WorldWideScience

Sample records for high beam densities

  1. High current density ion beam measurement techniques

    International Nuclear Information System (INIS)

    Ko, W.C.; Sawatzky, E.

    1976-01-01

    High ion beam current measurements are difficult due to the presence of the secondary particles and beam neutralization. For long Faraday cages, true current can be obtained only by negative bias on the target and by summing the cage wall and target currents; otherwise, the beam will be greatly distorted. For short Faraday cages, a combination of small magnetic field and the negative target bias results in correct beam current. Either component alone does not give true current

  2. Ultra-High Density Electron Beams for Beam Radiation and Beam Plasma Interaction

    CERN Document Server

    Anderson, Scott; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Jacob, Jeremy S; Lim, Jae; Musumeci, Pietro; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M

    2005-01-01

    Current and future applications of high brightness electron beams, which include advanced accelerators such as the plasma wake-field accelerator (PWFA) and beam-radiation interactions such as inverse-Compton scattering (ICS), require both transverse and longitudinal beam sizes on the order of tens of microns. Ultra-high density beams may be produced at moderate energy (50 MeV) by compression and subsequent strong focusing of low emittance, photoinjector sources. We describe the implementation of this method used at LLNL's PLEIADES ICS x-ray source in which the photoinjector-generated beam has been compressed to 300 fsec duration using the velocity bunching technique and focused to 20 μm rms size using an extremely high gradient, permanent magnet quadrupole (PMQ) focusing system.

  3. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1987-08-01

    This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)

  4. Online diagnoses of high current-density beams

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.

    1994-01-01

    Los Alamos National Laboratory has proposed several CW-proton-beam facilities for production of tritium or transmutation of nuclear waste with beam-current densities greater than 5 mA/mm 2 . The primary beam-diagnostics-instrumentation requirement for these facilities is provision of sufficient beam information to understand and minimize beam-loss. To accomplish this task, the beam-diagnostics instrumentation must measure beam parameters such as the centroids and profiles, total integrated current, and particle loss. Noninterceptive techniques must be used for diagnosis of high-intensity CW beam at low energies due to the large quantity of power deposited in an interceptive diagnostic device by the beam. Transverse and longitudinal centroid measurements have been developed for bunched beams by measuring and processing image currents on the accelerator walls. Transverse beam-profile measurement-techniques have also been developed using the interaction of the particle beam with the background gases near the beam region. This paper will discuss these noninterceptive diagnostic Techniques

  5. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  6. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K + beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  7. Laboratory Astrophysics Using High Energy Density Photon and Electron Beams

    CERN Document Server

    Bingham, Robert

    2005-01-01

    The development of intense laser and particle beams has opened up new opportunities to study high energy density astrophysical processes in the Laboratory. With even higher laser intensities possible in the near future vacuum polarization processes such as photon - photon scattering with or without large magnetic fields may also be experimentally observed. In this talk I will review the status of laboratory experiments using intense beans to investigate extreme astrophysical phenomena such as supernovae explosions, gamma x-ray bursts, ultra-high energy cosmic accelerators etc. Just as intense photon or electron beams can excite relativistic electron plasma waves or wakefields used in plasma acceleration, intense neutrino beams from type II supernovae can also excite wakefields or plasma waves. Other instabilities driven by intense beams relevant to perhaps x-ray bursts is the Weibel instability. Simulation results of extreme processes will also be presented.

  8. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-01-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state

  9. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1989-07-01

    This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)

  10. Extraction Compression and Acceleration of High Line Charge Density Ion Beams

    CERN Document Server

    Henestroza, Enrique; Grote, D P; Peters, Craig; Yu, Simon

    2005-01-01

    HEDP applications require high line charge density ion beams. An efficient method to obtain this type of beams is to extract a long pulse, high current beam from a gun at high energy, and let the beam pass through a decelerating field to compress it. The low energy beam bunch is loaded into a solenoid and matched to a Brillouin flow. The Brillouin equilibrium is independent of the energy if the relationship between the beam size (a), solenoid magnetic field strength (B) and line charge density is such that (Ba)2

  11. The creation of high energy densities with antimatter beams

    International Nuclear Information System (INIS)

    Gibbs, W.R.; Kruk, J.W.; Rice Univ., Houston, TX

    1989-01-01

    The use of antiprotons (and antideuterons) for the study of the behavior of nuclear matter at high energy density is considered. It is shown that high temperatures and high energy densities can be achieved for small volumes. Also investigated is the strangeness production in antimatter annihilation. It is found that the high rate of Lambda production seen in a recent experiment is easily understood. The Lambda and K-short rapidity distributions are also reproduced by the model considered. 11 refs., 6 figs

  12. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1986-05-01

    In this report the activities of the GSI Darmstadt (FRG) during 1985 concerning inertial confinement fusion by heavy ion beams. Short communications and abstracts are presented concerning a Z-pinch experiment, heavy ion pumped lasers and X-ray spectroscopy, the study of ion-ion collisions, a RFQ development and beam transport studies, accelerator theory, targets for SIS/ESR experiments, the rayleigh-Taylor instability, studies on the equation of state for matter under high pressure, as well as the development of computer codes. (HSI)

  13. Method for controlling low-energy high current density electron beams

    International Nuclear Information System (INIS)

    Lee, J.N.; Oswald, R.B. Jr.

    1977-01-01

    A method and an apparatus for controlling the angle of incidence of low-energy, high current density electron beams are disclosed. The apparatus includes a current generating diode arrangement with a mesh anode for producing a drifting electron beam. An auxiliary grounded screen electrode is placed between the anode and a target for controlling the average angle of incidence of electrons in the drifting electron beam. According to the method of the present invention, movement of the auxiliary screen electrode relative to the target and the anode permits reliable and reproducible adjustment of the average angle of incidence of the electrons in low energy, high current density relativistic electron beams

  14. High-frequency emissions during the propagation of an electron beam in a high-density plasma

    International Nuclear Information System (INIS)

    Lalita and Tripathi, V.K.

    1988-01-01

    A relativistic annular electron beam passing through a high-density plasma excites Langmuir waves via Cerenkov interaction. The Langmuir waves are backscattered off ions via nonlinear ion Landau damping. At moderately high amplitudes these waves are parametrically up-converted by the beam into high-frequency electromagnetic radiation, as observed in some recent experiments. A nonlocal theory of this process is developed in a cylindrical geometry. It is seen that the growth rate of the Langmuir wave scales as one-third power of beam density. The growth rate of parametric instability scales as one-fourth power of beam density and the square root of beam thickness

  15. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  16. Acceleration of high charge density electron beams in the SLAC linac

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Clendenin, J.E.; Jobe, R.K.; Lueth, V.G.; Millich, A.; Ross, M.C.; Seeman, J.T.; Stiening, R.F.

    1984-01-01

    The SLAC Linear Collider (SLC) will require both electron and positron beams of very high charge density and low emittance to be accelerated to about 50 GeV in the SLAC 3-km linac. The linac is in the process of being improved to meet this requirement. The program to accelerate an electron beam of high charge density through the first third of the SLC linac is described and the experimental results are discussed. 7 references, 5 figures

  17. Detection of an electron beam in a high density plasma via an electrostatic probe

    Science.gov (United States)

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki; Ji, Hantao

    2017-10-01

    The perturbation in floating potential by an electron beam is detected by a 1D floating potential probe array to evaluate the use of an electron beam for magnetic field line mapping in the Magnetic Reconnection Experiment (MRX) plasma. The MRX plasma is relatively high density (1013 cm-3) and low temperature (5 eV). Beam electrons are emitted from a tungsten filament and are accelerated by a 200 V potential across the sheath. They stream along the magnetic field lines towards the probe array. The spatial electron beam density profile is assumed to be a Gaussian along the radial axis of MRX and the effective beam width is determined from the radial profile of the floating potential. The magnitude of the perturbation is in agreement with theoretical predictions and the location of the perturbation is also in agreement with field line mapping. In addition, no significant broadening of the electron beam is observed after propagation for tens of centimeters through the high density plasma. These results demonstrate that this method of field line mapping is, in principle, feasible in high density plasmas. This work is supported by the DOE Contract No. DE-AC0209CH11466.

  18. High energy density in matter produced by heavy ion beams. Annual report 1993

    International Nuclear Information System (INIS)

    1994-06-01

    The experimental activities at GSI were concentrated on the progress in beam-plasma interaction experiments of heavy ion with ionized matter, plasma -lens forming devices, intense beam at high temperature experimental area, and charge exchange collisions of ions. The development to higher intensities and phase space densities during 1993 for the SIS and the ESR is recorded. The possibility of studying of funneling of two beams in a two-beam RFQ is studied. Specific results are presented with respect to inertial confinement fusion (ICF). The problem of ion stopping in plasma and pumping X-ray lasers with heavy ion beams are discussed. Various contributions deal with dense plasma effects, shocks and opacity. (HP)

  19. Measurements of low density, high velocity flow by electron beam fluorescence technique

    International Nuclear Information System (INIS)

    Soga, Takeo; Takanishi, Masaya; Yasuhara, Michiru

    1981-01-01

    A low density chamber with an electron gun system was made for the measurements of low density, high velocity (high Mach number) flow. This apparatus is a continuous running facility. The number density and the rotational temperature in the underexpanding free jet of nitrogen were measured along the axis of the jet by the electron beam fluorescence technique. The measurements were carried out from the vicinity of the exit of the jet to far downstream of the first Mach disk. Rotational nonequilibrium phenomena were observed in the hypersonic flow field as well as in the shock wave (Mach disk). (author)

  20. Development of high current density neutral beam injector with a low energy for interaction of plasma facing materials

    International Nuclear Information System (INIS)

    Nishikawa, Masahiro; Ueda, Yoshio; Goto, Seiichi

    1991-01-01

    A high current density neutral beam injector with a low energy has been developed to investigate interactions with plasma facing materials and propagation processes of damages. The high current density neutral beam has been produced by geometrical focusing method employing a spherical electrode system. The hydrogen beam with the current density of 140 mA/cm 2 has been obtained on the focal point in the case of the acceleration energy of 8 keV. (orig.)

  1. High frequency electric field spikes formed by electron beam-plasma interaction in plasma density gradients

    International Nuclear Information System (INIS)

    Gunell, H.; Loefgren, T.

    1997-02-01

    In the electron beam-plasma interaction at an electric double layer the beam density is much higher than in the classical beam-plasma experiments. The wave propagation takes place along the density gradient, that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp 'spike' with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward travelling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. 9 refs

  2. High energy density in matter produced by heavy ion beams. Annual report 1987

    International Nuclear Information System (INIS)

    1988-08-01

    Research activities presented in this annual report were carried out in 1987 in the framework of the government-funded program 'High Energy Density in Matter Produced by Heavy Ion Beams'. It addresses fundamental problems of the generation and investigation of hot dense matter. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense heavy ion beams. The new accelerator facility SIS/ESR now under construction at GSI will provide an excellent potential for research in this field. The construction work at the new validity is on schedule. The building construction is near completion and the SIS accelerator will have its first beam at the beginning of next year. First experiments at lower intensity will start in summer 1989 and the full program will run after the cooler and storage ring ESR has got operational. Accordingly, the planning and the preparation of the high energy density experiments at this unique facility was an essential part of the activities last year. In this funding period emphasis was given to the experimental activities at the existing accelerator. In addition to a number of accelerator-oriented and instrumental developments, an experiment on beam-plasma interaction had first exciting results, a significant increase of the stopping power for heavy ions in plasma was measured. Other important activities were the investigation of dielectronic recombination of highly charged ions, spectroscopic investigations aiming at the pumping of short wavelength lasers by heavy ion beams and a crossed beam experiment for the determination of Bi + + Bi + ionization cross sections. As in previous years theoretical work an space-charge dominated beam dynamics as well as on hydrodynamics of dense plasmas, radiation transport and beam plasma interaction was continued, thus providing a basis for the future experiments. (orig.)

  3. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    Science.gov (United States)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2

  4. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y., E-mail: y.hirano@aist.go.jp, E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); College of Science and Technologies, Nihon University, Chiyodaku, Tokyo 101-0897 (Japan); Kiyama, S.; Koguchi, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Fujiwara, Y.; Sakakita, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki 305-8577 (Japan)

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  5. Supersonic beams at high particle densities: model description beyond the ideal gas approximation.

    Science.gov (United States)

    Christen, Wolfgang; Rademann, Klaus; Even, Uzi

    2010-10-28

    Supersonic molecular beams constitute a very powerful technique in modern chemical physics. They offer several unique features such as a directed, collision-free flow of particles, very high luminosity, and an unsurpassed strong adiabatic cooling during the jet expansion. While it is generally recognized that their maximum flow velocity depends on the molecular weight and the temperature of the working fluid in the stagnation reservoir, not a lot is known on the effects of elevated particle densities. Frequently, the characteristics of supersonic beams are treated in diverse approximations of an ideal gas expansion. In these simplified model descriptions, the real gas character of fluid systems is ignored, although particle associations are responsible for fundamental processes such as the formation of clusters, both in the reservoir at increased densities and during the jet expansion. In this contribution, the various assumptions of ideal gas treatments of supersonic beams and their shortcomings are reviewed. It is shown in detail that a straightforward thermodynamic approach considering the initial and final enthalpy is capable of characterizing the terminal mean beam velocity, even at the liquid-vapor phase boundary and the critical point. Fluid properties are obtained using the most accurate equations of state available at present. This procedure provides the opportunity to naturally include the dramatic effects of nonideal gas behavior for a large variety of fluid systems. Besides the prediction of the terminal flow velocity, thermodynamic models of isentropic jet expansions permit an estimate of the upper limit of the beam temperature and the amount of condensation in the beam. These descriptions can even be extended to include spinodal decomposition processes, thus providing a generally applicable tool for investigating the two-phase region of high supersaturations not easily accessible otherwise.

  6. Studies on the production of high energy densities in matter by intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-08-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopical amount of matter is studied. Thereby high energy densities in the target matter are produced. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A KR + -ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focussed by a fine-focusing lens to a closed xenon gas target. The light emitted from the target was space- and time resolved taken up by a spectrometer as well as by a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam was observed. The free electron density of the plasma was determined from the Stark broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The temperature could be determined by different methods (shock-wave velocity, degree of ionization, line ratios). The electron temperature amounted in the center of the pipe to kT ≅ 0.75 eV. For the opacity of the target by which the emitted light power is determined under the assumption of the two-dimensional model (equilibrium between emitted and absorbed energy) the value κ p ≅ 7700 cm 2 /g resulted. (orig./HSI) [de

  7. Studies on the production of high energy density in matter with intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-01-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopic, amount of matter is studied. Thereby high energy densities are produced in the target matter. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A Kr + ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focused by a fine-focusing lens on a closed xenon gas target. The light emitted from the target was space- and time-resolved taken up with a spectrometer as well a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam were consecuted. The free-electron density of the plasma was determined from the Stark-broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The electron temperature amounted in the center of the pipelet kT ≅ 0.75 eV. (orig./HSI) [de

  8. U.S. Heavy Ion Beam Research for High Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.

    2005-01-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  9. Collective Focusing of Intense Ion Beam Pulses for High-energy Density Physics Applications

    International Nuclear Information System (INIS)

    Dorf, Mikhail A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2011-01-01

    The collective focusing concept in which a weak magnetic lens provides strong focusing of an intense ion beam pulse carrying a neutralizing electron background is investigated by making use of advanced particle-in-cell simulations and reduced analytical models. The original analysis by Robertson Phys. Rev. Lett. 48, 149 (1982) is extended to the parameter regimes of particular importance for several high-energy density physics applications. The present paper investigates (1) the effects of non-neutral collective focusing in a moderately strong magnetic field; (2) the diamagnetic effects leading to suppression of the applied magnetic field due to the presence of the beam pulse; and (3) the influence of a finite-radius conducting wall surrounding the beam cross-section on beam neutralization. In addition, it is demonstrated that the use of the collective focusing lens can significantly simplify the technical realization of the final focusing of ion beam pulses in the Neutralized Drift Compression Experiment-I (NDCX-I), and the conceptual designs of possible experiments on NDCX-I are investigated by making use of advanced numerical simulations.

  10. High-radiation zone design of the FMIT high-density beam transport

    International Nuclear Information System (INIS)

    Creek, K.O.; Liska, D.J.; King, J.D.; Cole, T.R.; Cimabue, A.G.; Robeson, L.P.; Harvey, A.

    1981-03-01

    The Fusion Materials Irradiation Test (FMIT) deuteron linac, operating at 35 MeV and 100 mA continuous duty, is expected to spill 3 μA/m and to lose 10 μA at specific bending-magnet positions. The major impact of this spill will be felt in the High-Energy Beam Transport (HEBT), where many beam-line components must be maintained. A modular design concept, that uses segmented termination panels remotely located from the modules, is being employed. Radiation-hardened quadrupoles can be opened, clam-shell fashion, to release the water-cooled beam tube r replacement if there is beam damage or lithium contamination from the target. Termination panels contain electrical, water, and instrumentation fittings to service the module, and are positioned to allow room for neutron-absorbing shielding between the beamline and the panel. The modular construction allows laboratory prealignment and check-out of all components on a structural carriage and is adaptable to supporting gamma shields. Proper choice of beam tube materials is essential for controlling activation caused by beam spill

  11. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region are described. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises dt, dd, hydrogen boron or similar thermonuclear gas at a density of 1017 to 1020 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 mev, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner

  12. Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, I.D.; Qin, H.; Sefkow, A.B.; Startsev, E.A.; Welch, D.; Olson, C.

    2007-01-01

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport, and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by >50X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. We are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy

  13. Large Hadron Collider at CERN: Beams generating high-energy-density matter.

    Science.gov (United States)

    Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-04-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has

  14. Characteristics of recycled and electron beam irradiated high density polyethylene samples

    International Nuclear Information System (INIS)

    Cardoso, Jessica R.; Gabriel, Leandro; Geraldo, Aurea B.C.; Moura, Eduardo

    2015-01-01

    Polymers modification by irradiation is a well-known process that allows degradation and cross-linking in concurrent events; this last is expected when an increase of mechanical properties is required. Actually, the interest of recycling and reuse of polymeric material is linked to the increase of plastics ending up in waste streams. Therefore, these both irradiation and recycling process may be conducted to allow a new use to this material that would be discarded by an improvement of its mechanical properties. In this work, the High Density Polyethylene (HDPE) matrix has been recycled five times from original substrate. The electron beam irradiation process was applied from 50 kGy to 200 kGy in both original and recycled samples; in this way, mechanical properties and thermal characteristics were evaluated. The results of applied process and material characterization are discussed. (author)

  15. Characteristics of recycled and electron beam irradiated high density polyethylene samples

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Jessica R.; Gabriel, Leandro; Geraldo, Aurea B.C.; Moura, Eduardo, E-mail: jrcardoso@ipen.br, E-mail: lgabriell@gmail.com, E-mail: ageraldo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Polymers modification by irradiation is a well-known process that allows degradation and cross-linking in concurrent events; this last is expected when an increase of mechanical properties is required. Actually, the interest of recycling and reuse of polymeric material is linked to the increase of plastics ending up in waste streams. Therefore, these both irradiation and recycling process may be conducted to allow a new use to this material that would be discarded by an improvement of its mechanical properties. In this work, the High Density Polyethylene (HDPE) matrix has been recycled five times from original substrate. The electron beam irradiation process was applied from 50 kGy to 200 kGy in both original and recycled samples; in this way, mechanical properties and thermal characteristics were evaluated. The results of applied process and material characterization are discussed. (author)

  16. High dislocation density structures and hardening produced by high fluency pulsed-ion-beam implantation

    International Nuclear Information System (INIS)

    Sharkeev, Yu.P.; Didenko, A.N.; Kozlov, E.V.

    1994-01-01

    The paper presents a review of experimental data on the ''long-range effect'' (a change in dislocation structure and in physicomechanical properties at distances considerably greater than the ion range value in ion-implanted metallic materials and semiconductors). Our results of electron microscopy studies of high density dislocation structure in ion-implanted metallic materials with different initial states are given. It has been shown that the nature of the dislocation structure and its quantitative characteristics in the implanted metals and alloys depend on the target initial state, the ion type and energy and the retained dose. The data obtained by different workers are in good agreement both with our results and with each other as well as with the results of investigation of macroscopic characteristics (wear resistance and microhardness). It has been established that the ''long-range effect'' occurs in metallic materials with a low yield point or high plasticity level and with little dislocation density in their initial state prior to ion implantation. ((orig.))

  17. Optical and Morphological Properties of Electron-Beam Irradiated High-Density Thin Poly Ethylene Films

    International Nuclear Information System (INIS)

    Abdel-Hamid, H. M.; Fawzy, Y.H.A.; El-Sayed, S.M.

    2005-01-01

    Effects of surface morphology alterations on the optical properties of the high-density polyethylene (HDPE) films irradiated by 1.5 MeV electron beam has been investigated. The irradiation doses were conducted at the values: 30, 135, 295 and 540 kGy, respectively. The changes induced in HDPE involved: the creation of free radicals, the formation of chemical bonds i.e., intermolecular crosslinking and irreversible cleavage of bonds in the main chain, which resulted in the fragmentation of the molecules. An Ultraviolet-Visible Spectrophotometer (UV-VIS) and Scanning Electron Microscope (SEM) were used to characterize the changes. Because the crosslinking (induced by electron irradiation) limits the movability of the HDPE molecular chains, the optical energy gap was then subjected to a change. It decreased from 4.41 to 3.22 eV with an increasing electron dose up to 540 kGy. At a higher dose of irradiation (540 kGy), degradation of HDPE rather than crosslinking was raised. The irradiated HDPE films indicated that the crosslinking and degradation are likely to have an effect on their surface morphologies. The physical properties of polymeric materials can be modified by ionizing radiation in the form of gamma rays, X-rays and energetic electrons. High-energy electron beam is an especially useful tool in this regard (Cleland et al, 2003). Polymerizing, grafting, crosslinking and chain scission reactions can be initiated by irradiation. The results of such reactions can enhance the utility and value of commercial products. HDPE (CH2-CH2) has many attractive properties, such as an excellent chemical resistance, low friction and low moisture absorption

  18. Electron beam irradiation process applied to primary and secondary recycled high density polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Jéssica R.; Moura, Eduardo de; Geraldo, Áurea B.C., E-mail: ageraldo@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Plastic bags, packaging and furniture items are examples of plastic utilities always present in life. However, the end-of-life of plastics impacts the environment because of this ubiquity and also often their high degradation time. Recycling processes are important in this scenario because they offer many solutions to this problem. Basically, four ways are known for plastic recycling: primary recycling, which consists in re-extrusion of clean plastic scraps from a production plant; secondary recycling, that uses end-of-life products that generally are reduced in size by extrusion to obtain a more desirable shape for reprocessing (pellets and powder); tertiary recover which is related to thermo-chemical methods to produce fuels and petrochemical feedstock; and quaternary route, that is related to energy recovery and it is done in appropriate reactors. In this work, high density polyethylene (HDPE) was recovered to simulate empirically the primary and secondary recycling ways using materials which ranged from pristine to 20-fold re-extrused materials. The final 20-fold recycled thermoplastic was irradiated in an electron beam accelerator under a dose rate of 22.4 kGy/s and absorbed doses of 50 kGy and 100 kGy. The characterization of HDPE in distinct levels of recovering was performed by infrared spectroscopy (FTIR) and thermogravimetric degradation. In the HDPE recycling, degradation and crosslinking are consecutive processes; degradation is very noticeable in the 20-fold recycled product. Despite this, the 20-fold recycled product presents crosslinking after irradiation process and the post-irradiation product presents similarities in spectroscopic and thermal degradation characteristics of pristine, irradiated HDPE. These results are discussed. (author)

  19. Electron beam irradiation process applied to primary and secondary recycled high density polyethylene

    International Nuclear Information System (INIS)

    Cardoso, Jéssica R.; Moura, Eduardo de; Geraldo, Áurea B.C.

    2017-01-01

    Plastic bags, packaging and furniture items are examples of plastic utilities always present in life. However, the end-of-life of plastics impacts the environment because of this ubiquity and also often their high degradation time. Recycling processes are important in this scenario because they offer many solutions to this problem. Basically, four ways are known for plastic recycling: primary recycling, which consists in re-extrusion of clean plastic scraps from a production plant; secondary recycling, that uses end-of-life products that generally are reduced in size by extrusion to obtain a more desirable shape for reprocessing (pellets and powder); tertiary recover which is related to thermo-chemical methods to produce fuels and petrochemical feedstock; and quaternary route, that is related to energy recovery and it is done in appropriate reactors. In this work, high density polyethylene (HDPE) was recovered to simulate empirically the primary and secondary recycling ways using materials which ranged from pristine to 20-fold re-extrused materials. The final 20-fold recycled thermoplastic was irradiated in an electron beam accelerator under a dose rate of 22.4 kGy/s and absorbed doses of 50 kGy and 100 kGy. The characterization of HDPE in distinct levels of recovering was performed by infrared spectroscopy (FTIR) and thermogravimetric degradation. In the HDPE recycling, degradation and crosslinking are consecutive processes; degradation is very noticeable in the 20-fold recycled product. Despite this, the 20-fold recycled product presents crosslinking after irradiation process and the post-irradiation product presents similarities in spectroscopic and thermal degradation characteristics of pristine, irradiated HDPE. These results are discussed. (author)

  20. Realization of a diamond based high density multi electrode array by means of Deep Ion Beam Lithography

    International Nuclear Information System (INIS)

    Picollo, F.; Battiato, A.; Bernardi, E.; Boarino, L.; Enrico, E.; Forneris, J.; Gatto Monticone, D.; Olivero, P.

