WorldWideScience

Sample records for high biomass density

  1. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

    Science.gov (United States)

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-02-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications.

  2. Online determination of viable biomass up to very high cell densities in Arxula adeninivorans fermentations using an impedance signal.

    Science.gov (United States)

    Knabben, Ingo; Regestein, Lars; Grumbach, Carsten; Steinbusch, Sven; Kunze, Gotthard; Büchs, Jochen

    2010-08-20

    Up to now biomass has been measured online by impedance analysis only at low cell densities in yeast fermentations. As industrial fermentation processes focus, for example, on producing high target concentrations of biocatalysts or pharmaceutical proteins, it is important to investigate cell growth under high cell-density conditions. Therefore, for the first time, biomass has been measured online using impedance analysis in a 50L high-pressure stirred tank reactor. As model organism the yeast Arxula adeninivorans was cultivated in two chemically defined mineral media at a constant growth rate in fed-batch mode. To ensure aerobic culture conditions over the entire fermentation time, the fermentations were conducted at an elevated headspace overpressure of up to 9.5bar. The highest oxygen transfer rate value of 0.56molL(-1)h(-1) ever reported for yeast fermentations was measured in these investigations. Unlike previous findings, in this study a linear correlation was found between capacitance and biomass up to concentrations of 174gL(-1) dry cell weight.

  3. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass

  4. Biomass production and potential water stress increase with planting density in four highly productive clonal Eucalyptus genotypes

    Science.gov (United States)

    Rodrigo Hakamada; Robert M. Hubbard; Silvio Ferraz; Jose Luiz Stape; Cristiane Lemos

    2017-01-01

    The choice of planting density and tree genotype are basic decisions when establishing a forest stand. Understanding the interaction between planting density and genotype, and their relationship with biomass production and potential water stress, is crucial as forest managers are faced with a changing climate. However, few studies have investigated this relationship,...

  5. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  6. Evaluating lidar point densities for effective estimation of aboveground biomass

    Science.gov (United States)

    Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.

  7. Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density.

    Science.gov (United States)

    Lee, Jae-Won; Kim, Young-Hun; Lee, Soo-Min; Lee, Hyoung-Woo

    2012-07-01

    The optimal conditions for the torrefaction of mixed softwood were investigated by response surface methodology. This showed that the chemical composition of torrefied biomass was influenced by the severity factor of torrefaction. The lignin content in the torrefied biomass increased with the SF, while holocellulose content decreased. Similarly, the carbon content energy value of torrefied biomass ranged from 19.31 to 22.12 MJ/kg increased from 50.79 to 57.36%, while the hydrogen and oxygen contents decreased. The energy value of torrefied biomass ranged from 19.31 to 22.12 MJ/kg. This implied that the energy contained in the torrefied biomass increased by 4-19%, when compared with the untreated biomass. The energy value and weight loss in biomass slowly increased as the SF increased up until 6.12; and then dramatically increased as the SF increased further from 6.12 to 7.0. However, the energy yield started decreasing at SF value higher than 6.12; and the highest energy yield was obtained at low SF. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. Dynamic modelling of high biomass density cultivation and biohydrogen production in different scales of flat plate photobioreactors.

    Science.gov (United States)

    Zhang, Dongda; Dechatiwongse, Pongsathorn; Del Rio-Chanona, Ehecatl Antonio; Maitland, Geoffrey C; Hellgardt, Klaus; Vassiliadis, Vassilios S

    2015-12-01

    This paper investigates the scaling-up of cyanobacterial biomass cultivation and biohydrogen production from laboratory to industrial scale. Two main aspects are investigated and presented, which to the best of our knowledge have never been addressed, namely the construction of an accurate dynamic model to simulate cyanobacterial photo-heterotrophic growth and biohydrogen production and the prediction of the maximum biomass and hydrogen production in different scales of photobioreactors. To achieve the current goals, experimental data obtained from a laboratory experimental setup are fitted by a dynamic model. Based on the current model, two key original findings are made in this work. First, it is found that selecting low-chlorophyll mutants is an efficient way to increase both biomass concentration and hydrogen production particularly in a large scale photobioreactor. Second, the current work proposes that the width of industrial scale photobioreactors should not exceed 0.20 m for biomass cultivation and 0.05 m for biohydrogen production, as severe light attenuation can be induced in the reactor beyond this threshold.

  9. Biomass density and filament length synergistically affect activated sludge settling: systematic quantification and modeling.

    Science.gov (United States)

    Jassby, D; Xiao, Y; Schuler, A J

    2014-01-01

    Settling of the biomass produced during biological treatment of wastewater is a critical and often problematic process. Filamentous bacteria content is the best-known factor affecting biomass settleability in activated sludge wastewater treatment systems, and varying biomass density has recently been shown to play an important role as well. The objective of this study was to systematically determine how filament content and biomass density combine to affect microbial biomass settling, with a focus on density variations over the range found in full-scale systems. A laboratory-scale bioreactor system was operated to produce biomass with a range of filamentous bacterium contents. Biomass density was systematically varied in samples from this system by addition of synthetic microspheres to allow separation of filament content and density effects on settleability. Fluorescent in-situ hybridization indicated that the culture was dominated by Sphaerotilus natans, a common contributor to poor settling in full-scale systems. A simple, image-based metric of filament content (filament length per floc area) was linearly correlated with the more commonly used filament length per dry biomass measurement. A non-linear, semi-empirical model of settleability as a function of filament content and density was developed and evaluated, providing a better understanding of how these two parameters combine to affect settleability. Filament content (length per dry biomass weight) was nearly linearly related to sludge volume index (SVI) values, with a slightly decreasing differential, and biomass density exhibited an asymptotic relationship with SVI. The filament content associated with bulking was shown to be a function of biomass density. The marginal effect of filament content on settleability increased with decreasing biomass density (low density biomass was more sensitive to changes in filament content than was high density biomass), indicating a synergistic relationship between these

  10. Effects of blend ratio between high density polyethylene and biomass on co-gasification behavior in a two-stage gasification system

    KAUST Repository

    Park, Jae Hyun

    2016-08-12

    The co-gasification of a high density polyethylene (HDPE) blended with a biomass has been carried out in a two-stage gasification system which comprises an oxidative pyrolysis reactor and a thermal plasma reactor. The equivalence ratio was changed from 0.38 to 0.85 according to the variation of blend ratio between HDPE and biomass. The highest production yield was achieved to be 71.4 mol/h, when the equivalence ratio was 0.47. A large amount of hydrocarbons was produced from the oxidative pyrolysis reactor as decreasing equivalence ratio below 0.41, while the CO2 concentration significantly increased with a high equivalence ratio over 0.65. The production yield was improved by the thermal plasma reactor due to the conversion of hydrocarbons into syngas in a high temperature region of thermal plasma. At the equivalence ratio of 0.47, conversion selectivities of CO and H2 from hydrocarbons were calculated to be 74% and 44%, respectively. © 2016 Hydrogen Energy Publications LLC.

  11. Density and Specific Gravity Metrics in Biomass Research

    Science.gov (United States)

    Micheal C. Wiemann; G. Bruce Williamson

    2012-01-01

    Following the 2010 publication of Measuring Wood Specific Gravity… Correctly in the American Journal of Botany, readers contacted us to inquire about application of wood density and specific gravity to biomass research. Here we recommend methods for sample collection, volume measurement, and determination of wood density and specific gravity for...

  12. Effects of fertility, weed density and crop competition on biomass partitioning in Centaurea cyanus L.

    Directory of Open Access Journals (Sweden)

    Łukasz Chachulski

    2014-01-01

    Full Text Available The influence of environmental factors on biomass partitioning of annual arable weed Centaurea cyanus was analysed. We investigated the effect of fertilisation, density and competition with the winter rye crop on the reproductive investment. Three fertiliser treatments and three density levels were applied. In Centaurea cyanus differences in the pattern of biomass allocation to reproduction are related to plant size. The relationship between reproductive and vegetative mass is close to linear. It is consistent with the model of linear size-dependent reproductive output. In Centaurea cyanus this model worked well for size differences that have been generated by interspecific competition, nutrients supply and density. Our data support the hypothesis that plastic changes in relationship between vegetative and generative biomass are environmentally-induced. Significantly different relationship between vegetative and reproductive biomass were detected among populations growing at different density and fertility levels. The fertilisation with mineral fertiliser and manure resulted in an increase of generative biomass allocated to flowerheads and a decrease of reproductive effort. Generative dry weight increased more rapidly with plant size in higher densities of population and at lower fertility levels. The experiment showed that the rate of weight allocated to reproductive structures was bigger under the pressure of competition with cereal crop. At low fertility level and high density, when the individuals were small, generative biomass increased faster with plant size. The production of seeds was not directly dependent on biomass allocated into total reproductive structures. At low level, of nutrient supply C. cyanus gave more offspring per gram of its biomass. We discuss the results in context of life-history theory. From the strategic point of view, size-dependent variation in reproductive effort and in efficiency of reproduction can be

  13. Distribution, density, and biomass of introduced small mammals in the southern mariana islands

    Science.gov (United States)

    Wiewel, A.S.; Adams, A.A.Y.; Rodda, G.H.

    2009-01-01

    Although it is generally accepted that introduced small mammals have detrimental effects on island ecology, our understanding of these effects is frequently limited by incomplete knowledge of small mammal distribution, density, and biomass. Such information is especially critical in the Mariana Islands, where small mammal density is inversely related to effectiveness of Brown Tree Snake (Boiga irregularis) control tools, such as mouse-attractant traps. We used mark-recapture sampling to determine introduced small mammal distribution, density, and biomass in the major habitats of Guam, Rota, Saipan, and Tinian, including grassland, Leucaena forest, and native limestone forest. Of the five species captured, Rattus diardii (sensu Robins et al. 2007) was most common across habitats and islands. In contrast, Mus musculus was rarely captured at forested sites, Suncus murinus was not captured on Rota, and R. exulans and R. norvegicus captures were uncommon. Modeling indicated that neophobia, island, sex, reproductive status, and rain amount influenced R. diardii capture probability, whereas time, island, and capture heterogeneity influenced S. murinus and M. musculus capture probability. Density and biomass were much greater on Rota, Saipan, and Tinian than on Guam, most likely a result of Brown Tree Snake predation pressure on the latter island. Rattus diardii and M. musculus density and biomass were greatest in grassland, whereas S. murinus density and biomass were greatest in Leucaena forest. The high densities documented during this research suggest that introduced small mammals (especially R. diardii) are impacting abundance and diversity of the native fauna and flora of the Mariana Islands. Further, Brown Tree Snake control and management tools that rely on mouse attractants will be less effective on Rota, Saipan, and Tinian than on Guam. If the Brown Tree Snake becomes established on these islands, high-density introduced small mammal populations will likely

  14. Arbuscular mycorrhizal mediation of biomass-density relationship of Medicago sativa L. under two water conditions in a field experiment.

    Science.gov (United States)

    Zhang, Qian; Xu, Liming; Tang, Jianjun; Bai, Minge; Chen, Xin

    2011-05-01

    The biomass-density relationship (whereby the biomass of individual plants decreases as plant density increases) has generally been explained by competition for resources. Arbuscular mycorrhizal fungi (AMF) are able to affect plant interactions by mediating resource utilization, but whether this AMF-mediated interaction will change the biomass-density relationship is unclear. We conducted an experiment to test the hypothesis that AMF will shift the biomass-density relationship by affecting intraspecific competition. Four population densities (10, 100, 1,000, or 10,000 seedlings per square meter) of Medicago sativa L. were planted in field plots. Water application (1,435 or 327.7 mm/year) simulated precipitation in wet areas (sufficient water) and arid areas (insufficient water). The fungicide benomyl was applied to suppress AMF in some plots ("low-AMF" treatment) and not in others ("high-AMF" treatment). The effect of the AMF treatment on the biomass-density relationship depended on water conditions. High AMF enhanced the decrease of individual biomass with increasing density (the biomass-density line had a steeper slope) when water was sufficient but not when water was insufficient. AMF treatment did not affect plant survival rate or population size but did affect absolute competition intensity (ACI). When water was sufficient, ACI was significantly higher in the high-AMF treatment than in the low-AMF treatment, but ACI was unaffected by AMF treatment when water was insufficient. Our results suggest that AMF status did not impact survival rate and population size but did shift the biomass-density relationship via effects on intraspecific competition. This effect of AMF on the biomass-density relationship depended on the availability of water.

  15. ON-LINE MONITORING OF BIOMASS CONCENTRATION BASED ON A CAPACITANCE SENSOR: ASSESSING THE METHODOLOGY FOR DIFFERENT BACTERIA AND YEAST HIGH CELL DENSITY FED-BATCH CULTURES

    Directory of Open Access Journals (Sweden)

    A. C. L. Horta

    2015-12-01

    Full Text Available Abstract The performance of an in-situ capacitance sensor for on-line monitoring of biomass concentration was evaluated for some of the most important microorganisms in the biotechnology industry: Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Bacillus megaterium. A total of 33 batch and fed-batch cultures were carried out in a bench-scale bioreactor and biomass formation trends were followed by dielectric measurements during the growth phase as well as the induction phase, for 5 recombinant E. coli strains. Permittivity measurements and viable cellular concentrations presented a linear correlation for all the studied conditions. In addition, the permittivity signal was further used for inference of the cellular growth rate. The estimated specific growth rates mirrored the main trends of the metabolic states of the different cells and they can be further used for setting-up control strategies in fed-batch cultures.

  16. High Density Matter

    Directory of Open Access Journals (Sweden)

    Stone J.R.

    2013-12-01

    Full Text Available The microscopic composition and properties of matter at super-saturation densities have been the subject of intense investigation for decades. The scarcity of experimental and observational data has led to the necessary reliance on theoretical models. There remains great uncertainty in these models which, of necessity, have to go beyond the over-simple assumption that high density matter consists only of nucleons and leptons. Heavy strange baryons, mesons and quark matter in different forms and phases have to be included to fulfil basic requirements of fundamental laws of physics. In this contribution latest developments in construction of the Equation of State (EoS of high-density matter at zero and finite temperature assuming different composition of matter will be discussed. Critical comparison of model EoS with available experimental data from heavy ion collisions and observations on neutron stars, including gravitational mass, radii and cooling patterns and data on X-ray burst sources and low mass X-ray binaries are made. Fundamental differences between the EoS of low-density, high temperature matter, such as is created in heavy ion collisions and of high-density, low temperature compact objects is discussed.

  17. Fast pyrolysis of biomass at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna

    This Ph.D. thesis describes experimental and modeling investigations of fast high temperature pyrolysis of biomass. Suspension firing of biomass is widely used for power generation and has been considered as an important step in reduction of greenhouse gas emissions by using less fossil fuels. Fast...... pyrolysis at high temperatures plays a significant role in the overall combustion process since the biomass type, the reaction kinetics and heat transfer rates during pyrolysis influence the volatile gas release. The solid residue yield and its properties in suspension firing, including particle size...... and shape, composition, reactivity and burnout depend significantly on the operating conditions of the fast pyrolysis. Biomass fast pyrolysis experiments were performed in a laboratory-scale wire mesh reactor and bench scale atmospheric pressure drop tube / entrained flow reactors with the aim...

  18. Allometric Biomass, Biomass Expansion Factor and Wood Density Models for the OP42 Hybrid Poplar in Southern Scandinavia

    DEFF Research Database (Denmark)

    Nielsen, Anders Tærø; Nord-Larsen, Thomas; Stupak, Inge

    2015-01-01

    Biomass and biomass expansion factor functions are important in wood resource assessment, especially with regards to bioenergy feedstocks and carbon pools. We sampled 48 poplar trees in seven stands with the purpose of estimating allometric models for predicting biomass of individual tree...... components, stem-to-aboveground biomass expansion factors (BEF) and stem basic densities of the OP42 hybrid poplar clone in southern Scandinavia. Stand age ranged from 3 to 31 years, individual tree diameter at breast height (dbh) from 1.2 to 41 cm and aboveground tree biomass from 0.39 to 670 kg. Models...... for predicting total aboveground leafless, stem and branch biomass included dbh and tree height as predictor variables and explained more than 97 % of the total variation. The BEF was approaching 2.0 for the smallest trees but declined with increasing tree size and stabilized around 1.2 for trees with dbh >10 cm...

  19. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...... number of biomass and refuse fired combined heat and power plant boilers, b) Laboratory exposures and metallurgical examinations of material specimens with ash deposits in well-defined gas environments with HCl and SO2 in a furnace....

  20. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  1. Combining enhanced biomass density with reduced lignin level for improved forage quality.

    Science.gov (United States)

    Gallego-Giraldo, Lina; Shadle, Gail; Shen, Hui; Barros-Rios, Jaime; Fresquet Corrales, Sandra; Wang, Huanzhong; Dixon, Richard A

    2016-03-01

    To generate a forage crop with increased biomass density that retains forage quality, we have genetically transformed lines of alfalfa (Medicago sativa L.) expressing antisense constructs targeting two different lignin pathway biosynthetic genes with a construct for down-regulation of a WRKY family transcription factor that acts as a repressor of secondary cell wall formation in pith tissues. Plants with low-level expression of the WRKY dominant repressor construct produced lignified cell walls in pith tissues and exhibited enhanced biomass and biomass density, with an increase in total sugars in the cell wall fraction; however, lines with high expression of the WRKY dominant repressor construct exhibited a very different phenotype, with loss of interfascicular fibres associated with repression of the NST1 transcription factor. This latter phenotype was not observed in transgenic lines in which the WRKY transcription factor was down-regulated by RNA interference. Enhanced and/or ectopic deposition of secondary cell walls was also seen in corn and switchgrass expressing WRKY dominant repressor constructs, with enhanced biomass in corn but reduced biomass in switchgrass. Neutral detergent fibre digestibility was not impacted by WRKY expression in corn. Cell walls from WRKY-DR-expressing alfalfa plants with enhanced secondary cell wall formation exhibited increased sugar release efficiency, and WRKY dominant repressor expression further increased sugar release in alfalfa down-regulated in the COMT, but not the HCT, genes of lignin biosynthesis. These results suggest that significant enhancements in forage biomass and quality can be achieved through engineering WRKY transcription factors in both monocots and dicots. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. High Density QCD

    CERN Document Server

    Ducati, M B G

    2001-01-01

    The dynamics of high partonic density QCD is presented considering, in the double logarithm approximation, the parton recombination mechanism built in the AGL formalism, developed including unitarity corrections for the nucleon as well for nucleus. It is shown that these corrections are under theoretical control. The resulting non linear evolution equation is solved in the asymptotic regime, and a comprehensive phenomenology concerning Deep Inelastic Scattering like $F_2$, $F_L$, $F_2^c$. $\\partial F_2/ \\partial \\ln Q^2$, $\\partial F^A_2/ \\partial \\ln Q^2$, etc, is presented. The connection of our formalism with the DGLAP and BFKL dynamics, and with other perturbative (K) and non-perturbative (MV-JKLW) approaches is analised in detail. The phenomena of saturation due to shadowing corrections and the relevance of this effect in ion physics and heavy quark production is emphasized. The implications to e-RHIC, HERA-A, and LHC physics and some open questions are mentioned.

  3. Benthic invertebrate density, biomass, and instantaneous secondary production along a fifth-order human-impacted tropical river.

    Science.gov (United States)

    Aguiar, Anna Carolina Fornero; Gücker, Björn; Brauns, Mario; Hille, Sandra; Boëchat, Iola Gonçalves

    2015-07-01

    The aim of this study was to assess land use effects on the density, biomass, and instantaneous secondary production (IP) of benthic invertebrates in a fifth-order tropical river. Invertebrates were sampled at 11 stations along the Rio das Mortes (upper Rio Grande, Southeast Brazil) in the dry and the rainy season 2010/2011. Invertebrates were counted, determined, and measured to estimate their density, biomass, and IP. Water chemical characteristics, sediment heterogeneity, and habitat structural integrity were assessed in parallel. Total invertebrate density, biomass, and IP were higher in the dry season than those in the rainy season, but did not differ significantly among sampling stations along the river. However, taxon-specific density, biomass, and IP differed similarly among sampling stations along the river and between seasons, suggesting that these metrics had the same bioindication potential. Variability in density, biomass, and IP was mainly explained by seasonality and the percentage of sandy sediment in the riverbed, and not directly by urban or agricultural land use. Our results suggest that the consistently high degradation status of the river, observed from its headwaters to mouth, weakened the response of the invertebrate community to specific land use impacts, so that only local habitat characteristics and seasonality exerted effects.

  4. BIOMASS AND DENSITY OF BROWN AND RAINBOW TROUT IN NEW MEXICO STREAMS

    Directory of Open Access Journals (Sweden)

    Srečko Lainer

    1995-03-01

    Full Text Available Mean stream numerical density of the brown trout (Salmo trutta m. fario Linnaeus, 1758 and the rainbow trout (Onchorhynchus mykiss Walbaum, 1792 was 0.090 fish/m2 of which brown trout averaged 69% (72% in total biomass in 15 high-elevation New Mexico streams (1,661-2,560 m above sea level. Total trout density varied from 0.008/m2 in 1988 and 1989. Mean trout density ranged between 0.023-0.121 fish/m2 at site s open to public fishing. Considerably higher densities (0.142-0.409 fish/m2 were observed at sites closed for fishing. In the seven selected streams shared by both species, brown trout density exceeded rainbow trout density except at the two sites closed to fishing. Brown trout were stocked only as fingerlings (average 7,000 fish/stream/year while rainbow trout were stocked only in harvestable sizes (11,000 fish/stream/year. Reported total trout yield rates exceeded the total number of fish estimated to be in the stream by 1.01 to 11.63 in most small streams open to fishing. The proportional stock density (PSD ranged between O and 50 percent. Streams with low to moderate intensities of fishing had the highest PSD.

  5. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature

    Science.gov (United States)

    Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M.; Stevenson, Pablo R.; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C.; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M.

    2017-01-01

    Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage. PMID:28301482

  6. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature.

    Science.gov (United States)

    Álvarez-Dávila, Esteban; Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M; Stevenson, Pablo R; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M

    2017-01-01

    Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage.

  7. Dynamics of biomass and population density of fucus algae of the Kola Bay, Barents Sea

    Directory of Open Access Journals (Sweden)

    Malavenda S. S.

    2016-03-01

    Full Text Available The long-term dynamics of biomass and population density of Fucus distichus and F. vesiculosus in the southern and middle knees of the Kola Bay have been analyzed. The feedbacks between these parameters and their changes over several years have been revealed for the first time. Changing the prevalence of biomass and population density can be considered as an adaptation at the population level to maintain the stability of algae communities in chronic pollution

  8. Biomass of tree species as a response to planting density and interspecific competition

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2014-04-01

    Full Text Available Planting trees is an important way to promote the recovery of degraded areas in the Caatinga region. Experiments (E1, E2, and E3 were conducted in a randomized blocks design, with three, three, and five replicates, respectively. The objectives were to evaluate biomass of the shoots of: a gliricidia (G and sabiá (S, as a response to planting density; b G, S, and neem (N in competition; c G, and S in agroforestry. E1 was conducted in split-plots, and planting densities (400, 600, 800, 1000, and 1200 plants ha-1 as subplots. E2 consisted of a factorial comprising the following plots: GGG, NGN, SGS, NNN, GNG, SNS, SSS, GSG, NSN (each letter represents a row of plants. E3 was conducted with G and S in agroforestry experiment. The trees were harvested after 54, 42, and 27 months old, in E1, E2 and E3, respectively. In E1, G presented higher green biomass of the stems and leaf at smaller densities than S, but lower green biomass of branches at most densities. The species did not differ for mean stem dry biomass and leaf dry biomass, but G showed higher branch dry biomass at most densities. Higher planting densities increased green and dry biomass of stems, branches, and leaves in S, but decreased those characteristics in G, with the exception of leaf dry mass, which was not influenced by density. In E2, the behavior of each species was identical in plots containing the same or different species. Griricidia showed the highest green biomass of stems and branches, and the highest values for geren biomass of the leaf were observed for gliricidia and neem. The highest stem, branch, and leaf dry biomass values were obtained for G, S, and N, respectively. In E3, G was superior for stem and leaf green biomass, and for stem and branch dry biomass. There were no differences between species for the other biomass values.

  9. High density photovoltaic

    Energy Technology Data Exchange (ETDEWEB)

    Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S. [Spire Corp., Bedford, MA (United States)

    1997-10-14

    Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

  10. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  11. densities and biomasses of some ungulate populations in eastern ...

    African Journals Online (AJOL)

    The densities of natural populations of tropical ungulates-as well as their structure and dynamics-are ... Controls were repeatedly made by European observers to check the reliability of ..... The effect of big game on forest management. Thesis.

  12. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems

    Directory of Open Access Journals (Sweden)

    Yinghu Zhang

    2015-04-01

    Full Text Available Aim of study: The study was conducted to characterize the impacts of plant roots systems (e.g., root length density and root biomass on soil preferential flow in forest ecosystems. Area of study: The study was carried out in Jiufeng National Forest Park, Beijing, China. Material and methods: The flow patterns were measured by field dye tracing experiments. Different species (Sophora japonica Linn,Platycladus orientalis Franco, Quercus dentata Thunbwere quantified in two replicates, and 12 soil depth were applied. Plant roots were sampled in the sieving methods. Root length density and root biomass were measured by WinRHIZO. Dye coverage was implied in the image analysis, and maximum depth of dye infiltration by direct measurement. Main results: Root length density and root biomass decreased with the increasing distance from soil surface, and root length density was 81.6% higher in preferential pathways than in soil matrix, and 66.7% for root biomass with respect to all experimental plots. Plant roots were densely distributed in the upper soil layers. Dye coverage was almost 100% in the upper 5-10 cm, but then decreased rapidly with soil depth. Root length density and root biomass were different from species: Platycladus orientalis Franco > Quercus dentata Thunb > Sophora japonica Linn. Research highlights: The results indicated that fine roots systems had strong effects on soil preferential flow, particularly root channels enhancing nutrition transport across soil profiles in forest dynamics.

  13. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  14. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  15. Influence of crop rotation and meteorological conditons on density and biomass of weeds in spring barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Maria Wanic

    2012-12-01

    Full Text Available The paper presents the analysis of changes in weed infestation in spring barley cultivated in the years 1990-2004 in crop rotation with a 25% proportion of this cereal (potato - spring barley - sowing peas - winter triticale, when it was grown after potato, and in crop rotation with its 75% proportion (potato - spring barley - spring barley - spring barley, when it was grown once or twice after spring barley. In the experiment, no weed control was applied. Every year in the spring (at full emergence of the cereal and before the harvest, the composition of weed species and weed density of particular weed species were determined, and before the harvest also their biomass. Weed density increased linearly on all plots during the 15-year period. The average values confirm the increase in weed biomass in the case when spring barley was grown once or twice after this crop; however, those differences were influenced by the previous situation only during some seasons. Weed density and biomass showed high year-to-year variability and a positive correlation with the amount of precipitation and a negative correlation with temperature during the period of the study. A negative correlation between the yield of barley and weed biomass was shown.

  16. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    Science.gov (United States)

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity

  17. High-biomass sorghum yield estimate with aerial imagery

    Science.gov (United States)

    Sui, Ruixiu; Hartley, Brandon E.; Gibson, John M.; Yang, Chenghai; Thomasson, J. Alex; Searcy, Stephen W.

    2011-01-01

    To reach the goals laid out by the U.S. Government for displacing fossil fuels with biofuels, high-biomass sorghum is well-suited to achieving this goal because it requires less water per unit dry biomass and can produce very high biomass yields. In order to make biofuels economically competitive with fossil fuels it is essential to maximize production efficiency throughout the system. The goal of this study was to use remote sensing technologies to optimize the yield and harvest logistics of high-biomass sorghum with respect to production costs based on spatial variability within and among fields. Specific objectives were to compare yield to aerial multispectral imagery and develop predictive relationships. A 19.2-ha high-biomass sorghum field was selected as a study site and aerial multispectral images were acquired with a four-camera imaging system on July 17, 2009. Sorghum plant samples were collected at predetermined geographic coordinates to determine biomass yield. Aerial images were processed to find relationships between image reflectance and yield of the biomass sorghum. Results showed that sorghum biomass yield in early August was closely related (R2 = 0.76) to spectral reflectance. However, in the late season the correlations between the biomass yield and spectral reflectance were not as positive as in the early season. The eventual outcome of this work could lead to predicted-yield maps based on remotely sensed images, which could be used in developing field management practices to optimize yield and harvest logistics.

  18. Saturation and High Density QCD

    OpenAIRE

    Mueller, A. H.

    2005-01-01

    Recent progress in understanding general properties of high energy scattering near the unitarity limit, where high density gluon components of the wavefunction are dominant, is reviewed. The similarity of the QCD problem and that of reaction-diffusion processes in statistical physics is emphasized. The energy dependence of the saturation momentum and the status of geometric scaling are discussed.

  19. Influence of Sowing Times, Densities, and Soils to Biomass and Ethanol Yield of Sweet Sorghum

    Directory of Open Access Journals (Sweden)

    Tran Dang Xuan

    2015-08-01

    Full Text Available The use of biofuels helps to reduce the dependency on fossil fuels and therefore decreases CO2 emission. Ethanol mixed with gasoline in mandatory percentages has been used in many countries. However, production of ethanol mainly depends on food crops, commonly associated with problems such as governmental policies and social controversies. Sweet sorghum (Sorghum bicolor (L. Moench is one of the most potential and appropriate alternative crops for biofuel production because of its high biomass and sugar content, strong tolerance to environmental stress conditions and diseases, and wide adaptability to various soils and climates. The aim of this study was to select prospective varieties of sweet sorghum, optimum sowing times and densities to achieve high yields of ethanol production and to establish stable operational conditions in cultivating this crop. The summer-autumn cropping season combined with the sowing densities of 8.3–10.9 plant m−2 obtained the highest ethanol yield. Among cultivated locations, the soil with pH of 5.5 and contents of Al and Zn of 39.4 and 0.6 g kg−1, respectively, was the best condition to have an ethanol yield >5000 L ha−1. The pH ≥ 6.0 may be responsible for the significant reduction of zinc content in soils, which decreases both biomass of sweet sorghum and ethanol yield, while contents of N, P, K, organic carbon (OC and cation exchange capacity (CEC, and Fe likely play no role. The cultivar 4A was the preferred candidate for ethanol production and resistant to pests and diseases, especially cut worm (Agrotis spp..

  20. Geographical variation in oligochaete density and biomass in subtropical mangrove wetlands of China

    Science.gov (United States)

    Chen, Xinwei; Cai, Lizhe; Zhou, Xiping; Rao, Yiyong

    2017-10-01

    Oligochaetes play an important role in nutrient cycling and energy flow in benthic food webs as well as in mangrove wetlands. However, they have not been as extensively studied as other macrofaunal groups such as polychaetes, gastropods, bivalves, and crustaceans. Under the assumption that oligochaete density and biomass obey specific geographical distribution patterns in subtropical mangrove wetlands of China, we investigated these two parameters in the Luoyang Estuary of Quanzhou Bay, Zhangjiang Estuary and Gaoqiao mangrove wetlands. A geographical gradient in oligochaete density was present in Aegiceras corniculatum and Kandelia obovata habitats, whereby it decreased from lower latitudes to higher latitudes. Further, ANOVA tests on oligochaete distribution revealed that both oligochaete density and biomass were significantly influenced by region, season and region × season at the A. corniculatum and K. obovata habitats. The annual average oligochaete density and biomass at the A. corniculatum habitat were higher than that at the K. obovata habitat, in both the Luoyang and Zhangjiang estuaries. There were significant correlations between oligochaete density and biomass and sediment particle size parameters, confirming that sand, silt, and clay contents were the key environmental factors affecting oligochaete distribution.

  1. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo.

    Science.gov (United States)

    Paoli, Gary D; Curran, Lisa M; Slik, J W F

    2008-03-01

    Studies on the relationship between soil fertility and aboveground biomass in lowland tropical forests have yielded conflicting results, reporting positive, negative and no effect of soil nutrients on aboveground biomass. Here, we quantify the impact of soil variation on the stand structure of mature Bornean forest throughout a lowland watershed (8-196 m a.s.l.) with uniform climate and heterogeneous soils. Categorical and bivariate methods were used to quantify the effects of (1) parent material differing in nutrient content (alluvium > sedimentary > granite) and (2) 27 soil parameters on tree density, size distribution, basal area and aboveground biomass. Trees > or =10 cm (diameter at breast height, dbh) were enumerated in 30 (0.16 ha) plots (sample area = 4.8 ha). Six soil samples (0-20 cm) per plot were analyzed for physiochemical properties. Aboveground biomass was estimated using allometric equations. Across all plots, stem density averaged 521 +/- 13 stems ha(-1), basal area 39.6 +/- 1.4 m(2) ha(-1) and aboveground biomass 518 +/- 28 Mg ha(-1) (mean +/- SE). Adjusted forest-wide aboveground biomass to account for apparent overestimation of large tree density (based on 69 0.3-ha transects; sample area = 20.7 ha) was 430 +/- 25 Mg ha(-1). Stand structure did not vary significantly among substrates, but it did show a clear trend toward larger stature on nutrient-rich alluvium, with a higher density and larger maximum size of emergent trees. Across all plots, surface soil phosphorus (P), potassium, magnesium and percentage sand content were significantly related to stem density and/or aboveground biomass (R (Pearson) = 0.368-0.416). In multiple linear regression, extractable P and percentage sand combined explained 31% of the aboveground biomass variance. Regression analyses on size classes showed that the abundance of emergent trees >120 cm dbh was positively related to soil P and exchangeable bases, whereas trees 60-90 cm dbh were negatively related to these

  2. Biomass density-function relationships in suspended growth biological processes - A critical review.

    Science.gov (United States)

    Li, Lin; Pagilla, Krishna R

    2017-03-15

    Good settling performance in suspended growth biomass systems, for example in activated sludge (AS) process, leads to efficient wastewater and sludge treatment. Factors that cause the differences in settleablility of AS include the morphology of bacteria, microbial community structure, and the density of bacteria and flocs. Density of AS at three levels, namely, cell, floc, and process, have been discussed here to explain the variations in AS settleability. Dense materials, inside or outside the cell, significantly increase density of AS bacteria or flocs. Functional bacteria, defined as those performing N and P removal and recovery such as phosphate accumulating organisms, nitrifiers, and anammox contain cellular inclusions that increase their density, and consequently a dense and well-settling biomass results at the process level in those systems. A density based selector of AS can be used to enrich functional bacteria in the process through the wasting and sludge age control operations in AS process. This paper critically reviews the latest literature to elucidate mechanisms of density enhancement from cell to process level, and identifies needs/strategies to improve the AS process through a biomass density selector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.;

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  4. High density matter at RHIC

    Indian Academy of Sciences (India)

    Thomas S Ullrich

    2004-02-01

    QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at RHIC indicated that the conditions to create a new state of matter are indeed reached in the collisions of heavy nuclei. Studies of particle spectra and their correlations at low transverse momenta provide evidence of strong pressure gradients in the highly interacting dense medium and hint that we observe a system in thermal equilibrium. Recent runs with high statistics allow us to explore the regime of hard-scattering processes where the suppression of hadrons at large transverse momentum, and quenching of di-jets are observed thus providing further evidence for extreme high density matter created in collisions at RHIC.

  5. Aruscular mycorhizal fungi alter plant allometry and biomass - density relationships

    DEFF Research Database (Denmark)

    Zhang, Qian; Zhang, Lu; Weiner, Jacob;

    2011-01-01

    fungi (AMF) can promote plant growth and affect plant form. Here experiments were carried out to test whether AMF affect plant allometry and the self-thinning trajectory. Methods Two experiments were conducted on Medicago sativa L., a leguminous species known to be highly dependent on mycorrhiza. Two...

  6. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  7. Low-Density LiDAR and Optical Imagery for Biomass Estimation over Boreal Forest in Sweden

    Directory of Open Access Journals (Sweden)

    Iurii Shendryk

    2014-05-01

    Full Text Available Knowledge of the forest biomass and its change in time is crucial to understanding the carbon cycle and its interactions with climate change. LiDAR (Light Detection and Ranging technology, in this respect, has proven to be a valuable tool, providing reliable estimates of aboveground biomass (AGB. The overall goal of this study was to develop a method for assessing AGB using a synergy of low point density LiDAR-derived point cloud data and multi-spectral imagery in conifer-dominated forest in the southwest of Sweden. Different treetop detection algorithms were applied for forest inventory parameter extraction from a LiDAR-derived canopy height model. Estimation of AGB was based on the power functions derived from tree parameters measured in the field, while vegetation classification of a multi-spectral image (SPOT-5 was performed in order to account for dependences of AGB estimates on vegetation types. Linear regression confirmed good performance of a newly developed grid-based approach for biomass estimation (R2 = 0.80. Results showed AGB to vary from below 1 kg/m2 in very young forests to 94 kg/m2 in mature spruce forests, with RMSE of 4.7 kg/m2. These AGB estimates build a basis for further studies on carbon stocks as well as for monitoring this forest ecosystem in respect of disturbance and change in time. The methodology developed in this study can be easily adopted for assessing biomass of other conifer-dominated forests on the basis of low-density LiDAR and multispectral imagery. This methodology is hence of much wider applicability than biomass derivation based on expensive and currently still scarce high-density LiDAR data.

  8. High density fluoride glass calorimeter

    Science.gov (United States)

    Xie, Q.; Scheltzbaum, J.; Akgun, U.

    2014-04-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Quartz plates to replace the plastic scintillators in current LHC calorimeters have been proposed in recent reports. Quartz based Cherenkov calorimeters can solve the radiation damage problem, however light production and transfer have proven to be challenging. This report summarizes the results from a computational study on the performance of a high-density glass calorimeter. High-density, scintillating, fluoride glass, CHG3, was used as the active material. This glass has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. Here, the details of a Geant4 model for a sampling calorimeter prototype with 20 layers, and its hadronic as well as electromagnetic performances are reported.

  9. Non Destructive Method for Biomass Prediction Combining TLS Derived Tree Volume and Wood Density

    Directory of Open Access Journals (Sweden)

    Jan Hackenberg

    2015-04-01

    Full Text Available This paper presents a method for predicting the above ground leafless biomass of trees in a non destructive way. We utilize terrestrial laserscan data to predict the volume of the trees. Combining volume estimates with density measurements leads to biomass predictions. Thirty-six trees of three different species are analyzed: evergreen coniferous Pinus massoniana, evergreen broadleaved Erythrophleum fordii and leafless deciduous Quercus petraea. All scans include a large number of noise points; denoising procedures are presented in detail. Density values are considered to be a minor source of error in the method if applied to stem segments, as comparison to ground truth data reveals that prediction errors for the tree volumes are in accordance with biomass prediction errors. While tree compartments with a diameter larger than 10 cm can be modeled accurately, smaller ones, especially twigs with a diameter smaller than 4 cm, are often largely overestimated. Better prediction results could be achieved by applying a biomass expansion factor to the biomass of compartments with a diameter larger than 10 cm. With this second method the average prediction error for Q. petraea could be reduced from 33.84% overestimation to 3.56%. E. fordii results could also be improved reducing the average prediction error from

  10. Forest biomass density, utilization and production dynamics in a western Himalayan watershed

    Institute of Scientific and Technical Information of China (English)

    Rakesh Kumar Sharma; Prem Lall Sankhayan; Ole Hofstad

    2008-01-01

    There is enough evidence to show that the forest biomass has decreased significantly in the Indian Himalayan state of Himachal Pradesh. The government has responded through restrictive measures to check this decline. Using tree biomass as proxy for degradation, we assessed the current state of biomass within dominant land use types and examined its implications for sustainability. The highest above-ground mean tree biomass density of 1158 t·ha-1 was recorded for the reserved forest followed by 728, 13, 11, 8, 5 and 3 t·ha-1 in the protected forest, fallow land, cultivated-unirrigated land, grassland, orchard land and cultivated-irrigated land respectively. Of the total accessible biomass, only 0.31% was extracted annually by the local people for fuel, fodder and other uses. Though, the current level of extraction may be sustainable in the short run, insufficient regeneration is observed for long term sustainability. Forest biomass production was simulated for the next 30 years with a logistic growth model and the relative significance of input variables in influencing system behaviour was analysed through sensitivity analysis. The model results highlighted the declining forest resources in the long run. Positive response through appropriate government policies can, however, change the scenario for the better.

  11. Effect of raw material properties and die geometry on the density of biomass pellets from composted municipal solid waste

    Directory of Open Access Journals (Sweden)

    Abedin Zafari

    2012-11-01

    Full Text Available Densification of biomass feedstocks, such as pelletizing, can increase bulk density, improve storability, reduce transportation costs, and ease the handling of biomass using existing handling and storage equipment for grains. In order to study the pelletizing process, compost pellets were produced under controlled conditions. The aim of the work was to investigate the effect of raw material properties and the die geometry on the true density of formed pellets and also find the optimal conditions of the densification process for producing pellets with high density. Compost was extruded into cylindrical pellets utilizing open-end dies under axial stress from a vertical piston applied by a hydraulic press. The effects of independent variables, including the raw material moisture content (35 to 45% (wet basis, hammer mill screen size (0.3 to 1.5 mm, speed of piston (2 to 10 mm/s, and die length (8 to 12 mm on pellet density, were determined using response surface methodology. A quadratic model was proposed to predict the pellet density, which had high F and R2 values along with a low p value, indicating the predictability of the model. Moisture content, speed of piston, and particle size significantly affected (P 0.05.

  12. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  13. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  14. High Biomass Low Export Regimes in the Southern Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Phoebe J.; Bishop, James K.B.

    2006-01-27

    This paper investigates ballasting and remineralization controls of carbon sedimentation in the twilight zone (100-1000 m) of the Southern Ocean. Size-fractionated (<1 {micro}m, 1-51 {micro}m, >51 {micro}m) suspended particulate matter was collected by large volume in-situ filtration from the upper 1000 m in the Subantarctic (55 S, 172 W) and Antarctic (66 S, 172 W) zones of the Southern Ocean during the Southern Ocean Iron Experiment (SOFeX) in January-February 2002. Particles were analyzed for major chemical constituents (POC, P, biogenic Si, CaCO3), and digital and SEM image analyses of particles were used to aid in the interpretation of the chemical profiles. Twilight zone waters at 66 S in the Antarctic had a steeper decrease in POC with depth than at 55 S in the Subantarctic, with lower POC concentrations in all size fractions at 66 S than at 55 S, despite up to an order of magnitude higher POC in surface waters at 66 S. The decay length scale of >51 {micro}m POC was significantly shorter in the upper twilight zone at 66 S ({delta}{sub e}=26 m) compared to 55 S ({delta}{sub e}=81 m). Particles in the carbonate-producing 55 S did not have higher excess densities than particles from the diatom-dominated 66 S, indicating that there was no direct ballast effect that accounted for deeper POC penetration at 55 S. An indirect ballast effect due to differences in particle packaging and porosities cannot be ruled out, however, as aggregate porosities were high ({approx}97%) and variable. Image analyses point to the importance of particle loss rates from zooplankton grazing and remineralization as determining factors for the difference in twilight zone POC concentrations at 55 S and 66 S, with stronger and more focused shallow remineralization at 66 S. At 66 S, an abundance of large (several mm long) fecal pellets from the surface to 150 m, and almost total removal of large aggregates by 200 m, reflected the actions of a single or few zooplankton species capable of

  15. Macrofaunal density and biomass in the Campeche Canyon, Southwestern Gulf of Mexico

    Science.gov (United States)

    Escobar Briones, Elva; Estrada Santillán, Erika Laura; Legendre, Pierre

    2008-12-01

    The composition, density and community structure of the benthic macrofauna were investigated in sediments of the Campeche Canyon in the SW Gulf of Mexico. Total macrofaunal density ranged from 9466±2736 ind m -2 at the continental shelf station to 1550±195 ind m -2 in the canyon. Density values significantly diminished with distance from the coast and depth; only a few stations in the center of the canyon displayed larger density values (E-37 with 4666±1530 ind m -2, E-36 with 5791±642 ind m -2 and E-26 with 6925±2258 ind m -2). Densities were positively correlated to organic nitrogen in the sediment ( r=0.82) and coarse silt ( r=0.43), and negatively with depth ( r=-0.74) and distance from the coast ( r=-0.68). At all stations, the polychaete worms contributed most to the multi-species community structure. The nematodes and Foraminifera displayed their highest densities in the center of the canyon. The biomass values declined significantly with depth. We conclude that the macrofauna density and biomass changed in response to organic matter contents in the sediment, both with distance from the coast and with depth.

  16. Size-resolved chemical composition, effective density, and optical properties of biomass burning particles

    Science.gov (United States)

    Zhai, Jinghao; Lu, Xiaohui; Li, Ling; Zhang, Qi; Zhang, Ci; Chen, Hong; Yang, Xin; Chen, Jianmin

    2017-06-01

    Biomass burning aerosol has an important impact on the global radiative budget. A better understanding of the correlations between the mixing states of biomass burning particles and their optical properties is the goal of a number of current studies. In this work, the effective density, chemical composition, and optical properties of rice straw burning particles in the size range of 50-400 nm were measured using a suite of online methods. We found that the major components of particles produced by burning rice straw included black carbon (BC), organic carbon (OC), and potassium salts, but the mixing states of particles were strongly size dependent. Particles of 50 nm had the smallest effective density (1.16 g cm-3) due to a relatively large proportion of aggregate BC. The average effective densities of 100-400 nm particles ranged from 1.35 to 1.51 g cm-3 with OC and inorganic salts as dominant components. Both density distribution and single-particle mass spectrometry showed more complex mixing states in larger particles. Upon heating, the separation of the effective density distribution modes confirmed the external mixing state of less-volatile BC or soot and potassium salts. The size-resolved optical properties of biomass burning particles were investigated at two wavelengths (λ = 450 and 530 nm). The single-scattering albedo (SSA) showed the lowest value for 50 nm particles (0.741 ± 0.007 and 0.889 ± 0.006) because of the larger proportion of BC content. Brown carbon played an important role for the SSA of 100-400 nm particles. The Ångström absorption exponent (AAE) values for all particles were above 1.6, indicating the significant presence of brown carbon in all sizes. Concurrent measurements in our work provide a basis for discussing the physicochemical properties of biomass burning aerosol and its effects on the global climate and atmospheric environment.

  17. Mechanical and Physical Properties Ofmedium Density Fiberboard Produce from Renewable Biomass of Agricultural Fiber

    Directory of Open Access Journals (Sweden)

    Yuliati Indrayani

    2013-01-01

    Full Text Available The development of Medium density fiberboard (MDF made from renewable biomass of pineapple (Ananas comosus leaf fiber and their suitability as a construction material has been investigated. Two different types of board with a target density of 0.8 gr/cm3 were manufactured. The board was prepared in three layers of about 1:1:1 weight ratio in unidirectional and cross-oriented board using low molecular weight (LM PF resin type PL-3725 and high molecular weight (HM PF resin type PL-2818 for impregnation and adhesive purposes. For comparison, boards with the same structure were prepared using high molecular weight PF resin only. The mechanical properties of the boards have been examined as well as their physical properties. The results shows that generally, mechanical properties, Modulus Of Elasticity (MOE, value was improved with mix PF resin as well as Modulus Of Rupture (MOR. Pineaplle leaf fiber resulted in significantly higher MOR, consistent with our observation during the test. This information is useful when a high MOR is required in application. Other mechanical properties such as internal bonding (IB and screw-holding capacities (SH improved as those of MOE and MOR. Fiber from agricultural residues such as pineapple leaf are longer than wood fiber. This might explain why screw-holding capacities increased since the failure in those tests is mainly due to tear force. Diffrences in the physical properties between the board types were caused by the presence of the low molecular weight PF resin for the impregnation of the fibers. As using of mix PF resin, thickness swelling (TS properties improved as well. No significant difference was found for both mechanical and physical properties. The effect of the PF resin for impregnation was noted; however, fiber orientation had no effect on both physical and mechanical properties of the specimens.

  18. Importance of tree basic density in biomass estimation and associated uncertainties

    DEFF Research Database (Denmark)

    Njana, Marco Andrew; Meilby, Henrik; Eid, Tron

    2016-01-01

    Key message Aboveground and belowground tree basic densities varied between and within the three mangrove species. If appropriately determined and applied, basic density may be useful in estimation of tree biomass. Predictive accuracy of the common (i.e. multi-species) models including aboveground...... of sustainable forest management, conservation and enhancement of carbon stocks (REDD+) initiatives offer an opportunity for sustainable management of forests including mangroves. In carbon accounting for REDD+, it is required that carbon estimates prepared for monitoring reporting and verification schemes...... and examine uncertainties in estimation of tree biomass using indirect methods. Methods This study focused on three dominant mangrove species (Avicennia marina (Forssk.) Vierh, Sonneratia alba J. Smith and Rhizophora mucronata Lam.) in Tanzania. A total of 120 trees were destructively sampled for aboveground...

  19. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor.

    Science.gov (United States)

    Fu, Weiqi; Gudmundsson, Olafur; Feist, Adam M; Herjolfsson, Gisli; Brynjolfsson, Sigurdur; Palsson, Bernhard Ø

    2012-10-31

    Green microalgae have recently drawn attention as promising organisms for biofuel production; however, the question is whether they can grow sufficient biomass relative to limiting input factors to be economically feasible. We have explored this question by determining how much biomass the green microalga Chlorella vulgaris can produce in photobioreactors based on highly efficient light-emitting diodes (LEDs). First, growth results were improved under the less expensive light of 660 nm LEDs, developing them in the laboratory to meet the performance levels of the traditional but more expensive 680 nm LEDs by adaptive laboratory evolution (ALE). We then optimized several other key parameters, including input superficial gas velocity, CO(2) concentration, light distribution, and growth media in reference to nutrient stoichiometry. Biomass density thereby rose to approximately 20 g dry-cell-weight (gDCW) per liter (L). Since the light supply was recognized as a limiting factor, illumination was augmented by optimization at systematic level, providing for a biomass productivity of up to 2.11 gDCW/L/day, with a light yield of 0.81 gDCW/Einstein. These figures, which represent the best results ever reported, point to new dimensions in the photoautotrophic performance of microalgal cultures.

  20. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.

    Science.gov (United States)

    Liu, Wei; Mu, Wei; Deng, Yulin

    2014-12-01

    Herein, we report high-performance fuel cells that are catalyzed solely by polyoxometalate (POM) solution without any solid metal or metal oxide. The novel design of the liquid-catalyst fuel cells (LCFC) changes the traditional gas-solid-surface heterogeneous reactions to liquid-catalysis reactions. With this design, raw biomasses, such as cellulose, starch, and even grass or wood powders can be directly converted into electricity. The power densities of the fuel cell with switchgrass (dry powder) and bush allamanda (freshly collected) are 44 mW cm(-2) and 51 mW cm(-2) respectively. For the cellulose-based biomass fuel cell, the power density is almost 3000 times higher than that of cellulose-based microbial fuel cells. Unlike noble-metal catalysts, POMs are tolerant to most organic and inorganic contaminants. Therefore, almost any raw biomass can be used directly to produce electricity without prior purification.

  1. The effects of initial planting density on above- and below-ground biomass in a 25-year-old Fagus orientalis Lipsky plantation in Hopa, Turkey

    OpenAIRE

    Güner, Sinan; Yağcı, Volkan; Tilki, Fahrettin; Çelik, Nejat

    2010-01-01

    The aim of this study was to determine the influence of initial planting density on above- and below- ground biomass in 25 years old oriental beech stands located in Hopa, Artvin, Turkey. The initial spacings used in this study were 0.7 x 2.0 m ( high planting density) and 2.0 x 2.0 m (low planting density). To analyse the planting density response of trees of different sizes (diameter), the sample trees within each stand density class were classified into four dbh classes (dbh1, dbh2, dbh3, ...

  2. Advances in High Throughput Screening of Biomass Recalcitrance (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Turner, G. B.; Decker, S. R.; Tucker, M. P.; Law, C.; Doeppke, C.; Sykes, R. W.; Davis, M. F.; Ziebell, A.

    2012-06-01

    This was a poster displayed at the Symposium. Advances on previous high throughput screening of biomass recalcitrance methods have resulted in improved conversion and replicate precision. Changes in plate reactor metallurgy, improved preparation of control biomass, species-specific pretreatment conditions, and enzymatic hydrolysis parameters have reduced overall coefficients of variation to an average of 6% for sample replicates. These method changes have improved plate-to-plate variation of control biomass recalcitrance and improved confidence in sugar release differences between samples. With smaller errors plant researchers can have a higher degree of assurance more low recalcitrance candidates can be identified. Significant changes in plate reactor, control biomass preparation, pretreatment conditions and enzyme have significantly reduced sample and control replicate variability. Reactor plate metallurgy significantly impacts sugar release aluminum leaching into reaction during pretreatment degrades sugars and inhibits enzyme activity. Removal of starch and extractives significantly decreases control biomass variability. New enzyme formulations give more consistent and higher conversion levels, however required re-optimization for switchgrass. Pretreatment time and temperature (severity) should be adjusted to specific biomass types i.e. woody vs. herbaceous. Desalting of enzyme preps to remove low molecular weight stabilizers and improved conversion levels likely due to water activity impacts on enzyme structure and substrate interactions not attempted here due to need to continually desalt and validate precise enzyme concentration and activity.

