optimal fuel for partially premixed combustion (PPC) is considered to be a gasoline boiling range fuel with an octane number around 70. Higher octane number fuels are considered problematic with low load and idle conditions. In previous studies mostly the intake air temperature did not exceed 30

  13. High-pressure lattice dynamics and thermodynamic properties of zinc-blende BN from first-principles calculation

    International Nuclear Information System (INIS)

    Wang Huanyou; Xu Hui; Wang Xianchun; Jiang Chunzhi

    2009-01-01

    The density function perturbation theory (DFPT) is employed to study the lattice dynamics and thermodynamic properties (with quasiharmonic approximation) of zinc-blende BN. First we discuss the structural properties and compare the phonon spectrum with available Raman scattering experiments. Thereafter using the calculated phonon dispersions we obtain the PTV equation of state from the free energy. Our results for the above properties are generally speaking in good agreement with experiments and with similar theoretical calculations. Owing to the anharmonic effect at high temperature, the calculated linear thermal expansion coefficients (CTE) are low to experimental data.

  14. Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

  15. High performance Ti-6Al-4V + TiC alloy by blended elemental powder metallurgy

    International Nuclear Information System (INIS)

    Fujii, H.; Yamazaki, T.; Horiya, T.; Takahashi, K.

    1993-01-01

    The blended elemental powder metallurgy (BE) of titanium alloys is one of the most cost saving technologies, in which the blending of titanium powder and alloying element powders (or master alloy powders), precise compaction at room temperature, and consolidation are conducted in turn. In addition to some economical and material saving advantages, the BE has a noteworthy feature, that is, the synthesis of special alloy systems which are difficult to be produced by the ingot metallurgy. A particle or fiber reinforced metal matrix composite (MMC) is one of the examples, and the addition of TiC particles to the extensively used Ti-6Al 4V has succeeded in obtaining higher tensile strength, Young's modulus, and elevated temperature properties. However, the raising up of some properties sometimes deteriorates other ones in MMC, and it often prevents the practical use. In this research work, the improvement of tensile ductility and fatigue properties of Ti-6Al-4V+TiC alloys without lowering other mechanical properties is aimed through the microstructural control

  16. Adjusted Framework of M-Learning in Blended Learning System for Mathematics Study Field of Junior High School Level VII

    Science.gov (United States)

    Sugiyanta, Lipur; Sukardjo, Moch.

    2018-04-01

    The 2013 curriculum requires teachers to be more productive, creative, and innovative in encouraging students to be more independent by strengthening attitudes, skills and knowledge. Teachers are given the options to create lesson plan according to the environment and conditions of their students. At the junior level, Core Competence (KI) and Basic Competence (KD) have been completely designed. In addition, there had already guidebooks, both for teacher manuals (Master’s Books) and for learners (Student Books). The lesson plan and guidebooks which already exist are intended only for learning in the classroom/in-school. Many alternative classrooms and alternatives learning models opened up using educational technology. The advance of educational technology opened opportunity for combination of class interaction using mobile learning applications. Mobile learning has rapidly evolved in education for the last ten years and many initiatives have been conducted worldwide. However, few of these efforts have produced any lasting outcomes. It is evident that mobile education applications are complex and hence, will not become sustainable. Long-term sustainability remains a risk. Long-term sustainability usually was resulted from continuous adaptation to changing conditions [4]. Frameworks are therefore required to avoid sustainability pitfalls. The implementation should start from simple environment then gradually become complex through adaptation steps. Therefore, our paper developed the framework of mobile learning (m-learning) adaptation for grade 7th (junior high school). The environment setup was blended mobile learning (not full mobile learning) and emphasize on Algebra. The research is done by R&D method (research and development). Results of the framework includes requirements and adaptation steps. The adjusted m-learning framework is designed to be a guidance for teachers to adopt m-learning to support blended learning environments. During mock-up prototype, the

  17. Production of palm and Calophyllum inophyllum based biodiesel and investigation of blend performance and exhaust emission in an unmodified diesel engine at high idling conditions

    International Nuclear Information System (INIS)

    Rahman, S.M. Ashrafur; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A.; Sajjad, H.

    2013-01-01

    Highlights: • Biodiesel produced from palm and Calophyllum oil using trans-esterification process. • Produced biodiesels properties were compared with ASTM D6751 standards. • Engine performance and exhaust emissions were evaluated at high idling conditions. • Idling CO and HC emission was reduced using biodiesel–diesel blends. • For low percentages of biodiesel–diesel blends NO X emission increased negligibly. - Abstract: Rapid depletion of fossil fuels, increasing fossil-fuel price, carbon price, and the quest of low carbon fuel for cleaner environment – these are the reason researchers are looking for alternatives of fossil fuels. Renewable, non-flammable, biodegradable, and non-toxic are some reasons that are making biodiesel as a suitable candidate to replace fossil-fuel in near future. In recent years, in many countries of the world production and use of biodiesel has gained popularity. In this research, biodiesel from palm and Calophyllum inophyllum oil has been produced using the trans-esterification process. Properties of the produced biodiesels were compared with the ASTM D6751 standard: biodiesel standard and testing methods. Density, kinematic viscosity, flash point, cloud point, pour point and calorific value, these are the six main physicochemical properties that were investigated. Both palm biodiesel and Calophyllum biodiesel were within the standard limits, so they both can be used as the alternative of diesel fuel. Furthermore, engine performance and emission parameters of a diesel engine run by both palm biodiesel–diesel and Calophyllum biodiesel–diesel blends were evaluated at high idling conditions. Brake specific fuel consumption increased for both the biodiesel–diesel blends compared to pure diesel fuel; however, at highest idling condition, this increase was almost negligible. Exhaust gas temperatures decreased as blend percentages increased for both the biodiesel–diesel blends. For low blend percentages increase in NO

  18. Supercritical CO2 foaming of radiation crosslinked polypropylene/high-density polyethylene blend: Cell structure and tensile property

    Science.gov (United States)

    Yang, Chenguang; Xing, Zhe; Zhang, Mingxing; Zhao, Quan; Wang, Mouhua; Wu, Guozhong

    2017-12-01

    A blend of isotactic polypropylene (PP) with high-density polyethylene (HDPE) in different PP/HDPE ratios was irradiated by γ-ray to induce cross-linking and then foamed using supercritical carbon dioxide (scCO2) as a blowing agent. Radiation effect on the melting point and crystallinity were analyzed in detail. The average cell diameter and cell density were compared for PP/HDPE foams prepared under different conditions. The optimum absorbed dose for the scCO2 foaming of PP/HDPE in terms of foaming ability and cell structure was 20 kGy. Tensile measurements showed that the elongation at break and tensile strength at break of the crosslinked PP/HDPE foams were higher than the non-crosslinked ones. Of particular interest was the increase in the foaming temperature window from 4 ℃ for pristine PP to 8-12 ℃ for the radiation crosslinked PP/HDPE blends. This implies much easier handling of scCO2 foaming of crosslinked PP with the addition of HDPE.

  19. Acclimating to the High-Octane College Food Environment

    Directory of Open Access Journals (Sweden)

    Jennifer B. Webb

    2013-09-01

    Full Text Available To evaluate the association between weight gain and psychological dimensions of appetite, a sample of 83 ethnically diverse first-year undergraduate females had body mass index (BMI assessed and completed self-report measures of hedonic hunger, mindfulness, and intuitive eating. Positive associations between mindfulness and intuitive eating and negative links between intuitive eating and hedonic hunger and BMI were observed over time. BMI gainers experienced a significant decline in intuitive eating across the first college semester. No significant between-group effects for mindfulness or hedonic hunger were detected. Preliminary results suggest that changes in internally derived appetite- and consumption-regulating processes may underlie weight gain during the first-year college transition. Implications for optimizing college health promotion efforts for young women at this developmental juncture are discussed.

  20. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lan, E-mail: lwang322@yahoo.com.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, Harbin Medical University, Harbin 150081 (China); Sun Xiudong, E-mail: xdsun@hit.edu.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu Wenjing [Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001 (China); Liu Bingyi [Laboratory Center for the School of Pharmacy, Harbin Medical University, Harbin 150081 (China)

    2010-03-15

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  1. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    International Nuclear Information System (INIS)

    Wang Lan; Sun Xiudong; Liu Wenjing; Liu Bingyi

    2010-01-01

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  2. High-phase-purity zinc-blende InN on r-plane sapphire substrate with controlled nitridation pretreatment

    International Nuclear Information System (INIS)

    Hsiao, C.-L.; Wu, C.-T.; Hsu, H.-C.; Hsu, G.-M.; Chen, L.-C.; Liu, T.-W.; Shiao, W.-Y.; Yang, C. C.; Gaellstroem, Andreas; Holtz, Per-Olof; Chen, C.-C.; Chen, K.-H.

    2008-01-01

    High-phase-purity zinc-blende (zb) InN thin film has been grown by plasma-assisted molecular-beam epitaxy on r-plane sapphire substrate pretreated with nitridation. X-ray diffraction analysis shows that the phase of the InN films changes from wurtzite (w) InN to a mixture of w-InN and zb-InN, to zb-InN with increasing nitridation time. High-resolution transmission electron microscopy reveals an ultrathin crystallized interlayer produced by substrate nitridation, which plays an important role in controlling the InN phase. Photoluminescence emission of zb-InN measured at 20 K shows a peak at a very low energy, 0.636 eV, and an absorption edge at ∼0.62 eV is observed at 2 K, which is the lowest bandgap reported to date among the III-nitride semiconductors

  3. High-Trust Leadership and Blended Learning in the Age of Disruptive Innovation: Strategic Thinking for Colleges and Schools of Education

    Science.gov (United States)

    Holland, Denise D.; Piper, Randy T.

    2016-01-01

    We introduce diverse definitions of leadership and its evolutionary history and then we integrate this idea network: strategic thinking, high-trust leadership, blended learning, and disruptive innovation. Following the lead of Marx's (2014) model of Teaching Leadership and Strategy and Rehm's (2014) model of High School Student Leadership…

  4. Controlling Blend Morphology for Ultra-High Current Density in Non-Fullerene Acceptor Based Organic Solar Cells

    KAUST Repository

    Song, Xin; Gasparini, Nicola; Ye, Long; Yao, Huifeng; Hou, Jianhui; Ade, Harald; Baran, Derya

    2018-01-01

    Due to the high absorption coefficient and modulated band gap of non-fullerene small molecule acceptors (NFAs), photons can be utilized more efficiently in near-infrared (NIR) range. In this report, we highlight a system with a well-known polymer donor (PTB7-Th) blended with a narrow bandgap non-fullerene acceptor (IEICO-4F) as active layer and 1-chloronaphthalene (CN) as the solvent additive. The optimization of the photoactive layer nanomorphology yields short-circuit current density value (Jsc) of 27.3 mA/cm2, one of the highest value in OSCs reported to date, which competes with other types of solution processed solar cells such as perovskite or quantum dot devices. Along with decent open-circuit voltage (0.71V) and fill factor values (66%), a power conversion efficiency of 12.8% is achieved for the champion devices. Grazing incidence wide-angle X-ray scattering (GIWAXS) patterns and resonant soft X-ray scattering (R-SoXS) elucidate that the origin of this high photocurrent is mainly due to increased π-π coherence length of the acceptor, the domain spacing as well as the mean-square composition variation of the blend. Optoelectronic measurements confirm a balanced hole and electron mobility and reduced trap-assisted recombination for the best devices. These findings unveil the relevant solvent processing-nanostructure-electronic properties correlation in low band gap non-fullerene based solar cells, which provide a helpful guide for maximizing photocurrent that can pave the way for high efficiency organic solar cells.

  5. Controlling Blend Morphology for Ultra-High Current Density in Non-Fullerene Acceptor Based Organic Solar Cells

    KAUST Repository

    Song, Xin

    2018-01-23

    Due to the high absorption coefficient and modulated band gap of non-fullerene small molecule acceptors (NFAs), photons can be utilized more efficiently in near-infrared (NIR) range. In this report, we highlight a system with a well-known polymer donor (PTB7-Th) blended with a narrow bandgap non-fullerene acceptor (IEICO-4F) as active layer and 1-chloronaphthalene (CN) as the solvent additive. The optimization of the photoactive layer nanomorphology yields short-circuit current density value (Jsc) of 27.3 mA/cm2, one of the highest value in OSCs reported to date, which competes with other types of solution processed solar cells such as perovskite or quantum dot devices. Along with decent open-circuit voltage (0.71V) and fill factor values (66%), a power conversion efficiency of 12.8% is achieved for the champion devices. Grazing incidence wide-angle X-ray scattering (GIWAXS) patterns and resonant soft X-ray scattering (R-SoXS) elucidate that the origin of this high photocurrent is mainly due to increased π-π coherence length of the acceptor, the domain spacing as well as the mean-square composition variation of the blend. Optoelectronic measurements confirm a balanced hole and electron mobility and reduced trap-assisted recombination for the best devices. These findings unveil the relevant solvent processing-nanostructure-electronic properties correlation in low band gap non-fullerene based solar cells, which provide a helpful guide for maximizing photocurrent that can pave the way for high efficiency organic solar cells.

  6. Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Earl; McCormick, Robert L.; Sigelko, Jenny; Johnson, Stuart; Zickmann, Stefan; Lopes, Shailesh; Gault, Roger; Slade, David

    2016-04-01

    Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the efficacy of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr. Each vehicle was operated over a one-hour drive cycle in a hot running loss test cell to initially stress the fuel. The cars were then kept at Volkswagen's Arizona Proving Ground for two (35 degrees C average daily maximum) to six months (26 degrees C average daily maximum). The fuel was then stressed again by running a portion of the one-hour dynamometer drive cycle (limited by the amount of fuel in the tank). Fuel rail and fuel tank samples were analyzed for IP, acid number, peroxide content, polymer content, and ester profile. The HPCR fuel pumps were removed, dismantled, and inspected for deposits or abnormal wear. Analysis of fuels collected during initial dynamometer tests showed no impact of exposure to HPCR conditions. Long-term storage with intermittent use showed that IP remained above 3 hours, acid number below 0.3 mg KOH/g, peroxides low, no change in ester profile, and no production of polymers. Final dynamometer tests produced only small changes in fuel properties. Inspection of the HPCR fuel pumps revealed no

  7. Is Blended e-Learning as Measured by an Achievement Test and Self-Assessment Better than Traditional Classroom Learning for Vocational High School Students?

    Directory of Open Access Journals (Sweden)

    Chi-Cheng Chang

    2014-04-01

    Full Text Available The purpose of this study is to examine the effects of blended e-learning on electrical machinery performance (achievement test and self-assessment. Participants were two classes of 11th graders majoring in electrical engineering and taking the electrical machinery class at a vocational high school in Taiwan. The participants were randomly selected and assigned to either the experimental group (n = 33 which studied through blended e-learning or the control group (n = 32 which studied through traditional classroom learning. The experiment lasted for five weeks. The results showed that (a there were no significant differences in achievement test scores between blended e-learning and traditional learning; (b students in the experimental group obtained significantly higher scores on self-assessment than students in the control group; (c students’ scores on self-assessment were significantly higher after studying through blended e-learning than before. Overall, blended e-learning did not significantly affect students’ achievement test scores, but significantly affected their self-assessment scores.

  8. Ternary Blends of High Aluminate Cement, Fly ash and Blast-furnace slag for Sewerage Lining Mortar

    Science.gov (United States)

    Chao, L. C.; Kuo, C. P.

    2018-01-01

    High aluminate cement (HAC), fly ash (FA) and blast-furnace slag (BFS) have been treated sustainable materials for the use of cement products for wastewater infrastructure due to their capabilities of corrosion resistance. The purpose of this study is to optimize a ternary blend of above mentioned materials for a special type of mortar for sewerage lining. By the using of Taguchi method, four control parameters including water/cementitious material ratio, mix water content, fly ash content and blast-furnace slag content were considered in nine trial mix designs in this study. By evaluating target properties including (1) maximization of compressive strength, (2) maximization of electricity resistance and (3) minimization of water absorption rate, the best possible levels for each control parameter were determined and the optimal mix proportions were verified. Through the implementation of the study, a practical and completed idea for designing corrosion resistive mortar comprising HAC, FA and BSF is provided.

  9. Effect of the High-Energy Electron Beam Irradiation on the Morphology and Mechanical Properties of PE/EVA Blends

    International Nuclear Information System (INIS)

    Razavi Aghjeh, M. K.

    2006-01-01

    The main objective of the present work was to study the effect of electron beam irradiation on the morphology and mechanical properties of PE/EVA blends. The melt compounding of the blends were carried out in an internal mixer. The small amount of the prepared blend samples were rapidly quenched in liquid nitrogen and the remained were compression molded into sheets. Sheets and quenched samples were then irradiated by a 10 MeV electron beam accelerator using different dose levels. The morphological studies for both, sheeted and quenched blends were performed on cryogenically fractured surfaces by using SEM technique. The mechanical properties of the sheeted samples were evaluated according to ASTM D638. The results of mechanical properties showed that, increasing in irradiation dose increases the tensile strength and decreases the elongation at break in all blend compositions. On the other hand, it was found that, for PE/EVA blends the extent of tensile strength increase, and elongation at break decrease, are more appreciable in compare to the neat PE and EVA. These results suggest that, the blend interface is more susceptible for irradiation induced crosslinking. This is because of more affinity of PE and EVA macroradicals to termination with together in compare to own macroradicals.The results of morphological studies showed that, irradiation can stabilize the blend morphology especially in co-continues regions, where the morphology is more unstable due to the heat coarsening

  10. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad; Viollet, Yoann; Elwardani, Ahmed Elsaid; Im, Hong G.; Chang, Junseok

    2016-01-01

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have

  11. Is Blended e-Learning as Measured by an Achievement Test and Self-Assessment Better than Traditional Classroom Learning for Vocational High School Students?

    Science.gov (United States)

    Chang, Chi-Cheng; Shu, Kuen-Ming; Liang, Chaoyun; Tseng, Ju-Shih; Hsu, Yu-Sheng

    2014-01-01

    The purpose of this study is to examine the effects of blended e-learning on electrical machinery performance (achievement test and self-assessment). Participants were two classes of 11th graders majoring in electrical engineering and taking the electrical machinery class at a vocational high school in Taiwan. The participants were randomly…

  12. Design and screening of synergistic blends of SiO2 nanoparticles and surfactants for enhanced oil recovery in high-temperature reservoirs

    International Nuclear Information System (INIS)

    Le, Nhu Y Thi; Pham, Duy Khanh; Le, Kim Hung; Nguyen, Phuong Tung

    2011-01-01

    SiO 2 nanoparticles (NPs) were synthesized by the sol–gel method in an ultrasound reactor and monodispersed NPs with an average particle size of 10–12 nm were obtained. The synergy occurring in blending NPs and anionic surfactant solutions was identified by ultra-low interfacial tension (IFT) reduction measured by a spinning drop tensiometer (Temco500). The oil displacement efficiency of the synergistic blends and surfactant solutions at Dragon South-East (DSE) reservoir temperature was evaluated using contact angle measurement (Dataphysics OCA 20). It was found that SiO 2 /surfactant synergistic blends displace oil as well as their original surfactant solutions at the same 1000 ppm total concentration. Abundant slag appearing in the SiO 2 /surfactant medium during oil displacement could be attributed to an adsorption of surfactants onto the NPs. The results indicate that at a concentration of 1000 ppm in total, the original surfactant SS16-47A and its blend with SiO 2 NPs in the ratio of 8:2 exhibited an IFT reduction as high as fourfold of the IFT recorded for the DSE oil–brine interface and very high speed of oil displacement. Therefore, it could potentially be applicable to enhanced oil recovery (EOR) in high-temperature reservoirs with high hardness-injection-brine, like the one at DSE. This opens up a new direction for developing effective EOR compositions, which require less surfactant and are environmentally safer

  13. Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends.

    Science.gov (United States)

    Liu, H; Wu, Q; Zhang, Q

    2009-12-01

    Banana fiber (BaF)-filled composites based on high density polyethylene (HDPE)/Nylon-6 blends were prepared via a two-step extrusion method. Maleic anhydride grafted styrene/ethylene-butylene/styrene triblock polymer (SEBS-g-MA) and maleic anhydride grafted polyethylene (PE-g-MA) were used to enhance impact performance and interfacial bonding between BaF and the resins. Mechanical, crystallization/melting, thermal stability, water absorption, and morphological properties of the composites were investigated. In the presence of SEBS-g-MA, better strengths and moduli were found for HDPE/Nylon-6 based composites compared with corresponding HDPE based composites. At a fixed weight ratio of PE-g-MA to BaF, an increase of BaF loading up to 48.2 wt.% led to a continuous improvement in moduli and flexural strength of final composites, while impact toughness was lowered gradually. Predicted tensile modulus by the Hones-Paul model for three-dimensional random fiber orientation agreed well with experimental data at the BaF loading of 29.3 wt.%. However, the randomly-oriented fiber models underestimated experimental data at higher fiber levels. It was found that the presence of SEBS-g-MA had a positive influence on reinforcing effect of the Nylon-6 component in the composites. Thermal analysis results showed that fractionated crystallization of the Nylon-6 component in the composites was induced by the addition of both SEBS-g-MA and PE-g-MA. Thermal stability of both composite systems differed slightly, except an additional decomposition peak related to the minor Nylon-6 for the composites from the HDPE/Nylon-6 blends. In the presence of SEBS-g-MA, the addition of Nylon-6 and increased BaF loading level led to an increase in the water absorption value of the composites.

  14. Catalytic phosphonation of high performance polymers and POSS. Novel components for polymer blend and nanocomposite fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bock, T.R.

    2006-10-15

    Aim of this thesis was the preparation and evaluation of phosphonated high performance (HP) polyelectrolytes and polyhedral oligomeric silsesquioxanes (POSS) for polyelectrolyte membrane fuel cell (PEMFC) application. Brominated derivatives of the commercial high performance (HP) polymers poly(ethersulfone) (PES), poly(etheretherketone) (PEEK), poly(phenylsulfone) (PPSu), poly(sulfone) (PSU) and of octaphenyl-POSS of own production were phosphonated by Ni-catalysed Arbuzov reaction. Phosphonated PSU was cast into pure and blend films with sulfonated PEEK (s-PEEK) to investigate H+-conductivity, water uptake and film morphology. Blend films' properties were referenced to films containing unmodified blend partners. Solution-compounding of phosphonated octaphenyl-POSS and s-PEEK was used to produce novel nanocomposite films. An in-situ zirconisation method was assessed as convenient strategy for novel ionically crosslinked membranes of enhanced swelling resistance. Dibromo isocyanuric acid (DBI) and N-bromo succinimide (NBS) as brominating agents allowed polymer analogous preparation of the novel brominated PES and PEEK with precise reaction control. A random distribution of functional groups, i.e. polyelectrolytes' microstructural homogeneity was revealed as decisive factor concerning solubility of phosphonated PSU. Brominated phT8 was prepared with Br2 by a high temperature approach in tetrachloroethane (TCE). Brominated polymers were phosphonated by Ni-catalysis in non-coordinating high temperature solvents, such as diphenylether, benzophenone and diphenylsulfone without notable solvent influence. The lack of solvent - catalyst complexes and high reaction temperatures of 180-200 C led to halogen-free phosphonates with unprecedented high functionalities. Polymer analogous application of P(OSiMe3)3 offered a novel direct access to easily cleavable disilyl ester derivatives. These were obtained from PEEK and PSU in near quantitative yields at NiCl2-loads as

  15. Novel selective catalytic reduction with tritium: synthesis of the GABAA receptor radioligand 1-(4-ethynylphenyl)-4-[2,3-3H2]propyl-2,6,7-trioxabicyclo[2.2.2 ]octane

    International Nuclear Information System (INIS)

    Palmer, C.J.; Casida, J.E.

    1991-01-01

    Protection of the terminal alkyne function in 1-(4-ethynylphenyl)-4-(prop-2-enyl)-2,6,7-trioxabicyclo[2.2.2] octane with a trimethylsilyl group permits the selective catalytic reduction of the olefin moiety with tritium gas to give after deprotection 1-(4-ethynylphenyl)-4-[2,3- 3 H 2 ] propyl-2,6,7-trioxabicyclo-[2.2.2] octane. The labeled product at high specific activity is an improved radioligand for the GABA-gated chloride channel of insects and mammals and the intermediate 4-[2,3- 3 H 2 ]propyl-1-[4-[(trimethylsilyl)ethynyl]phenyl]-2,6,7-trioxabicyclo[2.2.2]octane is useful for studies on the metabolic activation of this selective proinsecticide. (author)

  16. Novel selective catalytic reduction with tritium: synthesis of the GABA sub A receptor radioligand 1-(4-ethynylphenyl)-4-(2,3- sup 3 H sub 2 )propyl-2,6,7-trioxabicyclo(2. 2. 2 )octane

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J; Casida, J E [California Univ., Berkeley, CA (United States). Pesticide Chemistry and Toxicology Lab.

    1991-07-01

    Protection of the terminal alkyne function in 1-(4-ethynylphenyl)-4-(prop-2-enyl)-2,6,7-trioxabicyclo(2.2.2) octane with a trimethylsilyl group permits the selective catalytic reduction of the olefin moiety with tritium gas to give after deprotection 1-(4-ethynylphenyl)-4-(2,3-{sup 3}H{sub 2}) propyl-2,6,7-trioxabicyclo-(2.2.2) octane. The labeled product at high specific activity is an improved radioligand for the GABA-gated chloride channel of insects and mammals and the intermediate 4-(2,3-{sup 3}H{sub 2})propyl-1-(4-((trimethylsilyl)ethynyl)phenyl)-2,6,7-trioxabicyclo(2.2.2)octane is useful for studies on the metabolic activation of this selective proinsecticide. (author).

  17. Guided Inquiry Facilitated Blended Learning to Improve Metacognitive and Learning Outcome of High School Students

    Science.gov (United States)

    Suwono, H.; Susanti, S.; Lestari, U.

    2017-04-01

    the modules is limited. It is suggested that for the better utilisation of the online activities, students should be present at every meeting of the activities, so as to make all the students participate actively. It is also suggested that school set up facilities to support blended learning.

  18. Heat flux characteristics of spray wall impingement with ethanol, butanol, iso-octane, gasoline and E10 fuels

    International Nuclear Information System (INIS)

    Serras-Pereira, J.; Aleiferis, P.G.; Walmsley, H.L.; Davies, T.J.; Cracknell, R.F.

    2013-01-01

    Highlights: • Heat flux sensors used to characterise the locations of fuel spray wall impingement. • Droplet evaporation modelling used to study the effect of fuel properties. • Behaviour of ethanol and butanol distinctively different to hydrocarbons. -- Abstract: Future fuel stocks for spark-ignition engines are expected to include a significant portion of bio-derived components with quite different chemical and physical properties to those of liquid hydrocarbons. State-of-the-art high-pressure multi-hole injectors for latest design direct-injection spark-ignition engines offer some great benefits in terms of fuel atomisation, as well as flexibility in in-cylinder fuel targeting by selection of the exact number and angle of the nozzle’s holes. However, in order to maximise such benefits for future spark-ignition engines and minimise any deteriorating effects with regards to exhaust emissions, it is important to avoid liquid fuel impingement onto the cylinder walls and take into consideration various types of biofuels. This paper presents results from the use of heat flux sensors to characterise the locations and levels of liquid fuel impingement onto the engine’s liner walls when injected from a centrally located multi-hole injector with an asymmetric pattern of spray plumes. Ethanol, butanol, iso-octane, gasoline and a blend of 10% ethanol with 90% gasoline (E10) were tested and compared. The tests were performed in the cylinder of a direct-injection spark-ignition engine at static conditions (i.e. quiescent chamber at 1.0 bar) and motoring conditions (at full load with inlet plenum pressure of 1.0 bar) with different engine temperatures in order to decouple competing effects. The collected data were analysed to extract time-resolved signals, as well as mean and standard deviation levels of peak heat flux. The results were interpreted with reference to in-cylinder spray formation characteristics, as well as fuel evaporation rates obtained by modelling

  19. Radiation effects on the immiscible polymer blend of nylon1010 and high-impact polystyrene (HIPS) I: Gel/dose curves, mathematical expectation theorem and thermal behaviour

    International Nuclear Information System (INIS)

    Dong, W.; Zhang, W.; Chen, G.; Liu, J.

    2000-01-01

    This paper studies the radiation properties of the immiscible blend of nylon1010 and HIPS. The gel fraction increased with increasing radiation dose. The network was found mostly in nylon1010, the networks were also found in both nylon1010 and HIPS when the dose reaches 0.85 MGy or more. We used the equation and the modified Zhang-Sun-Qian equation to simulate the relationship with the dose and the sol fraction. The latter equation fits well with these polymer blends and the relationship used by it showed better linearity than the one by the equation. We also studied the conditions of formation of the network by the mathematical expectation theorem for the binary system. Thermal properties of polymer blend were observed by DSC curves. The crystallization temperature decreases with increasing dose because the cross-linking reaction inhibited the crystallization procession and destroyed the crystals. The melting temperature also reduced with increasing radiation dose. The dual melting peak gradually shifted to single peak and the high melting peak disappeared at high radiation dose. However, the radiation-induced crystallization was observed by the heat of fusion increasing at low radiation dose. On the other hand, the crystal will be damaged by radiation. A similar conclusion may be drawn by the DSC traces when the polymer blends were crystallized. When the radiation dose increases, the heat of fusion reduces dramatically and so does the heat of crystallization. (author)

  20. Bioblendstocks that Enable High Efficiency Engine Designs

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.; Fioroni, Gina M.; Ratcliff, Matthew A.; Zigler, Bradley T.; Farrell, John

    2016-11-03

    The past decade has seen a high level of innovation in production of biofuels from sugar, lipid, and lignocellulose feedstocks. As discussed in several talks at this workshop, ethanol blends in the E25 to E50 range could enable more highly efficient spark-ignited (SI) engines. This is because of their knock resistance properties that include not only high research octane number (RON), but also charge cooling from high heat of vaporization, and high flame speed. Emerging alcohol fuels such as isobutanol or mixed alcohols have desirable properties such as reduced gasoline blend vapor pressure, but also have lower RON than ethanol. These fuels may be able to achieve the same knock resistance benefits, but likely will require higher blend levels or higher RON hydrocarbon blendstocks. A group of very high RON (>150) oxygenates such as dimethyl furan, methyl anisole, and related compounds are also produced from biomass. While providing no increase in charge cooling, their very high octane numbers may provide adequate knock resistance for future highly efficient SI engines. Given this range of options for highly knock resistant fuels there appears to be a critical need for a fuel knock resistance metric that includes effects of octane number, heat of vaporization, and potentially flame speed. Emerging diesel fuels include highly branched long-chain alkanes from hydroprocessing of fats and oils, as well as sugar-derived terpenoids. These have relatively high cetane number (CN), which may have some benefits in designing more efficient CI engines. Fast pyrolysis of biomass can produce diesel boiling range streams that are high in aromatic, oxygen and acid contents. Hydroprocessing can be applied to remove oxygen and consequently reduce acidity, however there are strong economic incentives to leave up to 2 wt% oxygen in the product. This oxygen will primarily be present as low CN alkyl phenols and aryl ethers. While these have high heating value, their presence in diesel fuel

  1. Blend or not to blend: a study investigating faculty members perceptions of blended teaching

    Directory of Open Access Journals (Sweden)

    Mehmet A Ocak

    2010-12-01

    Full Text Available This study examined faculty members’ perceptions of blended teaching from several perspectives. A total of 73 faculty members in Turkish Higher Education context participated in the study by completing an online survey that combined quantitative and qualitative approaches. Based on a data analysis, the faculty members’ perceptions were sorted into six categories: (a satisfaction with blended teaching, (b perceived impact on the role of the faculty, (c perceived impact on student learning, (d perceived impact on student motivation, (e advantages of blended teaching, and (f disadvantages of blended teaching. Findings indicated that faculty members were likely to agree that blended teaching provides a high degree of satisfaction and that it requires more time and commitment from the faculty. The faculty members perceived that blended teaching improves student learning and, to some extent, improves motivation. The faculty members also emphasized the importance of institutional support and the use of technology to mitigate student problems. This study presents these faculty members’ perceptions, which are helpful for those planning to implement a blended teaching approach, and makes suggestions for trouble-shooting and taking advantage of the opportunities in a blended environment successfully.

  2. Synthesis and structure-activity relationship of di-(3, 8-diazabicyclo[3.2.1]octane) diquaternary ammonium salts as unique analgesics.

    Science.gov (United States)

    Liu, Hong; Cheng, Tie-Ming; Zhang, Hong-Mei; Li, Run-Tao

    2003-11-01

    Based on the structure characteristics of the lead compounds, 1, 1' octanedioyl-4, 4'-dimethyl-4, 4'-dibenzyl dipiperazinium dibromide (2) and 3, 8-disubstituted-3, 8-diazabicyclo [3.2.1]octanes (DBO), di-(3, 8-diazabicyclo [3.2.1]octane) diquaternary ammonium salts 3 a-c were designed and synthesized through a highly practical procedure. Target compounds 3 a-c and the hydrochloride salts of their precursors 10 a-c were evaluated for their in vivo analgesic and sedative activities. Interestingly, the introduction of an endoethylenic bridge in the piperazine of lead compound 2 causes loss of the analgesic activity and increases the toxicity dramatically. This result shows that the flexible conformation of piperazine in compound 2 is favorable for interaction with the receptor, and the quaternization of compounds 10 a-c is the main reason for the toxicity increase.

  3. Melting and crystallization behavior of partially miscible high density polyethylene/ethylene vinyl acetate copolymer (HDPE/EVA) blends

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang; Zou, Huawei, E-mail: hwzou@163.com; Liang, Mei, E-mail: liangmeiww@163.com; Cao, Ya

    2014-06-01

    Highlights: • HDPE/EVA blends undergo phase separation, making it an interesting topic to investigate the relationships between miscibility and crystallization. • Influences from blending on the crystallization kinetics were successfully evaluated by Friedman's and Khanna's method. • X-ray diffraction studies revealed that blending with EVA the unit length of the unit cell of the HDPE increases. • Thermal fractionation method was successfully used to characterize the co-crystallization in HDPE/EVA blends. - Abstract: Crystallization studies on HDPE/EVA blends and the individual components were performed with differential scanning calorimetry (DSC) technique and wide angle X-ray scattering (WAXS). Influences of blending on the crystallization kinetics of each component in HDPE/EVA mixture were evaluated by Friedman's activation energy and Khanna's crystallization rate coefficient (CRC). The addition of more HDPE into the EVA matrix causes more heterogeneous nucleation while the addition of EVA would hinder the nucleation of HDPE at the beginning of cooling process. Inter-molecular interaction in the melt facilitated the crystallization of both EVA and HDPE components. X-ray diffraction studies revealed that HDPE and EVA have orthorhombic unit cell. Blending with EVA did not affect the crystalline structure of HDPE. In addition, a little shift of (1 1 0), (2 0 0) and (0 2 0) crystalline peaks toward lower 2θ values of samples indicating a little increase of unit cell parameters of the orthorhombic unit cell of polyethylene. Thermal fractionation results showed that co-crystallization took place in the HDPE/EVA blend. All those results indicated that the polymer pair we choose was partially miscible.

  4. Introducing blended e-learning course design

    DEFF Research Database (Denmark)

    Gyamfi, Samuel Adu; Ryberg, Thomas

    2012-01-01

    In the face of diminishing education budgets in higher education, blended learning has been found to be a viable and effective approach to deliver high-quality, up-to-date, on-demand solutions to developing cross-curricular skills of undergraduates. However, research has also shown that blended...... learning solutions do not often live up to the potential of the approach or fail to produce the intended results because the students are not always equipped to handle the technical, psychological and organisational challenges of blended learning approaches. This project surveyed seventy-five first year...... the students’ e-readiness for an implementation of a blend-ed course design....

  5. Autoignition characteristics of laminar lifted jet flames of pre-vaporized iso-octane in heated coflow air

    KAUST Repository

    Alnoman, Saeed

    2015-12-01

    The stabilization characteristics of laminar non-premixed jet flames of pre-vaporized iso-octane, one of the primary reference fuels for octane rating, have been studied experimentally in heated coflow air. Non-autoignited and autoignited lifted flames were analyzed. With the coflow air at relatively low initial temperatures below 940 K, an external ignition source was required to stabilize the flame. These lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization. At high initial temperatures over 940 K, the autoignited flames were stabilized without requiring an external ignition source. These autoignited lifted flames exhibited either tribrachial edge structures or mild combustion behaviors depending on the level of fuel dilution. Two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then to lifted mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. © 2015 Elsevier Ltd. All rights reserved.