    2015-01-01

    In the present work we report about a parallel-processing ion beam fabrication technique whereby high-density sub-superficial graphitic microstructures can be created in diamond. Ion beam implantation is an effective tool for the structural modification of diamond: in particular ion-damaged diamond can be converted into graphite, therefore obtaining an electrically conductive phase embedded in an optically transparent and highly insulating matrix. The proposed fabrication process consists in the combination of Deep Ion Beam Lithography (DIBL) and Focused Ion Beam (FIB) milling. FIB micromachining is employed to define micro-apertures in the contact masks consisting of thin (<10 μm) deposited metal layers through which ions are implanted in the sample. A prototypical single-cell biosensor was realized with the above described technique. The biosensor has 16 independent electrodes converging inside a circular area of 20 μm diameter (typical neuroendocrine cells size) for the simultaneous recording of amperometric signals

  1. Determining the hierarchy of neutrino masses with high density magnetized detectors at the Beta Beams

    International Nuclear Information System (INIS)

    Donini, A.; Fernandez-Martinez, E.; Rigolin, S.; Migliozzi, P.; Lavina, L. Scotto; Selvi, M.; De Fatis, T. Tabarelli; Terranova, F.

    2008-01-01

    Multi-kton iron detectors can be simultaneously exploited as far detectors for high energy Beta Beams and to determine the atmospheric ν μ flux in the multi-GeV range. These measurements can be combined in a highly non trivial manner to improve the sensitivity to the hierarchy of neutrino masses. Considering a Super-SPS based Beta Beam and a 40 kton far detector located ∼700 km from the source (CERN to Gran Sasso distance), we demonstrate that even with moderate detector granularities the sign of Δm 13 2 can be determined for θ 13 values greater than 4 deg.

  2. Ion density in ionizing beams

    International Nuclear Information System (INIS)

    Knuyt, G.K.; Callebaut, D.K.

    1978-01-01

    The equations defining the ion density in a non-quasineutral plasma (chasma) are derived for a number of particular cases from the general results obtained in paper 1. Explicit calculations are made for a fairly general class of boundaries: all tri-axial ellipsoids, including cylinders with elliptic cross-section and the plane parallel case. The results are very simple. When the ion production and the beam intensity are constant then the steady state ion space charge is also constant in space, it varies over less than 10% for the various geometries, it may exceed the beam density largely for comparatively high pressures (usually still less than about 10 -3 Torr), it is tabulated for a number of interesting cases and moreover it can be calculated precisely and easily by some simple formulae for which also approximations are elaborated. The total potential is U =-ax 2 -by 2 -cz 2 , a, b and c constants which can be calculated immediately from the space charge density and the geometry; the largest coefficient varies at most over a factor four for various geometries; it is tabulated for a number of interesting cases. (author)

  3. Fiscal 1998 research report. Application technology of next-generation high-density energy beams; 1998 nendo chosa hokokusho. Jisedai komitsudo energy beam riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Survey was made on application technologies of next- generation high-density energy beams. For real application of laser power, application to not exciting source of YAG crystal but machining directly is highly efficient. For generation of semiconductor laser high-power coherent beam, phase synchronization and summing are large technological walls. Short pulse, high intensity and high repeatability are also important. Since ultra-short pulse laser ends before heat transfer to the periphery, it is suitable for precise machining, in particular, ultra-fine machining. To use beam sources as tool for production process, development of transmission, focusing and control technologies, and optical fiber and device is indispensable. Applicable fields are as follows: machining (more than pico seconds), surface modification (modification and functionalization of tribo- materials and biocompatible materials), complex machining, fabrication of quantum functional structured materials (thin film, ultra-fine particle), agriculture, ultra-precise measurement, non-destructive measurement, and coherent chemistry in chemical and environment fields. (NEDO)

  4. Development of Functional Surfaces on High-Density Polyethylene (HDPE) via Gas-Assisted Etching (GAE) Using Focused Ion Beams.

    Science.gov (United States)

    Sezen, Meltem; Bakan, Feray

    2015-12-01

    Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.

  5. High energy density physics with intense ion and laser beams. Annual report 2003

    International Nuclear Information System (INIS)

    Weyrich, K.

    2004-07-01

    The following topics are dealt with: Laser plasma physics, plasma spectroscopy, beam interaction experiments, atomic and radiation physics, pulsed power applications, beam transport and accelerator research and development, properties of dense plasma, instabilities in beam-plasma interaction, beam transport in dense plasmas, short-pulse laser-matter interaction. (HSI)

  6. Surface modification of TC4 titanium alloy by high current pulsed electron beam (HCPEB) with different pulsed energy densities

    International Nuclear Information System (INIS)

    Gao, Yu-kui

    2013-01-01

    Highlights: •The hardness changes were determined by nanoindention method. •The surface integrity changes were investigated by different techniques. •The mechanism was analyzed based on AFM and TEM investigations. -- Abstract: Surface changes including surface topography and nanohardness distribution along surface layer were investigated for TC4 titanium alloy by different energy densities of high current pulsed electron beam (HCPEB). The surface topography was characterized by SEM and AFM, and cross-sectional TEM observation was performed to reveal the surface modification mechanism of TC4 titanium alloy by HCPEB. The surface roughness was modified by HCPEB and the polishing mechanism was analyzed by studying the cross section microstructure of electron beam treated specimens by SEM. The fine grain structure inherited from the rapid solidification of the melted layer as well as the strain hardening of the sub-surface are two of the factors responsible the increase in nanohardness

  7. Short bunch length detector for ion beam with high bunch density

    International Nuclear Information System (INIS)

    Tron, A.M.; Shako, V.V.

    1993-01-01

    The secondary electron rf monitors for short ion bunch phase distribution measurements are presented. Construction particularities of the monitors, influence of space charge of both the primary and the secondary electron beams on the phase resolution, thermal regime of the target during beam-target interaction are considered

  8. Reinforcement of natural rubber/high density polyethylene blends with electron beam irradiated liquid natural rubber-coated rice husk

    Energy Technology Data Exchange (ETDEWEB)

    Chong, E.L.; Ahmad, Ishak [Polymer Research Center (PORCE), School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia 4, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia); Dahlan, H.M. [Radiation Processing Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor Darul Ehsan (Malaysia); Abdullah, Ibrahim, E-mail: dia@ukm.m [Polymer Research Center (PORCE), School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia 4, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2010-08-15

    Coating of rice husk (RH) surface with liquid natural rubber (LNR) and exposure to electron beam irradiation in air were studied. FTIR analysis on the LNR-coated RH (RHR) exposed to electron beam (EB) showed a decrease in the double bonds and an increase in hydroxyl and hydrogen bonded carbonyl groups arising from the chemical interaction between the active groups on RH surface with LNR. The scanning electron micrograph showed that the LNR formed a coating on the RH particles which transformed to a fine and clear fibrous layer at 20 kGy irradiation. The LNR film appeared as patches at 50 kGy irradiation due to degradation of rubber. Composites of natural rubber (NR)/high density polyethylene (HDPE)/RHR showed an optimum at 20-30 kGy dosage with the maximum stress, tensile modulus and impact strength of 6.5, 79 and 13.2 kJ/m{sup 2}, respectively. The interfacial interaction between the modified RH and TPNR matrix had improved on exposure of RHR to e-beam at 20-30 kGy dosage.

  9. Characterization of laser beam transmission through a High Density Polyethylene (HDPE) plate

    Science.gov (United States)

    Genna, S.; Leone, C.; Tagliaferri, V.

    2017-02-01

    Infrared (IR) light propagation in semicrystalline polymers involves mechanisms such as reflection, transmission, absorption and internal scattering. These different rates determine either the interaction mechanism, either the temperatures reached in the IR heating processes. Consequently, the knowledge of these rates is fundamental in the development of IR heating processes in order to avoid the polymer's damage and to increase the process energy efficiency. Aim of this work is to assess a simple procedure to determine the rates of absorbed, reflected, transmitted and scattered energy in the case of an unfilled High Density Polyethylene (HDPE) plate. Experimental tests were performed by exposing a HDPE plate, 3 mm in thickness, to a diode laser source, working at the fundamental wavelength of 975 nm. The transmitted power was measured by power meter, the reflected one by applying the Beer-Lambert law to sample of different thickness. IR thermal images were adopted to measure the absorbed ratio. The scattered ratio was measured by energetic balance, as difference between the incoming power and the other ratios. Finally, IR thermal images were adopted to measure the scattered ratio and to validate the procedure.

  10. Physics of intense light ion beams and production of high energy density in matter. Annual report 1994

    International Nuclear Information System (INIS)

    Bluhm, H.J.

    1995-06-01

    This report presents the results obtained in 1994 within the FZK-program on 'Physics of intense ion beams and pulsed plasmas'. It describes the present status of the 6 MW, 2 TW pulsed generator KALIF-HELIA, the production and focussing of high power ion beams and numerical simulations and experiments related to the hydrodynamics of beam matter interaction. (orig.) [de

  11. Creation of excitations and defects in insulating materials by high-current-density electron beams of nanosecond pulse duration

    International Nuclear Information System (INIS)

    Vaisburd, D.I.; Evdokimov, K.E.

    2005-01-01

    The paper is concerned with fast and ultra-fast processes in insulating materials under the irradiation by a high-current-density electron beam of a nanosecond pulse duration. The inflation process induced by the interaction of a high-intensity electron beam with a dielectric is examined. The ''instantaneous'' distribution of non-ionizing electrons and holes is one of the most important stages of the process. Ionization-passive electrons and holes make the main contribution to many fast processes with a characteristic time in the range 10 -14 /10 -12 s: high-energy conductivity, intraband luminescence, etc. A technique was developed for calculation of the ''instantaneous'' distribution of non-ionizing electrons and holes in a dielectric prior to electron-phonon relaxation. The following experimental effects are considered: intraband luminescence, coexistence of intraband electron luminescence and band-to-band hole luminescence in CsI, high energy conductivity; generation of mechanical fields and their interaction with cracks and dislocations. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Large Hadron Collider at CERN: Beams Generating High-Energy-Density Matter

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, IV; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-01-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. This data has been used as input to a sophisticated two--dimensional hydrodynamic computer code, BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1~m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy de...

  13. High energy density physics effects predicted in simulations of the CERN HiRadMat beam-target interaction experiments

    Science.gov (United States)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-12-01

    Experiments have been done at the CERN HiRadMat (High Radiation to Materials) facility in which large cylindrical copper targets were irradiated with 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). The primary purpose of these experiments was to confirm the existence of hydrodynamic tunneling of ultra-relativistic protons and their hadronic shower in solid materials, that was predicted by previous numerical simulations. The experimental measurements have shown very good agreement with the simulation results. This provides confidence in our simulations of the interaction of the 7 TeV LHC (Large Hadron Collider) protons and the 50 TeV Future Circular Collider (FCC) protons with solid materials, respectively. This work is important from the machine protection point of view. The numerical simulations have also shown that in the HiRadMat experiments, a significant part of thetarget material is be converted into different phases of High Energy Density (HED) matter, including two-phase solid-liquid mixture, expanded as well as compressed hot liquid phases, two-phase liquid-gas mixture and gaseous state. The HiRadMat facility is therefore a unique ion beam facility worldwide that is currently available for studying the thermophysical properties of HED matter. In the present paper we discuss the numerical simulation results and present a comparison with the experimental measurements.

  14. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    International Nuclear Information System (INIS)

    Habibi, M.; Ghamari, F.

    2014-01-01

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam

  15. Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding.

    Science.gov (United States)

    Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Huang, Yong; Tan, Xiaodi

    2018-02-19

    A novel phase modulation method for holographic data storage with phase-retrieval reference beam locking is proposed and incorporated into an amplitude-encoding collinear holographic storage system. Unlike the conventional phase retrieval method, the proposed method locks the data page and the corresponding phase-retrieval interference beam together at the same location with a sequential recording process, which eliminates piezoelectric elements, phase shift arrays and extra interference beams, making the system more compact and phase retrieval easier. To evaluate our proposed phase modulation method, we recorded and then recovered data pages with multilevel phase modulation using two spatial light modulators experimentally. For 4-level, 8-level, and 16-level phase modulation, we achieved the bit error rate (BER) of 0.3%, 1.5% and 6.6% respectively. To further improve data storage density, an orthogonal reference encoding multiplexing method at the same position of medium is also proposed and validated experimentally. We increased the code rate of pure 3/16 amplitude encoding method from 0.5 up to 1.0 and 1.5 using 4-level and 8-level phase modulation respectively.

  16. Estimation and display of beam density profiles

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, S; Mukhopadhyay, T; Roy, A; Mallik, C

    1989-03-15

    A setup in which wire-scanner-type beam-profile monitor data are collected on-line in a nuclear data-acquisition system has been used and a simple algorithm for estimation and display of the current density distribution in a particle beam is described.

  17. Preliminary design of experiment high power density laser beam interaction with plasmas and development of a cold cathode electron beam laser amplifier

    International Nuclear Information System (INIS)

    Mosavi, R.K.; Kohanzadeh, Y.; Taherzadeh, M.; Vaziri, A.

    1976-01-01

    This experiment is designed to produce plasma by carbon dioxide pulsed laser, to measure plasma parameters and to study the interaction of the produced plasma with intense laser beams. The objectives of this experiment are the following: 1. To set up a TEA CO 2 laser oscillator and a cold cathode electron beam laser amplifier together as a system, to produce high energy optical pulses of short duration. 2. To achieve laser intensities of 10 11 watt/cm 2 or more at solid targets of polyethylene (C 2 H 4 )n, lithium hydride (LiH), and lithium deuteride in order to produce high temperature plasmas. 3. To design and develop diagnostic methods for studies of laser-induced plasmas. 4. To develop a high power CO 2 laser amplifier for the purpose of upgrading the optical energy delivered to the targets

  18. System size and beam energy effects on probing the high-density behavior of nuclear symmetry energy with pion ratio

    International Nuclear Information System (INIS)

    Zhang Ming; Xiao Zhigang; Li Baoan; Chen Liewen; Yong Gaochan; Zhu Shengjiang

    2010-01-01

    Based on the isospin-and momentum-dependent hadronic transport model IBUU04, we have investigated the π - /π + ratio in the following three reactions: 48 Ca+ 48 Ca, 124 Sn + 124 Sn and 197 Au + 197 Au with nearly the same isospin asymmetry but different masses, at the bombarding energies from 0.25 to 0.6 AGeV. It is shown that the sensitivity of probing the E sym (ρ) with π - /π + increases with increasing the system size or decreasing the beam energy, showing a correlation to the degree of isospin fractionation. Therefore, with a given isospin asymmetry, heavier system at energies near the pion threshold is preferential to study the behavior of nuclear symmetry energy at supra-saturation densities.

  19. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Uwe, Greife [Colorado School of Mines, Golden, CO (United States)

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  20. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    International Nuclear Information System (INIS)

    Uwe, Greife

    2014-01-01

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  1. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  2. On the possibility of gamma-laser pumping occurring at a charged particle counter motion and in density-modulated electron beams by a high frequency intensive radiation

    International Nuclear Information System (INIS)

    Maksyuta, N.V.

    1999-01-01

    The given report deals with the problem of motion and radiation of relativistic electron in a field of opposite plane density-modulated relativistic electron beam. Physical essence of high-frequency intensive radiation origin could be explained, first by the additional Lorentz reduction of the electron beam modulation period (modulation period Λ in a laboratory co-ordinate system reduces by a factor γ as compared with the modulation period in a beam co-ordinate system) and, secondly, a simultaneous γ-fold increase of transverse components of relativistic electrons of the beam electric and magnetic fields. Such a moving modulated electron beam can be regarded as a dynamic micro-ondulator. Unlike static micro-ondulators we can observe here one more positive moment along with a small period Λ = Λ'/γ, i.e. the electric and magnetic fields in a transverse direction are changed according to the law of exp(-2πx/Λ'). It means that charged particle interaction with a dynamic micro-ondulator will be effective in a wide range of transverse distances, i.e., to get an intensive short wave radiation one can use charged particle beams with rather large apertures which leads to an additional radiation intensity increase. A discussion is given showing that the proposed dynamic modulator possesses some essential merits. A detailed calculation is presented. (author)

  3. High energy density matter issues related to future circular collider. Simulations of full beam impact with a solid copper cylindrical target

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, N.A. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Burkart, F.; Schmidt, R.; Wollmann, D. [CERN-AB, Geneva (Switzerland); Shutov, A. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Piriz, A.R. [E.T.S.I. Industrials, University of Castilla-La Mancha, Ciudad Real (Spain)

    2017-11-15

    This paper presents numerical simulations of the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is subjected to the full impact of one future circular collider (FCC) ultra-relativistic proton beam. The target is facially irradiated so that the beam axis coincides with the cylinder axis. The simulations have been carried out employing an energy deposition code, FLUKA, and a 2D hydrodynamic code, BIG2, iteratively. The simulations show that, although the static range of a single FCC proton and its shower in solid copper is ∝1.5 m, the full beam may penetrate up to 350 m into the target as a result of hydrodynamic tunnelling. Moreover, simulations also show that a major part of the target is converted into high energy density (HED) matter, including warm dense matter (WDM) and strongly coupled plasma. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, Joao

    2017-10-01

    Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in the kTesla range. The B-fields are measured by proton-deflectometry and high-frequency bandwidth B-dot probes. According to our modeling, the quasi-static currents are provided from hot electron ejection from the laser-irradiated surface, accounting for the space charge neutralization and the plasma magnetization. The major control parameter is the laser irradiance Iλ2 . The B-fields ns-scale is long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented enhancement of a factor 5 on the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics. We acknowledge funding from French National Agency for Research (ANR), Grant TERRE ANR-2011-BS04-014, and from EUROfusion Consortium, European Union's Horizon 2020 research and innovation programme, Grant 633053.

  5. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Arefiev, A. V.; Batani, D.; Beg, F. N.; Calisti, A.; Ferri, S.; Florido, R.; Forestier-Colleoni, P.; Fujioka, S.; Gigosos, M. A.; Giuffrida, L.; Gremillet, L.; Honrubia, J. J.; Kojima, S.; Korneev, Ph.; Law, K. F. F.; Marquès, J.-R.; Morace, A.; Mossé, C.; Peyrusse, O.; Rose, S.; Roth, M.; Sakata, S.; Schaumann, G.; Suzuki-Vidal, F.; Tikhonchuk, V. T.; Toncian, T.; Woolsey, N.; Zhang, Z.

    2018-05-01

    Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2 . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.

  6. Simulations of beam-matter interaction experiments at the CERN HiRadMat facility and prospects of high-energy-density physics research.

    Science.gov (United States)

    Tahir, N A; Burkart, F; Shutov, A; Schmidt, R; Wollmann, D; Piriz, A R

    2014-12-01

    In a recent publication [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we reported results on beam-target interaction experiments that have been carried out at the CERN HiRadMat (High Radiation to Materials) facility using extended solid copper cylindrical targets that were irradiated with a 440-GeV proton beam delivered by the Super Proton Synchrotron (SPS). On the one hand, these experiments confirmed the existence of hydrodynamic tunneling of the protons that leads to substantial increase in the range of the protons and the corresponding hadron shower in the target, a phenomenon predicted by our previous theoretical investigations [Tahir et al., Phys. Rev. ST Accel. Beams 25, 051003 (2012)]. On the other hand, these experiments demonstrated that the beam heated part of the target is severely damaged and is converted into different phases of high energy density (HED) matter, as suggested by our previous theoretical studies [Tahir et al., Phys. Rev. E 79, 046410 (2009)]. The latter confirms that the HiRadMat facility can be used to study HED physics. In the present paper, we give details of the numerical simulations carried out to understand the experimental measurements. These include the evolution of the physical parameters, for example, density, temperature, pressure, and the internal energy in the target, during and after the irradiation. This information is important in order to determine the region of the HED phase diagram that can be accessed in such experiments. These simulations have been done using the energy deposition code fluka and a two-dimensional hydrodynamic code, big2, iteratively.

  7. Fiscal 2000 survey report on technological trends. Survey on trend of high-density energy beam technology concerning conservation of energy; 2000 nendo gijutsu doko nado chosa hokokusho. Energy shiyo gorika ni kakawaru komitsudo energy beam technology no doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    There is a possibility that machining technology using high-density energy beam will bring an epoch-making change to micro-nano area processing. In particular, a laser beam having high controllability is indispensable. This is a report of the fiscal 2000 survey. The survey was conducted on laser beam generation, control and nano-diagnostic techniques, micro-nano optics technologies and machining technologies, with the development problems and targets summarized. Laser beam generation/control technologies, which become the basic tools for micro-nano manufacturing, were investigated, as were inspection technologies for the purpose of checking the functions of nano structures created. Particularly, the investigation elucidated the significance of development of a femtosecond solid state laser based on a semiconductor laser and the control techniques of their phase. Further, necessity was emphasized in developing X-ray probing, infrared and terahertz spectroscopy which are essential for nano-diagnostic techniques. In optics technologies, the paper described the importance of photonic crystals which enable less-than-wavelength machining or electrical beam control using interference effect. The possibility of fabricating photocatalysts with nano-particles was also mentioned, as was the manufacturing of nano-functional structures. (NEDO)

  8. The text neutral lithium beam edge density diagnostic

    International Nuclear Information System (INIS)

    Howald, A.M.; McChesney, J.M.; West, W.P.

    1994-07-01

    A fast neutral lithium beam has been installed on the TEXT tokamak for Beam Emission Spectroscopy (BES) studies of the edge plasma electron density profile. The diagnostic was recently upgraded from ten to twenty spatial channels, each of which has two detectors, one to measure lithium beam signal and one to monitor plasma background light. The spatial resolution is 6 mm, and the temporal resolution is designed to be as high as 10 ms for studies of transient events including plasma density fluctuations. Initial results are presented from the ten-channel system: Edge electron densities unfolded from the LiI(2 s 2 S - 2 p 2 P) 670.8 nm emission profile have the same general time dependence as the line-averaged density measured by microwave interferometry

  9. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  10. Current density monitor for intense relativistic electron beams

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Raleigh, M.; Seltzer, S.M.

    1986-01-01

    We describe a new type of electric probe which is capable of measuring the time-resolved current density profile of a stable, reproducible, high-energy (>4-MeV) high-current (>1-kA) electron beam. The sensing element of this probe is an open-ended but capped-off 50-Ω coaxial line constructed of graphite. The graphite sensor is 4.3 mm in diameter, 6 cm long, and is range thin to the primary beam electrons. The probe produces a signal proportional to the intercepted beam current. When the sensor is scanned radially through the beam during repeated pulses, a curve of signal versus depth of insertion is produced from which the radial current density profile can be determined. Measurements are presented of the profile of the electron beam from the Experimental Test Accelerator (4.5 MeV, 10 kA) at Lawrence Livermore National Laboratory. Good agreement is shown between measurements made with this probe and the beam radius as predicted by transport codes. The advantage of the electric probe lies in its ruggedness, simplicity, inherent fast rise time, and low cost. In contrast to other systems it requires no radiation shielding, water cooling, or auxiliary support equipment to operate in an intense beam environment

  11. Studies of thermophysical properties of high-energy-density states in matter using intense heavy ion beams at the future Fair accelerator facilities: The HEDgeHOB collaboration

    International Nuclear Information System (INIS)

    Tahir, N.A.; Deutsch, C.; Hoffmann, D.H.H.; Shutov, A.; Lomonosov, I.V.; Gryaznov, V.; Fortov, V.E.; Hoffmann, D.H.H.; Ni, P.; Udrea, S.; Varentsov, D.; Piriz, A.R.; Wouchuk, G.

    2006-01-01

    Intense beams of energetic heavy ions are believed to be a very efficient and novel tool to create states of High-Energy-Density (HED) in matter. This paper shows with the help of numerical simulations that the heavy ion beams that will be generated at the future Facility for Antiprotons and Ion Research (FAIR) will allow one to use two different experimental schemes to study HED states in matter. The German government has recently approved the construction of FAIR at Darmstadt. First scheme named HIHEX (Heavy Ion Heating and EXpansion), will generate high-pressure, high-entropy states in matter by volumetric isochoric heating. The heated material will then be allowed to expand in an isentropic way. Using this scheme, it will be possible to study important regions of the phase diagram that are either difficult to access or are even unaccessible using traditional methods of shock compression. The second scheme would allow one to achieve low-entropy compression of a sample material like hydrogen or water to produce conditions that are believed to exist in the interiors of the giant planets. This scheme is named LAPLAS after Laboratory Planetary Sciences. (authors)

  12. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    Science.gov (United States)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-03-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.

  13. Longitudinal density modulation and energy conversion in intense beams

    International Nuclear Information System (INIS)

    Harris, J. R.; Neumann, J. G.; Tian, K.; O'Shea, P. G.

    2007-01-01

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams

  14. Precision white-beam slit design for high power density x-ray undulator beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Brite, C.; Nian, T.

    1994-01-01

    A set of precision horizontal and vertical white-beam slits has been designed for the Advanced Photon Source (APS) X-ray undulator beamlines at Argonne National Laboratory. There are several new design concepts applied in this slit set, including: grazing-incidence knife-edge configuration to minimize the scattering of X-rays downstream, enhanced heat transfer tubing to provide water cooling, and a second slit to eliminate the thermal distortion on the slit knife edge. The novel aspect of this design is the use of two L-shaped knife-edge assemblies, which are manipulated by two precision X-Z stepping linear actuators. The principal and structural details of the design for this slit set are presented in this paper

  15. Radiolysis products and sensory properties of electron-beam-irradiated high-barrier food-packaging films containing a buried layer of recycled low-density polyethylene.