  3. Bio-mass utilization in high pressure cogeneration boiler

    Science.gov (United States)

    Koundinya, Sandeep; Maria Ambrose Raj, Y.; Sreeram, K.; Divakar Shetty A., S.

    2017-07-01

    Coal is widely used all over the world in almost all power plants. The dependence on coal has increased enormously as the demand for electricity has reached its peak. Coal being a non-renewable source is depleting fast. We being the engineers, it's our duty to conserve the natural resources and optimize the coal consumption. In this project, we have tried to optimize the bio-mass utilization in high pressure cogeneration boiler. The project was carried in Seshasayee Paper and Boards Limited, erode related to Boiler No:10 operating at steam pressure of 105 kscg and temperature of 510°C. Available bio-mass fuels in and around the mill premises are bagasse, bagasse pith, cane trash and chipper dust. In this project, we have found out the coal equivalent replacement by the above bio-mass fuel(s) to facilitate deciding on the optimized quantity of coal that can be replaced by biomass without modifying the existing design of the plant. The dominant fuel (coal) which could be displaced with the substitute biomass fuel had been individually (biomass) analyzed.

  4. Temperature effects on wood anatomy, wood density, photosynthesis and biomass partitioning of Eucalyptus grandis seedlings.

    Science.gov (United States)

    Thomas, D S; Montagu, K D; Conroy, J P

    2007-02-01

    Wood density, a gross measure of wood mass relative to wood volume, is important in our understanding of stem volume growth, carbon sequestration and leaf water supply. Disproportionate changes in the ratio of wood mass to volume may occur at the level of the whole stem or the individual cell. In general, there is a positive relationship between temperature and wood density of eucalypts, although this relationship has broken down in recent years with wood density decreasing as global temperatures have risen. To determine the anatomical causes of the effects of temperature on wood density, Eucalyptus grandis W. Hill ex Maiden seedlings were grown in controlled-environment cabinets at constant temperatures from 10 to 35 degrees C. The 20% increase in wood density of E. grandis seedlings grown at the higher temperatures was variously related to a 40% reduction in lumen area of xylem vessels, a 10% reduction in the lumen area of fiber cells and a 10% increase in fiber cell wall thickness. The changes in cell wall characteristics could be considered analogous to changes in carbon supply. Lumen area of fiber cells declined because of reduced fiber cell expansion and increased fiber cell wall thickening. Fiber cell wall thickness was positively related to canopy CO2 assimilation rate (Ac), which increased 26-fold because of a 24-fold increase in leaf area and a doubling in leaf CO2 assimilation rate from minima at 10 and 35 degrees C to maxima at 25 and 30 degrees C. Increased Ac increased seedling volume, biomass and wood density; but increased wood density was also related to a shift in partitioning of seedling biomass from roots to stems as temperature increased.

  5. Use of forest inventories and geographic information systems to estimate biomass density of tropical forests: Application to tropical Africa.

    Science.gov (United States)

    Brown, S; Gaston, G

    1995-01-01

    One of the most important databases needed for estimating emissions of carbon dioxide resulting from changes in the cover, use, and management of tropical forests is the total quantity of biomass per unit area, referred to as biomass density. Forest inventories have been shown to be valuable sources of data for estimating biomass density, but inventories for the tropics are few in number and their quality is poor. This lack of reliable data has been overcome by use of a promising approach that produces geographically referenced estimates by modeling in a geographic information system (GIS). This approach has been used to produce geographically referenced, spatial distributions of potential and actual (circa 1980) aboveground biomass density of all forests types in tropical Africa. Potential and actual biomass density estimates ranged from 33 to 412 Mg ha(-1) (10(6)g ha(-1)) and 20 to 299 Mg ha(-1), respectively, for very dry lowland to moist lowland forests and from 78 to 197 Mg ha(-1) and 37 to 105 Mg ha(-1), respectively, for montane-seasonal to montane-moist forests. Of the 37 countries included in this study, more than half (51%) contained forests that had less than 60% of their potential biomass. Actual biomass density for forest vegetation was lowest in Botswana, Niger, Somalia, and Zimbabwe (about 10 to 15 Mg ha(-1)). Highest estimates for actual biomass density were found in Congo, Equatorial Guinea, Gabon, and Liberia (305 to 344 Mg ha(-1)). Results from this research effort can contribute to reducing uncertainty in the inventory of country-level emission by providing consistent estimates of biomass density at subnational scales that can be used with other similarly scaled databases on change in land cover and use.

  6. Density limits investigation and high density operation in EAST tokamak

    Science.gov (United States)

    Zheng, Xingwei; Li, Jiangang; Hu, Jiansheng; Liu, Haiqing; Jie, Yinxian; Wang, Shouxin; Li, Jiahong; Duan, Yanming; Li, Miaohui; Li, Yongchun; Zhang, Ling; Ye, Yang; Yang, Qingquan; Zhang, Tao; Cheng, Yingjie; Xu, Jichan; Wang, Liang; Xu, Liqing; Zhao, Hailin; Wang, Fudi; Lin, Shiyao; Wu, Bin; Lyu, Bo; Xu, Guosheng; Gao, Xiang; Shi, Tonghui; He, Kaiyang; Lan, Heng; Chu, Nan; Cao, Bin; Sun, Zhen; Zuo, Guizhong; Ren, Jun; Zhuang, Huidong; Li, Changzheng; Yuan, Xiaolin; Yu, Yaowei; Wang, Houyin; Chen, Yue; Wu, Jinhua; EAST Team

    2016-05-01

    Increasing the density in a tokamak is limited by the so-called density limit, which is generally performed as an appearance of disruption causing loss of plasma confinement, or a degradation of high confinement mode which could further lead to a H  →  L transition. The L-mode and H-mode density limit has been investigated in EAST tokamak. Experimental results suggest that density limits could be triggered by either edge cooling or excessive central radiation. The L-mode density limit disruption is generally triggered by edge cooling, which leads to the current profile shrinkage and then destabilizes a 2/1 tearing mode, ultimately resulting in a disruption. The L-mode density limit scaling agrees well with the Greenwald limit in EAST. The observed H-mode density limit in EAST is an operational-space limit with a value of 0.8∼ 0.9{{n}\\text{GW}} . High density H-mode heated by neutral beam injection (NBI) and lower hybrid current drive (LHCD) are analyzed, respectively. The constancy of the edge density gradients in H-mode indicates a critical limit caused perhaps by e.g. ballooning induced transport. The maximum density is accessed at the H  →  L transition which is generally caused by the excessive core radiation due to high Z impurities (Fe, Cu). Operating at a high density (>2.8× {{10}19} {{\\text{m}}-3} ) is favorable for suppressing the beam shine through NBI. High density H-mode up to 5.3× {{10}19}{{\\text{m}}-3}~≤ft(∼ 0.8{{n}\\text{GW}}\\right) could be sustained by 2 MW 4.6 GHz LHCD alone, and its current drive efficiency is studied. Statistics show that good control of impurities and recycling facilitate high density operation. With careful control of these factors, high density up to 0.93{{n}\\text{GW}} stable H-mode operation was carried out heated by 1.7 MW LHCD and 1.9 MW ion cyclotron resonance heating with supersonic molecular beam injection fueling.

  7. Effects of crop rotation on weed density, biomass and yield of wheat (Titicum aestivum L.

    Directory of Open Access Journals (Sweden)

    A. Zareafeizabadi

    2016-05-01

    Full Text Available In order to study the weed populations in wheat, under different crop rotations an experiment was carried out at Agricultural Research Station of Jolgeh Rokh, Iran. During growing season this project was done in five years, based on Randomized Complete Bloch Design with three replications, on Crop rotations included: wheat monoculture for the whole period (WWWWW, wheat- wheat- wheat- canola- wheat (WWWCW, wheat- sugar beet- wheat-sugar beet- wheat (WSWSW, wheat- potato- wheat- potato- wheat (WPWPW, wheat- potato- wheat- canola- wheat (WPWCW, wheat- sugar beet- wheat- potato- wheat (WSWPW, wheat- maize- wheat- potato- wheat (WMWPW, wheat- maize- wheat- sugar beet- wheat (WMWSW. Data analysis was done in fifth year. Weed sampling was done at four growth stages of wheat, including tillering, shooting, heading and soft dough stage of grains. Density, dry and fresh weight of each weed species per unit area, besides wheat grain yield were determined. All analysis of variances for traits related to weed were statistically significant (p≤0.01. The highest weed biomass was obtained in heading stage of wheat, and the greatest weed dry matter in all four growth stages was achieved in WWWWW rotation and the least one in WMWSW rotation. The highest weed density in different growth stages was achieved in rotations 7, 3, and 6. Wheat grain yield in all crop rotation treatments had a significant increase compared to monoculture. It seems that, yield reduction of wheat monoculture is related to weed density, its population and higher weed biomass in this treatment.

  8. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.).

    Science.gov (United States)

    Hecht, Vera L; Temperton, Vicky M; Nagel, Kerstin A; Rascher, Uwe; Postma, Johannes A

    2016-01-01

    Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm(-3)) increases in the topsoil as well as specific root length (root length per root dry weight, cm g(-1)) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24-340 seeds m(-2)) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0-10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4-1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m(-2) suggest that this efficiency did not translate into greater yield. We conclude that plant density is a

  9. Influence of inoculum density and aeration volume on biomass and bioactive compound production in bulb-type bubble bioreactor cultures of Eleutherococcus koreanum Nakai.

    Science.gov (United States)

    Lee, Eun-Jung; Moh, Sang-Hyun; Paek, Kee-Yoeup

    2011-07-01

    This study deals with the effects of initial inoculum density and aeration volume on biomass and bioactive compound production in adventitious roots of Eleutherococcus koreanum Nakai in bulb-type bubble bioreactors (3-L capacity). While the fresh and dry weights of the roots increased with increasing inoculum density, the highest percentage dry weight and accumulation of total target compounds (eleutheroside B and E, chlorogenic acid, total phenolics, and flavonoids) were noted at an inoculum density of 5.0 g L(-1). Poor aeration volume (0.05 vvm) stunted root growth, and high aeration volume (0.4 vvm) caused physiological disorders. Moreover, an inoculum density of 5.0 g L(-1) and an aeration volume of 0.1 vvm resulted in the highest concentration of total target compounds and least root death. Such optimization of culture conditions will be beneficial for the large-scale production of E. koreanum biomass and bioactive compounds.

  10. Lacustrine biomass: An significant precursor of high wax oil

    Institute of Scientific and Technical Information of China (English)

    HUANG Haiping; ZHENG Yabin; ZHANG Zhanwen; LI Jinyou

    2003-01-01

    Although a variety of precursors have been proposed for the formation of high molecular weight hydrocarbons (HMWHCs) in crude oil, their precise origin remains elusive. Quantitative studies of macrocrystalline wax and microcrystalline wax content of source rock extracts from the Damintun depression, Liaohe Basin, a typical high wax producing area, coupled with microscopical maceral composition studies and pyrolysis-GC analysis indicate that oil shale enriched in lacustrine biomass makes a primary contribution to wax in oil. The main precursors of high wax oil are lacustrine alginites and their amorphous matrix, which are highly aliphatic in nature and have high generative potential for HMWHCs. Wax generation efficiency could be affected by organic material abundance and maturity. The high abundance and low maturity of organic material are favorite for the formation of high quantity of wax, which declines with decreasing organic abundance and increasing thermal maturity. This suggests that wax is derived from organic-rich lacustrine biomass at early stages of maturation (RO = 0.4%-0.7%). Although the contribution of high plant cuticular wax and sporopollen cannot be ruled out, lacustrine biomass is more important in the formation of high wax oil.

  11. Production of Spirulina biomass: effects of environmental factors and population density

    Energy Technology Data Exchange (ETDEWEB)

    Vonshak, A.; Abeliovich, A.; Boussiba, S.; Arad, S.; Richmond, A.

    1982-07-01

    The effects of environmental conditions (solar irradiance and temperature) and population density on the production of Spirulina biomass are reported for cultures grown in outdoor ponds. Both the specific rate of photosynthesis, expressed on a chlorophyll basis, and rate of respiration, on a protein basis, decreased as algal concentration increased. Higher specific growth rates were observed at lower population densities. Lower growth rates were associated with the light limitation in dense cultures for optimum conditions in the summer. Seasonal variation was observed in productivity. In summer light was the limiting factor whereas in winter the low daytime temperature appeared to impose the major limitation. It was found that the oxygen concentration in the culture can serve as a useful indicator of limiting factors and can also be used as a means of estimating the extent of such limitations. (Refs. 19).

  12. Density and Biomass Estimates by Removal for an Amazonian Crocodilian, Paleosuchus palpebrosus.

    Directory of Open Access Journals (Sweden)

    Zilca Campos

    Full Text Available Direct counts of crocodilians are rarely feasible and it is difficult to meet the assumptions of mark-recapture methods for most species in most habitats. Catch-out experiments are also usually not logistically or morally justifiable because it would be necessary to destroy the habitat in order to be confident that most individuals had been captured. We took advantage of the draining and filling of a large area of flooded forest during the building of the Santo Antônio dam on the Madeira River to obtain accurate estimates of the density and biomass of Paleosuchus palpebrosus. The density, 28.4 non-hatchling individuals per km2, is one of the highest reported for any crocodilian, except for species that are temporarily concentrated in small areas during dry-season drought. The biomass estimate of 63.15 kg*km-2 is higher than that for most or even all mammalian carnivores in tropical forest. P. palpebrosus may be one of the World´s most abundant crocodilians.

  13. Impacts of mangrove density on surface sediment accretion, belowground biomass and biogeochemistry in Puttalam Lagoon, Sri Lanka

    Science.gov (United States)

    Phillips, D.H.; Kumara, M.P.; Jayatissa, L.P.; Krauss, Ken W.; Huxham, M.

    2017-01-01

    Understanding the effects of seedling density on sediment accretion, biogeochemistry and belowground biomass in mangrove systems can help explain ecological functioning and inform appropriate planting densities during restoration or climate change mitigation programs. The objectives of this study were to examine: 1) impacts of mangrove seedling density on surface sediment accretion, texture, belowground biomass and biogeochemistry, and 2) origins of the carbon (C) supplied to the mangroves in Palakuda, Puttalam Lagoon, Sri Lanka. Rhizophora mucronata propagules were planted at densities of 6.96, 3.26, 1.93 and 0.95 seedlings m−2along with an unplanted control (0 seedlings m−2). The highest seedling density generally had higher sediment accretion rates, finer sediments, higher belowground biomass, greatest number of fine roots and highest concentrations of C and nitrogen (N) (and the lowest C/N ratio). Sediment accretion rates, belowground biomass (over 1370 days), and C and N concentrations differed significantly between seedling densities. Fine roots were significantly greater compared to medium and coarse roots across all plantation densities. Sulphur and carbon stable isotopes did not vary significantly between different density treatments. Isotope signatures suggest surface sediment C (to a depth of 1 cm) is not derived predominantly from the trees, but from seagrass adjacent to the site.

  14. Granular bed filtration of high temperature biomass gasification gas.

    Science.gov (United States)

    Stanghelle, Daniel; Slungaard, Torbjørn; Sønju, Otto K

    2007-06-18

    High temperature cleaning of producer gas from biomass gasification has been investigated with a granular filter. Field tests were performed for several hours on a single filter element at about 550 degrees C. The results show cake filtration on the granular material and indicate good filtration of the biomass gasification producer gas. The relatively low pressure drop over the filter during filtration is comparable to those of bag filters. The granular filter can operate with high filtration velocities compared to bag filters and maintain high efficiency and a low residual pressure. This work is a part of the BioSOFC-up project that has a goal of utilizing the producer gas from the gasification plant in a solid oxide fuel cell (SOFC). The BioSOFC-up project will continue to the end of 2007.

  15. Stability of high cell density brewery fermentations during serial repitching.

    Science.gov (United States)

    Verbelen, Pieter J; Dekoninck, Tinne M L; Van Mulders, Sebastiaan E; Saerens, Sofie M G; Delvaux, Filip; Delvaux, Freddy R

    2009-11-01

    The volumetric productivity of the beer fermentation process can be increased by using a higher pitching rate (i.e. higher inoculum size). However, the decreased yeast net growth observed in these high cell density brewery fermentations can adversely affect the physiological stability throughout subsequent yeast generations. Therefore, different O(2) conditions (wort aeration and yeast preoxygenation) were applied to high cell density fermentation and eight generations of fermentations were evaluated together with conventional fermentations. Freshly propagated high cell density populations adapted faster to the fermentative conditions than normal cell density populations. Preoxygenating the yeast was essential for the yeast physiological and beer flavor compound stability of high cell density fermentations during serial repitching. In contrast, the use of non-preoxygenated yeast resulted in inadequate growth which caused (1) insufficient yield of biomass to repitch all eight generations, (2) a 10% decrease in viability, (3) a moderate increase of yeast age, (4) and a dramatic increase of the unwanted flavor compounds acetaldehyde and total diacetyl during the sequence of fermentations. Therefore, to achieve sustainable high cell density fermentations throughout the economical valuable process of serial repitching, adequate yeast growth is essential.

  16. High-density lipoprotein cholesterol: How High

    Directory of Open Access Journals (Sweden)

    G Rajagopal

    2012-01-01

    Full Text Available The high-density lipoprotein cholesterol (HDL-C is considered anti-atherogenic good cholesterol. It is involved in reverse transport of lipids. Epidemiological studies have found inverse relationship of HDL-C and coronary heart disease (CHD risk. When grouped according to HDL-C, subjects having HDL-C more than 60 mg/dL had lesser risk of CHD than those having HDL-C of 40-60 mg/dL, who in turn had lesser risk than those who had HDL-C less than 40 mg/dL. No upper limit for beneficial effect of HDL-C on CHD risk has been identified. The goals of treating patients with low HDL-C have not been firmly established. Though many drugs are known to improve HDL-C concentration, statins are proven to improve CHD risk and mortality. Cholesteryl ester transfer protein (CETP is involved in metabolism of HDL-C and its inhibitors are actively being screened for clinical utility. However, final answer is still awaited on CETP-inhibitors.

  17. Advances in high frequency ultrasound separation of particulates from biomass.

    Science.gov (United States)

    Juliano, Pablo; Augustin, Mary Ann; Xu, Xin-Qing; Mawson, Raymond; Knoerzer, Kai

    2017-03-01

    In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  18. DETERMINATION OF PARTICLE DENSITY BY MERCURY POROSIMETRY FOR BIOMASS FLUID DYNAMIC STUDY IN MOVING BEDS

    Directory of Open Access Journals (Sweden)

    Juan F. Saldarriaga

    2014-06-01

    Full Text Available Determination of the particle density is required to address the hydrodynamic study of a moving bed contactor. The measurement of this parameter is complicated when particles are irregularly shaped. In this study, two different techniques were use: compaction by mechanical compression and an alternative proposal, which contemplates the potential of mercury porosimetry for determining the surface and structural properties. It was observed that the results obtained by compacting in all cases are higher than expected. However, the values obtained by mercury porosimetry are more consistent with expected values. For example in the sawdust valued at 500kg/m3, very similar to the value of the original wood (502kg/m3. Values obtained by this procedure adequately represent the relationship between mass and volume of the particle and therefore are valid for hydrodynamic characterization of the biomass.

  19. Effects of Planting Date, Time and Methods of Weed Control on Weed Density and Biomass in Cumin Fields

    Directory of Open Access Journals (Sweden)

    R. Ghorbani

    2011-01-01

    Full Text Available Abstract Two field experiments were carried out in order to evaluate the effect of planting date, method and date of weed control on weed density and biomass in the experimental research field, Faculty of Agriculture, Ferdowsi University of Mashhad, during 2006 and 2007. Treatments included planting date (30 December, 20 January and 30 February, weeding date (first true leaf, start of branching and beginning of flowering stages and weed control methods (hand weeding, fire treatment and control. The results showed that there were significant differences in the number of weeds between different sowing dates, weeding dates and control methods. The highest mean density and biomass of weeds were obtained on the planting date, 30 February, and when weed was controlled at the first leaf appearance stage with fire treatment. The most appropriate time for weed control was at the beginning of cumin flowering. Fire treatment reduced weed growth in the first half of growing season. However, hand weeding significantly reduced weed density and biomass in the second half of cumin growing season. The first planting date caused the lowest mean weed biomass and the highest cumin yield compared to later planting dates. Hand weeding treatment contained lower mean weed density and biomass compared to fire treatment, however, cumin yield was lower in hand weeding plots than fire treatment. Keywords: Cultural control, Cuminum cyminum, Fire, Hand weeding, Control time

  20. Importing low-density ideas to high-density revitalisation

    DEFF Research Database (Denmark)

    Anrholtz, Jens; Ibsen, Christian Lyhne; Ibsen, Flemming

    2016-01-01

    Why did union officials from a high-union-density country like Denmark choose to import an organising strategy from low-density countries such as the US and the UK? Drawing on in-depth interviews with key union officials and internal documents, the authors of this article argue two key points. Fi...... cherry-pick some elements while leaving fundamental aspects out. The study nevertheless indicates that a lack of coherency and model-fit to Danish industrial relations might hamper the positive effects of the organising strategy....

  1. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  2. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  3. High regression rate, high density hybrid fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR program will investigate high energy density novel nanofuels combined with high density binders for use with an N2O oxidizer. Terves has developed...

  4. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  5. Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas

    Directory of Open Access Journals (Sweden)

    Mohammad El Hajj

    2017-02-01

    Full Text Available Mapping forest AGB (Above Ground Biomass is of crucial importance to estimate the carbon emissions associated with tropical deforestation. This study proposes a method to overcome the saturation at high AGB values of existing AGB map (Vieilledent’s AGB map by using a map of correction factors generated from GLAS (Geoscience Laser Altimeter System spaceborne LiDAR data. The Vieilledent’s AGB map of Madagascar was established using optical images, with parameters calculated from the SRTM Digital Elevation Model, climatic variables, and field inventories. In the present study, first, GLAS LiDAR data were used to obtain a spatially distributed (GLAS footprints geolocation estimation of AGB (GLAS AGB covering Madagascar forested areas, with a density of 0.52 footprint/km2. Second, the difference between the AGB from the Vieilledent’s AGB map and GLAS AGB at each GLAS footprint location was calculated, and additional spatially distributed correction factors were obtained. Third, an ordinary kriging interpolation was thus performed by taking into account the spatial structure of these additional correction factors to provide a continuous correction factor map. Finally, the existing and the correction factor maps were summed to improve the Vieilledent’s AGB map. The results showed that the integration of GLAS data improves the precision of Vieilledent’s AGB map by approximately 7 t/ha. By integrating GLAS data, the RMSE on AGB estimates decreases from 81 t/ha (R2 = 0.62 to 74.1 t/ha (R2 = 0.71. Most importantly, we showed that this approach using LiDAR data avoids underestimating high biomass values (new maximum AGB of 650 t/ha compared to 550 t/ha with the first approach.

  6. High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification. Part II: Exergy analysis

    Science.gov (United States)

    Panopoulos, K. D.; Fryda, L.; Karl, J.; Poulou, S.; Kakaras, E.

    Biomass gasification derived gas is a renewable fuel, which can be used for SOFC applications. This work investigates the integration of a near atmospheric solid oxide fuel cell (SOFC) with a novel allothermal biomass steam gasification process into a combined heat and power (CHP) system of less than MW e range. Heat for steam gasification is supplied from SOFC depleted fuel in a fluidised bed (FB) combustor via high temperature sodium heat pipes. In the first paper, the integrated system was modelled in Aspen Plus™ and critical aspects for its feasibility were identified. The aim of this second part is the evaluation of the integrated system in exergy terms. Satisfying allothermal gasification heat demand is illustrated by examining each sub-process involved separately as well as combined. For a relatively low STBR = 0.6, the SOFC fuel utilisation for which the system operates under optimum conditions is U f = 0.7. Above that value additional biomass has to be used in the FB combustor to provide gasification heat with considerable exergy losses. For SOFC operation at current density 2500 A m -2, the system uses 90 kg h -1 biomass, operates with electrical exergetic efficiency 32% producing 140 kW e, while the combined electrical and thermal exergetic efficiency is 35%.

  7. Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature

    Science.gov (United States)

    Fraser, Lauchlan H.; Greenall, Amber; Carlyle, Cameron; Turkington, Roy; Friedman, Cynthia Ross

    2009-01-01

    Background and Aims Changes in rainfall and temperature brought about through climate change may affect plant species distribution and community composition of grasslands. The primary objective of this study was to test how manipulation of water and temperature would influence the plasticity of stomatal density and leaf area of bluebunch wheatgrass, Pseudoroegneria spicata. It was hypothesized that: (1) an increased water supply will increase biomass and leaf area and decrease stomatal density, while a reduced water supply will cause the opposite effect; (2) an increase in temperature will reduce biomass and leaf area and increase stomatal density; and (3) the combinations of water and temperature treatments can be aligned along a stress gradient and that stomatal density will be highest at high stress. Methods The three water supply treatments were (1) ambient, (2) increased approx. 30 % more than ambient through weekly watering and (3) decreased approx. 30 % less than ambient by rain shades. The two temperature treatments were (1) ambient and (2) increased approx. 1–3 °C by using open-top chambers. At the end of the second experimental growing season, above-ground biomass was harvested, oven-dried and weighed, tillers from bluebunch wheatgrass plants sampled, and the abaxial stomatal density and leaf area of tillers were measured. Key Results The first hypothesis was partially supported – reducing water supply increased stomatal density, but increasing water supply reduced leaf area. The second hypothesis was rejected. Finally, the third hypothesis could not be fully supported – rather than a linear response there appears to be a parabolic stomatal density response to stress. Conclusions Overall, the abaxial stomatal density and leaf area of bluebunch wheatgrass were plastic in their response to water and temperature manipulations. Although bluebunch wheatgrass has the potential to adapt to changing climate, the grass is limited in its ability to respond

  8. Density Estimation Trees in High Energy Physics

    CERN Document Server

    Anderlini, Lucio

    2015-01-01

    Density Estimation Trees can play an important role in exploratory data analysis for multidimensional, multi-modal data models of large samples. I briefly discuss the algorithm, a self-optimization technique based on kernel density estimation, and some applications in High Energy Physics.

  9. DEVELOPMENT AND EVALUATION OF A LOW-DENSITY BIOMASS FEEDING SYSTEM FOR FLUIDIZED BED GASIFIERS

    Directory of Open Access Journals (Sweden)

    A. E. Ghaly

    2013-01-01

    Full Text Available For efficient operation of a biomass gasifier, the biomass material must be fed continuously to the system. A feeding system for chopped straw and rice husk was designed, constructed and evaluated. It consisted of: a frame, a hopper, an auger, two agitators, a drive system and a power unit. Initial testing showed that wheat straw and rice husk, being highly cohesive materials, created tunnel flow and piping conditions. This occurs when the pressure above an impending dome of material is too small resulting in the creation of a stable dome and blockage of the discharge. In order to achieve good flow conditions, it was concluded that the hopper must operate under "mass outflow" and the material should not be allowed to build up along the flow channels. These objectives were achieved by the proper redesign of the hopper configuration, the installation of agitators in the hopper and use of an auger in the outlet duct leading into the gasifier. However, as the augur was used to move the biomass material from hopper to the gasifier, it was observed that hot gases leaked from the gasifier into the hopper and heat was also transmitted from the gasifier to the hopper though the augur shaft by conduction resulting in burning of biomass material in the hopper. Therefore, the augur shaft was fitted with copper tubing to serve as a water cooling system and the tapered section of the augur was fitted with a stainless steel section with water inlet and outlet to serve as a secondary cooling system. After, the system has been successfully modified for feeding wheat straw and rice husk, it was tested to determine the optimum operating conditions. Mass flow tests were performed with four sprocket combinations and four auger speeds. Increasing the auger speed and/or the lower agitator speed increased the straw output of the feeding system. However, increases in the upper agitator speed resulted in reduced mass flow of the material due to the mixing effect created

  10. Cutleafgroundcherry (physalis angulata) density, biomass and seed production in peanut (arachis hypogaea L.) following regrowth due to inadequate control

    Science.gov (United States)

    A field experiment was conducted to evaluate herbicide and application timing on cutleaf groundcherry density, biomass, seed production, and crop yield in a peanut system. Treatments included: 1) a non-treated control; 2) hand pruning; 3) diclosulam applied preemergence (PRE) alone at 0.027 kg ai h...

  11. High quality fuel gas from biomass pyrolysis with calcium oxide.

    Science.gov (United States)

    Zhao, Baofeng; Zhang, Xiaodong; Chen, Lei; Sun, Laizhi; Si, Hongyu; Chen, Guanyi

    2014-03-01

    The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization.

  12. Institute for High Energy Density Science

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Alan [Univ. of Texas, Austin, TX (United States)

    2017-01-13

    The project objective was for the Institute of High Energy Density Science (IHEDS) at the University of Texas at Austin to help grow the High Energy Density (HED) science community, by connecting academia with the Z Facility (Z) and associated staff at Sandia National Laboratories (SNL). IHEDS was originally motivated by common interests and complementary capabilities at SNL and the University of Texas System (UTX), in 2008.

  13. High-temperature entrained flow gasification of biomass

    DEFF Research Database (Denmark)

    Qin, Ke; Lin, Weigang; Jensen, Peter Arendt

    2012-01-01

    Biomass (wood and straw) gasification has been studied in a laboratory scale atmospheric pressure entrained flow reactor. Effects of reaction temperature, steam/carbon molar ratio, excess air ratio, and biomass type on the solid, liquid and gas products were investigated. The biomass was completely...

  14. Predator biomass, prey density, and species composition effects on group size in recruit coral reef fishes

    Science.gov (United States)

    DeMartini, Edward E.; Anderson, Todd W.; Friedlander, Alan M.; Beets, James P.

    2011-01-01

    Group incidence and size are described for recruit parrotfishes, wrasses, and damselfishes on Hawaiian reefs over 3 years (2006–2008) at sites spanning the archipelago (20–28°N, 155–177°W). Coral-poor and coral-rich areas were surveyed at sites with both low (Hawaii Island) and high (Midway Atoll) predator densities, facilitating examination of relations among predator and recruit densities, habitat, and group metrics. Predator and recruit densities varied spatially and temporally, with a sixfold range in total recruit densities among years. Group (≥2 recruits) metrics varied with time and tracked predator and recruit densities and the proportion of schooling species. Groups often included heterospecifics whose proportion increased with group size. A non-saturating relationship between group size and recruit density suggests that the anti-predator benefits of aggregation exceeded competitive costs. Grouping behavior may have overarching importance for recruit survival—even at high recruit densities—and merits further study on Hawaiian reefs and elsewhere.

  15. Soil fungal and bacterial biomass determined by epifluorescence microscopy and mycorrhizal spore density in different sugarcane managements

    Directory of Open Access Journals (Sweden)

    Adriana Pereira Aleixo

    2014-04-01

    Full Text Available Crop productivity and sustainability have often been related to soil organic matter and soil microbial biomass, especially because of their role in soil nutrient cycling. This study aimed at measuring fungal and bacterial biomass by epifluorescence microscopy and arbuscular mycorrhizal fungal (AMF spore density in sugarcane (Saccharum officinarum L. fields under different managements. We collected soil samples of sugarcane fields managed with or without burning, with or without mechanized harvest, with or without application of vinasse and from nearby riparian native forest. The soil samples were collected at 10cm depth and storage at 4°C until analysis. Fungal biomass varied from 25 to 37µg C g-1 dry soil and bacterial from 178 to 263µg C g-1 dry soil. The average fungal/bacterial ratio of fields was 0.14. The AMF spore density varied from 9 to 13 spores g-1 dry soil. The different sugarcane managements did not affect AMF spore density. In general, there were no significant changes of microbial biomass with crop management and riparian forest. However, the sum of fungal and bacterial biomass measured by epifluorescence microscopy (i.e. 208-301µg C g-1 dry soil was very close to values of total soil microbial biomass observed in other studies with traditional techniques (e.g. fumigation-extraction. Therefore, determination of fungal/bacterial ratios by epifluorescence microscopy, associated with other parameters, appears to be a promising methodology to understand microbial functionality and nutrient cycling under different soil and crop managements.

  16. Strongly Interacting Matter at High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  17. Spin polarization in high density quark matter

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca

    2013-01-01

    We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model......, to which it is related through a Fierz transformation. Flavor SU(2) and flavor SU(3) quark matter are considered. A second-order phase transition is predicted at densities about 5 times the normal nuclear matter density. It is also found that in flavor SU(3) quark matter, a first-order transition from...

  18. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    Energy Technology Data Exchange (ETDEWEB)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was

  19. Stand density index as a tool to assess the maximization of forest carbon and biomass

    Science.gov (United States)

    Christopher W. Woodall; Anthony W. D’Amato; John B. Bradford; Andrew O. Finley

    2012-01-01

    Given the ability of forests to mitigate greenhouse gas emissions and provide feedstocks to energy utilities, there is an emerging need to assess forest biomass/carbon accretion opportunities over large areas. Techniques for objectively quantifying stand stocking of biomass/carbon are lacking for large areas given the complexity of tree species composition in the U.S....

  20. The high density Z-pinch

    Energy Technology Data Exchange (ETDEWEB)

    McCall, G.H.

    1988-01-01

    During the past few years techniques have been developed for producing pinches in solid deuterium. The conditions which exist in these plasmas are quiet different from those produced earlier. The pinch is formed from a fiber of solid deuterium rather than from a low density gas, and the current is driven by a low impedance, high voltage pulse generator. Because of the high initial density, it is not necessary to compress the pinch to reach thermonuclear conditions, and the confinement time required for energy production is much shorter than for a gas. The experimental results, which have been verified by experiments performed at higher current were quite surprising and encouraging. The pinch appeared to be stable for a time much longer than the Alfven radial transit time. In this paper, however, I argue that the pinch is not strictly stable, but it does not appear to disassemble in a catastrophic fashion. It appears that there may be a distinction between stability and confinement in the high density pinch. In the discussion below I will present the status of the high density Z-pinch experiments at laboratories around the world, and I will describe some of the calculational and experimental results. I will confine my remarks to recent work on the high density pinch. 17 refs. 10 figs.

  1. Improved biomass productivity in algal biofilms through synergistic interactions between photon flux density and carbon dioxide concentration.

    Science.gov (United States)

    Schnurr, Peter J; Molenda, Olivia; Edwards, Elizabeth; Espie, George S; Allen, D Grant

    2016-11-01

    Algal biofilms were grown to investigate the interaction effects of bulk medium CO2 concentration and photon flux density (PFD) on biomass productivities. When increasing the CO2 concentration from 0.04% to 2%, while maintaining a PFD of 100μmol/m(2)/s, biomass productivities increased from ∼0.5 to 2.0g/m(2)/d; however, the productivities plateaued when CO2 concentrations were incrementally increased above 2-12%. Statistical analysis demonstrates that there is a significant interaction between PFD and CO2 concentrations on biomass productivities. By simultaneously increasing PFD and CO2 concentrations, biomass productivities were significantly increased to 4.0 and 4.1g/m(2)/d in the experimental and modeled data, respectively. The second order model predicted increases in biomass productivities as both PFD and CO2 simultaneously increased yielding an optimum at 440μmol/m(2)/s and 7.1%; however, when conditions were extended to the highest end of their respective ranges, the conditions were detrimental to growth and productivities decreased.

  2. High Density Metamaterials for Visible Light

    Science.gov (United States)

    2016-11-28

    Split Ring Resonator Metamaterials with Fundamental Magnetic Resonance in the Middle Visible Spectrum,” Adv. Opt. Mater., vol. 2, no. 3, pp. 280–285...AFRL-AFOSR-JP-TR-2016-0097 High density metamaterials for visible light Dao Hua Zhang NANYANG TECHNOLOGICAL UNIVERSITY Final Report 11/28/2016...COVERED (From - To)  16 Jul 2014 to 15 Jul 2016 4. TITLE AND SUBTITLE High density metamaterials for visible light 5a.  CONTRACT NUMBER 5b.  GRANT

  3. A quarksonic matter at high isospin density

    CERN Document Server

    Cao, Gaoqing; Huang, Xu-Guang

    2016-01-01

    Analogous to the quarkyonic matter at high baryon density in which the quark Fermi seas and the baryonic excitations coexist, it is argued that a "quarksonic matter" phase appears at high isospin density where the quark (antiquark) Fermi seas and the mesonic excitations coexist. We explore this phase in detail in both large $N_c$ and asymptotically free limits: In large $N_c$ limit, we sketch a phase diagram for the quarksonic matter. In the asymptotically free limit, we study the pion superfluidity and thermodynamics of the quarksonic matter by using both perturbative calculations and effective model.

  4. ADVANCED BIOMASS REBURNING FOR HIGH EFFICIENCY NOx CONTROL AND BIOMASS REBURNING - MODELING/ENGINEERING STUDIES JOINT FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir M. Zamansky; Mark S. Sheldon; Vitali V. Lissianski; Peter M. Maly; David K. Moyeda; Antonio Marquez; W. Randall Seeker

    2000-10-01

    high efficiency of biomass in reburning are low fuel-N content and high content of alkali metals in ash. These results indicate that the efficiency of biomass as a reburning fuel may be predicted based on its ultimate, proximate, and ash analyses. The results of experimental and kinetic modeling studies were utilized in applying a validated methodology for reburning system design to biomass reburning in a typical coal-fired boiler. Based on the trends in biomass reburning performance and the characteristics of the boiler under study, a preliminary process design for biomass reburning was developed. Physical flow models were applied to specific injection parameters and operating scenarios, to assess the mixing performance of reburning fuel and overfire air jets which is of paramount importance in achieving target NO{sub x} control performance. The two preliminary cases studied showed potential as candidate reburning designs, and demonstrated that similar mixing performance could be achieved in operation with different quantities of reburning fuel. Based upon this preliminary evaluation, EER has determined that reburning and advanced reburning technologies can be successfully applied using biomass. Pilot-scale studies on biomass reburning conducted by EER have indicated that biomass is an excellent reburning fuel. This generic design study provides a template approach for future demonstrations in specific installations.

  5. High energy density in multisoliton collisions

    Science.gov (United States)

    Saadatmand, Danial; Dmitriev, Sergey V.; Kevrekidis, Panayotis G.

    2015-09-01

    Solitons are very effective in transporting energy over great distances and collisions between them can produce high energy density spots of relevance to phase transformations, energy localization and defect formation among others. It is then important to study how energy density accumulation scales in multisoliton collisions. In this study, we demonstrate that the maximal energy density that can be achieved in collision of N slowly moving kinks and antikinks in the integrable sine-Gordon field, remarkably, is proportional to N2, while the total energy of the system is proportional to N . This maximal energy density can be achieved only if the difference between the number of colliding kinks and antikinks is minimal, i.e., is equal to 0 for even N and 1 for odd N and if the pattern involves an alternating array of kinks and antikinks. Interestingly, for odd (even) N the maximal energy density appears in the form of potential (kinetic) energy, while kinetic (potential) energy is equal to zero. The results of the present study rely on the analysis of the exact multisoliton solutions for N =1 ,2 , and 3 and on the numerical simulation results for N =4 ,5 ,6 , and 7. The effect of weak Hamiltonian and non-Hamiltonian perturbations on the maximal energy density in multikink collisions is also discussed as well as that of the collision relative phase. Based on these results one can speculate that the soliton collisions in the sine-Gordon field can, in principle, controllably produce very high energy density. This can have important consequences for many physical phenomena described by the Klein-Gordon equations.

  6. Biomass, stem basic density and expansion factor functions for five exotic conifers grown in Denmark

    DEFF Research Database (Denmark)

    Nord-Larsen, Thomas; Nielsen, Anders Tærø

    2015-01-01

    Adequate allometric equations are needed for estimating carbon pools of fast growing tree species in relation to international reporting of CO2 emissions and for assessing their possible contribution to increasing forest biomass resources. We developed models for predicting biomass, stem basic de...... decreased from 1.8–2.0 in small trees (dbh 25 cm), but differed among species. The overall model explained 86% of the variation and included quadratic mean diameter and dbh....

  7. Supernovae and high density nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  8. High Gluon Densities in Heavy Ions Collisions

    CERN Document Server

    Blaizot, Jean-Paul

    2016-01-01

    The early stages of heavy ion collisions are dominated by high density systems of gluons that carry each a small fraction $x$ of the momenta of the colliding nucleons. A distinguishing feature of such systems is the phenomenon of "saturation" which tames the expected growth of the gluon density as the energy of the collision increases. The onset of saturation occurs at a particular transverse momentum scale, the "saturation momentum", that emerges dynamically and that marks the onset of non-linear gluon interactions. At high energy, and for large nuclei, the saturation momentum is large compared to the typical hadronic scale, making high density gluons amenable to a description with weak coupling techniques. This paper reviews some of the challenges faced in the study of such dense systems of small $x$ gluons, and of the progress made in addressing them. The focus is on conceptual issues, and the presentation is both pedagogical, and critical. Examples where high gluon density could play a visible role in hea...

  9. High Density GEOSAT/GM Altimeter Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The high density Geosat/GM altimeter data south of 30 S have finally arrived. In addition, ERS-1 has completed more than 6 cycles of its 35-day repeat track. These...

  10. Continuous planting under a high density enhances the competition for nutrients among young Cunninghamia lanceolata saplings

    OpenAIRE

    Dong, Tingfa; Zhang, Yunxiang; Zhang,Yuanbin; Zhang, Sheng

    2016-01-01

    International audience; AbstractKey messageA high-density plantation inhibited growth and biomass accumulation of Cunninghamia lanceolata(Lamb.) Hook. saplings, as well as their photosynthesis. This inhibition was enhanced in a soil that had been previously planted with the same species. The main factors limiting photosynthesis and growth were leaf-level irradiance and nutrient availability, mainly of P and Mg.ContextThe planting density and continuous planting greatly affect the photosynthes...

  11. High-resolution mapping of biomass burning emissions in tropical regions across three continents

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto

    2015-04-01

    Biomass burning emissions from open vegetation fires (forest fires, savanna fires, agricultural waste burning), human waste and biofuel combustion contain large amounts of trace gases (e.g., CO2, CH4, and N2O) and aerosols (BC and OC), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate . With the help of recently released satellite products, biomass density based on satellite and ground-based observation data, and spatial variable combustion factors, this study developed a new high-resolution emissions inventory for biomass burning in tropical regions across three continents in 2010. Emissions of trace gases and aerosols from open vegetation burning are estimated from burned areas, fuel loads, combustion factors, and emission factors. Burned areas were derived from MODIS MCD64A1 burned area product, fuel loads were mapped from biomass density data sets for herbaceous and tree-covered land based on satellite and ground-based observation data. To account for spatial heterogeneity in combustion factors, global fractional tree cover (MOD44B) and vegetation cover maps (MCD12Q1) were introduced to estimate the combustion factors in different regions by using their relationship with tree cover under less than 40%, between 40-60% and above 60% conditions. For emission factors, the average values for each fuel type from field measurements are used. In addition to biomass burning from open vegetation fires, the emissions from human waste (residential and dump) burning and biofuel burning in 2010 were also estimated for 76 countries in tropical regions across the three continents and then allocated into each pixel with 1 km grid based on the population density (Gridded Population of the World v3). Our total estimates for the tropical regions across the three continents in 2010 were 17744.5 Tg CO2, 730.3 Tg CO, 32.0 Tg CH4, 31.6 Tg NOx, 119.2 Tg NMOC, 6.3 Tg SO2, 9.8 NH3 Tg, 81.8 Tg PM2.5, 48.0 Tg OC, and 5.7 Tg BC, respectively. Open

  12. Digital Biomass Accumulation Using High-Throughput Plant Phenotype Data Analysis.

    Science.gov (United States)

    Rahaman, Md Matiur; Ahsan, Md Asif; Gillani, Zeeshan; Chen, Ming

    2017-09-01

    Biomass is an important phenotypic trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive, and they require numerous individuals to be cultivated for repeated measurements. With the advent of image-based high-throughput plant phenotyping facilities, non-destructive biomass measuring methods have attempted to overcome this problem. Thus, the estimation of plant biomass of individual plants from their digital images is becoming more important. In this paper, we propose an approach to biomass estimation based on image derived phenotypic traits. Several image-based biomass studies state that the estimation of plant biomass is only a linear function of the projected plant area in images. However, we modeled the plant volume as a function of plant area, plant compactness, and plant age to generalize the linear biomass model. The obtained results confirm the proposed model and can explain most of the observed variance during image-derived biomass estimation. Moreover, a small difference was observed between actual and estimated digital biomass, which indicates that our proposed approach can be used to estimate digital biomass accurately.

  13. Modelling stand biomass fractions in Galician Eucalyptus globulus plantations by use of different LiDAR pulse densities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Ferreiro, E.; Miranda, D.; Barreiro-Fernandez, L.; Bujan, S.; Garcia-Gutierrez, J.; Dieguez-Aranda, U.

    2013-07-01

    Aims of study: To evaluate the potential use of canopy height and intensity distributions, determined by airborne LiDAR, for the estimation of crown, stem and aboveground biomass fractions. To assess the effects of a reduction in LiDAR pulse densities on model precision. Area of study: The study area is located in Galicia, NW Spain. The forests are representative of Eucalyptus globulus stands in NW Spain, characterized by low-intensity silvicultural treatments and by the presence of tall shrub. Material and methods: Linear, multiplicative power and exponential models were used to establish empirical relationships between field measurements and LiDAR metrics. A random selection of LiDAR returns and a comparison of the prediction errors by LiDAR pulse density factor were performed to study a possible loss of fit in these models. Main results: Models showed similar goodness-of-fit statistics to those reported in the international literature. R2 ranged from 0.52 to 0.75 for stand crown biomass, from 0.64 to 0.87 for stand stem biomass, and from 0.63 to 0.86 for stand aboveground biomass. The RMSE/MEAN 100 of the set of fitted models ranged from 17.4% to 28.4%. Models precision was essentially maintained when 87.5% of the original point cloud was reduced, i.e. a reduction from 4 pulses m{sup 2} to 0.5 pulses m{sup 2}. Research highlights: Considering the results of this study, the low-density LiDAR data that are released by the Spanish National Geographic Institute will be an excellent source of information for reducing the cost of forest inventories. (Author)

  14. Functions for biomass and basic density of stem, crown and root system of Norway spruce (Picea abies (L.) Karst.) in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Skovsgaard, Jens Peter (Swedish Univ. of Agricultural Sciences (SLU), Southern Swedish Forest Research Centre, Alnarp (Sweden)); Bald, Caroline (Danish Nature Agency, Koebenhavn Oe (Denmark)); Nord-Larsen, Thomas (Forest and Landscape, Univ. of Copenhagen, Frederiksberg (Denmark))

    2011-04-15

    Models for predicting the biomass of forest trees are becoming increasingly important for assessing forest resources and carbon sequestration in forests. We developed functions for predicting the biomass and basic density of above and below ground parts of Norway spruce (Picea abies (L.) Karst.) in Denmark. Separate models were developed for branches (including foliage), stem and the below-ground stump and root system as well as for the aggregate components of total above-ground biomass and total tree biomass. Trees were sampled in 14 forest stands, reflecting the range of growth conditions and thinning practises of Norway spruce in Denmark. Because of inclusion of experimental plots, data reflected a wider range of thinning practices than commonly used in forestry practice. The data included measurements of biomass and basic density from 114 trees, two of which were regarded as outliers and consequently excluded in the final model estimation. The final models reflected known properties of tree growth and allocation of biomass among different tree components of even-aged Norway spruce. The models were successful in predicting biomass, basic density and biomass expansion factors across a wide variety of tree sizes, stand treatments and growth conditions. The models are believed to substantially improve national estimates of carbon sequestration and biomass resources

  15. Two-color QCD at high density

    Energy Technology Data Exchange (ETDEWEB)

    Boz, Tamer; Skullerud, Jon-Ivar [Department of Mathematical Physics, Maynooth University, Maynooth, Co. Kildare (Ireland); Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005 (Australia); Giudice, Pietro [Universität Münster, Institut für Theoretische Physik, Münster (Germany); Hands, Simon [Department of Physics, College of Science, Swansea University, Swansea (United Kingdom); Williams, Anthony G. [Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005 (Australia)

    2016-01-22

    QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor’kov propagator. We express the Gor’kov propagator in terms of form factors and present recent lattice simulation results.

  16. Initial density affects biomassdensity and allometric relationships in self-thinning populations of Fagopyrum esculentum

    DEFF Research Database (Denmark)

    Li, Lei; Weiner, Jacob; Zhou, Daowei;

    2013-01-01

    with the predictions of Metabolic Scaling Theory. If the independent variable initial density is included as a factor, the estimated slope of the log B–log N relationship is much steeper and consistent with the classical ‘Self-thinning Rule’. * The position of the self-thinning trajectory is determined in part...... in initial density can be analysed together. As plant allometry is a determinant of the self-thinning trajectory, and competition alters plants' allometric growth, initial density may have consequences for the self-thinning trajectory. * To ask whether initial density can influence allometric relationships......–density relationships in plant populations and communities. Interactions among plants and allometry are more important than internal physiological scaling mechanisms in determining the self-thinning trajectory of crowded stands....

  17. THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    M. G. McKellar; G. L. Hawkes; J. E. O' Brien

    2008-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

  18. Assessment of the phytoextraction potential of high biomass crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Allica, Javier [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain); Becerril, Jose M. [Department of Plant Biology and Ecology, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Garbisu, Carlos [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain)], E-mail: cgarbisu@neiker.net

    2008-03-15

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg{sup -1}), Zn (10 916 mg kg{sup -1}), and Cd (242 mg kg{sup -1}), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot{sup -1}. We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used.

  19. Successful test for mass production of high-grade fuel from biomass

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ To address the current energy crisis, people are exploring new ways of synthesizing fuels with biomass. As biomass contains nearly 50% of oxygen in addition to hydrogen and carbon in its composition, the key to turning it into high-grade fuel for an internal-combustion engine lies in the technology that could liquefy biomass via deoxidation by making the best use of its contents of hydrogen and carbon without adding additional hydrogen or generating water.

  20. Environmental influences on the species diversity, biomass and population density of soft bottom macrofauna in the estuarine system of Goa, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Harkantra, S.N.; Rodrigues, N.R.

    difference among the sites. The best multiple linear regression model revealed that all the 13 parameters studied were significant influencing parameters on species diversity, biomass and population density with exception of temperature. Among these salinity...

  1. Five-minute grid of marine bird biomass density surveyed off central California - all seasons, 1980-2001 (CDAS data set AL0_MASS.shp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — AL0_MASS is a polygon shapefile representing 5 minute x 5 minute latitude x longitude cells that house the overall total biomass densities (kg/sq.km.) of 76 species...

  2. Five-minute grid of marine bird biomass density surveyed off central California - Upwelling season, 1980-2001 (CDAS data set Up0_mass.shp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Up0_mass is a polygon shapefile representing 5 minute x 5 minute latitude x longitude cells that house the overall total biomass densities (kg/sq km) of 76 species...

  3. Five-minute grid of marine bird biomass density off central California - Oceanic season, 1980-2001 (CDAS data set Oc0_mass.shp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oc0_MASS is a polygon shapefile representing 5 minute x 5 minute latitude x longitude cells that house the overall total biomass densities (kg/sq km) of 76 species...

  4. Five-minute grid of marine bird biomass density surveyed off central California - Davidson Current season, 1980-2001 (CDAS data set Da0_mass.shp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Da0_MASS is a polygon shapefile representing 5 minute x 5 minute latitude x longitude cells that house the overall total biomass densities (kg/sq.km.) of 76 species...

  5. Method of high-density foil fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.

    2003-12-16

    A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.

  6. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  7. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel.

    Science.gov (United States)

    Sacia, Eric R; Balakrishnan, Madhesan; Deaner, Matthew H; Goulas, Konstantinos A; Toste, F Dean; Bell, Alexis T

    2015-05-22

    Aviation fuel (i.e., jet fuel) requires a mixture of C9 -C16 hydrocarbons having both a high energy density and a low freezing point. While jet fuel is currently produced from petroleum, increasing concern with the release of CO2 into the atmosphere from the combustion of petroleum-based fuels has led to policy changes mandating the inclusion of biomass-based fuels into the fuel pool. Here we report a novel way to produce a mixture of branched cyclohexane derivatives in very high yield (>94 %) that match or exceed many required properties of jet fuel. As starting materials, we use a mixture of n-alkyl methyl ketones and their derivatives obtained from biomass. These synthons are condensed into trimers via base-catalyzed aldol condensation and Michael addition. Hydrodeoxygenation of these products yields mixtures of C12 -C21 branched, cyclic alkanes. Using models for predicting the carbon number distribution obtained from a mixture of n-alkyl methyl ketones and for predicting the boiling point distribution of the final mixture of cyclic alkanes, we show that it is possible to define the mixture of synthons that will closely reproduce the distillation curve of traditional jet fuel.