  6. The effect of high non-hydrostatic pressure on III-V semiconductors: zinc blende to wurtzite structural phase transition and multiphase generation

    International Nuclear Information System (INIS)

    Pizani, P S; Jasinevicius, R G

    2014-01-01

    Raman scattering was employed to study structural phase transitions of InSb, GaSb and GaAs induced by highly non-hydrostatic pressures applied by mechanical impact, in which high compression/decompression rates are imposed to the sample. The results showed that is possible to produce several structural phases localized in different micrometric regions of the same sample: the zinc blende to possibly wurtzite structural phase transition and the generation of a multiphase state.

  7. Preparation of High Density Polyethylene/Waste Polyurethane Blends Compatibilized with Polyethylene-Graft-Maleic Anhydride by Radiation

    Directory of Open Access Journals (Sweden)

    Jong-Seok Park

    2015-04-01

    Full Text Available Polyurethane (PU is a very popular polymer that is used in a variety of applications due to its good mechanical, thermal, and chemical properties. However, PU recycling has received significant attention due to environmental issues. In this study, we developed a recycling method for waste PU that utilizes the radiation grafting technique. Grafting of waste PU was carried out using a radiation technique with polyethylene-graft-maleic anhydride (PE-g-MA. The PE-g-MA-grafted PU/high density polyethylene (HDPE composite was prepared by melt-blending at various concentrations (0–10 phr of PE-g-MA-grafted PU. The composites were characterized using fourier transform infrared spectroscopy (FT-IR, and their surface morphology and thermal/mechanical properties are reported. For 1 phr PU, the PU could be easily introduced to the HDPE during the melt processing in the blender after the radiation-induced grafting of PU with PE-g-MA. PE-g-MA was easily reacted with PU according to the increasing radiation dose and was located at the interface between the PU and the HDPE during the melt processing in the blender, which improved the interfacial interactions and the mechanical properties of the resultant composites. However, the elongation at break for a PU content >2 phr was drastically decreased.

  8. Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline

    KAUST Repository

    An, Yanzhao

    2017-09-23

    In-cylinder combustion visualization and engine-out soot particle emissions were investigated in an optical diesel engine fueled with low octane gasoline. Single injection strategy with an early injection timing (−30 CAD aTDC) was employed to achieve partially premixed combustion (PPC) condition. A high-speed color camera was used to record the combustion images for 150 cycles. The regulated emission of carbon dioxide, carbon monoxide, nitrogen oxides and soot mass concentration were measured experimentally. Full cycle engine simulations were performed using CONVERGE™ and the simulation results matched with the experimental results. The in-cylinder soot particle evolution was performed by coupling a reduced toluene reference fuel mechanism including the PAHs formation/oxidation reactions with particulate size mimic model. The results showed that PPC presents typical stratified combustion characteristics, which is significantly different from the conventional diesel spray-driven combustion. The in-cylinder temperature and equivalence ratio overlaid with soot-NO formation regime revealed that PPC operating condition under study mostly avoided the main sooting conditions throughout the entire combustion. The evaluation of temperature distribution showed formaldehyde could be regarded as an indicator for low temperature reactions, while hydroxyl group represents the high temperature reactions. Soot evolution happened during the combustion process, hydroxyl radicals promoted the soot oxidation.

  9. DETAILED CHEMICAL KINETIC MODELING OF ISO-OCTANE SI-HCCI TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Havstad, M A; Aceves, S M; McNenly, M J; Piggott, W T; Edwards, K D; Wagner, R M; Daw, C S; Finney, C A

    2009-10-12

    The authors describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (ST) combustion to homogeneous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study they assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scneario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. They find that the model captures many of the important experimental trends, including stable SI combustion at low EGR ({approx} 0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR ({approx} 0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

  10. Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline

    KAUST Repository

    An, Yanzhao; Jaasim, Mohammed; Vallinayagam, R.; Vedharaj, S.; Im, Hong G.; Johansson, Bengt.

    2017-01-01

    In-cylinder combustion visualization and engine-out soot particle emissions were investigated in an optical diesel engine fueled with low octane gasoline. Single injection strategy with an early injection timing (−30 CAD aTDC) was employed to achieve partially premixed combustion (PPC) condition. A high-speed color camera was used to record the combustion images for 150 cycles. The regulated emission of carbon dioxide, carbon monoxide, nitrogen oxides and soot mass concentration were measured experimentally. Full cycle engine simulations were performed using CONVERGE™ and the simulation results matched with the experimental results. The in-cylinder soot particle evolution was performed by coupling a reduced toluene reference fuel mechanism including the PAHs formation/oxidation reactions with particulate size mimic model. The results showed that PPC presents typical stratified combustion characteristics, which is significantly different from the conventional diesel spray-driven combustion. The in-cylinder temperature and equivalence ratio overlaid with soot-NO formation regime revealed that PPC operating condition under study mostly avoided the main sooting conditions throughout the entire combustion. The evaluation of temperature distribution showed formaldehyde could be regarded as an indicator for low temperature reactions, while hydroxyl group represents the high temperature reactions. Soot evolution happened during the combustion process, hydroxyl radicals promoted the soot oxidation.

  11. Components of Particle Emissions from Light-Duty Spark-Ignition Vehicles with Varying Aromatic Content and Octane Rating in Gasoline.

    Science.gov (United States)

    Short, Daniel Z; Vu, Diep; Durbin, Thomas D; Karavalakis, Georgios; Asa-Awuku, Akua

    2015-09-01

    Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.

  12. Excess molar volume along with viscosity, refractive index and relative permittivity for binary mixtures of exo-tetrahydrodicyclopentadiene with four octane isomers

    International Nuclear Information System (INIS)

    Yue, Lei; Qin, Xiaomei; Wu, Xi; Xu, Li; Guo, Yongsheng; Fang, Wenjun

    2015-01-01

    Highlights: • Binary mixtures of JP-10 with octane isomers are studied as model hydrocarbon fuels. • Density, viscosity, refractive index and relative permittivity are determined. • Excess molar volumes and viscosity deviations are calculated and correlated. - Abstract: The fundamental physical properties including density, viscosity, refractive index and relative permittivity, have been measured for binary mixtures of exo-tetrahydrodicyclopentadiene (JP-10) with four octane isomers (n-octane, 3-methylheptane, 2,4-dimethylhexane and 2,2,4-trimethylpentane) over the whole composition range at temperatures T = (293.15 to 313.15) K and pressure p = 0.1 MPa. The values of excess molar volume (V m E ), viscosity deviation (Δη), refractive index deviation (Δn D ) and relative permittivity deviation (Δε r ) are then calculated. All of the values of V m E and Δη are observed to be negative, while those of Δn D and Δε r are close to zero. The effects of temperature and composition on the variation of V m E values are discussed. The negative values of V m E and Δη are conductive to high-density and low-resistance of fuels, which is favorable for the design and preparation of advanced hydrocarbon fuels

  13. Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation

    International Nuclear Information System (INIS)

    Iodice, Paolo; Senatore, Adolfo; Langella, Giuseppe; Amoresano, Amedeo

    2016-01-01

    Highlights: • This study assesses the effect of ethanol–gasoline blends on cold emissions. • A last generation motorcycle was operated on the chassis dynamometer. • A new calculation procedure was applied to model the cold transient behaviour. • The 20% v/v ethanol blend shows the highest reduction of CO and HC cold emissions. - Abstract: Urban areas in developed countries are characterized by an increasing decline in air quality state mainly due to the exhaust emissions from vehicles. Besides, due to catalyst improvements and electronic mixture control of last generation engines, nowadays CO and HC cold start extra-emissions are heavily higher than emissions exhausted in hot conditions, with a clear consequence on air quality of the urban contexts. Ethanol combined with gasoline can be widely used as an alternative fuel due to the benefit of its high octane number and its self-sustaining characteristics. Ethanol, in fact, is well known as potential alcohol alternative fuel for SI engines, since it can be blended with gasoline to increase oxygen content, then decreasing CO and HC emissions and the depletion of fossil fuels. Literature data about cold emissive behaviour of SI engines powered with ethanol/gasoline blended fuels are rather limited. For this reason, the aim of this study is to experimentally investigate the effect of ethanol/gasoline blends on CO and HC cold start emissions of four-stroke SI engines: a last generation motorcycle was operated on the chassis dynamometer for exhaust emission measurements without change to the engine design, while the ethanol was mixed with unleaded gasoline in different percentages (10, 20 and 30 vol.%). Results of the experimental tests and the application of a new calculation procedure, designed and optimised to model the cold transient behaviour of SI engines using different ethanol–gasoline blends, indicate that CO and HC cold start emissions decrease compared to the use of commercial gasoline, with the 20

  14. Influence of dispersing additives and blend composition on stability of marine high-viscosity fuels

    Directory of Open Access Journals (Sweden)

    Т. Н. Митусова

    2017-12-01

    Full Text Available The article offers a definition of the stability of marine high-viscosity fuel from the point of view of the colloid-chemical concept of oil dispersed systems. The necessity and importance of the inclusion in the current regulatory requirements of this quality parameter of high-viscosity marine fuel is indicated. The objects of the research are high-viscosity marine fuels, the basic components of which are heavy oil residues: fuel oil that is the atmospheric residue of oil refining and viscosity breaking residue that is the product of light thermal cracking of fuel oil. As a thinning agent or distillate component, a light gas oil was taken from the catalytic cracking unit. The stability of the obtained samples was determined through the xylene equivalent index, which characterizes the stability of marine high-viscosity fuel to lamination during storage, transportation and operation processes. To improve performance, the resulting base compositions of high-viscosity marine fuels were modified by introducing small concentrations (0.05 % by weight of stabilizing additives based on oxyethylated amines of domestic origin and alkyl naphthalenes of foreign origin.

  15. High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of Nanolignin-Polyvinyl Alcohol Blends

    Science.gov (United States)

    Sandeep S. Nair; Sudhir Sharma; Yunqiao Pu; Qining Sun; Shaobo Pan; J.Y. Zhu; Yulin Deng; Art J. Ragauskas

    2014-01-01

    A new method to prepare nanolignin using a simple high shear homogenizer is presented. The kraft lignin particles with a broad distribution ranging from large micron- to nano-sized particles were completely homogenized to nanolignin particles with sizes less than 100 nm after 4 h of mechanical shearing. The 13C nuclear magnetic resonance (NMR)...

  16. Blending crystalline/liquid crystalline small molecule semiconductors: A strategy towards high performance organic thin film transistors

    Science.gov (United States)

    He, Chao; He, Yaowu; Li, Aiyuan; Zhang, Dongwei; Meng, Hong

    2016-10-01

    Solution processed small molecule polycrystalline thin films often suffer from the problems of inhomogeneity and discontinuity. Here, we describe a strategy to solve these problems through deposition of the active layer from a blended solution of crystalline (2-phenyl[1]benzothieno[3,2-b][1]benzothiophene, Ph-BTBT) and liquid crystalline (2-(4-dodecylphenyl) [1]benzothieno[3,2-b]benzothiophene, C12-Ph-BTBT) small molecule semiconductors with the hot spin-coating method. Organic thin film transistors with average hole mobility approaching 1 cm2/V s, much higher than that of single component devices, have been demonstrated, mainly due to the improved uniformity, continuity, crystallinity, and stronger intermolecular π-π stacking in blend thin films. Our results indicate that the crystalline/liquid crystalline semiconductor blend method is an effective way to enhance the performance of organic transistors.

  17. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    International Nuclear Information System (INIS)

    Kruger, A.A.; Olson, R.A.; Tennis, P.D.

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO 3 , quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite

  18. Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hao, Han; Liu, Feiqi; Liu, Zongwei; Zhao, Fuquan

    2016-01-01

    Highlights: • A process-based, well-to-wheel conceptualized life cycle assessment model is established. • The impacts of using low-octane gasoline on compression ignition engines are examined. • Life cycle energy consumption and GHG emissions reductions are 24.6% and 21.6%. • Significant technical and market barriers are still to be overcome. - Abstract: The use of low-octane gasoline on Gasoline Compression Ignition (GCI) engines is considered as a competitive alternative to the conventional vehicle propulsion technologies. In this study, a process-based, well-to-wheel conceptualized life cycle assessment model is established to estimate the life cycle energy consumption and greenhouse gas (GHG) emissions of the conventional gasoline-Spark Ignition (SI) and low-octane gasoline-GCI pathways. It is found that compared with the conventional pathway, the low-octane gasoline-GCI pathway leads to a 24.6% reduction in energy consumption and a 22.8% reduction in GHG emissions. The removal of the isomerization and catalytic reforming units in the refinery and the higher energy efficiency in the vehicle use phase are the substantial drivers behind the reductions. The results indicate that by promoting the use of low-octane gasoline coupled with the deployment of GCI vehicles, considerable reductions of energy consumption and GHG emissions in the transport sector can be achieved. However, significant technical and market barriers are still to be overcome. The inherent problems of NO_x and PM exhaust emissions associated with GCI engines need to be further addressed with advanced combustion techniques. Besides, the yield of low-octane gasoline needs to be improved through adjusting the refinery configurations.

  19. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be safely...

  20. High-performance porous polylactide stereocomplex crystallite scaffolds prepared by solution blending and salt leaching.

    Science.gov (United States)

    Xie, Yan; Lan, Xiao-Rong; Bao, Rui-Ying; Lei, Yang; Cao, Zhi-Qiang; Yang, Ming-Bo; Yang, Wei; Wang, Yun-Bing

    2018-09-01

    Biodegradable stereocomplex crystallite polylactide (SC-PLA) porous scaffolds with well-defined pore structures, high heat resistance, mechanical strength, and solvent resistance together with good biocompatibility, were obtained through solution casting of mixed poly(l-lactide) and poly(d-lactide) solution and subsequent leaching of sodium chloride particles. The pore structure of the SC-PLA scaffolds can be perfectly maintained after a high-pressure sterilization treatment at 121 °C, owing to the extensive formation of stereocomplex crystallites in the scaffolds. In vivo pilot study demonstrates that the fibroblasts of rats can infiltrate into the SC-PLA scaffolds well through the open pores. Degradation tests in phosphate-buffered saline solution reveal that the structure of SC-PLA scaffolds was quite stable due to the enhanced hydrolysis-resistance and improved mechanical properties of the scaffolds. These results reveal that SC-PLA scaffolds with good biocompatibility are potentially to be used as implanted biomaterials for the regeneration and restoration of tissues or organs. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. High-temperature performance of mortars and concretes based on alkali-activated slag/metakaolin blends

    Directory of Open Access Journals (Sweden)

    Bernal, S. A.

    2012-12-01

    Full Text Available This paper assesses the performance of mortars and concretes based on alkali activated granulated blastfurnace slag (GBFS/metakaolin (MK blends when exposed to high temperatures. High stability of mortars with contents of MK up to 60 wt.% when exposed to 600 °C is identified, with residual strengths of 20 MPa following exposure to this temperature. On the other hand, exposure to higher temperatures leads to cracking of the concretes, as a consequence of the high shrinkage of the binder matrix and the restraining effects of the aggregate, especially in those specimens with binders containing high MK content. A significant difference is identified between the water absorption properties of mortars and concretes, and this is able to be correlated with divergences in their performance after exposure to high temperatures. This indicates that the performance at high temperatures of alkali-activated mortars is not completely transferable to concrete, because the systems differ in permeability. The differences in the thermal expansion coefficients between the binder matrix and the coarse aggregates contribute to the macrocracking of the material, and the consequent reduction of mechanical properties.

    Este artículo evalúa el desempeño de morteros y hormigones basados en mezclas de escoria siderúrgica (GBFS/metacaolín (MK, activadas alcalinamente expuestos a temperaturas altas. Se identifica una elevada estabilidad en morteros con contenidos de MK de hasta un 60% cuando se exponen a temperaturas de 600 ºC, con una resistencia residual de 20 MPa posterior a la exposición a esta temperatura. Por otra parte, la exposición a temperaturas más elevadas conduce al agrietamiento de los hormigones como consecuencia de una elevada contracción de la matriz cementante y las restricciones por efecto de los áridos, especialmente en aquellos especímenes con cementantes que contienen altos contenidos de MK. Se identifican diferencias significativas en

  2. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design

    International Nuclear Information System (INIS)

    Haase, Christian; Tang, Florian; Wilms, Markus B.; Weisheit, Andreas; Hallstedt, Bengt

    2017-01-01

    High-entropy alloys have gained high interest of both academia and industry in recent years due to their excellent properties and large variety of possible alloy systems. However, so far prediction of phase constitution and stability is based on empirical rules that can only be applied to selected alloy systems. In the current study, we introduce a methodology that enables high-throughput theoretical and experimental alloy screening and design. As a basis for thorough thermodynamic calculations, a new database was compiled for the Co–Cr–Fe–Mn–Ni system and used for Calphad and Scheil simulations. For bulk sample production, laser metal deposition (LMD) of an elemental powder blend was applied to build up the equiatomic CoCrFeMnNi Cantor alloy as a first demonstrator. This production approach allows high flexibility in varying the chemical composition and, thus, renders itself suitable for high-throughput alloy production. The microstructure, texture, and mechanical properties of the material processed were characterized using optical microscopy, EBSD, EDX, XRD, hardness and compression testing. The LMD-produced alloy revealed full density, strongly reduced segregation compared to conventionally cast material, pronounced texture, and excellent mechanical properties. Phase constitution and elemental distribution were correctly predicted by simulations. The applicability of the introduced methodology to high-entropy alloys and extension to compositionally complex alloys is discussed.

  3. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design

    Energy Technology Data Exchange (ETDEWEB)

    Haase, Christian, E-mail: christian.haase@iehk.rwth-aachen.de [Department of Ferrous Metallurgy, RWTH Aachen University, 52072 Aachen (Germany); Tang, Florian [Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, 52062 Aachen (Germany); Wilms, Markus B.; Weisheit, Andreas [Fraunhofer Institute for Laser Technology ILT, 52074 Aachen (Germany); Hallstedt, Bengt [Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, 52062 Aachen (Germany)

    2017-03-14

    High-entropy alloys have gained high interest of both academia and industry in recent years due to their excellent properties and large variety of possible alloy systems. However, so far prediction of phase constitution and stability is based on empirical rules that can only be applied to selected alloy systems. In the current study, we introduce a methodology that enables high-throughput theoretical and experimental alloy screening and design. As a basis for thorough thermodynamic calculations, a new database was compiled for the Co–Cr–Fe–Mn–Ni system and used for Calphad and Scheil simulations. For bulk sample production, laser metal deposition (LMD) of an elemental powder blend was applied to build up the equiatomic CoCrFeMnNi Cantor alloy as a first demonstrator. This production approach allows high flexibility in varying the chemical composition and, thus, renders itself suitable for high-throughput alloy production. The microstructure, texture, and mechanical properties of the material processed were characterized using optical microscopy, EBSD, EDX, XRD, hardness and compression testing. The LMD-produced alloy revealed full density, strongly reduced segregation compared to conventionally cast material, pronounced texture, and excellent mechanical properties. Phase constitution and elemental distribution were correctly predicted by simulations. The applicability of the introduced methodology to high-entropy alloys and extension to compositionally complex alloys is discussed.

  4. Combustion characteristics and retention-emission of selenium during co-firing of torrefied biomass and its blends with high ash coal.

    Science.gov (United States)

    Ullah, Habib; Liu, Guijian; Yousaf, Balal; Ali, Muhammad Ubaid; Abbas, Qumber; Zhou, Chuncai

    2017-12-01

    The combustion characteristics, kinetic analysis and selenium retention-emission behavior during co-combustion of high ash coal (HAC) with pine wood (PW) biomass and torrefied pine wood (TPW) were investigated through a combination of thermogravimetric analysis (TGA) and laboratory-based circulating fluidized bed combustion experiment. Improved ignition behavior and thermal reactivity of HAC were observed through the addition of a suitable proportion of biomass and torrefied. During combustion of blends, higher values of relative enrichment factors in fly ash revealed the maximum content of condensing volatile selenium on fly ash particles, and depleted level in bottom ash. Selenium emission in blends decreased by the increasing ratio of both PW and TPW. Higher reductions in the total Se volatilization were found for HAC/TPW than individual HAC sample, recommending that TPW have the best potential of selenium retention. The interaction amongst selenium and fly ash particles may cause the retention of selenium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Synthesis and Properties of High Strength Thin Film Composites of Poly(ethylene Oxide and PEO-PMMA Blend with Cetylpyridinium Chloride Modified Clay

    Directory of Open Access Journals (Sweden)

    Mohammad Saleem Khan

    2015-01-01

    Full Text Available Ion-conducting thin film composites of polymer electrolytes were prepared by mixing high MW poly(ethylene oxide (PEO, poly(methyl methacrylate (PMMA as a polymer matrix, cetylpyridinium chloride (CPC modified MMT as filler, and different content of LiClO4 by using solution cast method. The crystallinity, ionic conductivity (σ, and mechanical properties of the composite electrolytes and blend composites were evaluated by using XRD, AC impedance, and UTM studies, respectively. The modification of clay by CPC showed enhancement in the d-spacing. The loading of clay has effect on crystallinity of PEO systems. Blend composites showed better mechanical properties. Young’s modulus and elongation at break values showed increase with salt and clay incorporation in pure PEO. The optimum composition composite of PEO with 3.5 wt% of salt and 3.3 wt% of CPMMT exhibited better performance.

  6. A blended approach to analyze staple and high-value crops using remote sensing with radiative transfer and crop models.

    Science.gov (United States)

    Davitt, A. W. D.; Winter, J.; McDonald, K. C.; Escobar, V. M.; Steiner, N.

    2017-12-01

    The monitoring of staple and high-value crops is important for maintaining food security. The recent launch of numerous remote sensing satellites has created the ability to monitor vast amounts of crop lands, continuously and in a timely manner. This monitoring provides users with a wealth of information on various crop types over different regions of the world. However, a challenge still remains on how to best quantify and interpret the crop and surface characteristics that are measured by visible, near-infrared, and active and passive microwave radar. Currently, two NASA funded projects are examining the ability to monitor different types of crops in California with different remote sensing platforms. The goal of both projects is to develop a cost-effective monitoring tool for use by vineyard and crop managers. The first project is designed to examine the capability to monitor vineyard water management and soil moisture in Sonoma County using Soil Moisture Active Passive (SMAP), Sentinel-1A and -2, and Landsat-8. The combined mission products create thorough and robust measurements of surface and vineyard characteristics that can potentially improve the ability to monitor vineyard health. Incorporating the Michigan Microwave Canopy Scattering (MIMICS), a radiative transfer model, enables us to better understand surface and vineyard features that influence radar measurements from Sentinel-1A. The second project is a blended approach to analyze corn, rice, and wheat growth using Sentinel-1A products with Decision Support System for Agrotechnology Transfer (DSSAT) and MIMICS models. This project aims to characterize the crop structures that influence Sentinel-1A radar measurements. Preliminary results have revealed the corn, rice, and wheat structures that influence radar measurements during a growing season. The potential of this monitoring tool can be used for maintaining food security. This includes supporting sustainable irrigation practices, identifying crop

  7. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material.

    Science.gov (United States)

    Phummiphan, Itthikorn; Horpibulsuk, Suksun; Rachan, Runglawan; Arulrajah, Arul; Shen, Shui-Long; Chindaprasirt, Prinya

    2018-01-05

    Granulated Blast Furnace Slag (GBFS) was used as a replacement material in marginal lateritic soil (LS) while class C Fly Ash (FA) was used as a precursor for the geopolymerization process to develop a low-carbon pavement base material at ambient temperature. Unconfined Compression Strength (UCS) tests were performed to investigate the strength development of geopolymer stabilized LS/GBFS blends. Scanning Electron Microscopy and X-ray Diffraction analysis were undertaken to examine the role of the various influencing factors on UCS development. The influencing factors studied included GBFS content, Na 2 SiO 3 :NaOH ratio (NS:NH) and curing time. The 7-day soaked UCS of FA geopolymer stabilized LS/GBFS blends at various NS:NH ratios tested was found to satisfy the specifications of the Thailand national road authorities. The GBFS replacement was found to be insignificant for the improvement of the UCS of FA geopolymer stabilized LS/GBFS blends at low NS:NH ratio of 50:50. Microstructural analysis indicated the coexistence of Calcium Silicate Hydrate (CSH) and Sodium Alumino Silicate Hydrate products in FA geopolymer stabilized LS/GBFS blends. This research enables GBFS, which is traditionally considered as a waste material, to be used as a replacement and partially reactive material in FA geopolymer pavement applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development of wet-dry reversible reverse osmosis membrane with high performance from cellulose acetate and cellulose triactate blend

    NARCIS (Netherlands)

    Vasarhelyi, K.; Ronner, J.A.; Mulder, M.H.V.; Smolders, C.A.

    1987-01-01

    Wet-dry reversible membrane were prepared bt a two-step coagulation procedure. A cast film containing a blend of cellulose triacetate as polymers, dioxane and acetone as solvents and maleic acid and methanol as additives was immersed consecutively in two aqueous coagulation baths, the first bath

  9. Being the Bridge: The Lived Experience of Educating with Online Courseware in the High School Blended Learning Setting

    Science.gov (United States)

    Rambo, Anna Lynn

    2011-01-01

    This dissertation explores the lived experiences of educators who teach in flex model blended learning settings using online, vendor-provided courseware. The tradition of hermeneutic phenomenology grounds this inquiry (Heidegger, 1927/2008). Phenomenological research activities designed by van Manen (1990, 2002) provide the methodological…

  10. The durability of concrete containing a high-level of fly ash or a ternary blend of supplementary cementing materials

    Science.gov (United States)

    Gilbert, Christine M.

    The research for this study was conducted in two distinct phases as follows: Phase 1: The objective was to determine the effect of fly ash on the carbonation of concrete. The specimens made for this phase of the study were larger in size than those normally used in carbonation studies and were are meant to more accurately reflect real field conditions. The results from early age carbonation testing indicate that the larger size specimens do not have a measured depth of carbonation as great as that of the smaller specimens typically used in carbonation studies at the same age and under the same conditions. Phase 2: The objective was to evaluate the performance of ternary concrete mixes containing a ternary cement blend consisting of Portland cement, slag and Type C fly ash. It was found that concrete mixtures containing the fly ash with the lower calcium (CaO) content (in binary or ternary blends) provided superior durability performance and resistance to ASR compared to that of the fly ash with the higher CaO content. Ternary blends (regardless of the CaO content of the fly ash) provided better overall durability performance than binary blends of cementing materials or the control.

  11. The influence of n-butanol blending on the ignition delay times of gasoline and its surrogate at high pressures

    KAUST Repository

    Agbro, Edirin; Tomlin, Alison S.; Lawes, Malcolm; Park, Sungwoo; Sarathy, Mani

    2016-01-01

    between those of stoichiometric gasoline and stoichiometric n-butanol across the temperature range studied. At lower temperatures, delays for the blend were however, much closer to those of n-butanol than gasoline despite n-butanol being only 20

  12. Pressure effects on enzyme reactions in mainly organic media: alpha-chymotrypsin in reversed micelles of Aerosol OT in octane.

    Science.gov (United States)

    Mozhaev, V V; Bec, N; Balny, C

    1994-08-01

    Biocatalytic transformations in reversed micelles formed by anionic surfactant Aerosol OT in octane have been studied at high pressures by an example of alpha-chymotrypsin-catalyzed hydrolysis of N-carbobenzoxy-L-tyrosine p-nitrophenyl ester and N-succinyl-L-phenylalanine p-nitroanilide. For the first time it has been found that the enzyme retains high activity in these water-in-oil microemulsions up to a pressure of 2 kbar. The value of the activation volume (delta V*) for the enzyme reactions shows a dependence on the water content in the system. When the size of the micellar aqueous inner cavity (as evaluated at 1 atm) approaches the molecular size of alpha-chymotrypsin, delta V* becomes significantly different from the value in aqueous solution and in the micelles with a larger size. Possibilities of regulating the enzyme activity by pressure in systems with a low content of water are discussed.

  13. Synthesizing optimal waste blends

    International Nuclear Information System (INIS)

    Narayan, V.; Diwekar, W.M.; Hoza, M.

    1996-01-01

    Vitrification of tank wastes to form glass is a technique that will be used for the disposal of high-level waste at Hanford. Process and storage economics show that minimizing the total number of glass logs produced is the key to keeping cost as low as possible. The amount of glass produced can be reduced by blending of the wastes. The optimal way to combine the tanks to minimize the vole of glass can be determined from a discrete blend calculation. However, this problem results in a combinatorial explosion as the number of tanks increases. Moreover, the property constraints make this problem highly nonconvex where many algorithms get trapped in local minima. In this paper the authors examine the use of different combinatorial optimization approaches to solve this problem. A two-stage approach using a combination of simulated annealing and nonlinear programming (NLP) is developed. The results of different methods such as the heuristics approach based on human knowledge and judgment, the mixed integer nonlinear programming (MINLP) approach with GAMS, and branch and bound with lower bound derived from the structure of the given blending problem are compared with this coupled simulated annealing and NLP approach

  14. The effect of high curing temperature on the reaction kinetics in MK/lime and MK-blended cement matrices at 60 deg. C

    International Nuclear Information System (INIS)

    Rojas, Moises Frias; Sanchez de Rojas, M.I.

    2003-01-01

    It is well known that the pozzolanic reaction between metakaolin (MK) and calcium hydroxide produces CSH, C 2 ASH 8 (stratlingite), C 4 AH 13 and C 3 ASH 6 (hydrogarnet). However, the presence or absence of these hydrated phases depends on different parameters, such as curing temperature, matrix used, etc. This paper shows the results of a study in order to know the effect of high curing temperature (60 deg. C) on the kinetics of the pozzolanic reaction in different matrices. MK/lime (calcium hydroxide) and MK-blended cement matrices were studied in samples stored and cured at 60 deg. C and up to 123 days of hydration. The nature, sequence and crystallinity of the hydrated phases were analysed using differential thermal analysis (DTA) and X-ray diffraction (XRD) techniques. Results showed that the sequence and formation of the hydrated phases was different in both matrices cured at 60 deg. C. In an MK/lime matrix, C 2 ASH 8 , C 4 AH 13 and C 3 ASH 6 were the main hydrated phases; while in an MK-blended cement, stratlingite was the sole hydrated phase issued from pozzolanic reaction. The DTA and XRD data also reveal an important fact: there is no evidence of the presence of hydrogarnet in blended cements

  15. Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes

    Directory of Open Access Journals (Sweden)

    Alan Yiu-lun Tang

    2017-12-01

    Full Text Available In this study, we investigated the computer colour matching (CCM of cotton fabrics dyed with reactive dye using the octane-assisted reverse micellar approach. The aim of this study is to evaluate the colour quality and compare the accuracy between CCM forecasting and simulated dyeing produced by conventional water-based dyeing and octane-assisted reverse micellar dyeing. First, the calibration of dyeing databases for both dyeing methods was established. Standard samples were dyed with known dye concentrations. Computer colour matching was conducted by using the colour difference formula of International Commission on Illumination (CIE L*a*b*. Experimental results revealed that the predicted concentrations were nearly the same as the expected known concentrations for both dyeing methods. This indicates that octane-assisted reverse micellar dyeing system can achieve colour matching as good as the conventional water-based dyeing system. In addition, when comparing the colour produced by the conventional water-based dyeing system and the octane-assisted reverse micellar dyeing system, the colour difference (ΔE is ≤1, which indicates that the reverse micellar dyeing system could be applied for industrial dyeing with CCM.

  16. A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics

    KAUST Repository

    Atef, Nour; Kukkadapu, Goutham; Mohamed, Samah; Rashidi, Mariam Al; Banyon, Colin; Mehl, Marco; Heufer, Karl Alexander; Nasir, Ehson Fawad; Alfazazi, Adamu; Das, Apurba K.; Westbrook, Charles K.; Pitz, William J.; Lu, Tianfeng; Farooq, Aamir; Sung, Chih-Jen; Curran, Henry J.; Sarathy, Mani

    2017-01-01

    Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents

  17. 2-Methylfuran: A bio-derived octane booster for spark-ignition engines

    KAUST Repository

    Sarathy, Mani; Shankar, Vijai; Tripathi, Rupali; Pitsch, Heinz; Sarathy, Mani

    2018-01-01

    The efficiency of spark-ignition engines is limited by the phenomenon of knock, which is caused by auto-ignition of the fuel-air mixture ahead of the spark-initiated flame front. The resistance of a fuel to knock is quantified by its octane index

  18. Conversion of the Iridoid Glucoside Antirrhinoside into 3-Azabicyclo[3.3.0]-octane Building Blocks

    DEFF Research Database (Denmark)

    Franzyk, Henrik; Frederiksen, Signe Maria; Jensen, Søren Rosendal

    2000-01-01

    The iridoid glucoside antirrhinoside (1) was transformed into polysubstituted 3-azabicyclo[3.3.0]octanes 3, 12 and 13 in 4-5 steps. Ozonolysis of the diacetonide of 1 and of its 7-deoxy-derivative 8 afforded cyclopentanoids 2 and 10, respectively. Conditions for the selective conversion of 2 and 10...

  19. Effects of convective motion in n-octane pool fires in an ice cavity

    DEFF Research Database (Denmark)

    Farahani, Harried Farmahini; Jomaas, Grunde; Rangwala, Ali S.

    2015-01-01

    The effects of convective flows in n-octane pool fires in an ice cavity were investigated and it was found that a new set of parameters to the classical problem of bounded pool fires arises under these unique conditions. To systematically understand these parameters, two sets of experiments were...

  20. Interaction of 3,8-diazabicyclo (3.2.1) octanes with mu and delta opioid receptors.

    Science.gov (United States)

    Cignarella, G; Barlocco, D; Tranquillini, M E; Volterra, A; Brunello, N; Racagni, G

    1988-05-01

    A series of 3,8-diazabicyclo (3.2.1) octanes (DBO) (1) substituted at the nitrogen atoms by acyl and aralkenyl groups, were tested in in vitro binding assays towards mu and delta opioid receptors. The most representative terms (1a, 1d, 1g, 1j,) were also evaluated for the analgesic potency in vivo by the hot plate method. Among the compounds tested the most potent was the p.nitrocinnamyl DBO (1d) which displayed a mu/delta selectivity and an analgesic activity respectively 25 and 17 fold those of morphine. On the contrary, the m.hydroxycinnamyl DBO (1g) was markedly less active as agonist than the parent 1a, thus suggesting that structure 1 interacts with opioid receptors in a different fashion than morphine. Compound 1j isomer of 1a which is provided with high mu affinity, but lower analgesic potency, was found to possess a mixed agonist-antagonist activity.

  1. Phase equilibria of microemulsion forming system n-decyl-(beta)-D-glucopyranoside/water/n-octane/1-butanol

    DEFF Research Database (Denmark)

    Kahl, Heike; Quitzsch, Konrad; Stenby, Erling Halfdan

    1997-01-01

    of multicomponent system is the coexistence of a highly structural liquid phase enriched with amphiphilic compounds and an excess water or an excess oil phase or both of them. The phase behaviour was studied experimentally by use of turbidity titration and HPLC measurements and theoretically by application...... of the UNIQUAC-equation and the UNIFAC-method. The UNIFAC-method is able to describe the phase behaviour in the quaternary system qualitatively, without fitting parameters. However, by applying the UNIQUAC-method, with adjustable parameters, it was only possible to model the ternary subsystems. The modelling......A systematic investigation of the phase behaviour involving microemulsions is presented with respect to experimental and calculated data for the four-component system n-decyl-(beta)-D-glucopyranoside/water/n-octane/1-butanol and its corresponding ternaries at 25°C. The main feature of this kind...

  2. Combustion and emissions characteristics of high n-butanol/diesel ratio blend in a heavy-duty diesel engine and EGR impact

    International Nuclear Information System (INIS)

    Chen, Zheng; Wu, Zhenkuo; Liu, Jingping; Lee, Chiafon

    2014-01-01

    Highlights: • Effects of EGR on high n-butanol/diesel ratio blend (Bu40) were investigated and compared with neat diesel (Bu00). • Bu40 has higher NOx due to wider combustion high-temperature region. • Bu40 has lower soot due to local lower equivalence ratio distribution. • Bu40 has higher CO due to lower gas temperature in the late expansion process. • For Bu40, EGR reduces NOx emissions dramatically with no obvious influence on soot. - Abstract: In this work, the combustion and emission fundamentals of high n-butanol/diesel ratio blend with 40% butanol (i.e., Bu40) in a heavy-duty diesel engine were investigated by experiment and simulation at constant engine speed of 1400 rpm and an IMEP of 1.0 MPa. Additionally, the impact of EGR was evaluated experimentally and compared with neat diesel fuel (i.e., Bu00). The results show that Bu40 has higher cylinder pressure, longer ignition delay, and faster burning rate than Bu00. Compared with Bu00, moreover, Bu40 has higher NOx due to wider combustion high-temperature region, lower soot due to local lower equivalence ratio distribution, and higher CO due to lower gas temperature in the late expansion process. For Bu40, EGR reduces NOx emissions dramatically with no obvious influence on soot. Meanwhile, there is no significant change in HC and CO emissions and indicated thermal efficiency (ITE) with EGR until EGR threshold is reached. When EGR rate exceeds the threshold level, HC and CO emissions increase dramatically, and ITE decreases markedly. Compared with Bu00, the threshold of Bu40 appears at lower EGR rate. Consequently, combining high butanol/diesel ratio blend with medium EGR has the potential to achieve ultra-low NOx and soot emissions simultaneously while maintaining high thermal efficiency level

  3. Mechanical properties of irradiated rubber-blends

    International Nuclear Information System (INIS)

    Nasr, G.M.; Madani, M.