    Science.gov (United States)

    Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G

    2010-04-01

    The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.

  16. Electron density measurements during ion beam transport on Gamble II

    International Nuclear Information System (INIS)

    Weber, B.V.; Hinshelwood, D.D.; Neri, J.M.; Ottinger, P.F.; Rose, D.V.; Stephanakis, S.J.; Young, F.C.

    1999-01-01

    High-sensitivity laser interferometry was used to measure the electron density created when an intense proton beam (100 kA, 1 MeV, 50 ns) from the Gamble II generator was transported through low-pressure gas as part of a project investigating Self-Pinched Transport (SPT) of intense ion beams. This measurement is non-perturbing and sufficiently quantitative to allow benchmarking of codes (particularly IPROP) used to model beam-gas interaction and ion-beam transport. Very high phase sensitivity is required for this measurement. For example, a 100-kA, 1-MeV, 10-cm-radius proton beam with uniform current density has a line-integrated proton density equal to n b L = 3 x 10 13 cm -2 . An equal electron line-density, n e L = n b L, (expected for transport in vacuum) will be detected as a phase shift of the 1.064 microm laser beam of only 0.05degree, or an optical path change of 1.4 x 10 -4 waves (about the size of a hydrogen atom). The time-history of the line-integrated electron density, measured across a diameter of the transport chamber at 43 cm from the input aperture, starts with the proton arrival time and decays differently depending on the gas pressure. The gas conditions included vacuum (10 -4 Torr air), 30 to 220 mTorr He, and 1 Torr air. The measured densities vary by three orders of magnitude, from 10 13 to 10 16 cm -2 for the range of gas pressures investigated. In vacuum, the measured electron densities indicate only co-moving electrons (n e L approximately n b L). In He, when the gas pressure is sufficient for ionization by beam particles and SPT is observed, n e L increases to about 10 n b L. At even higher pressures where electrons contribute to ionization, even higher electron densities are observed with an ionization fraction of about 2%. The diagnostic technique as used on the SPT experiment will be described and a summary of the results will be given. The measurements are in reasonable agreement with theoretical predictions from the IPROP code

  17. High density dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, G.L.

    1996-01-01

    A fuel development campaign that results in an aluminum plate-type fuel of unlimited LEU burnup capability with an uranium loading of 9 grams per cm 3 of meat should be considered an unqualified success. The current worldwide approved and accepted highest loading is 4.8 g cm -3 with U 3 Si 2 as fuel. High-density uranium compounds offer no real density advantage over U 3 Si 2 and have less desirable fabrication and performance characteristics as well. Of the higher-density compounds, U 3 Si has approximately a 30% higher uranium density but the density of the U 6 X compounds would yield the factor 1.5 needed to achieve 9 g cm -3 uranium loading. Unfortunately, irradiation tests proved these peritectic compounds have poor swelling behavior. It is for this reason that the authors are turning to uranium alloys. The reason pure uranium was not seriously considered as a dispersion fuel is mainly due to its high rate of growth and swelling at low temperatures. This problem was solved at least for relatively low burnup application in non-dispersion fuel elements with small additions of Si, Fe, and Al. This so called adjusted uranium has nearly the same density as pure α-uranium and it seems prudent to reconsider this alloy as a dispersant. Further modifications of uranium metal to achieve higher burnup swelling stability involve stabilization of the cubic γ phase at low temperatures where normally α phase exists. Several low neutron capture cross section elements such as Zr, Nb, Ti and Mo accomplish this in various degrees. The challenge is to produce a suitable form of fuel powder and develop a plate fabrication procedure, as well as obtain high burnup capability through irradiation testing

  18. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    International Nuclear Information System (INIS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-01-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100–300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating–cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase. - Highlights: • Binary blends of HDPE/NBR have been irradiated with 5 MeV accelerated electrons. • Increase of NBR content and irradiation dose improves cross-linking efficiency. • Thermo-shrinkage and residual stresses are investigated for oriented specimens. • Cross-linked HDPE/NBR composites can be successfully used as thermos-shrinkable materials.

  19. Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

    Science.gov (United States)

    Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.

    2018-04-01

    The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.

  20. High density data recording for SSCL linac

    International Nuclear Information System (INIS)

    VanDeusen, A.L.; Crist, C.

    1993-01-01

    The Superconducting Super Collider Laboratory and AlliedSignal Aerospace have collaboratively developed a high density data monitoring system for beam diagnostic activities. The 128 channel data system is based on a custom multi-channel high speed digitizer card for the VXI bus. The card is referred to as a Modular Input VXI (MIX) digitizer. Multiple MIX cards are used in the complete system to achieve the necessary high channel density requirements. Each MIX digitizer card also contains programmable signal conditioning, and enough local memory to complete an entire beam scan without assistance from the host processor

  1. Overview of the APT high-energy beam transport and beam expanders

    International Nuclear Information System (INIS)

    Shafer, R.E.; Blind, B.; Gray, E.R.

    1997-01-01

    The APT high energy beam transport (HEBT) and beam expanders convey the 1700-MeV, 100-mA cw proton beam from the linac to the tritium target/blanket assembly, or a tuning beam stop. The HEBT includes extensive beam diagnostics, collimators, and beam jitter correction, to monitor and control the 170-MW beam prior to expansion. A zero-degree beamline conveys the beam to the beam stop, and an achromatic bend conveys the beam to the tritium production target. Nonlinear beam expanders make use of higher-order multipole magnets and dithering dipoles to expand the beam to a uniform-density, 16-cm wide by 160-cm high rectangular profile on the tritium-production target. The overall optics design will be reviewed, and beam simulations will be presented

  2. The influence of density distribution on the stability of beams

    International Nuclear Information System (INIS)

    Guy, F.W.; Lapostolle, P.M.; Wangler, T.P.

    1987-01-01

    We examine the effect of various density distributions in four-dimensional phase space and their projections in real and velocity space on the stability of continuous beams in alternating-gradient transport lines using particle-following computer simulations. We discuss the susceptibility of three different distributions (Kapchinskii-Vladimirskii, bicylinder, and thermal) to third- and higher-order mode instabilities. These distributions are all uniform in real space, but their velocity distributions are different; they also react differently to structure resonances. Velocity distributions of high-current beams tend to evolve to a peaked Gaussian-like form. Is there a specific velocity distribution that is stable and, therefore, the preferred injection distribution for minimizing emittance growth? Forced smoothness or uniformity in real space is necessary for setting up particle simulations of high-current beams so that spurious charge-redistribution emittance growth can be avoided. Is forced smoothness also desirable in four dimensions for continuous beams and possibly in six dimensions for bunched beams? We consider these and related questions

  3. Scrape-off layer-induced beam density fluctuations and their effect on beam emission spectroscopy

    Science.gov (United States)

    Moulton, D.; Marandet, Y.; Tamain, P.; Dif-Pradalier, G.

    2015-07-01

    A statistical model is presented to calculate the magnitude of beam density fluctuations generated by a turbulent scrape-off layer (SOL). It is shown that the SOL can induce neutral beam density fluctuations of a similar magnitude to the plasma density fluctuations in the core, potentially corrupting beam emission spectroscopy measurements. The degree of corruption is quantified by combining simulations of beam and plasma density fluctuations inside a simulated measurement window. A change in pitch angle from the separatrix to the measurement window is found to reduce the effect of beam fluctuations, whose largest effect is to significantly reduce the measured correlation time.

  4. High current beam transport experiments at GSI

    International Nuclear Information System (INIS)

    Klabunde, J.; Schonlein, A.; Spadtke, P.

    1985-01-01

    The status of the high current ion beam transport experiment is reported. 190 keV Ar 1+ ions were injected into six periods of a magnetic quadrupole channel. Since the pulse length is > 0.5 ms partial space charge neutralization occurs. In our experiments, the behavior of unneutralized and partially space charge compensated beams is compared. With an unneutralized beam, emittance growth has been measured for high intensities even in case of the zero-current phase advance sigma 0 0 . This initial emittance growth at high tune depression we attribute to the homogenization effect of the space charge density. An analytical formula based on this assumption describes the emittance growth very well. Furthermore the predicted envelope instabilities for sigma 0 > 90 0 were observed even after 6 periods. In agreement with the theory, unstable beam transport was also experimentally found if a beam with different emittances in the two transverse phase planes was injected into the transport channel. Although the space charge force is reduced for a partially neutralized beam a deterioration of the beam quality was measured in a certain range of beam parameters. Only in the range where an unneutralized beam shows the initial emittance growth, the partial neutralization reduces this effect, otherwise the partially neutralized beam is more unstable

  5. Kiloamp high-brightness beams

    International Nuclear Information System (INIS)

    Caporaso, G.J.

    1987-01-01

    Brightness preservation of high-current relativistic electron beams under two different types of transport is discussed. Recent progress in improving the brightness of laser-guided beams in the Advanced Test Accelerator is reviewed. A strategy for the preservation of the brightness of space-charge-dominated beams in a solenoidal transport system is presented

  6. Beam density equalization in a channel with nonlinear optics

    International Nuclear Information System (INIS)

    Batygin, Yu.K.; Kushin, V.V.; Nesterov, N.A.; Plotnikov, S.V.

    1993-01-01

    Simulation of beam density equalization in 2.85 m length transport channel covering two quadrupole lenses and two octupole lenses was carried out to obtain irradiation homogeneous field of track membrane materials. 0.3 MeV/nucleon energy and 1/8 electron-charge-mass ratio ion beam was supplied to the system inlet. Equalization of beam density function equal to about 80% was obtained. 4 refs., 1 fig

  7. Dosimetric Properties of Plasma Density Effects on Laser-Accelerated VHEE Beams Using a Sharp Density-Transition Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Hoon; Cho, Sungho; Kim, Eun Ho; Park, Jeong Hoon; Jung, Won-Gyun; Kim, Geun Beom; Kim, Kum Bae [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Min, Byung Jun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Jaehoon [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Jeong, Hojin [Gyeongsang National University Hospital, Jinju (Korea, Republic of); Lee, Kitae [Korea Atomic Energy Research Institute, Deajeon (Korea, Republic of); Park, Sung Yong [Karmanos Cancer Institute, Michigan (United States)

    2017-01-15

    In this paper, the effects of the plasma density on laser-accelerated electron beams for radiation therapy with a sharp density transition are investigated. In the sharp density-transition scheme for electron injection, the crucial issue is finding the optimum density conditions under which electrons injected only during the first period of the laser wake wave are accelerated further. In this paper, we report particle-in-cell simulation results for the effects of both the scale length and the density transition ratio on the generation of a quasi-mono-energetic electron bunch. The effects of both the transverse parabolic channel and the plasma length on the electron-beam's quality are investigated. Also, we show the experimental results for the feasibility of a sharp density-transition structure. The dosimetric properties of these very high-energy electron beams are calculated using Monte Carlo simulations.

  8. High density hydrogen research

    International Nuclear Information System (INIS)

    Hawke, R.S.

    1977-01-01

    The interest in the properties of very dense hydrogen is prompted by its abundance in Saturn and Jupiter and its importance in laser fusion studies. Furthermore, it has been proposed that the metallic form of hydrogen may be a superconductor at relatively high temperatures and/or exist in a metastable phase at ambient pressure. For ten years or more, laboratories have been developing the techniques to study hydrogen in the megabar region (1 megabar = 100 GPa). Three major approaches to study dense hydrogen experimentally have been used, static presses, shockwave compression, and magnetic compression. Static tchniques have crossed the megabar threshold in stiff materials but have not yet been convincingly successful in very compressible hydrogen. Single and double shockwave techniques have improved the precision of the pressure, volume, temperature Equation of State (EOS) of molecular hydrogen (deuterium) up to near 1 Mbar. Multiple shockwave and magnetic techniques have compressed hydrogen to several megabars and densities in the range of the metallic phase. The net result is that hydrogen becomes conducting at a pressure between 2 and 4 megabars. Hence, the possibility of making a significant amount of hydrogen into a metal in a static press remains a formidable challenge. The success of such experiments will hopefully answer the questions about hydrogen's metallic vs. conducting molecular phase, superconductivity, and metastability. 4 figures, 15 references

  9. Development of optimum process for electron beam cross-linking of high density polyethylene thermal energy storage pellets, process scale-up and production of application qualities of material

    Science.gov (United States)

    Salyer, I. O.

    1980-01-01

    The electron irradiation conditions required to prepare thermally from stable high density polyethylene (HDPE) were defined. The conditions were defined by evaluating the heat of fusion and the melting temperature of several HDPE specimens. The performance tests conducted on the specimens, including the thermal cycling tests in the thermal energy storage unit are described. The electron beam irradiation tests performed on the specimens, in which the total radiation dose received by the pellets, the electron beam current, the accelerating potential, and the atmospheres were varied, are discussed.

  10. High Power Density Motors

    Science.gov (United States)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  11. Numerical Calculation of the Phase Space Density for the Strong-Strong Beam-Beam Interaction

    International Nuclear Information System (INIS)

    Sobol, A.; Ellison, J.A.

    2003-01-01

    We developed a parallel code to calculate the evolution of the 4D phase space density of two colliding beams, which are coupled via the collective strong-strong beam-beam interaction, in the absence of diffusion and damping, using the Perron-Frobenius (PF) operator technique

  12. ICAN: High power neutral beam generation

    International Nuclear Information System (INIS)

    Moustaizis, S.D.; Lalousis, P.; Perrakis, K.; Auvray, P.; Larour, J.; Ducret, J.E.; Balcou, P.

    2015-01-01

    During the last few years there is an increasing interest on the development of alternative high power new negative ion source for Tokamak applications. The proposed new neutral beam device presents a number of advantages with respect to: the density current, the acceleration voltage, the relative compact dimension of the negative ion source, and the coupling of a high power laser beam for photo-neutralization of the negative ion beam. Here we numerically investigate, using a multi- fluid 1-D code, the acceleration and the extraction of high power ion beam from a Magnetically Insulated Diode (MID). The diode configuration will be coupled to a high power device capable of extracting a current up to a few kA with an accelerating voltage up to MeV. An efficiency of up to 92% of the coupling of the laser beam, is required in order to obtain a high power, up to GW, neutral beam. The new high energy, high average power, high efficiency (up to 30%) ICAN fiber laser is proposed for both the plasma generation and the photo-neutralizer configuration. (authors)

  13. Precision atomic beam density characterization by diode laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Oxley, Paul; Wihbey, Joseph

    2016-01-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 −5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm −3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  14. Precision atomic beam density characterization by diode laser absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, Paul; Wihbey, Joseph [Physics Department, The College of the Holy Cross, Worcester, Massachusetts 01610 (United States)

    2016-09-15

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10{sup −5} are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10{sup 4} atoms cm{sup −3}. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  15. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  16. Edge plasma density reconstruction for fast monoenergetic lithium beam probing

    International Nuclear Information System (INIS)

    Sasaki, S.; Takamura, S.; Ueda, M.; Iguchi, H.; Fujita, J.; Kadota, K.

    1993-01-01

    Two different electron density reconstruction methods for 8-keV neutral lithium beam probing have been developed for the Compact Helical System (CHS). Density dependences on emission and ionization processes are included by using effective rate coefficients obtained from the collisional radiative model. Since the two methods differ in the way the local beam density in the plasma is determined, the methods have different applicable electron densities. The beam attenuation is calculated by iteration from the electron density profile in method I. In method II, the beam remainder at the observation point z is determined by integrating the Li I emission intensity from z toward the position of emission tail-off. At the emission tail-off, the fast lithium beam is completely attenuated. Selecting an appropriate method enables us to obtain edge electron density profile well inside the last closed flux surface for various ranges of plasma densities (10 12 --5x10 13 cm -3 ). The electron density profiles reconstructed by these two different methods are in good agreement with each other and are consistent with results from ruby laser Thomson scattering

  17. Comparison of laser-induced surface damage density measurements with small and large beams: toward representativeness

    International Nuclear Information System (INIS)

    Lamaignere, Laurent; Dupuy, Gabriel; Donval, Thierry; Grua, Pierre; Bercegol, Herve

    2011-01-01

    Pulsed laser damage density measurements obtained with diverse facilities are difficult to compare, due to the interplay of numerous parameters, such as beam area and pulse geometry, which, in operational large beam conditions, are very different from laboratory measurements. This discrepancy could have a significant impact; if so, one could not even pretend that laser damage density control is a real measurement process. In this paper, this concern is addressed. Tests with large beams of centimeter size on a high-power laser facility have beam performed according to a parametric study and are compared to small beam laboratory tests. It is shown that laser damage densities obtained with large and small beams are equal, within calculated error bars.

  18. High-order nonuniformly correlated beams

    Science.gov (United States)

    Wu, Dan; Wang, Fei; Cai, Yangjian

    2018-02-01

    We have introduced a class of partially coherent beams with spatially varying correlations named high-order nonuniformly correlated (HNUC) beams, as an extension of conventional nonuniformly correlated (NUC) beams. Such beams bring a new parameter (mode order) which is used to tailor the spatial coherence properties. The behavior of the spectral density of the HNUC beams on propagation has been investigated through numerical examples with the help of discrete model decomposition and fast Fourier transform (FFT) algorithm. Our results reveal that by selecting the mode order appropriately, the more sharpened intensity maxima can be achieved at a certain propagation distance compared to that of the NUC beams, and the lateral shift of the intensity maxima on propagation is closed related to the mode order. Furthermore, analytical expressions for the r.m.s width and the propagation factor of the HNUC beams on free-space propagation are derived by means of Wigner distribution function. The influence of initial beam parameters on the evolution of the r.m.s width and the propagation factor, and the relation between the r.m.s width and the occurring of the sharpened intensity maxima on propagation have been studied and discussed in detail.

  19. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  20. Effect of high energy electron beam (10 MeV) on specific heat capacity of low-density polyethylene/hydroxyapatite nano-composite

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Z., E-mail: zhr_soltani@yahoo.com [Health Physics and Radiation Dosimetry Research Laboratory, Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ziaie, F. [Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of); Ghaffari, M. [Polymer Group, Golestan University, Golestan (Iran, Islamic Republic of); Beigzadeh, A.M. [Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-02-01

    In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10 MeV electron beam at doses of 75 to 250 kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100 °C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite.

  1. High precision electron beam diagnostic system for high current long pulse beams

    International Nuclear Information System (INIS)

    Chen, Y J; Fessenden, T; Holmes, C; Nelson, S D; Selchow, N.

    1999-01-01

    As part of the effort to develop a multi-axis electron beam transport system using stripline kicker technology for DARHT II applications, it is necessary to precisely determine the position and extent of long high energy beams (6-40 MeV, 1-4 kA, 2 microseconds) for accurate position control. The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (<20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt measurements performed using capacitive pick-off probes. Likewise, transmission line traveling wave probes have problems with multi-bounce effects due to these longer pulse widths. Finally, the high energy densities experienced in these applications distort typical foil beam position measurements

  2. Electrostatic lens to focus an ion beam to uniform density

    International Nuclear Information System (INIS)

    Johnson, C.H.

    1977-01-01

    A focusing lens for an ion beam having a gaussian or similar density profile is described. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens

  3. High purity radioactive beams at the bevalac

    International Nuclear Information System (INIS)

    Alonso, J.R.; Chatterjee, A.; Tobias, C.A.

    1979-03-01

    Peripheral nuclear fragmentation reactions of primary Bevalac heavy ion beams are used to produce secondary beams of radioactive nuclei. The large cross section and small deflection of the projectile fragments lead to high production and delivery efficiency for these beams. Dispersive beam transport allows good separation and purification of the desired secondary beams. 11 C and 19 Ne beams of high purity and good intensity (almost 0.2% of the primary beam current) are presently being used for biomedical experiments

  4. Long-time evolution of a low-density ion beam

    International Nuclear Information System (INIS)

    Zachary, A.L.; Cohen, B.I.; Max, C.E.; Arons, J.

    1989-01-01

    With a new, orbit-averaged hybrid computer simulation code, we study a cold, fast low-density ion beam which propagates along the ambient magnetic field as it interacts with a much denser fluid background. We examine the character of the interactions as we vary the ion beam density relative to the background density over the range 1 x 10/sup -5/ to 3 x 10/sup -3/. The low beam density simulations may not be directly observable upstream of the Earth's bow shock, but they are included to help develop an understanding of the results seen in the simulations with high-beam density. However, our highest density simulation falls within the range of solar wind data. All the simulations, regardless of the relative beam density, show three distinct phases: (1) an early or ''linear'' phase; (2) an intermediate or ''trapping'' phase; and (3) a late or ''decorrelation'' phase. In the early phase, the beam excites a nearly monochromatic Alfven wave whose amplitude grows exponentially at a rate given by linear perturbation theory. The wave amplitude saturates when the linear growth rate is of the order of the trapping frequency

  5. Dynamics of laser-driven proton beam focusing and transport into solid density matter

    Science.gov (United States)

    Kim, J.; McGuffey, C.; Beg, F.; Wei, M.; Mariscal, D.; Chen, S.; Fuchs, J.

    2016-10-01

    Isochoric heating and local energy deposition capabilities make intense proton beams appealing for studying high energy density physics and the Fast Ignition of inertial confinement fusion. To study proton beam focusing that results in high beam density, experiments have been conducted using different target geometries irradiated by a kilojoule, 10 ps pulse of the OMEGA EP laser. The beam focus was measured by imaging beam-induced Cu K-alpha emission on a Cu foil that was positioned at a fixed distance. Compared to a free target, structured targets having shapes of wedge and cone show a brighter and narrower K-alpha radiation emission spot on a Cu foil indicating higher beam focusability. Experimentally observed images with proton radiography demonstrate the existence of transverse fields on the structures. Full-scale simulations including the contribution of a long pulse duration of the laser confirm that such fields can be caused by hot electrons moving through the structures. The simulated fields are strong enough to reflect the diverging main proton beam and pinch a transverse probe beam. Detailed simulation results including the beam focusing and transport of the focused intense proton beam in Cu foil will be presented. This work was supported by the National Laser User Facility Program through Award DE-NA0002034.

  6. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  7. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  8. Laser fusion and high energy density science

    International Nuclear Information System (INIS)

    Kodama, Ryosuke

    2005-01-01

    High-power laser technology is now opening a variety of new fields of science and technology using laser-produced plasmas. The laser plasma is now recognized as one of the important tools for the investigation and application of matter under extreme conditions, which is called high energy density science. This chapter shows a variety of applications of laser-produced plasmas as high energy density science. One of the more attractive industrial and science applications is the generation of intense pulse-radiation sources, such as the generation of electro-magnetic waves in the ranges of EUV (Extreme Ultra Violet) to gamma rays and laser acceleration of charged particles. The laser plasma is used as an energy converter in this regime. The fundamental science applications of high energy density physics are shown by introducing laboratory astrophysics, the equation of state of high pressure matter, including warm dense matter and nuclear science. Other applications are also presented, such as femto-second laser propulsion and light guiding. Finally, a new systematization is proposed to explore the possibility of the high energy density plasma application, which is called high energy plasma photonics''. This is also exploration of the boundary regions between laser technology and beam optics based on plasma physics. (author)

  9. High current density ion source

    International Nuclear Information System (INIS)

    King, H.J.

    1977-01-01

    A high-current-density ion source with high total current is achieved by individually directing the beamlets from an electron bombardment ion source through screen and accelerator electrodes. The openings in these screen and accelerator electrodes are oriented and positioned to direct the individual beamlets substantially toward a focus point. 3 figures, 1 table

  10. High current beam transport with multiple beam arrays

    International Nuclear Information System (INIS)

    Kim, C.H.

    1985-05-01

    Highlights of recent experimental and theoretical research progress on the high current beam transport of single and multiple beams by the Heavy Ion Fusion Accelerator Research (HIFAR) group at the Lawrence Berkeley Laboratory (LBL) are presented. In the single beam transport experiment (SBTE), stability boundaries and the emittance growth of a space charge dominated beam in a long quadrupole transport channel were measured and compared with theory and computer simulations. Also, a multiple beam ion induction linac (MBE-4) is being constructed at LBL which will permit study of multiple beam transport arrays, and acceleration and bunch length compression of individually focused beamlets. Various design considerations of MBE-4 regarding scaling laws, nonlinear effects, misalignments, and transverse and longitudinal space charge effects are summarized. Some aspects of longitudinal beam dynamics including schemes to generate the accelerating voltage waveforms and to amplify beam current are also discussed

  11. Background gas density and beam losses in NIO1 beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Veltri, P.; Serianni, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Cavenago, M. [INFN-LNL, v.le dell’Università 2, I-35020 Legnaro (PD) (Italy)

    2016-02-15

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  12. Photoionization and High Density Gas

    Science.gov (United States)

    Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.

  13. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  14. High bandwidth beam current monitor

    International Nuclear Information System (INIS)

    Baltrusaitis, R.M.; Ekdahl, C.A.; Cooper, R.G.; Peterson, E.; Warn, C.E.

    1993-01-01

    A stripline directional coupler beam current monitor capable of measuring the time structure of a 30-ps electron beam bunch has been developed. The time response performance of the monitor compares very well with Cherenkov light produced in quartz by the electron beam. The four-pickup monitor is now used on a routine basis for measuring the beam duration, tuning for optimized beam bunching, and centering the bunch in the beam pipe

  15. Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, Adam K.; Gallagher, Molly [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Usero, Antonio [Observatorio Astronmico Nacional (IGN), C/Alfonso XII, 3, E-28014 Madrid (Spain); Schruba, Andreas [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, D-85748 Garching (Germany); Bigiel, Frank [Institute für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Kruijssen, J. M. Diederik; Schinnerer, Eva [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Kepley, Amanda [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Blanc, Guillermo A. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Bolatto, Alberto D. [Department of Astronomy, Laboratory for Millimeter-wave Astronomy, and Joint Space Institute, University of Maryland, College Park, MD 20742 (United States); Cormier, Diane; Jiménez-Donaire, Maria J. [Max Planck Institute für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Hughes, Annie [CNRS, IRAP, 9 av. du Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Rosolowsky, Erik [Department of Physics, University of Alberta, Edmonton, AB (Canada)

    2017-02-01

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know the absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.