  8. Apparent kinetics of high temperature oxidative decomposition of microalgal biomass.

    Science.gov (United States)

    Ali, Saad Aldin M; Razzak, Shaikh A; Hossain, Mohammad M

    2015-01-01

    The oxidative thermal characteristics of two microalgae species biomass Nannochloropsis oculta and Chlorella vulgaris have been investigated. The apparent kinetic parameters for the microalgal biomass oxidation process are estimated by fitting the experimental data to the nth order rate model. Also, the iso-conversional methods Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) were used to evaluate the apparent activation energy. The results indicate that biomass of different microalgae strains exhibit different thermal behavior and characteristics. In addition, growth parameters and medium composition can affect the biomass productivity and composition. This would have significant impact on the thermal decomposition trend of the biomass. The kinetic modeling of the oxidation reaction with direct model fitting method shows good prediction to the experimental data. The apparent activation energies estimated by KAS and FWO methods for N. oculta were 149.2 and 151.8kJ/mol, respectively, while for C. vulgaris were 214.4 and 213.4kJ/mol, respectively.

  9. Oxidative lime pretreatment of high-lignin biomass: poplar wood and newspaper.

    Science.gov (United States)

    Chang, V S; Nagwani, M; Kim, C H; Holtzapple, M T

    2001-04-01

    Lime (Ca[OH]2) and oxygen (O2) were used to enhance the enzymatic digestibility of two kinds of high-lignin biomass: poplar wood and newspaper. The recommended pretreatment conditions for poplar wood are 150 degrees C, 6 h, 0.1 g of Ca(OH)2/g of dry biomass, 9 mL of water/g of dry biomass, 14.0 bar absolute oxygen, and a particle size of -10 mesh. Under these conditions, the 3-d reducing sugar yield of poplar wood using a cellulase loading of 5 filter paper units (FPU)/g of raw dry biomass increased from 62 to 565 mg of eq. glucose/g of raw dry biomass, and the 3-d total sugar (glucose + xylose) conversion increased from 6 to 77% of raw total sugars. At high cellulase loadings (e.g., 75 FPU/g of raw dry biomass), the 3-d total sugar conversion reached 97%. In a trial run with newspaper, using conditions of 140 degrees C, 3 h, 0.3 g of Ca(OH)2/g of dry biomass, 16 mL of water/g of dry biomass, and 7.1 bar absolute oxygen, the 3-d reducing sugar yield using a cellulase loading of 5 FPU/g of raw dry biomass increased from 240 to 565 mg of eq. glucose/g of raw dry biomass. A material balance study on poplar wood shows that oxidative lime pretreatment solubilized 38% of total biomass, including 78% of lignin and 49% of xylan; no glucan was removed. Ash increased because calcium was incorporated into biomass during the pretreatment. After oxidative lime pretreatment, about 21% of added lime could be recovered by CO2 carbonation.

  10. High Temperature Corrosion in Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Henriksen, Niels; Montgomery, Melanie; Hede Larsen, Ole

    2002-01-01

    In Denmark, biomass such as straw or woodchip is utilised as a fuel for generating energy. Biomass is a "carbon dioxide neutral fuel" and therefore does not contribute to the greenhouse effect. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which...... has also been utilised as a fuel. Combustion of woodchip results in a smaller amount of ash, and potassium and chlorine are present in lesser amounts. However, significant corrosion rates were still seen. A case study of a woodchip fired boiler is described. The corrosion mechanisms in both straw...

  11. High Spectral Density Optical Communication Technologies

    CERN Document Server

    Nakazawa, Masataka; Miyazaki, Tetsuya

    2010-01-01

    The latest hot topics of high-spectral density optical communication systems using digital coherent optical fibre communication technologies are covered by this book. History and meaning of a "renaissance" of the technology, requirements to the Peta-bit/s class "new generation network" are also covered in the first part of this book. The main topics treated are electronic and optical devices, digital signal processing including forward error correction, modulation formats as well as transmission and application systems. The book serves as a reference to researchers and engineers.

  12. CG FARRAPO: a sudangrass cultivar with high biomass and grain yields

    Directory of Open Access Journals (Sweden)

    Emilio Ghisleni Arenhardt

    2016-07-01

    Full Text Available The new sudangrass cultivar [Sorghum sudanense (Piper Stapf.] was developed by the method of selection of individual plants with progeny testing. The most important traits are high biomass yield with high grain yield.

  13. Beyond the local density approximation : improving density functional theory for high energy density physics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Ann Elisabet; Modine, Normand Arthur; Desjarlais, Michael Paul; Muller, Richard Partain; Sears, Mark P.; Wright, Alan Francis

    2006-11-01

    A finite temperature version of 'exact-exchange' density functional theory (EXX) has been implemented in Sandia's Socorro code. The method uses the optimized effective potential (OEP) formalism and an efficient gradient-based iterative minimization of the energy. The derivation of the gradient is based on the density matrix, simplifying the extension to finite temperatures. A stand-alone all-electron exact-exchange capability has been developed for testing exact exchange and compatible correlation functionals on small systems. Calculations of eigenvalues for the helium atom, beryllium atom, and the hydrogen molecule are reported, showing excellent agreement with highly converged quantumMonte Carlo calculations. Several approaches to the generation of pseudopotentials for use in EXX calculations have been examined and are discussed. The difficult problem of finding a correlation functional compatible with EXX has been studied and some initial findings are reported.

  14. High cell density strategy for poly(3-hydroxybutyrate production by Cupriavidus necator

    Directory of Open Access Journals (Sweden)

    J. L. Ienczak

    2011-12-01

    Full Text Available Poly(3-hydroxybutyrate (P(3HB is a carbon and intracellular storage source for different microorganisms and its production can achieve high productivities by means of high cell density cultures. The aim of this study was to propose a high cell density strategy for P(3HB production by Cupriavidus necator. The exponential growth phase demands an accurate control of the oxygen transfer system in the bioreactor, due to maximum specific growth rate (µXr, and, consequently, a maximum specific oxygen uptake rate (QO2, in addition to significant residual biomass (Xr growth in high cell density cultures. In this context, this work investigated the strategy for obtaining high cell density, with the inclusion of a linear growth phase for P(3HB production by C. necator in a fed-batch culture. The linear growth phase was included between the exponential growth phase and the P(3HB production phase as a strategy to reduce the specific growth rate (µXr and specific oxygen uptake rate (QO2, with constant residual biomass growth rate (d(V.Xr/dt = k = constant and linear increase of biomass. Three strategies of culture were performed. The results showed that a high residual biomass concentration (30 gXr.L-1 can be reached by the inclusion of the linear growth strategy and specific growth rates (µXr between 0.08 and 0.05 h-1, at the beginning of the production phase, are necessary to attain a high P(3HB productivity.

  15. Recycling of irradiated high-density polyethylene

    Science.gov (United States)

    Navratil, J.; Manas, M.; Mizera, A.; Bednarik, M.; Stanek, M.; Danek, M.

    2015-01-01

    Radiation crosslinking of high-density polyethylene (HDPE) is a well-recognized modification of improving basic material characteristics. This research paper deals with the utilization of electron beam irradiated HDPE (HDPEx) after the end of its lifetime. Powder of recycled HDPEx (irradiation dose 165 kGy) was used as a filler into powder of virgin low-density polyethylene (LDPE) in concentrations ranging from 10% to 60%. The effect of the filler on processability and mechanical behavior of the resulting mixtures was investigated. The results indicate that the processability, as well as mechanical behavior, highly depends on the amount of the filler. Melt flow index dropped from 13.7 to 0.8 g/10 min comparing the lowest and the highest concentration; however, the higher shear rate the lower difference between each concentration. Toughness and hardness, on the other hand, grew with increasing addition of the recycled HDPEx. Elastic modulus increased from 254 to 450 MPa and material hardness increased from 53 to 59 ShD. These results indicate resolving the problem of further recycling of irradiated polymer materials while taking advantage of the improved mechanical properties.

  16. High Energy Density aluminum/oxygen cell

    Science.gov (United States)

    Rudd, E. J.; Gibbons, D. W.

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell, an example of which is the metal/air cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, with high energy and power densities, environmentally acceptable and having a large, established industrial base for production and distribution. An aluminum/oxygen system is currently under development for a prototype unmanned, undersea vehicle (UUV) for the US navy and recent work has focussed upon low corrosion aluminum alloys, and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from 5 to 150 mA/cm 2 have been identified, such materials being essential to realize mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 h in a large scale, half-cell system.

  17. Ground state of high-density matter

    Science.gov (United States)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  18. Nanotechnology for Synthetic High Density Lipoproteins

    Science.gov (United States)

    Luthi, Andrea J.; Patel, Pinal C.; Ko, Caroline H.; Mutharasan, R. Kannan; Mirkin, Chad A.; Thaxton, C. Shad

    2014-01-01

    Atherosclerosis is the disease mechanism responsible for coronary heart disease (CHD), the leading cause of death worldwide. One strategy to combat atherosclerosis is to increase the amount of circulating high density lipoproteins (HDL), which transport cholesterol from peripheral tissues to the liver for excretion. The process, known as reverse cholesterol transport, is thought to be one of the main reasons for the significant inverse correlation observed between HDL blood levels and the development of CHD. This article highlights the most common strategies for treating atherosclerosis using HDL. We further detail potential treatment opportunities that utilize nanotechnology to increase the amount of HDL in circulation. The synthesis of biomimetic HDL nanostructures that replicate the chemical and physical properties of natural HDL provides novel materials for investigating the structure-function relationships of HDL and for potential new therapeutics to combat CHD. PMID:21087901

  19. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  20. Mapping tropical forest biomass with radar and spaceborne LiDAR: overcoming problems of high biomass and persistent cloud

    Directory of Open Access Journals (Sweden)

    E. T. A. Mitchard

    2011-08-01

    Full Text Available Spatially-explicit maps of aboveground biomass are essential for calculating the losses and gains in forest carbon at a regional to national level. The production of such maps across wide areas will become increasingly necessary as international efforts to protect primary forests, such as the REDD+ (Reducing Emissions from Deforestation and forest Degradation mechanism, come into effect, alongside their use for management and research more generally. However, mapping biomass over high-biomass tropical forest is challenging as (1 direct regressions with optical and radar data saturate, (2 much of the tropics is persistently cloud-covered, reducing the availability of optical data, (3 many regions include steep topography, making the use of radar data complex, (4 while LiDAR data does not suffer from saturation, expensive aircraft-derived data are necessary for complete coverage.

    We present a solution to the problems, using a combination of terrain-corrected L-band radar data (ALOS PALSAR, spaceborne LiDAR data (ICESat GLAS and ground-based data. We map Gabon's Lopé National Park (5000 km2 because it includes a range of vegetation types from savanna to closed-canopy tropical forest, is topographically complex, has no recent cloud-free high-resolution optical data, and the dense forest is above the saturation point for radar. Our 100 m resolution biomass map is derived from fusing spaceborne LiDAR (7142 ICESat GLAS footprints, 96 ground-based plots (average size 0.8 ha and an unsupervised classification of terrain-corrected ALOS PALSAR radar data, from which we derive the aboveground biomass stocks of the park to be 78 Tg C (173 Mg C ha−1. This value is consistent with our field data average of 181 Mg C ha−1, from the field plots measured in 2009 covering a total of 78 ha, and which are independent as they were not used for the GLAS-biomass estimation. We estimate an uncertainty of ± 25 % on our

  1. Functions for biomass and basic density of stem, crown and root system of Norway spruce (Picea abies (L.) Karst.) in Denmark

    DEFF Research Database (Denmark)

    Skovsgaard, Jens Peter; Bald, Caroline; Nord-Larsen, Thomas

    2011-01-01

    Models for predicting the biomass of forest trees are becoming increasingly important for assessing forest resources and carbon sequestration in forests. We developed functions for predicting the biomass and basic density of above- and below-ground parts of Norway spruce (Picea abies (L.) Karst...... variety of tree sizes, stand treatments and growth conditions. The models are believed to substantially improve national estimates of carbon sequestration and biomass resources........) in Denmark. Separate models were developed for branches (including foliage), stem and the below-ground stump and root system as well as for the aggregate components of total above-ground biomass and total tree biomass. Trees were sampled in 14 forest stands, reflecting the range of growth conditions...

  2. In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density.

    Science.gov (United States)

    Winichayakul, Somrutai; Scott, Richard William; Roldan, Marissa; Hatier, Jean-Hugues Bertrand; Livingston, Sam; Cookson, Ruth; Curran, Amy Christina; Roberts, Nicholas John

    2013-06-01

    Our dependency on reduced carbon for energy has led to a rapid increase in the search for sustainable alternatives and a call to focus on energy densification and increasing biomass yields. In this study, we generated a uniquely stabilized plant structural protein (cysteine [Cys]-oleosin) that encapsulates triacylglycerol (TAG). When coexpressed with diacylglycerol O-acyltransferase (DGAT1) in Arabidopsis (Arabidopsis thaliana), we observed a 24% increase in the carbon dioxide (CO2) assimilation rate per unit of leaf area and a 50% increase in leaf biomass as well as approximately 2-, 3-, and 5-fold increases in the fatty acid content of the mature leaves, senescing leaves, and roots, respectively. We propose that the coexpression led to the formation of enduring lipid droplets that prevented the futile cycle of TAG biosynthesis/lipolysis and instead created a sustained demand for de novo lipid biosynthesis, which in turn elevated CO2 recycling in the chloroplast. Fatty acid profile analysis indicated that the formation of TAG involved acyl cycling in Arabidopsis leaves and roots. We also demonstrate that the combination of Cys-oleosin and DGAT1 resulted in the highest accumulation of fatty acids in the model single-cell eukaryote, Saccharomyces cerevisiae. Our results support the notion that the prevention of lipolysis is vital to enabling TAG accumulation in vegetative tissues and confirm the earlier speculation that elevating fatty acid biosynthesis in the leaf would lead to an increase in CO2 assimilation. The Cys-oleosins have applications in biofuels, animal feed, and human nutrition as well as in providing a tool for investigating fatty acid biosynthesis and catabolism.

  3. Abnormal high density lipoproteins in cerebrotendinous xanthomatosis

    Energy Technology Data Exchange (ETDEWEB)

    Shore, V. (Lawrence Livermore Lab., CA); Salen, G.; Cheng, F.W.; Forte, T.; Shefer, S.; Tint, G.S.

    1981-11-01

    The plasma lipoprotein profiles and high density lipoproteins (HDL) were characterized in patients with the genetic disease cerebrotendinous xanthomatosis (CTX). The mean HDL-cholesterol concentration in the CTX plasmas was 14.5 +/- 3.2 mg/dl, about one-third the normal value. The low HDL-cholesterol reflects a low concentration and an abnormal lipid composition of the plasma HDL. Relative to normal HDL, the cholesteryl esters are low, free cholesterol and phospholipids essentially normal, and triglycerides increased. The ratio of apoprotein (apo) to total cholesterol in the HDL of CTX was two to three times greater than normal. In the CTX HDL, the ratio of apoAI to apoAII was high, the proportion of apoC low, and a normally minor form of apoAI increased relative to other forms. The HDL in electron micrographs appeared normal morphologically and in particle size. The adnormalities in lipoprotein distribution profiles and composition of the plasma HDL result from metabolic defects that are not understood but may be linked to the genetic defect in bile acid synthesis in CTX. As a consequence, it is probable that the normal functions of the HDL, possibly including modulation of LDL-cholesterol uptake and the removal of excess cholesterol from peripheral tissues, are perturbed significantly in this disease.

  4. [Effects of nitrogen fertilization rate and planting density on cotton boll biomass and nitrogen accumulation in extremely early maturing cotton region of Northeast China].

    Science.gov (United States)

    Wang, Zi-Sheng; Wu, Xiao-Dong; Gao, Xiang-Bin; Xu, Min; Shen, Dan; Jin, Lu-Lu; Zhou, Zhi-Guo

    2012-02-01

    Taking cotton cultivars Liaomian 19 and NuCoTN 33B as test materials, a field experiment was conducted to study the effects of nitrogen fertilization rate (0, 240 and 480 kg x hm(-2)) and planting density (75000, 97500 and 120000 plants x hm(-2)) on the boll biomass and nitrogen accumulation in the extremely early maturing cotton region of Northeast China. With the growth and development of cotton, the biomass and nitrogen accumulation of cotton boll, cotton seed, and cotton fiber varied in 'S' shape. Both nitrogen fertilization rate and planting density had significant effects on the dynamic characteristics of boll biomass and nitrogen accumulation, and on the fiber yield and quality. In treatment 240 kg x hm(-2) and 97500 plants x hm(-2), the biomass of single boll, cotton seed and cotton fiber was the maximum, the starting time and ending time of the rapid accumulation period of the biomass and nitrogen were earlier but the duration of the accumulation was shorter, the rapid accumulation speed of the biomass was the maximum, and the distribution indices of the biomass and nitrogen were the lowest in boll shell but the highest in cotton seed and cotton fiber.

  5. Relationship between daily exposure to biomass fuel smoke and blood pressure in high-altitude Peru.

    Science.gov (United States)

    Burroughs Peña, Melissa; Romero, Karina M; Velazquez, Eric J; Davila-Roman, Victor G; Gilman, Robert H; Wise, Robert A; Miranda, J Jaime; Checkley, William

    2015-05-01

    Household air pollution from biomass fuel use affects 3 billion people worldwide; however, few studies have examined the relationship between biomass fuel use and blood pressure. We sought to determine if daily biomass fuel use was associated with elevated blood pressure in high altitude Peru and if this relationship was affected by lung function. We analyzed baseline information from a population-based cohort study of adults aged ≥ 35 years in Puno, Peru. Daily biomass fuel use was self-reported. We used multivariable regression models to examine the relationship between daily exposure to biomass fuel smoke and blood pressure outcomes. Interactions with sex and quartiles of forced vital capacity were conducted to evaluate for effect modification. Data from 1004 individuals (mean age, 55.3 years; 51.7% women) were included. We found an association between biomass fuel use with both prehypertension (adjusted relative risk ratio, 5.0; 95% confidence interval, 2.6-9.9) and hypertension (adjusted relative risk ratio, 3.5; 95% confidence interval, 1.7-7.0). Biomass fuel users had a higher systolic blood pressure (7.0 mm Hg; 95% confidence interval, 4.4-9.6) and a higher diastolic blood pressure (5.9 mm Hg; 95% confidence interval, 4.2-7.6) when compared with nonusers. We did not find interaction effects between daily biomass fuel use and sex or percent predicted forced vital capacity for either systolic blood pressure or diastolic blood pressure. Biomass fuel use was associated with a higher likelihood of having hypertension and higher blood pressure in Peru. Reducing exposure to household air pollution from biomass fuel use represents an opportunity for cardiovascular prevention.

  6. High Energy Density Capacitors for Pulsed Power Applications

    Science.gov (United States)

    2009-07-01

    high energy density energy storage capacitors. High efficency capacitors are available with energy densities as high as 3 J/cc for 1000 shots or...GENERAL ATOMICS ENERGY PRODUCTS Engineering Bulletin HIGH ENERGY DENSITY CAPACITORS FOR PULSED POWER APPLICATIONS Fred MacDougall, Joel...00-2009 4. TITLE AND SUBTITLE High Energy Density Capacitors for Pulsed Power Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  7. A high temperature drop-tube and packed-bed solar reactor for continuous biomass gasification

    Science.gov (United States)

    Bellouard, Quentin; Abanades, Stéphane; Rodat, Sylvain; Dupassieux, Nathalie

    2017-06-01

    Biomass gasification is an attractive process to produce high-value syngas. Utilization of concentrated solar energy as the heat source for driving reactions increases the energy conversion efficiency, saves biomass resource, and eliminates the needs for gas cleaning and separation. A high-temperature tubular solar reactor combining drop tube and packed bed concepts was used for continuous solar-driven gasification of biomass. This 1 kW reactor was experimentally tested with biomass feeding under real solar irradiation conditions at the focus of a 2 m-diameter parabolic solar concentrator. Experiments were conducted at temperatures ranging from 1000°C to 1400°C using wood composed of a mix of pine and spruce (bark included) as biomass feedstock. The aim of this study was to demonstrate the feasibility of syngas production in this reactor concept and to prove the reliability of continuous biomass gasification processing using solar energy. The study first consisted of a parametric study of the gasification conditions to obtain an optimal gas yield. The influence of temperature and oxidizing agent (H2O or CO2) on the product gas composition was investigated. The study then focused on solar gasification during continuous biomass particle injection for demonstrating the feasibility of a continuous process. Regarding the energy conversion efficiency of the lab scale reactor, energy upgrade factor of 1.21 and solar-to-fuel thermochemical efficiency up to 28% were achieved using wood heated up to 1400°C.

  8. Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds.

    Science.gov (United States)

    Gutiérrez, Raquel; Ferrer, Ivet; González-Molina, Andrés; Salvadó, Humbert; García, Joan; Uggetti, Enrica

    2016-12-01

    Microalgal biomass harvesting by inducing spontaneous flocculation (bioflocculation) sets an attractive approach, since neither chemicals nor energy are needed. Indeed, bioflocculation may be promoted by recycling part of the harvested microalgal biomass to the photobioreactor in order to increase the predominance of rapidly settling microalgae species. The aim of the present study was to improve the recovery of microalgal biomass produced in wastewater treatment high rate algal ponds (HRAPs) by recycling part of the harvested microalgal biomass. The recirculation of 2% and 10% (dry weight) of the HRAPs microalgal biomass was tested over one year in an experimental HRAP treating real urban wastewater. Results indicated that biomass recycling had a positive effect on the harvesting efficiency, obtaining higher biomass recovery in the HRAP with recycling (R-HRAP) (92-94%) than in the control HRAP without recycling (C-HRAP) (75-89%). Microalgal biomass production was similar in both systems, ranging between 3.3 and 25.8 g TSS/m(2)d, depending on the weather conditions. Concerning the microalgae species, Chlorella sp. was dominant overall the experimental period in both HRAPs (abundance >60%). However, when the recycling rate was increased to 10%, Chlorella sp. dominance decreased from 97.6 to 88.1%; while increasing the abundance of rapidly settling species such as Stigeoclonium sp. (16.8%, only present in the HRAP with biomass recycling) and diatoms (from 0.7 to 7.3%). Concerning the secondary treatment of the HRAPs, high removals of COD (80%) and N-NH4(+) (97%) were found in both HRAPs. Moreover, by increasing the biomass recovery in the R-HRAP the effluent total suspended solids (TSS) concentration was decreased to less than 35 mg/L, meeting effluent quality requirements for discharge. This study shows that microalgal biomass recycling (10% dry weight) increases biomass recovery up to 94% by selecting the most rapidly settling microalgae species without

  9. Nanobiotechnology applications of reconstituted high density lipoprotein.

    Science.gov (United States)

    Ryan, Robert O

    2010-12-01

    High-density lipoprotein (HDL) plays a fundamental role in the Reverse Cholesterol Transport pathway. Prior to maturation, nascent HDL exist as disk-shaped phospholipid bilayers whose perimeter is stabilized by amphipathic apolipoproteins. Methods have been developed to generate reconstituted (rHDL) in vitro and these particles have been used in a variety of novel ways. To differentiate between physiological HDL particles and non-natural rHDL that have been engineered to possess additional components/functions, the term nanodisk (ND) is used. In this review, various applications of ND technology are described, such as their use as miniature membranes for solubilization and characterization of integral membrane proteins in a native like conformation. In other work, ND harboring hydrophobic biomolecules/drugs have been generated and used as transport/delivery vehicles. In vitro and in vivo studies show that drug loaded ND are stable and possess potent biological activity. A third application of ND is their use as a platform for incorporation of amphiphilic chelators of contrast agents, such as gadolinium, used in magnetic resonance imaging. Thus, it is demonstrated that the basic building block of plasma HDL can be repurposed for alternate functions.

  10. Photovoltaic retinal prosthesis with high pixel density

    Science.gov (United States)

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I.; Galambos, Ludwig; Smith, Richard; Harris, James S.; Sher, Alexander; Palanker, Daniel

    2012-06-01

    Retinal degenerative diseases lead to blindness due to loss of the `image capturing' photoreceptors, while neurons in the `image-processing' inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating the surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems that deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation is produced in normal and degenerate rat retinas, with pulse durations of 0.5-4 ms, and threshold peak irradiances of 0.2-10 mW mm-2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 µm bipolar pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high pixel density.

  11. Galaxy interactions II: High density environments

    CERN Document Server

    Alonso, Sol; Padilla, Nelson; Lambas, Diego G

    2011-01-01

    With the aim to assess the role of dense environments in galaxy interactions, properties we present an analysis of close galaxy pairs in groups and clusters, obtained from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). We identified pairs that reside in groups by cross-correlating the total galaxy pair catalogue with the SDSS-DR7 group catalogue from Zapata et al. (2009). We classify pair galaxies according to the intensity of interaction. We analysed the effect of high density environments on different classes of galaxy-galaxy interactions and we have also studied the impact of the group global environment on pair galaxies. We find that galaxy pairs are more concentrated towards the group centres with respect to the other group galaxy members, and disturbed pairs show a preference to contain the brightest galaxy in the groups. The color-magnitude relation exhibits significant differences between pair galaxies and the control sample, consisting in color tails with a clear excess of extremely blue and...

  12. Strangeness production in high density baryon matter

    CERN Document Server

    Ganz, R E

    1999-01-01

    Strangeness production in heavy-ion collisions, when compared to proton proton collisions, is potentially a sensitive probe for collective energy deposition and therefore for reaction mechanisms in general. It may therefore provide insight into possible QGP formation in dense nuclear matter. To establish an understanding of the observed yields, a systematic study of high density baryon matter at different beam energies is essential. This might also reveal possible discontinuities in the energy dependence of the reaction mechanism. We present preliminary results for kaon production in Au+Au collisions at beam kinetic energies of 6, 8, and 10.7 GeV/u obtained by the E917 experiment at the AGS (BNL). These measurements complement those carried out by the E866 collaboration at 2, 4, and 10.7 GeV/u with a significantly enlarged data sample. In both experiments a large range of rapidities was covered by taking data at different angular settings of the magnetic spectrometer.

  13. High-density electroencephalography developmental neurophysiological trajectories.

    Science.gov (United States)

    Dan, Bernard; Pelc, Karine; Cebolla, Ana M; Cheron, Guy

    2015-04-01

    Efforts to document early changes in the developing brain have resulted in the construction of increasingly accurate structural images based on magnetic resonance imaging (MRI) in newborn infants. Tractography diagrams obtained through diffusion tensor imaging have focused on white matter microstructure, with particular emphasis on neuronal connectivity at the level of fibre tract systems. Electroencephalography (EEG) provides a complementary approach with more direct access to brain electrical activity. Its temporal resolution is excellent, and its spatial resolution can be enhanced to physiologically relevant levels, through the combination of high-density recordings (e.g. by using 64 channels in newborn infants) and mathematical models (e.g. inverse modelling computation), to identify generators of different oscillation bands and synchrony patterns. The integration of functional and structural topography of the neonatal brain provides insights into typical brain organization, and the deviations seen in particular contexts, for example the effect of hypoxic-ischaemic insult in terms of damage, eventual reorganization, and functional changes. Endophenotypes can then be used for pathophysiological reasoning, management planning, and outcome measurements, and allow a longitudinal approach to individual developmental trajectories. © The Authors. Journal compilation © 2015 Mac Keith Press.

  14. Assessing the influence of return density on estimation of lidar-based aboveground biomass in tropical peat swamp forests of Kalimantan, Indonesia

    Science.gov (United States)

    Manuri, Solichin; Andersen, Hans-Erik; McGaughey, Robert J.; Brack, Cris

    2017-04-01

    The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition can vary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed the effect of lidar return density on the accuracy of lidar metrics and regression models for estimating aboveground biomass (AGB) and basal area (BA) in tropical peat swamp forests (PSF) in Kalimantan, Indonesia. A large dataset of ALS covering an area of 123,000 ha was used in this study. This study found that cumulative return proportion (CRP) variables represent a better accumulation of AGB over tree heights than height-related variables. The CRP variables in power models explained 80.9% and 90.9% of the BA and AGB variations, respectively. Further, it was found that low-density (and low-cost) lidar should be considered as a feasible option for assessing AGB and BA in vast areas of flat, lowland PSF. The performance of the models generated using reduced return densities as low as 1/9 returns per m2 also yielded strong agreement with the original high-density data. The use model-based statistical inferences enabled relatively precise estimates of the mean AGB at the landscape scale to be obtained with a fairly low-density of 1/4 returns per m2, with less than 10% standard error (SE). Further, even when very low-density lidar data was used (i.e., 1/49 returns per m2) the bias of the mean AGB estimates were still less than 10% with a SE of approximately 15%. This study also investigated the influence of different DTM resolutions for normalizing the elevation during the generation of forest-related lidar metrics using various return densities point cloud. We found that the high-resolution digital terrain model (DTM) had little effect on the accuracy of lidar metrics calculation in PSF. The accuracy of

  15. A granular-biomass high temperature pyrolysis model based on the Darcy flow

    Science.gov (United States)

    Guan, Jian; Qi, Guoli; Dong, Peng

    2015-03-01

    We established a model for the chemical reaction kinetics of biomass pyrolysis via the high-temperature thermal cracking of liquid products. We divided the condensable volatiles into two groups, based on the characteristics of the liquid prdoducts., tar and biomass oil. The effects of temperature, residence time, particle size, velocity, pressure, and other parameters on biomass pyrolysis and high-temperature tar cracking were investigated numerically, and the results were compared with experimental data. The simulation results showed a large endothermic pyrolysis reaction effect on temperature and the reaction process. The pyrolysis reaction zone had a constant temperature period in several layers near the center of large biomass particles. A purely physical heating process was observed before and after this period, according to the temperature index curve.

  16. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.

    Science.gov (United States)

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-01

    This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day). Copyright © 2013

  17. Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR.

    Science.gov (United States)

    Garcia, Mariano; Saatchi, Sassan; Ferraz, Antonio; Silva, Carlos Alberto; Ustin, Susan; Koltunov, Alexander; Balzter, Heiko

    2017-12-01

    Accurate estimation of aboveground forest biomass (AGB) and its dynamics is of paramount importance in understanding the role of forest in the carbon cycle and the effective implementation of climate change mitigation policies. LiDAR is currently the most accurate technology for AGB estimation. LiDAR metrics can be derived from the 3D point cloud (echo-based) or from the canopy height model (CHM). Different sensors and survey configurations can affect the metrics derived from the LiDAR data. We evaluate the ability of the metrics derived from the echo-based and CHM data models to estimate AGB in three different biomes, as well as the impact of point density on the metrics derived from them. Our results show that differences among metrics derived at different point densities were significantly different from zero, with a larger impact on CHM-based than echo-based metrics, particularly when the point density was reduced to 1 point m(-2). Both data models-echo-based and CHM-performed similarly well in estimating AGB at the three study sites. For the temperate forest in the Sierra Nevada Mountains, California, USA, R(2) ranged from 0.79 to 0.8 and RMSE (relRMSE) from 69.69 (35.59%) to 70.71 (36.12%) Mg ha(-1) for the echo-based model and from 0.76 to 0.78 and 73.84 (37.72%) to 128.20 (65.49%) Mg ha(-1) for the CHM-based model. For the moist tropical forest on Barro Colorado Island, Panama, the models gave R(2) ranging between 0.70 and 0.71 and RMSE between 30.08 (12.36%) and 30.32 (12.46) Mg ha(-1) [between 0.69-0.70 and 30.42 (12.50%) and 61.30 (25.19%) Mg ha(-1)] for the echo-based [CHM-based] models. Finally, for the Atlantic forest in the Sierra do Mar, Brazil, R(2) was between 0.58-0.69 and RMSE between 37.73 (8.67%) and 39.77 (9.14%) Mg ha(-1) for the echo-based model, whereas for the CHM R(2) was between 0.37-0.45 and RMSE between 45.43 (10.44%) and 67.23 (15.45%) Mg ha(-1). Metrics derived from the CHM show a higher dependence on point density than

  18. 14 CFR 93.123 - High density traffic airports.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...

  19. Benthic foraminifera living in Gulf of Mexico bathyal and abyssal sediments: Community analysis and comparison to metazoan meiofaunal biomass and density

    Science.gov (United States)

    Bernhard, Joan M.; Sen Gupta, Barun K.; Baguley, Jeffrey G.

    2008-12-01

    Benthic foraminiferal biomass, density, and species composition were determined at 10 sites in the Gulf of Mexico. During June 2001 and 2002, sediment samples were collected with a GoMex box corer. A 7.5-cm diameter subcore was taken from a box core collected at each site and sliced into 1-cm or 2-cm sections to a depth of 2 or 3 cm; the >63-μm fraction was examined shipboard for benthic foraminifera. Individual foraminifers were extracted for adenosine triphosphate (ATP) using a luciferin-luciferase assay, which indicated the total ATP content per specimen; that data was converted to organic carbon. Foraminiferal biomass and density varied substantially (˜2-53 mg C m -2; ˜3600-44,500 individuals m -2, respectively) and inconsistently with water depth: although two ˜1000-m deep sites were geographically separated by only ˜75 km, the foraminiferal biomass at one site was relatively low (˜9 mg C m -2) while the other site had the highest foraminiferal biomass (˜53 mg C m -2). Although most samples from Sigsbee Plain (>3000 m) had low biomass, one Sigsbee site had >20 mg foraminiferal C m -2. The foraminiferal community from all sites (i.e. bathyal and abyssal locales) was dominated by agglutinated, rather than calcareous or tectinous, species. Foraminiferal density never exceeded that of metazoan meiofauna at any site. Foraminiferal biomass, however, exceeded metazoan meiofaunal biomass at 5 of the 10 sites, indicating that foraminifera constitute a major component of the Gulf's deep-water meiofaunal biomass.

  20. High-altitude atomic nitrogen densities

    Science.gov (United States)

    Oran, E. S.; Strobel, D. F.; Mauersberger, K.

    1978-01-01

    Theoretical calculations of the seasonal and diurnal variations of atomic nitrogen are compared with measurements made by the open source neutral mass spectrometer on the AE-C satellite. With the simultaneous measurements of molecular nitrogen and atomic oxygen densities as input, model calculations of odd nitrogen densities predict the same trends in atomic nitrogen as those observed. From these comparisons it is inferred that horizontal transport significantly reduces the diurnal variation of atomic nitrogen. Estimates are given of the sensitivity of atomic nitrogen densities to variations in the photoelectron flux, the neutral temperatures, and the neutral winds.

  1. High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification. Part I: Modelling and feasibility study

    Science.gov (United States)

    Panopoulos, K. D.; Fryda, L. E.; Karl, J.; Poulou, S.; Kakaras, E.

    Biomass gasification derived fuel gas is a renewable fuel that can be used by high temperature fuel cells. In this two-part work an attempt is made to investigate the integration of a near atmospheric pressure solid oxide fuel cell (SOFC) with a novel allothermal biomass steam gasification process into a combined heat and power (CHP) system of less than MW e nominal output range. Heat for steam gasification is supplied from SOFC depleted fuel into a fluidised bed combustor via high temperature sodium heat pipes. The integrated system model was built in Aspen Plus™ simulation software and is described in detail. Part I investigates the feasibility and critical aspects of the system based on modelling results. A low gasification steam to biomass ratio (STBR = 0.6) is used to avoid excess heat demands and to allow effective H 2S high temperature removal. Water vapour is added prior to the anode to avoid carbon deposition. The SOFC off gases adequately provide gasification heat when fuel utilisation factors are f = 0.7 and current density 2500 A m -2 the electrical efficiency is estimated at 36% while thermal efficiency at 14%. An exergy analysis is presented in Part II.

  2. Evaluation of pulmonary changes due to biomass fuels using high-resolution computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kara, Mustafa; Tas, Fikret [Department of Radiology, Cumhuriyet University, 58140, Sivas (Turkey); Faculty of Medicine, Cumhuriyet University, 58140, Sivas (Turkey); Bulut, Sema [Department of Radiology, Cumhuriyet University, 58140, Sivas (Turkey); Akkurt, Ibrahim; Seyfikli, Zehra [Faculty of Medicine, Cumhuriyet University, 58140, Sivas (Turkey); Department of Respiratory Disease, Cumhuriyet University, 58140, Sivas (Turkey)

    2003-10-01

    Biomass fuels are frequently used in rural areas of the world for cooking and heating frequently. It has been reported that the use of these fuels causes hazardous effects on the lungs. In this study, we evaluated the pulmonary changes due to the use of biomass fuels in a female population that lives in our territory by high-resolution computed tomography (HRCT). The study analyzed three groups of women. The first group comprised those subjects who were exposed to biomass without respiratory symptoms (group 1; n=32). The second group comprised those individuals that were exposed to biomass and showed respiratory symptoms, such as cough, sputum production, and dyspnea (group 2; n=30). The third group was composed of women who were not exposed to biomass and also had no respiratory symptoms (group 3; n=30). Women with a history of concomitant pulmonary diseases were excluded from the study. All groups were examined with HRCT. Groups 1 and 2 (individuals exposed to biomass fuels) had more pathologic findings than group 3 (not exposed to biomass fuels). Ground-glass appearance was seen in 71.9% in group 1, 23.3% in group 2, and 3.3% in group 3. The difference between the groups was statistically significant (p<0.05). Fibrotic bands were seen 50% in group 1, 63.3% in group 2, and only 6.7% in group 3 (p<0.001). Exposure to biomass fuels was the cause or predisposing factor for many pulmonary diseases, ranging from chronic bronchitis to diffuse lung diseases. We believe that these pathological changes due to biomass fuels can be detected earlier by HRCT and the diseases might be prevented or treated earlier. (orig.)

  3. Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors.

    Science.gov (United States)

    Thangavel, Ranjith; Kaliyappan, Karthikeyan; Ramasamy, Hari Vignesh; Sun, Xueliang; Lee, Yun-Sung

    2017-07-10

    Electrochemical supercapacitors with high energy density are promising devices due to their simple construction and long-term cycling performance. The development of a supercapacitor based on electrical double-layer charge storage with high energy density that can preserve its cyclability at higher power presents an ongoing challenge. Herein, we provide insights to achieve a high energy density at high power with an ultrahigh stability in an electrical double-layer capacitor (EDLC) system by using carbon from a biomass precursor (cinnamon sticks) in a sodium ion-based organic electrolyte. Herein, we investigated the dependence of EDLC performance on structural, textural, and functional properties of porous carbon engineered by using various activation agents. The results demonstrate that the performance of EDLCs is not only dependent on their textural properties but also on their structural features and surface functionalities, as is evident from the electrochemical studies. The electrochemical results are highly promising and revealed that the porous carbon with poor textural properties has great potential to deliver high capacitance and outstanding stability over 300 000 cycles compared with porous carbon with good textural properties. A very low capacitance degradation of around 0.066 % per 1000 cycles, along with high energy density (≈71 Wh kg(-1) ) and high power density, have been achieved. These results offer a new platform for the application of low-surface-area biomass-derived carbons in the design of highly stable high-energy supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Alternative Approaches to High Energy Density Fusion

    Science.gov (United States)

    Hammer, J.

    2016-10-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag. The energy that must be assembled in the imploded state to ignite varies roughly as Pstag-2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed-power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NTF-like drive conditions and reach the energy bound for indirect drive ICF.

  5. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  6. High Density Lipoprotein Metabolism in Man

    Science.gov (United States)

    Blum, Conrad B.; Levy, Robert I.; Eisenberg, Shlomo; Hall, Marshall; Goebel, Robert H.; Berman, Mones

    1977-01-01

    The turnover of 125I-high density lipoprotein (HDL) was examined in a total of 14 studies in eight normal volunteers in an attempt to determine the metabolic relationship between apolipoproteins A-I (apoA-I) and A-II (apoA-II) of HDL and to define further some of the determinants of HDL metabolism. All subjects were first studied under conditions of an isocaloric balanced diet (40% fat, 40% carbohydrate). Four were then studied with an 80% carbohydrate diet, and two were studied while receiving nicotinic acid (1 g three times daily) and ingesting the same isocaloric balanced diet. The decay of autologous 125I-HDL and the appearance of urinary radioactivity were followed for at least 2 wk in each study. ApoA-I and apoA-II were isolated by Sephadex G-200 chromatography from serial plasma samples in each study. The specific activities of these peptides were then measured directly. It was found that the decay of specific activity of apoA-I and apoA-II were parallel to one another in all studies. The mean half-life of the terminal portion of decay was 5.8 days during the studies with a balanced diet. Mathematical modeling of the decay of plasma radioactivity and appearance of urinary radioactivity was most consistent with a two-compartment model. One compartment is within the plasma and exchanges with a nonplasma component. Catabolism occurs from both of these compartments. With a balanced isocaloric diet, the mean synthetic rate for HDL protein was 8.51 mg/kg per day. HDL synthesis was not altered by the high carbohydrate diet and was only slightly decreased by nicotinic acid treatment. These perturbations had effects on HDL catabolic pathways that were reciprocal in many respects. With an 80% carbohydrate diet, the rate of catabolism from the plasma compartment rose by a mean of 39.1%; with nicotinic acid treatment, it fell by 42.2%. Changes in the rate of catabolism from the second compartment were generally opposite those in the rate of catabolism from the plasma

  7. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Hawkes; J. E. O' Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power

  8. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Hawkes; J. E. O' Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power

  9. Hydrogen production from high moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Xu, X. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1998-08-01

    By mixing wood sawdust with a corn starch gel, a viscous paste can be produced that is easily delivered to a supercritical flow reactor by means of a cement pump. Mixtures of about 10 wt% wood sawdust with 3.65 wt% starch are employed in this work, which the authors estimate to cost about $0.043 per lb. Significant reductions in feed cost can be achieved by increasing the wood sawdust loading, but such an increase may require a more complex pump. When this feed is rapidly heated in a tubular flow reactor at pressures above the critical pressure of water (22 MPa), the sawdust paste vaporizes without the formation of char. A packed bed of carbon catalyst in the reactor operating at about 650 C causes the tarry vapors to react with water, producing hydrogen, carbon dioxide, and some methane with a trace of carbon monoxide. The temperature and history of the reactor`s wall influence the hydrogen-methane product equilibrium by catalyzing the methane steam reforming reaction. The water effluent from the reactor is clean. Other biomass feedstocks, such as the waste product of biodiesel production, behave similarly. Unfortunately, sewage sludge does not evidence favorable gasification characteristics and is not a promising feedstock for supercritical water gasification.

  10. [Effects of nitrogen fertilization rate and planting density on cotton biomass and nitrogen accumulation in extremely early mature cotton region of Northeast China].

    Science.gov (United States)

    Wang, Zi-Sheng; Xu, Min; Zhang, Guo-Wei; Jin, Lu-Lu; Shan, Ying; Wu, Xiao-Dong; Zhou, Zhi-Guo

    2011-12-01

    Taking two cotton cultivars Liaomian 19 and NuCOTN 33B with different growth periods as test materials, a field experiment was conducted to study the effects of different nitrogen fertilization rates (0, 240 and 480 kg N x hm(-2)) and different planting densities (75000, 97500 and 120000 plants x hm(-2)) on the cotton biomass, nitrogen accumulation, and accumulative nitrogen utilization in the planting region of extremely early mature cotton in Northeast China. The dynamics of cotton biomass and nitrogen accumulation of the two cultivars with their growth process followed Logistic model. Both nitrogen fertilization rate and planting density had significant effects on the cotton nitrogen accumulation dynamics and the cotton yield and quality. In all treatments, the beginning time of rapid accumulation of nitrogen was about 13 d earlier than that of biomass. In treatment plant density 97500 plants x hm(-2) and nitrogen fertilization rate 240 kg x hm(-2), the eigenvalues of the dynamic accumulation models of nitrogen and biomass for the two cultivars were most harmonious, lint yield was the highest, fiber quality was the best, and accumulative nitrogen utilization efficiency was the highest. In the study region, the earlier beginning time of rapid accumulation of nitrogen and biomass and their higher accumulation rates were benefit to the formation of higher cotton yield.

  11. Biomass burning in eastern Europe during spring 2006 caused high deposition of ammonium in northern Fennoscandia

    DEFF Research Database (Denmark)

    Karlsson, Per Erik; Ferm, Martin; Pihl Karlsson, Gunilla

    2013-01-01

    High air concentrations of ammonium were detected at low and high altitude sites in Sweden, Finland and Norway during the spring 2006, coinciding with polluted air from biomass burning in eastern Europe passing over central and northern Fennoscandia. Unusually high values for throughfall deposition...

  12. Variable kernel density estimation in high-dimensional feature spaces

    CSIR Research Space (South Africa)

    Van der Walt, Christiaan M

    2017-02-01

    Full Text Available Estimating the joint probability density function of a dataset is a central task in many machine learning applications. In this work we address the fundamental problem of kernel bandwidth estimation for variable kernel density estimation in high...

  13. Observable to explore high density behaviour of symmetry energy

    CERN Document Server

    Sood, Aman D

    2011-01-01

    We aim to see the sensitivity of collective transverse in-plane flow to symmetry energy at low as well as high densities and also to see the effect of different density dependencies of symmetry energy on the same.

  14. Synchrotron radiation absorber for high density loads

    Science.gov (United States)

    Anashin, V. V.; Kuzminych, V. S.; Trakhtenberg, E. M.; Zholents, A. A.

    1991-10-01

    A design of a special synchrotron radiation absorber for the storage ring VEPP-4M is presented. The density of the synchrotron radiation power on the absorber surface is up to 500 W/mm 2. The absorber is made from a beryllium plate, brazed inside to the copper vacuum chamber, which is intensively water-cooled from outside.

  15. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic

    Science.gov (United States)

    Hu, Q.; Xie, Z.; Wang, X.; Kang, H.; Zhang, P.

    2015-12-01

    Biomass burning discharges numerous kinds of gases and aerosols, such as carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), black carbon (BC), alcohols, organic acids and persistent organic pollutants (POPs), and is known to affect air quality, global carbon cycle, and climate. However, the extent to which biomass burning gases/aerosols are present on a global scale, especially in the marine atmosphere, is poorly understood. Here we measure levoglucosan, a superior molecular tracer of biomass burning aerosols because of its single source, in marine air from the Arctic Ocean through the North and South Pacific Ocean to coastal Antarctica during burning season. Levoglucosan was found to be present in all regions at ng/m3 levels. As a whole, levoglucosan concentrations in the Southern Hemisphere were comparable to those in the Northern Hemisphere. Marine air in the mid-latitudes (30°-60° N and S) has the highest levoglucosan loading due to the emission from adjacent lands. Air over the Arctic Ocean which affected by biomass burning in the east Siberia has intermediate loading. Equatorial latitudes is the main source of biomass burning emissions, however, levoglucosan is in relatively low level. Large amount of precipitation and high hydroxyl radical concentration in this region cause more deposition and degradation of levoglucosan during transport. Previous studies were debatable on the influence of biomass burning on the Antarctic because of uncertain source of BC. Here via levoglucosan, it is proved that although far away from emission sources, the Antarctic is still affected by biomass burning aerosols which may be derived from South America. Biomass burning has a significant impact on mercury (Hg) and water-soluble organic carbon (WSOC) in marine aerosols from pole to pole, with more contribution to WSOC in the Northern Hemisphere than in the Southern Hemisphere.

  16. High density and high temperature plasmas in Large Helical Device

    Science.gov (United States)

    Komori, Akio

    2010-11-01

    Recently a new confinement regime called Super Dense Core (SDC) mode was discovered in Large Helical Device (LHD). An extremely high density core region with more than ~ 1 × 1021 m-3 is obtained with the formation of an Internal Diffusion Barrier (IDB). The density gradient at the IDB is very high and the particle confinement in the core region is ~ 0.2 s. It is expected, for the future reactor, that the IDB-SDC mode has a possibility to achieve the self-ignition condition with lower temperature than expected before. Conventional approaches to increase the temperature have also been tried in LHD. For the ion heating, the perpendicular neutral beam injection effectively increased the ion temperature up to 5.6 keV with the formation of the internal transport barrier (ITB). In the electron heating experiments with 77 GHz gyrotrons, the highest electron temperature more than 15 keV was achieved, where plasmas are in the neoclassical regime.

  17. High density and high temperature plasmas in Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Komori, Akio, E-mail: komori@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)

    2010-11-01

    Recently a new confinement regime called Super Dense Core (SDC) mode was discovered in Large Helical Device (LHD). An extremely high density core region with more than {approx} 1 x 10{sup 21} m{sup -3} is obtained with the formation of an Internal Diffusion Barrier (IDB). The density gradient at the IDB is very high and the particle confinement in the core region is {approx} 0.2 s. It is expected, for the future reactor, that the IDB-SDC mode has a possibility to achieve the self-ignition condition with lower temperature than expected before. Conventional approaches to increase the temperature have also been tried in LHD. For the ion heating, the perpendicular neutral beam injection effectively increased the ion temperature up to 5.6 keV with the formation of the internal transport barrier (ITB). In the electron heating experiments with 77 GHz gyrotrons, the highest electron temperature more than 15 keV was achieved, where plasmas are in the neoclassical regime.

  18. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  19. [Individual biomass of natural Pinus densiflora].

    Science.gov (United States)

    Wang, C; Jin, Y; Jin, C; Liu, J; Jin, Y

    2000-02-01

    The aboveground biomass of individuals with different growth potentials in natural Pinus densiflora forest with different stand densities was measured in Yanbian, Jilin Province. The variation of individual biomass affected by densities was in order of dominant tree branch > needle > bark. The biomass components of P. densifliora with different growth potentials varied markedly with the approaching of density class III, and the change of intermediate trees was similar to the whole stand. The vertical distributions of biomass of different trees were different from each other, but all showed that the biomass of trunks and barks was mainly distributed below 6 m high from ground, that of branches was within 6-10 m high, that of needles was uniform in the upper, middle and lower layers, and that of branches and needles in upper layer was least affected by density.

  20. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  1. Effect of culture and density on aboveground biomass allocation of 12 years old loblolly pine trees in the upper coastal plain and piedmont of Georgia and Alabama

    Science.gov (United States)

    Santosh Subedi; Dr. Michael Kane; Dr. Dehai Zhao; Dr. Bruce Borders; Dr. Dale Greene

    2012-01-01

    We destructively sampled a total of 192 12-year-old loblolly pine trees from four installations established by the Plantation Management Research Cooperative (PMRC) to analyze the effects of planting density and cultural intensity on tree level biomass allocation in the Piedmont and Upper Coastal Plain of Georgia and Alabama. Each installation had 12 plots, each plot...

  2. Potential growth and biomass productivity of Miscanthus x giganteus as affected by plant density and N-fertilization in central Greece

    NARCIS (Netherlands)

    Danalatos, N.G.; Archontoulis, S.V.; Mitsios, I.

    2007-01-01

    The potential growth and biomass productivity of Miscanthus x giganteus was investigated under constraint-free conditions during two years with appreciable different climatic conditions in central Greece, and under three different plant densities (0.66, 1, 2 pl m(-2)) and two different nitrogen dres

  3. Enzymatic Hydrolysis of biomasses having a high dry matter (DM) content

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a process for liquefaction and saccharification of polysaccharide containing biomasses, having a relatively high dry matter content. The present invention combines enzymatic hydrolysis with a type of mixing relying on the principle of gravity ensuring that the bio......The present invention relates to a process for liquefaction and saccharification of polysaccharide containing biomasses, having a relatively high dry matter content. The present invention combines enzymatic hydrolysis with a type of mixing relying on the principle of gravity ensuring...

  4. Current progress in high cell density yeast bioprocesses for bioethanol production.

    Science.gov (United States)

    Westman, Johan O; Franzén, Carl Johan

    2015-08-01

    High capital costs and low reaction rates are major challenges for establishment of fermentation-based production systems in the bioeconomy. Using high cell density cultures is an efficient way to increase the volumetric productivity of fermentation processes, thereby enabling faster and more robust processes and use of smaller reactors. In this review, we summarize recent progress in the application of high cell density yeast bioprocesses for first and second generation bioethanol production. High biomass concentrations obtained by retention of yeast cells in the reactor enables easier cell reuse, simplified product recovery and higher dilution rates in continuous processes. High local cell density cultures, in the form of encapsulated or strongly flocculating yeast, furthermore obtain increased tolerance to convertible fermentation inhibitors and utilize glucose and other sugars simultaneously, thereby overcoming two additional hurdles for second generation bioethanol production. These effects are caused by local concentration gradients due to diffusion limitations and conversion of inhibitors and sugars by the cells, which lead to low local concentrations of inhibitors and glucose. Quorum sensing may also contribute to the increased stress tolerance. Recent developments indicate that high cell density methodology, with emphasis on high local cell density, offers significant advantages for sustainable second generation bioethanol production.

  5. Sputtered thin films for high density tape recording

    NARCIS (Netherlands)

    Nguyen, L.T.

    This thesis describes the investigation of sputtered thin film media for high density tape recording. As discussed in Chapter 1, to meet the tremendous demand of data storage, the density of recording tape has to be increased continuously. For further increasing the bit density the key factors are:

  6. Sputtered thin films for high density tape recording

    NARCIS (Netherlands)

    Nguyen, L.T.