    2005-01-01

    A study has been made on blend ratios of natural rubber (NR) and acrylonitrile butadiene rubber (NBR) that are loaded with general purpose furnace (GPE) carbon black and irradiated at different gamma radiation doses. It was fount that the mechanical properties of such blend are highly affected by γ- irradiation dose and the composition ratios of its constituents. The elongation at break for blends was found to increase slightly with increasing NBR loafing which is mainly due to the stiffness of blending matrix formation between NR and GPF carbon black particles. The hysteresis loss, extension ratio and shape factor have been calculated for the different un-irradiated and irradiated samples

  4. Preparation and Properties of Polyhedral Oligosilsesquioxanes/Polymers Blends

    National Research Council Canada - National Science Library

    Blanski, Rusty

    2000-01-01

    ... (polycarbonate, SB rubber, etc.) resulting in a clear blend. We also report that aliphatic POSS compounds are also dispersible in high density polyethylene. The synthesis of POSS/polymer blends as well as some physical properties will be discussed.

  5. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels

    Science.gov (United States)

    He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua

    The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.

  6. Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel

    International Nuclear Information System (INIS)

    Zheng, Zunqing; Yue, Lang; Liu, Haifeng; Zhu, Yuxuan; Zhong, Xiaofan; Yao, Mingfa

    2015-01-01

    Highlights: • Two-stage injection using diesel blended fuel at high EGR (46%) was studied. • Blending fuels induce retarded pilot heat release and have less effect on MPRR. • Effects of injection parameters of blended fuels on emissions are similar to diesel. • Different fuels have little influence on post combustion heat release. • Small quantity post injection close to main results in better efficiency and emissions. - Abstract: The effect of two-stage injection on combustion and emission characteristics under high EGR (46%) condition were experimentally investigated. Four different fuels including pure diesel and blended fuels of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol were tested. Results show that blending gasoline or/and n-butanol in diesel improves smoke emissions while induces increase in maximum pressure rise rate (MPRR). Adopting pilot injection close to main injection can effectively reduce the peak of premixed heat release rate and MPRR. However, for fuels blends with high percentage of low cetane number fuel, the effect of pilot fuel on ignition can be neglected and the improvement of MPRR is not that obvious. Pilot-main interval presents more obvious effect on smoke than pilot injection rate does, and the smoke emissions decrease with increasing pilot-main interval. A longer main-post interval results in a lower post heat release rate and prolonged combustion duration. While post injection rate has little effect on the start of ignition for post injection. The variation in fuel properties caused by blending gasoline or/and n-butanol into diesel does not impose obvious influence on post combustion. The smoke emission increases first and then declines with retard of post injection timing. Compared to diesel, the smoke emissions of blended fuels are more sensitive to the variation of post injection strategy

  7. An experimental study of the effect of octane number higher than engine requirement on the engine performance and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Cenk; Kilicaslan, Ibrahim; Canakci, Mustafa; Ozsezen, Necati [Kocaeli Univ., Dept. of Mechanical Education, Izmit (Turkey)

    2005-06-01

    In this study, the effect of using higher-octane gasoline than that of engine requirement on the performance and exhaust emissions was experimentally studied. The test engine chosen has a fuel system with carburettor because 60% of the vehicles in Turkey are equipped with the carburettor. The engine, which required 91-RON (Research Octane Number) gasoline, was tested using 95-RON and 91-RON. Results show that using octane ratings higher than the requirement of an engine not only decreases engine performance but also increases exhaust emissions. (Author)

  8. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    International Nuclear Information System (INIS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-01-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100–300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating–cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase. - Highlights: • Binary blends of HDPE/NBR have been irradiated with 5 MeV accelerated electrons. • Increase of NBR content and irradiation dose improves cross-linking efficiency. • Thermo-shrinkage and residual stresses are investigated for oriented specimens. • Cross-linked HDPE/NBR composites can be successfully used as thermos-shrinkable materials.

  9. Effects of blend ratio between high density polyethylene and biomass on co-gasification behavior in a two-stage gasification system

    KAUST Repository

    Park, Jae Hyun

    2016-08-12

    The co-gasification of a high density polyethylene (HDPE) blended with a biomass has been carried out in a two-stage gasification system which comprises an oxidative pyrolysis reactor and a thermal plasma reactor. The equivalence ratio was changed from 0.38 to 0.85 according to the variation of blend ratio between HDPE and biomass. The highest production yield was achieved to be 71.4 mol/h, when the equivalence ratio was 0.47. A large amount of hydrocarbons was produced from the oxidative pyrolysis reactor as decreasing equivalence ratio below 0.41, while the CO2 concentration significantly increased with a high equivalence ratio over 0.65. The production yield was improved by the thermal plasma reactor due to the conversion of hydrocarbons into syngas in a high temperature region of thermal plasma. At the equivalence ratio of 0.47, conversion selectivities of CO and H2 from hydrocarbons were calculated to be 74% and 44%, respectively. © 2016 Hydrogen Energy Publications LLC.

  10. Mixing of low-dose cohesive drug and overcoming of pre-blending step using a new gentle-wing high-shear mixer granulator.

    Science.gov (United States)

    Alsulays, Bader B; Fayed, Mohamed H; Alalaiwe, Ahmed; Alshahrani, Saad M; Alshetaili, Abdullah S; Alshehri, Sultan M; Alanazi, Fars K

    2018-05-16

    The objective of this study was to examine the influence of drug amount and mixing time on the homogeneity and content uniformity of a low-dose drug formulation during the dry mixing step using a new gentle-wing high-shear mixer. Moreover, the study investigated the influence of drug incorporation mode on the content uniformity of tablets manufactured by different methods. Albuterol sulfate was selected as a model drug and was blended with the other excipients at two different levels, 1% w/w and 5% w/w at impeller speed of 300 rpm and chopper speed of 3000 rpm for 30 min. Utilizing a 1 ml unit side-sampling thief probe, triplicate samples were taken from nine different positions in the mixer bowl at selected time points. Two methods were used for manufacturing of tablets, direct compression and wet granulation. The produced tablets were sampled at the beginning, middle, and end of the compression cycle. An analysis of variance analysis indicated the significant effect (p drug amount on the content uniformity of the powder blend and the corresponding tablets. For 1% w/w and 5% w/w formulations, incorporation of the drug in the granulating fluid provided tablets with excellent content uniformity and very low relative standard deviation (∼0.61%) during the whole tableting cycle compared to direct compression and granulation method with dry incorporation mode of the drug. Overall, gentle-wing mixer is a good candidate for mixing of low-dose cohesive drug and provides tablets with acceptable content uniformity with no need for pre-blending step.

  11. "Comfort" as a Critical Success Factor in Blended Learning Courses

    Science.gov (United States)

    Futch, Linda S.; deNoyelles, Aimee; Thompson, Kelvin; Howard, Wendy

    2016-01-01

    There are substantial quantitative research and anecdotal reports on blended learning and blended learning courses. However, few research studies focus on what happens at the classroom level. This research study aims to consider the highly contextual environment of effective blended learning courses by identifying the strategies instructors use to…

  12. High-throughput preparation of complex multi-scale patterns from block copolymer/homopolymer blend films

    Science.gov (United States)

    Park, Hyungmin; Kim, Jae-Up; Park, Soojin

    2012-02-01

    A simple, straightforward process for fabricating multi-scale micro- and nanostructured patterns from polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP)/poly(methyl methacrylate) (PMMA) homopolymer in a preferential solvent for PS and PMMA is demonstrated. When the PS-b-P2VP/PMMA blend films were spin-coated onto a silicon wafer, PS-b-P2VP micellar arrays consisting of a PS corona and a P2VP core were formed, while the PMMA macrodomains were isolated, due to the macrophase separation caused by the incompatibility between block copolymer micelles and PMMA homopolymer during the spin-coating process. With an increase of PMMA composition, the size of PMMA macrodomains increased. Moreover, the P2VP blocks have a strong interaction with a native oxide of the surface of the silicon wafer, so that the P2VP wetting layer was first formed during spin-coating, and PS nanoclusters were observed on the PMMA macrodomains beneath. Whereas when a silicon surface was modified with a PS brush layer, the PS nanoclusters underlying PMMA domains were not formed. The multi-scale patterns prepared from copolymer micelle/homopolymer blend films are used as templates for the fabrication of gold nanoparticle arrays by incorporating the gold precursor into the P2VP chains. The combination of nanostructures prepared from block copolymer micellar arrays and macrostructures induced by incompatibility between the copolymer and the homopolymer leads to the formation of complex, multi-scale surface patterns by a simple casting process.A simple, straightforward process for fabricating multi-scale micro- and nanostructured patterns from polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP)/poly(methyl methacrylate) (PMMA) homopolymer in a preferential solvent for PS and PMMA is demonstrated. When the PS-b-P2VP/PMMA blend films were spin-coated onto a silicon wafer, PS-b-P2VP micellar arrays consisting of a PS corona and a P2VP core were formed, while the PMMA macrodomains were isolated, due to the

  13. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    Science.gov (United States)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-03-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.

  14. Structural investigation of diglycerol monolaurate reverse micelles in nonpolar oils cyclohexane and octane

    International Nuclear Information System (INIS)

    Shrestha, Lok Kumar; Aramaki, Kenji

    2009-01-01

    Structure of diglycerol monolaurate (abbreviated as C 12 G 2 ) micelles in nonpolar oils cyclohexane and n-octane as a function of compositions, temperatures, and surfactant chain length has been investigated by small-angle X-ray scattering (SAXS). The SAXS data were evaluated by the generalized indirect Fourier transformation (GIFT) method and real-space structural information of particles was achieved. Conventional poly(oxyethylene) type nonionic surfactants do not form reverse micelles in oils unless a trace water is added. However, present surfactant C 12 G 2 formed reverse micelle (RM) in cyclohexane and n-octane without addition of water at normal room temperature. A clear signature of one dimensional (1-D) micellar growth was found with increasing C 12 G 2 concentration. On the other hand, increasing temperature or hydrocarbon chain length of surfactant shorten the length of RM, which is essentially a cylinder-to-sphere type transition in the aggregate structure. Drastic changes in the structure of RM, namely, transition of ellipsoidal prolate to long rod-like micelles was observed upon changing oil from cyclohexane to octane. All the microstructural transitions were explained in terms of critical packing parameter. (author)

  15. Identification of octanal as plant growth inhibitory volatile compound released from Heracleum sosnowskyi fruit.

    Science.gov (United States)

    Mishyna, Maryia; Laman, Nikolai; Prokhorov, Valery; Maninang, John Solomon; Fujii, Yoshiharu

    2015-05-01

    Heracleum sosnowskyi Manden of the Apiaceae family is a malignant invasive plant in Eastern Europe, Belarus and Russia. The species is known for its prolific seed production, which has been linked to the plant's invasive success. The fruit also has a strong aroma, but the contribution of the fruit's volatile constituent to out-compete neighboring plants has not been fully established. In this study, fruit volatiles of H. sosnowskyi and conspecifics (i.e. H. asperum, H. lescovii, H. dissectum, H. hirtum) were identified by headspace gas chromatography-mass spectrometry (HS-GC-MS). Octyl acetate, octanol, octanal, hexyl isobutyrate, and hexyl-2-methyl butyrate were found to be the principal volatiles. Using authentic standards, the growth-inhibitory property of the individual compounds was assayed by the novel Cotton swab method. Assay results with lettuce (Lactuca sativa) showed that octanal strongly inhibited seed germination and radicle elongation of seedlings. The results suggest that octanal may be the main contributor to the allelopathic activity of H. sosnowksyi fruits. Furthermore, the mixture of fruit volatiles from the invasive H. sosnowskyi more strongly delayed lettuce seedling elongation than the volatiles from fruits of the non-invasive H. asperum, H. lescovii, H. dissectum and H. hirtum. Thus, the present study is the first to demonstrate the possible involvement of fruit volatiles of Heracleum species in plant-plant interaction.

  16. Utilization of Renewable Oxygenates as Gasoline Blending Components

    Energy Technology Data Exchange (ETDEWEB)

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  17. Longitudinal Aerodynamic Characteristics and Wing Pressure Distributions of a Blended-Wing-Body Configuration at Low and High Reynolds Numbers

    Science.gov (United States)

    Re, Richard J.

    2005-01-01

    Force balance and wing pressure data were obtained on a 0.017-Scale Model of a blended-wing-body configuration (without a simulated propulsion system installation) to validate the capability of computational fluid dynamic codes to predict the performance of such thick sectioned subsonic transport configurations. The tests were conducted in the National Transonic Facility of the Langley Research Center at Reynolds numbers from 3.5 to 25.0 million at Mach numbers from 0.25 to 0.86. Data were obtained in the pitch plane only at angles of attack from -1 to 8 deg at Mach numbers greater than 0.25. A configuration with winglets was tested at a Reynolds number of 25.0 million at Mach numbers from 0.83 to 0.86.

  18. Isomerization-cracking of n-octane on catalysts based on heteropolyacid H{sub 3}Pw{sub 12}O{sub 40} and heteropolyacid supported on zirconia and promoted with Pt and Cs

    Energy Technology Data Exchange (ETDEWEB)

    Manuele, Debora L.; Torres, Gerardo C.; Benitez, Viviana M.; Badano, Juan M.; Yori, Juan C.; Sepulveda, Jorge H., E-mail: jsepulve@fiq.unl.edu.ar [Universidad Nacional de Litoral, Santa Fe (Argentina). Instituto de Investiaciones en Catalisis y Petroquimica. Consejo Nacional de Investigaciones Cientificas y Tecnicas

    2013-10-01

    Isomerization-cracking of n-octane was studied using H{sub 3}PW{sub 12}O{sub 40} (HPA) and HPA supported on zirconia and promoted with Pt and Cs. The addition of Pt and Cs to the supported HPA did not modify the Keggin structure. The Pt addition to the supported HPA did not substantially modify the total acidity; however, the Broensted acidity increased significantly. Cs increased the total acidity and Broensted acidity. A linear relation was observed between the n-C{sub 8} total conversion and Broensted acidity. The most adequate catalysts for performing isomerization and cracking to yield high research octane number (RON) are those with higher values of Broensted acidity. (author)

  19. High power generation and COD removal in a microbial fuel cell operated by a novel sulfonated PES/PES blend proton exchange membrane

    International Nuclear Information System (INIS)

    Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Rahimi, Z.

    2017-01-01

    In this paper, firstly sulfonated polyethersulfone (SPES) was synthesized from polyethersulfone (PES) with sulfonation by chlorosulfonic acid as a sulfonating agent dissolved in concentrated sulfuric acid. PES/SPES blend proton exchange membranes (PEMs) were prepared at four different compositions with the non-solvent induced phase separation technique as alternative materials to Nafion membrane for application in a microbial fuel cell (MFC). The prepared PEMs were characterized by FTIR spectroscopy, AFM, SEM, contact angle, water uptake and oxygen permeability. Performances of the fabricated PEMs and commercial Nafion 117 were evaluated in a dual chamber MFC for treating of wastewater and electricity generation. Maximum generated power and current of the fabricated membranes were 58.726 mWm −2  at current density of 317.111 mAm −2 , while it was 45.512 mWm −2  at 228.673 mAm −2 for Nafion 117 at the similar experimental condition. The observed properties of low biofouling, low oxygen permeability, high power generation, high COD removal and coulombic efficiency (CE) indicated that the SPES membrane has potential to improve significantly the productivity of MFCs. - Highlights: • Sulfonated PES (SPES) was synthesized by chlorosulfonic acid in concentrated H 2 SO 4 . • PES/SPES blend proton exchange membranes (PEMs) were prepared for use in MFC. • Performance of PEMs and commercial Nafion 117 were tested to treat of wastewater. • Maximum generated power and current of SPES membrane was higher than Nafion 117.

  20. The pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 at high pressure: a mechanism for the zinc blende to cinnabar reconstructive phase transition

    CERN Document Server

    Kozlenko, D P; Ehm, L; Hull, S; Savenko, B N; Shchennikov, V V; Voronin, V I

    2003-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 has been studied by x-ray and neutron powder diffraction at pressures up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P approx 1 GPa. A phenomenological model of this reconstructive phase transition based on a displacement mechanism is proposed. Analysis of the geometrical relationship between the zinc blende and the cinnabar phases has shown that the possible order parameter for the zinc blende-cinnabar structural transformation is the spontaneous strain e sub 4. This assignment agrees with the previously observed high pressure behaviour of the elastic constants of some mercury chalcogenides.

  1. Investigation on the effects of pilot injection on low temperature combustion in high-speed diesel engine fueled with n-butanol–diesel blends

    International Nuclear Information System (INIS)

    Huang, Haozhong; Liu, Qingsheng; Yang, Ruzhi; Zhu, Tianru; Zhao, Ruiqing; Wang, Yaodong

    2015-01-01

    Highlights: • The effects of pre-injected timing and pre-injected mass were studied in CI engine. • The addition of n-butanol consumed OH free radicals, which delayed the ignition time. • With the increase of n-butanol, the BSFC and MPRR increased, NO_x and soot decreased. • With the advance of pilot injection timing, the BSFC increased, NO_x and soot decreased. • With the increase of pilot injection mass, NO_x increased, soot decreased then increased. - Abstract: The effect of pilot injection timing and pilot injection mass on combustion and emission characteristics under medium exhaust gas recirculation (EGR (25%)) condition were experimentally investigated in high-speed diesel engine. Diesel fuel (B0), two blends of butanol and diesel fuel denoted as B20 (20% butanol and 80% diesel in volume), and B30 (30% butanol and 70% diesel in volume) were tested. The results show that, for all fuels, when advancing the pilot injection timing, the peak value of heat release rate decreases for pre-injection fuel, but increases slightly for the main-injection fuel. Moreover, the in-cylinder pressure peak value reduces with the rise of maximum pressure rise rate (MPRR), while NO_x and soot emissions reduce. Increasing the pilot injection fuel mass, the peak value of heat release rate for pre-injected fuel increases, but for the main-injection, the peak descends, and the in-cylinder pressure peak value and NO_x emissions increase, while soot emission decreases at first and then increases. Blending n-butanol in diesel improves soot emissions. When pilot injection is adopted, the increase of n-butanol ratio causes the MPRR increasing and the crank angle location for 50% cumulative heat release (CA50) advancing, as well as NO_x and soot emissions decreasing. The simulation of the combustion of n-butanol–diesel fuel blends, which was based on the n-heptane–n-butanol–PAH–toluene mixing mechanism, demonstrated that the addition of n-butanol consumed OH free radicals

  2. Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT)

    KAUST Repository

    Naser, Nimal

    2016-09-21

    A methodology for estimating the octane index (OI), the research octane number (RON) and the motor octane number (MON) using ignition delay times from a constant volume combustion chamber with liquid fuel injection is proposed by adopting an ignition quality tester. A baseline data of ignition delay times were determined using an ignition quality tester at a charge pressure of 21.3 bar between 770 and 850 K and an equivalence ratio of 0.7 for various primary reference fuels (PRFs, mixtures of isooctane and n-heptane). Our methodology was developed using ignition delay times for toluene reference fuels (mixtures of toluene and n-heptane). A correlation between the OI and the ignition delay time at the initial charge temperature enabled the OI of non-PRFs to be predicted at specified temperatures. The methodology was validated using ignition delay times for toluene primary reference fuels (ternary mixtures of toluene, iso-octane, and n-heptane), fuels for advanced combustion engines (FACE) gasolines, and certification gasolines. Using this methodology, the RON, the MON, and the octane sensitivity were estimated in agreement with values obtained from standard test methods. A correlation between derived cetane number and RON is also provided. (C) 2016 Elsevier Ltd. All rights reserved.

  3. Dairy fat blends high in α-linolenic acid are superior to n-3 fatty-acid-enriched palm oil blends for increasing DHA levels in the brains of young rats.

    Science.gov (United States)

    Du, Qin; Martin, Jean-Charles; Agnani, Genevieve; Pages, Nicole; Leruyet, Pascale; Carayon, Pierre; Delplanque, Bernadette

    2012-12-01

    Achieving an appropriate docosahexaenoic acid (DHA) status in the neonatal brain is an important goal of neonatal nutrition. We evaluated how different dietary fat matrices improved DHA content in the brains of both male and female rats. Forty rats of each gender were born from dams fed over gestation and lactation with a low α-linolenic acid (ALA) diet (0.4% of fatty acids) and subjected for 6 weeks after weaning to a palm oil blend-based diet (10% by weight) that provided either 1.5% ALA or 1.5% ALA and 0.12% DHA with 0.4% arachidonic acid or to an anhydrous dairy fat blend that provided 1.5% or 2.3% ALA. Fatty acids in the plasma, red blood cells (RBCs) and whole brain were determined by gas chromatography. The 1.5% ALA dairy fat was superior to both the 1.5% ALA palm oil blends for increasing brain DHA (14.4% increase, PDHA due to a gender-to-diet interaction, with dairy fats attenuating the gender effect. Brain DHA was predicted with a better accuracy by some plasma and RBC fatty acids when used in combination (R(2) of 0.6) than when used individually (R(2)=0.47 for RBC n-3 docosapentaenoic acid at best). In conclusion, dairy fat blends enriched with ALA appear to be an interesting strategy for achieving optimal DHA levels in the brain of postweaning rats. Human applications are worth considering. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Decentralized Blended Acquisition

    NARCIS (Netherlands)

    Berkhout, A.J.

    2013-01-01

    The concept of blending and deblending is reviewed, making use of traditional and dispersed source arrays. The network concept of distributed blended acquisition is introduced. A million-trace robot system is proposed, illustrating that decentralization may bring about a revolution in the way we

  5. Interfacial tensions of binary mixtures of ethanol with octane, decane, dodecane, and tetradecane

    International Nuclear Information System (INIS)

    Mejia, Andres; Cartes, Marcela; Segura, Hugo

    2011-01-01

    Highlights: → Experimental interfacial tensions in binary mixtures with aneotropic behavior. → Experimental interfacial tensions for ethanol + hydrocarbon mixtures. → Aneotropic displacement in ethanol mixtures. - Abstract: This contribution is devoted to the experimental characterization of interfacial tensions of a representative group of binary mixtures pertaining to the (ethanol + linear hydrocarbon) series (i.e. octane, decane, dodecane, and tetradecane). Experimental measurements were isothermically performed using a maximum differential bubble pressure technique, which was applied over the whole mole fraction range and over the temperature range 298.15 K < T/K < 318.15 K. Experimental results show that the interfacial tensions of (ethanol + octane or decane) negatively deviate from the linear behavior and that sharp minimum points on concentration, or aneotropes, are observed for each isotherm. The interfacial tensions of (ethanol + dodecane or tetradecane), in turn, are characterized by combined deviations from the linear behavior, and inflecting behavior observed on concentration for each isotherm. The experimental evidence also shows that these latter mixtures are close to exhibit aneotropy. For the case of (ethanol + octane or decane) mixtures, aneotropy was clearly induced by the similarity of the interfacial tension values of the constituents. The inflecting behavior of the interfacial tensions of (ethanol + dodecane or tetradecane), in turn, was observed in the vicinity of the coordinates of the critical point of these mixtures, thus pointing to the fact that the quasi-aneotropic singularity that affects these mixtures was provoked by the proximity of an immiscibility gap of the liquid phase. Finally, the experimental data of interfacial tensions were smoothed with the Scott-Myers expansion, from which it is possible to conclude that the observed aneotropic concentrations weakly depend on temperature for all the analyzed mixtures.

  6. Investigation of diesel-ethanol blended fuel properties with palm methyl ester as co-solvent and blends enhancer

    Directory of Open Access Journals (Sweden)

    Mat Taib Norhidayah

    2017-01-01

    Full Text Available Diesel engine is known as the most efficient engine with high efficiency and power but always reported as high fuel emission. Malaysia National Automotive Policy (NAP was targeting to improve competitive regional focusing on green technology development in reducing the emission of the engine. Therefore, ethanol was introduced to reduce the emission of the engine and while increasing its performance, Palm methyl ester was introduced as blend enhancer to improve engine performance and improve diesel-ethanol blends stability. This paper aimed to study the characteristics of the blends and to prove the ability of palm-methyl-ester as co-solvent in ethanol-diesel blends. Stability and thermophysical test were carried out for different fuel compositions. The stability of diesel-ethanol blended was proved to be improved with the addition of PME at the longer period and the stability of the blends changed depending on temperature and ethanol content. Density and viscosity of diesel-ethanol-PME blends also give higher result than diesel-ethanol blends and it's proved that PME is able to increase density and viscosity of blends. Besides, heating value of the blends also increases with the increasing PME in diesel-ethanol blends.

  7. Ignition characteristics of coal blends in an entrained flow furnace

    Energy Technology Data Exchange (ETDEWEB)

    J. Faundez; B. Arias; F. Rubiera; A. Arenillas; X. Garcia; A.L. Gordon; J.J. Pis [Universidad de Concepcion, Concepcion (Chile)

    2007-09-15

    Ignition tests were carried out on blends of three coals of different rank - subbituminous, high volatile and low volatile bituminous - in two entrained flow reactors. The ignition temperatures were determined from the gas evolution profiles (CO, CO{sub 2}, NO, O{sub 2}), while the mechanism of ignition was elucidated from these profiles and corroborated by high-speed video recording. Under the experimental conditions of high carbon loading, clear interactive effects were observed for all the blends. Ignition of the lower rank coals (subbituminous, high volatile bituminous) enhanced the ignition of the higher rank coal (low volatile bituminous) in the blends. The ignition temperatures of the blends of the low rank coals (subbituminous-high volatile bituminous) were additive. However, for the rest of the blends the ignition temperatures were always closer to the lower rank coal in the blend. 21 refs., 8 figs.

  8. Growth on Octane Alters the Membrane Lipid Fatty Acids of Pseudomonas oleovorans due to the Induction of alkB and Synthesis of Octanol

    NARCIS (Netherlands)

    Chen, Qi; Janssen, Dick B.; Witholt, Bernard

    1995-01-01

    Growth of Pseudomonas oleovorans GPo1, which contains the OCT plasmid, on octane results in changes in the membrane phospholipid fatty acid composition. These changes were not found for GPo12, an OCT-plasmid-cured variant of GPo1, during growth in the presence or absence of octane, implying the

  9. Thermophysical properties for (diethyl carbonate + p-xylene + octane) ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Mosteiro, L. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain); Casas, L.M., E-mail: lmcasas@uvigo.es [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain); Curras, M.R. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain); Mariano, A.B. [Laboratorio de Fisicoquimica, Departamento de Quimica, Facultad de Ingenieria, Universidad Nacional de Comahue, 8300 Neuquen (Argentina); Legido, J.L. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain)

    2011-12-15

    Highlights: > Thermophysical properties of (diethyl carbonate + p-xylene + octane) were measured. > Excess molar volumes and isentropic compressibilities were determined and correlated. > Ternary surface tension deviations were correlated using Cibulka equation. > Intermolecular interactions based on the derived properties trend were discussed. - Abstract: The density and speed of sound of the ternary mixture (diethyl carbonate + p-xylene + octane) have been measured at atmospheric pressure and in the temperature range T = (288.15 to 308.15) K. Besides, surface tension has been also determined for the same mixture at T = 298.15 K. The experimental measurements have allowed the calculation of the corresponding derived properties: excess molar volumes, excess isentropic compressibilities, and surface tension deviations. Excess properties have been correlated using Nagata and Tamura equation and correlation for the surface tension deviation has been done with the Cibulka equation. Good accuracy has been obtained. Based on the variations of the derived properties values with composition, a qualitative discussion about the intermolecular interactions was drawn.

  10. Isolation and biological activities of decanal, linalool, valencene, and octanal from sweet orange oil.

    Science.gov (United States)

    Liu, Kehai; Chen, Qiulin; Liu, Yanjun; Zhou, Xiaoyan; Wang, Xichang

    2012-11-01

    Product 1 (82.25% valencene), product 2 (73.36% decanal), product 3 (78.12% octanal), and product 4 (90.61% linalool) were isolated from sweet orange oil by combined usage of molecular distillation and column chromatography. The antioxidant activity of sweet orange oil and these products was investigated using 2,2-diphenyl-1-picrylhydrazyl and reducing power assays. In this test, product 1 (82.25% valencene), product 2 (73.36% decanal), and product 4 (90.61% linalool) had antioxidant activity, but lower than sweet orange oil. The antimicrobial activity was investigated in order to evaluate their efficacy against 5 microorganisms. The results showed that sweet orange oil, product 2 (73.36% decanal), product 3 (78.12% octanal), and product 4 (90.61% linalool) had inhibitory and bactericidal effect on the test microorganisms (except Penicillium citrinum). Valencene did not show any inhibitory effect. Saccharomyces cerivisiae was more susceptible, especially to the crude sweet orange oil (minimal inhibitory concentration 6.25 μL/mL). The cytotoxicity was evaluated on Hela cells using the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. All test samples showed significant cytotoxicity on the cell lines with IC(50) values much less than 20 μg/mL. © 2012 Institute of Food Technologists®

  11. Entanglement in miscible blends

    Science.gov (United States)

    Watanabe, Hiroshi

    2010-03-01

    The entanglement length Le of polymer chains (corresponding to the entanglement molecular weight Me) is not an intrinsic material parameter but changes with the interaction with surrounding chains. For miscible blends of cis-polyisoprene (PI) and poly(tert-butyl styrene) (PtBS), changes of Le on blending was examined. It turned out that the Le averaged over the number fractions of the Kuhn segments of the components (PI and PtBS) satisfactorily describes the viscoelastic behavior of pseudo-monodisperse blends in which the terminal relaxation time is the same for PI and PtBS.

  12. Performance evaluation of gamma irradiated SiR-EPDM blends

    Energy Technology Data Exchange (ETDEWEB)

    Deepalaxmi, R., E-mail: deepalaxmivaithi@gmail.com; Rajini, V.

    2014-07-01

    Highlights: • The effects of gamma irradiation on SiR-EPDM blend are examined. • Cross-linking reaction is dominant in blends C, D and E, due to higher EPDM content. • The tensile strength and hardness of blend E is improved by gamma irradiation. • The blend C and EPDM rich blends (D, E) are found to have superior performance. • Among C, D and E, suitable blend can be selected for a particular NPP application. - Abstract: Cable insulation materials (CIM) should perform their safety functions throughout their installed life in nuclear power plants (NPP). The CIM will be exposed to gamma irradiation at the installed locations. In order to forecast long-term performance of CIM, the short time accelerated testing was carried out. Due to its good mechanical strength, ethylene propylene diene monomer (EPDM) is widely used as CIM. Silicone rubber (SiR) is used in high temperature environments, due to its good di-electric properties/hydrophobicity. The blending of these two polymers may result in the improvement in their specific properties. This paper analyses the effects of gamma irradiation on the five different compositions (90-10; 70-30; 50-50; 30-70; 10-90) of SiR-EPDM blends. The blends were exposed to four different doses (25 Mrad, 100 Mrad, 200 Mrad and 250 Mrad) of gamma irradiation. The electrical and mechanical parameters like volume resistivity (VRY), surface resistivity (SRY), tensile strength (TS), elongation at break (EB), hardness (H) of the virgin and gamma irradiated blends were determined as per ASTM/IEC standards. The nature of degradation was investigated using Fourier transform infrared spectroscopy (FTIR). The simultaneous occurrence of cross-linking and chain scission is found to be the mechanism for ageing in SiR-EPDM blends. The electrical parameters such as volume resistivity and surface resistivity of all the blends are found to improve for all doses of gamma irradiation. To validate the influence of cross-linking reaction of the Si

  13. The Effect of Using Ethanol-Gasoline Blends on the Mechanical, Energy and Environmental Performance of In-Use Vehicles

    Directory of Open Access Journals (Sweden)

    Juan E. Tibaquirá

    2018-01-01

    Full Text Available The use of ethanol in gasoline has become a worldwide tendency as an alternative to reduce net CO2 emissions to the atmosphere, increasing gasoline octane rating and reducing dependence on petroleum products. However, recently environmental authorities in large urban centers have expressed their concerns on the true effect of using ethanol blends of up to 20% v/v in in-use vehicles without any modification in the setup of the engine control unit (ECU, and on the variations of these effects along the years of operation of these vehicles. Their main concern is the potential increase in the emissions of volatile organic compounds with high ozone formation potential. To address these concerns, we developed analytical and experimental work testing engines under steady-conditions. We also tested carbureted and fuel-injected vehicles every 10,000 km during their first 100,000 km of operation. We measured the effect of using ethanol-gasoline blends on the power and torque generated, the fuel consumption and CO2, CO, NOx and unburned hydrocarbon emissions, including volatile organic compounds (VOCs such as acetaldehyde, formaldehyde, benzene and 1,3-butadiene which are considered important ozone precursors. The obtained results showed statistically no significant differences in these variables when vehicles operate with a blend of 20% v/v ethanol and 80% v/v gasoline (E20 instead of gasoline. Those results remained unchanged during the first 100,000 km of operation of the vehicles. We also observed that when the vehicles operated with E20 at high engine loads, they showed a tendency to operate with greater values of λ (ratio of the actual air-fuel ratio to the stoichiometric air-fuel ratio when compared to their operation with gasoline. According to the Eco-Indicator-99, these results represent a minor reduction (<1.3% on the impact to human health, and on the deterioration of the ecosystem. However, it implies a 12.9% deterioration of the natural

  14. MOOC Blended learning ontwikkelen

    NARCIS (Netherlands)

    Verjans, Steven

    2015-01-01

    Presentatie over het ontwerpen van leeractiviteiten (learning design) tijdens de zesde live sessie van de MOOC Blended learning ontwikkelen. Met gebruikmaking van presentatiematerialen van Diana Laurillard, Grainne Conole, Helen Beetham, Jos Fransen, Pieter Swager, Helen Keegan, Corinne Weisgerber.

  15. Fuel Property Blend Model

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagnon, Scott J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhang, Kuiwen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kukkadapu, Goutham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-12

    The object of this project is to develop chemical models and associated correlations to predict the blending behavior of bio-derived fuels when mixed with conventional fuels like gasoline and diesel fuels.

  16. Blending into the mix

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.G.; Gibb, W.H.; Majid, K.A. [Power Technology (United Kingdom)

    1999-07-01

    Successful coal blending requires finding a careful balance between fuel costs and plant performance. A recent study of a Malaysian power plant shows how the utility (Tenaga Nasional Berhad (TNB)) could reduce fuel costs while avoiding boiler operating problems normally associated with firing low-grade coals. TNB`s Kaper 2220 MW power station in Selangor needed an improved method of coal blending for two new 500 MW units and for two existing 300 MW units. UK`s Power Technology was commissioned to identify what coal blends the boiler could tolerate. A Coal Quality Impact Model (CQIM) analysis of the effect of different coals and coal blends on combustion performance and economics, and a performance analysis of coal yard handling facility was made to determine whether the accuracy of the required blend could be achieved (using a Coal Handling Simulation, CHAS, software package). The CQIM study showed that the proportion of cheaper coals could be increased from 20% to 50% provided each shipment was adequately sampled. The CHAS study showed that use of a flat back reclaimer or modifications to the dry coal stove would allow accurate blending. 5 figs., 1 tab.

  17. Cyanoresin, cyanoresin/cellulose triacetate blends for thin film, dielectric capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Lewis, Carol R. (Inventor); Cygan, Peter J. (Inventor); Jow, T. Richard (Inventor)

    1996-01-01

    Non brittle dielectric films are formed by blending a cyanoresin such as cyanoethyl, hydroxyethyl cellulose (CRE) with a compatible, more crystalline resin such as cellulose triacetate. The electrical breakdown strength of the blend is increased by orienting the films by uniaxial or biaxial stretching. Blends of high molecular weight CRE with high molecular weight cyanoethyl cellulose (CRC) provide films with high dielectric constants.