  16. Electron gun for formation of two high-current beams

    International Nuclear Information System (INIS)

    Borisov, A.R.; Zherlitsyn, A.G.; Mel'nikov, G.V.; Shtejn, Yu.G.

    1982-01-01

    The design of the ''Tonus'' accelerator electron gun for formation of two high-current beams aiming at the production of the maximum beam power and density is described. The results of investigation of two modes of beam formation are presented. In the first variant the beams were produced by means of two plane diodes with 40 mm diameter cathodes made of stainless steel and anodes made of 50 μm thick titanium foil. In the second variant the beams were formed by means of two coaxial diodes with magnetic insulation. In one diode the cathode diameter equals to 74 mm, the anode diameter - 92 mm, in the other diode 16 and 44 mm respectively. Current redistribution in the diodes and its effect on accelerating voltage are investigated. It is shown that the gun permits formation of synchronized two high-current beams, iaving equal electron energied. Wide range current control of both beams is possible

  17. High density matter at RHIC

    Indian Academy of Sciences (India)

    QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at ...

  18. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  19. High density operation in pulsator

    International Nuclear Information System (INIS)

    Klueber, O.; Cannici, B.; Engelhardt, W.; Gernhardt, J.; Glock, E.; Karger, F.; Lisitano, G.; Mayer, H.M.; Meisel, D.; Morandi, P.

    1976-03-01

    This report summarizes the results of experiments at high electron densities (>10 14 cm -3 ) which have been achieved by pulsed gas inflow during the discharge. At these densities a regime is established which is characterized by βsub(p) > 1, nsub(i) approximately nsub(e), Tsub(i) approximately Tsub(e) and tausub(E) proportional to nsub(e). Thus the toroidal magnetic field contributes considerably to the plasma confinement and the ions constitute almost half of the plasma pressure. Furthermore, the confinement is appreciably improved and the plasma becomes impermeable to hot neutrals. (orig.) [de

  20. Perspectives on High-Energy-Density Physics

    Science.gov (United States)

    Drake, R. Paul

    2008-11-01

    Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very non-traditional plasmas. High-energy density (HED) plasmas are often examples, variously involving strong Coulomb interactions and few particles per Debeye sphere, dominant radiation effects, strongly relativistic effects, or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of ``plasma''. This presentation will focus on two types of HED plasmas that exhibit non-traditional behavior. Our first example will be the plasmas produced by extremely strong shock waves. Shock waves are present across the entire realm of plasma densities, often in space or astrophysical contexts. HED shock waves (at pressures > 1 Mbar) enable studies in many areas, from equations of state to hydrodynamics to radiation hydrodynamics. We will specifically consider strongly radiative shocks, in which the radiative energy fluxes are comparable to the mechanical energy fluxes that drive the shocks. Modern HED facilities can produce such shocks, which are also present in dense, energetic, astrophysical systems such as supernovae. These shocks are also excellent targets for advanced simulations due to their range of spatial scales and complex radiation transport. Our second example will be relativistic plasmas. In general, these vary from plasmas containing relativistic particle beams, produced for some decades in the laboratory, to the relativistic thermal plasmas present for example in pulsar winds. Laboratory HED relativistic plasmas to date have been those produced by laser beams of irradiance ˜ 10^18 to 10^22 W/cm^2 or by accelerator-produced HED electron beams. These have applications ranging from generation of intense x-rays to production of proton beams for radiation therapy to acceleration of electrons. Here we will focus on electron acceleration, a spectacular recent success and a rare

  1. Development of high-spin isomer beams

    International Nuclear Information System (INIS)

    Zhou Xiaohong

    2000-01-01

    The physical motivations with high-spin isomer beams were introduced. Taking HSIB of RIKEN as an example, the methods to produce, separate, transport and purity high-spin isomer beams were described briefly, and the detection of γ rays emitted from the reactions induced by the high-spin isomer beams was presented. Finally, the progress to develop the high-spin isomers in the N = 83 isotones as second beams was stressed

  2. High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe{sub 2}/MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Horacio Coy; Ma, Yujing; Chaghi, Redhouane; Batzill, Matthias [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2016-05-09

    Growth of transition metal dichalcogenide heterostructures by molecular beam epitaxy (MBE) promises synthesis of artificial van der Waals materials with controllable layer compositions and separations. Here, we show that MBE growth of 2H-MoTe{sub 2} monolayers on MoS{sub 2} substrates results in a high density of mirror-twins within the films. The grain boundaries are tellurium deficient, suggesting that Te-deficiency during growth causes their formation. Scanning tunneling microscopy and spectroscopy reveal that the grain boundaries arrange in a pseudo periodic “wagon wheel” pattern with only ∼2.6 nm repetition length. Defect states from these domain boundaries fill the band gap and thus give the monolayer an almost metallic property. The band gap states pin the Fermi-level in MoTe{sub 2} and thus determine the band-alignment in the MoTe{sub 2}/MoS{sub 2} interface.

  3. Improved GAMMA 10 tandem mirror confinement in high density plasma

    International Nuclear Information System (INIS)

    Yatsu, K.; Cho, T.; Higaki, H.; Hirata, M.; Hojo, H.; Ichimura, M.; Ishii, K.; Ishimoto, Y.; Itakura, A.; Katanuma, I.; Kohagura, J.; Minami, R.; Nakashima, Y.; Numakura, T.; Saito, T.; Saosaki, S.; Takemura, Y.; Tatematsu, Y.; Yoshida, M.; Yoshikawa, M.

    2003-01-01

    GAMMA 10 experiments have advanced in high density experiments after the last IAEA fusion energy conference in 2000 where we reported the production of the high density plasma through use of ion cyclotron range of frequency heating at a high harmonic frequency and neutral beam injection in the anchor cells. However, the diamagnetic signal of the plasma decreased when electron cyclotron resonance heating was applied for the potential formation. Recently a high density plasma has been obtained without degradation of the diamagnetic signal and with much improved reproducibility than before. The high density plasma was attained through adjustment of the spacing of the conducting plates installed in the anchor transition regions. The potential confinement of the plasma has been extensively studied. Dependences of the ion confinement time, ion-energy confinement time and plasma confining potential on plasma density were obtained for the first time in the high density region up to a density of 4x10 18 m -3 . (author)

  4. Pulsed high-power beams

    International Nuclear Information System (INIS)

    Reginato, L.L.; Birx, D.L.

    1988-01-01

    The marriage of induction linac technology with nonlinear magnetic modulators has produced some unique capabilities. It is now possible to produce short-pulse electron beams with average currents measured in amperes, at gradients approaching 1-MeV/m, and with power efficiencies exceeding 50%. This paper reports on a 70-MeV, 3-kA induction accelerator (ETA II) constructed at the Lawrence Livermore National Laboratory that incorporates the pulse technology concepts that have evolved over the past several years. The ETA II is a linear induction accelerator and provides a test facility for demonstration of the high-average-power components and high-brightness sources used in such accelerators. The pulse drive of the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak-power capability, repetition rates exceeding 1 kHz, and excellent reliability

  5. Diagnostics for high-brightness beams

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1990-01-01

    Special techniques are required for beam diagnostics on high-brightness particle beams. Examples of high-brightness beams include low-emittance proton linacs (either pulsed or CW), electron linacs suitable for free-electron-laser applications, and future linear colliders. Non-interceptive and minimally-interceptive techniques for measuring beam current, position, profile, and transverse and longitudinal emittance will be reviewed. Included will be stripline, wire scanner, laser neutralization, beam-beam scattering, interceptive microgratings, spontaneous emission, optical transition radiation, and other techniques. 24 refs

  6. High baryon density from relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Y.; Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States); Schlagel, T.J. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States)

    1993-10-01

    A quantitative model, based on hadronic physics, is developed and applied to heavy ion collisions at BNL-AGS energies. This model is in excellent agreement with observed particle spectra in heavy ion collisions using Si beams, where baryon densities of three and four times the normal nuclear matter density ({rho}{sub 0}) are reached. For Au on Au collisions, the authors predict the formation of matter at very high densities (up to 10 {rho}{sub 0}).

  7. High density fuel storage rack

    International Nuclear Information System (INIS)

    Zezza, L.J.

    1980-01-01

    High storage density for spent nuclear fuel assemblies in a pool achieved by positioning fuel storage cells of high thermal neutron absorption materials in an upright configuration in a rack. The rack holds the cells at required pitch. Each cell carries an internal fuel assembly support, and most cells are vertically movable in the rack so that they rest on the pool bottom. Pool water circulation through the cells and around the fuel assemblies is permitted by circulation openings at the top and bottom of the cells above and below the fuel assemblies

  8. Double trouble at high density:

    DEFF Research Database (Denmark)

    Gergs, André; Palmqvist, Annemette; Preuss, Thomas G

    2014-01-01

    Population size is often regulated by negative feedback between population density and individual fitness. At high population densities, animals run into double trouble: they might concurrently suffer from overexploitation of resources and also from negative interference among individuals...... regardless of resource availability, referred to as crowding. Animals are able to adapt to resource shortages by exhibiting a repertoire of life history and physiological plasticities. In addition to resource-related plasticity, crowding might lead to reduced fitness, with consequences for individual life...... history. We explored how different mechanisms behind resource-related plasticity and crowding-related fitness act independently or together, using the water flea Daphnia magna as a case study. For testing hypotheses related to mechanisms of plasticity and crowding stress across different biological levels...

  9. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  10. Research on high density tomography

    International Nuclear Information System (INIS)

    Caporaso, G.J.; Kirbie, H.C.

    1995-01-01

    The project goal is to define the beam transport system and pulsed power architecture for an advanced radiography machine that would permit obtaining a temporal sequence of multipleline-of-sight views of a given dynamic event. A long (200ns-1000ns) beam pulse would be split temporally by fast kicker ''coils'' and made to travel down separate beamlines to illuminate a target from two to four different angles. The beam pulse could be repeated at intervals down to 1 microsecond. The beam transport system and pulsed power architecture for this machine have been scoped out

  11. High Energy Density Physics and Exotic Acceleration Schemes

    International Nuclear Information System (INIS)

    Cowan, T.; Colby, E.

    2005-01-01

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  12. Effect of exponential density transition on self-focusing of q-Gaussian laser beam in collisionless plasma

    Science.gov (United States)

    Valkunde, Amol T.; Vhanmore, Bandopant D.; Urunkar, Trupti U.; Gavade, Kusum M.; Patil, Sandip D.; Takale, Mansing V.

    2018-05-01

    In this work, nonlinear aspects of a high intensity q-Gaussian laser beam propagating in collisionless plasma having upward density ramp of exponential profiles is studied. We have employed the nonlinearity in dielectric function of plasma by considering ponderomotive nonlinearity. The differential equation governing the dimensionless beam width parameter is achieved by using Wentzel-Kramers-Brillouin (WKB) and paraxial approximations and solved it numerically by using Runge-Kutta fourth order method. Effect of exponential density ramp profile on self-focusing of q-Gaussian laser beam for various values of q is systematically carried out and compared with results Gaussian laser beam propagating in collisionless plasma having uniform density. It is found that exponential plasma density ramp causes the laser beam to become more focused and gives reasonably interesting results.

  13. Electric field spikes formed by electron beam endash plasma interaction in plasma density gradients

    International Nuclear Information System (INIS)

    Gunell, H.; Loefgren, T.

    1997-01-01

    In the electron beam endash plasma interaction at an electric double layer the beam density is much higher than in the classical beam endash plasma experiments. The wave propagation takes place along the density gradient that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp open-quotes spikeclose quotes with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward traveling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. copyright 1997 American Institute of Physics

  14. Collimated fast electron beam generation in critical density plasma

    Energy Technology Data Exchange (ETDEWEB)

    Iwawaki, T., E-mail: iwawaki-t@eie.eng.osaka-u.ac.jp; Habara, H.; Morita, K.; Tanaka, K. A. [Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Baton, S.; Fuchs, J.; Chen, S. [LULI, CNRS-Ecole Polytechnique-Université Pierre et Marie Curie-CEA, 91128 Palaiseau (France); Nakatsutsumi, M. [LULI, CNRS-Ecole Polytechnique-Université Pierre et Marie Curie-CEA, 91128 Palaiseau (France); European X-Ray Free-Electron Laser Facility (XFEL) GmbH (Germany); Rousseaux, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Filippi, F. [La SAPIENZA, University of Rome, Dip. SBAI, 00161 Rome (Italy); Nazarov, W. [School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, Scotland (United Kingdom)

    2014-11-15

    Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is observed when an ultra-intense laser pulse (I = 10{sup 14 }W/cm{sup 2}, 300 fs) irradiates a uniform critical density plasma. The uniform plasma is created through the ionization of an ultra-low density (5 mg/c.c.) plastic foam by X-ray burst from the interaction of intense laser (I = 10{sup 14 }W/cm{sup 2}, 600 ps) with a thin Cu foil. 2D Particle-In-Cell (PIC) simulation well reproduces the collimated electron beam with a strong magnetic field in the region of the laser pulse propagation. To understand the physical mechanism of the collimation, we calculate energetic electron motion in the magnetic field obtained from the 2D PIC simulation. As the results, the strong magnetic field (300 MG) collimates electrons with energy over a few MeV. This collimation mechanism may attract attention in many applications such as electron acceleration, electron microscope and fast ignition of laser fusion.

  15. Targets for high power neutral beams

    International Nuclear Information System (INIS)

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs

  16. Beam alignment based on two-dimensional power spectral density of a near-field image.

    Science.gov (United States)

    Wang, Shenzhen; Yuan, Qiang; Zeng, Fa; Zhang, Xin; Zhao, Junpu; Li, Kehong; Zhang, Xiaolu; Xue, Qiao; Yang, Ying; Dai, Wanjun; Zhou, Wei; Wang, Yuanchen; Zheng, Kuixing; Su, Jingqin; Hu, Dongxia; Zhu, Qihua

    2017-10-30

    Beam alignment is crucial to high-power laser facilities and is used to adjust the laser beams quickly and accurately to meet stringent requirements of pointing and centering. In this paper, a novel alignment method is presented, which employs data processing of the two-dimensional power spectral density (2D-PSD) for a near-field image and resolves the beam pointing error relative to the spatial filter pinhole directly. Combining this with a near-field fiducial mark, the operation of beam alignment is achieved. It is experimentally demonstrated that this scheme realizes a far-field alignment precision of approximately 3% of the pinhole size. This scheme adopts only one near-field camera to construct the alignment system, which provides a simple, efficient, and low-cost way to align lasers.

  17. Gas Transport and Density Control in the HYLIFE Heavy-Ion Beam Lines

    International Nuclear Information System (INIS)

    Debonnel, Christophe S.; Welch, Dale R.; Rose, David V.; Lawrence, Simon S.Yu; Peterson, Per F.

    2003-01-01

    The effective propagation and focusing of heavy-ion beams in the final-focus magnet region of inertial fusion target chambers require controlling the background gas density and pressure in the beam tubes. Liquid vortexes will coat the inside of the tubes next to the beam ports and will help eliminate the need for mechanical shutters to mitigate the venting of target chamber background gas into the final-focus magnet region. Before the neutralizing region, the beam space charge is high, and ablation and target debris deposition in the final-focus magnet region may cause voltage breakdown. Previous studies focused on evaluating the amount of target chamber debris reaching the entrance of the beam ports. The TSUNAMI code has now been used to assess the density, temperature, and velocity of the vortex debris transported ∼3 m up the beam tubes and reaching the final-focus magnet region, assuming that the liquid vortexes are perfectly absorbing surfaces. To further mitigate debris deposition in the final-focus magnet region, and prevent voltage breakdown, a 'magnetic shutter' has been envisaged to divert the debris out of the final-focus region. This shutter will prevent the hot ablation debris from reaching the magnet region and, coupled to some ionizing scheme, will conveniently suppress early ingression of debris into the final-focus magnet region

  18. Workshop on extremely high energy density plasmas and their diagnostics

    International Nuclear Information System (INIS)

    Ishii, Shozo

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  19. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  20. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  1. Development of high current electron beam generator

    International Nuclear Information System (INIS)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs

  2. High energy high intensity coherent photon beam for the SSC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1984-01-01

    What is proposed for the 20 TeV protons hitting a fixed target is to make a tertiary electron beam similar to that which is the basis of the tagged photon beam at Fermilab. Briefly, a zero degree neutral beam is formed by sweeping out the primary proton beam and any secondary charged particles. Then the photons, from the decay of π 0 in the neutral beam, are converted to e + e - pairs in a lead converter and a high quality electron beam is formed. This beam is brought to the target area where it is converted to a photon beam by Bremsstrahlung in a radiator

  3. Beam-beam interaction in high energy linear electron-positron colliders

    International Nuclear Information System (INIS)

    Ritter, S.

    1985-04-01

    The interaction of high energy electron and positron beams in a linear collider has been investigated using a macroparticle Monte Carlo method based on a Cloud-In-Cells plasma simulation scheme. Density evolutions, luminosities, energy and angular distributions for electrons (positrons) and synchrotron photons are calculated. Beside beams with a symmetric transverse profile also flat beams are considered. A reasonably good agreement to alternative computer calculations as well as to an analytical approximation for the energy spectrum of synchrotron photons has been obtained. (author)

  4. Experimental approach to high power long duration neutral beams

    International Nuclear Information System (INIS)

    Horiike, Hiroshi

    1981-12-01

    Experimental studies of ion sources and beam dumps for the development of a high power long duration neutral beam injector for JT-60 are presented. Long pulse operation of high power beams requires a high degree of reliability. To develop a reliable ion source with large extraction area, a new duoPIGatron ion source with a coaxially shaped intermediate electrode is proposed and tested. Magnetic configuration is examined numerically to obtain high current arc discharge and source plasma with small density variation. Experimental results show that primary electrons were fed widely from the cathode plasma region to the source plasma region and that dense uniform source plasma could be obtained easily. Source plasma characteristics are studied and comparison of these with other sources are also described. To develop extraction electrode of high power ion source, experimental studies were made on the cooling of the electrode. Long Pulse beams were extracted safely under the condition of high heat loading on the electrode. Finally, burnout study for the development of high power beam dumps is presented. Burnout data were obtained from subcooled forced-convective boiling of water in a copper finned tube irradiated by high power ion beams. The results yield simple burnout correlations which can be used for the prediction of burnout heat flux of the beam dump. (author)

  5. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  6. High-field, high-density tokamak power reactor

    International Nuclear Information System (INIS)

    Cohn, D.R.; Cook, D.L.; Hay, R.D.; Kaplan, D.; Kreischer, K.; Lidskii, L.M.; Stephany, W.; Williams, J.E.C.; Jassby, D.L.; Okabayashi, M.

    1977-11-01

    A conceptual design of a compact (R 0 = 6.0 m) high power density (average P/sub f/ = 7.7 MW/m 3 ) tokamak demonstration power reactor has been developed. High magnetic field (B/sub t/ = 7.4 T) and moderate elongation (b/a = 1.6) permit operation at the high density (n(0) approximately 5 x 10 14 cm -3 ) needed for ignition in a relatively small plasma, with a spatially-averaged toroidal beta of only 4%. A unique design for the Nb 3 Sn toroidal-field magnet system reduces the stress in the high-field trunk region, and allows modularization for simpler disassembly. The modest value of toroidal beta permits a simple, modularized plasma-shaping coil system, located inside the TF coil trunk. Heating of the dense central plasma is attained by the use of ripple-assisted injection of 120-keV D 0 beams. The ripple-coil system also affords dynamic control of the plasma temperature during the burn period. A FLIBE-lithium blanket is designed especially for high-power-density operation in a high-field environment, and gives an overall tritium breeding ratio of 1.05 in the slowly pumped lithium

  7. Study on the intense relativistic electron beam propagation in a collisionless plasma of small density

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.

    1982-01-01

    The results of the experimental studies of the intense relativistic electron beam (IREB) propagation with ν/γ approximately 0.1, and γ approximately 1.6 (γ is an electron beam relativistic factor) in a collisionless plasma of small density over the 180 cm length are presented. Plasma is generated with the incomplete discharge over dielectric surface at the residual gas pressure of P approximately 10 -5 Torr. It is shown that the transportation efficiency may be essentially high, if the electron concentration in plasma satisfies the equilibrium conditions and if it is less or equal to the electron concentration in a beam. At concentration less than optimum one, the transportation efficiency decreases due to violations of equilibrium conditions. At high concentration the transportation efficiency also decreased due to the scattering and breaking on excited small-scale and plasma oscillations. The IREB propagation occurs without essential time delay under optimum conditions

  8. Splitting of high power, cw proton beams

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2007-09-01

    Full Text Available A simple method for splitting a high power, continuous wave (cw proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility design study. The aim of the system is to deliver up to 4 MW of H^{-} beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H^{-} beam, magnetic splitting of H^{-} and H^{0}, and stripping of H^{0} to H^{+}. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

  9. High-Energy Beam Transport system

    International Nuclear Information System (INIS)

    Melson, K.E.; Farrell, J.A.; Liska, D.J.

    1979-01-01

    The High-Energy Beam Transport (HEBT) system for the Fusion Materials Irradiation Test (FMIT) Facility is to be installed at the Hanford Engineering Development Laboratory (HEDL) at Richland, Washington. The linear accelerator must transport a large emittance, high-current, high-power, continuous-duty deuteron beam with a large energy spread either to a lithium target or a beam stop. A periodic quadrupole and bending-magnet system provides the beam transport and focusing on target with small beam aberrations. A special rf cavity distributes the energy in the beam so that the Bragg Peak is distributed within the lithium target. Operation of the rf control system, the Energy Dispersion Cavity (EDC), and the beam transport magnets is tested on the beam stop during accelerator turn-on. Characterizing the beam will require extensions of beam diagnostic techniques and noninterceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports using a cluster system to simplify maintenance and alignment techniques

  10. Importing low-density ideas to high-density revitalisation

    DEFF Research Database (Denmark)

    Arnholtz, Jens; Ibsen, Christian Lyhne; Ibsen, Flemming

    2016-01-01

    Why did union officials from a high-union-density country like Denmark choose to import an organising strategy from low-density countries such as the US and the UK? Drawing on in-depth interviews with key union officials and internal documents, the authors of this article argue two key points. Fi...

  11. The modal density of composite beams incorporating the effects of shear deformation and rotary inertia

    Science.gov (United States)

    Bachoo, Richard; Bridge, Jacqueline

    2018-06-01

    Engineers and designers are often faced with the task of selecting materials that minimizes structural weight whilst meeting the required strength and stiffness. In many cases fibre reinforced composites (FRCs) are the materials of choice since they possess a combination of high strength and low density. Depending on the application, composites are frequently constructed to form long slender beam-like structures or flat thin plate-like structures. Such structures when subjected to random excitation have the potential to excite higher order vibratory modes which can contribute significantly to structure-borne sound. Statistical Energy Analysis (SEA) is a framework for modeling the high frequency vibration of structures. The modal density, which is typically defined as the number of modes per unit Hertz in a frequency band, is a fundamental parameter when applying SEA. This study derives formulas for the modal density of a fibre reinforced composite beam coupled in bending and torsion. The effects of shear deformation and rotary inertia are accounted for in the formulation. The modal density is shown to be insensitive to boundary conditions. Numerical analyses were carried out to investigate the variation of modal density with fibre orientation including and excluding the effects of shear deformation and rotary inertia. It was observed that neglecting such effects leads to underestimating the mode count in a particular frequency band. In each frequency band there exists a fibre orientation for which the modal density is minimized. This angular orientation is shown to be dependent on the shear rigidity as well as the bending, torsional and coupling rigidities. The foregoing observation becomes more pronounced with increasing frequency. The paper also addresses the modal density beyond the wave-mode transition frequency where the beam supports three propagating waves.

  12. Axisymmetric instability of a self-pinched beam with rounded radial density profile

    International Nuclear Information System (INIS)

    Chen, H.C.; Uhm, H.S.

    1983-01-01

    The axisymmetric perturbations (sausage and hollowing modes) of an intense relativistic self-pinched electron beam propagating in a resistive plasma background are studied, especially for a beam with rounded radial density profile. The Bennett profiles are assumed for both the equilibrium beam current J/sub b/(r) = J/sub b/(0) (1+r 2 /R 2 /sub b/) -2 and plasma return current J/sub p/(r) = -fJ/sub b/(0) (1+r 2 /R 2 /sub p/) -2 , where R/sub b/ and R/sub p/ are the characteristic radii of the beam and plasma return currents, respectively. It is further assumed that the electric conductivity sigma(r) of the plasma channel is proportional to the return current. For a paraxial electron beam with complete space-charge neutralization by the ambient plasma, the axisymmetric modes can be destabilized by the phase lag between the magnetic field and beam current, even without the plasma return current. The plasma return current significantly modifies the growth rate of the instability such that the ratio of plasma current to beam current (-I/sub p//I/sub b/ = fR 2 /sub p// iR 2 /sub b/) largely determines the stability character of the beam. Furthermore, for the same fractional current neutralization f, the modes are highly unstable for a smaller ratio of plasma to beam radius R/sub p//R/sub b/. As compared to the resistive hose instability, the growth rates for the hollowing mode can be larger than those of the hose mode, while the sausage mode is much stabler than the hose mode. Stability properties are illustrated in detail for various system parameters

  13. High power neutral beam injection in LHD

    International Nuclear Information System (INIS)

    Tsumori, K.; Takeiri, Y.; Nagaoka, K.