    2004-01-01

    This thesis describes the investigation of sputtered thin film media for high density tape recording. As discussed in Chapter 1, to meet the tremendous demand of data storage, the density of recording tape has to be increased continuously. For further increasing the bit density the key factors are:

  7. Enhancing the productivity of grasses under high-density planting by engineering light responses: from model systems to feedstocks.

    Science.gov (United States)

    Warnasooriya, Sankalpi N; Brutnell, Thomas P

    2014-06-01

    The successful commercialization of bioenergy grasses as lignocellulosic feedstocks requires that they be produced, processed, and transported efficiently. Intensive breeding for higher yields in food crops has resulted in varieties that perform optimally under high-density planting but often with high input costs. This is particularly true of maize, where most yield gains in the past have come through increased planting densities and an abundance of fertilizer. For lignocellulosic feedstocks, biomass rather than grain yield and digestibility of cell walls are two of the major targets for improvement. Breeding for high-density performance of lignocellulosic crops has been much less intense and thus provides an opportunity for improving the feedstock potential of these grasses. In this review, we discuss the role of vegetative shade on growth and development and suggest targets for manipulating this response to increase harvestable biomass under high-density planting. To engineer grass architecture and modify biomass properties at increasing planting densities, we argue that new model systems are needed and recommend Setaria viridis, a panicoid grass, closely related to major fuel and bioenergy grasses as a model genetic system.

  8. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  9. Biodiesel production potential of wastewater treatment high rate algal pond biomass.

    Science.gov (United States)

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2016-12-01

    This study investigates the year-round production potential and quality of biodiesel from wastewater treatment high rate algal pond (WWT HRAP) biomass and how it is affected by CO2 addition to the culture. The mean monthly pond biomass and lipid productivities varied between 2.0±0.3 and 11.1±2.5gVSS/m(2)/d, and between 0.5±0.1 and 2.6±1.1g/m(2)/d, respectively. The biomass fatty acid methyl esters were highly complex which led to produce low-quality biodiesel so that it cannot be used directly as a transportation fuel. Overall, 0.9±0.1g/m(2)/d (3.2±0.5ton/ha/year) low-quality biodiesel could be produced from WWT HRAP biomass which could be further increased to 1.1±0.1g/m(2)/d (4.0ton/ha/year) by lowering culture pH to 6-7 during warm summer months. CO2 addition, had little effect on both the biomass lipid content and profile and consequently did not change the quality of biodiesel.

  10. Hydrogen production from high-moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Matsumura, Y.; Onuma, M.T. [Univ. of Hawaii, Honolulu, HI (United States)] [and others

    1995-09-01

    Wet biomass (water hyacinth, banana trees, cattails, green algae, kelp, etc.) grows rapidly and abundantly around the world. However, wet biomass is not regarded as a promising feedstock for conventional thermochemical conversion processes because the cost of drying the material is too high. Prior work has shown that low concentrations of glucose (a model compound for whole biomass) and various wet biomass species (water hyacinth, algae) can be completely gasified in supercritical water at 600{degrees}C and 34.5 MPa after a 30 s residence time. But higher concentrations of glucose evidenced incomplete conversion. For this reason, flow reactors were fabricated which could accommodate packed beds of catalyst, and studies were initiated of the steam reforming (gasification) reactions in the presence of various candidate heterogeneous catalysts. The goal is to identify active catalysts for steam reforming biomass slurries in supercritical water. Soon after tests began, a suitable class of carbon-based catalysts was discovered. These catalysts effect complete (>99%) conversion of high-concentration glucose (up to 22% by weight) to a hydrogen-rich synthesis gas. High space velocities are realized [>20 (g/hr)/g], and the catalyst is stable over a period of several hours. The carbon catalyst is not expensive, and exists in a wide variety of forms and compositions. After this discovery, work has focused on four interrelated tasks: (1) tests to identify the most active form and composition of the catalyst; (2) tests employing the preferred catalyst to study the effect of feedstock composition on carbon conversion and gas composition; (3) studies of catalyst deactivation and subsequent reactivation, including the in-house synthesis of bifunctional catalysts which incorporate promoters and stabilizers; and (4) the design and fabrication of a larger, new reactor with a slurry feeder intended to handle high-concentration, wet biomass feeds.

  11. High power densities from high-temperature material interactions

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  12. Thermochemistry: the key to minerals separation from biomass for fuel use in high performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R.P. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-12-31

    Biomass use in high efficiency thermal electricity generation is limited not by the properties of the organic component of biomass, but by the behavior of the associated mineral matter at high temperatures. On a moisture and ash free basis biomass, which has an average formula of CH{sub 1.4}O{sub 0.6}N{sub 0.1}, has a relatively low heating value of 18.6 GJ/t. However, this would not limit its use in high efficiency combustion systems because adequate high temperatures could be reached to achieve high carnot cycle efficiencies. These high temperatures cannot be reached because of the fouling and slagging propensities of the minerals in biomass. The mineral composition is a function of soils and the growth habit of the biomass, however, the most important element is potassium, which either alone or in combinating with silica forms the basis of fouling and slagging behaviors. Growing plants selectively concentrate potassium in their cells, which along with nitrogen and phosphorus are the key macronutrients for plant growth. Annual plants tend to have very high potassium contents, although wood biomass exclusive of the living cambial layer (i.e. minus the bark, small branches, and leaves) has minimal potassium content and other nutrients. Under combustion conditions the potassium is mobilized, especially in the presence of chlorine, at relative low temperatures and fouls heat transfer surfaces and corrodes high performance metals used, for example, in the high temperature sections of burners and gas turbines. Recent work has demonstrated the phenomenology of ash fouling, mainly by the potassium component of biomass, as well as identifying the key species such as KOH, KCl, and sulphates that are involved in potassium transport at temperatures <800 deg C. Techniques that separate the mineral matter from the fuel components (carbon and hydrogen) at low temperatures reduce or limit the alkali metal transport phenomena and result in very high efficiency combustion

  13. Hydrogen production from high-moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Adschiri, T.; Ekbom, T. [Univ. of Hawaii, Honolulu, HI (United States)] [and others

    1996-10-01

    Most hydrogen is produced by steam reforming methane at elevated pressures. The goal of this research is to develop commercial processes for the catalytic steam reforming of biomass and other organic wastes at high pressures. This approach avoids the high cost of gas compression and takes advantage of the unique properties of water at high pressures. Prior to this year the authors reported the ability of carbon to catalyze the decomposition of biomass and related model compounds in supercritical water. The product gas consists of hydrogen, carbon dioxide, carbon monoxide, methane, and traces of higher hydrocarbons. During the past year the authors have: (a) developed a method to extend the catalyst life, (b) begun studies of the role of the shift reaction, (c) completed studies of carbon dioxide absorption from the product effluent by high pressure water, (d) measured the rate of carbon catalyst gasification in supercritical water, (e) discovered the pumpability of oil-biomass slurries, and (f) completed the design and begun fabrication of a flow reactor that will steam reform whole biomass feedstocks (i.e. sewage sludge) and produce a hydrogen rich synthesis gas at very high pressure (>22 MPa).

  14. Biomass-oxygen gasification in a high-temperature entrained-flow gasifier.

    Science.gov (United States)

    Zhou, Jinsong; Chen, Qing; Zhao, Hui; Cao, Xiaowei; Mei, Qinfeng; Luo, Zhongyang; Cen, Kefa

    2009-01-01

    The technology associated with indirect biomass liquefaction is currently arousing increased attention, as it could ensure a supply of transportation fuels and reduce the use of petroleum. The characteristics of biomass-oxygen gasification in a bench-scale laminar entrained-flow gasifier were studied in the paper. Experiments were carried out to investigate the influence of some key factors, including reaction temperature, residence time and oxygen/biomass ratio, on the gasification. The results indicated that higher temperature favored H2 and CO production. Cold gas efficiency was improved by N10% when the temperature was increased from 1000 to 1400 degrees C. The carbon conversion increased and the syngas quality was improved with increasing residence time. A shorter residence resulted in incomplete gasification. An optimal residence time of 1.6 s was identified in this study. The introduction of oxygen to the gasifier strengthened the gasification and improved the carbon conversion, but lowered the lower heating value and the H2/CO ratio of the syngas. The optimal oxygen/biomass ratio in this study was 0.4. The results of this study will help to improve our understanding of syngas production by biomass high-temperature gasification.

  15. Characteristics and utilisation of high-temperature (HTHP) filter dusts from pfb gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ranta, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    The aim of the study was to survey characteristics, utilisation and possible environmental impacts of solid wastes, i.e., in case of biomass, mainly high-temperature filter ash (HTHP) from pressurised fluidised-bed gasification (PFBG). The aim is to utilise solid wastes (slag, filter dust, additives) from biomass gasification instead of dumping. One alternative is recycling to the soil as liming material or fertiliser. It is expected that the ash recycled to forest soils changes the environment less than non-recycled ash. (orig.) 3 refs.

  16. Fatty acids from high rate algal pond's microalgal biomass and osmotic stress effects.

    Science.gov (United States)

    Drira, Neila; Dhouibi, Nedra; Hammami, Saoussen; Piras, Alessandra; Rosa, Antonella; Porcedda, Silvia; Dhaouadi, Hatem

    2017-11-01

    The extraction of oil from a wild microalgae biomass collected from a domestic wastewater treatment facility's high rate algal pond (HRAP) was investigated. An experiment plan was used to determine the most efficient extraction method, the optimal temperature, time and solvent system based on total lipids yield. Microwave-assisted extraction was the most efficient method whether in n-hexane or in a mixture of chloroform/methanol compared to Soxhlet, homogenization, and ultrasounds assisted extractions. This same wild biomass was cultivated in a photobioreactor (PBR) and the effect of osmotic stress was studied. The lipids extraction yield after 3days of stress increased by more than four folds without any significant loss of biomass, however, the quality of extracted total lipids in terms of saturated, monounsaturated and polyunsaturated fatty acids was not affected by salinity change in the culture medium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Rubæk, Gitte Holton; Sørensen, Peter

    2016-01-01

    For biomass combustion to become a sustainable energy production system, it is crucial to minimise landfill of biomass ashes, to recycle the nutrients and to minimise the undesirable impact of hazardous substances in the ash. In order to test the plant availability of phosphorus (P) and cadmium (Cd......) in four biomass ashes, we conducted two pot experiments on a P-depleted soil and one mini-plot field experiment on a soil with adequate P status. Test plants were spring barley and Italian ryegrass. Ash applications were compared to triple superphosphate (TSP) and a control without P application. Both TSP...... ash. Contrarily, even modest increases in the TSP application markedly increased Cd uptake in plants. This might be explained by the low Cd solubility in the ash or by the reduced Cd availability due to the liming effect of ash. High concentrations of resin-extractable P (available P) in the ash...

  18. High density semiconductor nanodots by direct laser fabrication

    Science.gov (United States)

    Haghizadeh, Anahita; Yang, Haeyeon

    2016-03-01

    We report a direct method of fabricating high density nanodots on the GaAs(001) surfaces using laser irradiations on the surface. Surface images indicate that the large clumps are not accompanied with the formation of nanodots even though its density is higher than the critical density above which detrimental large clumps begin to show up in the conventional Stranski-Krastanov growth technique. Atomic force microscopy is used to image the GaAs(001) surfaces that are irradiated by high power laser pulses interferentially. The analysis suggests that high density quantum dots be fabricated directly on semiconductor surfaces.

  19. Heat transfer in high density electronics packaging

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to get an insight into the thermal characteristic and to evaluate the thermal reliability of the "System in Packaging"(SIP), a new solution of electronics packaging, a heat transfer model of SIP was developed to predict the heat dissipation capacity and to investigate the effect of different factors on the temperature distribution in the electronics. The affecting parameters under consideration include the thermophysical properties of the substrates, the coefficient of convection heat transfer, the thickness of the chip, and the density of power dissipation. ALGOR, a kind of finite element analysis software,was used to do the model simulation. Based on the sinulation and analysis of the heat conduction and convection resistance, criteria for the thermal design were established and possible measurement for enhancing power dissipation was provided, The results show that the heat transfer model provides a new and effective way to the thermal design and thermal analysis of SIP and to the mechanical analysis for the further investigation of SIP.

  20. Effect of Water Vapor on High-Temperature Corrosion under Conditions Mimicking Biomass Firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    The variable flue gas composition in biomass-fired plants, among other parameters, contributes to the complexityof high-temperature corrosion of materials. Systematic parameter studies are thus necessary to understand the underlyingcorrosion mechanisms. This paper investigates the effect of water...... previouslyreported findings suggest that an increase in the water vapor content will cause competitive adsorption on active sites....

  1. Effect of Water Vapor on High-Temperature Corrosion under Conditions Mimicking Biomass Firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming;

    2015-01-01

    The variable flue gas composition in biomass-fired plants, among other parameters, contributes to the complexityof high-temperature corrosion of materials. Systematic parameter studies are thus necessary to understand the underlyingcorrosion mechanisms. This paper investigates the effect of water...

  2. Autonomous profiling float observations of the high-biomass plume downstream of the Kerguelen Plateau in the Southern Ocean

    Science.gov (United States)

    Grenier, M.; Della Penna, A.; Trull, T. W.

    2015-05-01

    Natural iron fertilisation from Southern Ocean islands results in high primary production and phytoplankton biomass accumulations readily visible in satellite ocean colour observations. These images reveal great spatial complexity with highly varying concentrations of chlorophyll, presumably reflecting both variations in iron supply and conditions favouring phytoplankton accumulation. To examine the second aspect, in particular the influences of variations in temperature and mixed layer depth, we deployed four autonomous profiling floats in the Antarctic Circumpolar Current near the Kerguelen Plateau in the Indian sector of the Southern Ocean. Each "bio-profiler" measured more than 250 profiles of temperature (T), salinity (S), dissolved oxygen, chlorophyll a (Chl a) fluorescence, and particulate backscattering (bbp) in the top 300 m of the water column, sampling up to 5 profiles per day along meandering trajectories extending up to 1000 km. Comparison of surface Chl a estimates (analogous to values from satellite images) with total water column inventories revealed largely linear relationships, suggesting that these images provide credible information on total and not just surface biomass spatial distributions. However, they also showed that physical mixed layer depths are often not a reliable guide to biomass distributions. Regions of very high Chl a accumulation (1.5-10 μg L-1) were associated predominantly with a narrow T-S class of surface waters. In contrast, waters with only moderate Chl a enrichments (0.5-1.5 μg L-1) displayed no clear correlation with specific water properties, including no dependence on mixed layer depth or the intensity of stratification. Geostrophic trajectory analysis suggests that both these observations can be explained if the main determinant of biomass in a given water parcel is the time since leaving the Kerguelen Plateau. One float became trapped in a cyclonic eddy, allowing temporal evaluation of the water column in early

  3. MAC Support for High Density Wireless Sensor Networks

    NARCIS (Netherlands)

    Taddia, C.; Meratnia, Nirvana; van Hoesel, L.F.W.; Mazzini, G.; Havinga, Paul J.M.

    Large scale and high density networks of tiny sensor nodes offer promising solutions for event detection and actuating applications. In this paper we address the effect of high density of wireless sensor network performance with a specific MAC protocol, the Lightweight Medium Access Control (LMAC).

  4. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Science.gov (United States)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  5. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  6. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  7. High Temperature Corrosion in Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Henriksen, Niels; Montgomery, Melanie; Hede Larsen, Ole

    2002-01-01

    condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. To avoid such high corrosion rates, woodchip...... has also been utilised as a fuel. Combustion of woodchip results in a smaller amount of ash, and potassium and chlorine are present in lesser amounts. However, significant corrosion rates were still seen. A case study of a woodchip fired boiler is described. The corrosion mechanisms in both straw...

  8. Accounting for density reduction and structural loss in standing dead trees: Implications for forest biomass and carbon stock estimates in the United States

    Directory of Open Access Journals (Sweden)

    Domke Grant M

    2011-11-01

    Full Text Available Abstract Background Standing dead trees are one component of forest ecosystem dead wood carbon (C pools, whose national stock is estimated by the U.S. as required by the United Nations Framework Convention on Climate Change. Historically, standing dead tree C has been estimated as a function of live tree growing stock volume in the U.S.'s National Greenhouse Gas Inventory. Initiated in 1998, the USDA Forest Service's Forest Inventory and Analysis program (responsible for compiling the Nation's forest C estimates began consistent nationwide sampling of standing dead trees, which may now supplant previous purely model-based approaches to standing dead biomass and C stock estimation. A substantial hurdle to estimating standing dead tree biomass and C attributes is that traditional estimation procedures are based on merchantability paradigms that may not reflect density reductions or structural loss due to decomposition common in standing dead trees. The goal of this study was to incorporate standing dead tree adjustments into the current estimation procedures and assess how biomass and C stocks change at multiple spatial scales. Results Accounting for decay and structural loss in standing dead trees significantly decreased tree- and plot-level C stock estimates (and subsequent C stocks by decay class and tree component. At a regional scale, incorporating adjustment factors decreased standing dead quaking aspen biomass estimates by almost 50 percent in the Lake States and Douglas-fir estimates by more than 36 percent in the Pacific Northwest. Conclusions Substantial overestimates of standing dead tree biomass and C stocks occur when one does not account for density reductions or structural loss. Forest inventory estimation procedures that are descended from merchantability standards may need to be revised toward a more holistic approach to determining standing dead tree biomass and C attributes (i.e., attributes of tree biomass outside of sawlog

  9. Mixtures of thermostable enzymes show high performance in biomass saccharification.

    Science.gov (United States)

    Kallioinen, Anne; Puranen, Terhi; Siika-aho, Matti

    2014-07-01

    Optimal enzyme mixtures of six Trichoderma reesei enzymes and five thermostable enzyme components were developed for the hydrolysis of hydrothermally pretreated wheat straw, alkaline oxidised sugar cane bagasse and steam-exploded bagasse by statistically designed experiments. Preliminary studies to narrow down the optimization parameters showed that a cellobiohydrolase/endoglucanase (CBH/EG) ratio of 4:1 or higher of thermostable enzymes gave the maximal CBH-EG synergy in the hydrolysis of hydrothermally pretreated wheat straw. The composition of optimal enzyme mixtures depended clearly on the substrate and on the enzyme system studied. The optimal enzyme mixture of thermostable enzymes was dominated by Cel7A and required a relatively high amount of xylanase, whereas with T. reesei enzymes, the high proportion of Cel7B appeared to provide the required xylanase activity. The main effect of the pretreatment method was that the required proportion of xylanase was higher and the proportion of Cel7A lower in the optimized mixture for hydrolysis of alkaline oxidised bagasse than steam-exploded bagasse. In prolonged hydrolyses, less Cel7A was generally required in the optimal mixture. Five-component mixtures of thermostable enzymes showed comparable hydrolysis yields to those of commercial enzyme mixtures.

  10. Application of a high density adsorbent in expanded bed adsorption ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... The high density of the adsorbent allowed the EBA to be operated at linear velocity as high as 657 cm/h ... through precipitation and even dialyzed before sample ... In EBA process, upward fluidized stationary phase with.

  11. Response of thermosphere density to high-latitude forcing

    Science.gov (United States)

    Yamazaki, Y.; Kosch, M. J.; Vickers, H.; Sutton, E. K.; Ogawa, Y.

    2014-12-01

    Solar wind-magnetospheric disturbances cause enhancements in the energy input to the high-latitude upper atmosphere through particle precipitation and Joule heating. As the upper atmosphere is heated and expanded during geomagnetically disturbed periods, the neutral density in the thermosphere increases at a fixed altitude. Conversely, the thermosphere contracts during the recovery phase of the disturbance, resulting in a decrease of the density. The main objectives of this study are (1) to determine the morphology of the global thermospheric density response to high-latitude forcing, and (2) to determine the recovery speed of the thermosphere density after geomagnetic disturbances. For (1), we use thermospheric density data measured by the Challenging Minisatellite Payload (CHAMP) satellite during 2000-2010. It is demonstrated that the density enhancement during disturbed periods occurs first in the dayside cusp region, and the density at other regions slowly follows it. The reverse process is observed when geomagnetic activity ceases; the density enhancement in the cusp region fades away first, then the global density slowly goes back to the quiet level. For (2), we analyze EISCAT Svalbard radar and Tromso UHF radar data to estimate thermospheric densities during the recovery phase of geomagnetic disturbances. We attempt to determine the time constant for the density recovery both inside and outside the cusp region.

  12. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia

    Directory of Open Access Journals (Sweden)

    L. O. Anderson

    2009-09-01

    Full Text Available Long-term studies using the RAINFOR network of forest plots have generated significant insights into the spatial and temporal dynamics of forest carbon cycling in Amazonia. In this work, we map and explore the landscape context of several major RAINFOR plot clusters using Landsat ETM+ satellite data. In particular, we explore how representative the plots are of their landscape context, and test whether bias in plot location within landscapes may be influencing the regional mean values obtained for important forest biophysical parameters. Specifically, we evaluate whether the regional variations in wood productivity, wood specific density and above ground biomass derived from the RAINFOR network could be driven by systematic and unintentional biases in plot location. Remote sensing data covering 45 field plots were aggregated to generate landscape maps to identify the specific physiognomy of the plots. In the Landsat ETM+ data, it was possible to spectrally differentiate three types of terra firme forest, three types of forests over Paleovarzea geomorphologycal formation, two types of bamboo-dominated forest, palm forest, Heliconia monodominant vegetation, swamp forest, disturbed forests and land use areas. Overall, the plots were generally representative of the forest physiognomies in the landscape in which they are located. Furthermore, the analysis supports the observed regional trends in those important forest parameters. This study demonstrates the utility of landscape scale analysis of forest physiognomies for validating and supporting the finds of plot based studies. Moreover, the more precise geolocation of many key RAINFOR plot clusters achieved during this research provides important contextual information for studies employing the RAINFOR database.

  13. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia

    Science.gov (United States)

    Anderson, L. O.; Malhi, Y.; Ladle, R. J.; Aragão, L. E. O. C.; Shimabukuro, Y.; Phillips, O. L.; Baker, T.; Costa, A. C. L.; Espejo, J. S.; Higuchi, N.; Laurance, W. F.; López-González, G.; Monteagudo, A.; Núñez-Vargas, P.; Peacock, J.; Quesada, C. A.; Almeida, S.

    2009-09-01

    Long-term studies using the RAINFOR network of forest plots have generated significant insights into the spatial and temporal dynamics of forest carbon cycling in Amazonia. In this work, we map and explore the landscape context of several major RAINFOR plot clusters using Landsat ETM+ satellite data. In particular, we explore how representative the plots are of their landscape context, and test whether bias in plot location within landscapes may be influencing the regional mean values obtained for important forest biophysical parameters. Specifically, we evaluate whether the regional variations in wood productivity, wood specific density and above ground biomass derived from the RAINFOR network could be driven by systematic and unintentional biases in plot location. Remote sensing data covering 45 field plots were aggregated to generate landscape maps to identify the specific physiognomy of the plots. In the Landsat ETM+ data, it was possible to spectrally differentiate three types of terra firme forest, three types of forests over Paleovarzea geomorphologycal formation, two types of bamboo-dominated forest, palm forest, Heliconia monodominant vegetation, swamp forest, disturbed forests and land use areas. Overall, the plots were generally representative of the forest physiognomies in the landscape in which they are located. Furthermore, the analysis supports the observed regional trends in those important forest parameters. This study demonstrates the utility of landscape scale analysis of forest physiognomies for validating and supporting the finds of plot based studies. Moreover, the more precise geolocation of many key RAINFOR plot clusters achieved during this research provides important contextual information for studies employing the RAINFOR database.

  14. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia

    Directory of Open Access Journals (Sweden)

    L. O. Anderson

    2009-02-01

    Full Text Available Long-term studies using the RAINFOR network of forest plots have generated significant insights into the spatial and temporal dynamics of forest carbon cycling in Amazonia. In this work, we map and explore the landscape context of several major RAINFOR plot clusters using Landsat ETM+ satellite data. In particular, we explore how representative the plots are of their landscape context, and test whether bias in plot location within landscapes may be influencing the regional mean values obtained for important forest biophysical parameters. Specifically, we evaluate whether the regional variations in wood productivity, wood specific density and above ground biomass derived from the RAINFOR network could be driven by systematic and unintentional biases in plot location. Remote sensing data covering 45 field plots were aggregated to generate landscape maps to identify the specific physiognomy of the plots. In the Landsat ETM+ data, it was possible to spectrally differentiate three types of terra firme forest, three types of alluvial terrain forest, two types of bamboo-dominated forest, palm forest, Heliconia monodominant vegetation, swamp forest, disturbed forests and land use areas. Overall, the plots were generally representative of the forest physiognomies in the landscape in which they are located. Furthermore, the analysis supports the observed regional trends in those important forest parameters. This study demonstrates the utility of landscape scale analysis of forest physiognomies for validating and supporting the finds of plot based studies. Moreover, the more precise geolocation of many key RAINFOR plot clusters achieved during this research provides important contextual information for studies employing the RAINFOR database.

  15. Nuclear Level Density at High Spin and Excitation Energy

    Institute of Scientific and Technical Information of China (English)

    A.N. Behkami; Z. Kargar

    2001-01-01

    The intensive studies of equilibrium processes in heavy-ion reaction have produced a need for information on nuclear level densities at high energies and spins. The Fermi gas level density is often used in investigation of heavy-ion reaction studies. Some papers have claimed that nuclear level densities might deviate substantially from the Fermi gas predications at excitations related to heavy-ion reactions. The formulae of calculation of the nuclear level density based on the theory of superconductivity are presented, special attention is paid to the dependence of the level density on the angular momentum. The spin-dependent nuclear level density is evaluated using the pairing interaction. The resulting level density for an average spin of 52h is evaluated for 155Er and compared with experimental data. Excellent agreement between experiment and theory is obtained.``

  16. Breast density estimation from high spectral and spatial resolution MRI.

    Science.gov (United States)

    Li, Hui; Weiss, William A; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M; Karczmar, Gregory S; Giger, Maryellen L

    2016-10-01

    A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists' breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 ([Formula: see text]) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 ([Formula: see text]) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 ([Formula: see text]) was observed between HiSS-based breast density estimations and radiologists' BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy.

  17. Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages with Coal

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; J Richard Hess; Richard D. Boardman; Shahab Sokhansanj; Christopher T. Wright; Tyler L. Westover

    2012-06-01

    There is a growing interest internationally to use more biomass for power generation, given the potential for significant environmental benefits and long-term fuel sustainability. However, the use of biomass alone for power generation is subject to serious challenges, such as feedstock supply reliability, quality, and stability, as well as comparative cost, except in situations in which biomass is locally sourced. In most countries, only a limited biomass supply infrastructure exists. Alternatively, co-firing biomass alongwith coal offers several advantages; these include reducing challenges related to biomass quality, buffering the system against insufficient feedstock quantity, and mitigating the costs of adapting existing coal power plants to feed biomass exclusively. There are some technical constraints, such as low heating values, low bulk density, and grindability or size-reduction challenges, as well as higher moisture, volatiles, and ash content, which limit the co-firing ratios in direct and indirect co-firing. To achieve successful co-firing of biomass with coal, biomass feedstock specifications must be established to direct pretreatment options in order to modify biomass materials into a format that is more compatible with coal co-firing. The impacts on particle transport systems, flame stability, pollutant formation, and boiler-tube fouling/corrosion must also be minimized by setting feedstock specifications, which may include developing new feedstock composition by formulation or blending. Some of the issues, like feeding, co-milling, and fouling, can be overcome by pretreatment methods including washing/leaching, steam explosion, hydrothermal carbonization, and torrefaction, and densification methods such as pelletizing and briquetting. Integrating formulation, pretreatment, and densification will help to overcome issues related to physical and chemical composition, storage, and logistics to successfully co-fire higher percentages of biomass ( > 40

  18. Ultra high energy density and fast discharge nanocomposite capacitors

    Science.gov (United States)

    Tang, Haixiong; Sodano, Henry A.

    2013-04-01

    Nanocomposites containing high dielectric permittivity ceramics embedded in high breakdown strength polymers are currently of considerable interest as a solution for the development of high energy density capacitors. However, the improvement of dielectric permittivity comes at expense of the breakdown strength leading to limit the final energy density. Here, an ultra-high energy density nanocomposite was fabricated based on high aspect ratio barium strontium titanate nanowires. The pyroelectric phase Ba0.2Sr0.8TiO3 was chosen for the nanowires combined with quenched PVDF to fabricate high energy density nanocomposite. The energy density with 7.5% Ba0.2Sr0.8TiO3 nanowires reached 14.86 J/cc at 450 MV/m, which represented a 42.9% increase in comparison to the PVDF with an energy density of 10.4 J/cc at the same electric field. The capacitors have 1138% greater than higher energy density than commercial biaxial oriented polypropylene capacitors (1.2 J/cc at 640). These results demonstrate that the high aspect ratio nanowires can be used to produce nanocomposite capacitors with greater performance than the neat polymers thus providing a novel process for the development of future pulsed-power capacitors.

  19. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    Science.gov (United States)

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  20. A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation.

    Science.gov (United States)

    Lan, Rong; Tao, Shanwen

    2016-08-01

    In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm(2) are achieved when biomass-bamboo charcoal and wood, respectively-is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required [Formula: see text] or [Formula: see text] ions for continuous operation. The dissolved [Formula: see text] ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency.

  1. A high-resolution and multi-year emissions inventory for biomass burning in Southeast Asia during 2001-2010

    Science.gov (United States)

    Shi, Yusheng; Yamaguchi, Yasushi

    2014-12-01

    Biomass burning (BB) emissions from forest fires, agricultural waste burning, and peatland combustion contain large amounts of greenhouse gases (e.g., CO2, CH4, and N2O), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate change. With the help of recently released satellite products, biomass density based on satellite and observation data, and spatiotemporal variable combustion factors, this study developed a new high-resolution and multi-year emissions inventory for BB in Southeast Asia (SEA) during 2001-2010. The 1-km grid was effective for quantifying emissions from small-sized fires that were frequently misinterpreted by coarse grid data due to their large smoothed pixels. The average annual BB emissions in SEA during 2001-2010 were 277 Gg SO2, 1125 Gg NOx, 55,388 Gg CO, 3831 Gg NMVOC, 553 Gg NH3, 324 Gg BC, 2406 Gg OC, 3832 Gg CH4, 817,809 Gg CO2, and 99 Gg N2O. Emissions were high in western Myanmar, Northern Thailand, eastern Cambodia, northern Laos, and South Sumatra and South Kalimantan of Indonesia. Emissions from forest burning were the dominant contributor to the total emissions among all land types. The spatial pattern of BB emissions was consistent with that of the burned areas. In addition, BB emissions exhibited similar temporal trends from 2001 to 2010, with strong interannual and intraannual variability. Interannual and intraannual emission peaks were seen during 2004, 2007, 2010, and January-March and August-October, respectively.

  2. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoxi, E-mail: Xiaoxi.Li@agro.au.dk; Rubæk, Gitte H.; Sørensen, Peter

    2016-07-01

    For biomass combustion to become a sustainable energy production system, it is crucial to minimise landfill of biomass ashes, to recycle the nutrients and to minimise the undesirable impact of hazardous substances in the ash. In order to test the plant availability of phosphorus (P) and cadmium (Cd) in four biomass ashes, we conducted two pot experiments on a P-depleted soil and one mini-plot field experiment on a soil with adequate P status. Test plants were spring barley and Italian ryegrass. Ash applications were compared to triple superphosphate (TSP) and a control without P application. Both TSP and ash significantly increased crop yields and P uptake on the P-depleted soil. In contrast, on the adequate-P soil, the barley yield showed little response to soil amendment, even at 300–500 kg P ha{sup −1} application, although the barley took up more P at higher applications. The apparent P use efficiency of the additive was 20% in ryegrass - much higher than that of barley for which P use efficiencies varied on the two soils. Generally, crop Cd concentrations were little affected by the increasing and high applications of ash, except for relatively high Cd concentrations in barley after applying 25 Mg ha{sup −1} straw ash. Contrarily, even modest increases in the TSP application markedly increased Cd uptake in plants. This might be explained by the low Cd solubility in the ash or by the reduced Cd availability due to the liming effect of ash. High concentrations of resin-extractable P (available P) in the ash-amended soil after harvest indicate that the ash may also contribute to P availability for the following crops. In conclusion, the biomass ashes in this study had P availability similar to the TSP fertiliser and did not contaminate the crop with Cd during the first year. - Highlights: • Effects of four biomass ashes vs. a P fertiliser (TSP) on two crops were studied. • Ashes increased crop yields with P availability similar to TSP on P-depleted soil

  3. Fuel-N Evolution during the Pyrolysis of Industrial Biomass Wastes with High Nitrogen Content

    Directory of Open Access Journals (Sweden)

    Kunio Yoshikawa

    2012-12-01

    Full Text Available In this study, sewage sludge and mycelial waste from antibiotic production were pyrolyzed in a batch scale fixed-bed reactor as examples of two kinds of typical industrial biomass wastes with high nitrogen content. A series of experiments were conducted on the rapid pyrolysis and the slow pyrolysis of these wastes in the temperature range from 500–800 °C to investigate the Fuel-N transformation behavior among pyrolysis products. The results showed that Fuel-N conversion to Char-N intimately depended on the pyrolysis temperature and the yield of Char-N reduced with the increase of the pyrolysis temperature. Under the same pyrolysis conditions, Tar-N production mainly depended on complex properties of the different biomasses, including volatile matter, nitrogen content and biomass functional groups. HCN was the predominant NOx precursor in the rapid pyrolysis of biomass, whereas in the slow pyrolysis of mycelial waste, more NH3 was produced than HCN due to the additional NH3 formation through the hydrogenation reaction of Char-N, HCN and H radicals. At the same time, some part of the char was analyzed by Fourier Transform infrared spectroscopy (FTIR to get more information on the nitrogen functionality changes and the tar was also characterized by Gas Chromatography and Mass Spectrometry (GCMS to identify typical nitrogenous tar compounds. Finally, the whole nitrogen distribution in products was discussed.

  4. Particle Concentration and Yield Stress of Biomass Slurries During Enzymatic Hydrolysis at High-Solids Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Roche, C. M.; Dibble, C. J.; Knutsen, J. S.; Stickel, J. J.; Liberatore, M. W.

    2009-01-01

    Effective and efficient breakdown of lignocellulosic biomass remains a primary barrier for its use as a feedstock for renewable transportation fuels. A more detailed understanding of the material properties of biomass slurries during conversion is needed to design cost-effective conversion processes. A series of enzymatic saccharification experiments were performed with dilute acid pretreated corn stover at initial insoluble solids loadings of 20% by mass, during which the concentration of particulate solids and the rheological property yield stress ({tau}{sub y}) of the slurries were measured. The saccharified stover liquefies to the point of being pourable ({tau}{sub y} {le} 10 Pa) at a total biomass conversion of about 40%, after roughly 2 days of saccharification for a moderate loading of enzyme. Mass balance and semi-empirical relationships are developed to connect the progress of enzymatic hydrolysis with particle concentration and yield stress. The experimental data show good agreement with the proposed relationships. The predictive models developed here are based on established physical principles and should be applicable to the saccharification of other biomass systems. The concepts presented, especially the ability to predict yield stress from extent of conversion, will be helpful in the design and optimization of enzymatic hydrolysis processes that operate at high-solids loadings.

  5. Low-temperature conversion of high-moisture biomass: Continuous reactor system results

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Sealock, L.J. Jr.; Butner, R.S.; Baker, E.G.; Neuenschwander, G.G.

    1989-10-01

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process for converting high-moisture biomass feedstocks and other wet organic substances to useful gaseous fuels. This system, in which thermocatalytic conversion takes place in an aqueous environment, was designed to overcome the problems usually encountered with high-water-content feedstocks. The process uses a reduced nickel catalyst at temperatures as low as 350{degree}C and pressures ranging from 2000 to 4000 psig -- conditions favoring the formation of gas consisting mostly of methane. The results of numerous batch tests showed that the system could convert feedstocks not readily converted by conventional methods. Fifteen tests were conducted in a continuous reactor system to further evaluate the effectiveness of the process for high-moisture biomass gasification and to obtain conversion rate data needed for process scaleup. During the tests, the complex gasification reactions were evaluated by several analytical methods. The results of these tests show that the heating value of the gas ranged from 400 to 500 Btu/scf, and if the carbon dioxide is removed, the product gas is pipeline quality. Conversion of the feedstocks was high. Engineering analysis indicates that, based on these results, a tubular reactor can be designed that should convert greater than 99% of the carbon fed as high-moisture biomass to a gaseous product in a reaction time of less than 11 min.

  6. 密度对大叶相思林生物量分配的影响%Effect of density on biomass allocation of Acacia auriculaeformis stands

    Institute of Scientific and Technical Information of China (English)

    列志旸; 周彤彤; 薛立

    2016-01-01

    以密度为10000、4444和1667株/hm2的4年生大叶相思林为研究对象,对各种不同密度林分中大叶相思各器官生物量分配、生物量径级结构和群落生物量进行了研究。结果表明:各密度大叶相思干的生物量占林分生物量的55%以上,根占14.11%~15.50%,叶占8.34%~10.76%,而在枝和皮的分配比例上差异较大;三种密度大叶相思林的总生物量径阶分配呈正态分布;群落总生物量随林分密度的增加而增加,但林下植物生物量随林分密度的增加而减小。%The allocation pattern of organ biomass,radial structure and community of biomass were studied in four﹣yearold Acacia auriculaeformis stands with three densities (10 000,4 444 and 1 667 seedlings per hm2 ). The stem biomass of A. auriculaeformis stands accounted for above 55%of stand biomass,roots and leaves accounted for 14. 1 1%~15. 50%and 8. 34%~10. 76% respectively,whereas there were a great difference in distribution ratio for breach and bark bio﹣masses among the different density stands. The total biomass of diameter class in the A. auriculaeformis stands with three different densities exhibited the normal probability distribution. The total biomass of the community increased and the bio﹣mass of undergrowth decreased with increasing density.

  7. 128x128 Ultra-High Density Optical Interconnect Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA programs like Tertiary Planet Finder (TPF) require high-density deformable mirrors with up to 16,000 actuators to enable direct imaging of planets around...

  8. 128x128 Ultra-High Density Optical Interconnect Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA programs like Tertiary Planet Finder (TPF) require high density deformable mirrors with upto 16,000 actuators to enable direct imaging of planets around...

  9. High current density nanofilament cathodes for microwave amplifiers

    NARCIS (Netherlands)

    Schnell, J-P.; Minoux, E.; Gangloff, L.; Vincent, P.; Legagneux, P.; Dieumegard, D.; David, J.-F.; Peauger, F.; Hudanski, L.; Teo, K.B.K.; Lacerda, R.; Chhowalla, M.; Hasko, D.G.; Ahmed, H.; Amaratunga, G.A.J.; Milne, W.I.; Vila, L.; Dauginet-De Pra, L.; Demoustier-Champagne, S.; Ferain, E.; Legras, R.; Piraux, L.; Gröening, O.; Raedt, H. De; Michielsen, K.

    2004-01-01

    We study high current density nanofilament cathodes for microwave amplifiers. Two different types of aligned nanofilament array have been studied: first, metallic nanowires grown by electrodeposition into nanoporous templates at very low temperature (T

  10. High energy density nanocomposite capacitors using non-ferroelectric nanowires

    Science.gov (United States)

    Tang, Haixiong; Sodano, Henry A.

    2013-02-01

    A high energy density nanocomposite capacitor is fabricated by incorporating high aspect ratio functionalized TiO2 nanowires (NWs) into a polyvinylidene-fluoride matrix. These nanocomposites exhibited energy density as high as 12.4 J/cc at 450 MV/m, which is nine times larger than commercial biaxially oriented polypropylene polypropylene capacitors (1.2 J/cc at 640 MV/m). Also, the power density can reach 1.77 MW/cc with a discharge speed of 2.89 μs. The results presented here demonstrate that nanowires can be used to develop nanocomposite capacitors with high energy density and fast discharge speed for future pulsed-power applications.

  11. The usefulness of total cholesterol and high density lipoprotein ...

    African Journals Online (AJOL)

    The usefulness of total cholesterol and high density lipoprotein - cholesterol ratio in ... cholesterol and/or highdensity lipoprotein cholesterol/total cholesterol ratios in the interpretation of lipid profile result in clinical practice. ... Article Metrics.

  12. Does warming affect growth rate and biomass production of shrubs in the High Arctic?

    DEFF Research Database (Denmark)

    Campioli, Matteo; Schmidt, Niels Martin; Albert, Kristian Rost

    2013-01-01

    Few studies have assessed directly the impact of warming on plant growth and biomass production in the High Arctic. Here, we aimed to investigate the impact of 7 years of warming (open greenhouses) on the aboveground relative growth rate (RGR) of Cassiope tetragona and Salix arctica in North......-Eastern Greenland. RGR was assessed for apical (leaves, stem, reproductive organs) and lateral meristems (secondary growth of stem and branches) and accompanied by measures of gross ecosystem production (GEP), branching and tissue carbon (C) concentration. Measurements were based on harvest and biometric methods...... limits the growth of Cassiope but not that of Salix in North-Eastern Greenland. Summer warming thus has the potential to stimulate biomass production in the High Arctic but major species-specific differences are expected....

  13. Aquatic heterotrophic bacteria have highly flexible phosphorus content and biomass stoichiometry.

    Science.gov (United States)

    Godwin, Casey M; Cotner, James B

    2015-10-01

    Bacteria are central to the cycling of carbon (C), nitrogen (N) and phosphorus (P) in every ecosystem, yet our understanding of how tightly these cycles are coupled to bacterial biomass composition is based upon data from only a few species. Bacteria are commonly assumed to have high P content, low biomass C:P and N:P ratios, and inflexible stoichiometry. Here, we show that bacterial assemblages from lakes exhibit unprecedented flexibility in their P content (3% to less than 0.01% of dry mass) and stoichiometry (C:N:P of 28: 7: 1 to more than 8500: 1200: 1). The flexibility in C:P and N:P stoichiometry was greater than any species or assemblage, including terrestrial and aquatic autotrophs, and suggests a highly dynamic role for bacteria in coupling multiple element cycles.

  14. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil.

    Science.gov (United States)

    Hassan, H; Lim, J K; Hameed, B H

    2016-12-01

    Co-pyrolysis of biomass with abundantly available materials could be an economical method for production of bio-fuels. However, elimination of oxygenated compounds poses a considerable challenge. Catalytic co-pyrolysis is another potential technique for upgrading bio-oils for application as liquid fuels in standard engines. This technique promotes the production of high-quality bio-oil through acid catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize research progress on co-pyrolysis and catalytic co-pyrolysis, as well as their benefits on enhancement of bio-oils derived from biomass. This review focuses on the potential of plastic wastes and coal materials as co-feed in co-pyrolysis to produce valuable liquid fuel. This paper also proposes future directions for using this technique to obtain high yields of bio-oils.

  15. Spontaneous magnetization in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constanca;

    2015-01-01

    It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous...... magnetization due to the anomalous magnetic moments of quarks. The implications for the strong magnetic field in compact stars is discussed....

  16. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  17. Fifth International Conference on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2017-07-05

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  18. High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    Both cross-sectional and plan view, ‘top-down’ characterization methods were employed , for a depth-resolved characterization of corrosion products resulting from high temperature corrosion under laboratory conditions simulating biomass firing. Samples of an austenitic stainless steel (TP 347H FG...... of the corrosion product. Results from this comprehensive characterization revealed more details on the morphology and composition of the corrosion product....

  19. Fabrication of very high density fuel pellets of thorium dioxide

    Science.gov (United States)

    Shiratori, Tetsuo; Fukuda, Kosaku

    1993-06-01

    Very high density ThO 2 pellets were prepared without binders and lubricants from the ThO 2 powder originated by the thorium oxalate, which was aimed to simplify the fabrication process by skipping a preheat treatment. The as-received ThO 2 powder with a surface area of 4.56 m 2/g was ball-milled up to about 9 m 2/g in order to increase the green pellet density as high as possible. Both of the single-sided and the double-sided pressing were tested in the range from 2 to 5 t/cm 2 in the green pellet formation. Sintering temperature was such low as 1550°C. The pellet prepared in this experiment had a very high density in the range from about 96 to 98% TD without any cracks, in which a difference of the pellet density was not recognized in the single-sided pressing methods.

  20. High-density scintillating glasses for a proton imaging detector

    Science.gov (United States)

    Tillman, I. J.; Dettmann, M. A.; Herrig, V.; Thune, Z. L.; Zieser, A. J.; Michalek, S. F.; Been, M. O.; Martinez-Szewczyk, M. M.; Koster, H. J.; Wilkinson, C. J.; Kielty, M. W.; Jacobsohn, L. G.; Akgun, U.

    2017-06-01

    High-density scintillating glasses are proposed for a novel proton-imaging device that can improve the accuracy of the hadron therapy. High-density scintillating glasses are needed to build a cost effective, compact calorimeter that can be attached to a gantry. This report summarizes the study on Europium, Terbium, and Cerium-doped scintillating glasses that were developed containing heavy elements such as Lanthanum, Gadolinium, and Tungsten. The density of the samples reach up to 5.9 g/cm3, and their 300-600 nm emission overlaps perfectly with the peak cathode sensitivity of the commercial photo detectors. The developed glasses do not require any special quenching and can be poured easily, which makes them a good candidate for production in various geometries. Here, the glass making conditions, preliminary tests on optical and physical properties of these scintillating, high-density, oxide glasses developed for a novel medical imaging application are reported.

  1. Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches

    National Research Council Canada - National Science Library

    deGoma, Emil M; deGoma, Rolando L; Rader, Daniel J

    2008-01-01

    A number of therapeutic strategies targeting high-density lipoprotein (HDL) cholesterol and reverse cholesterol transport are being developed to halt the progression of atherosclerosis or even induce regression...

  2. Comparison of low density and high density pedicle screw instrumentation in Lenke 1 adolescent idiopathic scoliosis.

    Science.gov (United States)

    Shen, Mingkui; Jiang, Honghui; Luo, Ming; Wang, Wengang; Li, Ning; Wang, Lulu; Xia, Lei

    2017-08-02

    The correlation between implant density and deformity correction has not yet led to a precise conclusion in adolescent idiopathic scoliosis (AIS). The aim of this study was to evaluate the effects of low density (LD) and high density (HD) pedicle screw instrumentation in terms of the clinical, radiological and Scoliosis Research Society (SRS)-22 outcomes in Lenke 1 AIS. We retrospectively reviewed 62 consecutive Lenke 1 AIS patients who underwent posterior spinal arthrodesis using all-pedicle screw instrumentation with a minimum follow-up of 24 months. The implant density was defined as the number of screws per spinal level fused. Patients were then divided into two groups according to the average implant density for the entire study. The LD group (n = 28) had fewer than 1.61 screws per level, while the HD group (n = 34) had more than 1.61 screws per level. The radiographs were analysed preoperatively, postoperatively and at final follow-up. The perioperative and SRS-22 outcomes were also assessed. Independent sample t tests were used between the two groups. Comparisons between the two groups showed no significant differences in the correction of the main thoracic curve and thoracic kyphosis, blood transfusion, hospital stay, and SRS-22 scores. Compared with the HD group, there was a decreased operating time (278.4 vs. 331.0 min, p = 0.004) and decreased blood loss (823.6 vs. 1010.9 ml, p = 0.048), pedicle screws needed (15.1 vs. 19.6, p density and high density pedicle screw instrumentation achieved satisfactory deformity correction in Lenke 1 AIS patients. However, the operating time and blood loss were reduced, and the implant costs were decreased with the use of low screw density constructs.

  3. High dislocation density of tin induced by electric current

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, R. O. C (China); Wu, Albert T. [Department of Chemical and Material Engineering, National Central University, Jhongli 32001, Taiwan, R. O. C (China)

    2015-12-15

    A dislocation density of as high as 10{sup 17} /m{sup 2} in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10{sup 3} A/ cm{sup 2}. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.

  4. High-pressure co-gasification of coal with biomass and petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Fermoso, J.; Arias, B.; Plaza, M.G.; Pevida, C.; Rubiera, F.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Garcia-Pena, F.; Casero, P. [Elcogas S.A. C.T. GICC Puertollano, Carretera Calzada de Calatrava, km 27, 13500 Puertollano, Ciudad Real (Spain)

    2009-07-15

    The effects of the main operation variables (temperature, pressure and gasifying agent composition) on gas production and other process parameters, such as carbon conversion, cold gas efficiency and high heating value, during the steam-oxygen gasification of a bituminous coal were studied. It was observed that temperature and oxygen concentration were the most influential variables during the gasification process. In addition, co-gasification tests of binary blends of a bituminous coal with different types of biomass (up to 10%) and petroleum coke (up to 60%), as well as ternary blends of coal-petcoke-biomass (45-45-10%) were conducted in order to study the effect of blending on gas production and carbon conversion. (author)

  5. Solid oxide fuel cells powered by biomass gasification for high efficiency power generation

    DEFF Research Database (Denmark)

    Gadsbøll, Rasmus Østergaard; Thomsen, Jesper; Bang-Møller, Christian

    2017-01-01

    efficiencies, flexibility and possibly costs of current biomass power generating systems, a power plant concept combining solid oxide fuel cells (SOFC) and gasification is investigated experimentally. The aim of the study is to examine the commercial operation system potential of these two technologies......Increased use of bioenergy is a very cost-effective and flexible measure to limit changes in the climate and the infrastructure. One of the key technologies toward a higher implementation of biomass is thermal gasification, which enables a wide span of downstream applications. In order to improve....... Investigations are done by combining the commercial TwoStage Viking gasifier developed at the Technical University of Denmark and a state-of-the-art SOFC stack from Topsoe Fuel Cell for high efficiency power generation. A total of 5 tests were performed including polarization tests at various gas flows to study...

  6. High efficiency biomass to power operation experiences and economical aspects of the novel gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, I.; Simell, P.; Kurkela, E.; Luoma, P. (VTT Processes, Espoo (Finland)); Lappi, K.; Haavisto, I. (Condens Oy, Haemeenlinna (Finland))

    2007-07-01

    Condens Oy has developed together with VTT a Novel gasification process that combines up draft gasifier with catalytic gas cleaning process to produce woodgas suitable for modern turbocharged gas engines with power production efficiencies of over 30 %. The forced fuel feeding makes it possible for the Novel gasifier to utilise biomass residues and energy crops that can't otherwise be used without expensive pre treatment. The first full size Novel CHP plant is presently under commissioning phase in the town of Kokemaeki, Finland. The plant is equipped with complete gas cleaning train while Jenbacher gas engine is used to produce electricity to the local grid. By product heat is utilized for district heat purposes to achieve high total efficiency. The Novel process offers a feasible solution to produce power from biomass and seems to be economically very attractive especially on the Central and Southern European markets. (orig.)

  7. An insect herbivore microbiome with high plant biomass-degrading capacity.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    2010-09-01

    Full Text Available Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini, which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  8. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra; Pinto-Tomas, Adrian; Foster, Clifton; Pauly, Markus; Weimer, Paul; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy; Slater, Steven; Donohue, Timothy; Currie, Cameron; Tringe, Susannah G.

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  9. An Efficient High Throughput Metabotyping Platform for Screening of Biomass Willows

    Directory of Open Access Journals (Sweden)

    Delia I. Corol

    2014-10-01

    Full Text Available Future improvement of woody biomass crops such as willow and poplar relies on our ability to select for metabolic traits that sequester more atmospheric carbon into biomass, or into useful products to replace petrochemical streams. We describe the development of metabotyping screens for willow, using combined 1D 1H-NMR-MS. A protocol was developed to overcome 1D 1H-NMR spectral alignment problems caused by variable pH and peak broadening arising from high organic acid levels and metal cations. The outcome was a robust method to allow direct statistical comparison of profiles arising from source (leaf and sink (stem tissues allowing data to be normalised to a constant weight of the soluble metabolome. We also describe the analysis of two willow biomass varieties, demonstrating how fingerprints from 1D 1H-NMR-MS vary from the top to the bottom of the plant. Automated extraction of quantitative data of 56 primary and secondary metabolites from 1D 1H-NMR spectra was realised by the construction and application of a Salix metabolite spectral library using the Chenomx software suite. The optimised metabotyping screen in conjunction with automated quantitation will enable high-throughput screening of genetic collections. It also provides genotype and tissue specific data for future modelling of carbon flow in metabolic networks.

  10. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    Science.gov (United States)

    Suen, Garret; Scott, Jarrod J.; Aylward, Frank O.; Adams, Sandra M.; Tringe, Susannah G.; Pinto-Tomás, Adrián A.; Foster, Clifton E.; Pauly, Markus; Weimer, Paul J.; Barry, Kerrie W.; Goodwin, Lynne A.; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy T.; Slater, Steven C.; Donohue, Timothy J.; Currie, Cameron R.