  18. The effect of the head group on branched-alkyl chain surfactants in glycolipid/n-octane/water ternary system.

    Science.gov (United States)

    Nainggolan, Irwana; Radiman, Shahidan; Hamzah, Ahmad Sazali; Hashim, Rauzah

    2009-10-01

    Two novel glycolipids have been synthesized and their phase behaviour studied. They have been characterized using FT-IR, FAB and 13C NMR and 1H NMR to ensure the purity of novel glycolipids. The two glycolipids are distinguished based on the head group of glycolipids (monosaccharide/glucose and disaccharide/maltose). These two novel glycolipids have been used as surfactant to perform two phase diagrams. Phase behaviours that have been investigated are 2-hexyldecyl-beta-D-glucopyranoside (2-HDG)/n-octane/water ternary system and 2-hexyldecyl-beta-D-maltoside (2-HDM)/n-octane/water ternary system. SAXS and polarizing optical microscope have been used to study the phase behaviours of these two surfactants in ternary phase diagram. Study of effect of the head group on branched-alkyl chain surfactants in ternary system is a strategy to derive the structure-property relationship. For comparison, 2-HDM and 2-HDG have been used as surfactant in the same ternary system. The phase diagram of 2-hexyldecyl-beta-D-maltoside/n-octane/water ternary system exhibited a Lalpha phase at a higher concentration regime, followed with two phases and a micellar solution region in a lower concentration regime. The phase diagram of 2-HDG/water/n-octane ternary system shows hexagonal phase, cubic phase, rectangular ribbon phase, lamellar phase, cubic phase as the surfactant concentration increase.

  19. Estudo do efeito do tipo de polipropileno na fotodegradação da blenda polipropileno/poliestireno de alto impacto Influence of the type of polypropylene on the photodegradation of blends of polypropylene/high impact polystyrene

    Directory of Open Access Journals (Sweden)

    Laércio L. Fernandes

    2012-01-01

    Full Text Available Este trabalho visa avaliar a influência do tipo de polipropileno no comportamento da blenda polipropileno/poliestireno de alto impacto (PP/HIPS quando exposta à radiação UV. Foram usados uma resina virgem de PP (PPv e outra reprocessada (PPrep. Inicialmente, avaliou-se o comportamento individual dos componentes da blenda, HIPS, PPv e PPrep, quando submetidos à radiação UV por até 15 semanas de exposição. As técnicas de caracterização utilizadas para monitorar o desempenho tanto das resinas individualmente quanto das blendas submetidas à radiação UV foram: propriedades mecânicas (tração e impacto, medidas de índice de fluidez (MFI, análise térmica (DSC, espectroscopia no infravermelho (FTIR e microscopia eletrônica de varredura (MEV. A partir dos resultados com essas técnicas verificou-se que o PPv foi a resina mais afetada pela radiação e consequentemente as blendas preparadas com esse PP também foram mais sensíveis à fotodegradação do que as demais. Em termos de fotoestabilização este resultado mostra-se interessante, já que as blendas PP/HIPS preparadas com uma resina previamente degradada necessitariam de menores teores de aditivos do que esse mesmo tipo de blenda preparada com resina virgem.The influence from the type of polypropylene on the photodegradation resistance of blends of polypropylene/high impact polystyrene (PP/HIPS was studied. A virgin polypropylene (PPv and another sample that suffered prior thermo-mechanical degradation (PPrep were used. All materials, components of the blends and blends were exposed to UV radiation for up to 15 weeks. They were characterized as a function of time of UV exposure using differential scanning calorimetry (DSC, infrared spectroscopy (FTIR and scanning electron microscopy (SEM. The mechanical (tensile and impact properties and melt flow indexes of the materials were also evaluated. The experimental results revealed that PPv resin and its blends were more sensitive

  20. An overview of engine durability and compatibility using biodiesel–bioethanol–diesel blends in compression-ignition engines

    International Nuclear Information System (INIS)

    Dharma, S.; Ong, Hwai Chyuan; Masjuki, H.H.; Sebayang, A.H.; Silitonga, A.S.

    2016-01-01

    Highlights: • The effects on engine performance and emission depend on biofuel properties. • The engine performance can improve and emission reduces with biofuel as the fuel. • Biofuel can ensure the long term engine durability and materials of diesel engine. • Feasibility of biofuel carried out extended periods in corrosion behaviour. • Biofuel appears to reduce life-cycle cost efficiencies for the alternative fuel. - Abstract: The realization of declining fossil fuel supplies and the adverse impact of fossil fuels on the environment has accelerated research and development activities in renewable energy sources and technologies. Biofuels are renewable fuels made from edible, non-edible or waste oils, as well as animal fats and algae, and these fuels have been proven to be good substitutes for fossil fuels in the transportation sector. Bioethanol and biodiesels have gained worldwide attention in order to address environmental issues associated with fossil fuels, provide energy security, reduce imports and rural employment, as well as improve agricultural economy. Bioethanol has high oxygen content and octane content up to 35% and 108, respectively and hence, it increases oxygenation and improves combustion of fuel. In addition, bioethanol has lower vaporization pressure, which reduces the risks associated with evaporative emissions. In contrast, biodiesel has good lubricity, which helps protect the surface of engine components from wear and friction. The use of biodiesel–bioethanol–petroleum diesel blends poses a greater challenge with regards to improving the compatibility of the materials with the fuel system in compression ignition (CI) and spark ignition (SI) engines. In this work, the technical conditions of an engine (i.e. engine deposits, wear of the engine components and quality of the lubrication oil) are assessed by the application of with biodiesel–bioethanol–petroleum diesel blends. It is deemed important to evaluate the effects of

  1. Enteral High Fat-Polyunsaturated Fatty Acid Blend Alters the Pathogen Composition of the Intestinal Microbiome in Premature Infants with an Enterostomy.

    Science.gov (United States)

    Younge, Noelle; Yang, Qing; Seed, Patrick C

    2017-02-01

    To determine the effect of enteral fish oil and safflower oil supplementation on the intestinal microbiome in infants with an enterostomy born premature. Infants with an enterostomy born premature were randomized to receive early enteral supplementation with a high-fat polyunsaturated fatty acid (HF-PUFA) blend of fish oil and safflower oil vs standard nutritional therapy. We used 16S rRNA gene sequencing for longitudinal profiling of the microbiome from the time of study entry until bowel reanastomosis. We used weighted gene coexpression network analysis to identify microbial community modules that differed between study groups over time. We performed imputed metagenomic analysis to determine metabolic pathways associated with the microbial genes. Sixteen infants were randomized to receive enteral HF-PUFA supplementation, and 16 infants received standard care. The intestinal microbiota of infants in the treatment group differed from those in the control group, with greater bacterial diversity and lower abundance of Streptococcus, Clostridium, and many pathogenic genera within the Enterobacteriaceae family. We identified 4 microbial community modules with significant differences between groups over time. Imputed metagenomic analysis of the microbial genes revealed metabolic pathways that differed between groups, including metabolism of amino acids, carbohydrates, fatty acids, and secondary bile acid synthesis. Enteral HF-PUFA supplementation was associated with decreased abundance of pathogenic bacteria, greater bacterial diversity, and shifts in the potential metabolic functions of intestinal microbiota. ClinicalTrials.gov:NCT01306838. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Analysis of biodiesel and biodiesel-petrodiesel blends by high performance thin layer chromatography combined with easy ambient sonic-spray ionization mass spectrometry.

    Science.gov (United States)

    Eberlin, Livia S; Abdelnur, Patricia V; Passero, Alan; de Sa, Gilberto F; Daroda, Romeu J; de Souza, Vanderlea; Eberlin, Marcos N

    2009-08-01

    High performance thin layer chromatography (HPTLC) combined with on-spot detection and characterization via easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is applied to the analysis of biodiesel (B100) and biodiesel-petrodiesel blends (BX). HPTLC provides chromatographic resolution of major components whereas EASI-MS allows on-spot characterization performed directly on the HPTLC surface at ambient conditions. Constituents (M) are detected by EASI-MS in a one component-one ion fashion as either [M + Na](+) or [M + H](+). For both B100 and BX samples, typical profiles of fatty acid methyl esters (FAME) detected as [FAME + Na](+) ions allow biodiesel typification. The spectrum of the petrodiesel spot displays a homologous series of protonated alkyl pyridines which are characteristic for petrofuels (natural markers). The spectrum for residual or admixture oil spots is characterized by sodiated triglycerides [TAG + Na](+). The application of HPTLC to analyze B100 and BX samples and its combination with EASI-MS for on-spot characterization and quality control is demonstrated.

  3. A High Antioxidant Spice Blend Attenuates Postprandial Insulin and Triglyceride Responses and Increases Some Plasma Measures of Antioxidant Activity in Healthy, Overweight Men123

    Science.gov (United States)

    Skulas-Ray, Ann C.; Kris-Etherton, Penny M.; Teeter, Danette L.; Chen, C-Y. Oliver; Vanden Heuvel, John P.; West, Sheila G.

    2011-01-01

    There is much interest in the potential of dietary antioxidants to attenuate in vivo oxidative stress, but little characterization of the time course of plasma effects exists. Culinary spices have demonstrated potent in vitro antioxidant properties. The objective of this study was to examine whether adding 14 g of a high antioxidant spice blend to a 5060-kJ (1200 kcal) meal exerted significant postprandial effects on markers of plasma antioxidant status and metabolism. Healthy overweight men (n = 6) consumed a control and spiced meal in a randomized crossover design with 1 wk between testing sessions. Blood was sampled prior to the meal and at 30-min intervals for 3.5 h (total of 8 samples). Mixed linear models demonstrated a treatment × time interaction (P spiced meal, respectively. Adding spices to the meal significantly increased the ferric reducing antioxidant power, such that postprandial increases following the spiced meal were 2-fold greater than after the control meal (P = 0.009). The hydrophilic oxygen radical absorbance capacity (ORAC) of plasma also was increased by spices (P = 0.02). There were no treatment differences in glucose, total thiols, lipophilic ORAC, or total ORAC. The incorporation of spices into the diet may help normalize postprandial insulin and TG and enhance antioxidant defenses. PMID:21697300

  4. Absorption of Carbon Dioxide in the aqueous solution of Diethanolamine (DEA) blended with 1-Butyl-1-Methylpyrrolidinium Trifluoromethanesulfonate [BmPyrr][OTf] at high pressure

    Science.gov (United States)

    Jamaludin, S. N.; Salleh, R. M.

    2018-03-01

    Solubility data of carbon dioxide (CO2) in aqueous Diethanolamine (DEA) blended with 1-Butyl-1-Methylpyrrolidinium Trifluoromethanesulfonate [Bmpyrr][OTf] were measured at temperature 313.15K, 323.15K, 333.15K and pressure from 500psi up to 700 psi. The experiments covered over the concentration range of 0-10wt% for [Bmpyrr][OTf] and 30-40wt% for DEA. The solubility of CO2 was evaluated by measuring the pressure drop in high pressure stirred absorption cell reactor. The experimental results showed that CO2 loading in all DEA-[BmPyrr][OTf] mixtures studied increases with increasing of CO2 partial pressure and temperature. It was also found that the CO2 loading capacity increase significantly as the concentration of [Bmpyrr][OTf] increases. Jou and Mather model was used to predict the solubility of CO2 in the mixtures where the experimental data were correlated as a function of temperature and CO2 partial pressure. It was found that the model was successful in predicting the solubility behavior of the aqueous DEA-[Bmpyrr][OTf] systems considered in this study.

  5. Acid esterification of a high free fatty acid crude palm oil and crude rubber seed oil blend: Optimization and parametric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Modhar A.; Yusup, Suzana; Ahmad, Murni M. [Universiti Teknologi PETRONAS, Chemical Engineering, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2010-12-15

    Free fatty acids content plays an important role in selecting the appropriate route for biodiesel production. Oils with high content of free fatty acids can be treated by acid esterification where an alcohol reacts with the given oil in the presence of acid catalyst. In the current study, an equivolume blend of crude rubber seed oil and crude palm oil is fed to the reaction with methanol as the alcohol of choice and sulfuric acid. Selected reaction parameters were optimized, using Taguchi method for design of experiments, to yield the lowest free fatty acid content in the final product. The investigated parameters include alcohol to oil ratio, temperature and amount of catalyst. The effect and significance of each parameter were then studied based on the fractional factorial design and verified by additional experiments. The optimum conditions for acid esterification which could reduce the free fatty acid content in the feedstock to lower than 0.6% (95% reduction) were 65 C, 15:1 methanol to oil ratio (by mole) and 0.5 wt% H{sub 2}SO{sub 4} after 3 h of reaction time. Temperature had been found to have the most effect on the reduction of free fatty acids followed by reactants ratio while increasing catalyst amount had nominal effect. (author)

  6. Highly antifouling and antibacterial performance of poly (vinylidene fluoride) ultrafiltration membranes blending with copper oxide and graphene oxide nanofillers for effective wastewater treatment.

    Science.gov (United States)

    Zhao, Chuanqi; Lv, Jinling; Xu, Xiaochen; Zhang, Guoquan; Yang, Yuesuo; Yang, Fenglin

    2017-11-01

    Innovation and effective wastewater treatment technology is still in great demand given the emerging contaminants frequently spotted from the aqueous environment. By blending with poly (vinylidene fluoride) (PVDF), the strong hydrophilic graphene oxide (GO) and antibacterial copper oxide (Cu x O) were used as nanofillers to develop the novel, highly antifouling composite membranes via phase inversion process in our latest work. The existence and dispersion of GO and Cu x O posed a significant role on morphologies, structures, surface composition and hydrophilicity of the developed composite membranes, confirmed by SEM, TEM, FTIR and XPS in depth characterization. The SEM images showed that the modified membranes presented a lower resistant structure with developed finger-like macrovoids and thin-walled even interconnected sponge-like pores after adding nanofillers, much encouraging membrane permeation. The XPS results revealed that Cu x O contained Cu 2 O and CuO in the developed membrane and the Cu 2 O nanoparticles were dominant accounting for about 79.3%; thus the modified membrane specifically exhibited an efficient antibacterial capacity. Due to the hydrophilic and bactericidal membrane surface, the composite membranes demonstrated an excellent antifouling performance, including higher flux recovery rate, more resistant against accumulated contaminants and lower filtration resistance, especially lower irreversible resistance. The antifouling property, especially anti-irreversible fouling, was significantly improved, showing a significant engineering potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Experimental investigations of butanol-gasoline blends effects on the combustion process in a SI engine

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Simona Silvia; Tornatore, Cinzia; Machitto, Luca; Valentino, Gerardo; Corcione, Felice Esposito [Istituto Motori-CNR, Naples (Italy)

    2012-07-01

    Fuel blend of alcohol and conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol addition to gasoline in a port fuel-injection, spark ignition engine was investigated. The experiments were realized in a single cylinder ported fuel injection SI engine with an external boosting device. The optical accessible engine was equipped with the head of commercial SI turbocharged engine with the same geometrical specifications (bore, stroke, compression ratio) as the research engine. The effect on the spark ignition combustion process of 20% and 40% of n-butanol blended in volume with pure gasoline was investigated through cycle resolved visualization. The engine worked at low speed, medium boosting and wide open throttle. Fuel injections both in closed valve and open valve conditions were considered. Comparisons between the parameters related to the flame luminosity and the pressure signals were performed. Butanol blends allowed working in more advanced spark timing without knocking occurrence. The duration of injection for Butanol blends was increased to obtain stoichiometric mixture. In open valve injection condition, the fuel deposits on intake manifold and piston surfaces decreased, allowing a reduction in fuel consumption. BU40 granted the performance levels of gasoline and in open valve injection allowed to minimize the abnormal combustion effects including the emission of ultrafine carbonaceous particles at the exhaust. In-cylinder investigations were correlated to engine out emissions. (orig.)

  8. Blending effects on coal burnout and NO emissions

    Energy Technology Data Exchange (ETDEWEB)

    B. Arias; R. Backreedy; A. Arenillas; J.M. Jones; F. Rubiera; M. Pourkashanian; A. Williams; J.J. Pis [Instituto Nacional del Carbon, CSIC Oviedo (Spain)

    2003-07-01

    In this work, the combustion behaviour of individual coals of different rank and their blends was evaluated. The study was focused on burnout and NO emissions during blend combustion. Preliminary combustion tests of the coals and their blends were carried out in a thermogravimetric analyser (TGA). Some characteristic temperatures were obtained to evaluate the combustibility of the samples. These temperatures indicate an improvement in the combustibility of the less reactive coal when it is blended. An entrained flow reactor (EFR) was employed to study the behaviour of the samples at high heating rates and short residence times. Burnout and NO emissions were measured during EFR combustion tests. In some blends the results can be predicted from the weighted average of the values of the individual coals. However, other blends show an increase, from the averaged values, in burnout and especially in NO emissions. 14 refs., 10 figs., 3 tabs.

  9. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad

    2016-09-30

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have been investigated in single cylinder engine running in GCI combustion mode at part-load conditions both experimentally and numerically. The studied fuels are: Saudi Aramco light naphtha (SALN) (Research octane number (RON) = 62 and final boiling point (FBP) = 91 °C), Haltermann straight run naphtha (HSRN) (RON = 60 and FBP = 140 °C) and a primary reference fuel (PRF65) (RON = 65 and FBP = 99 °C). Injection sweeps, where the start of injection (SOI) is changed between −60 and −11 CAD aTDC, have been performed for the three fuels. Full cycle computational fluid dynamics (CFD) simulations were executed using PRFs as chemical surrogates for the naphtha fuels. Physical surrogates based on the evaporation characteristics of the naphtha streams have been developed and their properties have been implemented in the engine simulations. It was found that the three fuels have similar combustion phasings and emissions at the conditions tested in this work with minor differences at SOI earlier than −30 CAD aTDC. These trends were successfully reproduced by the CFD calculations. The chemical and physical effects were further investigated numerically. It was found that the physical characteristics of the fuel significantly affect the combustion for injections earlier than −30 CAD aTDC because of the low evaporation rates of the fuel because of the higher boiling temperature of the fuel and the colder in-cylinder air during injection. © 2016 Elsevier Ltd

  10. Disentangling overlapping high-field EPR spectra of organic radicals: Identification of light-induced polarons in the record fullerene-free solar cell blend PBDB-T:ITIC

    Science.gov (United States)

    Van Landeghem, Melissa; Maes, Wouter; Goovaerts, Etienne; Van Doorslaer, Sabine

    2018-03-01

    We present a combined high-field EPR and DFT study of light-induced radicals in the bulk heterojunction blend of PBDB-T:ITIC, currently one of the highest efficiency non-fullerene donor:acceptor combinations in organic photovoltaics. We demonstrate two different approaches for disentangling the strongly overlapping high-field EPR spectra of the positive and negative polarons after charge separation: (1) relaxation-filtered field-swept EPR based on the difference in T1 spin-relaxation times and (2) field-swept EDNMR-induced EPR by exploiting the presence of 14N hyperfine couplings in only one of the radical species, the small molecule acceptor radical. The approach is validated by light-induced EPR spectra on related blends and the spectral assignment is underpinned by DFT computations. The broader applicability of the spectral disentangling methods is discussed.

  11. Disentangling overlapping high-field EPR spectra of organic radicals: Identification of light-induced polarons in the record fullerene-free solar cell blend PBDB-T:ITIC.

    Science.gov (United States)

    Van Landeghem, Melissa; Maes, Wouter; Goovaerts, Etienne; Van Doorslaer, Sabine

    2018-03-01

    We present a combined high-field EPR and DFT study of light-induced radicals in the bulk heterojunction blend of PBDB-T:ITIC, currently one of the highest efficiency non-fullerene donor:acceptor combinations in organic photovoltaics. We demonstrate two different approaches for disentangling the strongly overlapping high-field EPR spectra of the positive and negative polarons after charge separation: (1) relaxation-filtered field-swept EPR based on the difference in T 1 spin-relaxation times and (2) field-swept EDNMR-induced EPR by exploiting the presence of 14 N hyperfine couplings in only one of the radical species, the small molecule acceptor radical. The approach is validated by light-induced EPR spectra on related blends and the spectral assignment is underpinned by DFT computations. The broader applicability of the spectral disentangling methods is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. A Unique Blend of 2-Fluorenyl-2-anthracene and 2-Anthryl-2-anthracence Showing White Emission and High Charge Mobility.

    Science.gov (United States)

    Chen, Mengyun; Zhao, Yang; Yan, Lijia; Yang, Shuai; Zhu, Yanan; Murtaza, Imran; He, Gufeng; Meng, Hong; Huang, Wei

    2017-01-16

    White-light-emitting materials with high mobility are necessary for organic white-light-emitting transistors, which can be used for self-driven OLED displays or OLED lighting. In this study, we combined two materials with similar structures-2-fluorenyl-2-anthracene (FlAnt) with blue emission and 2-anthryl-2-anthracence (2A) with greenish-yellow emission-to fabricate OLED devices, which showed unusual solid-state white-light emission with the CIE coordinates (0.33, 0.34) at 10 V. The similar crystal structures ensured that the OTFTs based on mixed FlAnt and 2A showed high mobility of 1.56 cm 2  V -1  s -1 . This simple method provides new insight into the design of high-performance white-emitting transistor materials and structures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Particle size-controllable microwave-assisted solvothermal synthesis of the high-voltage cathode material LiCoPO4 using water/ethylene glycol solvent blends

    Science.gov (United States)

    Ludwig, Jennifer; Haering, Dominik; Doeff, Marca M.; Nilges, Tom

    2017-03-01

    Particle size-tuned platelets of the high-voltage cathode material LiCoPO4 for Li-ion batteries have been synthesized by a simple one-step microwave-assisted solvothermal process using an array of water/ethylene glycol (EG) solvent mixtures. Particle size control was achieved by altering the concentration of the EG co-solvent in the mixture between 0 and 100 vol%, with amounts of 0-80 vol% EG producing single phase, olivine-type LiCoPO4. The particle sizes of the olivine materials were significantly reduced from about 1.2 μm × 1.2 μm × 500 nm (0 vol% EG) to 200 nm × 100 nm × 50 nm (80 vol% EG) with increasing EG content, while specific surface areas increased from 2 to 13 m2 g-1. The particle size reduction could mainly be attributed to the modified viscosities of the solvent blends. Owing to the soft template effect of EG, the crystals exhibited the smallest dimensions along the [010] direction of the Li diffusion pathways in the olivine crystal structure, resulting in enhanced lithium diffusion properties. The relationship between the synthesis, crystal properties and electrochemical performance was further elucidated, indicating that the electrochemical performances of the as-prepared materials mainly depend on the solvent composition and the respective particle size range. LiCoPO4 products obtained from reaction media with low and high EG contents exhibited good electrochemical performances (initial discharge capacities of 87-124 mAh g-1 at 0.1 C), whereas materials made from medium EG concentrations (40-60 vol% EG) showed the highest capacities and gravimetric energy densities (up to 137 mAh g-1 and 658 Wh kg-1 at 0.1 C), excellent rate capabilities, and cycle life.

  14. Supporting School Leaders in Blended Learning with Blended Learning

    Science.gov (United States)

    Acree, Lauren; Gibson, Theresa; Mangum, Nancy; Wolf, Mary Ann; Kellogg, Shaun; Branon, Suzanne

    2017-01-01

    This study provides a mixed-methods case-study design evaluation of the Leadership in Blended Learning (LBL) program. The LBL program uses blended approaches, including face-to-face and online, to prepare school leaders to implement blended learning initiatives in their schools. This evaluation found that the program designers effectively…

  15. Blended Learning Design

    DEFF Research Database (Denmark)

    Pedersen, Lise

    2015-01-01

    University College Lillebaelt has decided that 30 percent of all educational elements must be generated as blended learning by the end of the year 2015 as part of a modernization addressing following educational needs: 1. Blended learning can help match the expectations of the future students who...... learning. 4. Blended learning can contribute to supporting and improving efficiency of educational efforts. This can for instance be done through programmes for several classes by using video conferencing, allocating traditional face to face teaching to synchronous and asynchronous study activities produce...... digital materials which can be employed didactically and reused by the teachers. This can also mean that the particular competencies which teaches have in Svendborg can be used at other locations in UCL and disseminated to a larger group of students without further costs. Educational Innovation...

  16. Interplay of Interfacial Layers and Blend Composition To Reduce Thermal Degradation of Polymer Solar Cells at High Temperature.

    Science.gov (United States)

    Ben Dkhil, Sadok; Pfannmöller, Martin; Schröder, Rasmus R; Alkarsifi, Riva; Gaceur, Meriem; Köntges, Wolfgang; Heidari, Hamed; Bals, Sara; Margeat, Olivier; Ackermann, Jörg; Videlot-Ackermann, Christine

    2018-01-31

    The thermal stability of printed polymer solar cells at elevated temperatures needs to be improved to achieve high-throughput fabrication including annealing steps as well as long-term stability. During device processing, thermal annealing impacts both the organic photoactive layer, and the two interfacial layers make detailed studies of degradation mechanism delicate. A recently identified thermally stable poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  17. AKRO/SF: Blend System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Blend was the system used by the NMFS Alaska Regional Office to monitor groundfish catch from 1991 until 2002. The Blend system combined data from industry...

  18. Blended working: for whom it may (not work.

    Directory of Open Access Journals (Sweden)

    Nico W Van Yperen

    Full Text Available Similarly to related developments such as blended learning and blended care, blended working is a pervasive and booming trend in modern societies. Blended working combines on-site and off-site working in an optimal way to improve workers' and organizations' outcomes. In this paper, we examine the degree to which workers feel that the two defining features of blended working (i.e., time-independent working and location-independent working enhance their own functioning in their jobs. Blended working, enabled through the continuing advance and improvement of high-tech ICT software, devices, and infrastructure, may be considered beneficial for workers' perceived effectiveness because it increases their job autonomy. However, because blended working may have downsides as well, it is important to know for whom blended working may (not work. As hypothesized, in a sample of 348 workers (51.7% women, representing a wide range of occupations and organizations, we found that the perceived personal effectiveness of blended working was contingent upon workers' psychological need strength. Specifically, the perceived effectiveness of both time-independent working and location-independent working was positively related to individuals' need for autonomy at work, and negatively related to their need for relatedness and need for structure at work.

  19. Shielding properties of protective thin film coatings and blended concrete compositions for high level waste storage packages

    International Nuclear Information System (INIS)

    Fusco, Michael A.; Winfrey, Leigh; Bourham, Mohamed A.

    2016-01-01

    Highlights: • Measured linear attenuation coefficients are the same for bare and coated steels. • Gamma mean free path is much larger than coating thickness; buildup is negligible. • ‘Concrete-6’ reduces exposure rate outside spent fuel cask significantly over ordinary concrete. - Abstract: Various thin film coatings have been proposed to protect stainless steel high level waste (HLW) containers from premature failure due to localized corrosion, hydrogen embrittlement, and mechanical wear. These coatings include TiN, ZrO 2 , MoS 2 , TiO 2 , and Al 2 O 3 , to be deposited either in multiple layers or as a thicker, single-layer composite. Linear attenuation coefficients of these materials have been simulated using MicroShield and measured experimentally for various photon energies. Additionally, spent fuel casks with overpacks made of two different types of concrete were simulated to compare exposure rate at the cask surface. In the energy range that is significant for high level waste storage all coating materials possess very similar attenuation behavior. A specialty concrete, containing magnetite (Fe 3 O 4 ) and lead oxide (PbO), reduces the exposure rate at the outer surface of the overpack by several orders of magnitude. The higher-Z elements not present in ordinary concrete greatly increase attenuation of intermediate-energy gammas (0.4–1.0 MeV). The thin film coatings do not affect the shielding capabilities of the HLW packaging, as their total proposed thickness is nearly three orders of magnitude less than the mean free path (MFP) of the primary photons of interest.

  20. HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

  1. HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal

    International Nuclear Information System (INIS)

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation

  2. An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures

    International Nuclear Information System (INIS)

    Uyumaz, Ahmet

    2015-01-01

    Highlights: • Combustion was retarded with the increase of the amount of isopropanol and n-butanol in the test fuels. • Combustion was advanced with the increase of air inlet temperature on HCCI combustion. • Isopropanol seems more suitable fuel due to controlling the HCCI combustion and preventing knocking. • Almost zero NO emissions were measured when alcohol used except for n-heptane and B20 test fuels. - Abstract: An experimental study was conducted in a single cylinder, four stroke port injection Ricardo Hydra test engine in order to determine the effects of pure n-heptane, the blends of n-heptane and n-butanol fuels B20, B30, B40 (including 20%, 30%, 40% n-butanol and 80%, 70%, 60% n-heptane by vol. respectively) and the blends of n-heptane and isopropanol fuels P20, P30, P40 (including 20%, 30%, 40% isopropanol and 80%, 70%, 60% n-heptane by vol. respectively) on HCCI combustion. Combustion and performance characteristics of n-heptane, n-butanol and isopropanol were investigated at constant engine speed of 1500 rpm and λ = 2 in a HCCI engine. The effects of inlet air temperature were also examined on HCCI combustion. The test results showed that the start of combustion was advanced with the increasing of inlet air temperature for all test fuels. Start of combustion delayed with increasing percentage of n-butanol and isopropanol in the test fuels. Knocking combustion was seen with B20 and n-heptane test fuels. Minimum combustion duration was observed in case of using B40. Almost zero NO emissions were measured with test fuels apart from n-heptane and B20. The test results also showed that CO and HC emissions decreased with the increase of inlet air temperature for all test fuels. Isopropanol showed stronger resistance for knocking compared to n-butanol in HCCI combustion due to its higher octane number. It was determined that n-butanol was more advantageous according to isopropanol as thermal efficiency. As a result it was found that the HCCI

  3. The Effects of Self-Paced Blended Learning of Mathematics

    Science.gov (United States)

    Balentyne, Phoebe; Varga, Mary Alice

    2016-01-01

    As online and blended learning gain more popularity in education, it becomes more important to understand their effects on student learning. The purpose of this study was to explore the effects of self-paced blended learning of mathematics on the attitudes and achievement of 26 high ability middle school students, and investigate the relationship…

  4. The Effect of Blended Learning in Mathematics Course

    Science.gov (United States)

    Lin, Ya-Wen; Tseng, Chih-Lung; Chiang, Po-Jui

    2017-01-01

    With the advent of the digital age, traditional didactic teaching and online learning have been modified and gradually replaced by "Blended Learning." The purpose of this study was to explore the influences of blended learning pedagogy on junior high school student learning achievement and the students' attitudes toward mathematics. To…

  5. Evaluation of the ignition behaviour of coals and blends

    Energy Technology Data Exchange (ETDEWEB)

    J. Faundez; F. Rubiera; X. Garcia; A. Arenillas; A.L. Gordon; J.J. Pis [CSIC, Instituto Nacional del Carbon, Oviedo (Spain). Department of Energy and Environment

    2003-07-01

    An experimental study about ignition of coals and blends was carried out by using an entrained flow reactor (EFR) with continuous feed. Seven coals of varying rank, from subbituminous to semianthracite, were tested and evolving gases (O{sub 2}, CO, CO{sub 2}, NO) were measured. The ignition temperature was evaluated from the evolution profiles of these gases, and correlated inversely to the reactivity of coals, as reflected by increasing values of ignition temperatures in the sequence subbituminous, high volatile bituminous, low volatile bituminous and semianthracite coals. Mechanism of ignition varied from an heterogeneous mechanism (for subbituminous, low volatile bituminous and semianthracite coals) to an homogeneous mechanism (for high volatile bituminous coal). Experiments with coal blends showed that if a low volatile bituminous coal is blended with a high volatile bituminous coal, the latter determines the value of the ignition temperature and ignition mechanism of the blend, when its percentage in the blend is 50% or higher. For blends of subbituminous and high volatile bituminous coals, the ignition mechanism of the blend is determined by the ignition mechanism of the coal with a higher content in the blend. 12 refs., 9 figs., 1 tab.

  6. Effect of blending different rank coals on NOx emissions

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Esteban, R.; Arenillas, A.; Pis, J.J. [Instituto Nacional del Carbon, Oviedo (Spain)

    1999-07-01

    A study was carried out to assess the NOx emissions when the fraction of high-volatile coals in blends with low-volatile coals, such as anthracitic and semianthracitic, was increased. Burnout and NO emissions were determined for individual coals and their blends. 4 refs., 4 figs., 1 tab.

  7. Radiation crosslinked block copolymer blends with improved impact resistance

    International Nuclear Information System (INIS)

    Saunders, F.L.; Pelletier, R.R.

    1976-01-01

    Polymer blends having high impact resistance after mechanical working are produced by blending together a non-elastomeric monovinylidene aromatic polymer such as polystyrene with an elastomeric copolymer, such as a block copolymer of styrene and butadiene, in the form of crosslinked, colloidal size particles

  8. Reinforcement of natural rubber/high density polyethylene blends with electron beam irradiated liquid natural rubber-coated rice husk

    Energy Technology Data Exchange (ETDEWEB)

    Chong, E.L.; Ahmad, Ishak [Polymer Research Center (PORCE), School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia 4, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia); Dahlan, H.M. [Radiation Processing Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor Darul Ehsan (Malaysia); Abdullah, Ibrahim, E-mail: dia@ukm.m [Polymer Research Center (PORCE), School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia 4, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2010-08-15

    Coating of rice husk (RH) surface with liquid natural rubber (LNR) and exposure to electron beam irradiation in air were studied. FTIR analysis on the LNR-coated RH (RHR) exposed to electron beam (EB) showed a decrease in the double bonds and an increase in hydroxyl and hydrogen bonded carbonyl groups arising from the chemical interaction between the active groups on RH surface with LNR. The scanning electron micrograph showed that the LNR formed a coating on the RH particles which transformed to a fine and clear fibrous layer at 20 kGy irradiation. The LNR film appeared as patches at 50 kGy irradiation due to degradation of rubber. Composites of natural rubber (NR)/high density polyethylene (HDPE)/RHR showed an optimum at 20-30 kGy dosage with the maximum stress, tensile modulus and impact strength of 6.5, 79 and 13.2 kJ/m{sup 2}, respectively. The interfacial interaction between the modified RH and TPNR matrix had improved on exposure of RHR to e-beam at 20-30 kGy dosage.

  9. Crystallinity evaluation of polyhydroxybutyrate and polycaprolactone blends

    International Nuclear Information System (INIS)

    Cavalcante, Maxwell P.; Rodrigues, Elton Jorge R.; Tavares, Maria Ines B.

    2015-01-01

    Polyhydroxybutyrate, PHB, is a polymer obtained through bacterial or synthetic pathways. It has been used in the biomedical field as a matrix for drug delivery, medical implants and as scaffold material for tissue engineering. PHB has high structural organization, which makes it highly crystalline and brittle, making biodegradation difficult, reducing its employability. In order to enhance the mechanical and biological properties of PHB, blends with other polymers, biocompatible or not, are researched and produced. In this regard, blends of PHB and polycaprolactone, PCL, another biopolymer widely used in the biomedical industry, were obtained via solution casting and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and low field nuclear magnetic resonance (LF-NMR). Results have shown a dependence between PHB's crystallinity index and PCL quantity employed to obtain the blends.(author)

  10. Blended Learning over Two Decades

    Science.gov (United States)

    Zhonggen, Yu; Yuexiu, Zhejiang

    2015-01-01

    The 21st century has witnessed vast amounts of research into blended learning since the conception of online learning formed the possibility of blended learning in the early 1990s. The theme of this paper is blended learning in mainstream disciplinary communities. In particular, the paper reports on findings from the last two decades which looked…

  11. Locally restricted blending of Blobtrees

    NARCIS (Netherlands)

    Groot, de Erwin; Wyvill, B.; Wetering, van de H.M.M.

    2009-01-01

    Blobtrees are volume representations particularly useful for models which require smooth blending. When blending is applied to two or more Blobtree models, extra volume will be created in between the two surfaces to form a smooth connection. Although it is easy to apply blending, it is hard to

  12. Restabilization of the aging resistance of compatibilized blends of pre-aged low density polyethylene and high-impact polystyrene (LDPE/HIPS)

    Czech Academy of Sciences Publication Activity Database

    Michálková, Danuše; Pospíšil, Jan; Fortelný, Ivan; Hromádková, Jiřina; Lednický, František; Schmidt, Pavel; Kruliš, Zdeněk

    2009-01-01

    Roč. 94, č. 9 (2009), s. 1486-1493 ISSN 0141-3910 R&D Projects: GA MŠk 2B06097 Institutional research plan: CEZ:AV0Z40500505 Keywords : blends with pre-aged LDPE * upgrading of impact strength * thermal restabilization Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.154, year: 2009

  13. Making High Schools Work through Blended Instruction. A Vision and Plan for the Integration of Academic and Career and Technology Education in Maryland.

    Science.gov (United States)

    Maryland State Dept. of Education, Baltimore.

    A team consisting of Maryland State Department of Education (MSDE) staff, local educators, and other representatives developed an action plan to assist in advancing the blending of academic, career, and technology education. The team prepared a vision statement, set strategic directions, analyzed barriers, and developed recommendations and actions…

  14. Studies of PVC/ENR blends: blend compositions

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan; Nasir, M.; Baharin, A.