    2005-01-01

    The results of high power injection with a neutral beam injection (NBI) system for the large helical device (LHD) are reported. The system consists of three beam-lines, and two hydrogen negative ion (H - ion) sources are installed in each beam-line. In order to improve the injection power, the new beam accelerator with multi-slot grounded grid (MSGG) has been developed and applied to one of the beam-lines. Using the accelerator, the maximum powers of 5.7 MW were achieved in 2003 and 2004, and the energy of 189 keV reached at maximum. The power and energy exceeded the design values of the individual beam-line for LHD. The other beam-lines also increased their injection power up to about 4 MW, and the total injection power of 13.1 MW was achieved with three beam-lines in 2003. Although the accelerator had an advantage in high power beam injection, it involved a demerit in the beam focal condition. The disadvantage was resolved by modifying the aperture shapes of the steering grid. (author)

  14. Simulation of electron beam from two strip electron guns and control of power density by rotation of gun

    International Nuclear Information System (INIS)

    Sahu, G K; Baruah, S; Thakur, K B

    2012-01-01

    Electron beam is preferably used for large scale evaporation of refractory materials. Material evaporation from a long and narrow source providing a well collimated wedge shaped atomic beam has applications in isotopic purification of metals relevant to nuclear industry. The electron beam from an electron gun with strip type filament provides a linear heating source. However, the high power density of the electron beam can lead to turbulence of the melt pool and undesirable splashing of molten metal. For obtaining quiet surface evaporation, the linear electron beam is generally scanned along its length. To further reduce the power density to maintain quiet evaporation the width of the vapour source can be controlled by rotating the electron gun on its plane, thereby scanning an inclined beam over the molten pool. The rotation of gun has further advantages. When multiple strip type electron guns are used for scaling up evaporation length, a dark zone appears between two beams due to physical separation of adjacent guns. This dark zone can be reduced by rotating the gun and thereby bringing two adjacent beams closer. The paper presented here provides the simulation results of the electron beam trajectory and incident power density originating from two strip electron guns by using in-house developed code. The effect of electron gun rotation on the electron beam trajectory and power density is studied. The simulation result is experimentally verified with the image of molten pool and heat affected zone taken after experiment. This technique can be gainfully utilized in controlling the time averaged power density of the electron beam and obtaining quiet evaporation from the metal molten pool.

  15. High brightness beams and applications

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1995-01-01

    This paper describes the present research on attaining intense bright electron beams. Thermionic systems are briefly covered. Recent and past results from the photoinjector programs are given. The performance advantages and difficulties presently faced by researchers using photoinjectors is discussed. The progress that has been made in photocathode materials, both in lifetime and quantum efficiency, is covered. Finally, a discussion of emittance measurements of photoinjector systems and how the measurement is complicated by the non-thermal nature of the electron beam is presented

  16. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    DEFF Research Database (Denmark)

    Bertelli, N.; Balakin, A.A.; Westerhof, E.

    2010-01-01

    are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi......A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation...

  17. Electron cloud density measurements in accelerator beam-pipe using resonant microwave excitation

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, John P., E-mail: jps13@cornell.edu [CLASSE, Cornell University, Ithaca, NY 14853 (United States); Carlson, Benjamin T. [Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Duggins, Danielle O. [Gordon College, Wenham, MA 01984 (United States); Hammond, Kenneth C. [Columbia University, New York, NY 10027 (United States); De Santis, Stefano [LBNL, Berkeley, CA 94720 (United States); Tencate, Alister J. [Idaho State University, Pocatello, ID 83209 (United States)

    2014-08-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. In the original technique, microwaves are transmitted through a section of beam-pipe and a change in EC density produces a change in the phase of the transmitted signal. This paper describes a variation on this technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length with a greatly improved signal to noise ratio.

  18. Development of a helium-beam diagnostic for the measurement of the electron density and temperature with high space and time resolution; Entwicklung einer Heliumstrahldiagnostik zur Messung der Elektronendichte und -temperatur mit hoher raeumlicher und zeitlicher Aufloesung

    Energy Technology Data Exchange (ETDEWEB)

    Kruezi, U.

    2006-11-15

    A cvoncept for the control of teh particle and energy removal is available with the Dynamic Ergodic Divertor (DED) at the TEXTOR tokamak and is studied there. In the framework of this thesis a new diagnostic fot the study of short-time events in the plasma boundary layer was developed and constructed. It allows spatially (2 mm) and timely (10 {mu}s) highly resolved measurements of the electron density n{sub e} and electron temperaturew T{sub e}. This occurs by spectroscopy on helium atoms injected into the plasma, for whose measured line intensities respectively intensity ratios by means of a collision-radiation model n{sub e} and T{sub e} can be determined. In order to fulfil the requirements for the measurement of the plasma fluctuations up to 100 kHz, an injection system was developed, which can produce a supersonic helium beam of high particle density (1.5.10{sup 18} m{sup -3}) and simulataneously low deivergence {+-}1 . Parallely for this an observation system consisting of many-channel photomultipliers (PMT) with high and a CCD camera with lower time resolution. The signals of the different MT channels are calibrated on the intensities of the comparable spatial channels of the CCD camera. The first spectroscopic measurement of T{sub e} fluctuations resulted for the characterizing parameters: velocity v{sub r}=(380{+-}60) m/s, correlation length L{sub r}{approx}(5{+-}1) mm, and lifetime {tau}{sub L}{approx}(10{+-}1.25) {mu}s. Under the influence of resonant disturbing magnetic fields by the DED because of the not negligible photon noise no quantitative fluctuation characteristics could be determined. Furthermore during the dynamic AC operation of the DED with rotating disturbing field (974 Hz) n{sub e} and T{sub e} could be spatially and timely resolved and showed because of dynamically co-moved plasma structures a strong modulation by a factor 3 respectively 2. Beside an expected pressure decreasement in the laminar flux tube a hitherto unknown increasement

  19. The physics of high current beams

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1988-05-01

    An outline is presented of paraxial charged particle optics in the presence of self-fields arising from the space-charge and current carried by the beam. Solutions of the envelope equations for beams with finite emittance are considered for a number of specific situations, with the approximation that the density profile of the beam is uniform with a sharp edge, so that the focusing remains linear. More realistic beams are then considered, and the problems of matching, emittance growth and stability are discussed. An attempt is made to emphasize physical principles and physical ideas rather than to present the detailed mathematical techniques required for specific problems. The approach is a tutorial one, and several 'exercises' are included in the text. Most of the material is treated in more depth in the author's forthcoming book. (author)

  20. Frontiers for Discovery in High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  1. Generation of high brightness ion beam from insulated anode PED

    International Nuclear Information System (INIS)

    Matsukawa, Yoshinobu

    1988-01-01

    Generation and focusing of a high density ion beam with high brightness from a organic center part of anode of a PED was reported previously. Mass, charge and energy distribution of this beam were analyzed. Three kind of anode were tried. Many highly ionized medium mass ions (up to C 4+ , O 6+ ) accelarated to several times of voltage difference between anode and cathode were observed. In the case of all insulator anode the current carried by the medium mass ions is about half of that carried by protons. (author)

  2. High efficiency beam splitting for H- accelerators

    International Nuclear Information System (INIS)

    Kramer, S.L.; Stipp, V.; Krieger, C.; Madsen, J.

    1985-01-01

    Beam splitting for high energy accelerators has typically involved a significant loss of beam and radiation. This paper reports on a new method of splitting beams for H - accelerators. This technique uses a high intensity flash of light to strip a fraction of the H - beam to H 0 which are then easily separated by a small bending magnet. A system using a 900-watt (average electrical power) flashlamp and a highly efficient collector will provide 10 -3 to 10 -2 splitting of a 50 MeV H - beam. Results on the operation and comparisons with stripping cross sections are presented. Also discussed is the possibility for developing this system to yield a higher stripping fraction

  3. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  4. Propagation of highly aberrated laser beams in nonquadratic plasma waveguides

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.; Morris, J.R.

    1977-01-01

    The propagation of a laser beam in a plasma column several meters long with a realistic electron density distribution is examined. The electron density distribution is based on laser-beam heating at z=0, but is otherwise uncoupled to the laser beam. The aberrated nature of the resulting lenslike medium leads to essentially aperiodic beam properties, which contrast with the completely periodic properties of Gaussian beams propagating in quadratic lenslike media. The beam is nonetheless stably trapped. These aberrated-beam properties also help to stabilize the beam against axial variations in refractive index

  5. Moderate energy ions for high energy density physics experiments

    International Nuclear Information System (INIS)

    Grisham, L.R.

    2004-01-01

    This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target

  6. High power beam profile monitor with optical transition radiation

    International Nuclear Information System (INIS)

    Denard, J.C.; Piot, P.; Capek, K.; Feldl, E.

    1997-01-01

    A simple monitor has been built to measure the profile of the high power beam (800 kW) delivered by the CEBAF accelerator at Jefferson Lab. The monitor uses the optical part of the forward transition radiation emitted from a thin carbon foil. The small beam size to be measured, about 100 μm, is challenging not only for the power density involved but also for the resolution the instrument must achieve. An important part of the beam instrumentation community believes the radiation being emitted into a cone of characteristic angle 1/γ is originated from a region of transverse dimension roughly λγ; thus the apparent size of the source of transition radiation would become very large for highly relativistic particles. This monitor measures 100 μm beam sizes that are much smaller than the 3.2 mm λγ limit; it confirms the statement of Rule and Fiorito that optical transition radiation can be used to image small beams at high energy. The present paper describes the instrument and its performance. The authors tested the foil in, up to 180 μA of CW beam without causing noticeable beam loss, even at 800 MeV, the lowest CEBAF energy

  7. US Heavy Ion Beam Research for Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; Callahan D.A.; Kireeff Covo, M.; Celata, C.M.; Cohen, R.H.; Coleman, J.E.; Debonnel, C.S.; Grote, D.P.; Efthimiom, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Henestroza, E.; Kaganovich, I.D.; Kwan, J.W.; Lee, E.P.; Lee, W.W.; Leitner, M.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.L.; Penn, G.E.; Qin, H.; Roy, P.K.; Rose, D.V.; Sefkow, A.; Seidl, P.A.; Sharp, W.M.; Startsev, E.A.; Tabak, M.; Thoma, C.; Vay, J-L; Wadron, W.L.; Wurtele, J.S.; Welch, D.R.; Westenskow, G.A.; Yu, S.S.

    2005-01-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  8. Numerical Studies of Electron Acceleration Behind Self-Modulating Proton Beam in Plasma with a Density Gradient

    CERN Document Server

    Petrenko, A.; Sosedkin, A.

    2016-01-01

    Presently available high-energy proton beams in circular accelerators carry enough momentum to accelerate high-intensity electron and positron beams to the TeV energy scale over several hundred meters of the plasma with a density of about 1e15 1/cm^3. However, the plasma wavelength at this density is 100-1000 times shorter than the typical longitudinal size of the high-energy proton beam. Therefore the self-modulation instability (SMI) of a long (~10 cm) proton beam in the plasma should be used to create the train of micro-bunches which would then drive the plasma wake resonantly. Changing the plasma density profile offers a simple way to control the development of the SMI and the acceleration of particles during this process. We present simulations of the possible use of a plasma density gradient as a way to control the acceleration of the electron beam during the development of the SMI of a 400 GeV proton beam in a 10 m long plasma. This work is done in the context of the AWAKE project --- the proof-of-prin...

  9. Achromatic beam transport of High Current Injector

    International Nuclear Information System (INIS)

    Kumar, Sarvesh; Mandal, A.

    2016-01-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time

  10. High density energy storage capacitor

    International Nuclear Information System (INIS)

    Whitham, K.; Howland, M.M.; Hutzler, J.R.

    1979-01-01

    The Nova laser system will use 130 MJ of capacitive energy storage and have a peak power capability of 250,000 MW. This capacitor bank is a significant portion of the laser cost and requires a large portion of the physical facilities. In order to reduce the cost and volume required by the bank, the Laser Fusion Program funded contracts with three energy storage capacitor producers: Aerovox, G.E., and Maxwell Laboratories, to develop higher energy density, lower cost energy storage capacitors. This paper describes the designs which resulted from the Aerovox development contract, and specifically addresses the design and initial life testing of a 12.5 kJ, 22 kV capacitor with a density of 4.2 J/in 3 and a projected cost in the range of 5 cents per joule

  11. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  12. Operation and control of high density tokamak reactors

    International Nuclear Information System (INIS)

    Attenberger, S.E.; McAlees, D.G.

    1976-01-01

    The incentive for high density operation of a tokamak reactor was discussed. It is found that high density permits ignition in a relatively small, moderately elongated plasma with a moderate magnetic field strength. Under these conditions, neutron wall loadings approximately 4 MW/m 2 must be tolerated. The sensitivity analysis with respect to impurity effects shows that impurity control will most likely be necessary to achieve the desired plasma conditions. The charge exchange sputtered impurities are found to have an important effect so that maintaining a low neutral density in the plasma is critical. If it is assumed that neutral beams will be used to heat the plasma to ignition, high energy injection is required (approximately 250 keV) when heating is accompished at full density. A scenario is outlined where the ignition temperature is established at low density and then the fueling rate is increased to attain ignition. This approach may permit beams with energies being developed for use in TFTR to be successfully used to heat a high density device of the type described here to ignition

  13. High-density lipoprotein cholesterol: How High

    Directory of Open Access Journals (Sweden)

    G Rajagopal

    2012-01-01

    Full Text Available The high-density lipoprotein cholesterol (HDL-C is considered anti-atherogenic good cholesterol. It is involved in reverse transport of lipids. Epidemiological studies have found inverse relationship of HDL-C and coronary heart disease (CHD risk. When grouped according to HDL-C, subjects having HDL-C more than 60 mg/dL had lesser risk of CHD than those having HDL-C of 40-60 mg/dL, who in turn had lesser risk than those who had HDL-C less than 40 mg/dL. No upper limit for beneficial effect of HDL-C on CHD risk has been identified. The goals of treating patients with low HDL-C have not been firmly established. Though many drugs are known to improve HDL-C concentration, statins are proven to improve CHD risk and mortality. Cholesteryl ester transfer protein (CETP is involved in metabolism of HDL-C and its inhibitors are actively being screened for clinical utility. However, final answer is still awaited on CETP-inhibitors.

  14. Effect of beam density and of higher harmonics on beam-plasma interaction

    International Nuclear Information System (INIS)

    Lacina, J.; Krlin, L.; Koerbel, S.

    1974-10-01

    The interaction in a cold electron beam-plasma system is investigated numerically in a density ratio region of nsub(B)/nsub(P) = 2 x 10 -3 to 2 x 10 -2 . The one-dimensional model of a collisionless plasma is used. The time development of the wave with maximal growing rate and its spatial harmonics is studied. The plasma effect is simulated by direct computation of plasma particle trajectories (this being different from the usual plasma simulation by means of a dielectric). The calculations show the following effects of the finite parameter (nsub(B)/nsub(P))sup(1/3): the ratio of the plasma energy to the electric field energy is increased, the damping character of the field and macroscopic amplitudes reveals, and the influence of the second harmonic is not negligible for nsub(B)/nsub(P) >= 10 -2 . (author)

  15. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Congsen [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Physics, National University of Defense Technology, Changsha 410073 (China); Janssen, Maurice H. M. [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  16. Production of high intensity radioactive beams

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of ∼10 39 cm -2 s -1 , which would yield radioactive beams in excess of 10 11 s -1 . 9 refs., 3 figs., 7 tabs

  17. The large density electron beam-plasma Buneman instability

    International Nuclear Information System (INIS)

    Mantei, T.D.; Doveil, F.; Gresillon, D.

    1976-01-01

    The threshold conditions and growth rate of the Buneman (electron beam-stationary ion) instability are calculated with kinetic theory, including a stationary electronic population. A criteria on the wave energy sign is used to separate the Buneman hydrodynamic instability from the ion-acoustic kinetic instability. The stationary electron population raises the instability threshold and, for large beam velocities yields a maximum growth rate oblique to the beam. (author)

  18. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers

    Directory of Open Access Journals (Sweden)

    Guanglei Wang

    2015-06-01

    Full Text Available The beam energy spread at the entrance of an undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs. In this paper, the dependences of high harmonic bunching efficiency in high-gain harmonic generation (HGHG, echo-enabled harmonic generation (EEHG and phase-merging enhanced harmonic generation (PEHG schemes on the electron beam energy spread distribution are studied. Theoretical investigations and multidimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the bunching performance of HGHG FELs, while they almost have no influence on EEHG and PEHG schemes. A further start-to-end simulation example demonstrated that, with the saddle distribution of sliced beam energy spread controlled by a laser heater, the 30th harmonic can be directly generated by a single-stage HGHG scheme for a soft x-ray FEL facility.

  19. Microdosimetry of high LET therapeutic beams

    International Nuclear Information System (INIS)

    Ito, Akira

    1980-01-01

    Experimental microdosimetry of high LET therapeutic beams were presented. The cyclotron produced fast neutron beams at IMS, TAMVEC and NRL, a reactor fast neutron at YAYOI, a proctor beam at Harvard and a pion beam at TRIUMF are included. Measurements were performed with a conventional tissue equivalent spherical proportional counter with a logarithmic amplifier which made the recording and analysis quite simple. All the energy deposition spectra were analysed in the conventional manner and anti y F, anti y D as well as anti y D* were calculated. The spectra and their mean lineal energies showed wide variations, depending on the particle type, energy, position in phantom. Fractional contribution of elemental particles ( electron, muon, pion, proton, alpha and so on) to the total dose were analysed. For fast neutron beams, the y spectra stayed almost constant at any depth along the central axis in the phantom. The y spectra of proton beam changed slightly along the depth. On the other side, the y spectra of pion beam change drastically in the phantom between plateau and dose peak region. A novel technique of time-of-flight microdosimetry was employed, which made it possible to separate the fractional contribution of contaminant electrons and muons out of pions. Finally, a map of the radiation quality for all the beams is presented and its significances are discussed. (author)

  20. States of high energy density

    International Nuclear Information System (INIS)

    Murray, M.

    1988-02-01

    The transverse energy, E/sub tau/ spectra for O 16 and S 32 incident for various elements at 200 GeVnucleon are shown. The target and projectile dependencies of the data are discussed. The energy density achieved is estimated. For O 16 on Tungsten the multiplicity spectrum is also presented as well as the pseudorapidity spectra as a function of the transverse energy. The multiplicity cross section dσdN as measured in the backward hemisphere (0.9 < /eta/ < 2.9/ is found to be very similar in shape to the transverse energy distribution dσdE/tau/ reflecting the particular geometry of nucleus nucleus nucleus collisions. The dependence on the atomic mass of the target, A/sub tau/ and projectile A/sub p/ is not what one would expect from naive considerations

  1. Measuring the Density of a Molecular Cluster Injector via Visible Emission from an Electron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, D. P.; Kaita, R.; Majeski, R. M.; Stotler, D. P.

    2010-06-28

    A method to measure the density distribution of a dense hydrogen gas jet is pre- sented. A Mach 5.5 nozzle is cooled to 80K to form a flow capable of molecular cluster formation. A 250V, 10mA electron beam collides with the jet and produces Hα emission that is viewed by a fast camera. The high density of the jet, several 1016cm-3, results in substantial electron depletion, which attenuates the Hα emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.

  2. Thermal problems on high flux beam lines

    International Nuclear Information System (INIS)

    Avery, R.T.

    1983-09-01

    Wiggler and undulator magnets can provide very intense photon flux densities to beam line components. This paper addresses some thermal/materials consequences due to such impingement. The LBL/Exxon/SSRL hybrid-wiggler Beam Line VI now nearing operation will be able to provide up to approx. 7 kW of total photon power at planned SPEAR operating conditions. The first masks are located at 6.5 meters from the source and may receive a peak power density (transverse to the beam) exceeding 20 kW/cm 2 . Significantly, this heat transfer rate exceeds that radiated from the sun's surface (7 kW/cm 2 ) and is comparable to that of welding torches. Clearing, cooling and configuration are of critical importance. Configurations for the first fixed mask, the movable mask, and the pivot mask on this beam line are presented together with considerations of thermal stress fatigue and of heat transfer by conduction to water-cooling circuits. Some preliminary information on heating of crystals and mirrors is also presented

  3. Investigations on transport and storage of high ion beam intensities

    International Nuclear Information System (INIS)

    Joshi, Ninad Shrikrishna

    2009-01-01

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He + and mixed p, H 2+ , H 3+ beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was designed to perform

  4. Investigations on transport and storage of high ion beam intensities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ninad Shrikrishna

    2009-08-25

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He{sup +} and mixed p, H{sup 2+}, H{sup 3+} beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was

  5. High spin isomer beam line at RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, T.; Ideguchi, E.; Wu, H.Y. [Institute of Physical and Chemical Research, Saitama (Japan)] [and others

    1996-12-31

    Nuclear high spin states have been the subject of extensive experimental and theoretical studies. For the production of high spin states, fusion reactions are usually used. The orbital angular momentum brought in the reaction is changed into the nuclear spin of the compound nucleus. However, the maximum induced angular momentum is limited in this mechanism by the maximum impact parameter of the fusion reaction and by the competition with fission reactions. It is, therefore, difficult to populate very high spin states, and as a result, large {gamma}-detector arrays have been developed in order to detect subtle signals from such very high spin states. The use of high spin isomers in the fusion reactions can break this limitation because the high spin isomers have their intrinsic angular momentum, which can bring the additional angular momentum without increasing the excitation energy. There are two methods to use the high spin isomers for secondary reactions: the use of the high spin isomers as a target and that as a beam. A high spin isomer target has already been developed and used for several experiments. But this method has an inevitable shortcoming that only {open_quotes}long-lived{close_quotes} isomers can be used for a target: {sup 178}Hf{sup m2} (16{sup +}) with a half-life of 31 years in the present case. By developing a high spin isomer beam, the authors can utilize various short-lived isomers with a short half-life around 1 {mu}s. The high spin isomer beam line of RIKEN Accelerator Facility is a unique apparatus in the world which provides a high spin isomer as a secondary beam. The combination of fusion-evaporation reaction and inverse kinematics are used to produce high spin isomer beams; in particular, the adoption of `inverse kinematics` is essential to use short-lived isomers as a beam.

  6. New high power linacs and beam physics

    International Nuclear Information System (INIS)

    Wangler, T.P.; Gray, E.R.; Nath, S.; Crandall, K.R.; Hasegawa, K.

    1997-01-01

    New high-power proton linacs must be designed to control beam loss, which can lead to radioactivation of the accelerator. The threat of beam loss is increased significantly by the formation of beam halo. Numerical simulation studies have identified the space-charge interactions, especially those that occur in rms mismatched beams, as a major concern for halo growth. The maximum-amplitude predictions of the simulation codes must be subjected to independent tests to confirm the validity of the results. Consequently, the authors compare predictions from the particle-core halo models with computer simulations to test their understanding of the halo mechanisms that are incorporated in the computer codes. They present and discuss scaling laws that provide guidance for high-power linac design

  7. High density harp for SSCL linac

    International Nuclear Information System (INIS)

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-01-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities

  8. High density harp for SSCL linac

    International Nuclear Information System (INIS)

    Fritsche, C.T.; Krogh, M.L.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities

  9. New density estimation methods for charged particle beams with applications to microbunching instability

    International Nuclear Information System (INIS)

    Terzic, B.; Bassi, G.

    2011-01-01

    In this paper we discuss representations of charge particle densities in particle-in-cell simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2D code of Bassi et al. (G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock Phys. Rev. ST Accel. Beams 12 080704 (2009)G. Bassi and B. Terzic, in Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada, 2009 (IEEE, Piscataway, NJ, 2009), TH5PFP043), designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform; and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into the CSR code (G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock Phys. Rev. ST Accel. Beams 12 080704 (2009)), and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.

  10. Electron beam generation in high voltage glow discharges

    International Nuclear Information System (INIS)

    Rocca, J.J.; Szapiro, B.; Murray, C.

    1989-01-01

    The generation of intense CW and pulsed electron beams in glow discharges in reviewed. Glow discharge electron guns operate at a pressure of the order of 1 Torr and often have an advantage in applications that require a broad area electron beam in a gaseous atmosphere, such as laser excitation and some aspects of materials processing. Aspects of electron gun design are covered. Diagnostics of the high voltage glow discharges including the electric field distribution mapped by Doppler free laser spectroscopy, and plasma density and electron temperature measurements of the electron yield of different cathode materials under glow discharge conditions are presented

  11. High density matter at RHIC

    Indian Academy of Sciences (India)

    are screened, and short range (high momentum) interactions are weak, leading to an ideal gas equation .... I will briefly touch on 'soft physics' ..... thermodynamic concepts to describe multi-particle production has a long history beginning with ...