    2010-01-01

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy. PMID:20885794

  11. Advanced biomass gasification for high-efficiency power. Final activity report of BiGPower Project

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Kurkela, M. (eds.)

    2009-11-15

    The BiGPower project was related to the development of 2nd generation high-efficiency biomass-to-electricity technologies, which have the potential to meet the targets of cost effective electricity production from wide range of biomass and waste fuels in size ranges typical to locally available feedstock sources (below 100 MW{sub e}). This project was designed to create the fundamental and technical basis for successful future industrial developments and demonstration projects aiming to commercial breakthrough by 2010-2020. This overall aim was approached by carrying out in pre-competitive manner well-focused R and D activities on the key bottlenecks of advanced biomass gasification power systems. Three promising European gasification technologies in this target size range were selected to form the basis for the development: 1) air-blow novel fixed-bed gasifier for size range of 0.5-5 MWe, 2) steam gasification in a dual-fluidisedbed gasifier for 5-50 MWe and 3) air-blown pressurised fluidised-bed gasification technology for 5-100 MWe. In all biomass gasification processes, the product gas contains several types of gas contaminants, which have to be efficiently removed before utilising the gas in advanced power systems. The key technical solutions developed in the BiGPower project were: a) high-temperature catalytic removal of tars and ammonia by new catalytic methods, and b) development of innovative low cost gas filtration. Three most potential power production cycle alternatives were examined and developed: 1) gas engines, 2) molten carbonate fuel cells (MCFC) and 3) the simplified Integrated Gasification Combined Cycle (IGCC) process. The performance and techno-economic feasibility of these advanced gasification-topower concepts were examined by carrying out case studies in different European Union. (orig.)

  12. Noise reduction in muon tomography for detecting high density objects

    CERN Document Server

    Benettoni, M; Bonomi, G; Calvagno, G; Calvini, P; Checchia, P; Cortelazzo, G; Cossutta, L; Donzella, A; Furlan, M; Gonella, F; Pegoraro, M; Garola, A Rigoni; Ronchese, P; Squarcia, S; Subieta, M; Vanini, S; Viesti, G; Zanuttigh, P; Zenoni, A; Zumerle, G

    2013-01-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. A new and innovative method is presented in this paper to handle the density fluctuations (noise) of reconstructed images, that are a known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect in short times high density materials, such as lead, when surrounded by light or medium density material. A comparison with algorithms published in literature is also presented.

  13. Noise reduction in muon tomography for detecting high density objects

    Science.gov (United States)

    Benettoni, M.; Bettella, G.; Bonomi, G.; Calvagno, G.; Calvini, P.; Checchia, P.; Cortelazzo, G.; Cossutta, L.; Donzella, A.; Furlan, M.; Gonella, F.; Pegoraro, M.; Rigoni Garola, A.; Ronchese, P.; Squarcia, S.; Subieta, M.; Vanini, S.; Viesti, G.; Zanuttigh, P.; Zenoni, A.; Zumerle, G.

    2013-12-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented.

  14. High energy density interpenetrating networks from ionic networks and silicone

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren

    2015-01-01

    The energy density of dielectric elastomers (DEs) is sought increased for better exploitation of the DE technology since an increased energy density means that the driving voltage for a certain strain can be lowered in actuation mode or alternatively that more energy can be harvested in generator...... mode. One way to increase the energy density is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the development of interpenetrating networks from ionically assembled silicone polymers and covalently...

  15. Improving Measurement of Forest Structural Parameters by Co-Registering of High Resolution Aerial Imagery and Low Density LiDAR Data

    OpenAIRE

    Huang, Huabing; Gong, Peng; CHENG, XIAO; Clinton, Nick; Li, Zengyuan

    2009-01-01

    Forest structural parameters, such as tree height and crown width, are indispensable for evaluating forest biomass or forest volume. LiDAR is a revolutionary technology for measurement of forest structural parameters, however, the accuracy of crown width extraction is not satisfactory when using a low density LiDAR, especially in high canopy cover forest. We used high resolution aerial imagery with a low density LiDAR system to overcome this shortcoming. A morphological filtering was used to ...

  16. Eastern cottonwood and black willow biomass crop production in the Lower Mississippi Alluvial Valley under four planting densities

    Science.gov (United States)

    Ray A. Souter; Emile S Gardiner; Theodor D. Leininger; Dana Mitchell; Robert B. Rummer

    2015-01-01

    "Wood is an obvious alternative energy source": Johnson and others (2007) declare the potential of short-rotation intensively-managed woody crop systems to produce biomass for energy. While obvious as an energy source, costs of production need to be measured to assess the economic viability of selected tree species as woody perennial energy crops

  17. Five-minute grid of total marine bird biomass densities surveyed off central California - selected warm water periods, 1980-2001 (CDAS data set AL1_MASS.shp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — AL0_MASS is a polygon shapefile representing 5 minute x 5 minute latitude x longitude cells that house the overall total biomass densities (kg/sq.km.) of 76 species...

  18. Solid Oxide Electrolysis Cells: Degradation at High Current Densities

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Traulsen, Marie Lund; Hauch, Anne;

    2010-01-01

    The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at 850°C, at current densities of −1.0, −1.5, and −2.0 A/cm2, with a 50:50 (H2O:H2) gas supplied to the Ni/YSZ hydrogen electrode...

  19. BCS Theory of Hadronic Matter at High Densities

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providencia, Constanca

    2012-01-01

    The equilibrium between the so-called 2SC and CFL phases of strange quark matter at high densities is investigated in the framework of a simple schematic model of the NJL type. Equal densities are assumed for quarks u, d and s. The 2SC phase is here described by a color-flavor symmetric state...... than is usual in NJL type models. This should be adequate if the relevant chemical potential does not exceed 0.6 GeV....

  20. Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: overcoming problems of high biomass and persistent cloud

    Science.gov (United States)

    Mitchard, E. T. A.; Saatchi, S. S.; White, L. J. T.; Abernethy, K. A.; Jeffery, K. J.; Lewis, S. L.; Collins, M.; Lefsky, M. A.; Leal, M. E.; Woodhouse, I. H.; Meir, P.

    2012-01-01

    Spatially-explicit maps of aboveground biomass are essential for calculating the losses and gains in forest carbon at a regional to national level. The production of such maps across wide areas will become increasingly necessary as international efforts to protect primary forests, such as the REDD+ (Reducing Emissions from Deforestation and forest Degradation) mechanism, come into effect, alongside their use for management and research more generally. However, mapping biomass over high-biomass tropical forest is challenging as (1) direct regressions with optical and radar data saturate, (2) much of the tropics is persistently cloud-covered, reducing the availability of optical data, (3) many regions include steep topography, making the use of radar data complex, (5) while LiDAR data does not suffer from saturation, expensive aircraft-derived data are necessary for complete coverage. We present a solution to the problems, using a combination of terrain-corrected L-band radar data (ALOS PALSAR), spaceborne LiDAR data (ICESat GLAS) and ground-based data. We map Gabon's Lopé National Park (5000 km2) because it includes a range of vegetation types from savanna to closed-canopy tropical forest, is topographically complex, has no recent contiguous cloud-free high-resolution optical data, and the dense forest is above the saturation point for radar. Our 100 m resolution biomass map is derived from fusing spaceborne LiDAR (7142 ICESat GLAS footprints), 96 ground-based plots (average size 0.8 ha) and an unsupervised classification of terrain-corrected ALOS PALSAR radar data, from which we derive the aboveground biomass stocks of the park to be 78 Tg C (173 Mg C ha-1). This value is consistent with our field data average of 181 Mg C ha-1, from the field plots measured in 2009 covering a total of 78 ha, and which are independent as they were not used for the GLAS-biomass estimation. We estimate an uncertainty of ±25% on our carbon stock value for the park. This error term

  1. A high power density miniaturized microbial fuel cell having carbon nanotube anodes

    Science.gov (United States)

    Ren, Hao; Pyo, Soonjae; Lee, Jae-Ik; Park, Tae-Jin; Gittleson, Forrest S.; Leung, Frederick C. C.; Kim, Jongbaeg; Taylor, André D.; Lee, Hyung-Sool; Chae, Junseok

    2015-01-01

    Microbial fuel cells (MFCs) are a promising technology capable of directly converting the abundant biomass on the planet into electricity. Prior studies have adopted a variety of nanostructured materials with high surface area to volume ratio (SAV), yet the current and power density of these nanostructured materials do not deliver a significant leap over conventional MFCs. This study presents a novel approach to implement a miniaturized MFC with a high SAV of 4000 m-1 using three different CNT-based electrode materials: Vertically Aligned CNT (VACNT), Randomly Aligned CNT (RACNT), and Spin-Spray Layer-by-Layer (SSLbL) CNT. These CNT-based electrodes show unique biofilm morphology and thickness. The study of performance parameters of miniaturized MFCs with these CNT-electrodes are conducted with respect to a control bare gold electrode. The results show that CNT-based materials attract more exoelectrogens, Geobacter sp., than bare gold, yielding thicker biofilm formation. Among CNT-based electrodes, low sheet resistance electrodes result in thick biofilm generation and high current/power density. The miniaturized MFC having an SSLbL CNT anode exhibits a high volumetric power density of 3320 W m-3. This research may help lay the foundation for future research involving the optimization of MFCS with 2D and 3D nanostructured electrodes.

  2. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China

    Science.gov (United States)

    Zhou, Ying; Xing, Xiaofan; Lang, Jianlei; Chen, Dongsheng; Cheng, Shuiyuan; Wei, Lin; Wei, Xiao; Liu, Chao

    2017-02-01

    . As for the straw burning emission of various crops, corn straw burning has the largest contribution to all of the pollutants considered, except for CH4; rice straw burning has highest contribution to CH4 and the second largest contribution to other pollutants, except for SO2, OC, and Hg; wheat straw burning is the second largest contributor to SO2, OC, and Hg and the third largest contributor to other pollutants. Heilongjiang, Shandong, and Henan provinces located in the north-eastern and central-southern regions of China have higher emissions compared to other provinces in China. Gridded emissions, which were obtained through spatial allocation based on the gridded rural population and fire point data from emission inventories at county resolution, could better represent the actual situation. High biomass burning emissions are concentrated in the areas with more agricultural and rural activity. The months of April, May, June, and October account for 65 % of emissions from in-field crop residue burning, while, regarding EC, the emissions in January, February, October, November, and December are relatively higher than other months due to biomass domestic burning in heating season. There are regional differences in the monthly variations of emissions due to the diversity of main planted crops and climatic conditions. Furthermore, PM2.5 component results showed that OC, Cl-, EC, K+, NH4+, elemental K, and SO42- are the main PM2.5 species, accounting for 80 % of the total emissions. The species with relatively high contribution to NMVOC emission include ethylene, propylene, toluene, mp-xylene, and ethyl benzene, which are key species for the formation of secondary air pollution. The detailed biomass burning emission inventory developed by this study could provide useful information for air-quality modelling and could support the development of appropriate pollution-control strategies.

  3. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  4. Mendelian Disorders of High-Density Lipoprotein Metabolism

    NARCIS (Netherlands)

    Oldoni, Federico; Sinke, Richard J.; Kuivenhoven, Jan Albert

    2014-01-01

    High-density lipoproteins (HDLs) are a highly heterogeneous and dynamic group of the smallest and densest lipoproteins present in the circulation. This review provides the current molecular insight into HDL metabolism led by articles describing mutations in genes that have a large affect on HDL chol

  5. Biomass accumulation modelling in a highly loaded biotrickling filter for hydrogen sulphide removal.

    Science.gov (United States)

    Mannucci, Alberto; Munz, Giulio; Mori, Gualtiero; Lubello, Claudio

    2012-07-01

    A pilot scale test on a biotrickling filter packed with polyurethane foam cubes was carried out for 110 d at high volumetric mass load (up to 280 g m(bed)(-3) h(-1)) with the aim of studying the accumulation of solids in the treatment of H(2)S. Removal rate up to 245 g m(bed)(-3) h(-1) was obtained; however, an accumulation of gypsum, elemental sulphur and, above all, inert biomass was identified as the cause of an increased pressure drop over the long term. A mathematical model was applied and calibrated with the experimental results to describe the accumulation of biomass. The model was capable of describing the accumulation of solids and, corresponding to a solids retention time of 50 d, the observed yield resulted in 0.07 g of solids produced g(-1) H(2)S removed. Respirometric tests showed that heterotrophic activity is inhibited at low pH (pH < 2.3), and the contribution to biomass removal through decay was negligible.

  6. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    Science.gov (United States)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2015-01-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  7. Direct Reduction of High-phosphorus Oolitic Hematite Ore Based on Biomass Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Dong-bo HUANG; Yan-bing ZONG; Ru-fei WEI; Wei GAO; Xiao-ming LIU

    2016-01-01

    Direct reduction of high-phosphorus oolitic hematite ore based on biomass pyrolysis gases (CO,H2 ,and CH4 ),tar,and char was conducted to investigate the effects of reduction temperature,iron ore-biomass mass ratio, and reduction time on the metallization rate.In addition,the effect of particle size on the dephosphorization and iron recovery rate was studied by magnetic separation.It was determined that the metallization rate of the hematite ore could reach 99.35% at iron ore-biomass mass ratio of 1∶0.6,reduction temperature of 1 100 ℃,and reduction time of 5 5 min.The metallization rate and the aggregation degree of iron particles increase with the increase of reduction temperature.The particle size of direct reduced iron (DRI)has a great influence on the quality of the iron concentrate during magnetic separation.The separation degree of slag and iron was improved by the addition of 1 5 mass% sodi-um carbonate.DRI with iron grade of 89.11%,iron recovery rate of 83.47%,and phosphorus content of 0.28% can be obtained when ore fines with particle size of -10μm account for 78.15%.

  8. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode

    Science.gov (United States)

    Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun

    2017-02-01

    Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg‑1 and 84.6 Wh kg‑1 at power densities of 731.25 W kg‑1 and 24375 W kg‑1, respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.

  9. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode

    Science.gov (United States)

    Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun

    2017-01-01

    Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg−1 and 84.6 Wh kg−1 at power densities of 731.25 W kg−1 and 24375 W kg−1, respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode. PMID:28155853

  10. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  11. Coexistence of low coral cover and high fish biomass at Farquhar Atoll, Seychelles.

    Directory of Open Access Journals (Sweden)

    Alan M Friedlander

    Full Text Available We report a reef ecosystem where corals may have lost their role as major reef engineering species but fish biomass and assemblage structure is comparable to unfished reefs elsewhere around the world. This scenario is based on an extensive assessment of the coral reefs of Farquhar Atoll, the most southern of the Seychelles Islands. Coral cover and overall benthic community condition at Farquhar was poor, likely due to a combination of limited habitat, localized upwelling, past coral bleaching, and cyclones. Farquhar Atoll harbors a relatively intact reef fish assemblage with very large biomass (3.2 t ha(-1 reflecting natural ecological processes that are not influenced by fishing or other local anthropogenic factors. The most striking feature of the reef fish assemblage is the dominance by large groupers, snappers, and jacks with large (>1 m potato cod (Epinephelus tukula and marbled grouper (E. polyphekadion, commonly observed at many locations. Napoleon wrasse (Cheilinus undulatus and bumphead parrotfish (Bolbometopon muricatum are listed as endangered and vulnerable, respectively, but were frequently encountered at Farquhar. The high abundance and large sizes of parrotfishes at Farquhar also appears to regulate macroalgal abundance and enhance the dominance of crustose corallines, which are a necessary condition for maintenance of healthy reef communities. Overall fish biomass and biomass of large predators at Farquhar are substantially higher than other areas within the Seychelles, and are some of the highest recorded in the Indian Ocean. Remote islands like Farquhar Atoll with low human populations and limited fishing pressure offer ideal opportunities for understanding whether reefs can be resilient from global threats if local threats are minimized.

  12. Rheology of concentrated biomass

    Science.gov (United States)

    J.R. Samaniuk; J. Wang; T.W. Root; C.T. Scott; D.J. Klingenberg

    2011-01-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained...

  13. Quark matter at high density based on an extended confined isospin-density-dependent mass model

    Science.gov (United States)

    Qauli, A. I.; Sulaksono, A.

    2016-01-01

    We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include the Coulomb term in scalar density form, the SQM equation of state (EOS) at high densities is stiffer but if we include the Coulomb term in vector density form it is softer than that of the standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported by Chu and Chen [Astrophys. J. 780, 135 (2014)], we found the stiffness of SQM EOS is controlled by the interplay among the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 M⊙ pulsars can constrain the parameter of oscillator harmonic κ1≈0.53 in the case the Coulomb term is excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM absolute stability condition, the 2.0 M⊙ constraint more prefers the maximum mass prediction of the model with the scalar Coulomb term than that of the model with the vector Coulomb term. On the contrary, the high densities EOS predicted by the model with the vector Coulomb is more compatible with the recent perturbative quantum chromodynamics result [1] than that predicted by the model with the scalar Coulomb. Furthermore, we also observed the quark composition in a very high density region depends quite sensitively on the kind of Coulomb term used.

  14. High-density turbidity currents: Are they sandy debris flows?

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, G. [Mobil Exploration and Producing Technical Center, Dallas, TX (United States)

    1996-01-01

    Conventionally, turbidity currents are considered as fluidal flows in which sediment is supported by fluid turbulence, whereas debris flows are plastic flows in which sediment is supported by matrix strength, dispersive pressure, and buoyant lift. The concept of high-density turbidity current refers to high-concentration, commonly non-turbulent, flows of fluids in which sediment is supported mainly by matrix strength, dispersive pressure, and buoyant lift. The conventional wisdom that traction carpets with entrained turbulent clouds on top represent high-density turbidity currents is a misnomer because traction carpets are neither fluidal nor turbulent. Debris flows may also have entrained turbulent clouds on top. The traction carpet/debris flow and the overriding turbulent clouds are two separate entities in terms of flow rheology and sediment-support mechanism. In experimental and theoretical studies, which has linked massive sands and floating clasts to high-density turbidity currents, the term high-density turbidity current has actually been used for laminar flows. In alleviating this conceptual problem, sandy debris flow is suggested as a substitute for high-density turbidity current. Sandy debris flows represent a continuous spectrum of processes between cohesive and cohesionless debris flows. Commonly they are rheologically plastic. They may occur with or without entrained turbulent clouds on top. Their sediment-support mechanisms include matrix strength, dispersive pressure, and buoyant lift. They are characterized by laminar flow conditions, a moderate to high grain concentration, and a low to moderate mud content. Although flows evolve and transform during the course of transport in density-stratified flows, the preserved features in a deposit are useful to decipher only the final stages of deposition. At present, there are no established criteria to decipher transport mechanism from the depositional record.

  15. Extensive Sampling of Forest Carbon using High Density Power Line Lidar

    Science.gov (United States)

    Hampton, H. M.; Chen, Q.; Dye, D. G.; Hungate, B. A.

    2013-12-01

    Estimating carbon sequestration and greenhouse gas emissions from forest management, natural processes, and disturbance is of growing interest for mitigating global warming. Ponderosa pine is common at mid-elevations throughout the western United States and is a dominant tree species in southwestern forests. Existing unmanaged "relict" sites and stand reconstructions of southwestern ponderosa pine forests from before European settlement (late 1800s) provide evidence of forests of larger trees of lower density and less vulnerability to severe fires than today's typical conditions of high densities of small trees that have resulted from a century of fire suppression. Forest treatments to improve forest health in the region include tree cutting focused on small-diameter trees (thinning), low-intensity prescribed burning, and monitoring rather than suppressing wildfires. Stimulated by several uncharacteristically-intense fires in the last decade, a collaborative process found strong stakeholder agreement to accelerate forest treatments to reduce fire risk and restore ecological conditions. Land use planning to ramp up management is underway and could benefit from quick and inexpensive techniques to inventory tree-level carbon because existing inventory data are not adequate to capture the range of forest structural conditions. Our approach overcomes these shortcomings by employing recent breakthroughs in estimating aboveground biomass from high resolution light detection and ranging (lidar) remote sensing. Lidar is an active remote sensing technique, analogous to radar, which measures the time required for a transmitted pulse of laser light to return to the sensor after reflection from a target. Lidar data can capture 3-dimensional forest structure with greater detail and broader spatial coverage than is feasible with conventional field measurements. We developed a novel methodology for extensive sampling and field validation of forest carbon, applicable to managed and

  16. High density data storage principle, technology, and materials

    CERN Document Server

    Zhu, Daoben

    2009-01-01

    The explosive increase in information and the miniaturization of electronic devices demand new recording technologies and materials that combine high density, fast response, long retention time and rewriting capability. As predicted, the current silicon-based computer circuits are reaching their physical limits. Further miniaturization of the electronic components and increase in data storage density are vital for the next generation of IT equipment such as ultra high-speed mobile computing, communication devices and sophisticated sensors. This original book presents a comprehensive introduction to the significant research achievements on high-density data storage from the aspects of recording mechanisms, materials and fabrication technologies, which are promising for overcoming the physical limits of current data storage systems. The book serves as an useful guide for the development of optimized materials, technologies and device structures for future information storage, and will lead readers to the fascin...

  17. Seasonal dynamics of fine root biomass, root length density, specific root length, and soil resource availability in a Larix gmelinii plantation

    Institute of Scientific and Technical Information of China (English)

    CHENG Yunhuan; HAN Youzhi; WANG Qingcheng; WANG Zhengquan

    2006-01-01

    Fine root tumover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from Mav to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine

  18. Frontiers for Discovery in High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  19. Bioremediation potential, growth and biomass yield of the green seaweed, Ulva lactuca in an integrated marine aquaculture system at the Red Sea coast of Saudi Arabia at different stocking densities and effluent flow rates

    KAUST Repository

    Al-Hafedh, Yousef S.

    2014-03-19

    Growth, production and biofiltration rates of seaweed, Ulva lactuca were investigated at two stocking densities (3 kg and 6 kg m-2) and two effluent flow rates (5.4 and 10.8 m3 day-1) to optimize an integrated mariculture system at Saudi Red Sea coast. effluents from fish-rearing tank, stocked with 200 kg fish (Oreochromis spilurus), fed to six seaweed tanks via sedimentation tank. Fish growth (weight gain 1.75 g fish day-1), net production (NP, 10.16 kg m-3) and survival (94.24%) were within acceptable limits. Ulva showed significantly higher (F = 62.62, d.f. 3, 35; P < 0.0001) specific growth rates at lower density compared with higher density and under high flow versus low flow (SGR = 5.78% vs. 2.55% at lower flow and 10.60% vs. 6.26% at higher flow). Biomass yield of Ulva at low- and high-stocking densities (111.11 and 83.2 g wet wt m-2 day-1, respectively) at low flow and (267.44 and 244.19 g wet wt m-2 day-1, respectively) at high flow show that high flow rate and lower density favoured growth. Removal rates of total ammonia nitrogen (TAN) (0.26-0.31 g m-2 day-1) and phosphate phosphorus (0.32-0.41 g m-2 day-1) by U. lactuca were not significantly different (F = 1.9, d.f. 3, 59; P = 0.1394 for TAN and F = 0.29, d.f. 3, 59; P = 0.8324 for phosphates) at both the flow rates and stocking densities. Results show that the effluent flow rate has significant impact over the performance of the seaweed than stocking density.

  20. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achieved using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm-3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.

  1. High density operation for reactor-relevant power exhaust

    Science.gov (United States)

    Wischmeier, M.

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  2. Origins and Impacts of High-Density Symmetry Energy

    CERN Document Server

    Li, Bao-An

    2016-01-01

    What is nuclear symmetry energy? Why is it important? What do we know about it? Why is it so uncertain especially at high densities? Can the total symmetry energy or its kinetic part be negative? What are the effects of three-body and/or tensor force on symmetry energy? How can we probe the density dependence of nuclear symmetry energy with terrestrial nuclear experiments? What observables of heavy-ion reactions are sensitive to the high-density behavior of nuclear symmetry energy? How does the symmetry energy affect properties of neutron stars, gravitational waves and our understanding about the nature of strong-field gravity? In this lecture, we try to answer these questions as best as we can based on some of our recent work and/or understanding of research done by others. This note summarizes the main points of the lecture.

  3. Preparation of spherical cobalt carbonate powder with high tap density

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin; WANG Jian-feng; LIU Yong-dong; LI Jie; LIU Ye-xiang

    2006-01-01

    Spherical cobalt carbonate with high tap density, good crystallization and uniform particle size was prepared by controlled chemical crystal method using cobalt chloride and ammonium bicarbonate as cobalt source and precipitator. The effects of pH value and reaction time on crystallization and physical properties of cobalt carbonate were studied. The results show that the key factors influencing the preparation process of spherical cobalt carbonate with high tap density and good crystallization are how to control pH value (7.25 ± 0.05) and keep some reaction time (about 10 h). Co4O3 was prepared by sintering spherical morphology CoCO3 samples at varied temperatures. The results show that as the decomposition temperature increases, the as-obtained Co4O3 products with porous structure transform into polyhedral structure with glazed surface, and simultaneously the cobalt content and tap density increase. However, the specific surface area shows a trend of decrease.

  4. High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Steve [Auburn Univ., AL (United States); McDonald, Timothy [Auburn Univ., AL (United States); Fasina, Oladiran [Auburn Univ., AL (United States); Gallagher, Tom [Auburn Univ., AL (United States); Smidt, Mathew [Auburn Univ., AL (United States); Mitchell, Dana [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Klepac, John [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Thompson, Jason [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Sprinkle, Wes [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Carter, Emily [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Grace, Johnny [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Rummer, Robert [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Corley, Frank [Corley Land Services, Chapman, AL (United States); Somerville, Grant [Tigercat, Brantford, ON (Canada)

    2014-09-01

    In this study, a high-tonnage harvesting system designed specifically to operate efficiently in the expected stand types of a bioenergy scenario was built, deployed, and evaluated in a production setting. Stands on which the system was evaluated exhibited the heavy stocking levels (> 600 stems per acre) and tree size distributions with significant volume in small stems (down to 2” DBH) that were expected in the modified energy plantation silvicultural approach. The harvest system also was designed to be functional in the traditional plantation stands dominating the commercial forestry landscape in the region. The Tigercat 845D feller buncher, which was a prototype machine designed for the high tonnage harvest system, used a boom-mounted prototype DT1802 shear felling head and incorporated a number of options intended to maximize its small-stem productivity, including: a high-speed shear severing system that was cheaper to operate than a saw; a large-pocket felling head that allowed larger accumulations of small stems to be built before expending the time to drop them for the skidder; efficient, low ground pressure, tracked carrier system to decrease the amount of maneuvering, saving time and minimizing soil disturbance; and various energy-saving devices to lower fuel costs and minimize air quality impacts. Overall, the feller buncher represented a quantum advance in small-stem harvesting technology. Extensive testing showed the machine’s production rate to be relatively insensitive to piece size, much less so than comparable traditional equipment. In plantation stands, the feller buncher was able to produce approximately 100 green tons of biomass per productive machine hour (PMH), and in natural stands, it produced nearly 120 green tons per PMH. The ability of the high tonnage feller buncher to maintain high productivity in stands with smaller diameter stems is something that has not been achieved in previous feller buncher designs. The Tigercat 845D feller

  5. Theoretical Study on the High Energy Density Compound Hexanitrohexaazatricyclotetradecanedifuroxan

    Institute of Scientific and Technical Information of China (English)

    QIU Ling; XIAO He-Ming; ZHU Wei-Hua; JU Xue-Hai; GONG Xue-Dong

    2006-01-01

    Density functional theory (DFT) has been employed to study the molecular geometries, electronic structures,infrared (IR) spectra, and thermodynamic properties of the high energy density compound hexanitrohexaazatricyclotetradecanedifuroxan (HHTTD) at the B3LYP/6-31G** level of theory. The calculated results showthattherearefourconformationalisomers (a, β, γ and δ) for HHTTD, and the relative stabilities of four conformers were assessed based on the calculated total energies and the energy-gaps between the frontier molecular orbitals. The computed harmonic vibrational frequencies are in reasonable agreement with the available experimental data. Thermodynamic properties derived from the IR spectra on the basis of statistical thermodynamic principles are linearly correlated with the temperature. Detonation performances were evaluated by using the Kamlet-Jacobsequationsbasedonthecalculated densities and heats of formation. It was found that four HHTTD isomers with the predicted densities of ca. 2 g·cm-3, detonation velocities near 10 km·s-1, and detonation pressures over 45 Gpa, may be novel potential candidates of high energy density materials (HEDM). These results may provide basic information for the molecular designof HEDM.

  6. A high energy density relaxor antiferroelectric pulsed capacitor dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwan Ryul; Lynch, Christopher S. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095 (United States)

    2016-01-14

    Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb{sub 0.88}La{sub 0.08})(Zr{sub 0.91}Ti{sub 0.09})O{sub 3} was found to be an ideal candidate. La{sup 3+} doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm{sup 3} with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.

  7. The impact of steam and current density on carbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solid oxide fuel cell anodes

    Science.gov (United States)

    Mermelstein, Joshua; Millan, Marcos; Brandon, Nigel

    The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm -2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.

  8. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, Alexandra; Koster, Sander; Eijkel, Jan C.T.; Berg, van den Albert; Lucklum, F.; Verpoorte, E.; Rooij, de Nico F.

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined

  9. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachin

  10. Intraocular inflammation following endotamponade with high-density silicone oil.

    NARCIS (Netherlands)

    Theelen, T.; Tilanus, M.A.D.; Klevering, B.J.

    2004-01-01

    BACKGROUND: The use of a mixture of silicone oil and partially fluorinated alkanes (high-density silicone oil) has recently been suggested as intraocular tamponade in complicated retinal detachment of the inferior quadrants. We describe a series of patients who developed a clinical picture resemblin

  11. Two-Dimensional Super High Density Multi-Fiber Connector

    Institute of Scientific and Technical Information of China (English)

    Takashi Shigenaga; Katsuki Suematsu; Masao Shinoda; Takayuki Ando

    2003-01-01

    We have developed 32-fiber and 60-fiber super high density multi fiber connector. This 32-fiber connector can be applicable for single-mode fiber and 60-fiber connector for multi-mode fiber. We have also established PC (physical contact) connection technology by optimizing polishing condition and clamping force.

  12. Interaction effects in high density magnetic particulate media

    Energy Technology Data Exchange (ETDEWEB)

    Cerchez, Mihai; Stoleriu, Laurentiu; Stancu, Alexandru

    2004-01-01

    The paper presents a micromagnetic study of the particulate high density recording media. The main difference in the behavior of such a system is the appearance of magnetic clusters which lead to a different behavior of the system. New hypotheses for interpreting such systems are presented.

  13. Metabolism of high density lipoproteins in liver cancer

    Institute of Scientific and Technical Information of China (English)

    Jing-Ting Jiang; Ning Xu; Chang-Ping Wu

    2007-01-01

    Liver plays a vital role in the production and catabolism of plasma lipoproteins. It depends on the integrity of cellular function of liver, which ensures homeostasis of lipid and lipoprotein metabolism. When liver cancer occurs these processes are impaired and high-density lipoproteins are changed.

  14. High Energy Density Physics and Exotic Acceleration Schemes

    Science.gov (United States)

    Cowan, Thomas; Colby, Eric

    2002-12-01

    We summarize the reported results and the principal technical discussions that occurred in our Working Group on High Energy Density Physics and Exotic Acceleration Schemes at the 2002 workshop on Advanced Accelerator Concepts at the Mandalay Beach resort, June 22-28, 2002.

  15. Intraocular inflammation following endotamponade with high-density silicone oil.

    NARCIS (Netherlands)

    Theelen, T.; Tilanus, M.A.D.; Klevering, B.J.

    2004-01-01

    BACKGROUND: The use of a mixture of silicone oil and partially fluorinated alkanes (high-density silicone oil) has recently been suggested as intraocular tamponade in complicated retinal detachment of the inferior quadrants. We describe a series of patients who developed a clinical picture

  16. A Novel Anti-Inflammatory Effect for High Density Lipoprotein.

    Directory of Open Access Journals (Sweden)

    Scott J Cameron

    Full Text Available High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC. Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis.

  17. High follicle density does not decrease sweat gland density in Huacaya alpacas.

    Science.gov (United States)

    Moore, K E; Maloney, S K; Blache, D

    2015-01-01

    When exposed to high ambient temperatures, mammals lose heat evaporatively by either sweating from glands in the skin or by respiratory panting. Like other camelids, alpacas are thought to evaporate more water by sweating than panting, despite a thick fleece, unlike sheep which mostly pant in response to heat stress. Alpacas were brought to Australia to develop an alternative fibre industry to sheep wool. In Australia, alpacas can be exposed to ambient temperatures higher than in their native South America. As a young industry there is a great deal of variation in the quality and quantity of the fleece produced in the national flock. There is selection pressure towards animals with finer and denser fleeces. Because the fibre from secondary follicles is finer than that from primary follicles, selecting for finer fibres might alter the ratio of primary and secondary follicles. In turn the selection might alter sweat gland density because the sweat glands are associated with the primary follicle. Skin biopsy and fibre samples were obtained from the mid-section of 33 Huacaya alpacas and the skin sections were processed into horizontal sections at the sebaceous gland level. Total, primary, and secondary follicles and the number of sweat gland ducts were quantified. Fibre samples from each alpaca were further analysed for mean fibre diameter. The finer-fibred animals had a higher total follicle density (P<0.001) and more sweat glands (P<0.001) than the thicker-fibred animals. The fibre diameter and total follicle density were negatively correlated (R(2)=0.56, P<0.001). Given that the finer-fibred animals had higher follicle density and more sweat glands than animals with thicker fibres, we conclude that alpacas with high follicle density should not be limited for potential sweating ability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  19. Interfacial Tension and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets

    DEFF Research Database (Denmark)

    Ollila, O. H. S.; Lamberg, A.; Lehtivaara, M.

    2012-01-01

    Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively) are essentia...... of interfacial tension becomes significant for particles with a radius of similar to 5 nm, when the area per molecule in the surface region is...

  20. Patchy distributions of competitors affect the growth of a clonal plant when the competitor density is high.

    Directory of Open Access Journals (Sweden)

    Wei Xue

    Full Text Available Environments are patchy in not only abiotic factors but also biotic ones. Many studies have examined effects of spatial heterogeneity in abiotic factors such as light, water and nutrients on the growth of clonal plants, but few have tested those in biotic factors. We conducted a greenhouse experiment to examine how patchy distributions of competitors affect the growth of a rhizomatous wetland plant Bolboschoenus planiculmis and whether such effects depend on the density of the competitors. We grew one ramet of B. planiculmis in the center of each of the experimental boxes without competitors (Schoenoplectus triqueter, with a homogeneous distribution of the competitors of low or high density, and with a patchy distribution of the competitors of low or high density. The presence of competitors markedly decreased the growth (biomass, number of ramets, number of tubers and rhizome length of the B. planiculmis clones. When the density of the competitors was low, the growth of B. planiculmis did not differ significantly between the competitor patches and competitor-free patches. However, when the density of the competitors was high, the growth of B. planiculmis was significantly higher in the competitor-free patches than in the competitor patches. Therefore, B. planiculmis can respond to patchy distributions of competitors by placing more ramets in competition-free patches when the density of competitors is high, but cannot do so when the density of competitors is low.

  1. Patchy distributions of competitors affect the growth of a clonal plant when the competitor density is high.

    Science.gov (United States)

    Xue, Wei; Huang, Lin; Dong, Bi-Cheng; Zhang, Ming-Xiang; Yu, Fei-Hai

    2013-01-01

    Environments are patchy in not only abiotic factors but also biotic ones. Many studies have examined effects of spatial heterogeneity in abiotic factors such as light, water and nutrients on the growth of clonal plants, but few have tested those in biotic factors. We conducted a greenhouse experiment to examine how patchy distributions of competitors affect the growth of a rhizomatous wetland plant Bolboschoenus planiculmis and whether such effects depend on the density of the competitors. We grew one ramet of B. planiculmis in the center of each of the experimental boxes without competitors (Schoenoplectus triqueter), with a homogeneous distribution of the competitors of low or high density, and with a patchy distribution of the competitors of low or high density. The presence of competitors markedly decreased the growth (biomass, number of ramets, number of tubers and rhizome length) of the B. planiculmis clones. When the density of the competitors was low, the growth of B. planiculmis did not differ significantly between the competitor patches and competitor-free patches. However, when the density of the competitors was high, the growth of B. planiculmis was significantly higher in the competitor-free patches than in the competitor patches. Therefore, B. planiculmis can respond to patchy distributions of competitors by placing more ramets in competition-free patches when the density of competitors is high, but cannot do so when the density of competitors is low.

  2. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  3. 林分密度对马尾松飞播林生物产量及生产力的影响%Effects of Stand Density on the Biomass and Productivity of Pinus masso niana Air-sowing Stands

    Institute of Scientific and Technical Information of China (English)

    陈兆先; 何友军; 柏方敏; 张际红; 李志辉

    2001-01-01

    对湘东丘陵地区16年生密度为2 250、2 860和3 225株*hm-2的马尾松Pinus massoniana飞播林分生物量及生产力进行了测定分 析.结果表明:单株生物量随密度的增加而明显减小, 密度为2 250株*hm-2的林分的单株生物量是密度为3 225株*hm-2的林分的单 株生物量的2.15倍;林分生物量同样随密度 的增加而减小,密度为2 250株*hm-2的林分的林分生物量比密度为3 225 株*hm -2的林分高出26.57 t*h m-2;林分各组分的生物量随密度的增大而减小,并出现W干>W根>W 枝>W皮>W叶的规律; 密度为2 250株*hm-2的林分的年均净生长量是密度为3 225株*hm-2林分的1. 50倍;林分结构以密度为3 225株*hm-2的林分合理.%The biomass and productivity of 16-year Pinus massoniana air-sowing s tands with the densities of 2250, 2860, and 3225 trees·hm-2 were investig ated in the hilly country of East Hunan. The results show that the biomass of single tre e decreases distinctly with the increase of the density,and the single tree bio mass of the stand of 2250 trees·hm-2 is 2.15 times as that of the stand of 3225 trees*hm-2. Likewise, the biomass of the stand decreases with the i ncrease of the density and the biomass of the stands with low densities is 26.57 t·hm-2 higher than that wi th high densities. The biomass of eath component of stand decreases with the in crease of the stand density, and a pattern appears which can be exhibited as W stem> W root > W branch> W bark > W leaf. The annual net biomass of the stand of 2250 trees·hm-2 is 1.50 times as that of the stand of 3225 trees*hm-2. A reasonable stan d struc ture was observed in the stand of 2250 trees·hm-2.

  4. Quark Matter at High Density based on Extended Confined-isospin-density-dependent-mass Model

    CERN Document Server

    Qauli, A I

    2016-01-01

    We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include Coulomb term in scalar density form, SQM equation of state (EOS) at high densities is stiffer but if we include Coulomb term in vector density form is softer than that of standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported in Ref.~\\cite {ref:isospin}, we found the stiffness of SQM EOS is controlled by the interplay among the the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 $M_\\odot$ pulsars can constrain the parameter of oscillator harmonic $\\kappa_1$ $\\approx 0.53$ in the case Coulomb term excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM ...

  5. High-Density Stacked Ru Nanocrystals for Nonvolatile Memory Application

    Institute of Scientific and Technical Information of China (English)

    MAO Ping; ZHANG Zhi-Gang; PAN Li-Yang; XU Jun; CHEN Pei-Yi

    2009-01-01

    @@ Stacked ruthenium (Ru) nanocrystals (NCs) are formed by rapid thermal annealing for the whole gate stacks and embedded in memory structure, which is compatible with conventional CMOS technology. Ru NCs with high density (3×1012 cm-2 ), small size (2-4 nm) and good uniformity both in aerial distribution and morphology are formed. Attributed to the higher surface trap density, a memory window of 5.2 V is obtained with stacked Ru NCs in comparison to that of 3.5 V with single-layer samples. The stacked Ru NCs device also exhibits much better retention performance because of Coulomb blockade and vertical uniformity between stacked Ru NCs.

  6. A supervision and control tool based on artificial intelligence for high cell density cultivations

    Directory of Open Access Journals (Sweden)

    A. C. L. Horta

    2014-06-01

    Full Text Available High cell density cultivations of recombinant E. coli have been increasingly used for the production of heterologous proteins. However, it is a challenge to maintain these cultivations within the desired conditions, given that some variables such as dissolved oxygen concentration (DOC and feed flow rate are difficult to control. This paper describes the software SUPERSYS_HCDC, a tool developed to supervise fed-batch cultures of rE. coli with biomass concentrations up to 150 gDCW/L and cell productivities up to 9 gDCW.L-1.h-1. The tool includes automatic control of the DOC by integrated action of the stirrer speed as well as of the air and oxygen flow rates; automatic start-up of the feed flow of fresh medium (system based on a neural network committee; and automatic slowdown of feeding when oxygen consumption exceeds the maximum capacity of the oxygen supply.

  7. High-Sensitivity Measurement of Density by Magnetic Levitation.

    Science.gov (United States)

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M

    2016-03-01

    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.

  8. Rf Gun with High-Current Density Field Emission Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  9. Collapsing Bubble in Metal for High Energy Density Physics Study

    Energy Technology Data Exchange (ETDEWEB)

    Ng, S F; Barnard, J J; Leung, P T; Yu, S S

    2011-04-13

    This paper presents a new idea to produce matter in the high energy density physics (HEDP) regime in the laboratory using an intense ion beam. A gas bubble created inside a solid metal may collapse by driving it with an intense ion beam. The melted metal will compress the gas bubble and supply extra energy to it. Simulations show that the spherical implosion ratio can be about 5 and at the stagnation point, the maximum density, temperature and pressure inside the gas bubble can go up to nearly 2 times solid density, 10 eV and a few megabar (Mbar) respectively. The proposed experiment is the first to permit access into the Mbar regime with existing or near-term ion facilities, and opens up possibilities for new physics gained through careful comparisons of simulations with measurements of quantities like stagnation radius, peak temperature and peak pressure at the metal wall.

  10. High pressure assist-alkali pretreatment of cotton stalk and physiochemical characterization of biomass.

    Science.gov (United States)

    Du, Shuang-kui; Zhu, Xinna; Wang, Hua; Zhou, Dayun; Yang, Weihua; Xu, Hongxia

    2013-11-01

    Ground cotton stalks were pretreated with sodium hydroxide (NaOH) at concentrations of 1-4% (w/v), pressures of 30-130 kPa, durations of 15-75 min, and liquid/solid ratios of 10:1-30:1. Modeling of the high pressure assist-alkali pretreatment (HPAP) of cotton stalk was attempted. The levels of NaOH concentration, pressure, and duration were optimized using a Box-Behnken design to enhance the cellulose content of treated solid residue. The optimum pretreatment conditions were as follows: liquid/solid ratio, 20:1; pressure, 130 kPa; NaOH concentration, 3.0%; duration, 40 min. During the conditions, cellulose content of pretreated cotton stalk residue was 64.07%. The maximum cellulose conversion of 45.82% and reducing sugar yield of 0.293 g/g upon hydrolysis were obtained. Significant differences were observed in biomass composition and physiochemical characteristics between native and alkali-treated biomass. High NaOH concentration and pressure were conducive to lignin dissolution and resulted in increased cellulose content and conversion.

  11. HIGH SOLID AND LOW ENZYME LOADING BASED SACCHARIFICATION OF AGRICULTURAL BIOMASS

    Directory of Open Access Journals (Sweden)

    Yu Zhang,

    2011-11-01

    Full Text Available Two agricultural biomass materials, namely wheat straw and sugarcane bagasse, were pretreated with NaOH and then used as substrates for enzymatic saccharification. After the pretreatment, the increase in glucan content and the decrease in lignin content were more than 65%, while less than 20% increase occurred in xylan content. The enzymatic saccharification was initiated with solid loading 9% (w/v, and then 8%, 7% and 6% (w/v solid was fed at 8, 24, and 48 h, respectively. The final enzyme solid loading was 9.60 FPU/g solid and 30% (w/v, respectively. At 144 h, the produced glucose, xylose, and reducing sugar concentrations for wheat straw were 81.88, 20.30, and 115.25 g/L, respectively, and for sugarcane bagasse they were 125.97, 8.66, and 169.50 g/L, respectively. The final conversions of wheat straw and sugarcane bagasse were 34.57% and 50.85%, respectively. SEM images showed that the surface structure of the two materials changed a lot via alkali-pretreatment and enzymatic hydrolysis. In summary, a high concentration sugar is produced from the two agricultural biomass materials by high solid and low enzyme loading. Compared to wheat straw, sugarcane bagasse is more suitable for use in sugar production.

  12. A montane Mediterranean climate supports year-round photosynthesis and high forest biomass.

    Science.gov (United States)

    Kelly, Anne E; Goulden, Michael L

    2016-04-01

    The mid-elevation forest of California's Sierra Nevada poses a bioclimatic paradox. Mid-elevation trees experience a montane Mediterranean climate, with near-freezing winter days and rain-free summers. The asynchrony between warmth and water input suggests low primary production, limited by photosynthetic dormancy in winter cold, and again in summer and early autumn with drought, yet this forest is characterized by tall trees and high biomass. We used eddy covariance in a mid-elevation Sierra stand to understand how winter cold and summer drought limit canopy photosynthesis and production. The trees exhibited canopy photosynthesis year-round. Trees avoided winter dormancy, and daytime CO2uptake continued despite a deep snowpack and near-freezing temperatures. Photosynthesis on sunny days continued at half of maximum rates when air temperature was 0 °C. Likewise, the vegetation avoided summer drought dormancy, and high rates of daytime CO2uptake and transpiration continued despite a 5-month period with only negligible water input. We attribute this drought avoidance to deep rooting and availability of deep soil water. Year-round photosynthesis helps explain the large biomass observed in the Sierra Nevada, and implies adaptive strategies that may contribute to the resiliency or vulnerability of Sierran vegetation to climate change.

  13. NIR and Py-mbms coupled with multivariate data analysis as a high-throughput biomass characterization technique: a review.

    Science.gov (United States)

    Xiao, Li; Wei, Hui; Himmel, Michael E; Jameel, Hasan; Kelley, Stephen S

    2014-01-01

    Optimizing the use of lignocellulosic biomass as the feedstock for renewable energy production is currently being developed globally. Biomass is a complex mixture of cellulose, hemicelluloses, lignins, extractives, and proteins; as well as inorganic salts. Cell wall compositional analysis for biomass characterization is laborious and time consuming. In order to characterize biomass fast and efficiently, several high through-put technologies have been successfully developed. Among them, near infrared spectroscopy (NIR) and pyrolysis-molecular beam mass spectrometry (Py-mbms) are complementary tools and capable of evaluating a large number of raw or modified biomass in a short period of time. NIR shows vibrations associated with specific chemical structures whereas Py-mbms depicts the full range of fragments from the decomposition of biomass. Both NIR vibrations and Py-mbms peaks are assigned to possible chemical functional groups and molecular structures. They provide complementary information of chemical insight of biomaterials. However, it is challenging to interpret the informative results because of the large amount of overlapping bands or decomposition fragments contained in the spectra. In order to improve the efficiency of data analysis, multivariate analysis tools have been adapted to define the significant correlations among data variables, so that the large number of bands/peaks could be replaced by a small number of reconstructed variables representing original variation. Reconstructed data variables are used for sample comparison (principal component analysis) and for building regression models (partial least square regression) between biomass chemical structures and properties of interests. In this review, the important biomass chemical structures measured by NIR and Py-mbms are summarized. The advantages and disadvantages of conventional data analysis methods and multivariate data analysis methods are introduced, compared and evaluated. This review

  14. Nanoimprint lithography for green water-repellent film derived from biomass with high-light transparency

    Science.gov (United States)

    Takei, Satoshi; Hanabata, Makoto

    2015-03-01

    Newly eco-friendly high light transparency film with plant-based materials was investigated to future development of liquid crystal displays and optical devices with water repellency as a chemical design concept of nanoimprint lithography. This procedure is proven to be suitable for material design and the process conditions of ultraviolet curing nanoimprint lithography for green water-repellent film derived from biomass with high-light transparency. The developed formulation of advanced nanoimprinted materials design derived from lactulose and psicose, and the development of suitable UV nanoimprint conditions produced high resolutions of the conical shaped moth-eye regularly-nanostructure less than approximately 200 nm diameter, and acceptable patterning dimensional accuracy by the replication of 100 times of UV nanoimprint lithography cycles. The newly plant-based materials and the process conditions are expected as one of the defect less nanoimprint lithographic technologies in next generation electronic devices.

  15. High energy-density science on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, E.M.; Cauble, R.; Remington, B.A.

    1997-08-01

    The National Ignition Facility, as well as its French counterpart Le Laser Megajoule, have been designed to confront one of the most difficult and compelling problem in shock physics - the creation of a hot, compassed DT plasma surrounded and confined by cold, nearly degenerate DT fuel. At the same time, these laser facilities will present the shock physics community with unique tools for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers can contribute to investigations of high energy density in the area of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  16. Rationally designed polyimides for high-energy density capacitor applications.

    Science.gov (United States)

    Ma, Rui; Baldwin, Aaron F; Wang, Chenchen; Offenbach, Ido; Cakmak, Mukerrem; Ramprasad, Rampi; Sotzing, Gregory A

    2014-07-01

    Development of new dielectric materials is of great importance for a wide range of applications for modern electronics and electrical power systems. The state-of-the-art polymer dielectric is a biaxially oriented polypropylene (BOPP) film having a maximal energy density of 5 J/cm(3) and a high breakdown field of 700 MV/m, but with a limited dielectric constant (∼2.2) and a reduced breakdown strength above 85 °C. Great effort has been put into exploring other materials to fulfill the demand of continuous miniaturization and improved functionality. In this work, a series of polyimides were investigated as potential polymer materials for this application. Polyimide with high dielectric constants of up to 7.8 that exhibits low dissipation factors (<1%) and high energy density around 15 J/cm(3), which is 3 times that of BOPP, was prepared. Our syntheses were guided by high-throughput density functional theory calculations for rational design in terms of a high dielectric constant and band gap. Correlations of experimental and theoretical results through judicious variations of polyimide structures allowed for a clear demonstration of the relationship between chemical functionalities and dielectric properties.

  17. Average density and porosity of high-strength lightweight concrete

    Directory of Open Access Journals (Sweden)

    A.S. Inozemtcev

    2014-11-01

    Full Text Available The analysis results of high-strength lightweight concrete (HSLWC structure are presented in this paper. The X-ray tomography, optical microscopy and other methods are used for researching of average density and porosity. It has been revealed that mixtures of HSLWC with density 1300…1500 kg/m3 have a homogeneous structure. The developed concrete has a uniform distribution of the hollow filler and a uniform layer of cement-mineral matrix. The highly saturated gas phase which is divided by denser large particles of quartz sand and products of cement hydration in the contact area allow forming a composite material with low average density, big porosity (up to 40% and high strength (compressive strength is more than 40 MPa. Special modifiers increase adhesion, compacts structure in the contact area, decrease water absorption of high-strength lightweight concrete (up to 1 % and ensure its high water resistance (water resistance coefficient is more than 0.95.