    2002-01-01

    Blends of poly(vinyl chloride/epoxidized natural rubber (PVC/ENR) were prepared by using Bra bender Plasticorder at compositions ranging from 0-100% PVC. They were blended at 150 degree C mixing temperature, 50 rpm rotor speed and 10 minutes mixing time. The blends were characterized for tensile strength , elongation at break, glass transition temperatures and Fourier transform infra red spectroscopy (FTIR). Results revealed that as the PVC content increases the blend behaviour changes from elastomeric to glassy. However the blends found to be compatible at all compositions. (Author)

  15. On technology blending.

    OpenAIRE

    Rosenberg N

    1986-01-01

    ILO pub-WEP pub. Working paper on the blending of traditional technology and technological change in developing countries - argues that choice of technology should be compatible with labour intensive requirements and local level management and economic conditions; considers employment creation and economic implications; concludes that technology transfer should be selective. References.

  16. Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel,n-Heptane, andiso-Octane Fuels under Low Temperature Conditions

    KAUST Repository

    Yang, Seung Yeon; Naser, Nimal; Chung, Suk-Ho; Cha, Junepyo

    2015-01-01

    -octane in relatively low temperature conditions to simulate unsteady spray ignition behavior. A KAUST Research ignition quality tester (KR-IQT) was utilized, which has a feature of varying temperature, pressure and equivalence ratio using a variable displacement fuel

  17. Apparatus for blending small particles

    International Nuclear Information System (INIS)

    Bradley, R.A.; Reese, C.R.; Sease, J.D.

    1975-01-01

    An apparatus is described for blending small particles and uniformly loading the blended particles in a receptacle. Measured volumes of various particles are simultaneously fed into a funnel to accomplish radial blending and then directed onto the apex of a conical splitter which collects the blended particles in a multiplicity of equal subvolumes. Thereafter the apparatus sequentially discharges the subvolumes for loading in a receptacle. A system for blending nuclear fuel particles and loading them into fuel rod molds is described in a preferred embodiment

  18. Viscoelastic properties of PLA/PCL blends compatibilized with different methods

    Science.gov (United States)

    Shin, Boo Young; Han, Do Hung

    2017-11-01

    The aim of this study was to observe changes in the viscoelastic properties of PLA/PCL (80/20) blends produced using different compatibilization methods. Reactive extrusion and high-energy radiation methods were used for blend compatibilization. Storage and loss moduli, complex viscosity, transient stress relaxation modulus, and tan δ of blends were analyzed and blend morphologies were examined. All compatibilized PLA/PCL blends had smaller dispersed particle sizes than the non-compatibilized blend, and well compatibilized blends had finer morphologies than poorly compatibilized blends. Viscoelastic properties differentiated well compatibilized and poorly compatibilized blends. Well compatibilized blends had higher storage and loss moduli and complex viscosities than those calculated by the log-additive mixing rule due to strong interfacial adhesion, whereas poorly compatibilized blends showed negative deviations due to weak interfacial adhesion. Moreover, well compatibilized blends had much slower stress relaxation than poorly compatibilized blends and didn't show tan δ plateau region caused by slippage at the interface between continuous and dispersed phases.

  19. HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  20. HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal

    International Nuclear Information System (INIS)

    1995-09-01

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal

  1. Preliminary assessment of blending Hanford tank wastes

    International Nuclear Information System (INIS)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications

  2. Preliminary assessment of blending Hanford tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications.

  3. SYSTEM APPROACH TO THE BLENDED LEARNING

    Directory of Open Access Journals (Sweden)

    Vladimir Kukharenko

    2015-10-01

    Full Text Available Currently, much attention is paid to the development of learning sour cream – a combination of traditional and distance (30-70% of training. Such training is sometimes called hybrid and referred to disruptive technologies. Purpose – to show that the use of systemic campaign in blended learning provides a high quality of education, and the technology can be devastating. The subject of the study – blended learning, object of study – Mixed learning process. The analysis results show that the combined training increases the motivation of students, qualification of teachers, personalized learning process. At the same time there are no reliable methods of assessing the quality of education and training standards. It is important that blended learning strategy to support the institutional goals and had an effective organizational model for support.

  4. Composites and blends from biobased materials

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, S.S. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  5. Statistical methods for assessment of blend homogeneity

    DEFF Research Database (Denmark)

    Madsen, Camilla

    2002-01-01

    In this thesis the use of various statistical methods to address some of the problems related to assessment of the homogeneity of powder blends in tablet production is discussed. It is not straight forward to assess the homogeneity of a powder blend. The reason is partly that in bulk materials......, it is shown how to set up parametric acceptance criteria for the batch that gives a high confidence that future samples with a probability larger than a specified value will pass the USP threeclass criteria. Properties and robustness of proposed changes to the USP test for content uniformity are investigated...

  6. Radiation curable polymer blends for magnetic media

    International Nuclear Information System (INIS)

    Santosusso, T.M.

    1985-01-01

    Binder resins in magnetic coating formulations must fulfil a diverse set of requirements. These polymers must have the ability to accept high pigment loadings while maintaining good abrasion resistance, substrate adhesion, inherent lubricity and resistance to temperature and humidity effects. In addition, they must act as grinding aids in the dispersion of the magnetic pigment. In the thermally converted coatings now in use, these requirements are usually met by combining several polymers and crosslinking agents into an optimized blend. This approach is also effective in designing radiation curable binder systems. An overview of the methods employed to achieve such optimized blends will be discussed. (author)

  7. Binary blend Nanoparticles with defined morphology

    International Nuclear Information System (INIS)

    Ghazy, O.A.H.

    2008-01-01

    The word blend in linguistics means a word formed from two parts of two words. In polymer science polymer blends means polymer mixtures, a class of materials analogues to the metal alloys. Blending of polymers is a simple and economic way to create new materials meeting specific desired properties. The other alternative is to synthesize such materials eventually facing the organic chemistry design difficulties. The low entropy of mixing polymers makes the process thermodynamically unfavorable, unless there are some specific interactions between the mixed polymers. As a result, in thermal equilibrium typically a phase separation between the blend components takes place. The main challenge facing the blending of polymers is the control of the length scale of the phase separation. One of the most important applications, where the control of the phase separation is crucial for the performance is the organic solar cells. In organic solar cells a blend of an electron donating polymer and electron accepting one is formed. The dimensions of the phase separation between the two polymers should be in the range of the exciton diffusion length [1-3] (in semiconductors, exciton diffusion length is the average distance traveled by the electron-hole pair before recombination). Only under this condition the charge transfer at the interface between the two polymer layers can take place and the solar cell performs efficiently. The thin polymer blend layers for such applications are commonly deposited by spin coating from solution containing both polymers. The morphology of the thin layer prepared in this way is highly influenced by the preparation conditions such as the surface properties of the substrate, the solvent from which the blend was deposited, the temperature, and the annealing temperature [4-9]. Therefore controlling the length scale of phase separation in layers casted or spin coated from solutions is difficult and is a matter of trials and errors. Recently a novel

  8. Dissolution of di-2-ethylhexyl phosphates of ree in an octane + octanol mixture under the influence of gaseous ammonia

    International Nuclear Information System (INIS)

    Trifonov, Y.I.; Legin, E.K.; Suglobov, D.N.

    1986-01-01

    The authors find that the solubility of di-2-ethylhexyl phosphates rises considerably under the influence of gaseous ammonia on the solvent-LnA 3 system when a mixture of octane and octanol is used as solvent. The dissolving power of ammonia rises with alcohol concentration and attains the maximum at an alcohol content of ca 20 vol. %. An equation is presented that describes the dependence of the LnA 3 solubility on the partial amonia pressure

  9. Potential of a newly developed high-speed near-infrared (NIR) camera (Compovision) in polymer industrial analyses: monitoring crystallinity and crystal evolution of polylactic acid (PLA) and concentration of PLA in PLA/Poly-(R)-3-hydroxybutyrate (PHB) blends.

    Science.gov (United States)

    Ishikawa, Daitaro; Nishii, Takashi; Mizuno, Fumiaki; Sato, Harumi; Kazarian, Sergei G; Ozaki, Yukihiro

    2013-12-01

    This study was carried out to evaluate a new high-speed hyperspectral near-infrared (NIR) camera named Compovision. Quantitative analyses of the crystallinity and crystal evolution of biodegradable polymer, polylactic acid (PLA), and its concentration in PLA/poly-(R)-3-hydroxybutyrate (PHB) blends were investigated using near-infrared (NIR) imaging. This NIR camera can measure two-dimensional NIR spectral data in the 1000-2350 nm region obtaining images with wide field of view of 150 × 250 mm(2) (approximately 100  000 pixels) at high speeds (in less than 5 s). PLA with differing crystallinities between 0 and 50% blended samples with PHB in ratios of 80/20, 60/40, 40/60, 20/80, and pure films of 100% PLA and PHB were prepared. Compovision was used to collect respective NIR spectra in the 1000-2350 nm region and investigate the crystallinity of PLA and its concentration in the blends. The partial least squares (PLS) regression models for the crystallinity of PLA were developed using absorbance, second derivative, and standard normal variate (SNV) spectra from the most informative region of the spectra, between 1600 and 2000 nm. The predicted results of PLS models achieved using the absorbance and second derivative spectra were fairly good with a root mean square error (RMSE) of less than 6.1% and a determination of coefficient (R(2)) of more than 0.88 for PLS factor 1. The results obtained using the SNV spectra yielded the best prediction with the smallest RMSE of 2.93% and the highest R(2) of 0.976. Moreover, PLS models developed for estimating the concentration of PLA in the blend polymers using SNV spectra gave good predicted results where the RMSE was 4.94% and R(2) was 0.98. The SNV-based models provided the best-predicted results, since it can reduce the effects of the spectral changes induced by the inhomogeneity and the thickness of the samples. Wide area crystal evolution of PLA on a plate where a temperature slope of 70-105 °C had occurred was also

  10. Convection-driven melting in an n-octane pool fire bounded by an ice wall

    Science.gov (United States)

    Farmahini Farahani, Hamed; Alva, Ulises; Rangwala, Ali; Jomaas, Grunde

    2017-11-01

    Burning of the liquid fuels adjacent to ice bodies creates a lateral cavity due to melting of the ice. The formation of lateral cavities are noticed recently and only a few experimental studies have addressed them. One study has shown lateral cavity formation with length of 12 cm for 5 minutes burning of oil. Based on the hypothesis that melting is facilitated by the convection in the liquid fuel, a series of PIV tests were conducted on burning of n-octane in a square glass tray with a 3 cm thick ice wall placed on one side of the tray. Marangoni generates a flow below the surface of the fuel and near the ice from hot to cold regions. The flow measurements by a 2D PIV system indicated the existence of different flow regimes. Before ignition, combined surface tension and buoyancy effects led to a one roll structure. After ignition the flow field began transitioning toward an unstable regime with an increase in velocity magnitude. Unfortunately, the PIV quality declined in the unstable regime, but indications of a multi-roll structure separating from a primary horizontal flow on the top driven by Marangoni convection were observed. The knowledge gained from these experiments will help determine the influential parameters in ice melting during burning of oil in ice-infested waters.

  11. Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode

    KAUST Repository

    Waqas, Muhammad Umer

    2017-09-04

    The blending of ethanol with PRF (Primary reference fuel) 84 was investigated and compared with FACE (Fuels for Advanced Combustion Engines) A gasoline surrogate which has a RON of 83.9. Previously, experiments were performed at four HCCI conditions but the chemical effect responsible for the non-linear blending behavior of ethanol with PRF 84 and FACE A was not understood. Hence, in this study the experimental measurements were simulated using zero-dimensional HCCI engine model with detailed chemistry in CHEMKIN PRO. Ethanol was used as an octane booster for the above two base fuels in volume concentration of 0%, 2%, 5% and 10%. The geometrical data and the intake valve closure conditions were used to match the simulated combustion phasing with the experiments. Low temperature heat release (LTHR) was detected by performing heat release analysis. LTHR formation depended on the base fuel type and the engine operating conditions suggesting that the base fuel composition has an important role in the formation of LTHR. The effect of ethanol on LTHR was explained by low temperature chemistry reactions and OH/HO evolution. A strong correlation of low temperature oxidation reactions of base fuels with ethanol was found to be responsible for the observed blending effects.

  12. Modification of combustion behaviour and NO emissions by coal blending

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, Fernando; Arenillas, Ana; Arias, Borja; Pis, Jose J. [Department of Energy and Environment, Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2002-06-20

    Combustion profiles determined by TGA and experiments in a laminar entrained flow reactor (EFR) were used in this work to assess the relative combustion reactivities of different rank coals and their binary coal blends. The combustion behaviour of coal blends in TGA was greatly influenced by coal rank and the proportion of each component in the blend. Higher volatile coals exerted more influence in the low-temperature region and less reactive coals in the char combustion zone. The results in the EFR indicated that coal blends burnout and NO emissions show additivity in the case of similar nature coals. When one of the components was a high-rank coal, the burnout of the blend exhibited, in some cases, positive synergistic effects, while a clear deviation from linearity was found in NO emissions.

  13. Blended learning in anatomy

    DEFF Research Database (Denmark)

    Østergaard, Gert Værge; Brogner, Heidi Marie

    behind DBR is that new knowledge is generated through processes that simultaneously develop, test and improve a design, in this case, an educational design (1) The main principles used in the project is blended learning and flipped learning (2). …"I definitely learn best in practice, but the theory...... in working with the assignments in the classroom."... External assesor, observer and interviewer Based on the different evaluations, the conclusion are that the blended learning approach combined with the ‘flipped classroom’ is a very good way to learn and apply the anatomy, both for the students......The aim of the project was to bridge the gap between theory and practice by working more collaboratively, both peer-to-peer and between student and lecturer. Furthermore the aim was to create active learning environments. The methodology of the project is Design-Based Research (DBR). The idea...

  14. Theory of polymer blends

    International Nuclear Information System (INIS)

    Curro, J.G.; Schweizer, K.S.

    1989-01-01

    We have recently developed a new theoretical approach to the study of polymer liquids. The theory is based on the ''reference interaction site model'' (RISM theory) of Chandler and Andersen, which has been successful in describing the structure of small molecule liquids. We have recently extended our polymer RISM theory to the case of polymer blends. In the present investigation we have applied this theory to two special binary blends: (1) the athermal mixture where we isolate structural effects, and (2) the isotopic mixture in which structurally identical polymer chains interact with dissimilar attractive interactions. By studying these two special cases we are able to obtain insights into the molecular factors which control the miscibility in polymer mixtures. 18 refs., 2 figs

  15. Quantities of Interest in Jet Stirred Reactor Oxidation of a High-Octane Gasoline

    KAUST Repository

    Chen, Bingjie; Togbé , Casimir; Selim, Hatem; Dagaut, Philippe; Sarathy, Mani

    2017-01-01

    related to smaller molecule reactions. The results presented here offer new insights into the oxidation chemistry of complex gasoline fuels and provide suggestions for the future development of surrogate kinetic models.

  16. Excess Molar Volumes of the Octane-1-Chlorobutane System at High Pressures and Elevated Temperatures

    Czech Academy of Sciences Publication Activity Database

    Morávková, Lenka; Linek, Jan

    2002-01-01

    Roč. 56, č. 6 (2002), s. 374-377 ISSN 0366-6352. [International Conference of Slovak Society of Chemical Engineering /29./. Tatranské Matliare, 27.05.2002-31.05.2002] R&D Projects: GA ČR GA203/00/0600 Keywords : densities * excess volumes * mixtures Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.336, year: 2002

  17. High throughput study of fuel cell proton exchange membranes: Poly(vinylidene fluoride)/acrylic polyelectrolyte blends and nanocomposites with zirconium

    Science.gov (United States)

    Zapata B., Pedro Jose

    Sustainability is perhaps one of the most heard buzzwords in the post-20 th century society; nevertheless, it is not without a reason. Our present practices for energy supply are largely unsustainable if we consider their environmental and social impact. In view of this unfavorable panorama, alternative sustainable energy sources and conversion approaches have acquired noteworthy significance in recent years. Among these, proton exchange membrane fuel cells (PEMFCs) are being considered as a pivotal building block in the transition towards a sustainable energy economy in the 21st century. The polyelectrolyte membrane or proton exchange membrane (PEM) is a vital component, as well as a performance-limiting factor, of the PEMFC. Consequently, the development of high-performance PEM materials is of utmost importance for the advance of the PEMFC field. In this work, alternative PEM materials based on semi-interpenetrated networks from blends of poly(vinyledene fluoride) (PVDF) (inert phase) and sulfonated crosslinked acrylic polyelectrolytes (PE) (proton-conducting phase), as well as tri-phase PVDF/PE/zirconium-based composites, are studied. To alleviate the burden resulting from the vast number of possible combinations of the different precursors utilized in the preparation of the membranes (PVDF: 5x, PE: 2x, Nanoparticle: 3x), custom high-throughput (HT) screening systems have been developed for their characterization. By coupling the data spaces obtained via these systems with the appropriate statistical and data analysis tools it was found that, despite not being directly involved in the proton transport process, the inert PVDF phase plays a major role on proton conductivity. Particularly, a univocal inverse correlation between the PVDF crystalline characteristics (i.e., crystallinity and crystallite size) and melt viscosity, and membrane proton conductivity was discovered. Membranes based on highly crystalline and viscous PVDF homopolymers exhibited reduced proton

  18. Reactive modification of polyesters and their blends

    Science.gov (United States)

    Wan, Chen

    2004-12-01

    the desired rheological and structural characteristics of the final products for potential applications such as low density extrusion foaming or compatibilization of immiscible polymer blends. Important modification conditions through coagents are identified and reaction mechanisms are proposed. A high MW saturated polyester, PET, can also be rheologically modified in extruders through low MW multifunctional anhydride and epoxy compounds by chain extension/branching. Several such modifiers were successfully screened in terms of their reactivity towards PET under controlled reactive extrusion conditions. A dianhydride with medium reactivity was then successfully used in a one-step reactive modification/extrusion foaming process to produce low density foams. A similar process was successfully used to produce small cell size foams from a four component system containing PET, PP and lesser amounts of a low molecular weight multifunctional epoxy compound and an acid functionalized polyolefin, the latter acting as compatibilizers.

  19. Blended acquisition with dispersed source arrays

    NARCIS (Netherlands)

    Berkhout, A.J.

    2012-01-01

    Blended source arrays are historically configured with equal source units, such as broadband vibrators (land) and broadband air-gun arrays (marine). I refer to this concept as homogeneous blending. I have proposed to extend the blending concept to inhomogeneous blending, meaning that a blended

  20. Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics

    International Nuclear Information System (INIS)

    Lin, Cherng-Yuan

    2014-01-01

    Biodiesel is a renewable, clean, alternative energy source with advantages, such as excellent lubricity, superior biodegradability, and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% if 25 wt.% biodiesel is blended. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt.% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt.% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1–4.5%.

  1. Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Cherng-Yuan, E-mail: lin7108@ntou.edu.tw [Department of Marine Engineering, National Taiwan Ocean University, Keelung, Taiwan (China)

    2014-02-24

    Biodiesel is a renewable, clean, alternative energy source with advantages, such as excellent lubricity, superior biodegradability, and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% if 25 wt.% biodiesel is blended. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt.% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt.% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1–4.5%.

  2. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends.

    Science.gov (United States)

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-08-02

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed.

  3. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends

    Science.gov (United States)

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-01-01

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed. PMID:28773772

  4. Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion

    KAUST Repository

    Badra, Jihad; Farooq, Aamir; Sim, Jaeheon; Viollet, Yoann; Im, Hong G.; Chang, Junseok

    2016-01-01

    Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps and ignition delay times. Both experimental and computational results consistently showed that an SOI of -30° CAD aTDC has the most advanced combustion phasing (CA50), with the highest NOx emission. The effects of the SOI on the fuel containment in the bowl of the piston, the ignition delay time, combustion rate and emissions have been carefully examined through the CFD calculations. It was found that the competition between the equivalence ratio and temperature is the controlling parameter in determining the combustion phasings.

  5. Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion

    KAUST Repository

    Badra, Jihad

    2016-04-05

    Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps and ignition delay times. Both experimental and computational results consistently showed that an SOI of -30° CAD aTDC has the most advanced combustion phasing (CA50), with the highest NOx emission. The effects of the SOI on the fuel containment in the bowl of the piston, the ignition delay time, combustion rate and emissions have been carefully examined through the CFD calculations. It was found that the competition between the equivalence ratio and temperature is the controlling parameter in determining the combustion phasings.

  6. Microemulsions based on a sunflower lecithin-Tween 20 blend have high capacity for dissolving peppermint oil and stabilizing coenzyme Q10.

    Science.gov (United States)

    Chen, Huaiqiong; Guan, Yongguang; Zhong, Qixin

    2015-01-28

    The objectives of the present study were to improve the capability of microemulsions to dissolve peppermint oil by blending sunflower lecithin with Tween 20 and to study the possibility of codelivering lipophilic bioactive compounds. The oil loading in microemulsions with 20% (w/w) Tween 20 increased from 3% (w/w) to 20% (w/w) upon gradual supplementation of 6% (w/w) lecithin. All microemulsions had particles of lecithin. Therefore, natural surfactant lecithin can reduce the use of synthetic Tween 20 to dissolve peppermint oil and protect the degradation of dissolved lipophilic bioactive components in transparent products.

  7. Compatibilizing Bulk Polymer Blends by Using Organoclays

    Science.gov (United States)

    Si, Mayu; Gersappe, Dilip; Zhang, Wenhua; Ade, Harald; Rafailovich, Miriam; Sokolov, Jonathan; Rudomen, Gregory; Schwartz, Bradley; Fisher, Robert

    2004-03-01

    We investigated the compatiblizing performance of organoclays on melt mixed binary and tertiary polymer blends, such as, PS/PMMA, PC/SAN, PS/PMMA/PVC and PS/PMMA/PE. These polymer blends were characterized by TEM, STXM, DSC and DMA. TEM and STXM photographs show that the addition of organoclays into polymer blends drastically reduces the average domain size of the component phases. And the organoclay goes to the interfacial region between the different polymers and effectively slows down the domain size increasing during high temperature annealing. DMA and DSC results show the effect of organoclays on the mechanical properties and glass transitions temperature, which indicates the compatibilization on the molecular level. The generalized compatibilization induced by the nanoscale fillers for blends can be explained in terms of mean field models where the reduction of interfacial tension induced by in-situ grafting is counterbalanced by the increased bending energy due to the rigidity of the filler. This in turn can be shown to be a function of the degree of exfoliation, aspect ratio, and polymer filler interactions. Supported by NSF funded MRSEC at Stony Brook

  8. Blended Learning on Campus

    DEFF Research Database (Denmark)

    Heilesen, Simon; Nielsen, Jørgen Lerche

    2004-01-01

    On the basis of a large-scale project implementing information and communication technology at Roskilde University, Denmark, this paper discusses ways of introducing technology-based blended learning in academic life. We examine some examples of use of systems for computer-mediated collabora......-tive learning and work in Danish Open University education as well as in courses on campus. We further suggest some possi-bilities for using technology in innovative ways, arguing that innovation is to be found, not in isolated instantiations of sys-tems, but in the form of a deliberate integration of all...... relevant ICT-features as a whole into the learning environment....

  9. Blended Learning Design

    DEFF Research Database (Denmark)

    Pedersen, Lise

    2015-01-01

    learning. 4. Blended learning can contribute to supporting and improving efficiency of educational efforts. This can for instance be done through programmes for several classes by using video conferencing, allocating traditional face to face teaching to synchronous and asynchronous study activities produce...... digital materials which can be employed didactically and reused by the teachers. This can also mean that the particular competencies which teaches have in Svendborg can be used at other locations in UCL and disseminated to a larger group of students without further costs. Educational Innovation...

  10. The Impact of Molecular p-Doping on Charge Transport in High-Mobility Small-Molecule/Polymer Blend Organic Transistors

    KAUST Repository

    Paterson, Alexandra F.

    2017-12-27

    Molecular doping is a powerful tool with the potential to resolve many of the issues currently preventing organic thin-film transistor (OTFT) commercialization. However, the addition of dopant molecules into organic semiconductors often disrupts the host lattice, introducing defects and harming electrical transport. New dopant-based systems that overcome practical utilization issues, while still reaping the electrical performance benefits, would therefore be extremely valuable. Here, the impact of p-doping on the charge transport in blends consisting of the small-molecule 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT), the polymer indacenodithiophene-benzothiadiazole (C16IDT-BT), and the molecular dopant C60F48 is investigated. Electrical field-effect measurements indicate that p-doping not only enhances the average saturation mobility from 1.4 to 7.8 cm2 V−1 s−1 over 50 devices (maximum values from around 4 to 13 cm2 V−1 s−1), but also improves bias–stress stability, contact resistance, threshold voltage, and the overall device-to-device performance variation. Importantly, materials characterization using X-ray diffraction, X-ray photoemission spectroscopy, and ultraviolet photoemission spectroscopy, combined with charge transport modeling, reveal that effective doping is achieved without perturbing the microstructure of the polycrystalline semiconductor film. This work highlights the remarkable potential of ternary organic blends as a simple platform for OTFTs to achieve all the benefits of doping, with none of the drawbacks.

  11. The Impact of Molecular p-Doping on Charge Transport in High-Mobility Small-Molecule/Polymer Blend Organic Transistors

    KAUST Repository

    Paterson, Alexandra F.; Lin, Yen-Hung; Mottram, Alexander D.; Fei, Zhuping; Niazi, Muhammad Rizwan; Kirmani, Ahmad R.; Amassian, Aram; Solomeshch, Olga; Tessler, Nir; Heeney, Martin; Anthopoulos, Thomas D.

    2017-01-01

    Molecular doping is a powerful tool with the potential to resolve many of the issues currently preventing organic thin-film transistor (OTFT) commercialization. However, the addition of dopant molecules into organic semiconductors often disrupts the host lattice, introducing defects and harming electrical transport. New dopant-based systems that overcome practical utilization issues, while still reaping the electrical performance benefits, would therefore be extremely valuable. Here, the impact of p-doping on the charge transport in blends consisting of the small-molecule 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT), the polymer indacenodithiophene-benzothiadiazole (C16IDT-BT), and the molecular dopant C60F48 is investigated. Electrical field-effect measurements indicate that p-doping not only enhances the average saturation mobility from 1.4 to 7.8 cm2 V−1 s−1 over 50 devices (maximum values from around 4 to 13 cm2 V−1 s−1), but also improves bias–stress stability, contact resistance, threshold voltage, and the overall device-to-device performance variation. Importantly, materials characterization using X-ray diffraction, X-ray photoemission spectroscopy, and ultraviolet photoemission spectroscopy, combined with charge transport modeling, reveal that effective doping is achieved without perturbing the microstructure of the polycrystalline semiconductor film. This work highlights the remarkable potential of ternary organic blends as a simple platform for OTFTs to achieve all the benefits of doping, with none of the drawbacks.

  12. River Protection Project Mission Analysis Waste Blending Study

    International Nuclear Information System (INIS)

    Shuford, D.H.; Stegen, G.

    2010-01-01

    Preliminary evaluation for blending Hanford site waste with the objective of minimizing the amount of high-level waste (HLW) glass volumes without major changes to the overall waste retrieval and processing sequences currently planned. The evaluation utilizes simplified spreadsheet models developed to allow screening type comparisons of blending options without the need to use the Hanford Tank Waste Operations Simulator (HTWOS) model. The blending scenarios evaluated are expected to increase tank farm operation costs due to increased waste transfers. Benefit would be derived from shorter operating time period for tank waste processing facilities, reduced onsite storage of immobilized HLW, and reduced offsite transportation and disposal costs for the immobilized HLW.

  13. Exciton and Hole-Transfer Dynamics in Polymer: Fullerene Blends

    Directory of Open Access Journals (Sweden)

    van Loosdrecht P. H. M.

    2013-03-01

    Full Text Available Ultrafast hole transfer dynamics from fullerene derivative to polymer in bulk heterojunction blends are studied with visible-pump - IR-probe spectroscopy. The hole transfer process is found to occur in 50/300 fs next to the interface, while a longer 15-ps time is attributed to exciton diffusion towards interface in PC71BM domains. High polaron generation efficiency in P3HT blends indicates excellent intercalation between the polymer and the fullerene even at highest PC71BM concentration thereby yielding a valuable information on the blend morphology.

  14. Classifying K-12 Blended Learning

    Science.gov (United States)

    Staker, Heather; Horn, Michael B.

    2012-01-01

    The growth of online learning in the K-12 sector is occurring both remotely through virtual schools and on campuses through blended learning. In emerging fields, definitions are important because they create a shared language that enables people to talk about the new phenomena. The blended-learning taxonomy and definitions presented in this paper…

  15. Blended Learning: An Innovative Approach

    Science.gov (United States)

    Lalima; Dangwal, Kiran Lata

    2017-01-01

    Blended learning is an innovative concept that embraces the advantages of both traditional teaching in the classroom and ICT supported learning including both offline learning and online learning. It has scope for collaborative learning; constructive learning and computer assisted learning (CAI). Blended learning needs rigorous efforts, right…

  16. Blended Learning: A Dangerous Idea?

    Science.gov (United States)

    Moskal, Patsy; Dziuban, Charles; Hartman, Joel

    2013-01-01

    The authors make the case that implementation of a successful blended learning program requires alignment of institutional, faculty, and student goals. Reliable and robust infrastructure must be in place to support students and faculty. Continuous evaluation can effectively track the impact of blended learning on students, faculty, and the…

  17. Empowering Learners through Blended Learning

    Science.gov (United States)

    Owston, Ron

    2018-01-01

    Blended learning appears to facilitate learner empowerment more readily than either face-to-face or fully online courses. This contention is supported by a review of literature on the affordances of blended learning that support Thomas and Velthouse's (1990) four conditions of empowerment: choice, meaningfulness, competence, and impact. Blended…

  18. The Basics of Blended Instruction

    Science.gov (United States)

    Tucker, Catlin R.

    2013-01-01

    Even though many of teachers do not have technology-rich classrooms, the rapidly evolving education landscape increasingly requires them to incorporate technology to customize student learning. Blended learning, with its mix of technology and traditional face-to-face instruction, is a great approach. Blended learning combines classroom learning…

  19. Potential Application of ENR/EPDM Blends

    Directory of Open Access Journals (Sweden)

    B.L. Chan

    2017-06-01

    resistance properties, or some in the development of potential thermoplastic rubber and its thermoplastic vulcanizates. In this paper, the author would like to share some findingsof the ENR/EPDM blends that have good flexand dynamic properties, relatively low compression set, and tolerant tensile properties that satisfy most rubber products that are required for and used in the industrial, mechanical, and even automotive parts. More importantly, the sliding skid resistance/frictional property and wear resistance of the blends are also examined. In some blends, the thermal dynamic behaviour is also measured over a temperature range depicting the low-temperature stability, its temperature of transition and the dynamic factor like tangent delta (σ. These are the potential factors that could enhance the blend properties that give possible, good high speed and traction, applicable in tyres.

  20. Profiling Student Behaviour in a Blended Course: Closing the Gap Between Blended Teaching and Blended Learning

    NARCIS (Netherlands)

    Bos, Nynke; Brand-Gruwel, Saskia

    2018-01-01

    Blended learning is often associated with student-oriented learning in which students have varying degrees of control over their learning process. However, the current notion of blended learning is often a teacher- oriented approach in which the teacher identifies the used learning technologies and

  1. Influence of crystallite size and shape of zeolite ZSM-22 on its activity and selectivity in the catalytic cracking of n-octane

    Energy Technology Data Exchange (ETDEWEB)

    Bager, F.; Ernst, S. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    2013-11-01

    Light olefins belong to the major building blocks for the petrochemical industry, particularly for the production of polymers. It has become necessary to increase the production of light olefins specifically in the case for propene with so called 'on-purpose propene' technologies. One possible route is to increase the amount of propene that can be obtained from Fluid Catalytic Cracking (FCC) by optimizing the catalyst through introducing new additives, which offer a high selectivity to propene. Zeolite ZSM-22 samples with different crystallite sizes and morphologies have been synthesized via hydrothermal syntheses and characterized by powder X-Ray diffraction, nitrogen physisorption, atomic absorption spectroscopy, scanning electron microscopy and solid-state NMR spectroscopy. The zeolites in the Broensted-acid form have been tested as catalysts in the catalytic cracking of n-octane as a model hydrocarbon. Clear influences of the crystallite size on the deactivation behavior have been observed. Larger crystals of zeolite ZSM-22 produce an increased amount of coke deposits resulting in a faster deactivation of the catalyst. The experimental results suggest that there is probably some influence of pore diffusion on the catalytic activity of the ZSM-22 sample with the large crystallite size. However a noticeable influence on the general product distribution could not be observed. (orig.)

  2. Antinociceptive action of DBO 17 and DBO 11 in mice: two 3,8 diazabicyclo (3.2.1.) octane derivates with selective mu opioid receptor affinity.

    Science.gov (United States)

    Fadda, P; Barlocco, D; Tronci, S; Cignarella, G; Fratta, W

    1997-11-01

    Two 3,8 diazabicyclo (3.2.1.) octane derivates, namely DBO 17 and DBO 11, were studied for the opioid-like activity. In the rat brain membrane preparation binding studies, DBO 17 and DBO 11 showed a high affinity and selectivity for the mu opioid receptor (Ki's: 5.1 and 25 nM, respectively). DBO 17 and DBO 11 inhibited the nociceptive response in the hot-plate test of mice with ED50 values of 0.16 mg/kg and 0.44 mg/kg, respectively. The antinociceptive action of both DBO 17 and DBO 11 was blocked by naloxone. Tolerance to the antinociceptive action of DBO 17 and DBO 11 was present after 13 and 7 days of repeated treatment, respectively. Both DBO 17 and DBO 11 were ineffective in morphine-tolerant mice and vice versa. Chronic treatments (three times daily for seven consecutive days) of DBO 17 and DBO 11 induced a naloxone-precipitated withdrawal syndrome in DBO 17 treated mice similar to that in morphine treated mice, whereas in DBO 11 treated mice abstinence signs were virtually absent. These results indicate an interesting pharmacological profile that suggests these compounds as possible new candidates for the clinical treatment of pain.

  3. Détermination automatique de l'indice d'octane et de la composition des reformats par chromatographie en phase gazeuse Automatic Determination of Reformate Octane Number and Composition by Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Petroff N.

    2006-11-01

    Full Text Available Utilisant des analyses par chromatographie en phase gazeuse, diverses méthodes ont été testées pour calculer l'indice d'octane de reformats. L'une d'elles s'est imposée par la simplicité de l'appareillage, ses possibilités d'automatisation et son adéquation à des échantillons provenant de charges différentes. Cette étude décrit les conditions opératoires de la méthode chromatographique optimisées pour les réformes, en vue d'obtenir des valeurs calculées de l'indice d'octane (IO dit Recherche différant de moins de un point des valeurs mesurées sur un moteur CFR selon la norme ASTM/D2699 (NF MO7026. L'analyse chromatographique est faite sur une colonne capillaire fonctionnant en température programmée. Le traitement des données est réalisé par un logiciel qui assure àla fois l'identification des constituants et le calcul de l'indice d'octane, à partir des données chromatographiques standard (temps de rétention et surface des pics. Les résultats obtenus portent sur une soixantaine de reformats divers. La fiabilité de la méthode d'identification, la répétabilité et la reproductibilité des valeurs de IO calculés sont démontrées. Ces résultats permettent d'envisager l'exploitation de la méthode en sortie d'unité. Various methods were tested by gas chromatography analysis for calculating the octane number of reformates. One of them was superior because of the simplicity of its equipment, its possibilities of automation and its suitability for samples coming from different feeds. This article describes the operating conditions of the optimized chromatographic method for reformates with a view to obtaining calculated values of the so-called Researchoctane number (RON different by at least one point from the values measured with a CFR engine according to the ASTM/D2699 standard. Chromatographic analysis is performed in a capillary column operating with programmedtemperature. Data processing is done with a software

  4. Preliminary Validation of a High Docosahexaenoic Acid (DHA and -Linolenic Acid (ALA Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar Smolts.

    Directory of Open Access Journals (Sweden)

    Waldo G Nuez-Ortín

    Full Text Available Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA, a key omega-3 long-chain (≥C20 polyunsaturated fatty acid (n-3 LC-PUFA that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX with high DHA and ALA content using tuna oil (TO high in DHA and the flaxseed oil (FX high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO and a commercial-like oil blend diet (fish oil + poultry oil, FOPO over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend.

  5. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts.

    Science.gov (United States)

    Nuez-Ortín, Waldo G; Carter, Chris G; Wilson, Richard; Cooke, Ira; Nichols, Peter D

    2016-01-01

    Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend.