  12. Breast density quantification with cone-beam CT: a post-mortem study

    International Nuclear Information System (INIS)

    Johnson, Travis; Ding, Huanjun; Le, Huy Q; Ducote, Justin L; Molloi, Sabee

    2013-01-01

    Forty post-mortem breasts were imaged with a flat-panel based cone-beam x-ray CT system at 50 kVp. The feasibility of breast density quantification has been investigated using standard histogram thresholding and an automatic segmentation method based on the fuzzy c-means algorithm (FCM). The breasts were chemically decomposed into water, lipid, and protein immediately after image acquisition was completed. The per cent fibroglandular volume (%FGV) from chemical analysis was used as the gold standard for breast density comparison. Both image-based segmentation techniques showed good precision in breast density quantification with high linear coefficients between the right and left breast of each pair. When comparing with the gold standard using %FGV from chemical analysis, Pearson's r-values were estimated to be 0.983 and 0.968 for the FCM clustering and the histogram thresholding techniques, respectively. The standard error of the estimate was also reduced from 3.92% to 2.45% by applying the automatic clustering technique. The results of the postmortem study suggested that breast tissue can be characterized in terms of water, lipid and protein contents with high accuracy by using chemical analysis, which offers a gold standard for breast density studies comparing different techniques. In the investigated image segmentation techniques, the FCM algorithm had high precision and accuracy in breast density quantification. In comparison to conventional histogram thresholding, it was more efficient and reduced inter-observer variation. (paper)

  13. Method of measuring a profile of the density of charged particles in a particle beam

    International Nuclear Information System (INIS)

    Hyman, L.G.; Jankowski, D.J.

    1975-01-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam

  14. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  15. New aspects of high energy density plasma

    International Nuclear Information System (INIS)

    Hotta, Eiki

    2005-10-01

    The papers presented at the symposium on 'New aspects of high energy density plasma' held at National Institute for Fusion Science are collected in this proceedings. The papers reflect the present status and recent progress in the experiments and theoretical works on high energy density plasma produced by pulsed power technology. The 13 of the presented papers are indexed individually. (J.P.N.)

  16. High regression rate, high density hybrid fuels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR program will investigate high energy density novel nanofuels combined with high density binders for use with an N2O oxidizer. Terves has developed...

  17. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    International Nuclear Information System (INIS)

    Bertelli, N; Balakin, A A; Westerhof, E; Garcia, O E; Nielsen, A H; Naulin, V

    2010-01-01

    A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi-optical calculations are shown by using edge density fluctuations as calculated by two-dimensional interchange turbulence simulations and validated with the experimental data [O. E. Garcia et al, Nucl. Fusion 47 (2007) 667].

  18. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, Ole; Ludewigt, Bernhard [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2011-11-15

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm{sup 2} have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material.

  19. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source.

    Science.gov (United States)

    Waldmann, Ole; Ludewigt, Bernhard

    2011-11-01

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm(2) have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material. © 2011 American Institute of Physics

  20. Magnetization of High Density Hadronic Fluid

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, Constanca; da Providencia, João

    2012-01-01

    In the present paper the magnetization of a high density relativistic fluid of elementary particles is studied. At very high densities, such as may be found in the interior of a neutron star, when the external magnetic field is gradually increased, the energy of the normal phase of the fluid...... in the particle fluid. For nuclear densities above 2 to 3 rho(0), where rho(0) is the equilibrium nuclear density, the resulting magnetic field turns out to be rather huge, of the order of 10(17) Gauss....

  1. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  2. A high-energy electron beam ion trap for production of high-charge high-Z ions

    International Nuclear Information System (INIS)

    Knapp, D.A.; Marrs, R.E.; Elliott, S.R.; Magee, E.W.; Zasadzinski, R.

    1993-01-01

    We have developed a new high-energy electron beam ion trap, the first laboratory source of low-energy, few-electron, high-Z ions. We describe the device and report measurements of its performance, including the electron beam diameter, current density and energy, and measurements of the ionization balance for several high-Z elements in the trap. This device opens up a wide range of possible experiments in atomic physics, plasma physics, and nuclear physics. (orig.)

  3. An adaptive crystal bender for high power synchrotron radiation beams

    International Nuclear Information System (INIS)

    Berman, L.E.; Hastings, J.B.

    1992-01-01

    Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described

  4. Towards high-density matter with relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Nagamiya, Shoji.

    1990-04-01

    Recent progress in nucleus-nucleus collisions at BNL and CERN suggests a hint that the formation of high-density nuclear matter could be possible with relativistic heavy-ion beams. What is the maximum density that can be achieved by heavy-ion collisions? Are there data which show evidence or hints on the formation of high density matter? Why is the research of high-density interesting? How about the future possibilities on this subject? These points are discussed. (author)

  5. Application of a transverse phase-space measurement technique for high-brightness, H- beams to the GTA H- beam

    International Nuclear Information System (INIS)

    Johnson, K.F.; Garcia, R.C.; Rusthoi, D.P.; Sander, O.R.; Sandoval, D.P.; Shinas, M.A.; Smith, M.; Yuan, V.W.; Connolly, R.C.

    1995-01-01

    The Ground Test Accelerator (GTA) had the objective Of Producing a high-brightness, high-current H-beam. The major components were a 35 keV injector, a Radio Frequency Quadrupole (RFQ), an intertank matching section (IMS), and a drift tube linac (DTL), consisting of 10 modules. A technique for measuring the transverse phase-space of high-power density beams has been developed and tested. This diagnostic has been applied to the GTA H-beam. Experimental results are compared to the slit and collector technique for transverse phase-space measurements and to simulations

  6. CONTROL SYSTEM FOR THE LITHIUM BEAM EDGE PLASMA CURRENT DENSITY DIAGNOSTIC ON THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    PEAVY, J.J.; CARY, W.P; THOMAS, D.M; KELLMAN, D.H.; HOYT, D.M; DELAWARE, S.W.; PRONKO, S.G.E.; HARRIS, T.E.

    2004-03-01

    OAK-B135 An edge plasma current density diagnostic employing a neutralized lithium ion beam system has been installed on the DIII-D tokamak. The lithium beam control system is designed around a GE Fanuc 90-30 series PLC and Cimplicity(reg s ign) HMI (Human Machine Interface) software. The control system operates and supervises a collection of commercial and in-house designed high voltage power supplies for beam acceleration and focusing, filament and bias power supplies for ion creation, neutralization, vacuum, triggering, and safety interlocks. This paper provides an overview of the control system, while highlighting innovative aspects including its remote operation, pulsed source heating and pulsed neutralizer heating, optimizing beam regulation, and beam ramping, ending with a discussion of its performance

  7. Some recent efforts toward high density implosions

    International Nuclear Information System (INIS)

    McClellan, G.E.

    1980-01-01

    Some recent Livermore efforts towards achieving high-density implosions are presented. The implosion dynamics necessary to compress DT fuel to 10 to 100 times liquid density are discussed. Methods of diagnosing the maximum DT density for a specific design are presented along with results to date. The dynamics of the double-shelled target with an exploding outer shell are described, and some preliminary experimental results are presented

  8. Bulk Materials Analysis Using High-Energy Positron Beams

    International Nuclear Information System (INIS)

    Glade, S C; Asoka-Kumar, P; Nieh, T G; Sterne, P A; Wirth, B D; Dauskardt, R H; Flores, K M; Suh, D; Odette, G.R.

    2002-01-01

    This article reviews some recent materials analysis results using high-energy positron beams at Lawrence Livermore National Laboratory. We are combining positron lifetime and orbital electron momentum spectroscopic methods to provide electron number densities and electron momentum distributions around positron annihilation sites. Topics covered include: correlation of positron annihilation characteristics with structural and mechanical properties of bulk metallic glasses, compositional studies of embrittling features in nuclear reactor pressure vessel steel, pore characterization in Zeolites, and positron annihilation characteristics in alkali halides

  9. High intensity beam dump for the Tevatron beam abort system

    International Nuclear Information System (INIS)

    Kidd, J.; Mokhov, N.; Murphy, T.; Palmer, M.; Toohig, T.; Turkot, F.; VanGinneken, A.

    1981-01-01

    The beam abort system proposed for the Fermilab Tevatron Accelerator will extract the proton beam from the ring in a single turn (approximately 20/mu/s) and direct it to an external beam dump. It is the function of the beam dump to absorb the unwanted beam and limit the escaping radiation to levels that are acceptable to the surrounding populace and apparatus. A beam dump that is expected to meet these requirements has been designed and constructed. Detailed design of the dump, including considerations leading to the choice of materials, are given. 6 refs

  10. Predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography intensity values

    OpenAIRE

    Alkhader, Mustafa; Hudieb, Malik; Khader, Yousef

    2017-01-01

    Objective: The aim of this study was to investigate the predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography (CBCT) intensity values. Materials and Methods: CBCT cross-sectional images for 436 posterior mandibular implant sites were selected for the study. Using Invivo software (Anatomage, San Jose, California, USA), two observers classified the bone density into three categories: low, intermediate, and high, and CBCT intensity values were g...

  11. High energy density physics issues related to Future Circular Collider

    Science.gov (United States)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2017-07-01

    A design study for a post-Large Hadron Collider accelerator named, Future Circular Collider (FCC), is being carried out by the International Scientific Community. A complete design report is expected to be ready by spring 2018. The FCC will accelerate two counter rotating beams of 50 TeV protons in a tunnel having a length (circumference) of 100 km. Each beam will be comprised of 10 600 proton bunches, with each bunch having an intensity of 1011 protons. The bunch length is of 0.5 ns, and two neighboring bunches are separated by 25 ns. Although there is an option for 5 ns bunch separation as well, in the present studies, we consider the former case only. The total energy stored in each FCC beam is about 8.5 GJ, which is equivalent to the kinetic energy of Airbus 380 (560 t) flying at a speed of 850 km/h. Machine protection is a very important issue while operating with such powerful beams. It is important to have an estimate of the damage caused to the equipment and accelerator components due to the accidental release of a partial or total beam at a given point. For this purpose, we carried out numerical simulations of full impact of one FCC beam on an extended solid copper target. These simulations have been done employing an energy deposition code, FLUKA, and a two-dimensional hydrodynamic code, BIG2, iteratively. This study shows that although the static range of a single FCC proton and its shower is about 1.5 m in solid copper, the entire beam will penetrate around 350 m into the target. This substantial increase in the range is due to the hydrodynamic tunneling of the beam. Our calculations also show that a large part of the target will be converted into high energy density matter including warm dense matter and strongly coupled plasmas.

  12. Visualisation of the high-current e-beams on solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, V I; Osipov, V V; Mikhajlov, S G; Lipchak, A I [Russian Academy of Sciences, Ural Division, Ekaterinburg (Russian Federation). Institute of Electrophysics

    1997-12-31

    Natural minerals such as spodumen, calcite, and Mn-doped apatite crystals may serve as suitable low-cost materials for visualization of high-current electron beams. High-intensity luminescence lasting several tens of minutes has been observed when irradiating natural specimen by electron beams with the current density of 10-1000 A/sq.cm, with energy of 100-300 keV, and pulse duration of 2-50 ns. The luminescent images of the beam cross-section provide information on the beam density profiles, while the images taken in the plane parallel to the beam axis make it possible to estimate the beam penetration depth and, therefore, the beam energy. The method is illustrated by examples of luminescent images taken from the experiment. (J.U.).

  13. Comparison of Tissue Density in Hounsfield Units in Computed Tomography and Cone Beam Computed Tomography.

    Science.gov (United States)

    Varshowsaz, Masoud; Goorang, Sepideh; Ehsani, Sara; Azizi, Zeynab; Rahimian, Sepideh

    2016-03-01

    Bone quality and quantity assessment is one of the most important steps in implant treatment planning. Different methods such as computed tomography (CT) and recently suggested cone beam computed tomography (CBCT) with lower radiation dose and less time and cost are used for bone density assessment. This in vitro study aimed to compare the tissue density values in Hounsfield units (HUs) in CBCT and CT scans of different tissue phantoms with two different thicknesses, two different image acquisition settings and in three locations in the phantoms. Four different tissue phantoms namely hard tissue, soft tissue, air and water were scanned by three different CBCT and a CT system in two thicknesses (full and half) and two image acquisition settings (high and low kVp and mA). The images were analyzed at three sites (middle, periphery and intermediate) using eFilm software. The difference in density values was analyzed by ANOVA and correction coefficient test (P<0.05). There was a significant difference between density values in CBCT and CT scans in most situations, and CBCT values were not similar to CT values in any of the phantoms in different thicknesses and acquisition parameters or the three different sites. The correction coefficients confirmed the results. CBCT is not reliable for tissue density assessment. The results were not affected by changes in thickness, acquisition parameters or locations.

  14. Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition

    International Nuclear Information System (INIS)

    Nanda, Vikas; Kant, Niti

    2014-01-01

    Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc

  15. Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, Phagwara 144411, Punjab (India)

    2014-04-15

    Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc.

  16. Pulsed high current ion beam processing equipment

    International Nuclear Information System (INIS)

    Korenev, S.A.; Perry, A.

    1995-01-01

    A pulsed high voltage ion source is considered for use in ion beam processing for the surface modification of materials, and deposition of conducting films on different substrates. The source consists of an Arkad'ev-Marx high voltage generator, a vacuum ion diode based on explosive ion emission, and a vacuum chamber as substrate holder. The ion diode allows conducting films to be deposited from metal or allow sources, with ion beam mixing, onto substrates held at a pre-selected temperature. The main variables can be set in the ranges: voltage 100-700 kV, pulse length 0.3 μs, beam current 1-200 A depending on the ion chosen. The applications of this technology are discussed in semiconductor, superconductor and metallizing applications as well as the direction of future development and cost of these devices for commercial application. 14 refs., 6 figs

  17. A Novel Approach to the Sensing of Liquid Density Using a Plastic Optical Fibre Cantilever Beam

    Science.gov (United States)

    Kulkarni, Atul; Kim, Youngjin; Kim, Taesung

    2009-01-01

    This article reports for the first time the use of a plastic optical fibre (POF) cantilever beam to measure the density of a liquid. The sensor is based on the Archimedes buoyancy principle. The sensor consists of a POF bonded on the surface of a metal beam in the form of a cantilever configuration, and at the free end of the beam a displacer is…

  18. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    NARCIS (Netherlands)

    Meng, C.; Janssen, M.H.M.

    2015-01-01

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the

  19. High density operation on the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Xiang Gao

    2000-01-01

    The structure of the operation region has been studied in the HT-7 superconducting tokamak, and progress on the extension of the HT-7 ohmic discharge operation region is reported. A density corresponding to 1.2 times the Greenwald limit was achieved by RF boronization. The density limit appears to be connected to the impurity content and the edge parameters, so the best results are obtained with very clean plasmas and peaked electron density profiles. The peaking factors of electron density profiles for different current and line averaged densities were observed. The density behaviour and the fuelling efficiency for gas puffing (20-30%), pellet injection (70-80%) and molecular beam injection (40-50%) were studied. The core crash sawteeth and MHD behaviour, which were induced by an injected pellet, were observed and the events correlated with the change of current profile and reversed magnetic shear. The MARFE phenomena on HT-7 are summarized. The best correlation has been found between the total input ohmic power and the product of the edge line averaged density and Z eff . HT-7 could be easily operated in the high density region MARFE-free using RF boronization. (author)

  20. High Energy Density Polymer Film Capacitors

    National Research Council Canada - National Science Library

    Boufelfel, Ali

    2006-01-01

    High-energy-density capacitors that are compact and light-weight are extremely valuable in a number of critical DoD systems that include portable field equipment, pulsed lasers, detection equipment...

  1. Research on high energy density plasmas and applications

    International Nuclear Information System (INIS)

    1999-01-01

    Recently, technologies on lasers, accelerators, and pulse power machines have been significantly advanced and input power density covers the intensity range from 10 10 W/cm 2 to higher than 10 20 W/cm 2 . As the results, high pressure gas and solid targets can be heated up to very high temperature to create hot dense plasmas which have never appeared on the earth. The high energy density plasmas opened up new research fields such as inertial confinement fusion, high brightness X-ray radiation sources, interiors of galactic nucleus,supernova, stars and planets, ultra high pressure condensed matter physics, plasma particle accelerator, X-ray laser, and so on. Furthermore, since these fields are intimately connected with various industrial sciences and technologies, the high energy density plasma is now studied in industries, government institutions, and so on. This special issue of the Journal of Plasma Physics and Nuclear Fusion Research reviews the high energy density plasma science for the comprehensive understanding of such new fields. In May, 1998, the review committee for investigating the present status and the future prospects of high energy density plasma science was established in the Japan Society of Plasma Science and Nuclear Fusion Research. We held three committee meetings to discuss present status and critical issues of research items related to high energy density plasmas. This special issue summarizes the understandings of the committee. This special issue consists of four chapters: They are Chapter 1: Physics important in the high energy density plasmas, Chapter 2: Technologies related to the plasma generation; drivers such as lasers, pulse power machines, particle beams and fabrication of various targets, Chapter 3: Plasma diagnostics important in high energy density plasma experiments, Chapter 4: A variety of applications of high energy density plasmas; X-ray radiation, particle acceleration, inertial confinement fusion, laboratory astrophysics

  2. Edge density profiles in high-performance JET plasmas

    International Nuclear Information System (INIS)

    Summers, D.D.R.; Viaccoz, B.; Vince, J.

    1997-01-01

    Detailed electron density profiles of the scrape-off layer in high-performance JET plasmas (plasma current, I p nbi ∝17 MW) have been measured by means of a lithium beam diagnostic system featuring high spatial resolution [Kadota (1978)[. Measurements were taken over a period of several seconds, allowing examination of the evolution of the edge profile at a location upstream from the divertor target. The data clearly show the effects of the H-mode transition - an increase in density near the plasma separatrix and a reduction in density scrape-off length. The profiles obtained under various plasma conditions are compared firstly with data from other diagnostics, located elsewhere in the vessel, and also with the predictions of an 'onion-skin' model (DIVIMP), which used, as initial parameters, data from an array of probes located in the divertor target. (orig.)

  3. Comparison between gas puffing and supersonic molecular beam injection in plasma density feedback experiments in EAST

    International Nuclear Information System (INIS)

    Zheng, Xingwei; Li, Jiangang; Hu, Jiansheng; Li, Jiahong; Ding, Rui; Cao, Bin; Wu, Jinhua

    2013-01-01

    To achieve desirable plasma density control, a supersonic molecular beam injection (SMBI) feedback control system has been developed recently for the EAST tokamak. The performance of the SMBI and gas puffing (GP) feedback systems were used and compared. The performance of pulse width mode is better than that of pulse amplitude mode when GP was used for density feedback control. During one-day experiments, the variation of gas input and wall retention can be clarified into two stages. In the first stage the retention ratio is as high as 80–90%, and the gas input is about an order of 10 22 D 2 . However, in the second stage, the retention ratio is at a range of 50–70%. The gas input of a single discharge is small and the net wall retention grows slowly. The results of the SMBI feedback control experiment was analyzed. The shorter delay time of SMBI makes it faster at feeding back control the plasma density. The result showed that, compared with GP, the gas input of SMBI was decreased ∼30% and the wall retention was reduced ∼40%. This shows SMBI's advantage for the long pulse high density discharges in EAST. (paper)

  4. Measurements of beam halo diffusion and population density in the Tevatron and in the Large Hadron Collider

    CERN Document Server

    Stancari, Giulio

    Halo dynamics influences global accelerator performance: beam lifetimes, emittance growth, dynamic aperture, and collimation efficiency. Halo monitoring and control are also critical for the operation of high-power machines. For instance, in the high-luminosity upgrade of the LHC, the energy stored in the beam tails may reach several megajoules. Fast losses can result in superconducting magnet quenches, magnet damage, or even collimator deformation. The need arises to measure the beam halo and to remove it at controllable rates. In the Tevatron and in the LHC, halo population densities and diffusivities were measured with collimator scans by observing the time evolution of losses following small inward or outward collimator steps, under different experimental conditions: with single beams and in collision, and, in the case of the Tevatron, with a hollow electron lens acting on a subset of bunches. After the LHC resumes operations, it is planned to compare measured diffusivities with the known strength of tran...

  5. Predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography intensity values.

    Science.gov (United States)

    Alkhader, Mustafa; Hudieb, Malik; Khader, Yousef

    2017-01-01

    The aim of this study was to investigate the predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography (CBCT) intensity values. CBCT cross-sectional images for 436 posterior mandibular implant sites were selected for the study. Using Invivo software (Anatomage, San Jose, California, USA), two observers classified the bone density into three categories: low, intermediate, and high, and CBCT intensity values were generated. Based on the consensus of the two observers, 15.6% of sites were of low bone density, 47.9% were of intermediate density, and 36.5% were of high density. Receiver-operating characteristic analysis showed that CBCT intensity values had a high predictive power for predicting high density sites (area under the curve [AUC] =0.94, P < 0.005) and intermediate density sites (AUC = 0.81, P < 0.005). The best cut-off value for intensity to predict intermediate density sites was 218 (sensitivity = 0.77 and specificity = 0.76) and the best cut-off value for intensity to predict high density sites was 403 (sensitivity = 0.93 and specificity = 0.77). CBCT intensity values are considered useful for predicting bone density at posterior mandibular implant sites.

  6. High power, high brightness electron beam generation in a pulse-line driven pseudospark discharge

    International Nuclear Information System (INIS)

    Destler, W.W.; Segalov, Z.; Rodgers, J.; Ramaswamy, K.; Reiser, M.

    1993-01-01

    High brightness (∼10 10 A/m 2 rad 2 ), high power density (∼10 10 W/cm 2 ) electron beams have been generated by the mating of a hollow-cathode discharge device operating in the pseudospark regime to the output of a high power pulse line accelerator. Very small diameter (∼1 mm) electron beams with currents in the range 500--1000 A and energies in the range 150--300 keV have been generated with effective emittances estimated to be at or below 170 mm mrad. Such emittances are comparable to those achieved in conventional electron beam sources at current densities several orders of magnitude lower than those observed in these experiments

  7. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  8. High-current beam dynamics and transport, theory and experiment

    International Nuclear Information System (INIS)

    Reiser, M.

    1986-01-01

    Recent progress in the understanding of beam physics and technology factors determining the current and brightness of ion and electron beams in linear accelerators will be reviewed. Topics to be discussed including phase-space density constraints of particle sources, low-energy beam transport include charge neutralization, emittance growth due to mismatch, energy exchange, instabilities, nonlinear effects, and longitudinal bunching

  9. High-order beam optics - an overview

    International Nuclear Information System (INIS)

    Heighway, E.A.

    1989-01-01

    Beam-transport codes have been around for as long as thirty years and high order codes, second-order at least, for close to twenty years. Before this period of design-code development, there was considerable high-order treatment, but it was almost entirely analytical. History has a way of repeating itself, and the current excitement in the field of high-order optics is based on the application of Lie algebra and the so-called differential algebra to beam-transport codes, both of which are highly analytical in foundation. The author will describe some of the main design tools available today, giving a little of their history, and will conclude by trying to convey some of the excitement in the field through a brief description of Lie and differential algebra. 30 refs., 7 figs., 1 tab

  10. Density and potential measurements in an intense ion-beam-generated plasma

    International Nuclear Information System (INIS)

    Abt, N.E.

    1982-05-01

    Neutral beams are created by intense large area ion beams which are neutralized in a gas cell. The interaction of the beam with the gas cell creates a plasma. Such a plasma is studied here. The basic plasma parameters, electron temperature, density, and plasma potential, are measured as a function of beam current and neutral gas pressure. These measurements are compared to a model based on the solution of Poisson's equation. Because of the cylindrical geometry the equation cannot be solved analytically. Details of the numerical method are presented

  11. Fast-scan monitor examines neutral-beam ion-density profile

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    All of the magnetic mirror confinement fusion experiments at LLL and at other laboratories depend on pulsed, energetic neutral-beam injection for fueling and imparting energy to the trapped plasma for density build-up and stability studies. It is vital to be able to monitor how well the injected ion beam is aimed and focused. To do this, we have designed an ion-beam current-density profile monitor that uses a commercial minimodular data acquisition system. Our prototype model monitors a single 20-kV, 50-A, 10-ms beam. However, the method is applicable to any number of beams with similar sampling target arrays. Also, the electronics can be switched to monitor any one of several target collectors

  12. Status of electron temperature and density measurement with beam emission spectroscopy on thermal helium at TEXTOR

    International Nuclear Information System (INIS)

    Schmitz, O; Schweer, B; Pospieszczyk, A; Lehnen, M; Samm, U; Unterberg, B; Beigman, I L; Vainshtein, L A; Kantor, M; Xu, Y; Krychowiak, M

    2008-01-01

    Beam emission spectroscopy on thermal helium is used at the TEXTOR tokamak as a reliable method to obtain radial profiles of electron temperature T e (r, t) and electron density n e (r, t). In this paper the experimental realization of this method at TEXTOR and the status of the atomic physics employed as well as the major factors for the measurement's accuracy are evaluated. On the experimental side, the hardware specifications are described and the impact of the beam atoms on the local plasma parameters is shown to be negligible. On the modeling side the collisional-radiative model (CRM) applied to infer n e and T e from the measured He line intensities is evaluated. The role of proton and deuteron collisions and of charge exchange processes is studied with a new CRM and the impact of these so far neglected processes appears to be of minor importance. Direct comparison to Thomson scattering and fast triple probe data showed that for high densities n e > 3.5 x 10 19 m -3 the T e values deduced with the established CRM are too low. However, the new atomic data set implemented in the new CRM leads in general to higher T e values. This allows us to specify the range of reliable application of BES on thermal helium to a range of 2.0 x 10 18 e 19 m -3 and 10 eV e < 250 eV which can be extended by routine application of the new CRM.

  13. A 3 GHz photoelectron gun for high beam intensity

    CERN Document Server

    Bossart, Rudolf; Dehler, M; Godot, J C

    1996-01-01

    For the Compact Linear Collider Test Facility (CTF) at CERN a new rf gun with a laser driven photocathode is under construction. The new rf gun will replace the present 11/2 cell gun and will consist of 21/2 cells accelerating the beam to a momentum of 7.0 MeV/c with an electric field strength of 100 MV/m. The strong space-charge forces at low beam energy caused by the high charge density of the electron bunches are contained by radial and longitudinal rf focusing in the gun. The rf gun under construction has been optimized by MAFIA beam simulations for an injector assembly comprising a second accelerating rf structure and an intermediate solenoid magnet correcting the beam divergence of the 21/2 cell gun. The beam loading of the rf gun, by a train of 48 bunches with 21 nC charge each, causes a strong energy decay accompanied by an increase of the flight time for the bunches with lower energy. These effects can be corrected by slightly shifting the acceleration frequency of the gun. The experimental results...