  18. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  19. Accurate inference of shoot biomass from high-throughput images of cereal plants

    Directory of Open Access Journals (Sweden)

    Tester Mark

    2011-02-01

    Full Text Available Abstract With the establishment of advanced technology facilities for high throughput plant phenotyping, the problem of estimating plant biomass of individual plants from their two dimensional images is becoming increasingly important. The approach predominantly cited in literature is to estimate the biomass of a plant as a linear function of the projected shoot area of plants in the images. However, the estimation error from this model, which is solely a function of projected shoot area, is large, prohibiting accurate estimation of the biomass of plants, particularly for the salt-stressed plants. In this paper, we propose a method based on plant specific weight for improving the accuracy of the linear model and reducing the estimation bias (the difference between actual shoot dry weight and the value of the shoot dry weight estimated with a predictive model. For the proposed method in this study, we modeled the plant shoot dry weight as a function of plant area and plant age. The data used for developing our model and comparing the results with the linear model were collected from a completely randomized block design experiment. A total of 320 plants from two bread wheat varieties were grown in a supported hydroponics system in a greenhouse. The plants were exposed to two levels of hydroponic salt treatments (NaCl at 0 and 100 mM for 6 weeks. Five harvests were carried out. Each time 64 randomly selected plants were imaged and then harvested to measure the shoot fresh weight and shoot dry weight. The results of statistical analysis showed that with our proposed method, most of the observed variance can be explained, and moreover only a small difference between actual and estimated shoot dry weight was obtained. The low estimation bias indicates that our proposed method can be used to estimate biomass of individual plants regardless of what variety the plant is and what salt treatment has been applied. We validated this model on an independent

  20. High energy density capacitors for low cost applications

    Science.gov (United States)

    Iyore, Omokhodion David

    Polyvinylidene fluoride (PVDF) and its copolymers with trifluoroethylene, hexafluoropropylene and chlorotrifluoroethylene are the most widely investigated ferroelectric polymers, due to their relatively high electromechanical properties and potential to achieve high energy density. [Bauer, 2010; Zhou et al., 2009] The research community has focused primarily on melt pressed or extruded films of PVDF-based polymers to obtain the highest performance with energy density up to 25 Jcm-3. [Zhou et al., 2009] Solution processing offers an inexpensive, low temperature alternative, which is also easily integrated with flexible electronics. This dissertation focuses on the fabrication of solution-based polyvinylidene fluoride-hexafluoropropylene metal-insulator-metal capacitors on flexible substrates using a photolithographic process. Capacitors were optimized for maximum energy density, high dielectric strength and low leakage current density. It is demonstrated that with the right choice of solvent, electrodes, spin-casting and annealing conditions, high energy density thin film capacitors can be fabricated repeatably and reproducibly. The high electric field dielectric constants were measured and the reliabilities of the polymer capacitors were also evaluated via time-zero breakdown and time-dependent breakdown techniques. Chapter 1 develops the motivation for this work and provides a theoretical overview of dielectric materials, polarization, leakage current and dielectric breakdown. Chapter 2 is a literature review of polymer-based high energy density dielectrics and covers ferroelectric polymers, highlighting PVDF and some of its derivatives. Chapter 3 summarizes some preliminary experimental work and presents materials and electrical characterization that support the rationale for materials selection and process development. Chapter 4 discusses the fabrication of solution-processed PVDF-HFP and modification of its properties by photo-crosslinking. It is followed by a

  1. The High Density Region of QCD from an Effective Model

    CERN Document Server

    De Pietri, R; Seiler, E; Stamatescu, I O

    2007-01-01

    We study the high density region of QCD within an effective model obtained in the frame of the hopping parameter expansion and choosing Polyakov-type loops as the main dynamical variables representing the fermionic matter. This model still shows the so-called sign problem, a difficulty peculiar to non-zero chemical potential, but it permits the development of algorithms which ensure a good overlap of the simulated Monte Carlo ensemble with the true one. We review the main features of the model and present results concerning the dependence of various observables on the chemical potential and on the temperature, in particular of the charge density and the Polykov loop susceptibility, which may be used to characterize the various phases expected at high baryonic density. In this way, we obtain information about the phase structure of the model and the corresponding phase transitions and cross over regions, which can be considered as hints about the behaviour of non-zero density QCD.

  2. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    Science.gov (United States)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  3. High-density housing that works for all

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Arif

    2010-03-15

    In an urbanising world, the way people fit into cities is vastly important - socially, economically, environmentally, even psychologically. So density, or the number of people living in a given area, is central to urban design and planning. Both governments and markets tend to get density wrong, leading to overcrowding, urban sprawl or often both. A case in point are the high-rise buildings springing up throughtout urban Asia - perceived as key features of that widely touted concept, the 'world-class city'. While some may offer a viable solution to land pressures and density requirements, many built to house evicted or resettled 'slum' dwellers are a social and economic nightmare - inconveniently sited, overcrowded and costly. New evidence from Karachi, Pakistan, reveals a real alternative. Poor people can create liveable high-density settlements as long as community control, the right technical assistance and flexible designs are in place. A city is surely 'world-class' only when it is cosmopolitan – built to serve all, including the poorest.

  4. Design of High Power Density Amplifiers: Application to Ka Band

    Science.gov (United States)

    Passi, Davide; Leggieri, Alberto; Di Paolo, Franco; Bartocci, Marco; Tafuto, Antonio

    2017-06-01

    Recent developments in the design of high-power-high-frequency amplifiers are assessed in this paper by the analysis and measurements of a high power density amplifier operating in the Ka Band. Design procedure is presented and a technical investigation is reported. The proposed device has shown over 23% of useful frequency bandwidth. It is an ensemble of 16 monolithic solid state power amplifiers that employees mixed technologies as spatial and planar combiners. Test performed have given maximum delivered power of 47.2 dBm.

  5. Highly Efficient Synthesis of Clean Biofuels from Biomass Using FeCuZnAIK Catalyst

    Institute of Scientific and Technical Information of China (English)

    Song-bai Qiu; Yong Xu; Tong-qi Ye; Fei-yan Gong; Zhi Yang; Mitsuo Yamamoto; Yong Liu; Quan-xin Li

    2011-01-01

    Highly efficient synthesis of clean biofuels using the bio-syngas obtained from biomass gasification was performed over Fe1.5Cu1Zn1Al1K0.117 catalyst.The maximum biofuel yield from the bio-syngas reaches about 1.59 kg biofuels/(kgcatal·h) with a contribution of 0.57 kg alcohols/(kgcatal·h) and 1.02 kg liquid hydrocarbons/(kgcatal·h).The alcohol products in the resulting biofuels were dominated by the C2+ alcohols (mainly C2-C6 alcohols) with a content of 73.55%-89.98%.The selectivity of the liquid hydrocarbons (C5+) in the hydrocarbon products ranges from 60.37% to 70.94%.The synthesis biofuels also possess a higher heat value of 40.53-41.49 MJ/kg.The effects of the synthesis conditions,including temperature,pressure,and gas hourly space velocity,on the biofuel synthesis were investigated in detail.The catalyst features were characterized by inductively coupled plasma and atomic emission spectroscopy,X-ray diffraction,temperature programmed reduction,and the N2 adsorption-desorption isotherms measurements.The present biofuel synthesis with a higher biofuel yield and a higher selectivity of liquid hydrocarbons and C2+ alcohols may be a potentially useful route to produce clean biofuels and chemicals from biomass.

  6. Energy and Exergy Analysis of High Temperature Agent Gasification of Biomass

    Directory of Open Access Journals (Sweden)

    Yueshi Wu

    2014-04-01

    Full Text Available A chemical equilibrium model was developed to predict the product composition of a biomass gasification system using highly preheated air and steam. The advantages and limitations of this system were discussed from a thermodynamic viewpoint. The first and second law analyses have been conducted for various preheating temperatures and steam/biomass mass (S/B ratios. The results demonstrated that the chemical energy output of the produced syngas is highest when the S/B ratio is 1.83 under the conditions used in this study. However, higher S/B ratios have a negative effect on the energy and exergy efficiencies. Higher preheating temperatures increase the chemical energy of the produced syngas and the two efficiencies. The peak values for the energy and exergy efficiencies are 81.5% and 76.2%, respectively. Based on the calculated limitation values, where the highest chemical energy (exergy of the produced syngas and maximum achievable efficiencies are determined, a thermodynamically possible operating region is suggested.

  7. High efficient treatment of citric acid effluent by Chlorella vulgaris and potential biomass utilization.

    Science.gov (United States)

    Li, Changling; Yang, Hailin; Xia, Xiaole; Li, Yuji; Chen, Luping; Zhang, Meng; Zhang, Ling; Wang, Wu

    2013-01-01

    The efficiency of treating citric acid effluent by green algae Chlorella was investigated. With the highest growth rate, Chlorella vulgaris C9-JN2010 that could efficiently remove nutrients in the citric acid effluent was selected for scale-up batch experiments under the optimal conditions, where its maximum biomass was 1.04 g l(-1) and removal efficiencies of nutrients (nitrogen, phosphorus, total organic carbon, chemical oxygen demand and biochemical oxygen demand) were above 90.0%. Algal lipid and protein contents were around 340.0 and 500.0 mg · g(-1) of the harvested biomass, respectively. Proportions of polyunsaturated fatty acids in the lipids and eight kinds of essential amino acids in algal protein were 74.0% and 40.0%, respectively. Three major fatty acids were hexadecanoic acid, eicosapentaenoic acid and docosadienoic acid. This specific effluent treatment process could be proposed as a dual-beneficial approach, which converts nutrients in the high strength citric acid effluent into profitable byproducts and reduces the contaminations.

  8. Low-temperature conversion of high-moisture biomass: Topical report, January 1984--January 1988

    Energy Technology Data Exchange (ETDEWEB)

    Sealock, L.J. Jr.; Elliott, D.C.; Butner, R.S.; Neuenschwander, G.G.

    1988-10-01

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process that converts high-moisture biomass feedstocks and other wet organic substances to useful gaseous and liquid fuels. The advantage of this process is that it works without the need for drying or dewatering the feedstock. Conventional thermal gasification processes, which require temperatures above 750/degree/C and air or oxygen for combustion to supply reaction heat, generally cannot utilize feedstocks with moisture contents above 50 wt %, as the conversion efficiency is greatly reduced as a result of the drying step. For this reason, anaerobic digestion or other bioconversion processes traditionally have been used for gasification of high-moisture feedstocks. However, these processes suffer from slow reaction rates and incomplete carbon conversion. 50 refs., 21 figs., 22 tabs.

  9. Kinetics of Enzymatic High-Solid Hydrolysis of Lignocellulosic Biomass Studied by Calorimetry

    DEFF Research Database (Denmark)

    Olsen, Søren Nymand; Rasmussen, Erik Lumby; McFarland, K.C.;

    2011-01-01

    Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis....... In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis...... analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (

  10. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    Science.gov (United States)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  11. A Tale of Two Electrons: Correlation at High Density

    CERN Document Server

    Loos, Pierre-François

    2010-01-01

    We review our recent progress in the determination of the high-density correlation energy $\\Ec$ in two-electron systems. Several two-electron systems are considered, such as the well known helium-like ions (helium), and the Hooke's law atom (hookium). We also present results regarding two electrons on the surface of a sphere (spherium), and two electrons trapped in a spherical box (ballium). We also show that, in the large-dimension limit, the high-density correlation energy of two opposite-spin electrons interacting {\\em via} a Coulomb potential is given by $\\Ec \\sim -1/(8D^2)$ for any radial external potential $V(r)$, where $D$ is the dimensionality of the space. This result explains the similarity of $\\Ec$ in the previous two-electron systems for $D=3$.

  12. Lithium-Based High Energy Density Flow Batteries

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  13. High energy density capacitor testing for the AFWL SHIVA

    Science.gov (United States)

    Smith, D. L.; Reinovsky, R. E.

    Lifetime testing and analysis of small samples of high energy density (HED) discharge capacitors at the AFWL were conducted to find a component suitable for upgrading the SHIVA capacitor bank to a 6 MJ facility. Evaluation was performed with discharge conditions of approximately 250 kA per capacitor at 60 to 70% reversal and 2 microsec quarter period. Dielectric systems including Kraft paper with caster oil impregnant and Kraft paper, polypropylene with DiOctyl Phthalate (DOP) impregnant were tested.

  14. Polypropylene-(high density polyethylene) precipitation from stirred solutions

    OpenAIRE

    Esperidião,Maria Cecília Azevedo; Galembeck,Fernando

    1993-01-01

    Texto completo: acesso restrito. p.993–997 The fast precipitation of mixtures of polypropylene (PP) with high density polyethylene (HDPE) from decalin solutions is affected by the stirring rate of the solutions. With fast stirring, two types of precipitates were obtained viz. globules dispersed in the liquid phase and fibres adhering to the stirrer. Studies by i.r., WAXD, DSC and optical microscopy indicated that the fibrous precipitate is more birefringent, richer in HDPE and richer in th...

  15. Flexible and Lightweight Fuel Cell with High Specific Power Density.

    Science.gov (United States)

    Ning, Fandi; He, Xudong; Shen, Yangbin; Jin, Hehua; Li, Qingwen; Li, Da; Li, Shuping; Zhan, Yulu; Du, Ying; Jiang, Jingjing; Yang, Hui; Zhou, Xiaochun

    2017-06-27

    Flexible devices have been attracting great attention recently due to their numerous advantages. But the energy densities of current energy sources are still not high enough to support flexible devices for a satisfactory length of time. Although proton exchange membrane fuel cells (PEMFCs) do have a high-energy density, traditional PEMFCs are usually too heavy, rigid, and bulky to be used in flexible devices. In this research, we successfully invented a light and flexible air-breathing PEMFC by using a new design of PEMFC and a flexible composite electrode. The flexible air-breathing PEMFC with 1 × 1 cm(2) working area can be as light as 0.065 g and as thin as 0.22 mm. This new PEMFC exhibits an amazing specific volume power density as high as 5190 W L(-1), which is much higher than traditional (air-breathing) PEMFCs. Also outstanding is that the flexible PEMFC retains 89.1% of its original performance after being bent 600 times, and it retains its original performance after being dropped five times from a height of 30 m. Moreover, the research has demonstrated that when stacked, the flexible PEMFCs are also useful in mobile applications such as mobile phones. Therefore, our research shows that PEMFCs can be made light, flexible, and suitable for applications in flexible devices. These innovative flexible PEMFCs may also notably advance the progress in the PEMFC field, because flexible PEMFCs can achieve high specific power density with small size, small volume, low weight, and much lower cost; they are also much easier to mass produce.

  16. Anti-Ferroelectric Ceramics for High Energy Density Capacitors

    Directory of Open Access Journals (Sweden)

    Aditya Chauhan

    2015-11-01

    Full Text Available With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  17. Nanostructured thin solid oxide fuel cells with high power density.

    Science.gov (United States)

    Ignatiev, Alex; Chen, Xin; Wu, Naijuan; Lu, Zigui; Smith, Laverne

    2008-10-28

    Nanostructured thin film solid oxide fuel cells (SOFC) have been developed for reduced temperature operation, with high power density, and to be self reforming. A thin film electrolyte (1-2 microm thickness), e.g., yttria-stabilized zirconia (YSZ), is deposited on a nickel foil substrate. The electrolyte thin film is polycrystalline when deposited on a polycrystalline nickel foil substrate, and is (100) textured when deposited on an atomically textured nickel foil substrate. The Ni foil substrate is then converted into a porous SOFC anode by photolithographic patterning and etching to develop porosity. A composite La(0.5)Sr(0.5)CoO(3) cathode is then deposited on the thin film electrolyte. The resultant thin film hetero structure fuel cells have operated at a significantly reduced temperature: as low as 470 degrees C, with a maximum power density of 140 mW cm(-2) at 575 degrees C, and an efficiency of >50%. This drastic reduction in operating temperature for an SOFC now also allows for the use of hydrocarbon fuels without the need for a separate reformer as the nickel anode effectively dissociates hydrocarbons within this temperature range. These nanostructured fuel cells show excellent potential for high power density, small volume, high efficiency fuel cells for power generation applications.

  18. Five willow varieties cultivated across diverse field environments reveal stem density variation associated with high tension wood abundance.

    Science.gov (United States)

    Berthod, Nicolas; Brereton, Nicholas J B; Pitre, Frédéric E; Labrecque, Michel

    2015-01-01

    Sustainable and inexpensive production of biomass is necessary to make biofuel production feasible, but represents a challenge. Five short rotation coppice willow cultivars, selected for high biomass yield, were cultivated on sites at four diverse regions of Quebec in contrasting environments. Wood composition and anatomical traits were characterized. Tree height and stem diameter were measured to evaluate growth performance of the cultivars according to the diverse pedoclimatic conditions. Each cultivar showed very specific responses to its environment. While no significant variation in lignin content was observed between sites, there was variation between cultivars. Surprisingly, the pattern of substantial genotype variability in stem density was maintained across all sites. However, wood anatomy did differ between sites in a cultivar (producing high and low density wood), suggesting a probable response to an abiotic stress. Furthermore, twice as many cellulose-rich G-fibers, comprising over 50% of secondary xylem, were also found in the high density wood, a finding with potential to bring higher value to the lignocellulosic bioethanol industry.

  19. High Energy Density Physics and Exotic Acceleration Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC

    2005-09-27

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  20. High temperature corrosion of superheater materials for power production through biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gotthjaelp, K.; Broendsted, P. [Forskningscenter Risoe (Denmark); Jansen, P. [FORCE Institute (Denmark); Montgomery, M.; Nielsen, K.; Maahn, E. [Technical Univ. of Denmark, Corrosion and Surface Techn. Inst. of Manufacturing Engineering (Denmark)

    1996-08-01

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures of selected materials in well-defined corrosive gas environments. The experiments using this facility includes corrosion studies of two types of high temperature resistant steels, Sanvik 8LR30 (18Cr 10Ni Ti) and Sanicro 28 (27Cr 31Ni 4Mo), investigated at 600 deg. C in time intervals up to 300 hours. The influence of HCl (200 ppm) and of SO{sub 2} (300 ppm) on the corrosion progress has been investigated. In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525 deg. C, 600 deg. C, and 700 deg. C. The ashes utilised are from a straw fired power plant and a synthetic ash composed of potassium chloride (KCl) and potassium sulphate (K{sub 2}SO{sub 4}). Different analysis techniques to characterise the composition of the ash coatings have been investigated in order to judge the reliability and accuracy of the SEM-EDX method. The results are considered as an important step towards a better understanding of the high temperature corrosion under the conditions found in biomass fired power plants. One of the problems to solve in a suggested subsequent project is to combine the effect of the aggressive gases (SO{sub 2} and HCl) and the active ash coatings on high temperature corrosion of materials. (EG) 20 refs.

  1. High Temperature Air/Steam Gasification of Biomass Wastes - Stage 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Blasiak, Wlodzimierz; Szewczyk, Dariusz; Lucas, Carlos; Rafidi, Nabil; Abeyweera Ruchira; Jansson, Anna; Bjoerkman, Eva [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Science and Engineering

    2003-05-01

    In Jan 2002 the Division of Energy and Furnace Technology started the project High Temperature Air an Steam Gasification (HTAG) of biomass wastes, following the approval made by Swedish Energy Agency. The research proved successful; with the fixed bed updraft gasifier coupled to the highly regenerative preheater equipment able to produce a fuel gas not only from wood pellets but also from wood chips, bark and charcoal with considerably reduced amount of tar. This report provides information on solid biomass conversion into fuel gas as a result of air and steam gasification process performed in a fixed bed updraft gasifier. The first chapter of the report presents the overall objectives and the specific objectives of the work. Chapter 2 summarizes state-of-the-art on the gasification field stating some technical differences between low and high temperature gasification processes. Description and schemes of the experimental test rig are provided in Chapter 3. The equipment used to perform measurements of different sort and that installed in the course of the work is described in Chapter 4. Chapter 5 describes the methodology of experiments conducted whose results were processed and evaluated with help of the scheme of equations presented in Chapter 6, called raw data evaluation. Results of relevant experiments are presented and discussed in Chapter 7. A summary discussion of the tar analysis is presented in Chapter 8. Chapter 9 summarizes the findings of the research work conducted and identifies future efforts to ensure the development of next stage. Final chapter provides a summary of conclusions and recommendations of the work. References are provided at the end of the report. Aimed to assist the understanding of the work done, tables and graphs of experiments conducted, irrespective to their quality, are presented in appendices.

  2. Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WSUCF1 utilizing lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Aditya eBhalla

    2015-06-01

    Full Text Available AbstractEfficient enzymatic hydrolysis of lignocellulose to fermentable sugars requires a complete repertoire of biomass deconstruction enzymes. Hemicellulases play an important role in hydrolyzing hemicellulose component of lignocellulose to xylo-oligosaccharides and xylose. Thermostable xylanases have been a focus of attention as industrially important enzymes due to their long shelf life at high temperatures. Geobacillus sp. strain WSUCF1 produced thermostable xylanase activity (crude xylanase cocktail when grown on xylan or various inexpensive untreated and pretreated lignocellulosic biomasses such as prairie cord grass and corn stover. The optimum pH and temperature for the crude xylanase cocktail were 6.5 and 70ºC, respectively. The WSUCF1 crude xylanase was found to be highly thermostable with half-lives of 18 and 12 days at 60 and 70ºC, respectively. At 70ºC, rates of xylan hydrolysis were also found to be better with the WSUCF1 secretome than those with commercial enzymes, i.e., for WSUCF1 crude xylanase, CellicHTec2, and AccelleraseXY, the percent xylan conversions were 68.9, 49.4, and 28.92, respectively. To the best of our knowledge, WSUCF1 crude xylanase cocktail is among the most thermostable xylanases produced by thermophilic Geobacillus spp. and other thermophilic microbes (optimum growth temperature ≤70ºC. High thermostability, activity over wide range of temperatures, and better xylan hydrolysis than commercial enzymes make WSUCF1 crude xylanase suitable for thermophilic lignocellulose bioconversion processes.

  3. NIR and Py-mbms coupled with multivariate data analysis as a high-throughput biomass characterization technique : a review

    Directory of Open Access Journals (Sweden)

    Li eXiao

    2014-08-01

    Full Text Available Optimizing the use of lignocellulosic biomass as the feedstock for renewable energy production is currently being developed globally. Biomass is a complex mixture of cellulose, hemicelluloses, lignins, extractives, and proteins; as well as inorganic salts. Cell wall compositional analysis for biomass characterization is laborious and time consuming. In order to characterize biomass fast and efficiently, several high through-put technologies have been successfully developed. Among them, near infrared spectroscopy (NIR and pyrolysis-molecular beam mass spectrometry (Py-mbms are complementary tools and capable of evaluating a large number of raw or modified biomass in a short period of time. NIR shows vibrations associated with specific chemical structures whereas Py-mbms depicts the full range of fragments from the decomposition of biomass. Both NIR vibrations and Py-mbms peaks are assigned to possible chemical functional groups and molecular structures. They provide complementary information of chemical insight of biomaterials. However, it is challenging to interpret the informative results because of the large amount of overlapping bands or decomposition fragments contained in the spectra. In order to improve the efficiency of data analysis, multivariate analysis tools have been adapted to define the significant correlations among data variables, so that the large number of bands/peaks could be replaced by a small number of reconstructed variables representing original variation. Reconstructed data variables are used for sample comparison (principal component analysis and for building regression models (partial least square regression between biomass chemical structures and properties of interests. In this review, the important biomass chemical structures measured by NIR and Py-mbms are summarized. The advantages and disadvantages of conventional data analysis methods and multivariate data analysis methods are introduced, compared and evaluated

  4. High energy density Z-pinch plasmas using flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  5. Hydrodynamic Instabilities in High-Energy-Density Settings

    Science.gov (United States)

    Smalyuk, Vladimir

    2016-10-01

    Our understanding of hydrodynamic instabilities, such as the Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities, in high-energy-density (HED) settings over past two decades has progressed enormously. The range of conditions where hydrodynamic instabilities are experimentally observed now includes direct and indirect drive inertial confinement fusion (ICF) where surprises continue to emerge, linear and nonlinear regimes, classical interfaces vs. stabilized ablation fronts, tenuous ideal plasmas vs. high density Fermi degenerate plasmas, bulk fluid interpenetration vs. mixing down to the atomic level, in the presence of magnetic fields and/or intense radiation, and in solid state plastic flow at high pressures and strain rates. Regimes in ICF can involve extreme conditions of matter with temperatures up to kilovolts, densities of a thousand times solid densities, and time scales of nanoseconds. On the other hand, scaled conditions can be generated that map to exploding stars (supernovae) with length and time scales of millions of kilometers and hours to days or even years of instability evolution, planetary formation dynamics involving solid-state plastic flow which severely modifies the RT growth and continues to challenge reliable theoretical descriptions. This review will look broadly at progress in probing and understanding hydrodynamic instabilities in these very diverse HED settings, and then will examine a few cases in more depth to illustrate the detailed science involved. Experimental results on large-scale HED facilities such as the Omega, Nike, Gekko, and Shenguang lasers will be reviewed and the latest developments at the National Ignition Facility (NIF) and Z machine will be covered. Finally, current overarching questions and challenges will be summarized to motivate research directions for future. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  6. Aromatic Polyurea Possessing High Electrical Energy Density and Low Loss

    Science.gov (United States)

    Thakur, Yash; Lin, Minren; Wu, Shan; Zhang, Q. M.

    2016-10-01

    We report the development of a dielectric polymer, poly (ether methyl ether urea) (PEMEU), which possesses a dielectric constant of 4 and is thermally stable up to 150°C. The experimental results show that the ether units are effective in softening the rigid polymer and making it thermally processable, while the high dipole moment of urea units and glass structure of the polymer leads to a low dielectric loss and low conduction loss. As a result, PEMEU high quality thin films can be fabricated which exhibit exceptionally high breakdown field of >1.5 GV/m, and a low conduction loss at fields up to the breakdown. Consequently, the PEMEU films exhibit a high charge-discharge efficiency of 90% and a high discharged energy density of 36 J/cm3.

  7. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  8. High-density cervical ureaplasma urealyticum colonization in pregnant women

    Directory of Open Access Journals (Sweden)

    Ranđelović Gordana

    2006-01-01

    Full Text Available Background/aim: Ureaplasma urealyticum, a common commensal of the female lower genital tract, has been observed as an important opportunistic pathogen during pregnancy. The aims of this study were to determine the degree of cervical colonization with U. urealyticum in pregnant women with risk pregnancy and in pregnant women with normal term delivery and to evaluate the correlation between high-density cervical U. urealyticum colonization and premature rupture of membranes (PROM as well. Methods. This research was conducted on the samples comprising 130 hospitalized pregnant women with threatening preterm delivery and premature rupture of membranes. The control group consisted of 39 pregnant women with term delivery without PROM. In addition to standard bacteriological examination and performing direct immunofluorescence test to detect Chlamydia trachomatis, cervical swabs were also examined for the presence of U. urealyticum and Mycoplasma hominis by commercially available Mycofast Evolution 2 test (International Microbio, France. Results. The number of findings with isolated high-density U. urealyticum in the target group was 69 (53.08%, while in the control group was 14 (35.90%. Premature rupture of membranes (PROM occurred in 43 (33.08% examinees: 29 were pPROM, and 14 were PROM. The finding of U.urealyticum ≥104 was determined in 25 (58.14% pregnant women with rupture, 17 were pPROM, and 8 were PROM. There was statistically significant difference in the finding of high-density U. urealyticum between the pregnant women with PROM and the control group (χ² = 4.06, p < 0.05. U. urealyticum was predominant bacterial species found in 62.79% of isolates in the PROM cases, while in 32.56% it was isolated alone. Among the 49 pregnant women with preterm delivery, pPROM occurred in 29 (59.18% examinees, and in 70.83% of pregnant women with findings of high-density U. urealyticum pPROM was observed. Conclusion. Cervical colonization with U

  9. High Density Thermal Energy Storage with Supercritical Fluids

    Science.gov (United States)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  10. Effects of planting density on the branching pattern and biomass of Moringa oleifera plantation%不同栽培密度对辣木人工林分枝格局及生物量的影响

    Institute of Scientific and Technical Information of China (English)

    宿爱芝; 郑益兴; 吴疆翀; 张燕平

    2012-01-01

    of second order branch to third order branch, and the third order branch length. In different directions, the branching pattern had significant differences in the length of main and lateral branches and the angle of first order branch. For the purposes of using foliage and pod, the more reasonable spacing of M. oleifera could be 0. 9 m ×0. 9 m and 1. 5 m × 1.5m, respectively. In sum, the significant differences in the branching pattern and biomass of M. oleifera plantations under different planting densities suggested that M. oleifera had high morphological plasticity and ecological adaptability to the changing environment.

  11. Areal density optimizations for heat-assisted magnetic recording of high-density media

    Science.gov (United States)

    Vogler, Christoph; Abert, Claas; Bruckner, Florian; Suess, Dieter; Praetorius, Dirk

    2016-06-01

    Heat-assisted magnetic recording (HAMR) is hoped to be the future recording technique for high-density storage devices. Nevertheless, there exist several realization strategies. With a coarse-grained Landau-Lifshitz-Bloch model, we investigate in detail the benefits and disadvantages of a continuous and pulsed laser spot recording of shingled and conventional bit-patterned media. Additionally, we compare single-phase grains and bits having a bilayer structure with graded Curie temperature, consisting of a hard magnetic layer with high TC and a soft magnetic one with low TC, respectively. To describe the whole write process as realistically as possible, a distribution of the grain sizes and Curie temperatures, a displacement jitter of the head, and the bit positions are considered. For all these cases, we calculate bit error rates of various grain patterns, temperatures, and write head positions to optimize the achievable areal storage density. Within our analysis, shingled HAMR with a continuous laser pulse moving over the medium reaches the best results and thus has the highest potential to become the next-generation storage device.

  12. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Andrew G. [Univ. of Hawaii, Honolulu, HI (United States); Crow, Susan [Univ. of Hawaii, Honolulu, HI (United States); DeBeryshe, Barbara [Univ. of Hawaii, Honolulu, HI (United States); Ha, Richard [Hamakua Springs County Farms, Hilo, HI (United States); Jakeway, Lee [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Khanal, Samir [Univ. of Hawaii, Honolulu, HI (United States); Nakahata, Mae [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Ogoshi, Richard [Univ. of Hawaii, Honolulu, HI (United States); Shimizu, Erik [Univ. of Hawaii, Honolulu, HI (United States); Stern, Ivette [Univ. of Hawaii, Honolulu, HI (United States); Turano, Brian [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Yanagida, John [Univ. of Hawaii, Honolulu, HI (United States)

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  13. Path to Efficient Lower Hybrid Current Drive at High Density

    Science.gov (United States)

    Baek, S. G.; Bonoli, P. T.; Brunner, D.; Faust, I.; Labombard, B. L.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Wukitch, S.

    2015-11-01

    Recovery of lower hybrid current drive (LHCD) efficiency at high density was demonstrated on Alcator C-Mod by modifying the scrape-off layer (SOL) plasma. RF probe measurements around the C-Mod tokamak indicate that the LH wave amplitude at the high field side wall significantly attenuates with plasma density. This is interpreted as enhanced collisional loss due to the increase in the SOL density and width. By taking advantage of the narrower SOL width by doubling plasma current to 1.1 MA, it is found that the LH wave amplitude maintains its strength, and an effective current drive is extended to above 1x10e20 m-3. An order of magnitude increase in non-thermal Bremsstrahlung emission is consistent with ray-tracing results which take into account the change of SOL profiles with current. In the coming campaign, a further investigation on the role of the SOL plasma is planned by raising plasma current above 1.1 MA. This will be aided with newly developed RF magnetic loop antennas mounted on a radially movable probe head. This system is expected to intercept the LH resonance cone on the first pass, allowing us to measure radial profiles of both the wave amplitude and dominant parallel wavenumber in the SOL for the first time. These data will be compared with the GENRAY ray-tracing code. Work supported by USDoE awards DE-FC02-99ER54512.

  14. Patterned Platinum Etching Studies in an Argon High Density Plasma

    Science.gov (United States)

    Delprat, Sébastien; Chaker, Mohamed; Margot, Joëlle; Pépin, Henri; Tan, Liang; Smy, Tom

    1998-10-01

    A high-density surface-wave Ar plasma operated in the low pressure regime is used to study pure physical etching characteristics of platinum thin films. The platinum samples are RF biased so as to obtain a maximum DC self-bias voltage of 150 V. The sputter-etching characteristics are investigated as a function of the magnetic field intensity, the self-bias voltage and the gas pressure. At 1 mtorr, the etch rate is found to be a unique linear function of both the self-bias voltage and the ion density, independently of the magnetic field intensity value. However, even though the ion density increases, the etch rate is found to decrease with increasing pressure. In the low pressure regime, etch rates as high as 2000 A/min are obtained with a good selectivity over resist. Without any optimization of the etching process, we were able to etch 0.5 micron Pt trenches, 0.6 micron thick yielding fence-free profiles and sidewall angles (75º) that already meets the present industrial requirements of NVRAM technology.

  15. High temperature corrosion during biomass firing: improved understanding by depth resolved characterisation of corrosion products

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    The high temperature corrosion of an austenitic stainless steel (TP 347H FG), widely utilised as a superheater tube material in Danish power stations, was investigated to verify the corrosion mechanisms related to biomass firing. KCl coated samples were exposed isothermally to 560 degrees C......, for one week, under conditions simulating straw-firing. Thorough characterisation of the exposed samples was conducted by the analysis of sample cross-sections applying microscopy and spectroscopy based techniques. Cross-section analysis revealed the microstructure, as well as chemical and morphological...... changes within the near surface region (covering both the deposit and the steel surface). Such cross-section analysis was further complemented by plan view investigations (additionally involving X-ray diffraction) combined with removal of the corrosion products. Improved insights into the nature...

  16. Production of Low-Phosphorus Molten Iron from High-Phosphorus Oolitic Hematite Using Biomass Char

    Science.gov (United States)

    Tang, Huiqing; Qi, Tengfei; Qin, Yanqi

    2015-09-01

    In this study, an energy-saving and environmentally friendly method to produce low-phosphorus molten iron from high-phosphorus oolitic hematite was experimentally investigated and theoretically analyzed. The results indicate that biomass char is a suitable reducing agent for the proposed method. In the direct reduction stage, the ore-char briquette reached a metallization degree of 80-82% and a residual carbon content of 0.1-0.3 mass%. Under the optimized condition, phosphorus remained in the gangue as calcium phosphate. In the melting separation stage, phosphorus content ([%P]) in molten iron could be controlled by introducing a Na2CO3 additive, and the phosphorus behavior could be predicted using ion molecular coexistence theory. Molten iron with [%P] less than 0.3 mass% was obtained from the metallic briquettes with the aforementioned quality by introducing 2-4% Na2CO3 and the iron recovery rate was 75-78%.

  17. High temperature corrosion during biomass firing: improved understanding by depth resolved characterisation of corrosion products

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    The high temperature corrosion of an austenitic stainless steel (TP 347H FG), widely utilised as a superheater tube material in Danish power stations, was investigated to verify the corrosion mechanisms related to biomass firing. KCl coated samples were exposed isothermally to 560 degrees C...... changes within the near surface region (covering both the deposit and the steel surface). Such cross-section analysis was further complemented by plan view investigations (additionally involving X-ray diffraction) combined with removal of the corrosion products. Improved insights into the nature...... of the corrosion products as a function of distance from the deposit surface were revealed through this comprehensive characterisation. Corrosion attack during simulated straw-firing conditions was observed to occur through both active oxidation and sulphidation mechanisms....

  18. Nitrogen-doped biomass/polymer composite porous carbons for high performance supercapacitor

    Science.gov (United States)

    Shu, Yu; Maruyama, Jun; Iwasaki, Satoshi; Maruyama, Shohei; Shen, Yehua; Uyama, Hiroshi

    2017-10-01

    Nitrogen-doped porous monolithic carbon (NDPMC) is obtained from biomass-derived activated carbon/polyacrylonitrile composite for the first time via a template-free thermally induced phase separation (TIPS) approach followed by KOH activation. The electrochemical results indicate that NDPMC possesses ultrahigh specific capacitance of 442 F g-1 at 1 A g-1, excellent rate capability with 81% retention rate from 1 to 100 A g-1 and outstanding cycling stability with 98% capacitance retention at 20 A g-1 after 5000 cycles. Furthermore, the evaluation of NDPMC on the practical symmetrical system also exhibits desired electrochemical performances. The novel composite carbon displays remarkable capacitance properties and the feasible, low-cost synthetic route demonstrates great potential for large-scale production of high-performance electrode materials for supercapacitors.

  19. Mo- and V-catalyzed transformation of biomass into high-value chemicals

    DEFF Research Database (Denmark)

    Nielsen, Lasse Bo; Dethlefsen, Johannes Rytter; Lupp, Daniel;

    2014-01-01

    The possibility of converting biomass into higher-value chemicals has received increased attention over the last few years. If biomass could be converted into biofules or platform chemicals, then it could constitute a large source of renewable energy and economy for society.......The possibility of converting biomass into higher-value chemicals has received increased attention over the last few years. If biomass could be converted into biofules or platform chemicals, then it could constitute a large source of renewable energy and economy for society....

  20. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... assessments of these specific VSCs so that their power densities and reliabilities are quantitatively determined, which requires extensive utilization of the electro-thermal models of the VSCs under investigation. In this thesis, the three-level neutral-point-clamped VSCs (3L-NPC-VSCs), which are classified......-HB-VSCs). As the switch technology for realizing these 3L-VSCs, press-pack IGBTs are chosen to ensure high power density and reliability. Based on the selected 3L-VSCs and switch technology, the converter electro-thermal models are developed comprehensively, implemented practically, and validated via a full-scale 3L...

  1. PYROLYSIS OF ALGAL BIOMASS OBTAINED FROM HIGH RATE ALGAE PONDS APPLIED TO WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Fernanda eVargas E Silva

    2015-06-01

    Full Text Available This work presents the results of the pyrolysis of algal biomass obtained from high rate algae ponds treating sewage. The two high-rate algae ponds (HRAP were built and operated at the São João Navegantes Wastewater Treatment Plant. The HRAP A was fed with raw sewage while the HRAP B was fed with effluent from an Upflow Anaerobic Sludge Blanket (UASB reactor. The HRAP B provided higher productivity, presenting total solids concentration of 487.3mg/l and chlorophyll a of 7735mg/l. The algal productivity in the average depth was measured at 41,8 gm-2day-1 in pond A and at 47.1 gm-2day-1 in pond B. Algae obtained from the HRAP B were separated by the process of coagulation/flocculation and sedimentation. In the presence of alum, a separation efficiency in the range of 97% solids removal was obtained. After centrifugation the biomass was dried and comminuted. The biofuel production experiments were conducted via pyrolysis in a tubular quartz glass reactor which was inserted in a furnace for external heating. The tests were carried out in an inert nitrogen atmosphere at a flow rate of 60ml/min. The system was operated at 400°C, 500°C and 600°C in order to determine the influence of temperature on the obtained fractional yields. The studies showed that the pyrolysis product yield was influenced by temperature, with a maximum liquid phase (bio-oil and water production rate of 44% at 500°C, 45% for char and around 11% for gas.

  2. Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum

    Science.gov (United States)

    Wagle, Pradeep; Bhattarai, Nishan; Gowda, Prasanna H.; Kakani, Vijaya G.

    2017-06-01

    Robust evapotranspiration (ET) models are required to predict water usage in a variety of terrestrial ecosystems under different geographical and agrometeorological conditions. As a result, several remote sensing-based surface energy balance (SEB) models have been developed to estimate ET over large regions. However, comparison of the performance of several SEB models at the same site is limited. In addition, none of the SEB models have been evaluated for their ability to predict ET in rain-fed high biomass sorghum grown for biofuel production. In this paper, we evaluated the performance of five widely used single-source SEB models, namely Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), and operational Simplified Surface Energy Balance (SSEBop), for estimating ET over a high biomass sorghum field during the 2012 and 2013 growing seasons. The predicted ET values were compared against eddy covariance (EC) measured ET (ETEC) for 19 cloud-free Landsat image. In general, S-SEBI, SEBAL, and SEBS performed reasonably well for the study period, while METRIC and SSEBop performed poorly. All SEB models substantially overestimated ET under extremely dry conditions as they underestimated sensible heat (H) and overestimated latent heat (LE) fluxes under dry conditions during the partitioning of available energy. METRIC, SEBAL, and SEBS overestimated LE regardless of wet or dry periods. Consequently, predicted seasonal cumulative ET by METRIC, SEBAL, and SEBS were higher than seasonal cumulative ETEC in both seasons. In contrast, S-SEBI and SSEBop substantially underestimated ET under too wet conditions, and predicted seasonal cumulative ET by S-SEBI and SSEBop were lower than seasonal cumulative ETEC in the relatively wetter 2013 growing season. Our results indicate the necessity of inclusion of soil moisture or plant water stress

  3. Microelectromechanical high-density energy storage/rapid release system

    Science.gov (United States)

    Rodgers, M. Steven; Allen, James J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Samuel L.

    1999-08-01

    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

  4. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-06-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  5. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  6. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass

    Science.gov (United States)

    Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.

    1997-01-01

    A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estimate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.

  7. Multifractal analysis of high resolution solar wind proton density measurements

    Science.gov (United States)

    Sorriso-Valvo, Luca; Carbone, Francesco; Leonardis, Ersilia; Chen, Christopher H. K.; Šafránková, Jana; Němeček, Zdenek

    2017-03-01

    The solar wind is a highly turbulent medium, with a high level of field fluctuations throughout a broad range of scales. These include an inertial range where a turbulent cascade is assumed to be active. The solar wind cascade shows intermittency, which however may depend on the wind conditions. Recent observations have shown that ion-scale magnetic turbulence is almost self-similar, rather than intermittent. A similar result was observed for the high resolution measurements of proton density provided by the spacecraft Spektr-R. Intermittency may be interpreted as the result of the multifractal properties of the turbulent cascade. In this perspective, this paper is devoted to the description of the multifractal properties of the high resolution density measurements. In particular, we have used the standard coarse-graining technique to evaluate the generalized dimensions Dq , and from these the multifractal spectrum f (α) , in two ranges of scale. A fit with the p-model for intermittency provided a quantitative measure of multifractality. Such indicator was then compared with alternative measures: the width of the multifractal spectrum, the peak of the kurtosis, and its scaling exponent. The results indicate that the small-scale fluctuations are multifractal, and suggest that different measures of intermittency are required to fully understand the small scale cascade.

  8. Ultra-Stretchable Interconnects for High-Density Stretchable Electronics

    Directory of Open Access Journals (Sweden)

    Salman Shafqat

    2017-09-01

    Full Text Available The exciting field of stretchable electronics (SE promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS-type process recipes using bulk integrated circuit (IC microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic stretch beyond 3000%, with <0.3% resistance change, and >10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.

  9. Pistachio intake increases high density lipoprotein levels and inhibits low-density lipoprotein oxidation in rats.

    Science.gov (United States)

    Aksoy, Nur; Aksoy, Mehmet; Bagci, Cahit; Gergerlioglu, H Serdar; Celik, Hakim; Herken, Emine; Yaman, Abdullah; Tarakcioglu, Mehmet; Soydinc, Serdar; Sari, Ibrahim; Davutoglu, Vedat

    2007-05-01

    There is increasing evidence that nuts have protective effects against coronary artery disease by improving lipid profile and inhibiting lipid oxidation. However, data about pistachio nuts are limited, and to our knowledge, there is no study investigating the effects of pistachio intake on lipid oxidation and serum antioxidant levels. This study, therefore, sought to determine the effects of pistachio intake on serum lipids and determine whether consumption of pistachio would alter serum antioxidant levels. Rats were randomly divided into three groups (n=12 for each): control group fed basic diet for 10 weeks and treated groups fed basic diet plus pistachio which constituted 20% and 40% of daily caloric intake, respectively. Consumption of pistachio as 20% of daily caloric intake increased high-density lipoprotein (HDL) levels and decreased total cholesterol (TC)/HDL ratio, compared with those not taking pistachio. However, TC, low-density lipoprotein (LDL) cholesterol and triglyceride levels were unaffected by pistachio consumption. Consumption of pistachio as 20% of daily caloric intake increased serum paraoxonase activity by 35% and arylesterase activity by 60%, which are known to inhibit LDL cholesterol oxidation, compared with the control group. However, increased antioxidant activity was blunted when pistachio intake was increased to 40% of daily caloric intake. In conclusion, the present results show that consumption of pistachio as 20% of daily caloric intake leads to significant improvement in HDL and TC/HDL ratio and inhibits LDL cholesterol oxidation. These results suggest that pistachio may be beneficial for both prevention and treatment of coronary artery disease.

  10. Implications of high altitude desert dust transport from Western Sahara to Nile Delta during biomass burning season.

    Science.gov (United States)

    Prasad, Anup K; El-Askary, Hesham; Kafatos, Menas

    2010-11-01

    The air over major cities and rural regions of the Nile Delta is highly polluted during autumn which is the biomass burning season, locally known as black cloud. Previous studies have attributed the increased pollution levels during the black cloud season to the biomass or open burning of agricultural waste, vehicular, industrial emissions, and secondary aerosols. However, new multi-sensor observations (column and vertical profiles) from satellites, dust transport models and associated meteorology present a different picture of the autumn pollution. Here we show, for the first time, the evidence of long range transport of dust at high altitude (2.5-6 km) from Western Sahara and its deposition over the Nile Delta region unlike current Models. The desert dust is found to be a major contributor to the local air quality which was previously considered to be due to pollution from biomass burning enhanced by the dominant northerly winds coming from Europe.

  11. High energy density capacitors using nano-structure multilayer technology

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1992-08-01

    Today, many pulse power and industrial applications are limited by capacitor performance. While incremental improvements are anticipated from existing capacitor technologies, significant advances are needed in energy density to enable these applications for both the military and for American economic competitiveness. We propose a program to research and develop a novel technology for making high voltage, high energy density capacitors. Nano-structure multilayer technologies developed at LLNL may well provide a breakthrough in capacitor performance. Our controlled sputtering techniques are capable of laying down extraordinarily smooth sub-micron layers of dielectric and conductor materials. With this technology, high voltage capacitors with an order of magnitude improvement in energy density may be achievable. Well-understood dielectrics and new materials will be investigated for use with this technology. Capacitors developed by nano-structure multilayer technology are inherently solid state, exhibiting extraordinary mechanical and thermal properties. The conceptual design of a Notepad capacitor is discussed to illustrate capacitor and capacitor bank design and performance with this technology. We propose a two phase R&D program to address DNA`s capacitor needs for electro-thermal propulsion and similar pulse power programs. Phase 1 will prove the concept and further our understanding of dielectric materials and design tradeoffs with multilayers. Nano-structure multilayer capacitors will be developed and characterized. As our materials research and modeling prove successful, technology insertion in our capacitor designs will improve the possibility for dramatic performance improvements. In Phase 2, we will make Notepad capacitors, construct a capacitor bank and demonstrate its performance in a meaningful pulse power application. We will work with industrial partners to design full scale manufacturing and move this technology to industry for volume production.

  12. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products

    DEFF Research Database (Denmark)

    Lange, Lene

    2017-01-01

    in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal...

  13. MTBE BIODEGRADATION IN A GRAVITY FLOW, HIGH-BIOMASS RETAINING BIOREACTOR

    Science.gov (United States)

    The aerobic biodegradation of methyl tert-butyl ether (MtBE), a widely used fuel oxygenate, was investigated using a pilot-scale biomass-retaining bioreactor called a Biomass Concentrator Reactor (BCR). The reactor was operated for a year at a flow rate of 2500 L/d on Ci...

  14. The Pulsed High Density Experiment (PHDX) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John P. [Univ. of Washington, Seattle, WA (United States); Andreason, Samuel [Univ. of Washington, Seattle, WA (United States)

    2017-04-27

    The purpose of this paper is to present the conclusions that can be drawn from the Field Reversed Configuration (FRC) formation experiments conducted on the Pulsed High Density experiment (PHD) at the University of Washington. The experiment is ongoing. The experimental goal for this first stage of PHD was to generate a stable, high flux (>10 mWb), high energy (>10 KJ) target FRC. Such results would be adequate as a starting point for several later experiments. This work focuses on experimental implementation and the results of the first four month run. Difficulties were encountered due to the initial on-axis plasma ionization source. Flux trapping with this ionization source acting alone was insufficient to accomplish experimental objectives. Additional ionization methods were utilized to overcome this difficulty. A more ideal plasma source layout is suggested and will be explored during a forthcoming work.

  15. 密度制约决定的植物生物量分配格局%Density dependence-determined plant biomass allocation pattern

    Institute of Scientific and Technical Information of China (English)

    黎磊; 周道玮; 盛连喜

    2011-01-01

    基于自然环境下红葱(Allium cepa var.proliferum)个体各器官生物量积累动态、生物量分配比例动态、生物量比率动态和形态性状对不同种群密度(36、49、64、121和225株·m-2)响应的模拟实验,分析了密度制约对其生物量分配格局的影响.结果表明:红葱地上部分、叶和鞘的生物量分配比例均随密度的增加而增加,地下部分和鳞茎的分配比例随密度的增加而下降,而根的分配比例未随密度发生显著变化.除根:叶、根:地上比在密度处理间无显著差异外,各器官间生物量比率均表现出明显的密度依赖性.随着个体的生长,根:鞘、根:叶、根:地上比逐渐减小,鳞茎:叶、鳞茎:鞘、鳞茎:地上比先减小后增加,而地上:地下比先增加后减小.比叶面积与密度呈显著正相关(P0. 05 ). All the results suggested that intraspecific competition exerted great influence on the resource allocation inside plant bodies. In response to different plant densities, the biomass allocation patterns displayed plasticity. With the increase of plant density, the photosynthates allocated more to above-ground vegetative organs, with the cost of decreasing the photosynthates allocation to below-ground asexsual reproductive organ. It was appeared that the “optimal partitioning theory” was only applicable at the absence of plant competition between individual plants. When the competition between plants was present, the population density and density-dependent regulation were the important factors determining plant biomass allocation pattern.

  16. [Residual risk: The roles of triglycerides and high density lipoproteins].

    Science.gov (United States)

    Grammer, Tanja; Kleber, Marcus; Silbernagel, Günther; Scharnagl, Hubert; März, Winfried

    2016-06-01

    In clinical trials, the reduction of LDL-cholesterol (LDL-C) with statins reduces the incidence rate of cardiovascular events by approximately one third. This means, that a sizeable "residual risk" remains. Besides high lipoprotein (a), disorders in the metabolism of triglyceride-rich lipoproteins and high density liproteins have been implicated as effectors of the residual risk. Both lipoprotein parameters correlate inversely with each other. Therefore, the etiological contributions of triglycerides and / or of HDL for developing cardiovascular disease can hardly be estimated from either observational studies or from intervention studies. The largely disappointing results of intervention studies with inhibitors of the cholesteryl ester transfer protein and in particular the available set of genetically-epidemiological studies suggest that in the last decade, the importance of HDL cholesterol has been overvalued, while the importance of triglycerides has been underestimated. High triglycerides not always atherogenic, but only if they are associated with the accumulation relatively cholesterol-enriched, incompletely catabolized remnants of chylomicrons and very low density lipoproteins (familial type III hyperlipidemia, metabolic syndrome, diabetes mellitus). The normalization of the concentration of triglycerides and remnants by inhibiting the expression of apolipoprotein C3 is hence a new, promising therapeutic target.

  17. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  18. Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry.

    Science.gov (United States)

    Olsen, Søren N; Lumby, Erik; McFarland, Kc; Borch, Kim; Westh, Peter

    2011-03-01

    Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis. In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis rate with a detection limit of about 500 pmol glucose s(-1). Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose-response experiments with a typical cellulase cocktail enabled a multidimensional analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (10% conversion). This kinetic profile is interpreted as an increase in polymer end concentration (substrate for CBH) as the hydrolysis progresses, probably due to EG activity in the enzyme cocktail. Finally, irreversible enzyme inactivation did not appear to be the source of reduced hydrolysis rate over time.

  19. Estimating Aboveground Biomass and Carbon Stocks in Periurban Andean Secondary Forests Using Very High Resolution Imagery

    Directory of Open Access Journals (Sweden)

    Nicola Clerici

    2016-07-01

    Full Text Available Periurban forests are key to offsetting anthropogenic carbon emissions, but they are under constant threat from urbanization. In particular, secondary Neotropical forest types in Andean periurban areas have a high potential to store carbon, but are currently poorly characterized. To address this lack of information, we developed a method to estimate periurban aboveground biomass (AGB—a proxy for multiple ecosystem services—of secondary Andean forests near Bogotá, Colombia, based on very high resolution (VHR GeoEye-1, Pleiades-1A imagery and field-measured plot data. Specifically, we tested a series of different pre-processing workflows to derive six vegetation indices that were regressed against in situ estimates of AGB. Overall, the coupling of linear models and the Ratio Vegetation Index produced the most satisfactory results. Atmospheric and topographic correction proved to be key in improving model fit, especially in high aerosol and rugged terrain such as the Andes. Methods and findings provide baseline AGB and carbon stock information for little studied periurban Andean secondary forests. The methodological approach can also be used for integrating limited forest monitoring plot AGB data with very high resolution imagery for cost-effective modelling of ecosystem service provision from forests, monitoring reforestation and forest cover change, and for carbon offset assessments.

  20. A New Hard Switching Bidirectional Converter With High Power Density

    Directory of Open Access Journals (Sweden)

    Bahador Fani

    2010-01-01

    Full Text Available In this paper, a new isolated dc-dc bidirectional converter is proposed. This converter consists of two transformers (flyback and forward and only one switch in primary side and one switch in secondary side of transformers. In this converter energy transfers to the output in both on and off switch states so power density of this converter is high This converter controlled by PWM signal. Also this converter operates over a wide input voltage range. Theoretical analysis is presented and computer simulation and experimental results verify the converter analysis.

  1. On high-order perturbative calculations at finite density

    CERN Document Server

    Ghisoiu, Ioan

    2017-01-01

    We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes. Applications of these rules will be discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.

  2. On high-order perturbative calculations at finite density

    Science.gov (United States)

    Ghişoiu, Ioan; Gorda, Tyler; Kurkela, Aleksi; Romatschke, Paul; Säppi, Matias; Vuorinen, Aleksi

    2017-02-01

    We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes - a result reminiscent of a previously proposed "naive real-time formalism" for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.