  6. Extrudability and Consolidation of Blends between CGM and DDGS

    Directory of Open Access Journals (Sweden)

    C. J. R. Verbeek

    2016-01-01

    Full Text Available During the last decade, the global biofuels industry has experienced exponential growth. By-products such as high protein corn gluten meal (CGM and high fibre distillers dried grains with solubles (DDGS have grown in parallel. CGM has been shown to be suitable as a biopolymer; the high fibre content of DDGS reduces its effectiveness, although it is considerably cheaper. In this study, the processing behaviour of CGM and DDGS blends was evaluated and resulting extrudate properties were determined. Prior to processing, urea was used as a denaturant. DDGS : CGM ratios of 0, 33, 50, 66, and 100% were processed in a single screw extruder, which solely used dissipative heating. Blends containing DDGS were less uniformly consolidated and resulted in more dissipative heating. Blends showed multiple glass transitions, which is characteristic of mechanically compatible blends. Transmission electron microscopy revealed phase separation on a microscale, although distinct CGM or DDGS phases could not be identified. On a macroscale, optical microscopy suggested that CGM-rich blends were better consolidated, supported by visual observations of a more continuous extrudate formed during extrusion. Future work should aim to also characterize the mechanical properties of these blends to assess their suitability as either bioplastic feedstock or pelletized livestock feed.

  7. Morphological studies on block copolymer modified PA 6 blends

    Energy Technology Data Exchange (ETDEWEB)

    Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  8. Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl phenoxy) phosphazene] and poly(lactic acid-glycolic acid).

    Science.gov (United States)

    Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Kumbar, Sangamesh G; Jiang, Tao; Krogman, Nicholas R; Singh, Anurima; Allcock, Harry R; Laurencin, Cato T

    2008-01-01

    Previously we demonstrated the ability of ethyl glycinato substituted polyphosphazenes to neutralize the acidic degradation products and control the degradation rate of poly(lactic acid-glycolic acid) (PLAGA) by blending. In this study, blends of high strength poly[(50% ethyl alanato) (50% p-phenyl phenoxy) phosphazene] (PNEA(50)PhPh(50)) and 85:15 PLAGA were prepared using a mutual solvent approach. Three different solvents, methylene chloride (MC), chloroform (CF) and tetrahydrofuran (THF) were studied to investigate solvent effects on blend miscibility. Three different blends were then fabricated at various weight ratios namely 25:75 (BLEND25), 50:50 (BLEND50), and 75:25 (BLEND75) using THF as the mutual solvent. The miscibility of the blends was evaluated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Among these, BLEND25 was miscible while BLEND50 and BLEND75 were partially miscible. Furthermore, BLEND25 formed apatite layers on its surface as evidenced in a biomimetic study performed. These novel blends showed cell adhesion and proliferation comparable to PLAGA. However, the PNEA(50)PhPh(50) component in the blends was able to increase the phenotypic expression and mineralized matrix synthesis of the primary rat osteoblasts (PRO) in vitro. Blends of high strength PNEA(50)PhPh(50) and 85:15 PLAGA are promising biomaterials for a variety of musculoskeletal applications.

  9. Photonic polymer-blend structures and method for making

    Science.gov (United States)

    Barnes, Michael D.

    2004-06-29

    The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.

  10. Blended learning: how can we optimise undergraduate student engagement?

    Science.gov (United States)

    Morton, Caroline E; Saleh, Sohag N; Smith, Susan F; Hemani, Ashish; Ameen, Akram; Bennie, Taylor D; Toro-Troconis, Maria

    2016-08-04

    Blended learning is a combination of online and face-to-face learning and is increasingly of interest for use in undergraduate medical education. It has been used to teach clinical post-graduate students pharmacology but needs evaluation for its use in teaching pharmacology to undergraduate medical students, which represent a different group of students with different learning needs. An existing BSc-level module on neuropharmacology was redesigned using the Blended Learning Design Tool (BLEnDT), a tool which uses learning domains (psychomotor, cognitive and affective) to classify learning outcomes into those taught best by self-directed learning (online) or by collaborative learning (face-to-face). Two online courses were developed, one on Neurotransmitters and the other on Neurodegenerative Conditions. These were supported with face-to-face tutorials. Undergraduate students' engagement with blended learning was explored by the means of three focus groups, the data from which were analysed thematically. Five major themes emerged from the data 1) Purpose and Acceptability 2) Structure, Focus and Consolidation 3) Preparation and workload 4) Engagement with e-learning component 5) Future Medical Education. Blended learning was acceptable and of interest to undergraduate students learning this subject. They expressed a desire for more blended learning in their courses, but only if it was highly structured, of high quality and supported by tutorials. Students identified that the 'blend' was beneficial rather than purely online learning.

  11. Study of PP/Polybutene Blends Modified by Gamma Irradiation and HMS-PP/Polybutene Blends

    International Nuclear Information System (INIS)

    Lugao, A. B.

    2006-01-01

    The polypropylene (PP) has been applied to a wide range of production due to its various excellent properties such as cheapness, high stiffness, chemical resistance, no environmental pollution when incinerated, low specific density and good mechanical properties. However, PP is a linear polymer which exhibits low melt strength. One of the effective approaches to achieve high melt strength (HMS) is to add chain branches onto backbone polymers. High melt strength polypropylene (HMS-PP) has been recently developed and introduced in the market by the major international polypropylene producers. As a consequence different methods have been applied to modify polypropylenes by chain branches. The technology obtained by IPEN together with EMBRARAD and BRASKEM comprises chain branches added onto backbone species using gamma radiation, which is generated from a Co 6 0 source. Such radiation is very convenient in order to improve polymer materials by grafting, crosslinking and degradation. Another important approach to the development of polymer materials is based on the combination of different polymers into a new product having some of the desired properties of each component. In this work, gamma irradiation technique was used to induce chemical changes in commercial polypropylene (HMS-PP) that was after blended with polybutene and in polypropylene/polybutene blends. The samples were irradiated with a 60 C o source at doses of 12,5 and 20kGy in the presence of acetylene. It was investigated how the two different routes of blends processing can modify their properties. Indeed the results from melt flow, gel fraction and rheology reveal the influence of the process route in the blends properties. Effects on the elongation at break and break strength were observed by the results of mechanical tests. The results from rheology demonstrated an increase in melt strength and drawability of the blends

  12. Method to blend separator powders

    Science.gov (United States)

    Guidotti, Ronald A.; Andazola, Arthur H.; Reinhardt, Frederick W.

    2007-12-04

    A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

  13. Toughening modification of poly(butylene terephthalate)/poly(ethylene terephthalate) blends by an epoxy-functionalized elastomer

    Science.gov (United States)

    Zhang, Weizhou; Wang, Kai; Yan, Wei; Guo, Weihong

    2017-10-01

    New toughened poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) (PET) (40/60 wt%) blends were obtained by melting with Glycidyl methacrylate grafted poly(ethylene octane) copolymer (POE-g-GMA), varying the POE-g-GMA content up to 20 wt%, in a twin-screw extruder, followed by injection molding. The influence of POE-g-GMA on the properties of the PBT/PET blends was investigated by mechanical testing, Fourier transform infrared (FT-IR) analysis, gel fractions analysis, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and scanning electronic microscopy (SEM). The mechanical testing results indicated that the incorporation of POE-g-GMA led to increases in the notched impact strength and decreases in the tensile strength, flexural strength, and flexural modulus. When POE-g-GMA content reached 20 wt%, the notched impact strength (8.0 kJ m-2) was achieved for the PBT/PET/POE-g-GMA blends. FT-IR results proved that some PBT/PET/POE-g-GMA copolymers were produced, which improved the compatibility between POE-g-GMA and the PBT/PET matrix. The extent of crosslinking was observed by gel fraction measurements. DMA results further testified chain-extending and micro-crosslink reactions occurred between POE-g-GMA and PBT/PET blends. In addition, the reactions induced by POE-g-GMA affected the crystallization behavior of PBT/PET blends obviously, as observed from DSC results. By means of SEM observation of the impact fracture surface morphology, and the discussion of the micro-crosslink reaction process between the epoxide-containing elastomers and PBT/PET matrix, the toughening mechanism was proposed to be taken into account the shear yielding of PBT/PET matrix and cavitation of elastomer particles.

  14. An Experimental Investigation on the Effect of Addition of Ternary Blend on the Mix Design Characteristics of High Strength Concrete using Steel Fibre

    Science.gov (United States)

    Sinha, Deepa A., Dr; Verma, A. K., Dr

    2017-08-01

    This paper presents the results of M60 grade of concrete. M60 grade of concrete is achieved by maximum density technique. Concrete is brittle and weak in tension and develops cracks during curing and due to thermal expansion / contraction over a period ot time. Thus the effect of addition of 1% steel fibre is studied. For ages, concrete has been one of the widely used materials for construction. When cement is manufactured, every one ton of cement produces around one ton of carbon dioxide leading to global warming and also as natural resources are finishing, so use of supplementary cementitious material like alccofine and flyash is used as partial replacement of cement is considered. The effect of binary and ternary blend on the strength characteristics is studied. The results indicate that the concrete made with alccofine and flyash generally show excellent fresh and hardened properties. The ternary system that is Portland cement-fly ash-Alccofine concrete was found to increase the strength of concrete when compared to concrete made with Portland cement or even from Portland cement and fly ash.

  15. Biomimetic, bioactive etheric polyphosphazene-poly(lactide-co-glycolide) blends for bone tissue engineering.

    Science.gov (United States)

    Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Kumbar, Sangamesh G; Brown, Justin L; Krogman, Nicholas R; Weikel, Arlin L; Allcock, Harry R; Laurencin, Cato T

    2010-01-01

    The long-term goal of this work is to develop biomimetic polymer-based systems for bone regeneration that both allow for neutral pH degradation products and have the ability to nucleate bonelike apatite. In this study, the etheric biodegradable polyphosphazene, poly[(50%ethyl glycinato)(50%methoxyethoxyethoxy)phosphazene] (PNEG(50)MEEP(50)) was blended with poly(lactide-co-glycolide) PLAGA and studied their ability to produce high-strength degradable biomaterials with bioactivity. Accordingly, two blends with weight ratios of PNEG(50)MEEP(50) to PLAGA 25:75 (BLEND25) and 50:50 (BLEND50) were fabricated using a mutual solvent approach. Increases in PNEG(50)MEEP(50) content in the blend system resulted in decreased elastic modulus of 779 MPa when compared with 1684 MPa (PLAGA) as well as tensile strength 7.9 MPa when compared with 25.7 MPa (PLAGA). However, the higher PNEG(50)MEEP(50) content in the blend system resulted in higher Ca/P atomic ratio of the apatite layer 1.35 (BLEND50) when compared with 0.69 (BLEND25) indicating improved biomimicry. Furthermore, these blends supported primary rat osteoblast adhesion and proliferation with an enhanced phenotypic expression when compared with PLAGA. These findings establish the suitability of PNEG(50)MEEP(50)-PLAGA biodegradable blends as promising bioactive materials for orthopedic applications.

  16. Novel bio-based and biodegradable polymer blends

    Science.gov (United States)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  17. Reactivity and NO emissions of coal blends during combustion

    Energy Technology Data Exchange (ETDEWEB)

    B. Arias; R.I. Backreedy; A. Arenillas; J.M. Jones; F. Rubiera; M. Pourkashanian; A. Williams; J.J. Pis [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2003-07-01

    This work is focussed on burnout and NO emissions during coal blend combustion. Two different approaches were used. In a first step, experimental work was carried out in a laminar entrained flow reactor (EFR) and then computational techniques were applied to improve the burnout prediction of coals and blend during the experiments. A preliminary study on the combustibility of the samples was made using a thermogravimetric analyser. An entrained flow reactor was employed to study the behaviour of coals and blends at high heating rate and short residence times. Burnout and NO emissions were measured during these experiments. Two methods were used to modelling the combustion in the entrained flow reactor: a commercial CFD code and an advanced char burnout model. Experiments done in the EFR showed that burnout and NO emissions of some blends can be predicted from the weighted average of the values of individual coals, especially when blended coals have the same rank. When a blend is made with coals of different rank, some deviations were observed with respect to the averaged values in burnout and especially in NOx emissions. Burnouts predicted with a commercial CFD code were higher than the experimental values. The use of an advanced char burnout model improved greatly the results, showing the advantages of coupling these two mathematical techniques. 9 refs., 7 figs., 2 tabs.

  18. Growth on octane alters the membrane lipid fatty acids of Pseudomonas oleovorans due to the induction of alkB and synthesis of octanol.

    Science.gov (United States)

    Chen, Q; Janssen, D B; Witholt, B

    1995-01-01

    Growth of Pseudomonas oleovorans GPo1, which contains the OCT plasmid, on octane results in changes in the membrane phospholipid fatty acid composition. These changes were not found for GPo12, an OCT-plasmid-cured variant of GPo1, during growth in the presence or absence of octane, implying the involvement of OCT-plasmid-encoded functions. When recombinant strain GPo12(pGEc47) carrying the alk genes from the OCT plasmid was grown on octane, the cells showed the same changes in fatty acid composition as those found for GPo1, indicating that such changes result from induction and expression of the alk genes. This finding was corroborated by inducing GPo12(pGEc47) with dicyclopropylketone (DCPK), a gratuitous inducer of the alk genes. Further experiments showed that the increase of the mean acyl chain length of fatty acids is related to the expression of alkB, which encodes a major integral membrane protein, while the formation of trans unsaturated fatty acids mainly results from the effects of 1-octanol, an octane oxidation product. PMID:7592483

  19. A divergent [5+2] cascade approach to bicyclo[3.2.1]octanes: facile synthesis of ent-kaurene and cedrene-type skeletons.

    Science.gov (United States)

    He, Chi; Bai, Zengbing; Hu, Jialei; Wang, Bingnan; Xie, Hujun; Yu, Lei; Ding, Hanfeng

    2017-07-25

    A solvent-dependent oxidative dearomatization-induced divergent [5+2] cascade approach to bicyclo[3.2.1]octanes was described. This novel protocol enables a facile synthesis of a series of diversely functionalized ent-kaurene and cedrene-type skeletons in good yields and excellent diastereoselectivities.

  20. Stereochemical preference of yeast epoxide hydrolase for the O-axial C3 epimers of 1-oxaspiro[2.5] octanes

    NARCIS (Netherlands)

    Weijers, C.A.G.M.; Koenst, P.; Franssen, M.C.R.; Sudhölter, E.J.R.

    2007-01-01

    The 1-oxaspiro[2.5]octane moiety is a common motif in many biologically active spiroepoxide compounds. Stereochemistry plays an important role in the action of these spiroepoxides, since the O-axial C3 epimers are predominantly responsible for biological activity. In view of this, the reactivity of

  1. Stereoselectivity and substrate specificity in the kinetic resolution of methyl-substituted 1-oxaspiro[2.5]octanes by Rhodotorula glutinis epoxide hydrolase

    NARCIS (Netherlands)

    Weijers, C.A.G.M.; Meeuwse, P.; Herpers, R.L.J.M.; Franssen, M.C.R.; Sudhölter, E.J.R.

    2005-01-01

    [GRAPHICS] The kinetic resolution of a range of methyl-substituted 1-oxaspiro[2.5]octanes by yeast epoxide hydrolase (YEH) from Rhodotorula glutinis has been investigated. The structural determinants of substrate specificity and stereoselectivity of YEH toward these substrates appeared to be the

  2. Polymer blends of polylactic acid (PLA) and polybutylene succinate-adipate

    Science.gov (United States)

    Ma, Wenguang

    A series of blends consisting of polylactic acid (PLA) and aliphatic succinate polyester (BionolleRTM #3000) had been prepared and investigated. The results of mechanical property investigations showed that using 20 wt% Bionolle#3000 can significantly increase the toughness of PLA. BionolleRTM #3000 also reduces the physical aging rate of PLA so blends remain tough longer. Conversely, the stiffness of BionolleRTM #3000 can be significantly increased by blending in PLA. DMA and DSC results show that PLA/BionolleRTM 3000 blends are not thermodynamically miscible, but are compatible blends. Studies have also been performed to determine the amount and rate of aerobic biodegradation of PLA/aliphatic succinate polyester blends in biologically active composting, enzymatic, and soil environments. The changes in molecular weight, molecular structure and thermal properties in the composting environment were also studied by GPC, NMR and DSC analyses. The research results showed BionolleRTM #3000 had a high degradation rate, while PLA had a low degradation rate. PLA/BionolleRTM #3000 blends had moderate degradation rates that increased with BionolleRTM #3000 content. The melt flow behavior of PLA/BionolleRTM #3000 blends has been studied by capillary rheometry. The relationship of the blends' viscosity with their composition, shear stress, shear rate, and temperature has been investigated. Power law index and activation energy of PLA, BionolleRTM #3000 and their blends have been calculated. The experimental and theoretical data can let us understand the processability of PLA/BionolleRTM #3000 blends. A scanning electron microscope (SEM) was used to investigate the morphological structure of the PLA/BionolleRTM #3000 blends. Micrographs of the samples made from different methods (blown film, extrudate and compression molding sheet) were taken; their differences in morphology were compared. For comparison, the micrographs of blend PLA/BionolleRTM #6000 was also studied. The

  3. Better together: synergy in nanocellulose blends

    Science.gov (United States)

    Mautner, Andreas; Mayer, Florian; Hervy, Martin; Lee, Koon-Yang; Bismarck, Alexander

    2017-12-01

    Cellulose nanopapers have gained significant attention in recent years as large-scale reinforcement for high-loading cellulose nanocomposites, substrates for printed electronics and filter nanopapers for water treatment. The mechanical properties of nanopapers are of fundamental importance for all these applications. Cellulose nanopapers can simply be prepared by filtering a suspension of nanocellulose, followed by heat consolidation. It was already demonstrated that the mechanical properties of cellulose nanopapers can be tailored by the fineness of the fibrils used or by modifying nanocellulose fibrils for instance by polymer adsorption, but nanocellulose blends remain underexplored. In this work, we show that the mechanical and physical properties of cellulose nanopapers can be tuned by creating nanopapers from blends of various grades of nanocellulose, i.e. (mechanically refined) bacterial cellulose or cellulose nanofibrils extracted from never-dried bleached softwood pulp by chemical and mechanical pre-treatments. We found that nanopapers made from blends of two or three nanocellulose grades show synergistic effects resulting in improved stiffness, strength, ductility, toughness and physical properties. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  4. Properties of PET/PLA Electrospun Blends

    Science.gov (United States)

    Li, Kevin; Cebe, Peggy

    2012-02-01

    Electrospun membranes were fabricated from poly(ethylene terephthalate), PET, co-spun with poly(lactic acid), PLA. The PLA contained 2% of the D-isomer, which served to limit the overall degree of crystallinity. Membranes were deposited from blended solutions of PET/PLA in hexafluoroisopropanol. The PET/PLA composition ranged from 0/100, 75/25, 50/50, 25/75, and 100/0. Electrospun membranes were made using either a static flat plate or a rotating wheel as the counter electrode, yielding unoriented mats or highly oriented tapes, respectively. We report on our investigation of the crystallinity, crystal perfection, and mechanical properties of these materials using differential scanning calorimetry, wide and small angle X-ray scattering, and dynamic mechanical analysis. In particular, we study the ability of one blend component (PET) to crystallize in the presence of existing crystals of the second blend component (PLA) which crystallizes first and at a lower temperature than PET.

  5. Polystyrene/Hyperbranched Polyester Blends and Reactive Polystyrene/Hyperbranched Polyester Blends

    National Research Council Canada - National Science Library

    Mulkern, Thomas

    1999-01-01

    .... In this work, the incorporation of HBPs in thermoplastic blends was investigated. Several volume fractions of hydroxyl functionalized hyperbranched polyesters were melt blended with nonreactive polystyrene (PS...

  6. Performance of Blended Learning in University Teaching:

    Directory of Open Access Journals (Sweden)

    Michael Reiss

    2010-07-01

    Full Text Available Blended learning as a combination of classroom teaching and e-learning has become a widely represented standard in employee and management development of companies. The exploratory survey “Blended Learning@University” conducted in 2008 investigated the integration of blended learning in higher education. The results of the survey show that the majority of participating academic teachers use blended learning in single courses, but not as a program of study and thus do not exploit the core performance potential of blended learning. According to the study, the main driver of blended learning performance is its embeddedness in higher education. Integrated blended programs of study deliver the best results. In blended learning, learning infrastructure (in terms of software, culture, skills, funding, content providing, etc. does not play the role of a performance driver but serves as an enabler for blended learning.

  7. Synthesis and characterization of compatibilizers for blends of PA and ABS

    NARCIS (Netherlands)

    Staal, M.P.B.

    2005-01-01

    Blends of polyamide (PA) and acrylonitrile-butadiene-styrene (ABS) copolymers yield polymeric materials that are highly solvent resistant, easy to process and have high impact strengths over a wide temperature range. These properties make these blends interesting materials for various applications

  8. Characteristics of PVdF copolymer/Nafion blend membrane for direct methanol fuel cell (DMFC)

    International Nuclear Information System (INIS)

    Cho, Ki-Yun; Eom, Ji-Yong; Jung, Ho-Young; Choi, Nam-Soon; Lee, Yong Min; Park, Jung-Ki; Choi, Jong-Ho; Park, Kyung-Won; Sung, Yung-Eun

    2004-01-01

    For direct methanol fuel cell, blends of vinylidene fluoride-hexafluoropropylene copolymer (P(VdF-co-HFP)) and Nafion were prepared the different equivalent weight of Nafion. The investigations of the blend morphology were performed by means of permeability test, uptake measurement, differential-scanning calorimetry (DSC), and scanning electron microscopy. In the blend membranes, many pores were created as the content of Nafion in blend increased. Then, the methanol uptake was sharply increased. But the methanol permeability was not sharply increased because the methanol permeation through blend membranes is diffusion-controlled process. The methanol permeability of N10 (low equivalent weight) series was similar to that of N11 series (high equivalent weight). The proton conductivity of N10 series was around one and a half times higher than that of N11 series. The cell performance of the blend was much enhanced when the equivalent weight of Nafion was 1000

  9. Blending Words Found In Social Media

    Directory of Open Access Journals (Sweden)

    Giyatmi Giyatmi

    2017-12-01

    Full Text Available There are many new words from the social media such as Netizen, Trentop, and Delcon. Those words include in blending. Blending is one of word formations combining two clipped words to form a brand new word. The researchers are interested in analyzing blend words used in the social media such as Instagram, Twitter, Facebook, and Blackberry Messenger. This research aims at (1 finding blend words used in the social media (2 describing kinds of blend words used in social media (3 describing the process of blend word formation used in the social media. This research uses some theories dealing with definition of blending and kinds of blending. This research belongs to descriptive qualitative research. Data of the research are English blend words used in social media. Data sources of this research are websites consisting of some English words used in social media and some social media users as the informant. Techniques of data collecting in this research are observation and simak catat. Observation is by observing some websites consisting of some English words used in social media. Simak catat is done by taking some notes on the data and encoding in symbols such as No/Blend words/Kinds of Blending. The researchers use source triangulation to check the data from the researchers with the informant and theory triangulation to determine kinds of blending and blend word formation in social media. There are115 data of blend words. Those data consists of 65 data of Instagram, 47 data of Twitter, 1 datum of Facebook, and 2 data of Blackberry Messenger. There are 2 types of blending used in social media;108 data of blending with clipping and 7 data of blending with overlapping. There are 10 ways of blend word formation found in this research.

  10. Crystal structure of bis(1,4-diazabicyclo[2.2.2]octan-1-ium thiosulfate dihydrate

    Directory of Open Access Journals (Sweden)

    Gorgui Awa Seck

    2016-03-01

    Full Text Available The crystal structure of the hydrated title salt, 2C6H13N2+·S2O32−·2H2O, contains a centrosymmetric cyclic motif of eight hydrogen-bonded molecular subunits. Two DABCOH+ cations (DABCO = 1,4-diazabicyclo[2.2.2]octane are linked to two water molecules and two thiosulfate anions via O—H...N and O—H...O hydrogen bonds, respectively. Two other water molecules close the cyclic motif through O—H...O contacts to the first two water molecules and to the two thiosulfate anions. A second pair of DABCOH+ cations is N—H...O hydrogen bonded to the two anions and is pendant to the ring. Adjacent cyclic motifs are bridged into a block-like arrangement extending along [100] through O—H...O interactions involving the second pair of water molecules and neighbouring thiosulfate anions.

  11. A method for express estimation of the octane number of gasoline using a portable spectroimpedance meter and statistical analysis methods

    Directory of Open Access Journals (Sweden)

    Mamykin A. V.

    2017-10-01

    Full Text Available The authors propose a method for determination of the electro-physical characteristics of electrical insulating liquids on the example of different types of gasoline. The method is based on the spectral impedance measurements of a capacitor electrochemical cell filled with the liquid under study. The application of sinusoidal test voltage in the frequency range of 0,1—10 Hz provides more accurate measurements in comparison with known traditional methods. A portable device for measuring total electrical resistance (impedance of dielectric liquids was designed and constructed. An approach for express estimation of octane number of automobile gasoline using spectroimpedance measurements and statistical multi variation methods of data analysis has been proposed and tested.

  12. EVA reactive blending with Si–H terminated polysiloxane by carbonyl hydrosilylation reaction: From compatibilised blends to crosslinking networks

    International Nuclear Information System (INIS)

    Bonnet, J.; Bounor-Legaré, V.; Alcouffe, P.; Cassagnau, P.

    2012-01-01

    A new and original method based on carbonyl hydrosilylation was developed to prepare ethylene-vinyl acetate (EVA)/polysiloxane polymer blends. This focused on the addition of hydrogenosilane groups (SiH) from polysiloxane to the carbonyl groups of EVA. The influence of the nature of the polysiloxane on blend properties was investigated by rheology and scanning electron microscopy. Mixing of a low viscosity polysiloxane with a high viscosity EVA matrix produced a two-phase morphology. The occurrence of the hydrosilylation reaction at the EVA/polysiloxane interface promoted a homogenisation of the blend depending on the molar ratio SiH/vinyl acetate groups, [SiH]/[VA], and the viscosity ratio of the blend. Two distinct behaviours were observed. The formation of a crosslinked network under shear was obtained for a low viscosity ratio between polysiloxane and EVA (λ polysiloxane/EVA = 4.0 × 10 −6 ) with a high concentration of SiH groups ([SiH]/[VA] = 0.5), while the formation of a compatibilised blend was observed for high molar mass polysiloxanes (Mn > 15,000 g mol −1 ) with a low concentration of SiH ([SiH]/[VA] −3 ). -- Highlights: ► Carbonyl hydrosilylation reaction was found to enhance EVA/polysiloxane immiscible blends. ► EVA crosslinking was obtained with a low molar mass polysiloxane. ► EVA compatibilisation was obtained with a high molar mass polysiloxane. ► Shear rate was found to improve the hydrosilylation reaction at the interface. ► A two-phase morphology of the blends was observed after reaction with fine polysiloxane nodules.

  13. Thermoset Blends of an Epoxy Resin and Polydicyclopentadiene

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Brian J.; Le, Kim Mai; Krishnamoorti, Ramanan; Robertson, Megan L.

    2016-12-13

    The mechanical properties of two chemically distinct and complementary thermoset polymers were manipulated through development of thermoset blends. The thermoset blend system was composed of an anhydride-cured diglycidyl ether of bisphenol A (DGEBA)-based epoxy resin, contributing high tensile strength and modulus, and polydicyclopentadiene (PDCPD), which has a higher toughness and impact strength as compared to other thermoset polymers. Ultra-small-angle and small-angle X-ray scattering analysis explored the morphology of concurrently cured thermoset blends, revealing a macroscopically phase separated system with a surface fractal structure across blended systems of varying composition. The epoxy resin rich and PDCPD rich phases exhibited distinct glass transitions (Tg’s): the Tg observed at higher temperature was associated with the epoxy resin rich phase and was largely unaffected by the presence of PDCPD, whereas the PDCPD rich phase Tg systematically decreased with increasing epoxy resin content due to inhibition of dicyclopentadiene ring-opening metathesis polymerization. The mechanical properties of these phase-separated blends were in reasonable agreement with predictions by the rule of mixtures for the blend tensile strength, modulus, and fracture toughness. Scanning electron microscopy analysis of the tensile and fracture specimen fracture surfaces showed an increase in energy dissipation mechanisms, such as crazing, shear banding, and surface roughness, as the fraction of the more ductile component, PDPCD, increased. These results present a facile method to tune the mechanical properties of a toughened thermoset network, in which the high modulus and tensile strength of the epoxy resin can be largely retained at high epoxy resin content in the blend, while increasing the fracture toughness.

  14. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal

    2017-06-29

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  15. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal; Jaasim, Mohammed; Atef, Nour; Chung, Suk-Ho; Im, Hong G.; Sarathy, Mani

    2017-01-01

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  16. Blended Learning: enabling Higher Education Reform

    Directory of Open Access Journals (Sweden)

    Kathleen Matheos

    2018-01-01

    Full Text Available Blended learning research and practice have been areas of growth for two decades in Canada, with over 95% of Canadian higher education institutions involved in some form of blended learning. Despite strong evidence based research and practice blended learning, for the most part, has remained at sidelined in Canadian universities. The article argues the need for blended learning to situate itself within the timely and crucial Higher Education Reform (HER agenda. By aligning the affordances of blended learning with the components of HER, blended learning can clearly serve as an enabler for HER.

  17. Thermal characterizations of the paraffin wax/low density polyethylene blends as a solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soojong; Moon, Heejang; Kim, Jinkon, E-mail: jkkim@kau.ac.kr

    2015-08-10

    Highlights: • Regression rate of blends fuel is higher than polymer fuel. • LDPE is an effective mixing ingredient for the combustion efficiency. • Blends fuel is a uniform mixture with two degradation steps. • LDPE plays a positive role for the low sensitivity to the thermal deformation • Blends with low LDPE content can be an effective fuel for hybrid rocket application. - Abstract: Thermal characterizations of a novel solid fuel for hybrid rocket application, based on the paraffin wax blends with low density polyethylene (LDPE) concentration of 5% (SF-5) and 10% (SF-10) were conducted. Both the increased regression rate in comparison with the polymeric fuel, and the improved combustion efficiency in comparison with the pure paraffin fuel reveal that the blend fuels achieve higher combustion performance. The morphology of the shape stabilized paraffin wax/LDPE blends was characterized by the scanning electron microscopy (SEM). Although the SEM observation indicated the blends have uniform mixtures, they showed two degradation steps confirming the immiscibility of components in the crystalline phase from thermogravimetric analysis (TGA). The differential scanning calorimeter (DSC) results showed that the melting temperature of LDPE in the blends decreased with an increase of paraffin wax content. The decreasing total specific melting enthalpy of blended fuels with decreasing paraffin wax content is in fairly good agreement with the additive rule. In thermomechanical analysis (TMA), the linear coefficient of thermal expansion (LCTE) seems to decrease with an increase of LDPE loading, however, the loaded LDPE do merely affect the LCTE in case of the blends with low LDPE concentration. It was found that a blend of low concentration of LDPE with a relatively high concentration of paraffin wax can lead to a potential novel fuel for rocket application, a contrary case with respect to the field of phase change materials (PCM) where a blend of high concentration

  18. Thermal characterizations of the paraffin wax/low density polyethylene blends as a solid fuel

    International Nuclear Information System (INIS)

    Kim, Soojong; Moon, Heejang; Kim, Jinkon

    2015-01-01

    Highlights: • Regression rate of blends fuel is higher than polymer fuel. • LDPE is an effective mixing ingredient for the combustion efficiency. • Blends fuel is a uniform mixture with two degradation steps. • LDPE plays a positive role for the low sensitivity to the thermal deformation • Blends with low LDPE content can be an effective fuel for hybrid rocket application. - Abstract: Thermal characterizations of a novel solid fuel for hybrid rocket application, based on the paraffin wax blends with low density polyethylene (LDPE) concentration of 5% (SF-5) and 10% (SF-10) were conducted. Both the increased regression rate in comparison with the polymeric fuel, and the improved combustion efficiency in comparison with the pure paraffin fuel reveal that the blend fuels achieve higher combustion performance. The morphology of the shape stabilized paraffin wax/LDPE blends was characterized by the scanning electron microscopy (SEM). Although the SEM observation indicated the blends have uniform mixtures, they showed two degradation steps confirming the immiscibility of components in the crystalline phase from thermogravimetric analysis (TGA). The differential scanning calorimeter (DSC) results showed that the melting temperature of LDPE in the blends decreased with an increase of paraffin wax content. The decreasing total specific melting enthalpy of blended fuels with decreasing paraffin wax content is in fairly good agreement with the additive rule. In thermomechanical analysis (TMA), the linear coefficient of thermal expansion (LCTE) seems to decrease with an increase of LDPE loading, however, the loaded LDPE do merely affect the LCTE in case of the blends with low LDPE concentration. It was found that a blend of low concentration of LDPE with a relatively high concentration of paraffin wax can lead to a potential novel fuel for rocket application, a contrary case with respect to the field of phase change materials (PCM) where a blend of high concentration

  19. Mechanical properties of HDPE/UHMWPE blends: effect of filler loading and filler treatment.

    Science.gov (United States)

    Lai, K L K; Roziyanna, A; Ogunniyi, D S; Zainal, Arifin M I; Azlan, Ariffin A

    2004-05-01

    Various blend ratios of high-density polyethylene (HDPE) and ultra high molecular weight polyethylene (UHMWPE) were prepared with the objective of determining their suitability as biomaterials. In the unfilled state, a blend of 50/50 (HDPE/UHMWPE) ratio by weight was found to yield optimum properties in terms of processability and mechanical properties. Hydroxyapatite (HA) was compounded with the optimum blend ratio. The effects of HA loading, varied from 0 to 50wt% for both filled and unfilled blends were tested for mechanical properties. It was found that the inclusion of HA in the blend led to a remarkable improvement of mechanical properties compared to the unfilled blend. In order to improve the bonding between the polymer blend and the filler, the HA used was chemically treated with a coupling agent known as 3-(trimethoxysiyl) propyl methacrylate and the treated HA was mixed into the blend. The effect of mixing the blend with silane-treated HA also led to an overall improvement of mechanical properties.

  20. Proton exchange membranes based on PVDF/SEBS blends

    Energy Technology Data Exchange (ETDEWEB)

    Mokrini, A.; Huneault, M.A. [Industrial Materials Institute, National Research Council of Canada, 75 de Mortagne Blvd., Boucherville, Que. (Canada J4B 6Y4)

    2006-03-09

    Proton-conductive polymer membranes are used as an electrolyte in the so-called proton exchange membrane fuel cells. Current commercially available membranes are perfluorosulfonic acid polymers, a class of high-cost ionomers. This paper examines the potential of polymer blends, namely those of styrene-(ethylene-butylene)-styrene block copolymer (SEBS) and polyvinylidene fluoride (PVDF), in the proton exchange membrane application. SEBS/PVDF blends were prepared by twin-screw extrusion and the membranes were formed by calendering. SEBS is a phase-segregated material where the polystyrene blocks can be selectively functionalized offering high ionic conductivity, while PVDF insures good dimensional stability and chemical resistance to the films. Proton conductivity of the films was obtained by solid-state grafting of sulfonic acid moieties. The obtained membranes were characterized in terms of conductivity, ionic exchange capacity and water uptake. In addition, the membranes were characterized in terms of morphology, microstructure and thermo-mechanical properties to establish the blends morphology-property relationships. Modification of interfacial properties between SEBS and PVDF was found to be a key to optimize the blends performance. Addition of a methyl methacrylate-butyl acrylate-methyl methacrylate block copolymer (MMA-BA-MMA) was found to compatibilize the blend by reducing the segregation scale and improving the blend homogeneity. Mechanical resistance of the membranes was also improved through the addition of this compatibilizer. As little as 2wt.% compatibilizer was sufficient for complete interfacial coverage and lead to improved mechanical properties. Compatibilized blend membranes also showed higher conductivities, 1.9x10{sup -2} to 5.5x10{sup -3}Scm{sup -1}, and improved water management. (author)

  1. Determination of Crosslink Concentration by Mooney-Rivlin Equation for Vulcanized NR/ SBR Blend and its Influence on Mechanical Properties

    International Nuclear Information System (INIS)

    Azreen Izzati Dzulkifli; Che Mohd Som Said; Han, C.C.