  14. The SLAC high-density gaseous polarized 3He target

    International Nuclear Information System (INIS)

    Johnson, J.R.; Chupp, T.E.; Smith, T.B.; Cates, G.D.; Driehuys, B.; Middleton, H.; Newbury, N.R.; Hughes, E.W.; Meyer, W.

    1995-01-01

    A large-scale high-pressure gaseous 3 He polarized target has been developed for use with a high-intensity polarized electron beam at the Stanford Linear Accelerator Center. This target was used successfully in an experiment to study the spin structure of the neutron. The target provided an areal density of about 7x10 21 nuclei/cm 2 and operated at 3 He polarizations between about 30% and 40% for the six-week duration of the experiment. ((orig.))

  15. Polarized beams in high energy storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Montague, B W [European Organization for Nuclear Research, Geneva (Switzerland)

    1984-11-01

    In recent years there has been a considerable advance in understanding the spin motion of particles in storage rings and accelerators. The survey presented here outlines the early historical development in this field, describes the basic ideas governing the kinetics of polarized particles in electromagnetic fields and shows how these have evolved into the current description of polarized beam behaviour. Orbital motion of particles influences their spin precession, and depolarization of a beam can result from excitation of spin resonances by orbit errors and oscillations. Electrons and positrons are additionally influenced by the quantized character of synchrotron radiation, which not only provides a polarizing mechanism but also enhances depolarizing effects. Progress in the theoretical formulation of these phenomena has clarified the details of the physical processes and suggested improved methods of compensating spin resonances. Full use of polarized beams for high-energy physics with storage rings requires spin rotators to produce longitudinal polarization in the interaction regions. Variants of these schemes, dubbed Siberian snakes, provide a curious precession topology which can substantially reduce depolarization in the high-energy range. Efficient polarimetry is an essential requirement for implementing polarized beams, whose utility for physics can be enhanced by various methods of spin manipulation.

  16. Intense electron-beam propagation in low-density gases using PHERMEX

    International Nuclear Information System (INIS)

    Moir, D.C.; Newberger, B.S.; Thode, L.E.

    1980-01-01

    Preliminary propagation experiments have been performed using the LASL-PHERMEX 21-MeV electron beam with current densities of 40 kA/cm 2 . Gas densities are varied from 10-m torr to 580 torr. Results indicate the presence of microinstabilities

  17. High-density limit of quantum chromodynamics

    International Nuclear Information System (INIS)

    Alvarez, E.

    1983-01-01

    By means of a formal expansion of the partition function presumably valid at large baryon densities, the propagator of the quarks is expressed in terms of the gluon propagator. This result is interpreted as implying that correlations between quarks and gluons are unimportant at high enough density, so that a kind of mean-field approximation gives a very accurate description of the physical system

  18. Target experiments with high-power proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Baumung, K; Bluhm, H; Hoppe, P; Rusch, D; Singer, J; Stoltz, O [Forschungszentrum Karlsruhe (Germany); Kanel, G I; Razorenov, S V; Utkin, A V [Russian Academy of Sciences, Chernogolovka (Russian Federation). Inst. of Chemical Physics

    1997-12-31

    At the Karlsruhe Light Ion Facility KALE a pulsed high-power proton beam (50 ns, 0.15 TW/cm{sup 2}, 8 mm fwhm focus diameter, 1.7 MeV peak proton energy) is used to generate short, intense pressure pulses or to ablatively accelerate targets 10-100 {mu}m thick to velocities > 10 km/s. The velocity history of the rear target surface is recorded by line-imaging laser Doppler velocimetry with high spatial ({>=} 10 {mu}m) and temporal ({>=} 200 ps) resolution, and provides information on proton beam parameters, and on the state of the matter at high energy densities and intense loading. Utilizing the bell-shaped power density profile the authors demonstrated a new straightforward method for measuring the shock pressure that leads to material melting in the rarefaction wave. For the first time, the dynamic tensile strength was measured across a crystal grain boundary, and using targets with a 1D periodic structure, the growth rate of a Rayleigh Taylor instability could be measured for the first time in direct drive experiments with an ion beam. (author). 8 figs., 15 refs.

  19. High-intensity pulsed beam source with tunable operation mode

    Science.gov (United States)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  20. A fast wire scanner, used to measure the transverse density distribution of beams circulating in an accelerator or storage ring.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Fast wire scanners are used to measure the transverse density distribution of beams circulating in an accelerator or storage ring. In order to minimize blow-up of the beam through multiple Coulomb scattering, the wires are very thin (in the version shown here it is actually a twisted strand of carbon fibres with a total diameter of about 25 microns) and are swept through the beam at high speed (a linear motor, not mounted here, accelerates the wires to up to 20 m/s). One measures either the secondary emission current from the wire, or the signal from a scintillator/photomultiplier combination downstream from the wire scanner receiving the shower from nuclear reactions of beam particles with the wire nuclei. There are four such fast wire scanners in the 26 GeV PS and eight in the 1.4 GeV Booster.

  1. Effect of nonuniform radial density distribution on the space charge dominated beam bunching

    International Nuclear Information System (INIS)

    Sing Babu, P.; Goswami, A.; Pandit, V. S.

    2011-01-01

    Beam dynamics of a space charge dominated beam during the bunch compression is studied self consistently for the case of fixed shape non-uniform bell shape and hollow shape density distributions in the transverse direction. We have used thick slices at different parts of the beam to account for variation in the beam radius in the study of the transverse dynamics. The longitudinal dynamics has been studied using the disc model. The axial variation of the radius of the slices and emittance growth arising from the phase dependence of the transverse rf forces are also included in the simulation. We have modified the beam envelope equation to take into account the longitudinal space charge effect on the transverse motion which arises due to the finite bunch size. To demonstrate the application of the theoretical formulations developed, we have studied a sinusoidal beam bunching system and presented detailed numerical results.

  2. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  3. High Density Digital Data Storage System

    Science.gov (United States)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  4. Beam size measurement at high radiation levels

    International Nuclear Information System (INIS)

    Decker, F.J.

    1991-05-01

    At the end of the Stanford Linear Accelerator the high energy electron and positron beams are quite small. Beam sizes below 100 μm (σ) as well as the transverse distribution, especially tails, have to be determined. Fluorescent screens observed by TV cameras provide a quick two-dimensional picture, which can be analyzed by digitization. For running the SLAC Linear Collider (SLC) with low backgrounds at the interaction point, collimators are installed at the end of the linac. This causes a high radiation level so that the nearby cameras die within two weeks and so-called ''radiation hard'' cameras within two months. Therefore an optical system has been built, which guides a 5 mm wide picture with a resolution of about 30 μm over a distance of 12 m to an accessible region. The overall resolution is limited by the screen thickness, optical diffraction and the line resolution of the camera. Vibration, chromatic effects or air fluctuations play a much less important role. The pictures are colored to get fast information about the beam current, size and tails. Beside the emittance, more information about the tail size and betatron phase is obtained by using four screens. This will help to develop tail compensation schemes to decrease the emittance growth in the linac at high currents. 4 refs., 2 figs

  5. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    Science.gov (United States)

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  6. Cold atomic beams of high brightness

    International Nuclear Information System (INIS)

    Rozhdestvensky, Yu V

    2004-01-01

    The possibility is studied for obtaining intense cold atomic beams by using the Renyi entropy to optimise the laser cooling process. It is shown in the case of a Gaussian velocity distribution of atoms, the Renyi entropy coincides with the density of particles in the phase space. The optimisation procedure for cooling atoms by resonance optical radiation is described, which is based on the thermodynamic law of increasing the Renyi entropy in time. Our method is compared with the known methods for increasing the laser cooling efficiency such as the tuning of a laser frequency in time and a change of the atomic transition frequency in an inhomogeneous transverse field of a magnetic solenoid. (laser cooling)

  7. Optically Addressed Nanostructures for High Density Data Storage

    Science.gov (United States)

    2005-10-14

    beam to sub-wavelength resolutions. X. Refereed Journal Publications I. M. D. Stenner , D. J. Gauthier, and M. A. Neifeld, "The speed of information in a...profiles for high-density optical data storage," Optics Communications, Vol.253, pp.56-69, 2005. 5. M. D. Stenner , D. J. Gauthier, and M. A. Neifeld, "Fast...causal information transmission in a medium with a slow group velocity," Physical Review Letters, Vol.94, February 2005. 6. M. D. Stenner , M. A

  8. Preparation and characterization of high-Tc superconducting thin films with high critical current densities

    International Nuclear Information System (INIS)

    Vase, P.

    1991-08-01

    The project was carried out in relation to possible cable and electronics applications of high-T c materials. Laser ablation was used as the deposition technique because of its stoichiometry conservation. Films were made in the YBa 2 Cu 3 O 7 compound due to its relatively simple stoichiometry compared to other High-T c compounds. Much attention was paid to the critical current density. A very high critical current density was reached. By using texture analysis by X-ray diffraction, it was found that films with high critical current densities were epitaxial, while films with low critical current densities contained several crystalline orientations. Four techniques for patterning the films were used - photo lithography and wet etch, laser ablation lithography, laser writing and electron beam lithography and ion milling. Sub-micron patterning has been demonstrated without degradation of the superconducting properties. The achieved patterning resolution is sufficient for preparation of many superconducting components. (AB)

  9. High repetition rate intense ion beam source

    International Nuclear Information System (INIS)

    Hammer, D.A.; Glidden, S.C.; Noonan, B.

    1992-01-01

    This final report describes a ≤ 150kV, 40kA, 100ns high repetition rate pulsed power system and intense ion beam source which is now in operation at Cornell University. Operation of the Magnetically-controlled Anode Plasma (MAP) ion diode at > 100Hz (burst mode for up to 10 pulse bursts) provides an initial look at repetition rate limitations of both the ion diode and beam diagnostics. The pulsed power systems are capable of ≥ 1kHz operation (up to 10 pulse bursts), but ion diode operation was limited to ∼100Hz because of diagnostic limitations. By varying MAP diode operating parameters, ion beams can be extracted at a few 10s of keV or at up to 150keV, the corresponding accelerating gap impedance ranging from about 1Ω to about 10Ω. The ability to make hundreds of test pulses per day at an average repetition rate of about 2 pulses per minute permits statistical analysis of diode operation as a function of various parameters. Most diode components have now survived more than 10 4 pulses, and the design and construction of the various pulsed power components of the MAP diode which have enabled us to reach this point are discussed. A high speed data acquisition system and companion analysis software capable of acquiring pulse data at 1ms intervals (in bursts of up to 10 pulses) and processing it in ≤ min is described

  10. High throughput nonparametric probability density estimation.

    Science.gov (United States)

    Farmer, Jenny; Jacobs, Donald

    2018-01-01

    In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.

  11. High gradient lens for charged particle beam

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  12. A novel approach to the sensing of liquid density using a plastic optical fibre cantilever beam

    Science.gov (United States)

    Kulkarni, Atul; Kim, Youngjin; Kim, Taesung

    2009-01-01

    This article reports for the first time the use of a plastic optical fibre (POF) cantilever beam to measure the density of a liquid. The sensor is based on the Archimedes buoyancy principle. The sensor consists of a POF bonded on the surface of a metal beam in the form of a cantilever configuration, and at the free end of the beam a displacer is attached. Due to the apparent loss of the true weight of the displacer there is a deflection in the cantilever beam, which causes macro bending in the POF. The loss of intensity due to macro bending of the POF is a measure of the density of the liquid under test. The variation of weight loss with the density of different liquids showed that the weight loss is proportional to density. This sensor is capable of detecting the weight loss with respect to their densities even for liquids having close values of density like distilled water, tap water, and milk of various brands. The resolution of the sensor is observed to be 1.1 mg cm-3.

  13. Supernovae and high density nuclear matter

    International Nuclear Information System (INIS)

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs

  14. Supernovae and high density nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  15. High density implosion experiments at Nova

    International Nuclear Information System (INIS)

    Cable, M.D.; Hatchett, S.P.; Nelson, M.B.; Lerche, R.A.; Murphy, T.J.; Ress, D.B.

    1994-01-01

    Deuterium filled glass microballoons are used as indirectly driven targets for implosion experiments at the Nova Laser Fusion Facility. High levels of laser precision were required to achieve fuel densities and convergences to an ignition scale hot spot. (AIP) copyright 1994 American Institute of Physics

  16. High Density GEOSAT/GM Altimeter Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The high density Geosat/GM altimeter data south of 30 S have finally arrived. In addition, ERS-1 has completed more than 6 cycles of its 35-day repeat track. These...

  17. High density aseismic spent fuel storage racks

    International Nuclear Information System (INIS)

    Louvat, J.P.

    1985-05-01

    After the reasons of the development of high density aseismic spent fuel racks by FRAMATOME and LEMER, a description is presented, as also the codes, standards and regulations used to design this FRAMATOME storage rack. Tests have been carried out concerning criticality, irradiation of Cadminox, corrosion of the cell, and the seismic behaviour

  18. High-power, high-frequency, annular-beam free-electron maser

    International Nuclear Information System (INIS)

    Fazio, M.V.; Carlsten, B.E.; Earley, L.M.; Fortgang, C.M.; Haynes, W.B.; Haddock, P.C.

    1998-01-01

    The authors have developed a 15--17 GHz free electron maser (FEM) capable of producing high power pulses with a phase stability appropriate for linear collider applications. The electron beam source is a 1 micros, 800 kV, 5 kA, 6-cm-dia annular electron beam machine called BANSHEE. The beam interacts with the TM 02 mode Raman FEM amplifier in a corrugated cylindrical waveguide where the beam runs close to the interaction device walls to reduce the power density in the fields. They studied the phase stability by analyzing the dispersion relation for an axial FEL, in which the rf field was transversely wiggled and the electron trajectories were purely longitudinal. Detailed particle-in-cell simulations demonstrated the transverse wiggling of the rf mode and the axial FEL interaction and explicit calculations of the growing root of the dispersion relation are included to verify the phase stability

  19. Measurements of current density distribution in shaped e-beam writers

    Czech Academy of Sciences Publication Activity Database

    Bok, Jan; Horáček, Miroslav; Kolařík, Vladimír; Urbánek, Michal; Matějka, Milan; Krzyžánek, Vladislav

    2016-01-01

    Roč. 149, JAN 5 (2016), s. 117-124 ISSN 0167-9317 R&D Projects: GA ČR(CZ) GA14-20012S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : shaped e-beam writer * electron beam * current density Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.806, year: 2016

  20. Generation and transportation of low-energy, high-current electron beams

    International Nuclear Information System (INIS)

    Ozur, G.E.; Proskurovskij, D.I.; Nazarov, D.S.

    1996-01-01

    Experimental data on the production of low-energy, high-current electron beams in a plasma-filled diode are presented. The highest beam energy density achieved is about 40 J/cm 2 , which makes it possible to treat materials in the mode of intense evaporation of the surface layer. It was shown that the use of a hollow cathode improves the beam homogeneity. The feasibility was demonstrated of the production of low-energy high-current electron beams in a gun with plasma anode based on the use of a reflective discharge. (author). 6 figs., 6 refs

  1. Generation and transportation of low-energy, high-current electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ozur, G E; Proskurovskij, D I; Nazarov, D S [Russian Academy of Sciences, Tomsk (Russian Federation). Institute of High Current Electronics

    1997-12-31

    Experimental data on the production of low-energy, high-current electron beams in a plasma-filled diode are presented. The highest beam energy density achieved is about 40 J/cm{sup 2}, which makes it possible to treat materials in the mode of intense evaporation of the surface layer. It was shown that the use of a hollow cathode improves the beam homogeneity. The feasibility was demonstrated of the production of low-energy high-current electron beams in a gun with plasma anode based on the use of a reflective discharge. (author). 6 figs., 6 refs.

  2. High spin studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1992-01-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and complete spectroscopy (i.e. the overlap of state of the art low-and high-spin studies in the same nucleus)

  3. High spin studies with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J D [Oak Ridge National Lab., TN (United States)

    1992-08-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and, complete spectroscopy (i.e. the overlap of state of the art low- and high-spin studies in the same nucleus). (author). 47 refs., 8 figs.

  4. STANFORD: Highly polarized SLC electron beams

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Using specialized photocathodes made with 'strained' gallium arsenide, physicists at the Stanford Linear Accelerator Center (SLAC) have generated electron beams with polarizations in excess of 60 percent a year ahead of schedule. Together with recent luminosity increases, this breakthrough will have a major impact on the physics output of the Stanford Linear Collider (SLC). Beam polarization was almost tripled using photocathodes in which a gallium arsenide layer was grown epitaxially over a substrate of gallium arsenide phosphide. The mismatch between these two layers deforms the crystal structure and removes a degeneracy in the valence band structure, permitting selective optical pumping of one unique spin state. Whereas conventional gallium arsenide photocathodes are limited to 50 percent polarization because of this degeneracy (and realistic cathodes fall substantially below this theoretical limit), such strained crystal lattices have the potential to yield polarizations close to 100 percent. Polarization enhancement with strained lattices was first demonstrated in 1991 by a SLAC/Wisconsin/ Berkeley group (May 1991, page 6) with a 71 percent polarization in a laboratory experiment. More recently this group has achieved polarization in excess of 90 percent, reported last November at the Nagoya Spin Symposium. (In a complementary development, a Japanese KEK/ Nagoya/KEK obtains polarized beams using a 'superlattice' - May 1991, page 4.) The 1993 SLC run, the strained gallium arsenide photocathode technique's debut in an operating particle accelerator, has proved to be a resounding, unqualified success - as have physics experiments on the Z particles produced by the highly polarized beam. A conservative approach was called for, due to concerns about possible charge saturation effects. A relatively thick (0.3 micron) gallium arsenide layer was used for the photocathode in the SLC polarized electron source. With a titanium

  5. Models for Experimental High Density Housing

    Science.gov (United States)

    Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia

    2017-10-01

    The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.

  6. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    Science.gov (United States)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim

    2018-04-01

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.

  7. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y. [Indiana Univ., Bloomington, IN (United States)

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  8. Upgraded millimeter-wave interferometer for measuring the electron density during the beam extraction in the negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tokuzawa, T., E-mail: tokuzawa@nifs.ac.jp; Kisaki, M.; Nagaoka, K.; Ito, Y.; Ikeda, K.; Nakano, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tsumori, K.; Osakabe, M.; Takeiri, Y. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); The Graduate University for Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Kaneko, O. [National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

    2016-11-15

    The upgraded millimeter-wave interferometer with the frequency of 70 GHz is installed on a large-scaled negative ion source. Measurable line-averaged electron density is from 2 × 10{sup 15} to 3 × 10{sup 18} m{sup −3} in front of the plasma grid. Several improvements such as the change to shorter wavelength probing with low noise, the installation of special ordered horn antenna, the signal modulation for a high accuracy digital phase detection, the insertion of insulator, and so on, are carried out for the measurement during the beam extraction by applying high voltage. The line-averaged electron density is successfully measured and it is found that it increases linearly with the arc power and drops suddenly at the beam extraction.

  9. High-brightness electron beams for production of high intensity, coherent radiation for scientific and industrial applications

    International Nuclear Information System (INIS)

    Kim, K.-J.

    1999-01-01

    Relativistic electron beams with high six-dimensional phase space densities, i.e., high-brightness beams, are the basis for efficient generation of intense and coherent radiation beams for advanced scientific and industrial applications. The remarkable progress in synchrotrons radiation facilities from the first generation to the current, third-generation capability illustrates this point. With the recent development of the high-brightness electron gun based on laser-driven rf photocathodes, linacs have become another important option for high-brightness electron beams. With linacs of about 100 MeV, megawatt-class infrared free-electron lasers can be designed for industrial applications such as power beaming. With linacs of about 10 GeV, 1- angstrom x-ray beams with brightness and time resolution exceeding by several orders of magnitude the current synchrotrons radiation sources can be generated based on self-amplified spontaneous emission. Scattering of a high-brightness electron beam by high power laser beams is emerging as a compact method of generating short-pulse, bright x-rays. In the high-energy frontier, photons of TeV quantum energy could be generated by scattering laser beams with TeV electron beams in future linear colliders

  10. Investigation of bulk electron densities for dose calculations on cone-beam CT images

    International Nuclear Information System (INIS)

    Lambert, J.; Parker, J.; Gupta, S.; Hatton, J.; Tang, C.; Capp, A.; Denham, J.W.; Wright, P.

    2010-01-01

    Full text: If cone-beam CT images are to be used for dose calculations, then the images must be able to provide accurate electron density information. Twelve patients underwent twice weekly cone-beam CT scans in addition to the planning CT scan. A standardised 5-field treatment plan was applied to 169 of the CBCT images. Doses were calculated using the original electron density values in the CBCT and with bulk electron densities applied. Bone was assigned a density of 288 HU, and all other tissue was assigned to be water equivalent (0 HU). The doses were compared to the dose calculated on the original planning CT image. Using the original HU values in the cone-beam images, the average dose del i vered by the plans from all 12 patients was I. I % lower than the intended 200 cOy delivered on the original CT plans (standard devia tion 0.7%, maximum difference -2.93%). When bulk electron densities were applied to the cone-beam images, the average dose was 0.3% lower than the original CT plans (standard deviation 0.8%, maximum difference -2.22%). Compared to using the original HU values, applying bulk electron densities to the CBCT images improved the dose calculations by almost I %. Some variation due to natural changes in anatomy should be expected. The application of bulk elec tron densities to cone beam CT images has the potential to improve the accuracy of dose calculations due to inaccurate H U values. Acknowledgements This work was partially funded by Cancer Council NSW Grant Number RG 07-06.

  11. Propagation of high-current fast electron beam in a dielectric target

    International Nuclear Information System (INIS)

    Klimo, O.; Debayle, A.; Tikhonchuk, V.T.

    2006-01-01

    Complete test of publication follows. A relativistic electron beam with very high current density may be produced during the interaction of a short high intensity laser pulse with a solid target. In Fast Ignition approach to Inertial Confinement Fusion, such beam is supposed to heat a part of the precompressed DT fuel pellet to the conditions of an efficient ignition. For successful implementation of Fast Ignition understanding the propagation and energy deposition of the beam is crucial. A number of processes, mostly associated with the return current, are dissipating the energy of the beam or inhibiting its collimated transport, namely the filamentation. Weibel, two-stream or the recently proposed ionization instability. Ionization instability may develop in a solid dielectric target due to the dependence of the propagation velocity of the beam on the beam density. To study the propagation of high current electron beam in dielectric target, we use a one-dimensional relativistic electrostatic simulation code based on the Particle in Cell method. The code includes ionization processes in dielectric material and collisions of newly generated cold electrons. The current density of the relativistic electron beam used in this work is in the range 3-300 GA/cm 2 , while its length roughly corresponds to the beam, produced by a 40 fs laser pulse. Propagation of the beam in the polyethylene target is studied. The code is complemented by an analytical model, which is applicable og a wider range of beam parameters that are currently beyond our computational possibilities. When the head of the beam enters the plastic target, electric field grows rapidly in consequence of the charge separation and it starts to ionize atoms. In the maximum of the field, which is less than 10% of the atomic field, the density of new free electrons is two orders of magnitude higher than the beam density, which is enough for the current neutralization. Cold electrons are accelerated by the field

  12. X-ray beam hardening correction for measuring density in linear accelerator industrial computed tomography

    International Nuclear Information System (INIS)

    Zhou Rifeng; Wang Jue; Chen Weimin

    2009-01-01

    Due to X-ray attenuation being approximately proportional to material density, it is possible to measure the inner density through Industrial Computed Tomography (ICT) images accurately. In practice, however, a number of factors including the non-linear effects of beam hardening and diffuse scattered radiation complicate the quantitative measurement of density variations in materials. This paper is based on the linearization method of beam hardening correction, and uses polynomial fitting coefficient which is obtained by the curvature of iron polychromatic beam data to fit other materials. Through theoretical deduction, the paper proves that the density measure error is less than 2% if using pre-filters to make the spectrum of linear accelerator range mainly 0.3 MeV to 3 MeV. Experiment had been set up at an ICT system with a 9 MeV electron linear accelerator. The result is satisfactory. This technique makes the beam hardening correction easy and simple, and it is valuable for measuring the ICT density and making use of the CT images to recognize materials. (authors)

  13. Using NEG-pumping near a high density internal target

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Alexander; Marton, Johann; Widmann, Eberhard; Zmeskal, Johann [Stefan Meyer Institut fuer Subatomare Physik, OeAW (Germany); Orth, Herbert [GSI, Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2009-07-01

    The universal detector PANDA will be constructed at the future high-energy antiproton storage ring HESR at FAIR (Facility for Antiproton and Ion Research, GSI/Darmstadt). It will use antiproton beams (1.5 to 15 GeV/c) for hadron physics in the charmonium region. The Stefan Meyer Institut (SMI) contributes to major parts of the PANDA detector like the hydrogen cluster-jet target and the vacuum system of the antiproton - target interaction zone. To ensure low background, the residual gas load in the interaction zone and in the antiproton beam-pipe has to be minimised. Most of the gas load will come from the high density internal hydrogen target. As the detector will cover almost the full solid angle, the installation of pumps near the interaction zone is impossible. Therefore the use of NEG (non-evaporative-getter) coated beam pipes has been considered as an alternative. Two setups with NEG coated tubes have been installed at SMI as prototypes of the PANDA interaction zone. General parameters of the NEG-film, its outgassing behaviour, the pumping speed and the pumping capacity for hydrogen have been tested. The results of the studies on the PANDA-interaction region are presented.