  3. Ultra High Energy Density Cathodes with Carbon Nanotubes

    Science.gov (United States)

    2013-12-10

    34Enhanced Capacity and Rate Capability of Carbon Nanotube Based Anodes with Titanium Contacts for Lithium Ion Batteries," ACS Nano, vol. 4, pp. 6121- 6131...2010/10/26 2010. [2] S. L. Chou, et al., "Silicon/Single-Walled Carbon Nanotube Composite Paper as a Flexible Anode Material for Lithium Ion...AFRL-RV-PS- AFRL-RV-PS- TR-2013-0170 TR-2013-0170 ULTRA HIGH ENERGY DENSITY CATHODES WITH CARBON NANOTUBES Brian J. Landi, et al. Rochester

  4. High density QCD and entropy production at heavy ion colliders

    CERN Document Server

    Kinder-Geiger, Klaus

    1994-01-01

    The role of entropy production in the context of probing QCD properties at high densities and finite temperatures in ultra-relativistic collisions of heavy nuclei is inspected. It is argued that the entropy generated in these reactions provides a powerful tool to investigate the space-time evolution and the question whether and how a deconfined plasma of quarks and gluons is formed. I will address the questions how entropy is produced, and how it is measurable. The uncertainties in predicting the different contributions to the total entropy and particle multiplicities during the course of heavy ion collisions are also discussed.

  5. Method for providing a low density high strength polyurethane foam

    Science.gov (United States)

    Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.

    2013-06-18

    Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

  6. The physics of ultra-high-density magnetic recording

    CERN Document Server

    Ek, Johannes; Weller, Dieter

    2001-01-01

    In this book, 17 experts in magnetic recording focus on the underlying physical mechanisms that play crucial roles in medium and transducer development for high areal density disk drives. In 11 chapters, an examination is made of the fundamental physical concepts and their impact on recording mechanisms, with special emphasis on thin-film longitudinal, perpendicular, patterned and nanoparticle media. Theoretical and experimental investigations are presented which serve to enhance our basic understanding of thin-film dynamics, medium dynamics and thermal effects. Fundamental aspects of magnetotransport are discussed and an overview is given of recording head designs.

  7. Antarctic marine gravity field from high-density satellite altimetry

    Science.gov (United States)

    Sandwell, David T.

    1992-01-01

    High-density (about 2-km profile spacing) Geosat/GM altimetry profiles were obtained for Antarctic waters (6-deg S to 72 deg S) and converted to vertical gravity gradient, using Laplace's equation to directly calculate gravity gradient from vertical deflection grids and Fourier analysis to construct gravity anomalies from two vertical deflection grids. The resultant gravity grids have resolution and accuracy comparable to shipboard gravity profiles. The obtained gravity maps display many interesting and previously uncharted features, such as a propagating rift wake and a large 'leaky transform' along the Pacific-Antarctic Rise.

  8. A Cherenkov Radiation Detector with High Density Aerogels

    CERN Document Server

    Cremaldi, Lucien; Sonnek, Peter; Summers, Donald J; Reidy, Jim

    2009-01-01

    We have designed a threshold Cherenkov detector at the Rutherford-Appleton Laboratory to identify muons with momenta between 230 and 350 MeV/c. We investigated the properties of three aerogels for the design. The nominal indexes of refraction were n = 1.03, 1.07, 1.12, respectively. Two of the samples are of high density aerogel not commonly used for Cherenkov light detection. We present results of an examination of some optical properties of the aerogel samples and present basic test beam results.

  9. Biomimetic High Density Lipoprotein Nanoparticles For Nucleic Acid Delivery

    Science.gov (United States)

    McMahon, Kaylin M.; Mutharasan, R. Kannan; Tripathy, Sushant; Veliceasa, Dorina; Bobeica, Mariana; Shumaker, Dale K.; Luthi, Andrea J.; Helfand, Brian T.; Ardehali, Hossein; Mirkin, Chad A.; Volpert, Olga; Thaxton, C. Shad

    2014-01-01

    We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy which combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy (TEM), and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, the chemical tailorability of the HDL AuNP platform, and the potential for cell-specific targeting afforded by HDL biomimicry make this platform appealing for nucleic acid delivery. PMID:21319839

  10. Depression of belowground respiration rates at simulated high moose population densities in boreal forests.

    Science.gov (United States)

    Persson, Inga-Lill; Nilsson, Mats B; Pastor, John; Eriksson, Tobias; Bergström, Roger; Danell, Kjell

    2009-10-01

    Large herbivores can affect the carbon cycle in boreal forests by changing productivity and plant species composition, which in turn could ultimately alter litter production, nutrient cycling, and the partitioning between aboveground and belowground allocation of carbon. Here we experimentally tested how moose (Alces alces) at different simulated population densities affected belowground respiration rates (estimated as CO2 flux) in young boreal forest stands situated along a site productivity gradient. At high simulated population density, moose browsing considerably depressed belowground respiration rates (24-56% below that of no-moose controls) except during June, where the difference only was 10%. Moose browsing depressed belowground respiration the most on low-productivity sites. Soil moisture and temperature did not affect respiration rates. Impact of moose on belowground respiration was closely linked to litter production and followed Michaelis-Menten dynamics. The main mechanism by which moose decrease belowground respiration rates is likely their effect on photosynthetic biomass (especially decreased productivity of deciduous trees) and total litter production. An increased productivity of deciduous trees along the site productivity gradient causes an unequal effect of moose along the same gradient. The rapid growth of deciduous trees may offer higher resilience against negative effects of moose browsing on litter production and photosynthate allocation to roots.

  11. Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO-GAO competition at high temperatures.

    Science.gov (United States)

    Winkler, M-K H; Bassin, J P; Kleerebezem, R; de Bruin, L M M; van den Brand, T P H; van Loosdrecht, M C M

    2011-05-01

    An aerobic granular sludge (AGS) reactor was run for 280 days to study the competition between Phosphate and Glycogen Accumulating Organisms (PAOs and GAOs) at high temperatures. Numerous researches have proven that in suspended sludge systems PAOs are outcompeted by GAOs at higher temperatures. In the following study a reactor was operated at 30 °C in which the P-removal efficiency declined from 79% to 32% after 69 days of operation when biomass removal for sludge retention time (SRT) control was established by effluent withdrawal. In a second attempt at 24 °C, efficiency of P-removal remained on average at 71 ± 5% for 76 days. Samples taken from different depths of the sludge bed analysed using Fluorescent in situ hybridization (FISH) microscopy techniques revealed a distinctive microbial community structure: bottom granules contained considerably more Accumulibacter (PAOs) compared to top granules that were dominated by Competibacter (GAOs). In a third phase the SRT was controlled by discharging biomass exclusively from the top of the sludge bed. The application of this method increased the P-removal efficiency up to 100% for 88 days at 30 °C. Granules selected near the bottom of the sludge bed increased in volume, density and overall ash content; resulting in significantly higher settling velocities. With the removal of exclusively bottom biomass in phase four, P-removal efficiency decreased to 36% within 3 weeks. This study shows that biomass segregation in aerobic granular sludge systems offers an extra possibility to influence microbial competition in order to obtain a desired population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    Science.gov (United States)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  13. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh K. [Southern Research Institute, Durham, NC (United States); McCabe, Kevin [Southern Research Institute, Durham, NC (United States)

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifier (TRIGTM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.

  14. Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion.

    Science.gov (United States)

    Cazier, E A; Trably, E; Steyer, J P; Escudie, R

    2015-08-01

    In solid-state anaerobic digestion, so-called ss-AD, biogas production is inhibited at high total solids contents. Such inhibition is likely caused by a slow diffusion of dissolved reaction intermediates that locally accumulate. In this study, we investigated the effect of H2 and CO2 partial pressure on ss-AD. Partial pressure of H2 and/or CO2 was artificially fixed, from 0 to 1 557mbars for H2 and from 0 to 427mbars for CO2. High partial pressure of H2 showed a significant effect on methanogenesis, while CO2 had no impact. At high [Formula: see text] , the overall substrate degradation decreased with no accumulation of metabolites from acidogenic bacteria, indicating that the hydrolytic activity was specifically impacted. Interestingly, such inhibition did not occur when CO2 was added with H2. This result suggests that CO2 gas transfer is probably a key factor in ss-AD from biomass.

  15. Polypropylene Bundle Attached Multilayered Stigeoclonium Biofilms Cultivated in Untreated Sewage Generate High Biomass and Lipid Productivity.

    Science.gov (United States)

    Kim, Byung-Hyuk; Kim, Dong-Ho; Choi, Jung-Woon; Kang, Zion; Cho, Dae-Hyun; Kim, Ji-Young; Oh, Hee-Mock; Kim, Hee-Sik

    2015-09-01

    The potential of microalgae biofuel has not been realized because of the low productivity and high costs associated with the current cultivation systems. In this study, a new low-cost and transparent attachment material was tested for cultivation of a filamentous algal strain, Stigeoclonium sp., isolated from wastewater. Initially, the different materials tested for Stigeoclonium cultivation in untreated wastewater were nylon mesh, polyethylene mesh, polypropylene bundle (PB), polycarbonate plate, and viscose rayon. Among the materials tested, PB led to a firm attachment, high biomass (53.22 g/m(2), dry cell weight), and total lipid yield (5.8 g/m(2)) with no perceivable change in FAME profile. The Stigeoclonium-dominated biofilm consisted of bacteria and extracellular polysaccharide, which helped in biofilm formation and for effective wastewater treatment (viz., removal efficiency of total nitrogen and total phosphorus corresponded to ~38% and ~90%, respectively). PB also demonstrated high yields under multilayered cultivation in a single reactor treating wastewater. Hence, this system has several advantages over traditional suspended and attached systems, with possibility of increasing areal productivity three times using Stigeoclonium sp. Therefore, multilayered attached growth algal cultivation systems seem to be the future cultivation model for large-scale biodiesel production and wastewater treatment.

  16. Simulating deposition of high density tailings using smoothed particle hydrodynamics

    Science.gov (United States)

    Babaoglu, Yagmur; Simms, Paul H.

    2017-08-01

    Tailings are a slurry of silt-sized residual material derived from the milling of rock. High density (HD) tailings are tailings that have been sufficiently dewatered to a point where they exhibit a yield stress upon deposition. They form gently sloped stacks on the surface when deposited; this eliminates or minimizes the need for dams or embankments for containment. Understanding the flow behaviour of high density tailings is essential for estimating the final stack geometry and overall slope angle. This paper focuses on modelling the flow behaviour of HD tailings using smoothed particle hydrodynamics (SPH) method incorporating a `bi-viscosity' model to simulate the non-Newtonian behaviour. The model is validated by comparing the numerical results with bench scale experiments simulating single or multi-layer deposits in two-dimensions. The results indicate that the model agreed fairly well with the experimental work, excepting some repulsion of particles away from the bottom boundary closer to the toe of the deposits. Novel aspects of the work, compared to other simulation of Bingham fluids by SPH, are the simulation of multilayer deposits and the use of a stopping criteria to characterize the rest state.

  17. Multiple parton interactions in high-density QCD matter

    CERN Document Server

    Srivastava, D K; Srivastava, Dinesh K.; Geiger, Klaus

    1999-01-01

    Multiple interactions of quarks and gluons in high-energy heavy-ion collisions may give rise to interesting phemomena of color charges propagating in high-density QCD matter. We study the dynamics of multi-parton systems produced in nucleus-nucleus collisions at energies corresponding the the CERN SPS and the future BNL RHIC experiments. Due to the complexity of the multi-particle dynamics we choose to employ the parton cascade model in order to simulate the development of multiple parton scatterings and associated stimulated emision processes. Our results indicate a non-linear increase with nuclear mass A of, e.g., parton multiplicity, energy density, strangeness, and contrast a linear A-scaling as in Glauber-type approaches. If multiple interactions are suppressed and only single parton scatterings (no re-interactions) are considered, we recover such a linear behavior. It remains to be studied whether these results on the parton level can be experimentally seen in final-state observables, such as the charge...

  18. Development Status of High-Thrust Density Electrostatic Engines

    Science.gov (United States)

    Patterson, Michael J.; Haag, Thomas W.; Foster, John E.; Young, Jason A.; Crofton, Mark W.

    2017-01-01

    Ion thruster technology offers the highest performance and efficiency of any mature electric propulsion thruster. It has by far the highest demonstrated total impulse of any technology option, demonstrated at input power levels appropriate for primary propulsion. It has also been successfully implemented for primary propulsion in both geocentric and heliocentric environments, with excellent ground/in-space correlation of both its performance and life. Based on these attributes there is compelling reasoning to continue the development of this technology: it is a leading candidate for high power applications; and it provides risk reduction for as-yet unproven alternatives. As such it is important that the operational limitations of ion thruster technology be critically examined and in particular for its application to primary propulsion its capabilities relative to thrust the density and thrust-to-power ratio be understood. This publication briefly addresses some of the considerations relative to achieving high thrust density and maximizing thrust-to-power ratio with ion thruster technology, and discusses the status of development work in this area being executed under a collaborative effort among NASA Glenn Research Center, the Aerospace Corporation, and the University of Michigan.

  19. Strongly Interacting Matter at Very High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran, L.

    2011-06-05

    The authors discuss the study of matter at very high energy density. In particular: what are the scientific questions; what are the opportunities to makes significant progress in the study of such matter and what facilities are now or might be available in the future to answer the scientific questions? The theoretical and experimental study of new forms of high energy density matter is still very much a 'wild west' field. There is much freedom for developing new concepts which can have order one effects on the way we think about such matter. It is also a largely 'lawless' field, in that concepts and methods are being developed as new information is generated. There is also great possibility for new experimental discovery. Most of the exciting results from RHIC experiments were unanticipated. The methods used for studying various effects like flow, jet quenching, the ridge, two particle correlations etc. were developed as experiments evolved. I believe this will continue to be the case at LHC and as we use existing and proposed accelerators to turn theoretical conjecture into tangible reality. At some point this will no doubt evolve into a precision science, and that will make the field more respectable, but for my taste, the 'wild west' times are the most fun.

  20. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate

    KAUST Repository

    Imran, Ali

    2014-11-01

    Performance of a novel alumina-supported sodium carbonate catalyst was studied to produce a valuable bio-oil from catalytic flash pyrolysis of lignocellulosic biomass. Post treatment of biomass pyrolysis vapor was investigated in a catalyst fixed bed reactor at the downstream of the pyrolysis reactor. In-situ catalytic upgrading of biomass pyrolysis vapor was conducted in an entrained flow pyrolysis reactor by feeding a premixed feedstock of the catalyst and biomass. Na2CO3/gamma-Al2O3 was very effective for de-oxygenation of the pyrolysis liquid and oxygen content of the bio-oil was decreased from 47.5 wt.% to 16.4 wt.%. An organic rich bio-oil was obtained with 5.8 wt.% water content and a higher heating value of 36.1 MJ/kg. Carboxylic acids were completely removed and the bio-oil had almost a neutral pH. This bio-oil of high calorific low, low water and oxygen content may be an attractive fuel precursor. In-situ catalytic upgrading of biomass pyrolysis vapor produced a very similar quality bio-oil compared to post treatment of pyrolysis vapors, and shows the possible application of Na2CO3/gamma-Al2O3 in a commercial type reactor system such as a fluidized bed reactor. (C) 2014 Elsevier B.V. All rights reserved.

  1. High Energy Density Science at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded

  2. Diagnostics for ion beam driven high energy density physics experiments.

    Science.gov (United States)

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  3. Diagnostics for ion beam driven high energy density physics experimentsa)

    Science.gov (United States)

    Bieniosek, F. M.; Henestroza, E.; Lidia, S.; Ni, P. A.

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K+ beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  4. Development of Bio-Oil Commodity Fuel as a Refinery Feedstock from High Impact Algae Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, James [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemical Engineering; Mani, Sudhagar [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemical Engineering; Das, K. C. [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemical Engineering; Hilten, Roger [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemical Engineering; Jena, Umakanta [Desert Research Inst. (DRI), Reno, NV (United States)

    2014-11-30

    A two-stage hydrothermal liquefaction (HTL) process was developed to 1) reduce nitrogen levels in algal oil, 2) generate a nitrogen rich stream with limited inhibitors for recycle and algae cultivation, and 3) improve downstream catalytic hydrodenitrogenation and hydrodeoxygenation of the algal oil to refinery intermediates. In the first stage, low temperature HTL was conducted at 125, 175, and 225°C at holding times ranging from 1 to 30 min (time at reaction temperature). A consortium of three algal strains, namely Chlorella sorokiniana, Chlorella minutissima, and Scenedesmus bijuga were used to grow and harvest biomass in a raceway system – this consortium is called the UGA Raceway strain throughout the report. Subsequent analysis of the final harvested product indicated that only two strains predominated in the final harvest - Chlorella sorokiniana and Scenedesmus bijuga. Two additional strains representing a high protein (Spirulina platensis) and high lipid algae (Nannochloropsis) strains were also used in this study. These strains were purchased from suppliers. S. platensis biomass was provided by Earthrise Nutritionals LLC (Calipatria, CA) in dry powder form with defined properties, and was stored in airtight packages at 4°C prior to use. A Nannochloropsis paste from Reed Mariculture was purchased and used in the two-stage HTL/HDO experiments. The solids and liquids from this low temperature HTL pretreatment step were separated and analyzed, leading to the following conclusions. Overall, these results indicate that low temperature HTL (200-250°C) at short residence times (5-15 min) can be used to lyse algae cells and remove/separate protein and nitrogen before subsequent higher temperature HTL (for lipid and other polymer hydrolysis) and HDO. The significant reduction in nitrogen when coupled with low protein/high lipid algae cultivation methods at scale could significantly improve downstream catalytic HDO results. However, significant barriers and

  5. Evaluation of high throughput screening methods in picking up differences between cultivars of lignocellulosic biomass for ethanol production

    DEFF Research Database (Denmark)

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning

    2014-01-01

    We present a unique evaluation of three advanced high throughput pretreatment and enzymatic hydrolysis systems (HTPH-systems) for screening of lignocellulosic biomass for enzymatic saccharification. Straw from 20 cultivars of winter wheat from two sites in Denmark was hydrothermally pretreated an...

  6. Pre-oxidation and its effect on reducing high-temperature corrosion of superheater tubes during biomass firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Kvisgaard, M.; Montgomery, Melanie;

    2016-01-01

    Superheater tubes in biomass-fired power plants experience high corrosion rates due to condensation of corrosive alkali chloride-rich deposits. To explore the possibility of reducing the corrosion attack by the formation of an initial protective oxide layer, the corrosion resistance of pre-oxidis...

  7. Solubilities of Toluene, Benzene and TCE in High-Biomass Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barton, John W. [Battelle Eastern Science & Technology Center; Vodraska, Christopher D [ORNL; Flanary, Sandie A. [Oak Ridge National Laboratory (ORNL); Davison, Brian H [ORNL

    2008-01-01

    We report measurements of solubility limits for benzene, toluene, and TCE in systems that contain varying levels of biomass up to 0.13 g/mL. The solubility limit increased from 20 to 48 mM when biomass (in the form of yeast) was added to aqueous batch systems containing benzene. The toluene solubility limit increased from 4.9 to greater than 20 mM. For TCE, the solubility increased from 8 mM to more than 1000 mM. Solubility for TCE was most heavily impacted by biomass levels, changing by two orders of magnitude.

  8. Corrosion Testing of Ni Alloy HVOF Coatings in High Temperature Environments for Biomass Applications

    Science.gov (United States)

    Paul, S.; Harvey, M. D. F.

    2013-03-01

    This paper reports the corrosion behavior of Ni alloy coatings deposited by high velocity oxyfuel spraying, and representative boiler substrate alloys in simulated high temperature biomass combustion conditions. Four commercially available oxidation resistant Ni alloy coating materials were selected: NiCrBSiFe, alloy 718, alloy 625, and alloy C-276. These were sprayed onto P91 substrates using a JP5000 spray system. The corrosion performance of the coatings varied when tested at ~525, 625, and 725 °C in K2SO4-KCl mixture and gaseous HCl-H2O-O2 containing environments. Alloy 625, NiCrBSiFe, and alloy 718 coatings performed better than alloy C-276 coating at 725 °C, which had very little corrosion resistance resulting in degradation similar to uncoated P91. Alloy 625 coatings provided good protection from corrosion at 725 °C, with the performance being comparable to wrought alloy 625, with significantly less attack of the substrate than uncoated P91. Alloy 625 performs best of these coating materials, with an overall ranking at 725 °C as follows: alloy 625 > NiCrBSiFe > alloy 718 ≫ alloy C-276. Although alloy C-276 coatings performed poorly in the corrosion test environment at 725 °C, at lower temperatures (i.e., below the eutectic temperature of the salt mixture) it outperformed the other coating types studied.

  9. Exploring high-density baryonic matter: Maximum freeze-out density

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, Joergen [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Cleymans, Jean [University of Cape Town, UCT-CERN Research Centre and Department of Physics, Rondebosch (South Africa)

    2016-08-15

    The hadronic freeze-out line is calculated in terms of the net baryon density and the energy density instead of the usual T and μ{sub B}. This analysis makes it apparent that the freeze-out density exhibits a maximum as the collision energy is varied. This maximum freeze-out density has μ{sub B} = 400 - 500 MeV, which is above the critical value, and it is reached for a fixed-target bombarding energy of 20-30 GeV/N well within the parameters of the proposed NICA collider facility. (orig.)

  10. Development of high energy density electrical double layer capacitors

    Science.gov (United States)

    Devarajan, Thamarai selvi

    Electrochemical Double Layer capacitors (EDLCs) have shown themselves as a viable energy storage alternative. EDLCs have high power density, faster charge/discharge, wide operating temperature and long cycle life compared to batteries since it stores charge by physical separation. Despites all their advantages, their low energy density stand as a bottleneck for capacitors. This research aims to increase the energy density of EDLC without compromising the power density. Energy is proportional to the square of cell voltage. Cell voltage is mainly dependent on electrolyte breakdown. Electrolytes also provide ions for charge separation and conduction. Therefore various electrolytes (Solutes and Solvents) which can give high concentration, solubility and decomposition potential were characterized in the first part of the research. In that study, a novel ionic liquid OPBF4 had higher capacitance and comparable voltage window compared to commercial TEABF4 in Acetonitrile. However, the increased polarity of the fixed ring O-atom and the ion-ion interaction in OPBF4 was responsible for lowering its conductivity. Oxygenated ionic compounds with alkyl groups had lower stability due to beta elimination between two electron withdrawing atoms. Volume based thermodynamics and quantum chemical calculations were used to calculate ion size, HOMO/LUMO energies, and free energy changes and establish relationship with capacitance, redox potential and melting points respectively. In addition free energy of fusion was used to predict the melting point. Ion size had correlation with capacitance due to compact double layer formation. Free energy changes did not explain the differences in melting point and predicted dielectric constant was inconsistent with the polarity. This is presumably due to using Van der Waals volume instead of crystal structure volume and insufficient incorporation of polarization term. The HOMO/LUMO energies gave direct relation between oxidation and reduction

  11. Evaluation of wastewater treatment requirements for thermochemical biomass liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D C [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    Biomass can provide a substantial energy source. Liquids are preferred for use as transportation fuels because of their high energy density and handling ease and safety. Liquid fuel production from biomass can be accomplished by any of several different processes including hydrolysis and fermentation of the carbohydrates to alcohol fuels, thermal gasification and synthesis of alcohol or hydrocarbon fuels, direct extraction of biologically produced hydrocarbons such as seed oils or algae lipids, or direct thermochemical conversion of the biomass to liquids and catalytic upgrading to hydrocarbon fuels. This report discusses direct thermochemical conversion to achieve biomass liquefaction and the requirements for wastewater treatment inherent in such processing. 21 refs.

  12. Perpendicular patterned media for high density magnetic storage

    Science.gov (United States)

    Wong, Joyce Y.

    2000-11-01

    Current longitudinal thin-film media in magnetic hard- disk drives are facing an oncoming limit caused by the superparamagnetic effect, in which the individual grains in the medium become so small that they are no longer stable against thermal fluctuation. This situation is undesirable as the stored information may be lost within an unexpectedly short time frame. There have been several proposed solutions in addressing the superparamagnetic limit, and one of them is perpendicular patterned media. In this approach, a periodic array of magnetic pillars is defined lithographically on a non-magnetic substrate. Binary data of ``1'' or ``0'' can be stored in each of these elements, which have two possible magnetization directions perpendicular to the plane of the medium. In our perpendicular patterned media design, Ni columns of 150-230nm diameter with a 6:1 aspect ratio are embedded in an (AlGa)2O 3/GaAs substrate. The fabrication procedure uses a combination of high resolution electron beam lithography, dry etching, and electroplating. The high aspect ratio in the column is achieved by taking advantage of the high etching rate and selectivity of AlGaAs/GaAs over (AlGa)2O 3 in the Cl2 chemically assisted ion beam etching process. In addition to being a robust etching mask, the (AlGa)2O3 layer also plays an important role in the chemical mechanical polishing procedure to remove the overplated Ni mushrooms. Once the Ni columns are fabricated, magnetic characterization is performed using magnetic force microscopy and scanning magnetoresistance microscopy. The former measurement confirms that the electroplated Ni columns are magnetic while the latter determines whether the individual columns are stable enough to retain the recorded information. We have successfully demonstrated recording in our 170nm diameter Ni column array arranged in a square format using a commercial read/write head. This is the first demonstration of single magnetic column per bit data storage in a

  13. High Stocking Density Controls Phillyrea Angustifolia in Mediterranean Grasslands

    Science.gov (United States)

    Mesléard, François; Yavercovski, Nicole; Lefebvre, Gaétan; Willm, Loic; Bonis, Anne

    2017-03-01

    Extensive grazing applied in the form of low instantaneous pressure over a long period is a widespread management practice in protected areas. However this kind of stocking method does not always achieve the expected results, in particular because it fails to limit colonization by woody plants.This is the case in the relict xero-halophytic grasslands of the northern Mediterranean coastal region, subjected to widespread colonization by the shrub Phillyrea angustifolia despite the presence of extensive grazing. In this study, we investigated, for an equal annual stocking rate, the respective impact of high stocking density applied over a short period (mob grazing) and low stocking density applied over a long period on both P. angustifolia and herbaceous cover, using an in situ experimental design run for 7 years. Only mob grazing was effective both in controlling the establishment and increasing the mortality of P. angustifolia individuals. We did not find any difference after the 7 years of experimentation between the two stocking methods with regard to the herbaceous community parameters tested: species richness, diversity, evenness, contribution of annual characteristic species. By contrast, the exclusion of domestic grazing led to a strong reduction of these values.The use of mob grazing may be well suited for meeting conservation goals such as maintaining open habitats in these grasslands.

  14. High density collinear holographic data storage system (Conference Presentation)

    Science.gov (United States)

    Tan, Xiaodi; Horimai, Hideyoshi; Arai, Ryo; Ikeda, Junichi; Inoue, Mitsuteru; Lin, Xiao; Xu, Ke; Liu, Jinpeng; Huang, Yong

    2016-09-01

    Collinear holography has been good candidate for a volumetric recording technology of holographic data storage system (HDSS), because of there are not only large storage capacities, high transfer rates, but also the unique configuration, in which the information and reference beams are modulated co-axially by the same spatial light modulator, as a new read/write method for HDSS are very promising. The optical pickup can be designed as small as DVDs, and can be placed on one side of the recording media (disc). In the disc structure, the preformatted reflective layer is used for the focus/tracking servo and reading address information, and a dichroic mirror layer is used for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increase recording density. As servo technologies are being introduced to control the objective lens to be maintained precisely to the disc in the recording and reconstructing process, a vibration isolator is no longer necessary. In this paper, we introduced the principle of the collinear holography and its media structure of disc. Some results of experimental and theoretical studies suggest that it is a very effective method. We also discussed some methods to increase the recording density and data transfer rates of collinear holography using phase modulated page data format.

  15. High Current Density 2D/3D Esaki Tunnel Diodes

    CERN Document Server

    Krishnamoorthy, Sriram; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D; Johnson, Jared M; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2016-01-01

    The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based novel device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area, Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

  16. Formation of FRCs on the Pulsed High Density Experiment

    Science.gov (United States)

    Andreason, Samuel; Slough, John

    2008-11-01

    The Pulsed High Density (PHD) experiment has been reassembled at a new facility with sufficient space to continue through the full acceleration and compression stages to reach breakeven. The intention here is to produce a large FRC, but remain in the kinetic regime where the FRC is stable and the transport sufficiently low that a Q > 1 plasma can be attained at moderate densities ˜ 10^23 m-3. During reassembly a more complete analysis of previous experimental results has been made. One of the issues in the early phase of the experiment was inefficient flux trapping during field reversal due to the large scale of the FRC source (0.4 m radius). The on-axis seed plasma was unable to diffuse out to the walls on a timescale commensurate with the introduction of bias fields. This resulted in more than half of the initial bias flux lost before sheath formation halted flux loss. An annular array of plasma sources has been constructed that solves this problem and greatly enhances the flux retention. Dynamic formation has been employed on PHD and analysis tools capable of interpreting the magnetic loop diagnostic array have been developed. Results with comparison to numerical models will be presented.

  17. OLEOPHOBIC AND HYDROPHOBIC FEATURE EXPERIMENTS OF FLUORINATED HIGH DENSITY POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    杨宏伟; 魏贤勇; 费逸伟; 孙世安; 李晓越

    2013-01-01

    The surface performances of directly fluorinated high density polyethylene (HDPE) are studied with Fourier transform infrared (FT-IR) spectra ,scanning electron microscopy (SEM) and contact angle (CA) system . The SEM images show that there is a three-layer structure called the reaction ,virgin and boundary layer structure . The depth of fluorinated layer is 5.75 μm with 1 h fluorination time and 7.86 μm with 2 h . The depths are 5.46 μm and 5.07 μm when fluorine density is 2% and 1% ,respectively .CA indicates that the HDPE surface property becomes more hydrophobic with the increasing water contact angle from 78.5° to 104.5° .Oleophobic and hydrophobic features of HDPE are identified by comparison of mass change experiments .It is shown that the in-crement rate of fluorinated HDPE is much lower than that of un-fluorinated HDPE filled in neither distilled water nor jet fuel .

  18. Changes in forest composition, stem density, and biomass from the settlement era (1800s) to present in the upper Midwestern United States

    Science.gov (United States)

    Goring, Simon; Mladenoff, David J.; Cogbill, Charles; Record, Sydne; Paciorek, Christopher J.; Dietze, Michael C.; Dawson, Andria; Matthes, Jaclyn; McLachlan, Jason S.; Williams, John W.

    2016-01-01

    EuroAmerican land use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Gridded (8x8km) estimates of pre-settlement (1800s) forests from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan) using 19th Century Public Land Survey (PLS) records provide relative composition, biomass, stem density, and basal area for 26 tree genera. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection. We compare pre-settlement to modern forests using Forest Inventory and Analysis (FIA) data, with respect to structural changes and the prevalence of lost forests, pre-settlement forests with no current analogue, and novel forests, modern forests with no past analogs. Differences between PLSS and FIA forests are spatially structured as a result of differences in the underlying ecology and land use impacts in the Upper Midwestern United States. Modern biomass is higher than pre-settlement biomass in the northwest (Minnesota and north-eastern Wisconsin, including regions that were historically open savanna), and lower in the east (eastern Wisconsin and Michigan), due to shifts in species composition and, presumably, average stand age. Modern forests are more homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest assemblages represent 29% of all FIA cells, while 25% of pre-settlement forests no longer exist in a modern context. Lost forests are centered around the forests of the Tension Zone, particularly in hemlock dominated forests of north-central Wisconsin, and in oak-elm-basswood forests along the forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages are distributed evenly across

  19. Direct measurements of IPTG enable analysis of the induction behavior of E. coli in high cell density cultures

    Directory of Open Access Journals (Sweden)

    Fernández-Castané Alfred

    2012-05-01

    Full Text Available Abstract Background The E. coli lac operon and its components have been studied for decades, and lac-derived systems are widely used for recombinant protein production. However, lac operon dynamics and induction behavior remain the paradigm of gene regulation. Recently, an HPLC-MS-based method to quantify IPTG in the medium and inside the biomass has been established, and this tool may be useful to uncover the lack of knowledge and allow optimization of biotechnological processes. Results The results obtained from the study of IPTG distribution profiles in fed-batch, high cell density cultures allowed discrimination between two different depletion patterns of an inducer from the medium to the biomass in E. coli-expressing rhamnulose-1-phosphate aldolase (RhuA. Moreover, we could demonstrate that active transport mediates the uptake of this gratuitous inducer. Additionally, we could study the induction behaviors of this expression system by taking into account the biomass concentration at the induction time. Conclusions In the bistable range, partial induction occurred, which led to intermediate levels of RhuA activity. There was a direct relationship between the initial inducer concentrations and the initial inducer transport rate together with the specific activity. A majority of the inducer remains in the medium to reach equilibrium with the intracellular level. The intracellular inducer accumulation was a further evidence of bistability of the lac operon.

  20. Complex pendulum biomass sensor

    Science.gov (United States)

    Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.

    2007-12-25

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  1. Strongly interacting matter at high densities with a soliton model

    Science.gov (United States)

    Johnson, Charles Webster

    1998-12-01

    One of the major goals of modern nuclear physics is to explore the phase diagram of strongly interacting matter. The study of these 'extreme' conditions is the primary motivation for the construction of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory which will accelerate nuclei to a center of mass (c.m.) energy of about 200 GeV/nucleon. From a theoretical perspective, a test of quantum chromodynamics (QCD) requires the expansion of the conditions examined from one phase point to the entire phase diagram of strongly-interacting matter. In the present work we focus attention on what happens when the density is increased, at low excitation energies. Experimental results from the Brookhaven Alternating Gradient Synchrotron (AGS) indicate that this regime may be tested in the 'full stopping' (maximum energy deposition) scenario achieved at the AGS having a c.m. collision energy of about 2.5 GeV/nucleon for two equal- mass heavy nuclei. Since the solution of QCD on nuclear length-scales is computationally prohibitive even on today's most powerful computers, progress in the theoretical description of high densities has come through the application of models incorporating some of the essential features of the full theory. The simplest such model is the MIT bag model. We use a significantly more sophisticated model, a nonlocal confining soliton model developed in part at Kent. This model has proven its value in the calculation of the properties of individual mesons and nucleons. In the present application, the many-soliton problem is addressed with the same model. We describe nuclear matter as a lattice of solitons and apply the Wigner-Seitz approximation to the lattice. This means that we consider spherical cells with one soliton centered in each, corresponding to the average properties of the lattice. The average density is then varied by changing the size of the Wigner-Seitz cell. To arrive at a solution, we need to solve a coupled set of

  2. A ferroelectric DRAM cell for high-density NVRAM's

    Science.gov (United States)

    Moazzami, Reza; Hu, Chenming; Shepherd, William H.

    1990-10-01

    The operation of a ferroelectric DRAM (dynamic random-access memory) cell for nonvolatile RAM (NVRAM) applications is described. Because polarization reversal only occurs during nonvolatile store/recall operations and not during read/write operations, ferroelectric fatigue is not a serious endurance problem. For a 3-V power supply, the worst-case effective silicon dioxide thickness of the unoptimized lead zirconate titanate film studied is less than 1.7 nm. The resistivity and endurance properties of ferroelectric films can be optimized by modifying the composition of the film. This cell can be the basis of a very-high-density NVRAM with practically no read/write cycle limit and at least 10 to the 10th nonvolatile store/recall cycles.

  3. [Cholesterol in serum high density lipoprotein fraction (author's transl)].

    Science.gov (United States)

    Schatz, C; Jeanblanc, B; Offner, M

    1980-11-22

    The risk of atheroma can be assessed and valid epidemiological surveys can be carried out by measuring cholesterol in serum high density lipoprotein fraction (HDL) and calculating the HDL cholesterol: VLDL + LDL ratio. This was done in 39 patients free from surgically confirmed atheromatous lesions and in 51 patients presenting with such lesions. Of the four different techniques used for separation in these patients (ultracentrifugation, precipitation with heparin-Mn2+, precipitation with phosphotungstate-Mg2+ and electrophoresis), precipitation with phosphotungstate-Mg/2+ seems to be the most suitable, since there is no degradation of the HDL fraction as during electrophoresis on polyacrylamide gel, and less floculation of the supernatant after separation. Contrary to ultracentrifugation, which requires sophisticated equipment and good technical skill, the technique is easily carried out.

  4. High-density polyethylene dosimetry by transvinylene FTIR analysis

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Silverman, J.; Al-Sheikhly, M.

    1999-01-01

    . The transvinylene response in air to gamma radiation is linear with dose and has relatively low yield compared with the response to electrons, whereas the response in deaerated polyethylene samples is also linear, but is more sensitive, and has negligible dose-rate dependence in its response to gamma rays...... and electrons. The useful dose range of 0.053 cm thick high-density polyethylene film (rho = 0.961 g cm(-3); melt index = 0.8 dg min(-1)), for irradiations by (60)Co gamma radiation and 2.0 and 0.4 MeV electron beams in deaerated atmosphere (Na gas), is about 50-10(3) kGy for FTIR transvinylene...

  5. 5th International conference on High Energy Density Laboratory Astrophysics

    CERN Document Server

    Kyrala, G.A

    2005-01-01

    During the past several years, research teams around the world have developed astrophysics-relevant utilizing high energy-density facilities such as intense lasers and z-pinches. Research is underway in many areas, such as compressible hydrodynamic mixing, strong shock phenomena, radiation flow, radiative shocks and jets, complex opacities, equations o fstat, and relativistic plasmas. Beyond this current research and the papers it is producing, plans are being made for the application, to astrophysics-relevant research, of the 2 MJ National Ignition Facility (NIF) laser at Lawrence Livermore National Laboratory; the 600 kj Ligne d'Intergration Laser (LIL) and the 2 MJ Laser Megajoule (LMJ) in Bordeaux, France; petawatt-range lasers now under construction around the world; and current and future Z pinches. The goal of this conference and these proceedings is to continue focusing and attention on this emerging research area. The conference brought together different scientists interested in this emerging new fi...

  6. Scoping study. High density polyethylene (HDPE) in salstone service

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, Mark A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2005-02-18

    An evaluation of the use of high density polyethylene (HDPE) geomembranes in Saltstone service has been conducted due to the potential benefits that could be derived from such usage. HDPE is one of the simplest hydrocarbon polymers and one of the most common polymers utilized in the production of geomembranes, which means that its costs are relatively low. Additionally, HDPE geomembranes have an extremely low permeability and an extremely low water vapor diffusional flux, which means that it is a good barrier to contaminant transport. The primary consideration in association with HDPE geomembranes in Saltstone service is the potential impact of Saltstone on the degradation of the HDPE geomembranes. Therefore, the evaluation documented herein has primarily focused upon the potential HDPE degradation in Saltstone service.

  7. The alterations in high density polyethylene properties with gamma irradiation

    Science.gov (United States)

    Zaki, M. F.; Elshaer, Y. H.; Taha, Doaa. H.

    2017-10-01

    In the present investigation, high density polyethylene (HDPE) polymer has been used to study the alterations in its properties under gamma-irradiation. Physico-chemical properties have been investigated with different spectroscopy techniques, Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), biocompatibility properties, as well as, mechanical properties change. The FT-IR analysis shows the formation of new band at 1716 cm-1 that is attributed to the oxidation of irradiated polymer chains, which is due to the formation of carbonyl groups (C˭O). XRD patterns show that a decrease in the crystallite size and increase in the Full Width at Half Maximum (FWHM). This means that the crystallinity of irradiated samples is decreased with increase in gamma dose. The contact angle measurements show an increase in the surface free energy as the gamma irradiation increases. The measurements of mechanical properties of irradiated HDPE samples were discussed.

  8. Ultracold molecular Rydberg physics in a high density environment

    CERN Document Server

    Eiles, Matthew T; Robicheaux, F; Greene, Chris H

    2016-01-01

    Sufficiently high densities in Bose-Einstein condensates provide favorable conditions for the production of ultralong-range polyatomic molecules consisting of one Rydberg atom and a number of neutral ground state atoms. The chemical binding properties and electronic wave functions of these exotic molecules are investigated analytically via hybridized diatomic states. The effects of the molecular geometry on the system's properties are studied through comparisons of the adiabatic potential curves and electronic structures for both symmetric and randomly configured molecular geometries. General properties of these molecules with increasing numbers of constituent atoms and in different geometries are presented. These polyatomic states have spectral signatures that lead to non-Lorentzian line-profiles.

  9. Single-Readout High-Density Memristor Crossbar

    KAUST Repository

    Zidan, M. A.

    2016-01-07

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  10. Characterization of high density through silicon vias with spectral reflectometry.

    Science.gov (United States)

    Ku, Yi-Sha; Huang, Kuo Cheng; Hsu, Weite

    2011-03-28

    Measurement and control is an important step for production-worthy through silicon vias etch. We demonstrate the use and enhancement of an existing wafer metrology tool, spectral reflectometer by implementing novel theoretical model and measurement algorithm for high density through-silicon via (HDTSV) inspection. It is capable of measuring depth and depth variations of array vias by Discrete Fourier Transform (DFT) analysis in one shot measurement. Surface roughness of via bottom can also be extracted by scattering model fitting. Our non-destructive solution can measure TSV profile diameters as small as 5 μm and aspect ratios greater than 13:1. The measurement precision is in the range of 0.02 μm. Metrology results from actual 3D interconnect processing wafers are presented.

  11. Ultra-high current density thin-film Si diode

    Science.gov (United States)

    Wang, Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  12. Sulfurized activated carbon for high energy density supercapacitors

    Science.gov (United States)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  13. High-density avalanche chambers for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Manfrass, P.; Enghardt, W.; Fromm, W.D.; Wohlfarth, D.; Hohmuth, K.

    1988-12-15

    A positron tomograph for radiopharmaceutical and medical research is under construction. In its final stage it will cover six high-density avalanche chambers (HIDAC) in a hexagonal arrangement. Each detector with a sensitive area of 50x28 cm/sup 2/ will consist of a stack of four pairs of multihole photon-to-electron converters with a multiwire proportional counter (MWPC) in between. An experimental investigation of detector properties as time and spatial resolutions as well as detector efficiency in dependence to converter structure, electric field strength and counting gas mixture preceded the final design of these detectors. Results of these studies are outlined. Furthermore, longitudinal tomograms taken with a stationary test camera are presented.

  14. High-density percutaneous chronic connector for neural prosthetics

    Science.gov (United States)

    Shah, Kedar G.; Bennett, William J.; Pannu, Satinderpall S.

    2015-09-22

    A high density percutaneous chronic connector, having first and second connector structures each having an array of magnets surrounding a mounting cavity. A first electrical feedthrough array is seated in the mounting cavity of the first connector structure and a second electrical feedthrough array is seated in the mounting cavity of the second connector structure, with a feedthrough interconnect matrix positioned between a top side of the first electrical feedthrough array and a bottom side of the second electrical feedthrough array to electrically connect the first electrical feedthrough array to the second electrical feedthrough array. The two arrays of magnets are arranged to attract in a first angular position which connects the first and second connector structures together and electrically connects the percutaneously connected device to the external electronics, and to repel in a second angular position to facilitate removal of the second connector structure from the first connector structure.

  15. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  16. Methods and systems for rapid prototyping of high density circuits

    Science.gov (United States)

    Palmer, Jeremy A.; Davis, Donald W.; Chavez, Bart D.; Gallegos, Phillip L.; Wicker, Ryan B.; Medina, Francisco R.

    2008-09-02

    A preferred embodiment provides, for example, a system and method of integrating fluid media dispensing technology such as direct-write (DW) technologies with rapid prototyping (RP) technologies such as stereolithography (SL) to provide increased micro-fabrication and micro-stereolithography. A preferred embodiment of the present invention also provides, for example, a system and method for Rapid Prototyping High Density Circuit (RPHDC) manufacturing of solderless connectors and pilot devices with terminal geometries that are compatible with DW mechanisms and reduce contact resistance where the electrical system is encapsulated within structural members and manual electrical connections are eliminated in favor of automated DW traces. A preferred embodiment further provides, for example, a method of rapid prototyping comprising: fabricating a part layer using stereolithography and depositing thermally curable media onto the part layer using a fluid dispensing apparatus.

  17. Thermolysis of High-Density Polyethylene to Petroleum Products

    Directory of Open Access Journals (Sweden)

    Sachin Kumar

    2013-01-01

    Full Text Available Thermal degradation of plastic polymers is becoming an increasingly important method for the conversion of plastic materials into valuable chemicals and oil products. In this work, virgin high-density polyethylene (HDPE was chosen as a material for pyrolysis. A simple pyrolysis reactor system has been used to pyrolyse virgin HDPE with an objective to optimize the liquid product yield at a temperature range of 400°C to 550°C. The chemical analysis of the HDPE pyrolytic oil showed the presence of functional groups such as alkanes, alkenes, alcohols, ethers, carboxylic acids, esters, and phenyl ring substitution bands. The composition of the pyrolytic oil was analyzed using GC-MS, and it was found that the main constituents were n-Octadecane, n-Heptadecane, 1-Pentadecene, Octadecane, Pentadecane, and 1-Nonadecene. The physical properties of the obtained pyrolytic oil were close to those of mixture of petroleum products.

  18. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.

    Science.gov (United States)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V; Liu, Jie

    2013-02-07

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO(2), activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s(-1) to 500 mV s(-1). Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg(-1)) under high power density (7.8 kW kg(-1)) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.

  19. Extended MHD Effects in High Energy Density Experiments

    Science.gov (United States)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation

  20. Modulation of low-density lipoprotein-induced inhibition of intercellular communication by antioxidants and high-density lipoproteins

    NARCIS (Netherlands)

    Zwijsen, R M; de Haan, L. H. J.; Kuivenhoven, J A; Nusselder, I C

    1991-01-01

    In order to study the capacity of antioxidants and high-density lipoproteins (HDL) to modulate the effects of low-density lipoprotein (LDL) on intercellular communication, arterial smooth muscle cells and a dye transfer method were used. LDL, in contrast to HDL, inhibited the communication between a

  1. Modulation of low-density lipoprotein-induced inhibition of intercellular communication by antioxidants and high-density lipoproteins

    NARCIS (Netherlands)

    Zwijsen, R M; de Haan, L. H. J.; Kuivenhoven, J A; Nusselder, I C

    In order to study the capacity of antioxidants and high-density lipoproteins (HDL) to modulate the effects of low-density lipoprotein (LDL) on intercellular communication, arterial smooth muscle cells and a dye transfer method were used. LDL, in contrast to HDL, inhibited the communication between

  2. Five-minute grid of the total marine bird biomass densities surveyed off central California - selected neutral water temperature periods, 1980-2001 (CDAS data set AL2_MASS.shp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — AL2_MASS is a polygon shapefile representing 5 minute x 5 minute latitude x longitude cells that house the overall total biomass densities (kg/sq.km.) of up to 76...

  3. Five-minute grid of total marine bird biomass densities surveyed off central California - selected cool water temperature periods, 1980-2001 (CDAS data set AL3_MASS.shp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — AL3_MASS is a polygon shapefile representing 5 minute x 5 minute latitude x longitude cells that house the overall total biomass densities (kg/sq km) of up to 76...

  4. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for both the 2015 SOT (Hartley et al., 2015; ANL, 2016; DOE, 2016) and the 2017 design case for feedstock logistics (INL, 2014) and for both the 2015 SOT (Tan et al., 2015a) and the 2022 target case for HOG production via IDL (Tan et al., 2015b). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. In the SCSA, the 2015 SOT case for the conversion process, as modeled in Tan et al. (2015b), uses the 2015 SOT feedstock blend of pulpwood, wood residue, and construction and demolition waste (C&D). Moreover, the 2022 design case for the conversion process, as described in Tan et al. (2015a), uses the 2017 design case blend of pulpwood, wood residue, switchgrass, and C&D. The performance characteristics of this blend are consistent with those of a single woody feedstock (e.g., pine or poplar). We also examined the influence of using a single feedstock type on SCSA results for the design case. These single feedstock scenarios could be viewed as bounding SCSA results given that the different components of the feedstock blend have varying energy and material demands for production and logistics.

  5. Anaerobic High-Throughput Cultivation Method for Isolation of Thermophiles Using Biomass-Derived Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton-Brehm, Scott [ORNL; Vishnivetskaya, Tatiana A [ORNL; Allman, Steve L [ORNL; Mielenz, Jonathan R [ORNL; Elkins, James G [ORNL

    2012-01-01

    Flow cytometry (FCM) techniques have been developed for sorting mesophilic organisms, but the difficulty increases if the target microbes are thermophilic anaerobes. We demonstrate a reliable, high-throughput method of screening thermophilic anaerobic organisms using FCM and 96-well plates for growth on biomass-relevant substrates. The method was tested using the cellulolytic thermophiles Clostridium ther- mocellum (Topt = 55 C), Caldicellulosiruptor obsidiansis (Topt = 78 C) and the fermentative hyperthermo- philes, Pyrococcus furiosus (Topt = 100 C) and Thermotoga maritima (Topt = 80 C). Multi-well plates were incubated at various temperatures for approximately 72 120 h and then tested for growth. Positive growth resulting from single cells sorted into individual wells containing an anaerobic medium was verified by OD600. Depending on the growth substrate, up to 80 % of the wells contained viable cultures, which could be transferred to fresh media. This method was used to isolate thermophilic microbes from Rabbit Creek, Yellowstone National Park (YNP), Wyoming. Substrates for enrichment cultures including crystalline cellulose (Avicel), xylan (from Birchwood), pretreated switchgrass and Populus were used to cultivate organisms that may be of interest to lignocellulosic biofuel production.

  6. Numerical methods for high-dimensional probability density function equations

    Science.gov (United States)

    Cho, H.; Venturi, D.; Karniadakis, G. E.

    2016-01-01

    In this paper we address the problem of computing the numerical solution to kinetic partial differential equations involving many phase variables. These types of equations arise naturally in many different areas of mathematical physics, e.g., in particle systems (Liouville and Boltzmann equations), stochastic dynamical systems (Fokker-Planck and Dostupov-Pugachev equations), random wave theory (Malakhov-Saichev equations) and coarse-grained stochastic systems (Mori-Zwanzig equations). We propose three different classes of new algorithms addressing high-dimensionality: The first one is based on separated series expansions resulting in a sequence of low-dimensional problems that can be solved recursively and in parallel by using alternating direction methods. The second class of algorithms relies on truncation of interaction in low-orders that resembles the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) framework of kinetic gas theory and it yields a hierarchy of coupled probability density function equations. The third class of algorithms is based on high-dimensional model representations, e.g., the ANOVA method and probabilistic collocation methods. A common feature of all these approaches is that they are reducible to the problem of computing the solution to high-dimensional equations via a sequence of low-dimensional problems. The effectiveness of the new algorithms is demonstrated in numerical examples involving nonlinear stochastic dynamical systems and partial differential equations, with up to 120 variables.

  7. Numerical methods for high-dimensional probability density function equations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H. [Department of Mathematics, University of Maryland College Park, College Park, MD 20742 (United States); Venturi, D. [Department of Applied Mathematics and Statistics, University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Karniadakis, G.E., E-mail: gk@dam.brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)

    2016-01-15

    In this paper we address the problem of computing the numerical solution to kinetic partial differential equations involving many phase variables. These types of equations arise naturally in many different areas of mathematical physics, e.g., in particle systems (Liouville and Boltzmann equations), stochastic dynamical systems (Fokker–Planck and Dostupov–Pugachev equations), random wave theory (Malakhov–Saichev equations) and coarse-grained stochastic systems (Mori–Zwanzig equations). We propose three different classes of new algorithms addressing high-dimensionality: The first one is based on separated series expansions resulting in a sequence of low-dimensional problems that can be solved recursively and in parallel by using alternating direction methods. The second class of algorithms relies on truncation of interaction in low-orders that resembles the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) framework of kinetic gas theory and it yields a hierarchy of coupled probability density function equations. The third class of algorithms is based on high-dimensional model representations, e.g., the ANOVA method and probabilistic collocation methods. A common feature of all these approaches is that they are reducible to the problem of computing the solution to high-dimensional equations via a sequence of low-dimensional problems. The effectiveness of the new algorithms is demonstrated in numerical examples involving nonlinear stochastic dynamical systems and partial differential equations, with up to 120 variables.

  8. Probucol alleviates atherosclerosis and improves high density lipoprotein function

    Directory of Open Access Journals (Sweden)

    Zhong Jian-Kai

    2011-11-01

    Full Text Available Abstract Background Probucol is a unique hypolipidemic agent that decreases high density lipoprotein cholesterol (HDL-C. However, it is not definite that whether probucol hinders the progression of atherosclerosis by improving HDL function. Methods Eighteen New Zealand White rabbits were randomly divided into the control, atherosclerosis and probucol groups. Control group were fed a regular diet; the atherosclerosis group received a high fat diet, and the probucol group received the high fat diet plus probucol. Hepatocytes and peritoneal macrophages were isolated for [3H] labeled cholesterol efflux rates and expression of ABCA1 and SR-B1 at gene and protein levels; venous blood was collected for serum paraoxonase 1, myeloperoxidase activity and lipid analysis. Aorta were prepared for morphologic and immunohistochemical analysis after 12 weeks. Results Compared to the atherosclerosis group, the paraoxonase 1 activity, cholesterol efflux rates, expression of ABCA1 and SR-BI in hepatocytes and peritoneal macrophages, and the level of ABCA1 and SR-BI in aortic lesions were remarkably improved in the probucol group, But the serum HDL cholesterol concentration, myeloperoxidase activity, the IMT and the percentage plaque area of aorta were significantly decreased. Conclusion Probucol alleviated atherosclerosis by improving HDL function. The mechanisms include accelerating the process of reverse cholesterol transport, improving the anti-inflammatory and anti-oxidant functions.