    2015-01-01

    Crosslink concentration is an important property affecting the major characteristic of cured rubber. The crosslink concentration was determined using Mooney-Rivlin equation due to its simple and reliable method. Cured natural rubber and styrene butadiene rubber blend (NR/SBR) with different crosslink concentrations were obtained with different blend ratios of 100/0, 80/20, 70/30, 60/40, 50/50, 40/60 and 0/100. The crosslink concentrations were determined using Mooney-Rivlin Equation and its influence on International Rubber Hardness Tester (IRHD), tensile strength and rebound resilience of NR/ SBR blend vulcanizates was investigated. The results showed different blend ratios had an influence on the crosslink concentration of the NR/ SBR blend vulcanizates. Obtained data showed that high NR content in NR/ SBR blend increased the crosslink concentration. The highest crosslink concentration recorded was for 100/0 blend ratio which was 0.0498 mol kg"-"1 RH while the lowest was 0.0295 mol kg"-"1 RH for 0/100 blend ratio. The study on the influence of crosslink concentration on IRHD, tensile strength and rebound resilience of NR/ SBR blend vulcanizates showed that the mechanical properties increased linearly with the crosslink concentration. High NR content in NR/ SBR blends resulted in higher crosslink concentration which improved the performance of mechanical properties for NR/ SBR blend. (author)

  2. The mutagenic potential of high flash aromatic naphtha.

    Science.gov (United States)

    Schreiner, C A; Edwards, D A; McKee, R H; Swanson, M; Wong, Z A; Schmitt, S; Beatty, P

    1989-06-01

    Catalytic reforming is a refining process that converts naphthenes to aromatics by dehydrogenation to make higher octane gasoline blending components. A portion of this wide boiling range hydrocarbon stream can be separated by distillation and used for other purposes. One such application is a mixture of predominantly 9-carbon aromatic molecules (C9 aromatics, primarily isomers of ethyltoluene and trimethylbenzene), which is removed and used as a solvent--high-flash aromatic naphtha. A program was initiated to assess the toxicological properties of high-flash aromatic naphtha since there may be human exposure through inhalation or external body contact. The current study was conducted partly to assess the potential for mutagenic activity and also to assist in an assessment of carcinogenic potential. The specific tests utilized included the Salmonella/mammalian microsome mutagenicity assay, the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) forward mutation assay in CHO cells, in vitro chromosome aberration and sister chromatid exchange (SCE) assays in CHO cells, and an in vivo chromosome aberration assay in rat bone marrow.

  3. Comparison of combustion characteristics of n-butanol/ethanol–gasoline blends in a HCCI engine

    International Nuclear Information System (INIS)

    He, Bang-Quan; Liu, Mao-Bin; Zhao, Hua

    2015-01-01

    Highlights: • The blends with alcohol autoignite early in the conditions highly diluted by exhaust. • n-Butanol is more reactive than ethanol in the blend with the same alcohol content. • Autoignition timing delays with retarding IVO timing for all alcohol–gasoline blends. • Advanced autoignition for the blends with alcohol leads to lower thermal efficiency. - Abstract: As a sustainable biofuel, n-butanol can be used in conventional spark ignition (SI) and compression ignition (CI) engines in order to reduce the dependence on fossil fuel. Homogeneous charge compression ignition (HCCI) is a novel combustion to improve the thermal efficiency of conventional SI engines at part loads. To understand the effect of alcohol structure on HCCI combustion under stoichiometric conditions highly diluted by exhaust gases, the combustion characteristics of n-butanol, ethanol and their blends with gasoline were investigated on a single cylinder port fuel injection gasoline engine with fixed intake/exhaust valve lifts at the same operating conditions in this study. The results show that autoignition timing for alcohol–gasoline blends is dependent on alcohol types and its concentration in the blend, engine speed and intake valve opening (IVO)/exhaust valve closing (EVC) timing. In the operating conditions with the residual gases more than 38% by mass in the mixture, alcohol–gasoline blends autoignite more easily than gasoline. Autoignition timing for n-butanol–gasoline blend is earlier than that for ethanol–gasoline blend with the same alcohol volume fraction at 1500 rpm in most cases while the autoignition timings for the blends with alcohol are relatively close at 2000 rpm at the same IVO/EVC timing. Combustion stability is improved with advanced EVC timing at a fixed IVO timing, which is benefit for the improvement in the thermal efficiency in the case of alcohol–gasoline blends. In addition, n-butanol–gasoline blends autoignite earlier than their ethanol

  4. Blended Learning as Transformational Institutional Learning

    Science.gov (United States)

    VanDerLinden, Kim

    2014-01-01

    This chapter reviews institutional approaches to blended learning and the ways in which institutions support faculty in the intentional redesign of courses to produce optimal learning. The chapter positions blended learning as a strategic opportunity to engage in organizational learning.

  5. Morphology development in immiscible polymer blends

    NARCIS (Netherlands)

    Cardinaels, R.M.; Moldenaers, P.; Guo, Qipeng

    This chapter discusses the morphology development of immiscible binary polymer blends. It first describes morphology development in droplet-matrix structures, the dynamics of fibrillar structures and cocontinuous structures. The chapter then considers binary immiscible polymer blends, such systems

  6. Radiation effect on PVC/ENR blends

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan

    1997-01-01

    The effect of irradiation on the physical properties of Polyvinyl Chloride / Epoxidised Natural Rubber Blends (PVC/ENR blends) were investigated. The enhancement in tensile strength, elongation at break, hardness and aging properties of the blends have confirmed the positive effect of irradiation on the blends. It is evident from gel fraction and infra red spectroscopic studies that the blends of PVC and ENR cross-linked upon irradiation. The results also revealed that at any blend composition, the enhancement in properties depend on irradiation dose which controls the degree of radiation induced cross-linking. In an attempt to maximize the constructive effect of irradiation, the influence of various additives such as stabilizers, radiation sensitizers, fillers and processing aids on the blend properties were studied. The changes in blend properties upon irradiation with the presents of above additives were also presented in this paper

  7. NESDIS Blended Rain Rate (RR) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The blended Rain Rate (RR) product is derived from multiple sensors/satellites. The blended products were merged from polar-orbiting and geostationary satellite...

  8. Intrinsically safe moisture blending system

    Science.gov (United States)

    Hallman Jr., Russell L.; Vanatta, Paul D.

    2012-09-11

    A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

  9. Wavelet and Blend maps for texture synthesis

    OpenAIRE

    Du Jin-Lian; Wang Song; Meng Xianhai

    2011-01-01

    blending is now a popular technology for large realtime texture synthesis .Nevertheless, creating blend map during rendering is time and computation consuming work. In this paper, we exploited a method to create a kind of blend tile which can be tile together seamlessly. Note that blend map is in fact a kind of image, which is Markov Random Field, contains multiresolution signals, while wavelet is a powerful way to process multiresolution signals, we use wavelet to process the traditional ble...

  10. Blended Identities: Identity Work, Equity and Marginalization in Blended Learning

    Science.gov (United States)

    Heikoop, Will

    2013-01-01

    This article is a theoretical study of the self-presentation strategies employed by higher education students online; it examines student identity work via profile information and avatars in a blended learning environment delivered through social networking sites and virtual worlds. It argues that students are faced with difficult choices when…

  11. A combined rheology and time domain NMR approach for determining water distributions in protein blends

    NARCIS (Netherlands)

    Dekkers, Birgit L.; Kort, de Daan W.; Grabowska, Katarzyna J.; Tian, Bei; As, Van Henk; Goot, van der Atze Jan

    2016-01-01

    We present a combined time domain NMR and rheology approach to quantify the water distribution in a phase separated protein blend. The approach forms the basis for a new tool to assess the microstructural properties of phase separated biopolymer blends, making it highly relevant for many food and

  12. Morphologies and mechanical properties of syndiotactic polypropylene (sPP)/polyethylene (PE) blends

    NARCIS (Netherlands)

    Loos, J.; Bonnet, M.; Petermann, J.

    2000-01-01

    The tensile properties of blends based on syndiotactic polypropylene (sPP) and high-density polyethylene (HDPE) have been studied. In order to understand the unexpected decrease in ductility, the crystallization behavior of these blends was characterized by transmission electron microscopy and

  13. A constitutive analysis of transient and steady-state elongational viscosities of bidisperse polystyrene blends

    DEFF Research Database (Denmark)

    Wagner, Manfred H.; Rolon-Garrido, Victor H.; Nielsen, Jens Kromann

    2008-01-01

    The transient and steady-state elongational viscosity data of three bidisperse polystyrene blends were investigated recently by Nielsen et al. [J. Rheol. 50, 453-476 (2006)]. The blends contain a monodisperse high molar mass component (M-L= 390 kg/ mol) in a matrix of a monodisperse small molar m...

  14. Quality of some Nigerian coals as a blending stock in metallurgical ...

    African Journals Online (AJOL)

    Lafia- Obi/foreign coals blends possess lower ash and better rheological properties compared to Chikila/foreign coal composites which have high ash and poor rheological properties. These together suggest that amongst the two Nigerian coals, Lafia-Obi is superior for blending with the foreign ones in metallurgical coke ...

  15. KOREA'S BLENDED LEARNING IN NURSING: ISSUES AND THE WAY FORWARD

    Directory of Open Access Journals (Sweden)

    Claire Su-Yeon Park

    2017-01-01

    Full Text Available Blended learning is receiving significant scholarly attention in Korean nursing education for a number of reasons: the downsizing of universities due to low birth rates; the high demand for nurses in a super-aged society; and nursing’s distinctive characteristics, i.e., theory-driven practical scholarship (Park, 2016. However, the lack of scholarly evidence on this subject suggests that current nursing scholarship is not satisfying the needs of the times. This article thus addressed problems in the current literature on Korea’s blended learning in nursing and suggested a way forward for the future. A rigorous literature review and synthesis were conducted from July 01 to August 10, 2016 using an electronic database operated by Korea Education & Research Information Service. The key words were “blended learning” and “nursing.” The search result included twelve publications on “blended learning” and “nursing” in Korea and thirty publications on “blended learning” and “nursing” in other countries. All articles were first scrutinized by the author for relevance to blended learning in nursing and were then compared and synthesized. Korean articles had straight research structures from central casting in contrast to the articles from other countries. Specifically, these structures included 1 an ambiguous definition of the scope of blended learning: i.e., multiple instructional methods or delivery media, rather than an integration of technology-mediated instruction into a face-to-face (F2F learning environment (Bonk & Graham, 2005; “enhancing blends[1]” rather than “enabling blends” or “transforming blends” (Bonk & Graham, 2005, see Table 1: Different categories of blended learning systems, 2 a very small sample size with a limited location, 3 the use of very basic descriptive statistical analyses, 4 undifferentiated types of a blended learning: i.e., most articles referred to blended learning in nursing

  16. 40 CFR 80.82 - Butane blending.

    Science.gov (United States)

    2010-07-01

    ... FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.82 Butane blending. A refiner for any refinery that produces gasoline by blending butane with conventional gasoline or reformulated gasoline or RBOB may meet... paragraph (b)(1) of this section, the refiner may: (i) Blend the butane with conventional gasoline, or...

  17. 7 CFR 989.16 - Blend.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Blend. 989.16 Section 989.16 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... CALIFORNIA Order Regulating Handling Definitions § 989.16 Blend. Blend means to mix or commingle raisins. ...

  18. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends

    Science.gov (United States)

    Skotheim, T.

    A polymer blend is disclosed of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  19. Netbaserede uddannelser og blended learning

    DEFF Research Database (Denmark)

    Bertelsen, Jesper Vedel; Vognsgaard Hjernø, Henriette; Jensen, Michael Peter

    2016-01-01

    Denne håndbog er tænkt som inspiration til uddannelsesfaglige medarbejdere, som er eller skal i gang med at undervise på en netbaseret uddannelse i UCL. Håndbogen giver et teoretisk overblik i forhold til netbaserede uddannelser, online- og blended learning samt en indførsel i hvilke didaktiske...

  20. New Faces of Blended Learning

    Science.gov (United States)

    Horn, Michael B.; Fisher, Julia Freeland

    2017-01-01

    The Clayton Christiansen Institute maintains a database of more than 400 schools across the United States that have implemented some form of blended learning, which combines online learning with brick-and-mortar classrooms. Data the Institute has collected over the past six months suggests three trends as this model continues to evolve and mature.…

  1. Multiscattering illumination in blended acquisition

    NARCIS (Netherlands)

    Berkhout, A.J.; Blacquiere, G.; Verschuur, D.J.

    2012-01-01

    In traditional seismic surveys, the firing time between shots is such that the shot records do not interfere in time. However, in the concept of blended acquisition, the records do overlap, allowing denser source sampling and wider azimuths in an economic way. A denser shot sampling and wider

  2. Radiation crosslinking of polymer blends

    International Nuclear Information System (INIS)

    Spenadel, L.

    1979-01-01

    Rocked by the one-two punch of rising energy costs and tougher pollution controls, a growing number of companies are looking to radiation crosslinking as a cheaper, cleaner alternative to heat and costly chemical crosslinking agents such as peroxides. With the development of larger, more powerful electron beam machines it is now possible to irradiate parts as thick as 400 mils in a single pass. Two application areas which have been investigated at our laboratory are the electron beam processing of thermoplastic elastomeric automotive parts and EPDM electrical insulation. This paper covers work carried out to develop the necessary technology base for the radiation crosslinking of ethylene propylene/polyolefin blends. Initial results indicate that EP/PE blends of electrical insulation quality cross-link quite readily when irradiated. On the other hand, EP/PP blends developed for automotive fascia require the addition of crosslinking monomers such as trimethylol propane trimethacrylate in order for crosslinking to predominate over chain scission. Crosslinking EP/PP blends improve mar resistance, flexural set and deformation at elevated temperatures. These are all key properties for automotive fascia. (author)

  3. Confined flow of polymer blends

    NARCIS (Netherlands)

    Tufano, C.; Peters, G.W.M.; Meijer, H.E.H.

    2008-01-01

    The influence of confinement on the steady-state morphology of two different emulsions is investigated. The blends, made from polybutene (PB) in polydimethylsiloxane (PDMS) and polybutadiene (PBD) in PDMS, are sheared between two parallel plates, mostly with a standard gap spacing of 40 m, in the

  4. PEO + PVP blended polymer composite

    Indian Academy of Sciences (India)

    Blended polymer films of polyethylene oxide + polyvinyl pyrrolidone (PEO + PVP) containing transition metal (TM) ions like Fe3+, Co2+ and Ni2+ have been synthesized by a solution casting method. For these films, structural, thermal, magnetic and optical properties have been studied. X-ray diffraction results reveal the ...

  5. Blended Learning: The Student Viewpoint

    African Journals Online (AJOL)

    Student perceptions were assessed using Mann–Whitney. U‑test and ... Keywords: Blended learning, Online learning, Students' perceptions. Access this article online ..... performance, EC: Educational counseling, MIB: Medical insurance billing, MT: .... distance in education at the harvard business school. Educ. Technol ...

  6. Improvement of biodiesel methanol blends

    Directory of Open Access Journals (Sweden)

    Y. Datta Bharadwaz

    2016-06-01

    Full Text Available The main objective of this work was to improve the performance of biodiesel–methanol blends in a VCR engine by using optimized engine parameters. For optimization of the engine, operational parameters such as compression ratio, fuel blend, and load are taken as factors, whereas performance parameters such as brake thermal efficiency (Bth and brake specific fuel consumption (Bsfc and emission parameters such as carbon monoxide (CO, unburnt hydrocarbons (HC, Nitric oxides (NOx and smoke are taken as responses. Experimentation is carried out as per the design of experiments of the response surface methodology. Optimization of engine operational parameters is carried out using Derringers Desirability approach. From the results obtained it is inferred that the VCR engine has maximum performance and minimum emissions at 18 compression ratio, 5% fuel blend and at 9.03 kg of load. At this optimized operating conditions of the engine the responses such as brake thermal efficiency, brake specific fuel consumption, carbon monoxide, unburnt hydrocarbons, nitric oxide, and smoke are found to be 31.95%, 0.37 kg/kW h, 0.036%, 5 ppm, 531.23 ppm and 15.35% respectively. It is finally observed from the mathematical models and experimental data that biodiesel methanol blends have maximum efficiency and minimum emissions at optimized engine parameters.

  7. blend4php: a PHP API for galaxy.

    Science.gov (United States)

    Wytko, Connor; Soto, Brian; Ficklin, Stephen P

    2017-01-01

    Galaxy is a popular framework for execution of complex analytical pipelines typically for large data sets, and is a commonly used for (but not limited to) genomic, genetic and related biological analysis. It provides a web front-end and integrates with high performance computing resources. Here we report the development of the blend4php library that wraps Galaxy's RESTful API into a PHP-based library. PHP-based web applications can use blend4php to automate execution, monitoring and management of a remote Galaxy server, including its users, workflows, jobs and more. The blend4php library was specifically developed for the integration of Galaxy with Tripal, the open-source toolkit for the creation of online genomic and genetic web sites. However, it was designed as an independent library for use by any application, and is freely available under version 3 of the GNU Lesser General Public License (LPGL v3.0) at https://github.com/galaxyproject/blend4phpDatabase URL: https://github.com/galaxyproject/blend4php. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Toughening mechanisms in interfacially modified HDPE/thermoplastic starch blends.

    Science.gov (United States)

    Taguet, Aurélie; Bureau, Martin N; Huneault, Michel A; Favis, Basil D

    2014-12-19

    The mechanical behavior of polymer blends containing 80 wt% of HDPE and 20 wt% of TPS and compatibilized with HDPE-g-MA grafted copolymer was investigated. Unmodified HDPE/TPS blends exhibit high fracture resistance, however, the interfacial modification of those blends by addition of HDPE-g-MA leads to a dramatic drop in fracture resistance. The compatibilization of HDPE/TPS blends increases the surface area of TPS particles by decreasing their size. It was postulated that the addition of HDPE-g-MA induces a reaction between maleic anhydride and hydroxyl groups of the glycerol leading to a decrease of the glycerol content in the TPS phase. This phenomenon increases the stiffness of the modified TPS particles and stiffer TPS particles leading to an important reduction in toughness and plastic deformation, as measured by the EWF method. It is shown that the main toughening mechanism in HDPE/TPS blends is shear-yielding. This article demonstrates that stiff, low diameter TPS particles reduce shear band formation and consequently decrease the resistance to crack propagation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Castor oil biodiesel and its blends as alternative fuel

    International Nuclear Information System (INIS)

    Berman, Paula; Nizri, Shahar; Wiesman, Zeev

    2011-01-01

    Intensive production and commercialization of biodiesel from edible-grade sources have raised some critical environmental concerns. In order to mitigate these environmental consequences, alternative oilseeds are being investigated as biodiesel feedstocks. Castor (Ricinus communis L.) is one of the most promising non-edible oil crops, due to its high annual seed production and yield, and since it can be grown on marginal land and in semi-arid climate. Still, few studies are available regarding its fuel-related properties in its pure form or as a blend with petrodiesel, many of which are due to its extremely high content of ricinoleic acid. In this study, the specifications in ASTM D6751 and D7467 which are related to the fatty acid composition of pure castor methyl esters (B100) and its blend with petrodiesel in a 10% vol ratio (B10) were investigated. Kinematic viscosity and distillation temperature of B100 (15.17 mm 2 s -1 and 398.7 o C respectively) were the only two properties which did not meet the appropriate standard limits. In contrast, B10 met all the specifications. Still, ASTM D7467 requires that the pure biodiesel meets the requirements of ASTM D6751. This can limit the use of a wide range of feedstocks, including castor, as alternative fuel, especially due to the fact that in practice vehicles normally use low level blends of biodiesel and petrodiesel. These issues are discussed in depth in the present study. -- Highlights: → CaME can be used as a biodiesel alternative feedstock when blended in petrodiesel. → Due to the high levels of ricinoleic acid maximum blending level is limited to 10%. → Today, CaME blends are not a viable alternative feedstock. → ASTM D7467 requires that pure biodiesel must meet all the appropriate limits.

  10. A neurotoxicity assessment of high flash aromatic naphtha.

    Science.gov (United States)

    Douglas, J F; McKee, R H; Cagen, S Z; Schmitt, S L; Beatty, P W; Swanson, M S; Schreiner, C A; Ulrich, C E; Cockrell, B Y

    1993-01-01

    Catalytic reforming is a refining process that converts naphthenes to aromatics by dehydrogenation to make higher octane gasoline blending components. A portion of this wide-boiling range hydrocarbon stream can be separated by distillation and used for other purposes. One such application is a mixture of predominantly 9-carbon aromatic molecules (C9 Aromatics, primarily isomers of ethyltoluene and trimethylbenzene), which is removed and used as a solvent also known as High Flash Aromatic Naphtha (HFAN). A program was initiated to assess the toxicological properties of HFAN since there may be human exposure, especially in the workplace. The current study was conducted to assess the potential for neurotoxicity in the rat. Adult male Sprague-Dawley rats of approximately 300 grams body weight, in groups of twenty, were exposed by inhalation to HFAN for 90 days at concentrations of 0, 100, 500, and 1500 ppm. During this period the animals were tested monthly for motor activity and in a functional observation battery. After three months of exposure, for 6 hours/day, 5 days/week, 10 animals/group/sex were sacrificed and selected nervous system tissue was examined histopathologically. No signs of neurotoxicity were seen in any of the evaluated parameters, nor was there evidence of pathologic changes in any of the examined tissues.

  11. Excess Molar Volumes of (Octane + 1-Chloropentane) at Temperatures between 298.15 K and 328.15 K and at Pressures up to 40 MPa

    Czech Academy of Sciences Publication Activity Database

    Morávková, Lenka; Linek, Jan

    2003-01-01

    Roč. 35, č. 7 (2003), s. 1119-1127 ISSN 0021-9614 R&D Projects: GA ČR GA203/00/0600; GA ČR GA203/02/1098 Institutional research plan: CEZ:AV0Z4072921 Keywords : octane * 1-chloropentane * binary mixture Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.986, year: 2003

  12. Influence of amino acid residues near the active site of cytochrome P450 from Bacillus megaterium on the selectivity of n-octane oxidation to octanol regioisomers

    Science.gov (United States)

    Miyaji, Akimitsu; Baba, Toshihide

    2017-09-01

    A mutant of cytochrome P450 from Bacillus megaterium (CYP450BM-3) was prepared by replacing two alanine residues around active site of the enzyme, alanine 328 and alanine 82, with leucine and tryptophan, respectively. The CYP450BM-3 mutant produced 2-octanol selectively from n-octane under atmospheric temperature and pressure; its selectivity was 74%. Furthermore, the mutant produced 1-octanol, which is not produced by wild-type enzyme.

  13. Comparative Study of Various Preparation Methods of CuO–CeO2 Catalysts for Oxidation of n–Hexane and iso–Octane

    Directory of Open Access Journals (Sweden)

    Ashutosh Mishra

    2013-03-01

    Full Text Available The complete oxidation of n-Hexane and iso-Octane was studied individually in a fixed bed tubular flow reactor over CuO-CeO2 catalysts synthesized via four different methods namely urea-nitrate combustion method, urea gelation/co-precipitation method, citric acid sol-gel method and co-impregnation method. Laser diffraction was employed in catalysts characterization. The results obtained from the complete conversion of n-Hexane and iso-Octane revealed that the CuO-CeO2 catalysts prepared by urea-nitrate combustion method (UNC showed the best performance than the catalysts prepared by other methods used in the present investigation. CuO-CeO2 catalysts prepared by UNC method achieve total n-Hexane and iso-Octane conversion to CO2 at lower temperatures of 280 0C and 340 0C respectively due to the larger surface area of the catalysts which increases the specific rate of reaction. © 2013 BCREC UNDIP. All rights reservedReceived: 30th October 2012; Revised: 30th November 2012; Accepted: 3rd December 2012[How to Cite: A. Mishra, B.D. Tripathi, A.K. Rai, R. Prasad (2013. Comparative Study of Various Preparation Methods of CuO–CeO2 Catalysts for Oxidation of n–Hexane and iso–Octane. Bulletin of Chemical Reaction Engineering & Catalysis, 7(3: 172-178. (doi:10.9767/bcrec.7.3.4076.172-178][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4076.172-178 ] View in  |

  14. Quantitative nanoscale surface voltage measurement on organic semiconductor blends

    International Nuclear Information System (INIS)

    Cuenat, Alexandre; Muñiz-Piniella, Andrés; Muñoz-Rojo, Miguel; Murphy, Craig E; Tsoi, Wing C

    2012-01-01

    We report on the validation of a method based on Kelvin probe force microscopy (KPFM) able to measure the different phases and the relative work function of polymer blend heterojunctions at the nanoscale. The method does not necessitate complex ultra-high vacuum setup. The quantitative information that can be extracted from the topography and the Kelvin probe measurements is critically analysed. Surface voltage difference can be observed at the nanoscale on poly(3-hexyl-thiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) blends and dependence on the annealing condition and the regio-regularity of P3HT is observed. (paper)

  15. Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine

    International Nuclear Information System (INIS)

    Wei, Haiqiao; Feng, Dengquan; Pan, Mingzhang; Pan, JiaYing; Rao, XiaoKang; Gao, Dongzhi

    2016-01-01

    Highlights: • N-butanol shows better knock resistance characterized by improved KLST. • Bu20 blend fuel slightly degrades the knock resistance compared with gasoline. • Knock oscillation frequency depends on combustion chamber resonance modes. • Probability distribution is applied to evaluate variation of knock intensity. - Abstract: n-Butanol is a very competitive alternative biofuel for spark ignition (SI) engines given its many advantages. Current researches are mainly concentrated on the overall combustion and emissions performance concerning the feasibility of n-butanol gasoline blends in SI engines. In this work, focus was given on the knocking combustion characteristics of operation with pure n-butanol as well as a blend fuel with 20% volume content of n-butanol (Bu20), which was investigated experimentally in a direct-injection spark ignition (DISI) single cylinder engine. Operation condition is fixed at a constant engine speed of 1500 r/min, using three throttle openings with stoichiometric air–fuel ratio. Spark timing was swept to achieve different knocking levels. The results of n-butanol and Bu20 were benchmarked against those obtained by the research octane number (RON) 92 commercial gasoline. Compared with the baseline fuel gasoline, neat n-butanol shows better anti-knock ability with more advanced knock limited spark timing, whereas slightly deteriorative knock resistance can be found for Bu20. It is hypothesized Bu20 has higher end gas temperature due to its higher brake mean effective pressure (BMEP) and faster burning rate compared with gasoline, which indicates the knock tendency depends not only on the fuel octane number, but also on the factors that affect the end gas thermodynamic state. The heavier knock propensity of Bu20 is furthermore confirmed by its more advanced knock onset and higher peak oscillation pressure. Results of fast fourier transform (FFT) indicate the knocking oscillation frequencies are mainly determined by the

  16. A comparative study of the oxidation characteristics of two gasoline fuels and an n-heptane/iso-octane surrogate mixture

    KAUST Repository

    Javed, Tamour; Nasir, Ehson F.; Es-sebbar, Et-touhami; Farooq, Aamir

    2015-01-01

    Ignition delay times and CO, H2O, OH and CO2 time-histories were measured behind reflected shock waves for two FACE (Fuels for Advanced Combustion Engines) gasolines and one PRF (Primary Reference Fuel) blend. The FACE gasolines chosen for this work

  17. HEU to LEU Conversion and Blending Facility: UF6 blending alternative to produce LEU UF6 for commercial use

    International Nuclear Information System (INIS)

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials; the nuclear material will be converted to a form more proliferation- resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed; blending as UF 6 to produce a UF 6 product for commercial use is one of them. This document provides data to be used in the environmental impact analysis for the UF 6 blending HEU disposition option. Resource needs, employment needs, waste and emissions from plant, hazards, accident scenarios, and intersite transportation are discussed

  18. Data blending in health care : Evaluation of data blending

    OpenAIRE

    Chen, Qian

    2016-01-01

    This report is aimed at those who are interested in data analysis and data blending. Decision making is crucial for an organization to succeed in today’s market. Data analysis is an important support activity in decision making and is applied in many industries, for example healthcare. For many years data analysts have worked on structured data in small volumes, with traditional methods such as spreadsheet. As new data sources emerged, such as social media, data is generated in higher volume,...

  19. HEU to LEU Conversion and Blending Facility: UNH blending alternative to produce LEU UNH for commercial use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form that is more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed. This document provides data to be used in the environmental impact analysis for the UNH blending HEU disposition option. Process requirements, resource needs, employment needs, waste/emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

  20. General collection efficiency in liquid iso-octane and tetramethylsilane used as sensitive media in a thimble ionization chamber

    International Nuclear Information System (INIS)

    Johansson, B.E.; Bahar-Gogani, J.; Wickman, G.

    1999-01-01

    The general collection efficiency in the dielectric liquids iso-octane (C 8 H 18 ; 2-2-4 trimethylpentane) and tetramethylsilane (Si(CH 3 ) 4 ), used as sensitive media in a thimble liquid ionization chamber (LIC) with a liquid layer thickness of 1 mm, has been studied. Measurements were made for continuous radiation at varying dose rates using 140 keV photons from the decay of 99m Tc for chamber polarizing voltages of 50, 100 and 500 V. The maximum dose rate in each measurement session was about 150 mGy min -1 . The experimental results were compared with theoretical general collection efficiencies calculated by the equation for the general collection efficiency in gases. The results show that the general collection efficiency in a thimble LIC for continuous radiation can be calculated with the equation for the general collection efficiency in gas ionization chambers, using the same chamber geometry correction factors and analogous characteristic ion recombination parameters for the dielectric liquids. (author)

  1. Study of the binary mixtures of {monoglyme + (hexane, cyclohexane, octane, dodecane)} by ECM-average and PFP models

    International Nuclear Information System (INIS)

    Rivas, M.A.; Buep, A.H.; Iglesias, T.P.

    2015-01-01

    Highlights: • Polarization of the real mixture is less than that of the ideal mixture. • Molar excess volume does not exert the dominant effect on the polarization of the mixture. • Similar influence of molecular interactions on the behaviour of excess permittivity. • Excess molar volume is more influenced by the interactions than excess permittivity. - Abstract: Excess molar volumes and excess permittivity of binary mixtures involving monoglyme and alkanes, such as n-hexane, cyclohexane, n-octane and n-dodecane, were calculated from density and relative permittivity measurements for the entire composition range at several temperatures (288.15, 298.15 and 308.15) K and atmospheric pressure. The excess permittivity was calculated on the basis of a recent definition considering the ideal volume fraction. Empirical equations for describing the experimental data in terms of temperature and concentration are given. The experimental values of permittivity have been compared with those estimated by well-known models from literature. The results have indicated that better predictions are obtained when the volume change on mixing is incorporated in these calculations. The contribution of interactions to the excess permittivity was analysed by means of the ECM-average model. The Prigogine–Flory–Patterson (PFP) theory of the thermodynamics of solutions was used to shed light on the contribution of interactions to the excess molar volume. The work concludes with an interpretation of the information given by the theoretical models and the behaviour of both excess magnitudes

  2. The effect of 1,4-diazabicyclo 2.2.2 octane on the radiosensitivity of bacteria

    International Nuclear Information System (INIS)

    Anderson, R.F.; Patel, K.B.

    1978-01-01

    Hydroxyl radicals (OH) are scavenged by 1,4-diazabicyclo[2.2.2]octane (DABCO) at a diffusion-controlled rate of 1.25 +- 0.1 x 10 9 M -1 s -1 . Unlike other efficient OH scavengers which exhibit protection of bacteria against irradiation both in oxic and hypoxic conditions, DABCO has been shown to protect Serratia marcescens and various strains of Escherichia coli only in oxic conditions. DABCO appears to eliminate a component of the sensitization afforded by oxygen in all strains of E. coli tested. The level of this protection increased from approximately 15% in the wild type AB 1157 to approximately 100% in the recA uvrA mutant AB 2480. It is suggested that DABCO protects against lethal events that can occur on macromolecules other than DNA such as the cell membrane. Results with added glycerol, as well as work in D 2 0 solution, indicate that DABCO is more likely to be acting by scavenging radicals rather than by quenching 1 0 2 . If 1 0 2 is a component of the sensitization afforded by oxygen, then it is unlikely to be formed in a hydrophilic environment in the cell. (author)

  3. Studies on poly (hydroxy alkanoates)/(ethylcellulose) blends

    Indian Academy of Sciences (India)

    Unknown

    thoroughly characterized for their compatibility, by the measurement of viscosity of blends and through FT-IR. Various applications ... require highly sophisticated instrumentation like dyna- .... The results obtained by this process are independent of the value ... was taken to control the uniform thickness of the film for. Table 1.

  4. Blended particle filters for large-dimensional chaotic dynamical systems

    Science.gov (United States)

    Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.

    2014-01-01

    A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886

  5. An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel

    International Nuclear Information System (INIS)

    Benajes, Jesús; García, Antonio; Monsalve-Serrano, Javier; Balloul, Iyad; Pradel, Gérard

    2016-01-01

    Highlights: • Reactivity controlled compression ignition regime utilized from 25% to 35% load. • Dual-mode reduces the regeneration periods of the diesel particulate filter. • The use of near-term available biofuels allows good performance and emissions. • Dual-mode leads to 2% greater efficiency than diesel combustion at high engine speeds. - Abstract: This work investigates the capabilities of the dual-mode reactivity controlled compression ignition/conventional diesel combustion engine operation to cover the full operating range of a EURO VI medium-duty diesel engine with compression ratio of 17.5:1. This concept is based on covering all the engine map switching between the reactivity controlled compression ignition and the conventional diesel combustion operating modes. Specifically, the benefits of reactivity controlled compression ignition combustion are exploited whenever possible according to certain restrictions, while the conventional diesel combustion operation is used to cover the zones of the engine map in which the reactivity controlled compression ignition operation is limited. The experiments were conducted using a single-cylinder research diesel engine derived from the multi-cylinder production engine. In addition, considering the mandatory presence of biofuels in the future context of road transport and the ability of ethanol to be blended with gasoline, the low reactivity fuel used in the study is a blend of 20% ethanol by volume with 80% of 95 octane number gasoline. Moreover, a diesel containing 7% of biodiesel has been used as high reactivity fuel. Firstly, a reactivity controlled compression ignition mapping is performed to check the operational limits of the concept in this engine platform. Later, based on the results, the potential of the dual-mode concept is discussed. Results suggest that, under the constraints imposed, reactivity controlled compression ignition combustion can be utilized between 25% and 35% load. In this region

  6. Blending of soluble corn fiber with pullulan, sorbitol, or fructose attenuates glycemic and insulinemic responses in the dog and affects hydrolytic digestion in vitro.

    Science.gov (United States)

    de Godoy, M R C; Knapp, B K; Bauer, L L; Swanson, K S; Fahey, G C

    2013-08-01

    The objective of these experiments was to measure in vitro hydrolytic digestion and glycemic and insulinemic responses of select carbohydrate blends, all containing the novel carbohydrate soluble corn fiber (SCF). Two SCF that varied in their method of production were used to formulate the carbohydrate blends. One set of blends contained a SCF that was spray dried (SCFsd) and then blended with different amounts of either pullulan, sorbitol, or fructose. The other set of blends contained a SCF produced using longer evaporation time (SCF) and then blended with different ratios of pullulan, sorbitol, and fructose. Free sugar concentrations found in the individual SCFsd and SCF substrates were low but varied. Spray-dried soluble corn fiber had a reduced free sugar concentration compared with SCF (2.8 vs. 14.2%). Glucose was the main free sugar found in both SCFsd and SCF but at different concentrations (2.7 vs. 12.7%, respectively). The majority of the SCFsd blends were completely hydrolyzed to their monosaccharide components. Glucose accounted for most of the hydrolyzed monosaccharides for SCFsd and all the SCFsd blends. Hydrolyzed monosaccharide concentrations for the SCF:pullulan:sorbitol:fructose blends followed similar trends to the SCFsd blends where greater percentages of fructose and sorbitol resulted in decreased (P sorbitol. Total released monosaccharides were high in SCFsd blends containing either 50% fructose or sorbitol, but the combination resulted in reduced concentrations of glucose released (P sorbitol:fructose blends also had intermediate to high released monosaccharides as a result of in vitro hydrolytic digestion. All SCF blends resulted in decreased glycemic and insulinemic responses compared with the maltodextrin control (P sorbitol in the blends had the greatest impact on glycemic and insulinemic responses, even at concentrations as low as 5% of the blends. Overall, SCF and their blends may prove beneficial as components of low glycemic

  7. Blended learning in K-12 mathematics and science instruction -- An exploratory study

    Science.gov (United States)

    Schmidt, Jason

    Blended learning has developed into a hot topic in education over the past several years. Flipped classrooms, online learning environments, and the use of technology to deliver educational content using rich media continue to garner national attention. While generally well accepted and researched in post-secondary education, not much research has focused on blended learning in elementary, middle, and high schools. This thesis is an exploratory study to begin to determine if students and teachers like blended learning and whether or not it affects the amount of time they spend in math and science. Standardized achievement test data were also analyzed to determine if blended learning had any effect on test scores. Based on student and teacher surveys, this population seems to like blended learning and to work more efficiently in this environment. There is no evidence from this study to support any effect on student achievement.

  8. Full-color tuning in binary polymer:perovskite nanocrystals organic-inorganic hybrid blends

    Science.gov (United States)

    Perulli, A.; Balena, A.; Fernandez, M.; Nedelcu, G.; Cretí, A.; Kovalenko, M. V.; Lomascolo, M.; Anni, M.

    2018-04-01

    The excellent optical and electronic properties of metal halide perovskites recently proposed these materials as interesting active materials for optoelectronic applications. In particular, the high color purity of perovskite colloidal nanocrystals (NCs) had recently motivated their exploration as active materials for light emitting diodes with tunable emission across the visible range. In this work, we investigated the emission properties of binary blends of conjugated polymers and perovskite NCs. We demonstrate that the emission color of the blends is determined by the superposition of the component photoluminescence spectra, allowing color tuning by acting on the blend relative composition. The use of two different polymers, two different perovskite NCs, and different blend compositions is exploited to tune the blend color in the blue-green, yellow-red, and blue-red ranges, including white light generation.

  9. Effect of compatibilizer on impact and morphological analysis of recycled HDPE/PET blends

    Energy Technology Data Exchange (ETDEWEB)

    Salleh, Mohd Nazry [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia and School of Materials Engineering, Universiti Malaysia Perlis, 02600 Jejawi, Perlis (Malaysia); Ahmad, Sahrim; Ghani, Mohd Hafizuddin Ab; Chen, Ruey Shan [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    Blends based on recycled high density polyethylene (rHDPE) and recycled polyethylene terephthalate (rPET) were prepared using a corotating twin screw extruder. PET and HDPE are incompatible polymers and their blends showed poor properties. Compatibilization is a step to obtain blends with good mechanical properties and in this work, ethylene glycidyl methacrylate copolymer (E-GMA) was used as a compatibilizing agent. The effect of blends based on rHDPE and rPET with and without a compatibilizer, E-GMA were examined. From the studies clearly showed that the addition of 5% E-GMA increased the impact strength. SEM analysis of rHDPE/rPET blends confirmed the morphological interaction and improved interfacial bonding between two phases.

  10. Raman structural study of melt-mixed blends of isotactic polypropylene with polyethylene of various densities

    Science.gov (United States)

    Prokhorov, K. A.; Nikolaeva, G. Yu; Sagitova, E. A.; Pashinin, P. P.; Guseva, M. A.; Shklyaruk, B. F.; Gerasin, V. A.

    2018-04-01

    We report a Raman structural study of melt-mixed blends of isotactic polypropylene with two grades of polyethylene: linear high-density and branched low-density polyethylenes. Raman methods, which had been suggested for the analysis of neat polyethylene and isotactic polypropylene, were modified in this study for quantitative analysis of polyethylene/polypropylene blends. We revealed the dependence of the degree of crystallinity and conformational composition of macromolecules in the blends on relative content of the blend components and preparation conditions (quenching or annealing). We suggested a simple Raman method for evaluation of the relative content of the components in polyethylene/polypropylene blends. The degree of crystallinity of our samples, evaluated by Raman spectroscopy, is in good agreement with the results of analysis by differential scanning calorimetry.

  11. Comparative Evaluation of Functional Properties of Some Commonly Used Cereal and Legume Flours and Their Blends

    Directory of Open Access Journals (Sweden)

    Haq Nawaz

    2015-12-01

    Full Text Available Functional properties such as protein solubility, swelling capacity, water holding capacity, gelling ability, bulk density and foaming capacity of flours of some commonly used cereals and legume (wheat, refined wheat, maize and chickpea and their blends were studied. Blends of flours were prepared by mixing equal proportions of selected floors. Statistically significant difference  in studied functional properties except bulk density was observed among cereal flours and their blends. Chickpea flour was found to possess comparatively high water holding capacity, protein solubility index and swelling capacity. The functional properties of maize and wheat flours were found to be improved when blended with chickpea. Chickpea flour and its blends with cereal flours were found to possess good functional score and suggested as favorable candidates for use in the preparation of viscous foods and bakery products. The data provide guidelines regarding the improvement in functional properties of economically favorable cereal flours.

  12. Voltage-stabilised elastomers with increased relative permittivity and high electrical breakdown strength by means of phase separating binary copolymer blends of silicone elastomers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Increased electrical breakdown strength and increased dielectric permittivity of silicone-based dielectric elastomers are achieved by means of the addition of so-called voltage-stabilisers prepared from PDMS–PPMS copolymers as well as PDMS–PEG copolymers in order to compensate for the negative...... effect of softness on electrical stability of silicone elastomers. The voltage-stabilised elastomer, incorporating a high-permittivity PDMS–PEG copolymer, possesses increased relative permittivity, high electrical breakdown strength, excellent network integrity and low dielectric loss and paves the way...

  13. Characterization of herbal powder blends homogeneity using near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Wenlong Li

    2014-11-01

    Full Text Available Homogeneity of powder blend is essential to obtain uniform contents for the tablets and capsules. Near-infrared (NIR spectroscopy with fiber-optic probe was used as an on-line technique for monitoring the homogeneity of pharmaceutical blend during the blending process instead of the traditional techniques, such as high performance liquid chromatograph (HPLC method. In this paper NIRS with a SabIR diffuse reflectance fiber-optic probe was used to monitor the blending process of coptis powder and lactose (excipient with different contents, and further qualitative methods, like similarity, moving block of standard deviation and mean square were used for calculation purposes with the collected spectra after the pretreatment of multiplicative signal correction (MSC and second derivative. Correlation spectrum was used for the wavelength selection. Four different coptis were blended with lactose separately to validate the proposed method, and the blending process of "liu wei di huang" pill was also simulated in bottles to verify this method on multiple herbal blends. The overall results suggest that NIRS is a simple, effective and noninvasive technique can be successfully applied to the determination of homogeneity in the herbal blend.

  14. Effects of blend ratio between high density polyethylene and biomass on co-gasification behavior in a two-stage gasification system

    KAUST Repository

    Park, Jae Hyun; Park, Hyun-Woo; Choi, Sooseok; Park, Dong-Wha

    2016-01-01

    into syngas in a high temperature region of thermal plasma. At the equivalence ratio of 0.47, conversion selectivities of CO and H2 from hydrocarbons were calculated to be 74% and 44%, respectively. © 2016 Hydrogen Energy Publications LLC.

  15. X-ray blending device

    International Nuclear Information System (INIS)

    Manolov, S.S.; Donchev, I.D.; Paunchev, A.N.; Atanasov, A.B.; Kerin, T.P.

    1985-01-01

    The X-ray blending device comprises electric motors for vertical and horizontal blending plates, electrically connected with the output of the block for format voltages and mechanically connected with the measuring potentiometers' slides. The potentiometers are respectively connected with the data inputs of the block for format voltages, the control input of which is connected with the control block output in a mode of scanning. The data outputs of the format voltage block are connected through a buffer converter, a memory block and a decoder with the data inputs of the first and second digital-to-analog converters, the outputs of which are connected with the first inputs of the first and the second comparison circuits. The second inputs of the last are linked to the slides of the first and the second potentiometers and their inputs are connected with the data inputs of the first and the second combinational logic circuits. The output of the control block in a mode of scanning is connected with the first control inputs of the first and the second combinational logic circuits and with the control inputs of the memory block and the decoder. The second and the third control units of the first and the second combinational circuits are respectively linked with the outputs for a position determination of the vertical and horizontal blending plates from the control block in a mode of scanning. The outputs of the first and the second combinational logic circuits are respectively connected with the first and the second control bridge circuits, the control outputs of which are electrically connected with the first and the second electric motors for vertical and horizontal blending plates. 1 cl., 3 figs

  16. Blending of phased array data

    Science.gov (United States)

    Duijster, Arno; van Groenestijn, Gert-Jan; van Neer, Paul; Blacquière, Gerrit; Volker, Arno

    2018-04-01

    The use of phased arrays is growing in the non-destructive testing industry and the trend is towards large 2D arrays, but due to limitations, it is currently not possible to record the signals from all elements, resulting in aliased data. In the past, we have presented a data interpolation scheme `beyond spatial aliasing' to overcome this aliasing. In this paper, we present a different approach: blending and deblending of data. On the hardware side, groups of receivers are blended (grouped) in only a few transmit/recording channels. This allows for transmission and recording with all elements, in a shorter acquisition time and with less channels. On the data processing side, this blended data is deblended (separated) by transforming it to a different domain and applying an iterative filtering and thresholding. Two different filtering methods are compared: f-k filtering and wavefield extrapolation filtering. The deblending and filtering methods are demonstrated on simulated experimental data. The wavefield extrapolation filtering proves to outperform f-k filtering. The wavefield extrapolation method can deal with groups of up to 24 receivers, in a phased array of 48 × 48 elements.

  17. Teaching Shakespeare through blended learning

    Directory of Open Access Journals (Sweden)

    Lesley Hawkes

    2018-03-01

    Full Text Available This paper describes and discusses experimentation with the use of blended learning in teaching Shakespeare. Previous iterations of the subject in a traditional lecture and tutorial format had seen a decline in student attendance and a fall in student achievement at the higher grade levels. A further complicating issue was the range of expectations from the cohort, which comprised students from Creative Writing, Drama, and Education, a factor which also highlights the cross-disciplinary nature of teaching Shakespeare. A blended learning and lectorial format was employed to facilitate small group discussion of the plays in conjunction with a wider social and historical overview. Student feedback indicated that the changes to the delivery method were received positively, although some questions do remain concerning levels of student engagement and the specific disciplinary needs of student cohorts. The findings of the teaching of this subject will translate usefully to other fields and disciplines, especially as more and more subjects take up blended learning. The findings indicate that it is not enough to take up new technologies in the teaching of a unit. The learning environment must also be rethought and reconceptualised.

  18. Effects of Electron Beam Irradiation on Binary Polyamide-6 Blends with Metallocene Copolymers

    International Nuclear Information System (INIS)

    Rosales, C.

    2006-01-01

    A versatile way to produce new materials with high Izod impact strength and reduced heat deformations is the irradiation of compatibilized blends. The effect of electron beam irradiation and different types of dispersed phase grafted copolymers on thermal and mechanical properties, and SEM morphology of polyamide-6 (PA-6) blends were investigated. Two metallocene copolymers (mEPDM and mPOE) grafted in-situ with maleic anhydride and two commercial maleated copolymers (EPDM-g-MA and mEPR-g-MA) were employed in binary blends with PA6 as matrix. The blends were prepared by extrusion with a composition of 80 wt. % of PA-6. The influence of the radical or functional groups generated in the grafting and the irradiation processes (25, 50, 100 and 200 kGy) was found by ATR-FTIR. The blends exhibited the characteristic thermal behavior of immiscible systems. All compatibilizers employed influenced the melting and crystallization behavior of the blend components without irradiation and an improvement in interface adhesion was clearly observed by SEM micrographs. The sizes of the dispersed phase in the non-irradiated reactive blends were in agreement with the viscosity ratios of the blend components. High toughness materials were obtained with ethylene-polypropylene-diene (mEPDM) grafted copolymers without significant variations in their thermal properties and Izod impact strength at room temperature and -30 degree with the irradiation doses. However, the toughness of the blends with grafted metallocene polyethylenes was affected by the irradiation doses employed. Therefore, the gel content and tensile properties of the samples depended on the chain scission, crosslinking and/or grafting reactions of the blend components

  19. Ternary blends containing demercurated lighting phosphor and MSWI fly ash as high-performance binders for stabilizing and recycling electroplating sludge.

    Science.gov (United States)

    Huang, Wu-Jang; Wu, Chia-Teng; Wu, Chang-En; Hsieh, Lin-Huey; Li, Chang-Chien; Lain, Chi-Yuan; Chu, Wei

    2008-08-15

    This paper describes the solidification and stabilization of electroplating sludge treated with a high-performance binder made from portland type-I cement, municipal solid waste incineration fly ash, and lighting phosphor powder (called as cement-fly ash-phosphor binder, CFP). The highest 28-day unconfined compressive strength of the CFP-treated paste was 816 kg/cm(2) at a ratio of cement to fly ash to lighting phosphor powder of 90:5:5; the strength of this composition also fulfilled the requirement of a high-strength concrete (>460 kg/cm(2) at 28 days). The CFP-stabilized sludge paste samples passed the Taiwanese EPA toxicity characteristic leaching procedure test and, therefore, could be used either as a building material or as a controlled low-strength material, depending on the sludge-to-CFP binder ratio.

  20. Highly Sensitive Electrochemical Biosensor for Evaluation of Oxidative Stress Based on the Nanointerface of Graphene Nanocomposites Blended with Gold, Fe3O4, and Platinum Nanoparticles.

    Science.gov (United States)

    Wang, Le; Zhang, Yuanyuan; Cheng, Chuansheng; Liu, Xiaoli; Jiang, Hui; Wang, Xuemei

    2015-08-26

    High levels of H2O2 pertain to high oxidative stress and are associated with cancer, autoimmune, and neurodegenerative disease, and other related diseases. In this study, a sensitive H2O2 biosensor for evaluation of oxidative stress was fabricated on the basis of the reduced graphene oxide (RGO) nanocomposites decorated with Au, Fe3O4, and Pt nanoparticles (RGO/AuFe3O4/Pt) modified glassy carbon electrode (GCE) and used to detect the released H2O2 from cancer cells and assess the oxidative stress elicited from H2O2 in living cells. Electrochemical behavior of RGO/AuFe3O4/Pt nanocomposites exhibits excellent catalytic activity toward the relevant reduction with high selection and sensitivity, low overpotential of 0 V, low detection limit of ∼0.1 μM, large linear range from 0.5 μM to 11.5 mM, and outstanding reproducibility. The as-prepared biosensor was applied in the measurement of efflux of H2O2 from living cells including healthy normal cells and tumor cells under the external stimulation. The results display that this new nanocomposites-based biosensor is a promising candidate of nonenzymatic H2O2 sensor which has the possibility of application in clinical diagnostics to assess oxidative stress of different kinds of living cells.

  1. Wear performance of neat and vitamin E blended highly cross-linked PE under severe conditions: The combined effect of accelerated ageing and third body particles during wear test.

    Science.gov (United States)

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-12-01

    The objective of this study is to evaluate the effects of third-body particles on the in vitro wear behaviour of three different sets of polyethylene acetabular cups after prolonged testing in a hip simulator and accelerated ageing. Vitamin E-blended, cross-linked polyethylene (XLPE_VE), cross-linked polyethylene (XLPE) and conventional polyethylene (STD_PE) acetabular cups were simulator tested for two million cycles under severe conditions (i.e. by adding third-body particles to the bovine calf serum lubricant). Micro-Fourier Transform Infrared and micro-Raman spectroscopic analyses, differential scanning calorimetry, and crosslink density measurements were used to characterize the samples at a molecular level. The STD_PE cups had twice mass loss than the XLPE_VE components and four times than the XLPE samples; statistically significant differences were found between the mass losses of the three sets of cups. The observed wear trend was justified on the basis of the differences in cross-link density among the samples (XLPE>XLPE_VE>STD_PE). FTIR crystallinity profiles, bulk DSC crystallinity and surface micro-Raman crystallinity seemed to have a similar behaviour upon testing: all of them (as well as the all-trans and ortho-trans contents) revealed the most significant changes in XLPE and XLPE_VE samples. The more severe third-body wear testing conditions determined more noticeable changes in all spectroscopic markers with respect to previous tests. Unexpectedly, traces of bulk oxidation were found in both STD_PE (unirradiated) and XLPE (remelting-stabilized), which were expected to be stable to oxidation; on the contrary, XLPE_VE demonstrated a high oxidative stability in the present, highly demanding conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Structural, mechanical and electrical properties biopolymer blend nanocomposites derived from poly (vinyl alcohol)/cashew gum/magnetite

    Science.gov (United States)

    Ramesan, M. T.; Jayakrishnan, P.; Manojkumar, T. K.; Mathew, G.

    2018-01-01

    Blending of poly vinyl alcohol (PVA) and natural biopolymers such as cashew gum (CG) with magnetite (Fe3O4) nanoparticles has been a promising way for preparing bio-degradable polymeric blend nanocomposites. PVA/CG/Fe3O4 blend nanocomposites have been prepared by a simple solution casting technique using water as the green solvent. The characterization of blend nanocomposites has been carried out by using Fourier transform infrared, UV, x-ray diffraction (XRD), high resolution transmission electron microscopy, scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, mechanical properties and electrical conductivity. The interaction between nanoparticles and the blend segments was confirmed from the shift in characteristic absorption peaks of nanocomposites compared to PVA/CG blend. XRD analysis has shown the presence of crystalline peaks of nanoparticles in the blend matrix. The uniform distribution of Fe3O4 nanoparticles in the blend was revealed by TEM and SEM. The strong interaction of nanoparticles with the blend has been confirmed by the increase in glass transition temperature resulting from the reduced flexibility of the blend nanocomposite compared to that of the blend system. An increase in thermal stability and tensile strength and reduction in elongation at break of nanocomposites have been noticed with the increasing loading of nanoparticles. The AC electrical conductivity, dielectric constant and dielectric loss of the nanocomposites have been found to be higher than that of the blend. Generally, it can be stated that the magnetite nanoparticles acts as a potential filler in the PVA/CG blend at 7 wt% loading, giving the best balance of properties.

  3. Proton exchange membrane developed from novel blends of polybenzimidazole and poly(vinyl-1,2,4-triazole).

    Science.gov (United States)

    Hazarika, Mousumi; Jana, Tushar

    2012-10-24

    In continuation (J. Phys. Chem. B2008, 112, 5305; J. Colloid Interface Sci. 2010, 351, 374) of our quest for proton exchange membrane (PEM) developed from polybenzimidazole (PBI) blends, novel polymer blend membranes of PBI and poly(1-vinyl-1,2,4-triazole) (PVT) were prepared using a solution blending method. The aim of the work was to investigate the effect of the blend composition on the properties, e.g., thermo-mechanical stability, swelling, and proton conductivity of the blend membranes. The presence of specific interactions between the two polymers in the blends were observed by studying the samples using varieties of spectroscopic techniques. Blends prepared in all possible compositions were studied using a differential scanning calorimetry (DSC) and exhibited a single T(g) value, which lies between the T(g) value of the neat polymers. The presence of a single composition-dependent T(g) value indicated that the blend is a miscible blend. The N-H···N interactions between the two polymers were found to be the driving force for the miscibility. Thermal stability up to 300 °C of the blend membranes, obtained from thermogravimetric analysis, ensured their suitability as PEMs for high-temperature fuel cells. The proton conductivity of the blend membranes have improved significantly, compared to neat PBI, because of the presence of triazole moiety, which acts as a proton facilitator in the conduction process. The blend membranes showed a considerably lower increase in thickness and swelling ratio than that of PBI after doping with phosphoric acid (PA). We found that the porous morphology of the blend membranes caused the loading of a larger amount of PA and, consequently, higher proton conduction with lower activation energy, compared to neat PBI.

  4. Controlled release of tocopherols from polymer blend films

    Science.gov (United States)

    Obinata, Noe

    Controlled release packaging has great potential to increase storage stability of foods by releasing active compounds into foods continuously over time. However, a major limitation in development of this technology is the inability to control the release and provide rates useful for long term storage of foods. Better understanding of the factors affecting active compound release is needed to overcome this limitation. The objective of this research was to investigate the relationship between polymer composition, polymer processing method, polymer morphology, and release properties of active compounds, and to provide proof of principle that compound release is controlled by film morphology. A natural antioxidant, tocopherol was used as a model active compound because it is natural, effective, heat stable, and soluble in most packaging polymers. Polymer blend films were produced from combination of linear low density polyethylene (LLDPE) and high density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) with 3000 ppm mixed tocopherols using conventional blending method and innovative blending method, smart blending with a novel mixer using chaotic advection. Film morphologies were visualized with scanning electron microscopy (SEM). Release of tocopherols into 95% ethanol as a food simulant was measured by UV/Visible spectrophotometry or HPLC, and diffusivity of tocopherols in the polymers was estimated from this data. Polymer composition (blend proportions) and processing methods have major effects on film morphology. Four different types of morphologies, dispersed, co-continuous, fiber, and multilayer structures were developed by either conventional extrusion or smart blending. With smart blending of fixed polymer compositions, different morphologies were progressively developed with fixed polymer composition as the number of rod rotations increased, providing a way to separate effects of polymer composition and morphology. The different morphologies

  5. Game innovation through conceptual blending

    DEFF Research Database (Denmark)

    Möring, Sebastian Martin

    In  this  paper  I  wish  to  apply implications of  the  Conceptual  Blending  Theory  to  computer  games.  I  will  analyze  chosen  examples  and  discuss  them  as  a  result  of  video  game  innovation  made  possible  through  "conceptual  blending."  Conceptual  blending  links  at  least.......,  Hell.  The  purpose  of  my  approach  is  not  so  much  to  validate  the  ideas  of  conceptual  blending  theory  through  another  field  of  examples  (computer  games)  but  to  name  and analyze characteristics of the mentioned games with the  help of a given method.......  integration  network  consisting  of  at  least  two  input  spaces,  a  generic  space  and  a  blended  space  as  well  as  its  governing  principles  consisting  of  composition,  completion,  and  elaboration.  With  the  help  of  these  instruments  I  analyze computer  games like  Tuper  Tario  Tros...

  6. BLENDED LEARNING STRATEGY IN TEACHER TRAINING PROGRAMS

    Directory of Open Access Journals (Sweden)

    Marian F. Byrka

    2017-12-01

    Full Text Available The article examines the implementation of blended learning strategy in teacher training programs as an innovation in online learning. The blended learning idea comes from blending elements which use online technology with more traditional face-to-face teaching in the same course. The article analyses teacher training programs offered by Chernivtsi Regional Institute of Postgraduate Pedagogical Education. Additional data were gathered through a questionnaire administered to teachers who attended training courses. The characteristics of blended learning strategy, its benefits and limitations for teacher training are supported by a review of literature. The article closes with the comparison of curriculum components (content delivery, learner activities, materials, and required competences between traditional and blended learning teacher training programs. Having obvious benefits in teacher training programs, the implementation of blended learning strategy sets some additional requirements to a learner, as well as to course instructors and lectors.

  7. Correspondence Theory and Phonological Blending in French

    Directory of Open Access Journals (Sweden)

    Lee Scott

    2014-07-01

    Full Text Available Though less productive than rival word-formation processes like compounding and affixation, blending is still a rich source of neologisms in French. Despite this productivity, however, blends are often seen by scholars as unpredictable, uninteresting, or both. This analysis picks up where recent studies of blending have left off, using Correspondence Theory and a bundle of segmental constraints to deal with this phenomenon as it pertains to French. More specifically, it shows that blending is the result of a single output standing in correspondence with two or more other outputs, and that we do not need to refer to prosodic information, which is crucial in accounts of blending in languages with lexical stress like English, to account for the process in French. The analysis also differs from previous studies in that it locates blending exclusively within the phonology, leaving its morphological and semantic characteristics to be handled by other processes in the grammar.

  8. Dynamic Viscoelastic Behavior and Phase Morphology of HIPS/HDPE Blends

    OpenAIRE

    LIU Jing-ru; XIA Yang-yang; GAO Li-qun; YU Qiang

    2017-01-01

    The dynamic viscoelastic behavior and phase morphology of high impact polystyrene (HIPS)/high density polyethylene (HDPE) blends were investigated by dynamic rheological test and scanning electron microscopy (SEM). The compatibilizing effect of 1%(mass fraction, same as below) micron-CaCO3 and nano-CaCO3 on HIPS/HDPE(30/70) immiscible blend was compared. The results indicate that the complex viscosity and storage modulus of HIPS/HDPE blends at low frequencies show positive deviation from the ...

  9. Optimization of performance, emission, friction and wear characteristics of palm and Calophyllum inophyllum biodiesel blends

    International Nuclear Information System (INIS)

    Mosarof, M.H.; Kalam, M.A.; Masjuki, H.H.; Alabdulkarem, Abdullah; Ashraful, A.M.; Arslan, A.; Rashedul, H.K.; Monirul, I.M.

    2016-01-01

    Highlights: • All of biodiesel blends were given higher BSFC than diesel fuel, except for CIB10. • Diesel produces higher BP and BTE as compared to PB and CIB blends. • CO and HC emissions of PB blends were reduced more than diesel and CIB blends. • PB blends contained lower metal compositions compared to diesel and CIB blends. • PB20 showed lower worn scar surfaces area compared to diesel and biodiesel blends. - Abstract: A running automobile engine produces more friction and wear between its sliding components than an idle one, and thus requires lubrication to reduce this frictional effect. Biodiesel is an alternative diesel fuel that is produced from renewable resources. Energy studies conducted over the last two decades focused on solutions to problems of rising fossil fuel price, increasing dependency on foreign energy sources, and worsening environmental concerns. Palm oil biodiesel is mostly used in Malaysia. This study conducted engine performance and emission tests with a single-cylinder diesel engine fueled with palm and Calophyllum inophyllum biodiesel blends (PB10, PB20, PB30, CIB10, CIB20, and CIB30) at a full-load engine speed range of 1000–2400 rpm, and then compared the results with those of diesel fuel. Friction and wear tests were conducted using the four-ball tester with different temperatures at 40 and 80 kg load conditions and a constant speed of 1800 rpm. The average brake specific fuel consumption increased from 7.96% to 10.15% while operating on 10%, 20%, and 30% blends of palm and C. inophyllum biodiesel. The respective average brake powers for PB20 and PB30 were 9.31% and 12.93% lower compared with that for diesel fuel. PB20 produced relatively lower CO and HC emissions than the diesel and biodiesel blends. Diesel produced low amounts of NO_X emission, and the CIB blend produced a lower frictional coefficient compared with the diesel and PB blends. PB30 showed high average FTP and low average WSD, both of which enhanced

  10. Heat Release Property and Fire Performance of the Nomex/Cotton Blend Fabric Treated with a Nonformaldehyde Organophosphorus System

    Directory of Open Access Journals (Sweden)

    Charles Q. Yang

    2016-09-01

    Full Text Available Blending Nomex® with cotton improves its affordability and serviceability. Because cotton is a highly flammable fiber, Nomex®/cotton blend fabrics containing more than 20% cotton require flame-retardant treatment. In this research, combination of a hydroxyl functional organophosphorus oligmer (HFPO and 1,2,3,4-butanetetracarboxylic acid (BTCA was used for flame retardant finishing of the 65/35 Nomex®/cotton blend woven fabric. The system contains HFPO as a flame retardant, BTCA as a bonding agent, and triethenolamine (TEA as a reactive additive used to enhance the performance of HFPO/BTCA. Addition of TEA improves the hydrolysis resistance of the HFPO/BTCA crosslinked polymeric network on the blend fabric. Additionally, TEA enhances HFPO’s flame retardant performance by reducing formation of calcium salts and also by providing synergistic nitrogen to the treated blend fabric. The Nomex®/cotton blend fabric treated with the HFPO/BTCA/TEA system shows high flame resistance and high laundering durability at a relatively low HFPO concentration of 8% (w/w. The heat release properties of the treated Nomex®/cotton blend fabric were measured using microscale combustion calorimetry. The functions of BTCA; HFPO and TEA on the Nomex®/cotton blend fabric were elucidated based on the heat release properties, char formation, and fire performance of the treated blend fabric.

  11. Oxidative stability of biodiesel blends derived from waste frying oils

    Directory of Open Access Journals (Sweden)

    Michael Feroldi

    2017-07-01

    Full Text Available The high cost of biodiesel production is mainly linked to the price of raw material.This factor has favored the use of alternative fats and oils such as those used in frying. Since biodiesel can be obtained from several vegetable and animal raw materials, the physicochemical characteristics of the fuel may vary considerably. One of these characteristics is the fatty acid composition. It directly affects the oxidative stability of biodiesel, which can be impaired when the fuel undergoes exposure to sunlight, metals, oxygen and high temperatures. In order to improve the oxidative stability of biodiesels produced from waste frying oil some studies involving blends of different raw materials have been carried out. In this sense, this work aimed to assess the characteristics resulting from the blending of soybean waste frying oil with other waste biodiesels in what concerns to oxidation. The blends of fatty materials were obtained by means of a 2² factorial design. The induction periods of biodiesel blends were enough to meet the ASTM D6751 standard. Swine fat was responsible for the increase in the induction period values.

  12. The distinct economic effects of the ethanol blend wall, RIN prices and ethanol price premium due to the RFS

    NARCIS (Netherlands)

    Gorter, de H.; Drabik, D.

    2015-01-01

    The ethanol blend wall and high RIN prices has become a controversial policy issue. We develop a model showing how RIN prices reflect the costs of overcoming the blend wall, namely biodiesel consumed in excess of its mandate and expansion of E85 sales. These costs are very high and are shown to be

  13. Evaporation characteristics of ETBE-blended gasoline

    International Nuclear Information System (INIS)

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-01-01

    Highlights: • We chose 8-component hydrocarbon mixture as a model gasoline, and defined the molar mass of gasoline. • We proposed an evaporation model assuming a 2-component mixture of gasoline and ETBE. • We predicted the change in the vapor pressure of ETBE-blended gasoline by evaporation. • The vapor pressures were measured and compared as a means of verifying the model. • We presented the method for predicting flash points of the ETBE-blended gasoline. - Abstract: To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were

  14. Evaporation characteristics of ETBE-blended gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Katsuhiro, E-mail: okamoto@nrips.go.jp [National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882 (Japan); Hiramatsu, Muneyuki [Yamanashi Prefectural Police H.Q., 312-4 Kubonakajima, Isawa-cho, Usui, Yamanashi 406-0036 (Japan); Hino, Tomonori; Otake, Takuma [Metropolitan Police Department, 2-1-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8929 (Japan); Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi [National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882 (Japan)

    2015-04-28

    Highlights: • We chose 8-component hydrocarbon mixture as a model gasoline, and defined the molar mass of gasoline. • We proposed an evaporation model assuming a 2-component mixture of gasoline and ETBE. • We predicted the change in the vapor pressure of ETBE-blended gasoline by evaporation. • The vapor pressures were measured and compared as a means of verifying the model. • We presented the method for predicting flash points of the ETBE-blended gasoline. - Abstract: To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were

  15. EFFECT OF COMPRESSION RATIO ON ENERGY AND EMISSION OF VCR DIESEL ENGINE FUELLED WITH DUAL BLENDS OF BIODIESEL

    Directory of Open Access Journals (Sweden)

    R. D. EKNATH

    2014-10-01

    Full Text Available In recent 10 years biodiesel fuel was studied extensively as an alternative fuel. Most of researchers reported performance and emission of biodiesel and their blends with constant compression ratio. Also all the research was conducted with use of single biodiesel and its blend. Few reports are observed with the use of variable compression ratio and blends of more than one biodiesel. Main aim of the present study is to analyse the effect of compression ratio on the performance and emission of dual blends of biodiesel. In the present study Blends of Jatropha and Karanja with Diesel fuel was tested on single cylinder VCR DI diesel engine for compression ratio 16 and 18. High density of biodiesel fuel causes longer delay period for Jatropha fuel was observed compare with Karanja fuel. However blending of two biodiesel K20J40D results in to low mean gas temperature which is the main reason for low NOx emission.

  16. Effect of electron beam irradiation on the properties of natural rubber (NR)/styrene-butadiene rubber (SBR) blend

    Energy Technology Data Exchange (ETDEWEB)

    Manshaie, R. [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Nouri Khorasani, S., E-mail: saied@cc.iut.ac.i [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Jahanbani Veshare, S. [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Rezaei Abadchi, M. [Department of Polymer Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-01-15

    In this study, physico-mechanical properties of NR/SBR blends cured by electron beam irradiation and sulfur were compared. The NR/SBR blends were prepared using a two-roll mill. Electron beam irradiations of 100-400 kGy were applied to cure the blends and changes in physico-mechanical properties were studied as a function of irradiation. Also, oil resistance and the effect of thermal ageing on mechanical properties of the blends were investigated. The results show that the irradiated blends have better mechanical properties than those cured by sulfur system. The irradiation cured samples also exhibited better heat stability than the sulfur cured samples. The blend cured by the highest dose shows the lowest swelling and high oil resistance compared with the other samples cured by irradiation.

  17. A strategy for achieving low percolation and high electrical conductivity in melt-blended polycarbonate (PC/multiwall carbon nanotube (MWCNT nanocomposites: Electrical and thermo-mechanical properties

    Directory of Open Access Journals (Sweden)

    B. B. Khatua

    2013-06-01

    Full Text Available In this work, polycarbonate (PC/multiwall carbon nanotube (MWCNT nanocomposites were prepared by simple melt mixing at a temperature (~350°C well above the processing temperature of PC, followed by compression molding, that exhibited percolation threshold as low as of 0.11 wt% and high electrical conductivity of 1.38x10–3 S•cm–1 at only 0.5 wt% MWCNT loading. Due to the lower interfacial energy between MWCNT and PC, the carbon nanotubes are excellently dispersed and formed continuous conductive network structure throughout the host polymer. AC electrical conductivity and dielectric permittivity of PC/MWCNT nanocomposites were characterized in a broad frequency range, 101–107 Hz. Low percolation threshold (pc of 0.11 wt% and the critical exponent (t of ~3.38 was resulted from scaling law equation. The linear plot of logσDC vs. p–1/3 supported the presence of tunneling conduction among MWCNTs. The thermal property and storage modulus of PC were increased with the incorporation of little amount of MWCNTs. Transmission electron microscopy (TEM and field emission scanning electron microscopy (FESEM confirmed the homogeneous dispersion and distribution of MWCNTs throughout the matrix phase.

  18. THE COMBUSTION CHARACTERISTICS OF LIGNITE BLENDS

    Institute of Scientific and Technical Information of China (English)

    Cheng Jun; Zhou Junhu; Cao Xinyu; Cen Kefa

    2000-01-01

    The combustion characteristics of lignite blends were studied with a thermogravimetric analyzer (t.g.a.), at constant heating rate.The characteristic temperatures were determined from the burning profiles.It was found that the characteristic times of combustion reaction moved forward, the ignition temperature dropped and the burnout efficiency slightly changed when blending lignites.The characteristic parameters of blends could not be predicted as a linear function of the average values of the individual lignites.when blending with less reactive coal, the ignition and burnout characteristics of lignite turned worse.

  19. Monensin and a blend of castor oil and cashew nut shell liquid used in a high-concentrate diet abruptly fed to Nellore cattle.

    Science.gov (United States)

    Zotti, C A; Silva, A P; Carvalho, R; Marino, C T; Rodrigues, P H M; Silva, L F P; McAllister, T A; Leme, P R

    2017-09-01

    Monensin and functional oils (FO) were supplemented to a high-concentrate diet abruptly fed to 12 ruminally cannulated Zebu steers to study their effects on rumen fermentation, blood metabolites, and , , and relative population. A randomized complete block design with repeated measures over time within 2 experimental periods of 21 d each was used. Treatments were a control (CTR; with no additives), FO (included at 400 mg/kg), and monensin included at 30 mg/kg (M30) or 40 mg/kg (M40). All steers were fed the same high-concentrate basal diet, which consisted of 92.25% concentrate. The first 60 h after transition showed a treatment and hour interaction for ruminal propionate proportion ( = 0.028), and no change in acetate molar proportion ( = 0.633), rumen pH ( = 0.370), and time the rumen pH remained below 5.6 ( = 0.242) were observed. The acetate:propionate ratio decreased ( = 0.020) when monensin was fed in both concentrations (2.30 for the M30 treatment and 2.32 for the M40 treatment) compared with when the CTR was fed (2.85), without being different when the FO (2.71) treatment was fed. Only the M30 treatment did not show pH below 5.2 (P=0.047) over the 60 h after the abrupt transition. Within the entire period, DMI ( = 0.008) and mean ruminal pH ( = 0.040) as well as molar proportions of propionate ( = 0.034) and valerate ( = 0.031) had significant interactions between treatment and day. Total VFA concentration was greater ( = 0.017) for the M30 (117.36 m) and CTR treatments (115.77 m) compared with the M40 treatment (105.02 m), without being different for the FO treatment (111.55 m). Treatments did not change feed behavior parameters. Blood HCO ( = 0.006) and total carbon dioxide ( = 0.003) were greater for the M30 (27.8 and 29.3 mmol/L, respectively) and FO treatments (28.3 and 29.7 mmol/L, respectively) compared with the CTR treatment (25.7 and 26.9 mmol/L, respectively). ( protozoa genera, the greatest ( protozoa counts were observed for the CTR treatment

  20. Design Principles for the Blend in Blended Learning: A Collective Case Study

    Science.gov (United States)

    Lai, Ming; Lam, Kwok Man; Lim, Cher Ping

    2016-01-01

    This paper reports on a collective case study of three blended courses taught by different instructors in a higher education institution, with the purpose of identifying the different types of blend and how the blend supports student learning. Based on the instructors' and students' interviews, and document analysis of course outlines, two major…