  9. Acrolein impairs the cholesterol transport functions of high density lipoproteins.

    Science.gov (United States)

    Chadwick, Alexandra C; Holme, Rebecca L; Chen, Yiliang; Thomas, Michael J; Sorci-Thomas, Mary G; Silverstein, Roy L; Pritchard, Kirkwood A; Sahoo, Daisy

    2015-01-01

    High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.

  10. SELDI-TOF mass spectrometry of High-Density Lipoprotein

    Directory of Open Access Journals (Sweden)

    Rezaee Farhad

    2007-09-01

    Full Text Available Abstract Background High-Density Lipoprotein (HDL, one of the main plasma lipoproteins, serves as a docking station for proteins involved in inflammation, coagulation, and lipid metabolism. Methods To elucidate the protein composition of HDL, we employed SELDI-TOF mass spectrometry as a potential high-throughput proteomic candidate for protein profiling of HDL. HDL derived from normolipemic individuals was captured on PS20 protein-chips using covalently bound antibodies against apo A-I or A-II. Results After optimisation, on-chip capture of HDL particles directly from plasma or from pre-purified HDL resulted in comparable fingerprints confirming specific capture of HDL. Depending on the capture antibody some differences in the fingerprint were observed. The most detailed fingerprint was observed up to 50 kDa; approximately 95 peaks were detected in the 3–50 kDa molecular mass range. Between 50 and 160 kDa, 27 more peaks were detected. Conclusion Based on these results, SELDI-TOF MS may be a suitable high-throughput candidate for HDL protein profiling and marker search. This approach may be used to i investigate the underlying mechanisms that lead to increased atherothrombotic risk and ii to investigate the atherothrombotic state of an individual.

  11. High-Density Infrared Surface Treatments of Refractories

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, T.N.

    2005-03-31

    Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

  12. A High-Throughput, Field-Based Phenotyping Technology for Tall Biomass Crops.

    Science.gov (United States)

    Salas Fernandez, Maria G; Bao, Yin; Tang, Lie; Schnable, Patrick S

    2017-08-01

    Recent advances in omics technologies have not been accompanied by equally efficient, cost-effective, and accurate phenotyping methods required to dissect the genetic architecture of complex traits. Even though high-throughput phenotyping platforms have been developed for controlled environments, field-based aerial and ground technologies have only been designed and deployed for short-stature crops. Therefore, we developed and tested Phenobot 1.0, an auto-steered and self-propelled field-based high-throughput phenotyping platform for tall dense canopy crops, such as sorghum (Sorghum bicolor). Phenobot 1.0 was equipped with laterally positioned and vertically stacked stereo RGB cameras. Images collected from 307 diverse sorghum lines were reconstructed in 3D for feature extraction. User interfaces were developed, and multiple algorithms were evaluated for their accuracy in estimating plant height and stem diameter. Tested feature extraction methods included the following: (1) User-interactive Individual Plant Height Extraction (UsIn-PHe) based on dense stereo three-dimensional reconstruction; (2) Automatic Hedge-based Plant Height Extraction (Auto-PHe) based on dense stereo 3D reconstruction; (3) User-interactive Dense Stereo Matching Stem Diameter Extraction; and (4) User-interactive Image Patch Stereo Matching Stem Diameter Extraction (IPaS-Di). Comparative genome-wide association analysis and ground-truth validation demonstrated that both UsIn-PHe and Auto-PHe were accurate methods to estimate plant height, while Auto-PHe had the additional advantage of being a completely automated process. For stem diameter, IPaS-Di generated the most accurate estimates of this biomass-related architectural trait. In summary, our technology was proven robust to obtain ground-based high-throughput plant architecture parameters of sorghum, a tall and densely planted crop species. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. A High-Throughput, Field-Based Phenotyping Technology for Tall Biomass Crops1[OPEN

    Science.gov (United States)

    2017-01-01

    Recent advances in omics technologies have not been accompanied by equally efficient, cost-effective, and accurate phenotyping methods required to dissect the genetic architecture of complex traits. Even though high-throughput phenotyping platforms have been developed for controlled environments, field-based aerial and ground technologies have only been designed and deployed for short-stature crops. Therefore, we developed and tested Phenobot 1.0, an auto-steered and self-propelled field-based high-throughput phenotyping platform for tall dense canopy crops, such as sorghum (Sorghum bicolor). Phenobot 1.0 was equipped with laterally positioned and vertically stacked stereo RGB cameras. Images collected from 307 diverse sorghum lines were reconstructed in 3D for feature extraction. User interfaces were developed, and multiple algorithms were evaluated for their accuracy in estimating plant height and stem diameter. Tested feature extraction methods included the following: (1) User-interactive Individual Plant Height Extraction (UsIn-PHe) based on dense stereo three-dimensional reconstruction; (2) Automatic Hedge-based Plant Height Extraction (Auto-PHe) based on dense stereo 3D reconstruction; (3) User-interactive Dense Stereo Matching Stem Diameter Extraction; and (4) User-interactive Image Patch Stereo Matching Stem Diameter Extraction (IPaS-Di). Comparative genome-wide association analysis and ground-truth validation demonstrated that both UsIn-PHe and Auto-PHe were accurate methods to estimate plant height, while Auto-PHe had the additional advantage of being a completely automated process. For stem diameter, IPaS-Di generated the most accurate estimates of this biomass-related architectural trait. In summary, our technology was proven robust to obtain ground-based high-throughput plant architecture parameters of sorghum, a tall and densely planted crop species. PMID:28620124

  14. A process for energy-efficient high-solids fed-batch enzymatic liquefaction of cellulosic biomass.

    Science.gov (United States)

    Cardona, M J; Tozzi, E J; Karuna, N; Jeoh, T; Powell, R L; McCarthy, M J

    2015-12-01

    The enzymatic hydrolysis of cellulosic biomass is a key step in the biochemical production of fuels and chemicals. Economically feasible large-scale implementation of the process requires operation at high solids loadings, i.e., biomass concentrations >15% (w/w). At increasing solids loadings, however, biomass forms a high viscosity slurry that becomes increasingly challenging to mix and severely mass transfer limited, which limits further addition of solids. To overcome these limitations, we developed a fed-batch process controlled by the yield stress and its changes during liquefaction of the reaction mixture. The process control relies on an in-line, non-invasive magnetic resonance imaging (MRI) rheometer to monitor real-time evolution of yield stress during liquefaction. Additionally, we demonstrate that timing of enzyme addition relative to biomass addition influences process efficiency, and the upper limit of solids loading is ultimately limited by end-product inhibition as soluble glucose and cellobiose accumulate in the liquid phase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Nickel- and iron-based HVOF thermal spray coatings for high temperature corrosion protection in biomass-fired power plant boilers

    OpenAIRE

    Oksa, Maria

    2015-01-01

    Biomass burning for production of electricity and heat has been increasing due to legislation in Europe. Growing awareness of environmental problems has led to strict restrictions on greenhouse emissions in the energy sector, and increased demand for higher use of renewable energy sources and carbon-neutral fuels, such as biomass. There are over 1000 biomass boilers in Europe, and the number is increasing. These plants often face serious problems due to high temperature corrosion. Fouling and...

  16. Biomass Waste Inspired Highly Porous Carbon for High Performance Lithium/Sulfur Batteries.

    Science.gov (United States)

    Zhao, Yan; Ren, Jun; Tan, Taizhe; Babaa, Moulay-Rachid; Bakenov, Zhumabay; Liu, Ning; Zhang, Yongguang

    2017-09-06

    The synthesis of highly porous carbon (HPC) materials from poplar catkin by KOH chemical activation and hydrothermal carbonization as a conductive additive to a lithium-sulfur cathode is reported. Elemental sulfur was composited with as-prepared HPC through a melt diffusion method to form a S/HPC nanocomposite. Structure and morphology characterization revealed a hierarchically sponge-like structure of HPC with high pore volume (0.62 cm³∙g (−1) ) and large specific surface area (1261.7 m²∙g (−1) ). When tested in Li/S batteries, the resulting compound demonstrated excellent cycling stability, delivering a second-specific capacity of 1154 mAh∙g (−1) as well as presenting 74% retention of value after 100 cycles at 0.1 C. Therefore, the porous structure of HPC plays an important role in enhancing electrochemical properties, which provides conditions for effective charge transfer and effective trapping of soluble polysulfide intermediates, and remarkably improves the electrochemical performance of S/HPC composite cathodes.

  17. Low-cost production of green microalga Botryococcus braunii biomass with high lipid content through mixotrophic and photoautotrophic cultivation.

    Science.gov (United States)

    Yeesang, Chittra; Cheirsilp, Benjamas

    2014-09-01

    Botryococcus braunii is a microalga that is regarded as a potential source of renewable fuel because of its ability to produce large amounts of lipid that can be converted into biodiesel. Agro-industrial by-products and wastes are of great interest as cultivation medium for microorganisms because of their low cost, renewable nature, and abundance. In this study, two strategies for low-cost production of B. braunii biomass with high lipid content were performed: (i) the mixotrophic cultivation using molasses, a cheap by-product from the sugar cane plant as a carbon source, and (ii) the photoautotrophic cultivation using nitrate-rich wastewater supplemented with CO2 as a carbon source. The mixotrophic cultivation added with 15 g L(-1) molasses produced a high amount of biomass of 3.05 g L(-1) with a high lipid content of 36.9 %. The photoautotrophic cultivation in nitrate-rich wastewater supplemented with 2.0 % CO2 produced a biomass of 2.26 g L(-1) and a lipid content of 30.3 %. The benefits of this photoautotrophic cultivation are that this cultivation would help to reduce accumulation of atmospheric carbon dioxide and more than 90 % of the nitrate could be removed from the wastewater. When this cultivation was scaled up in a stirred tank photobioreactor and run with semi-continuous cultivation regime, the highest microalgal biomass of 5.16 g L(-1) with a comparable lipid content of 32.2 % was achieved. These two strategies could be promising ways for producing cheap lipid-rich microalgal biomass that can be used as biofuel feedstocks and animal feeds.

  18. Cyclic Oxidation of High Mo, Reduced Density Superalloys

    Directory of Open Access Journals (Sweden)

    James L. Smialek

    2015-11-01

    Full Text Available Cyclic oxidation was characterized as part of a statistically designed, 12-alloy compositional study of 2nd generation single crystal superalloys as part of a broader study to co-optimize density, creep strength, and cyclic oxidation. The primary modification was a replacement of 5 wt. % W by 7% or 12% Mo for density reductions of 2%–7%. Compositions at two levels of Mo, Cr, Co, and Re were produced, along with a midpoint composition. Initially, polycrystalline vacuum induction samples were screened in 1100 °C cyclic furnace tests using 1 h cycles for 200 h. The behavior was primarily delimited by Cr content, producing final weight changes of −40 mg/cm2 to −10 mg/cm2 for 0% Cr alloys and −2 mg/cm2 to +1 mg/cm2 for 5% Cr alloys. Accordingly, a multiple linear regression fit yielded an equation showing a strong positive Cr effect and lesser negative effects of Co and Mo. The results for 5% Cr alloys compare well to −1 mg/cm2, and +0.5 mg/cm2 for Rene′ N4 and Rene′ N5 (or Rene′ N6, respectively. Scale phases commonly identified were Al2O3, NiAl2O4, NiTa2O6, and NiO, with (Ni,CoMoO4 found only on the least resistant alloys having 0% Cr and 12% Mo. Scale microstructures were complex and reflected variations in the regional spallation history. Large faceted NiO grains and fine NiTa2O6 particles distributed along NiAl2O4 grain boundaries were typical distinctive features. NiMoO4 formation, decomposition, and volatility occurred for a few high Mo compositions. A creep, density, phase stability, and oxidation balanced 5% Cr, 10% Co, 7% Mo, and 3% Re alloy was selected to be taken forward for more extensive evaluations in single crystal form.

  19. A Sustainable Route from Biomass Byproduct Okara to High Content Nitrogen-Doped Carbon Sheets for Efficient Sodium Ion Batteries.

    Science.gov (United States)

    Yang, Tingzhou; Qian, Tao; Wang, Mengfan; Shen, Xiaowei; Xu, Na; Sun, Zhouzhou; Yan, Chenglin

    2016-01-20

    A sustainable route from the biomass byproduct okara as a natural nitrogen fertilizer to high-content N-doped carbon sheets is demonstrated. The as-prepared unique structure exhibits high specific capacity (292 mAh g(-1) ) and extremely long cycle life (exceeding 2000 cycles). A full battery is devised for the practical use of materials with a flexible/wearable LED screen.

  20. Effects of gamma irradiation on polypropylene, polypropylene + high density polyethylene and polypropylene + high density polyethylene + wood flour

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, J.; Albano, C.; Davidson, E.; Poleo, R. [Universidad Central de Venezuela, Caracas (Venezuela). Escuela de Quimica; Gonzalez, J.; Ichazo, M. [Universidad Simon Bolivar, Dept. de Mecanica, Caracas (Venezuela); Chipara, M. [Research Institute for Electrotechnics, Bucharest (Romania)

    2001-04-01

    The effect of the gamma-irradiation on the mechanical properties of the composites, Polypropylene (PP), PP+high density Polyethylene (HDPE), PP+ HDPE+wood flour, where HDPE is virgin and recycled, was studied. This paper discusses the behavior of the composites after exposure to various doses of gamma irradiation (1-7 MRads) in the presence of oxygen. The dependence of mechanical properties on the integral dose for a constant dose rate of 0.48 MRads/h confirms the influence of the irradiation. Strong effects on the elongation at break and break strength is noticed. The mathematical analysis suggests for the PP+r-HDPE a bimolecular process of the elongation at break. On the order hand, for the PP+HDPE a complex process is represented for a three exponential equation. (orig.)

  1. Individual tree detection based on densities of high points of high resolution airborne lidar

    NARCIS (Netherlands)

    Abd Rahman, M.Z.; Gorte, B.G.H.

    2008-01-01

    The retrieval of individual tree location from Airborne LiDAR has focused largely on utilizing canopy height. However, high resolution Airborne LiDAR offers another source of information for tree detection. This paper presents a new method for tree detection based on high points’ densities from a

  2. Tree crown delineation from high resolution airborne LiDAR based on densities of high points

    NARCIS (Netherlands)

    Rahman, M.Z.A.; Gorte, B.G.H.

    2009-01-01

    Tree detection and tree crown delineation from Airborne LiDAR has been focusing mostly on utilizing the canopy height model (CHM). This paper presents a method for individual tree crown delineation based on densities of high points (DHP) from the high resolution Airborne LiDAR. The DHP method relies

  3. High-density myoelectric pattern recognition toward improved stroke rehabilitation.

    Science.gov (United States)

    Zhang, Xu; Zhou, Ping

    2012-06-01

    Myoelectric pattern-recognition techniques have been developed to infer user's intention of performing different functional movements. Thus electromyogram (EMG) can be used as control signals of assisted devices for people with disabilities. Pattern-recognition-based myoelectric control systems have rarely been designed for stroke survivors. Aiming at developing such a system for improved stroke rehabilitation, this study assessed detection of the affected limb's movement intention using high-density surface EMG recording and pattern-recognition techniques. Surface EMG signals comprised of 89 channels were recorded from 12 hemiparetic stroke subjects while they tried to perform 20 different arm, hand, and finger/thumb movements involving the affected limb. A series of pattern-recognition algorithms were implemented to identify the intended tasks of each stroke subject. High classification accuracies (96.1% ± 4.3%) were achieved, indicating that substantial motor control information can be extracted from paretic muscles of stroke survivors. Such information may potentially facilitate improved stroke rehabilitation.

  4. High-Density Carbon (HDC) Ablator for NIC Ignition Capsules

    Science.gov (United States)

    Ho, D.; Haan, S.; Salmonson, J.; Milovich, J.; Callahan, D.

    2012-10-01

    HDC ablators show high performance based on simulations, despite the fact that the shorter pulses for HDC capsules result in higher M-band radiation compared to that for plastic capsules. HDC capsules have good 1-D performance because HDC has relatively high density (3.5 g/cc), which results in a thinner ablator that absorbs more radiation. HDC ablators have good 2-D performance because the ablator surface is more than an order-of-magnitude smoother than Be or plastic ablators. Refreeze of the ablator near the fuel region can be avoided by appropriate dopant placement. Here we present two HDC ignition designs doped with W and Si. For the design with maximum W concentration of 1.0 at% (and respectively with maximum Si concentration of 2.0 at%): peak velocity = 0.395 (0.397) mm/ns, mass weighted fuel entropy = 0.463 (0.469) kJ/mg/eV, peak core hydrodynamic stagnation pressure = 690 (780) Gbar, and yield = 17.3 (20.2) MJ. 2-D simulations show that yield is close to 80% YoC even with 2.5x of nominal surface roughness on all surfaces. The clean fuel fraction is about 75% at peak velocity. Doping HDC with the required concentration of W and Si is in progress. A first undoped HDC Symcap is scheduled to be fielded later this year.

  5. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling

    National Research Council Canada - National Science Library

    Riwanto, Meliana; Rohrer, Lucia; Roschitzki, Bernd; Besler, Christian; Mocharla, Pavani; Mueller, Maja; Perisa, Damir; Heinrich, Kathrin; Altwegg, Lukas; von Eckardstein, Arnold; Lüscher, Thomas F; Landmesser, Ulf

    2013-01-01

    ...). High-density lipoprotein from healthy subjects (HDL(Healthy)) has been proposed to exert endothelial antiapoptotic effects that may represent an important antiatherogenic property of the lipoprotein...

  6. Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China

    Directory of Open Access Journals (Sweden)

    J. Zheng

    2017-06-01

    Full Text Available Highly time-resolved in situ measurements of airborne particles were conducted at Mt. Yulong (3410 m above sea level on the southeastern edge of the Tibetan Plateau in China from 22 March to 14 April 2015. The detailed chemical composition was measured by a high-resolution time-of-flight aerosol mass spectrometer together with other online instruments. The average mass concentration of the submicron particles (PM1 was 5.7 ± 5.4 µg m−3 during the field campaign, ranging from 0.1 up to 33.3 µg m−3. Organic aerosol (OA was the dominant component in PM1, with a fraction of 68 %. Three OA factors, i.e., biomass burning organic aerosol (BBOA, biomass-burning-influenced oxygenated organic aerosol (OOA-BB and oxygenated organic aerosol (OOA, were resolved using positive matrix factorization analysis. The two oxygenated OA factors accounted for 87 % of the total OA mass. Three biomass burning events were identified by examining the enhancement of black carbon concentrations and the f60 (the ratio of the signal at m∕z 60 from the mass spectrum to the total signal of OA. Back trajectories of air masses and satellite fire map data were integrated to identify the biomass burning locations and pollutant transport. The western air masses from South Asia with active biomass burning activities transported large amounts of air pollutants, resulting in elevated organic concentrations up to 4-fold higher than those of the background conditions. This study at Mt. Yulong characterizes the tropospheric background aerosols of the Tibetan Plateau during pre-monsoon season and provides clear evidence that the southeastern edge of the Tibetan Plateau was affected by the transport of anthropogenic aerosols from South Asia.

  7. Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China

    Science.gov (United States)

    Zheng, Jing; Hu, Min; Du, Zhuofei; Shang, Dongjie; Gong, Zhaoheng; Qin, Yanhong; Fang, Jingyao; Gu, Fangting; Li, Mengren; Peng, Jianfei; Li, Jie; Zhang, Yuqia; Huang, Xiaofeng; He, Lingyan; Wu, Yusheng; Guo, Song

    2017-06-01

    Highly time-resolved in situ measurements of airborne particles were conducted at Mt. Yulong (3410 m above sea level) on the southeastern edge of the Tibetan Plateau in China from 22 March to 14 April 2015. The detailed chemical composition was measured by a high-resolution time-of-flight aerosol mass spectrometer together with other online instruments. The average mass concentration of the submicron particles (PM1) was 5.7 ± 5.4 µg m-3 during the field campaign, ranging from 0.1 up to 33.3 µg m-3. Organic aerosol (OA) was the dominant component in PM1, with a fraction of 68 %. Three OA factors, i.e., biomass burning organic aerosol (BBOA), biomass-burning-influenced oxygenated organic aerosol (OOA-BB) and oxygenated organic aerosol (OOA), were resolved using positive matrix factorization analysis. The two oxygenated OA factors accounted for 87 % of the total OA mass. Three biomass burning events were identified by examining the enhancement of black carbon concentrations and the f60 (the ratio of the signal at m/z 60 from the mass spectrum to the total signal of OA). Back trajectories of air masses and satellite fire map data were integrated to identify the biomass burning locations and pollutant transport. The western air masses from South Asia with active biomass burning activities transported large amounts of air pollutants, resulting in elevated organic concentrations up to 4-fold higher than those of the background conditions. This study at Mt. Yulong characterizes the tropospheric background aerosols of the Tibetan Plateau during pre-monsoon season and provides clear evidence that the southeastern edge of the Tibetan Plateau was affected by the transport of anthropogenic aerosols from South Asia.

  8. Symmetry energy systematics and its high density behavior

    CERN Document Server

    Chen, Lie-Wen

    2015-01-01

    We explore the systematics of the density dependence of nuclear matter symmetry energy in the ambit of microscopic calculations with various energy density functionals, and find that the symmetry energy from subsaturation density to supra-saturation density can be well determined by three characteristic parameters of the symmetry energy at saturation density $\\rho_0 $, i.e., the magnitude $E_{\\text{sym}}({\\rho_0 })$, the density slope $L$ and the density curvature $K_{\\text{sym}}$. This finding opens a new window to constrain the supra-saturation density behavior of the symmetry energy from its (sub-)saturation density behavior. In particular, we obtain $L=46.7 \\pm 12.8$ MeV and $K_{\\text{sym}}=-166.9 \\pm 168.3$ MeV as well as $E_{\\text{sym}}({2\\rho _{0}}) \\approx 40.2 \\pm 12.8$ MeV and $L({2\\rho _{0}}) \\approx 8.9 \\pm 108.7$ MeV based on the present knowledge of $E_{\\text{sym}}({\\rho_{0}}) = 32.5 \\pm 0.5$ MeV, $E_{\\text{sym}}({\\rho_c}) = 26.65 \\pm 0.2$ MeV and $L({\\rho_c}) = 46.0 \\pm 4.5$ MeV at $\\rho_{\\rm{c...

  9. High-density lipoprotein proteome dynamics in human endotoxemia

    Directory of Open Access Journals (Sweden)

    Stroes Erik SG

    2011-06-01

    Full Text Available Abstract Background A large variety of proteins involved in inflammation, coagulation, lipid-oxidation and lipid metabolism have been associated with high-density lipoprotein (HDL and it is anticipated that changes in the HDL proteome have implications for the multiple functions of HDL. Here, SELDI-TOF mass spectrometry (MS was used to study the dynamic changes of HDL protein composition in a human experimental low-dose endotoxemia model. Ten healthy men with low HDL cholesterol (0.7+/-0.1 mmol/L and 10 men with high HDL cholesterol levels (1.9+/-0.4 mmol/L were challenged with endotoxin (LPS intravenously (1 ng/kg bodyweight. We previously showed that subjects with low HDL cholesterol are more susceptible to an inflammatory challenge. The current study tested the hypothesis that this discrepancy may be related to differences in the HDL proteome. Results Plasma drawn at 7 time-points over a 24 hour time period after LPS challenge was used for direct capture of HDL using antibodies against apolipoprotein A-I followed by subsequent SELDI-TOF MS profiling. Upon LPS administration, profound changes in 21 markers (adjusted p-value Conclusions This study shows that the semi-quantitative differences in the HDL proteome as assessed by SELDI-TOF MS cannot explain why subjects with low HDL cholesterol are more susceptible to a challenge with LPS than those with high HDL cholesterol. Instead the results indicate that hierarchical clustering could be useful to predict HDL functionality in acute phase responses towards LPS.

  10. High density plasmas and new diagnostics: An overview (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Celona, L., E-mail: celona@lns.infn.it; Gammino, S.; Mascali, D. [Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy)

    2016-02-15

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including “volume-integrated” X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a “pin-hole camera” has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.

  11. High density plasmas and new diagnostics: An overview (invited).

    Science.gov (United States)

    Celona, L; Gammino, S; Mascali, D

    2016-02-01

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.

  12. Ultra-high Density SNParray in Neuroblastoma Molecular Diagnostics

    Directory of Open Access Journals (Sweden)

    Inge M. Ambros

    2014-08-01

    Full Text Available Neuroblastoma serves as a paradigm for applying tumor genomic data for determining patient prognosis and thus for treatment allocation. MYCN status, i.e. amplified vs. non-amplified, was one of the very first biomarkers in oncology to discriminate aggressive from less aggressive or even favorable clinical courses of neuroblastoma. However, MYCN amplification is by far not the only genetic change associated with unfavorable clinical courses: so called segmental chromosomal aberrations, i.e. gains or losses of chromosomal fragments, can also indicate tumor aggressiveness. The clinical use of these genomic aberrations has, however, been hampered for many years by methodical and interpretational problems. Only after reaching worldwide consensus on markers, methodology, and data interpretation, information on SCAs has recently been implemented in clinical studies. Now, a number of collaborative studies within COG, GPOH and SIOPEN use genomic information to stratify therapy for patients with localized and metastatic disease. Recently, new types of DNA based aberrations influencing the clinical behavior of neuroblastomas have been described. Deletions or mutations of genes like ATRX and a phenomenon referred to as chromothripsis are all assumed to correlate with an unfavorable clinical behavior. However, these genomic aberrations need to be scrutinized in larger studies applying the most appropriate techniques. Single nucleotide polymorphism (SNP arrays have proven successful in deciphering genomic aberrations of cancer cells; these techniques, however, are usually not applied in the daily routine. Here, we present an ultra-high density (UHD SNParray technique which is, because of its high specificity and sensitivity and the combined copy number and allele information, highly appropriate for the genomic diagnosis of neuroblastoma and other malignancies.

  13. Plasma behaviour at high beta and high density in the Madison Symmetric Torus RFP

    Energy Technology Data Exchange (ETDEWEB)

    Wyman, M. [University of Wisconsin, Madison; Chapman, B. E. [University of Wisconsin, Madison; Ahn, J. W. [University of Wisconsin, Madison; Almagri, A. F. [University of Wisconsin, Madison; Anderson, J. [University of Wisconsin, Madison; Bonomo, F. [Consorzio RFX, Italy; Bower, D L [University of California, Los Angeles; Combs, Stephen Kirk [ORNL; Craig, D. [University of Wisconsin, Madison; Foust, Charles R [ORNL

    2009-01-01

    Pellet fuelling of improved confinement Madison Symmetric Torus (MST) plasmas has resulted in high density and high plasma beta. The density in improved confinement discharges has been increased fourfold, and a record plasma beta (beta(tot) = 26%) for the improved confinement reversed-field pinch (RFP) has been achieved. At higher beta, a new regime for instabilities is accessed in which local interchange and global tearing instabilities are calculated to be linearly unstable, but experimentally, no severe effect, e. g., a disruption, is observed. The tearing instability, normally driven by the current gradient, is driven by the pressure gradient in this case, and there are indications of increased energy transport ( as compared with low-density improved confinement). Pellet fuelling is also compared with enhanced edge fuelling of standard confinement RFP discharges for the purpose of searching for a density limit in MST. In standard-confinement discharges, pellet fuelling peaks the density profile where edge fuelling cannot, but transport appears unchanged. For a limited range of plasma current, MST discharges with edge fuelling are constrained to a maximum density corresponding to the Greenwald limit. This limit is surpassed in pellet-fuelled improved confinement discharges.

  14. Fundamental properties of high-quality carbon nanofoam: from low to high density

    Directory of Open Access Journals (Sweden)

    Natalie Frese

    2016-12-01

    Full Text Available Highly uniform samples of carbon nanofoam from hydrothermal sucrose carbonization were studied by helium ion microscopy (HIM, X-ray photoelectron spectroscopy (XPS, and Raman spectroscopy. Foams with different densities were produced by changing the process temperature in the autoclave reactor. This work illustrates how the geometrical structure, electron core levels, and the vibrational signatures change when the density of the foams is varied. We find that the low-density foams have very uniform structure consisting of micropearls with ≈2–3 μm average diameter. Higher density foams contain larger-sized micropearls (≈6–9 μm diameter which often coalesced to form nonspherical μm-sized units. Both, low- and high-density foams are comprised of predominantly sp2-type carbon. The higher density foams, however, show an advanced graphitization degree and a stronger sp3-type electronic contribution, related to the inclusion of sp3 connections in their surface network.

  15. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2007-01-01

    , the internal sulphidation is much more significant than that revealed in the demonstration project. Avedøre 2 main boiler is fuelled with wood pellets + heavy fuel oil + gas. Some reaction products due to the presence of vanadium compounds in the heavy oil were detected, i.e. iron vanadates. However, the most...... significant corrosion attack was due to sulphidation attack at the grain boundaries of 18-8 steel after 3 years exposure. The corrosion mechanisms and corrosion rates are compared with biomass firing and coal firing. Potential corrosion problems due to co-firing biomass and fossil fuels are discussed....

  16. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2008-01-01

    in this environment, the internal sulphidation is much more significant than that revealed in the demonstration project. Avedøre 2 main boiler is fuelled with wood pelletsþheavy fuel oilþgas. Some reaction products resulting from the presence of vanadium compounds in the heavy oil were detected, i.e. iron vanadates....... However, the most significant corrosion attack was sulphidation attack at the grain boundaries of 18-8 steel after 3 years exposure. The corrosion mechanisms and corrosion rates are compared with biomass firing and coal firing. Potential corrosion problems due to co-firing biomass and fossil fuels...

  17. High energy density interpenetrating networks from ionic networks and silicone

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren;

    2015-01-01

    The energy density of dielectric elastomers (DEs) is sought increased for better exploitation of the DE technology since an increased energy density means that the driving voltage for a certain strain can be lowered in actuation mode or alternatively that more energy can be harvested in generator...

  18. Matter composition at high density by effective scaled lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Chang Ho; Min, Dong Pil [Dept. of Physics, Seoul National Univ., Seoul (Korea, Republic of)

    1998-06-01

    We investigate the matter composition at around the neutron star densities with a model lagrangian satisfying Brown-Rho scaling law. We calculate the neutron star properties such as maximum mass, radius, hyperon compositions and central density. We compare our results with those of Walecka model. (orig.)

  19. THE HIGH VOLUME REUSE OF HYBRID BIOMASS ASH AS A PRIMARY BINDER IN CEMENTLESS MORTAR BLOCK

    Directory of Open Access Journals (Sweden)

    Cheah Chee Ban

    2014-01-01

    Full Text Available High Calcium Wood Ash (HCWA and Pulverised Fuel Ash (PFA are by-products from the wood biomass and coal energy production which are produced in large quantity with combined annual production of 500 million tonnes. This poses a serious problem for disposal of the waste material especially at places where land is scarce. The prescribed study was aimed to examine the mineralogical phases and their respective amount present in the industrial wastes which governs the hydration mechanism towards self-sustained solidification of the ashes when used in combination. Besides, the influence of various forming pressure and hydrothermal treatment temperature on mechanical strength performance of HCWA-PFA cementless mortar blocks was also examined. In the study, the mechanical strength of the HCWA-PFA cementless mortar block produced using various forming pressure and hydrothermal treatment temperature was assessed in terms of compressive strength and dynamic modulus. The results of the study are indicative that HCWA is rich in calcium oxide and potassium oxide content. This enables the hybridization of HCWA with the amorphous silica and alumina rich PFA to form a solid geopolymer binder matrix for fabrication of cementless mortar block. Throughout the study, dimensionally and mechanically stable HCWA-PFA geopolymer mortar blocks were successfully produced by press forming and hydrothermal treatment method. Based on statistical analysis, the hydrothermal treatment temperature has a statistically insignificant effect on the mechanical strength of the HCWA-PFA cementless mortar blocks. The dominant factor which governs the mechanical strength of the HCWA-PFA cementless mortar blocks was found to be the hydraulic forming pressure. Moreover, it was found that hybridized HCWA-PFA can be recycled as the sole binder for fabrication of cementless concrete block which is a useful construction material.

  20. Calvarial reconstruction using high-density porous polyethylene cranial hemispheres

    Directory of Open Access Journals (Sweden)

    Nitin J Mokal

    2011-01-01

    Full Text Available Aims: Cranial vault reconstruction can be performed with a variety of autologous or alloplastic materials. We describe our experience using high-density porous polyethylene (HDPE cranial hemisphere for cosmetic and functional restoration of skull defects. The porous nature of the implant allows soft tissue ingrowth, which decreases the incidence of infection. Hence, it can be used in proximity to paranasal sinuses and where previous alloplastic cranioplasties have failed due to implant infection. Materials and Methods: We used the HDPE implant in seven patients over a three-year period for reconstruction of moderate to large cranial defects. Two patients had composite defects, which required additional soft tissue in the form of free flap and tissue expansion. Results: In our series, decompressive craniectomy following trauma was the commonest aetiology and all defects were located in the fronto-parieto-temporal region. The defect size was 10 cm on average in the largest diameter. All patients had good post-operative cranial contour and we encountered no infections, implant exposure or implant migration. Conclusions: Our results indicate that the biocompatibility and flexibility of the HDPE cranial hemisphere implant make it an excellent alternative to existing methods of calvarial reconstruction.

  1. Stability of discoidal high-density lipoprotein particles

    Science.gov (United States)

    Maleki, Mohsen; Fried, Eliot

    Motivated by experimental and numerical studies revealing that discoidal high-density lipoprotein (HDL) particles may adopt flat elliptical and nonplanar saddle-like configurations, it is hypothesized that these might represent stabilized configurations of initially unstable flat circular particles. A variational description is developed to explore the stability of a flat circular discoidal HDL particle. While the lipid bilayer is modeled as two-dimensional fluid film endowed with surface tension and bending elasticity, the apoA-I belt is modeled as one-dimensional inextensible twist-free chain endowed with bending elasticity. Stability is investigated using the second variation of the underlying energy functional. Various planar and nonplanar instability modes are predicted and corresponding nondimensional critical values of salient dimensionless parameters are obtained. The results predict that the first planar and nonplanar unstable modes occur due to in-plane elliptical and transverse saddle-like perturbations. Based on available data, detailed stability diagrams indicate the range of input parameters for which a flat circular discoidal HDL particle is linearly stable or unstable.

  2. High-density matter: current status and future challenges

    Science.gov (United States)

    Stone, J. R.

    2015-05-01

    There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.

  3. Properties of Raphia Palm Interspersed Fibre Filled High Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Henry C. Obasi

    2013-01-01

    Full Text Available Blends of nonbiodegradable and biodegradable polymers can promote a reduction in the volume of plastic waste when they undergo partial degradation. In this study, properties of raphia palm interspersed fibre (RPIF filled high density polyethylene (HDPE have been investigated at different levels of filler loadings, 0 to 60 wt.%. Maleic anhydride-graft polyethylene was used as a compatibilizer. Raphia palm interspersed fibre was prepared by grinding and sieved to a particle size of 150 µm. HDPE blends were prepared in a corotating twin screw extruder. Results showed that the tensile strength and elongation at break of the blends decreased with increase in RPI loadings and addition of MA-g-PE was found to improve these properties. However, the Young’s modulus increased with increase in the amount of RPI into HDPE and compatibilization further increased the Young’s modulus. The water absorption indices and weight loss for RPI/HDPE composites were found to increase with RPI loadings but were decreased on addition of MA-g-PE.

  4. Anti-Viral Antibody Profiling by High Density Protein Arrays

    Science.gov (United States)

    Bian, Xiaofang; Wiktor, Peter; Kahn, Peter; Brunner, Al; Khela, Amritpal; Karthikeyan, Kailash; Barker, Kristi; Yu, Xiaobo; Magee, Mitch; Wasserfall, Clive H.; Gibson, David; Rooney, Madeleine E; Qiu, Ji; LaBaer, Joshua

    2015-01-01

    Viral infections elicit anti-viral antibodies and have been associated with various chronic diseases. Detection of these antibodies can facilitate diagnosis, treatment of infection and understanding of the mechanisms of virus associated diseases. In this work, we assayed anti-viral antibodies using a novel high density-nucleic acid programmable protein array (HD-NAPPA) platform. Individual viral proteins were expressed in situ directly from plasmids encoding proteins in an array of microscopic reaction chambers. Quality of protein display and serum response was assured by comparing intra- and inter- array correlation within or between printing batches with average correlation coefficients of 0.91 and 0.96, respectively. HD-NAPPA showed higher signal to background (S/B) ratio compared with standard NAPPA on planar glass slides and ELISA. Antibody responses to 761 antigens from 25 different viruses were profiled among patients with juvenile idiopathic arthritis (JIA) and type 1 diabetes (T1D). Common as well as unique antibody reactivity patterns were detected between patients and healthy controls. We believe HD-viral-NAPPA will enable the study of host-pathogen interactions at unprecedented dimensions and elucidate the role of pathogen infections in disease development. PMID:25758251

  5. High-density matter: current status and future challenges

    Directory of Open Access Journals (Sweden)

    Stone J. R.

    2015-01-01

    Full Text Available There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC. This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.

  6. Effect of substrates on crystallization of high density polyethylene

    Institute of Scientific and Technical Information of China (English)

    范毓润; 林渊; 阮绵照

    2008-01-01

    The experimental observations about remarkable influence of the substrates on the isothermal crystallization rate of a high density polyethylene(HDPE) were presented.Two methods were used to characterize the crystallization rate:the change of turbidity of the HDPE specimen and the changes of the complex viscosity and storage modulus measured by a rotational rheometer,which gave consistent results showing that the isothermal crystallization rate decreased in sequence as the specimen contacted with aluminum,brass and stainless steel plates,respectively.As to the dominant influence factor,the chemical composition of the substrates can be excluded via insulating the plate by an aluminum foil.Instead,we propose the plate’s ability of removing the latent heat of crystallization from the specimen.Rheological measurement is sensitive to the crystallization process.The colloid like model proposed by BOUTAHAR et al for the crystallization of HDPE gives reasonable predictions of the crystallized fraction from the measured storage modulus.

  7. Upgrading of biorenewables to high energy density fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John C [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Chen, Weizhong [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Dirmyer, Matthew R [Los Alamos National Laboratory; John, Kevin D [Los Alamos National Laboratory; Kim, Jin K [Los Alamos National Laboratory; Keith, Jason [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Pierpont, Aaron W [Los Alamos National Laboratory; Silks Ill, L. A. " " Pete [Los Alamos National Laboratory; Smythe, Mathan C [Los Alamos National Laboratory; Sutton, Andrew D [Los Alamos National Laboratory; Taw, Felicia L [Los Alamos National Laboratory; Trovitch, Ryan J [Los Alamos National Laboratory; Vasudevan, Kalyan V [Los Alamos National Laboratory; Waidmann, Christopher R [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Baker, R. Thomas [UNIV OF OTTAWWA; Schlaf, Marcel [UNIV OF GUELPH

    2010-12-07

    According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.

  8. Nuclear isomers as ultra-high-energy-density materials

    Science.gov (United States)

    Poppe, C. H.; Weiss, M. S.; Anderson, J. D.

    1992-09-01

    A major energy advance could result if the enormous potential of nuclear energy storage could be tapped without the penalty of radioactive by-products. Recent research has uncovered a new method for nuclear energy storage with high energy density and no residual radioactivity. Nuclear isomers are metastable states of atomic nuclei which release their energy in a prompt burst of electromagnetic radiation; in many cases the product remaining after decay of isomer is stable and no activity is produced by the electromagnetic decay. Two kinds of nuclear isomers are known: spin isomers and shape isomers. The former lacks a release mechanism. Theory has predicted the existence of shape isomers in the mass range around mercury and gold where decay by fission is prohibited. Experiments on the existence of fissionless shape isomers have resulted in evidence for 27 different shape isomers in isotopes of mercury, lead, and thallium. Three potential candidates for release mechanisms have been identified to date: neutron catalysis (Hf- 178), laser-electron-nuclear coupling (Th-229), and Stark-shift-induced mixing (speculative). Ways of producing nonfissioning shape isomers are discussed.

  9. High Density Lipoprotein: A Therapeutic Target in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Philip J. Barter

    2013-09-01

    Full Text Available High density lipoproteins (HDLs have a number of properties that have the potential to inhibit the development of atherosclerosis and thus reduce the risk of having a cardiovascular event. These protective effects of HDLs may be reduced in patients with type 2 diabetes, a condition in which the concentration of HDL cholesterol is frequently low. In addition to their potential cardioprotective properties, HDLs also increase the uptake of glucose by skeletal muscle and stimulate the synthesis and secretion of insulin from pancreatic β cells and may thus have a beneficial effect on glycemic control. This raises the possibility that a low HDL concentration in type 2 diabetes may contribute to a worsening of diabetic control. Thus, there is a double case for targeting HDLs in patients with type 2 diabetes: to reduce cardiovascular risk and also to improve glycemic control. Approaches to raising HDL levels include lifestyle factors such as weight reduction, increased physical activity and stopping smoking. There is an ongoing search for HDL-raising drugs as agents to use in patients with type 2 diabetes in whom the HDL level remains low despite lifestyle interventions.

  10. High-density lipoprotein endocytosis in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Stefanie; Fruhwürth; Margit; Pavelka; Robert; Bittman; Werner; J; Kovacs; Katharina; M; Walter; Clemens; Rhrl; Herbert; Stangl

    2013-01-01

    AIM: To describe the way stations of high-density lipoprotein(HDL) uptake and its lipid exchange in endothelial cells in vitro and in vivo. METHODS: A combination of fluorescence microscopy using novel fluorescent cholesterol surrogates and electron microscopy was used to analyze HDL endocytosis in great detail in primary human endothelial cells. Further, HDL uptake was quantified using radio-labeled HDL particles. To validate the in vitro findings mice were injected with fluorescently labeled HDL and particle uptake in the liver was analyzed using fluorescencemicroscopy. RESULTS: HDL uptake occurred via clathrin-coated pits, tubular endosomes and multivesicular bodies in human umbilical vein endothelial cells. During uptake and resecretion, HDL-derived cholesterol was exchanged at a faster rate than cholesteryl oleate, resembling the HDL particle pathway seen in hepatic cells. In addition, lysosomes were not involved in this process and thus HDL degradation was not detectable. In vivo, we found HDL mainly localized in mouse hepatic endothelial cells. HDL was not detected in parenchymal liver cells, indicating that lipid transfer from HDL to hepatocytes occurs primarily via scavenger receptor, class B, type Ⅰ mediated selective uptake without concomitant HDL endocytosis. CONCLUSION: HDL endocytosis occurs via clathrincoated pits, tubular endosomes and multivesicular bodies in human endothelial cells. Mouse endothelial cells showed a similar HDL uptake pattern in vivo indicating that the endothelium is one major site of HDL endocytosis and transcytosis.

  11. Crystallographic alignment of high-density gallium nitride nanowire arrays.

    Science.gov (United States)

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong

    2004-08-01

    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  12. Survival of charged rho condensation at high temperature and density

    CERN Document Server

    Liu, Hao; Huang, Mei

    2015-01-01

    The charged vector $\\rho$ mesons in the presence of external magnetic fields at finite temperature $T$ and chemical potential $\\mu$ have been investigated in the framework of the Nambu--Jona-Lasinio model. We compute the masses of charged $\\rho$ mesons numerically as a function of the magnetic field for different values of temperature and chemical potential. The self-energy of the $\\rho$ meson contains the quark-loop contribution, i.e. the leading order contribution in $1/N_c$ expansion. The charged $\\rho$ meson mass decreases with the magnetic field and drops to zero at a critical magnetic field $eB_c$, which means that the charged vector meson condensation, i.e. the electromagnetic superconductor can be induced above the critical magnetic field. Surprisingly, it is found that the charged $\\rho$ condensation can even survive at high temperature and density. At zero temperature, the critical magnetic field just increases slightly with the chemical potential, which indicates that the charged $\\rho$ condensatio...

  13. Low fasting low high-density lipoprotein and postprandial lipemia

    Directory of Open Access Journals (Sweden)

    Sorodila Konstandina

    2004-07-01

    Full Text Available Abstract Background Low levels of high density lipoprotein (HDL cholesterol and disturbed postprandial lipemia are associated with coronary heart disease. In the present study, we evaluated the variation of triglyceride (TG postprandially in respect to serum HDL cholesterol levels. Results Fifty two Greek men were divided into 2 main groups: a the low HDL group (HDL p = 0.002. The low HDL group had significantly higher TG at 4, 6 and 8 h postprandially compared to the controls (p = 0.006, p = 0.002, and p p = 0.017 compared to the matched-control group. ROC analysis showed that fasting TG ≥ 121 mg/dl have 100% sensitivity and 81% specificity for an abnormal TG response (auc = 0.962, p Conclusions The delayed TG clearance postprandially seems to result in low HDL cholesterol even in subjects with low fasting TG. The fasting TG > 121 mg/dl are predictable for abnormal response to fatty meal.

  14. High-density lipoprotein (HDL) metabolism and bone mass.

    Science.gov (United States)

    Papachristou, Nicholaos I; Blair, Harry C; Kypreos, Kyriakos E; Papachristou, Dionysios J

    2017-05-01

    It is well appreciated that high-density lipoprotein (HDL) and bone physiology and pathology are tightly linked. Studies, primarily in mouse models, have shown that dysfunctional and/or disturbed HDL can affect bone mass through many different ways. Specifically, reduced HDL levels have been associated with the development of an inflammatory microenvironment that affects the differentiation and function of osteoblasts. In addition, perturbation in metabolic pathways of HDL favors adipoblastic differentiation and restrains osteoblastic differentiation through, among others, the modification of specific bone-related chemokines and signaling cascades. Increased bone marrow adiposity also deteriorates bone osteoblastic function and thus bone synthesis, leading to reduced bone mass. In this review, we present the current knowledge and the future directions with regard to the HDL-bone mass connection. Unraveling the molecular phenomena that underline this connection will promote the deeper understanding of the pathophysiology of bone-related pathologies, such as osteoporosis or bone metastasis, and pave the way toward the development of novel and more effective therapies against these conditions. © 2017 Society for Endocrinology.

  15. Preface to Special Topic: High-Energy Density Laboratory Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, Siegfried H.; /SLAC

    2017-04-01

    In the 1990s, when the large inertial confinement fusion facilities in the United States became accessible for discovery-class research, physicists soon realized that the combination of these energetic drivers with precision plasmas diagnostics would allow the unprecedented experimental study of astrophysical problems. These facilities routinely produce states of matter in the high-energy density physics regime, i.e., pressures above a million atmospheres, 1011 J/m3, and employ a suite of temporally and spatially resolving imaging and scattering measurements that were originally developed to understand the behavior of inertial confinement fusion plasmas. These capabilities bring to the field of astrophysics critical experimental tests of simulations in relevant regimes that are far from the conditions that can otherwise be routinely produced on earth.5 These astrophysical motivated studies are now finding their way into the laboratory plasma community. Further, laboratory astrophysics helped to motivate the development of new precision experimental capabilities; the latest being the world-class Linac Coherent Light Source (LCLS) x-ray laser at the Matter in Extreme Conditions instrument at Stanford that is dedicated to fundamental research.

  16. Iatrogenic severe depression of high-density lipoprotein cholesterol.

    Science.gov (United States)

    Mymin, D; Dembinski, T; Friesen, M H

    2009-07-01

    The authors present 5 cases of paradoxical depression of high-density lipoprotein (HDL) cholesterol induced by fibrate drugs. In a 24-month review of all cases seen in one physician's practice at the Winnipeg Health Sciences Centre Lipid Clinic, 492 patients made a total of 1187 visits. Sixty-eight of them were given a fibrate drug (14%). Ten patients had HDL cholesterol levels that were less than 0.5 mmol/L (2%), and of these, 5 cases were due to exposure to fenofibrate (1%). These 5 cases comprised 7.4% of the 68 patients who were given any fibrate drug during that period. Mean levels were as follows: HDL cholesterol on fenofibrate 0.27, off fenofibrate 1.0 mmol/L and apo A1 on fenofibrate 0.41, off fenofibrate 1.17 g/L. A literature review revealed documented cases in 37 patients involving fibrates alone or in combination with other drugs known to cause decreased HDL cholesterol levels. In 13 patients, exposure was to fibrate therapy alone; in those exposed to combinations, the effect was clearly attributable to fibrates in 9; in 14, the nonfibrates (mostly rosiglitazone) were the attributable drugs; and in 1, it was impossible to tell. Thus, fibrate therapy should always be suspected as a cause of profoundly depressed HDL cholesterol.

  17. Properties of recycled high density polyethylene and coffee dregs composites

    Directory of Open Access Journals (Sweden)

    Sibele Piedade Cestari

    2013-01-01

    Full Text Available Composites of recycled high density polyethylene (HDPE-R and coffee dregs (COFD were elaborated. The blends were made at the proportions of 100-0, 90-10, 80-20, 70-30, 60-40, 50-50 and 40-60% polymer-filler ratio. The materials were evaluated through scanning electron microscopy (SEM, differential scanning calorimetry (DSC, thermogravimetry/derivative thermogravimetry (TGA, and compressive resistance test. The compounding was done using a two-stage co-kneader system extruder, and then cylindrical specimens were injection molded. All composites had a fine dispersion of the COFD into the polymeric matrix. The composites degraded in two steps. The first one was in a temperature lower than the neat HDPE, but higher than the average processing temperature of the polymer. The melting temperature and the degree of crystallinity of the composites resulted similar to the neat HDPE ones. The compressive moduli of the composites resulted similar to the neat polymer one. The results show that these composites have interesting properties as a building material.

  18. Improving Robotic Assembly of Planar High Energy Density Targets

    Science.gov (United States)

    Dudt, D.; Carlson, L.; Alexander, N.; Boehm, K.

    2016-10-01

    Increased quantities of planar assemblies for high energy density targets are needed with higher shot rates being implemented at facilities such as the National Ignition Facility and the Matter in Extreme Conditions station of the Linac Coherent Light Source. To meet this growing demand, robotics are used to reduce assembly time. This project studies how machine vision and force feedback systems can be used to improve the quantity and quality of planar target assemblies. Vision-guided robotics can identify and locate parts, reducing laborious manual loading of parts into precision pallets and associated teaching of locations. On-board automated inspection can measure part pickup offsets to correct part drop-off placement into target assemblies. Force feedback systems can detect pickup locations and apply consistent force to produce more uniform glue bond thickness, thus improving the performance of the targets. System designs and performance evaluations will be presented. Work supported in part by the US DOE under the Science Undergraduate Laboratory Internships Program (SULI) and ICF Target Fabrication DE-NA0001808.

  19. A system verification platform for high-density epiretinal prostheses.

    Science.gov (United States)

    Chen, Kuanfu; Lo, Yi-Kai; Yang, Zhi; Weiland, James D; Humayun, Mark S; Liu, Wentai

    2013-06-01

    Retinal prostheses have restored light perception to people worldwide who have poor or no vision as a consequence of retinal degeneration. To advance the quality of visual stimulation for retinal implant recipients, a higher number of stimulation channels is expected in the next generation retinal prostheses, which poses a great challenge to system design and verification. This paper presents a system verification platform dedicated to the development of retinal prostheses. The system includes primary processing, dual-band power and data telemetry, a high-density stimulator array, and two methods for output verification. End-to-end system validation and individual functional block characterization can be achieved with this platform through visual inspection and software analysis. Custom-built software running on the computers also provides a good way for testing new features before they are realized by the ICs. Real-time visual feedbacks through the video displays make it easy to monitor and debug the system. The characterization of the wireless telemetry and the demonstration of the visual display are reported in this paper using a 256-channel retinal prosthetic IC as an example.

  20. Liquid lithium for high power density fragmentation targets

    Science.gov (United States)

    Nolen, J. A.; Reed, C. B.; Hassanein, A.; Morrissey, D. J.; Ottarson, J. H.; Sherrill, B. M.

    2001-10-01

    Windowless liquid lithium targets for in-flight fragmentation or fission of high power heavy ion beams are being developed for the U.S. RIA project. With uranium beam power of 100 kW and a beam spot diameter of 1 mm the power density in the target is over 1 MW/cm3. Thermal analysis for this example indicates a very low peak temperature for the lithium when flowing at a linear velocity of 10 m/s. A vacuum test chamber is under construction at Argonne at an existing liquid lithium facility to demonstrate a 2 cm thick windowless target. As a first step towards using liquid lithium target technology at a nuclear physics fragmentation facility, a lower power target is being constructed for use at the NSCL. This target will use beryllium windows with flowing lithium. It is designed for beams between oxygen and calcium with beam power above 3 kW. The tapered beryllium windows are each 1 mm thick for the calcium beams and 7 mm thick for the oxygen beams. The lithium is 5 mm thick. This gives an overall target thickness ranging from about 1 g/cm2 to 3 g/cm2 which is adjusted by moving the target vertically. The designs of these targets and the status of the prototypes will be discussed.