  14. Using NEG-pumping near a high density internal target

    International Nuclear Information System (INIS)

    Gruber, A.; Marton, J.; Widmann, E.; Zmeskal, J.; Orth, H.

    2008-01-01

    Full text: The Stefan Meyer Institut (SMI) is part of the international PANDA collaboration. The universal detector will be constructed at the future high-energy antiproton storage ring HESR at FAIR (Facility for Antiproton and Ion Research, GSI/Darmstadt). PANDA will use antiproton beams (1.5 to 15 GeV/c) for hadron physics in the charmonium region. SMI contributes to major parts of the PANDA detector like the hydrogen cluster-jet target and the vacuum system of the antiproton - target interaction zone. To ensure low background, the residual gas load in the interaction zone and in the antiproton beam-pipe has to be minimized. Most of the gas load, of course will come from the high density internal hydrogen target. Since the PANDA detector will cover almost the full solid angle, the installation of pumps near the interaction zone is impossible. Therefore, the use of NEG (non-evaporative-getter) coated beam pipes has been considered as an alternative. Two setups with NEG coated tubes have been installed at SMI as prototypes of the PANDA interaction zone. The outgassing behavior, the pumping speed and the pumping capacity for hydrogen have been tested. The status of the studies of the interaction region will be presented. (author)

  15. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  16. Framatome offers new high density Cadminox racks

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Framatome have developed a new material called Cadminox for use in high density spent fuel storage racks. It is claimed that Cadminox will remain stable stable in pond storage when racks submerged in boronated water are irradiated by the spent fuel they contain. A brief description of the storage module is given, including the aseismic bearing device which minimises loads on pond walls, racks and fuel assemblies. (UK)

  17. Spin polarization in high density quark matter

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca

    2013-01-01

    We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model, ...... the so-called 2 flavor super-conducting phase to the ferromagnetic phase arises. The color-flavor-locked phase may be completely hidden by the FP....

  18. The car parking problem at high densities

    Science.gov (United States)

    Burgos, E.; Bonadeo, H.

    1989-04-01

    The radial distribution functions of random 1-D systems of sequential hard rods have been studied in the range of very high densities. It is found that as the number of samples rejected before completion increases, anomalies in the pairwise distribution functions arise. These are discussed using analytical solutions for systems of three rods and numerical simulations with twelve rods. The probabilities of different spatial orderings with respect to the sequential order are examined.

  19. The validity of the density scaling method in primary electron transport for photon and electron beams

    International Nuclear Information System (INIS)

    Woo, M.K.; Cunningham, J.R.

    1990-01-01

    In the convolution/superposition method of photon beam dose calculations, inhomogeneities are usually handled by using some form of scaling involving the relative electron densities of the inhomogeneities. In this paper the accuracy of density scaling as applied to primary electrons generated in photon interactions is examined. Monte Carlo calculations are compared with density scaling calculations for air and cork slab inhomogeneities. For individual primary photon kernels as well as for photon interactions restricted to a thin layer, the results can differ significantly, by up to 50%, between the two calculations. However, for realistic photon beams where interactions occur throughout the whole irradiated volume, the discrepancies are much less severe. The discrepancies for the kernel calculation are attributed to the scattering characteristics of the electrons and the consequent oversimplified modeling used in the density scaling method. A technique called the kernel integration technique is developed to analyze the general effects of air and cork inhomogeneities. It is shown that the discrepancies become significant only under rather extreme conditions, such as immediately beyond the surface after a large air gap. In electron beams all the primary electrons originate from the surface of the phantom and the errors caused by simple density scaling can be much more significant. Various aspects relating to the accuracy of density scaling for air and cork slab inhomogeneities are discussed

  20. Measurements of beam halo diffusion and population density in the Tevatron and in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermilab

    2015-03-01

    Halo dynamics influences global accelerator performance: beam lifetimes, emittance growth, dynamic aperture, and collimation efficiency. Halo monitoring and control are also critical for the operation of high-power machines. For instance, in the high-luminosity upgrade of the LHC, the energy stored in the beam tails may reach several megajoules. Fast losses can result in superconducting magnet quenches, magnet damage, or even collimator deformation. The need arises to measure the beam halo and to remove it at controllable rates. In the Tevatron and in the LHC, halo population densities and diffusivities were measured with collimator scans by observing the time evolution of losses following small inward or outward collimator steps, under different experimental conditions: with single beams and in collision, and, in the case of the Tevatron, with a hollow electron lens acting on a subset of bunches. After the LHC resumes operations, it is planned to compare measured diffusivities with the known strength of transverse damper excitations. New proposals for nondestructive halo population density measurements are also briefly discussed.

  1. Electron-beam damaged high-temperature superconductor Josephson junctions

    International Nuclear Information System (INIS)

    Pauza, A.J.; Booij, W.E.; Herrmann, K.; Moore, D.F.; Blamire, M.G.; Rudman, D.A.; Vale, L.R.

    1997-01-01

    Results are presented on the fabrication and characterization of high critical temperature Josephson junctions in thin films of YBa 2 Cu 3 O 7-δ produced by the process of focused electron-beam irradiation using 350 keV electrons. The junctions so produced have uniform spatial current densities, can be described in terms of the resistive shunted junction model, and their current densities can be tailored for a given operating temperature. The physical properties of the damaged barrier can be described as a superconducting material of either reduced or zero critical temperature (T c ), which has a length of ∼15nm. The T c reduction is caused primarily by oxygen Frenkel defects in the Cu - O planes. The large beam currents used in the fabrication of the junctions mean that the extent of the barrier is limited by the incident electron-beam diameter, rather than by scattering within the film. The properties of the barrier can be calculated using a superconductor/normal/superconductor (SNS) junction model with no boundary resistance. From the SNS model, we can predict the scaling of the critical current resistance (I c R n ) product and gain insight into the factors controlling the junction properties, T c , and reproducibility. From the measured I c R n scaling data, we can predict the I c R n product of a junction at a given operating temperature with a given current density. I c R n products of ∼2mV can be achieved at 4.2 K. The reproducibility of several junctions in a number of samples can be characterized by the ratio of the maximum-to-minimum critical currents on the same substrate of less than 1.4. Stability over several months has been demonstrated at room and refrigerator temperatures (297 and 281 K) for junctions that have been initially over damaged and then annealed at temperatures ∼380K. (Abstract Truncated)

  2. The Physics and Applications of High Brightness Electron Beams

    Science.gov (United States)

    Palumbo, Luigi; Rosenzweig, J.; Serafini, Luca

    2007-09-01

    brightness photoinjector / M. Ferrario, V. Fusco, M. Migliorati and L. Palumbo. Simulations of coherent synchroton radiation effects in electron machines / M. Migliorati, A, Schiavi and G. Dattoli. QFEL: A numerical code for multi-dimensional simulation of free electron lasers in the quantum regime / A. Schiavi ... [et al.]. First simulations results on laser pulse jitter and microbunching instability at Saprxino / M. Boscolo ... [et al.]. -- Working Group 4. Working group 4 summary: applications of high brightness beams to advanced accelerators and light sources / M. Uesaka and A. Rossi. Study of transverse effects in the production of X-rays with free-electron laser based on an optical ondulator / A. Bacci ... [et al.]. Channeling projects at LNF: from crystal undulators to capillary waveguides / S.B. Dabagov ... [et al.]. Mono-Energetic electron generation and plasma diagnosis experiments in a laser plasma cathode / K. Kinoshita ... [et al.]. A high-density electron beam and quad-scan measurements at Pleiades Thompson X-ray source / J.K. Lim ... [et al.]. Laser pulse circulation system for compact monochromatic tunable hard X-ray source / H. Ogino ... [et al.]. Limits on production of narrow band photons from inverse compton scattering / J. Rosenzweig and O. Williams. Preliminary results from the UCLA/SLAC ultra-high gradient Cerenkov wakefield accelerator experiment / M.C. Thompson ... [et al.]. Status of the polarized nonlinear inverse compton scattering experiment at UCLA / O. Williams... [et al.]. Coupling laser power into a slab-symmetric accelerator structure / R.B. Yoder and J.B. Rosenzweig.

  3. Study on intense relativistic electron beam propagation in a low density collisionless plasma

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.

    1982-01-01

    The results of investigations into the increase in effectivity of transport of an intensive relativistic electron beam (IREB) in a collisionless plasma of low density are presented. The electron beam with the current of 1.5 kA, energy of 300 keV, radius of 1.5 cm is in ected into a plasma channel 180 cm long which is a metallic cylinder covered with a biniplast layer from inside 0.5 cm thickness on which there is a metallic net from the vacuum side. Plasma production is carried out during the supply of voltage pulse to the net. A condition of the optimum IREB distribution is found. It is sohwn that self-focusing IREB transport in plasma of low density can be effective if equilibrium conditions are carried out in plasma with the concentration of electrons less (or equal) to the concentration of electrons in a beam

  4. Status of electron temperature and density measurement with beam emission spectroscopy on thermal helium at TEXTOR

    NARCIS (Netherlands)

    Schmitz, O.; Beigman, I. L.; Vainshtein, L. A.; Schweer, B.; Kantor, M.; Pospieszczyk, A.; Xu, Y.; Krychowiak, M.; Lehnen, M.; Samm, U.; Unterberg, B.

    2008-01-01

    Beam emission spectroscopy on thermal helium is used at the TEXTOR tokamak as a reliable method to obtain radial profiles of electron temperature T-e(r, t) and electron density ne(r, t). In this paper the experimental realization of this method at TEXTOR and the status of the atomic physics employed

  5. Corrections in the gold foil activation method for determination of neutron beam density

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1967-01-01

    A finite foil thickness and deviation in the cross section from the 1ν law imply corrections in the determination of neutron beam densities by means of foil activation. These corrections, which depend on the neutron velocity distribution, have been examined in general and are given in a specific...

  6. Space-charge compensation of highly charged ion beam from laser ion source

    International Nuclear Information System (INIS)

    Kondrashev, S.A.; Collier, J.; Sherwood, T.R.

    1996-01-01

    The problem of matching an ion beam delivered by a high-intensity ion source with an accelerator is considered. The experimental results of highly charged ion beam transport with space-charge compensation by electrons are presented. A tungsten thermionic cathode is used as a source of electrons for beam compensation. An increase of ion beam current density by a factor of 25 is obtained as a result of space-charge compensation at a distance of 3 m from the extraction system. The process of ion beam space-charge compensation, requirements for a source of electrons, and the influence of recombination losses in a space-charge-compensated ion beam are discussed. (author)

  7. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  8. Excitation of high density surface plasmon polariton vortex array

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  9. Edge density fluctuation diagnostic for DIII-D using lithium beams: 1992 annual report

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1994-01-01

    During the past several months the Lithium beam diagnostic was commissioned of DIII-D and began yielding useful information. The author developed the remote control and monitoring of the ion source operation and beam formation and focussing, and integrated the control system and data acquisition into the DIII-D operating system. Several detector types were fabricated, and fluorescence data were collected using several differing detector arrangements. Beam-gas measurements were conducted to analyze the intrinsic beam fluctuations and stability. Fluorescence data was then obtained on a number of Tokamak discharges under varying discharge conditions. Analysis of this initial data is proceeding but has already yielded some interesting features. These include changes in the edge plasma density behavior during the l- to h-transition, disruptions, and edge localized modes (ELMs). Based on the quality of data obtained the author proceeded with the design and construction of the full 16-channel detection system which will be completed and tested shortly

  10. Bayesian electron density inference from JET lithium beam emission spectra using Gaussian processes

    Science.gov (United States)

    Kwak, Sehyun; Svensson, J.; Brix, M.; Ghim, Y.-C.; Contributors, JET

    2017-03-01

    A Bayesian model to infer edge electron density profiles is developed for the JET lithium beam emission spectroscopy (Li-BES) system, measuring Li I (2p-2s) line radiation using 26 channels with  ∼1 cm spatial resolution and 10∼ 20 ms temporal resolution. The density profile is modelled using a Gaussian process prior, and the uncertainty of the density profile is calculated by a Markov Chain Monte Carlo (MCMC) scheme. From the spectra measured by the transmission grating spectrometer, the Li I line intensities are extracted, and modelled as a function of the plasma density by a multi-state model which describes the relevant processes between neutral lithium beam atoms and plasma particles. The spectral model fully takes into account interference filter and instrument effects, that are separately estimated, again using Gaussian processes. The line intensities are inferred based on a spectral model consistent with the measured spectra within their uncertainties, which includes photon statistics and electronic noise. Our newly developed method to infer JET edge electron density profiles has the following advantages in comparison to the conventional method: (i) providing full posterior distributions of edge density profiles, including their associated uncertainties, (ii) the available radial range for density profiles is increased to the full observation range (∼26 cm), (iii) an assumption of monotonic electron density profile is not necessary, (iv) the absolute calibration factor of the diagnostic system is automatically estimated overcoming the limitation of the conventional technique and allowing us to infer the electron density profiles for all pulses without preprocessing the data or an additional boundary condition, and (v) since the full spectrum is modelled, the procedure of modulating the beam to measure the background signal is only necessary for the case of overlapping of the Li I line with impurity lines.

  11. Extraction of high-intensity ion beams from a laser plasma by a pulsed spherical diode

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Oguri

    2005-06-01

    Full Text Available High-current Cu^{+} ion beams were extracted from a laser-produced plasma using a pulsed high-voltage multiaperture diode driven by an induction cavity. The amplitude and the duration of the extraction voltage were 130 kV and 450 ns, respectively. During the extraction, explosive beam divergence due to the strong space-charge force was suppressed by the focusing action of the gap between concentric hemispheres. Modulation of the extracted beam flux due to the plasma prefill in the gap has been eliminated by using a biased control grid put on the anode holes. By means of this extraction scheme we obtained a rectangular beam pulse with a rise time as short as ≈100  ns. The beam current behind the cathode was limited to ≈0.1   A, owing to space-charge effects, as well as to poor geometrical transmission through the cathode sphere. From the measurement of the extracted beam current density distribution along the beam axis and the beam profile measurement, we found a beam waist slightly downstream of the spherical center of the diode structure. The measured beam behavior was consistent with numerical results obtained via a 3D particle code. No serious degradation of the beam emittance was observed for the grid-controlled extraction scheme.

  12. Laser beams in high energy physics

    International Nuclear Information System (INIS)

    Milburn, R.H.

    1976-01-01

    Back-scattered ruby laser light from energetic electrons has facilitated a family of bubble chamber experiments in the interactions of highly polarized and quasi-monochromatic photons up to 10 GeV with 4π acceptance at the 100 to 200 event/μb level. Further studies of this sort demand the use of high-repetition-rate track chambers. To exploit the polarization and energetic purity intrinsic to the back-scattered beam one must achieve nearly two orders of magnitude increase in the average input optical power, and preferably also higher quantum energies. Prospects for this technique and its applications given modern laser capabilities and new accelerator developments are discussed

  13. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    Science.gov (United States)

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  14. Frontiers in pulse-power-based high energy density plasma physics and its applications

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2008-03-01

    The papers in this volume of report were presented at the Symposium on Frontiers in Pulse-power-based High Energy Density Physics' held by National Institute for Fusion Science. The topics include the present status of high energy density plasma researches, extreme ultraviolet sources, intense radiation sources, high power ion beams, and R and D of related pulse power technologies. The 13 of the presented papers are indexed individually. (J.P.N.)

  15. Macrofilament simulation of high current beam transport

    International Nuclear Information System (INIS)

    Hayden, R.J.; Jakobson, M.J.

    1985-01-01

    Macrofilament simulation of high current beam transport through a series of solenoids has been used to investigate the sensitivity of such calculations to the initial beam distribution and to the number of filaments used in the simulation. The transport line was tuned to approximately 105 0 phase advance per cell at zero current with a tune depression of 65 0 due to the space charge. Input distributions with the filaments randomly uniform throughout a four dimensional ellipsoid and K-V input distributions have been studied. The behavior of the emittance is similar to that published for quadrupoles with like tune depression. The emittance demonstrated little growth in the first twelve solenoids, a rapid rate of growth for the next twenty, and a subsequent slow rate of growth. A few hundred filaments were sufficient to show the character of the instability. The number of filaments utilized is an order of magnitude fewer than has been utilized previously for similar instabilities. The previously published curves for simulations with less than a thousand particles show a rather constant emittance growth. If the solenoid transport line magnetic field is increased a few percent, emittance growth curves are obtained not unlike those curves. Collision growth effects are less important than indicated in the previously published results for quadrupoles

  16. Foldable, High Energy Density Lithium Ion Batteries

    Science.gov (United States)

    Suresh, Shravan

    Lithium Ion Batteries (LIBs) have become ubiquitous owing to its low cost, high energy density and, power density. Due to these advantages, LIBs have garnered a lot of attention as the primary energy storage devices in consumer electronics and electric vehicles. Recent advances in the consumer electronics research and, the drive to reduce greenhouse gases have created a demand for a shape conformable, high energy density batteries. This thesis focuses on the aforementioned two aspects of LIBs: (a) shape conformability (b) energy density and provides potential solutions to enhance them. This thesis is divided into two parts viz. (i) achieving foldability in batteries and, (ii) improving its energy density. Conventional LIBs are not shape conformable due to two limitations viz. inelasticity of metallic foils, and delamination of the active materials while bending. In the first part of the thesis (in Chapter 3), this problem is solved by replacing metallic current collector with Carbon Nanotube Macrofilms (CNMs). CNMs are superelastic films comprising of porous interconnected nanotube network. Using Molecular Dynamics (MD) simulation, we found that in the presence of an interconnected nanotube network CNMs can be fully folded. This is because the resultant stress due to bending and, the effective bending angle at the interface is reduced due to the network of nanotubes. Hence, unlike an isolated nanotube (which ruptures beyond 120 degrees of bending), a network of nanotubes can be completely folded. Thus, by replacing metallic current collector foils with CNMs, the flexibility limitation of a conventional LIB can be transcended. The second part of this thesis focusses on enhancing the energy density of LIBs. Two strategies adopted to achieve this goal are (a) removing the dead weight of the batteries, and (b) incorporating high energy density electrode materials. By incorporating CNMs, the weight of the batteries was reduced by 5-10 times due to low mass loading of

  17. High intensity beam profile monitors for the LAMPF primary beam lines

    International Nuclear Information System (INIS)

    Hoffman, E.W.; Macek, R.J.; van Dyck, O.; Lee, D.; Harvey, A.; Bridge, J.; Cainet, J.

    1979-01-01

    Two types of beam profile monitors are in use at LAMPF to measure the properties of the 800 MeV, 500 μA proton beam external to the linac. Both types use secondary electron emission from a wire to produce a current signal proportional to the amount of proton beam that intercepts the wire. The wire scanner system uses a pair of orthogonal wires which are passed through the beam and the harp system uses two fixed planes of parallel wires. Most of the harps are not retractable and are exposed continuously to the primary beam. The high beam intensities available lead to a number of technical problems for instruments that intercept the beam or are close to primary beam targets. The thermal, electrical, radiation-damage, and material selection problems encountered, and some solutions which have been implemented are discussed

  18. Ion acceleration in electrostatic collisionless shock: on the optimal density profile for quasi-monoenergetic beams

    Science.gov (United States)

    Boella, E.; Fiúza, F.; Stockem Novo, A.; Fonseca, R.; Silva, L. O.

    2018-03-01

    A numerical study on ion acceleration in electrostatic shock waves is presented, with the aim of determining the best plasma configuration to achieve quasi-monoenergetic ion beams in laser-driven systems. It was recently shown that tailored near-critical density plasmas characterized by a long-scale decreasing rear density profile lead to beams with low energy spread (Fiúza et al 2012 Phys. Rev. Lett. 109 215001). In this work, a detailed parameter scan investigating different plasma scale lengths is carried out. As result, the optimal plasma spatial scale length that allows for minimizing the energy spread while ensuring a significant reflection of ions by the shock is identified. Furthermore, a new configuration where the required profile has been obtained by coupling micro layers of different densities is proposed. Results show that this new engineered approach is a valid alternative, guaranteeing a low energy spread with a higher level of controllability.

  19. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  20. Effect of e-beam dose on the fractional density of Au-catalyzed GaAs nanowire growth

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeung Hun, E-mail: jeunghunpark@gmail.com [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States); Gambin, Vincent [Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Kodambaka, Suneel, E-mail: kodambaka@ucla.edu [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2016-05-31

    Using Au/GaAs as a model system, the effect of initial catalyst patterning conditions on the growth of nanowire was studied. Resulting morphologies and fractional surface densities are determined as a function of e-beam dose, dot size, and inter-dot spacing using scanning and transmission electron microscopies. The majority of resulting nanowires grow randomly oriented with respect to the substrate. The nanowires are tapered with narrow tops, wider bases, and catalysts at the wire tips — characteristics of vapor–liquid–solid process. The base diameters of the wires are larger than the dot size, which is likely due to the non-catalyzed vapor–solid deposition along the sidewalls. The higher dose rate used in pattering leads to the formation of higher aspect ratio nanowires with narrower bases. The fractional surface density is found to increase linearly with the clearing dose and the critical dose for nanowire growth increases with decreasing catalyst pattern size and spacing. At a given dose, the fractional density increases with increasing Au dot size and with decreasing inter-dot spacing. Our results may provide new insights into the role of catalyst preparing conditions on the high density, wafer-scale growth of nanowires. - Highlights: • Initial Au catalyst layers are prepared using electron beam lithography. • GaAs nanowires are grown on GaAs(111)B using molecular beam epitaxy. • Effect of dose, size and spacing of Au dots on morphology and density is studied. • Density of nanowires is controlled by changing exposed dose on Au catalyst.

  1. High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guiming Zhong

    2018-03-01

    Full Text Available Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx with superior performance through a direct gas fluorination method. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1,073 Wh kg−1 and an excellent power density of 21,460 W kg−1 at a high current density of 10 A g−1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  2. High Density Lipoprotein and it's Dysfunction.

    Science.gov (United States)

    Eren, Esin; Yilmaz, Necat; Aydin, Ozgur

    2012-01-01

    Plasma high-density lipoprotein cholesterol(HDL-C) levels do not predict functionality and composition of high-density lipoprotein(HDL). Traditionally, keeping levels of low-density lipoprotein cholesterol(LDL-C) down and HDL-C up have been the goal of patients to prevent atherosclerosis that can lead to coronary vascular disease(CVD). People think about the HDL present in their cholesterol test, but not about its functional capability. Up to 65% of cardiovascular death cannot be prevented by putative LDL-C lowering agents. It well explains the strong interest in HDL increasing strategies. However, recent studies have questioned the good in using drugs to increase level of HDL. While raising HDL is a theoretically attractive target, the optimal approach remains uncertain. The attention has turned to the quality, rather than the quantity, of HDL-C. An alternative to elevations in HDL involves strategies to enhance HDL functionality. The situation poses an opportunity for clinical chemists to take the lead in the development and validation of such biomarkers. The best known function of HDL is the capacity to promote cellular cholesterol efflux from peripheral cells and deliver cholesterol to the liver for excretion, thereby playing a key role in reverse cholesterol transport (RCT). The functions of HDL that have recently attracted attention include anti-inflammatory and anti-oxidant activities. High antioxidant and anti-inflammatory activities of HDL are associated with protection from CVD.This review addresses the current state of knowledge regarding assays of HDL functions and their relationship to CVD. HDL as a therapeutic target is the new frontier with huge potential for positive public health implications.

  3. A high charge state heavy ion beam source for HIF

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.

    1995-04-01

    A high current low emittance high charge state heavy ion beam source is being developed. This is designed to deliver HIF (heavy ion fusion) driver accelerator scale beam. Using high-charge-state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system which consists of the gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 2D beam envelope simulations and experimental feasibility studies' results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector

  4. High Spectral Density Optical Communication Technologies

    CERN Document Server

    Nakazawa, Masataka; Miyazaki, Tetsuya

    2010-01-01

    The latest hot topics of high-spectral density optical communication systems using digital coherent optical fibre communication technologies are covered by this book. History and meaning of a "renaissance" of the technology, requirements to the Peta-bit/s class "new generation network" are also covered in the first part of this book. The main topics treated are electronic and optical devices, digital signal processing including forward error correction, modulation formats as well as transmission and application systems. The book serves as a reference to researchers and engineers.

  5. Sanitation methods using high energy electron beams

    International Nuclear Information System (INIS)

    Levaillant, C.; Gallien, C.L.

    1979-01-01

    Short recycling of waste water and the use of liquid or dehydrated sludge as natural manure for agriculture or animal supplement feed is of great economical and ecological interest. It implies strong biological and chemical disinfection. Ionizing radiations produced by radioactive elements or linear accelerators can be used as a complement of conventional methods in the treatment of liquid and solid waste. An experiment conducted with high-energy electron-beam linear accelerators is presented. Degradation of undesirable metabolites in water occurs for a dose of 50 kRad. Undesirable seeds present in sludge are destroyed with a 200 kRad dose. A 300 kRad dose is sufficient for parasitic and bacterial disinfection (DL 90). Destruction of polio virus (DL 90) is obtained for 400 kRad. Higher doses (1000 to 2000 kRad) produce mineralization of toxic organic mercury, reduce some chemical toxic pollutants present in sludge and improve flocculation. (author)

  6. First high energy hydrogen cluster beams

    International Nuclear Information System (INIS)

    Gaillard, M.J.; Genre, R.; Hadinger, G.; Martin, J.

    1993-03-01

    The hydrogen cluster accelerator of the Institut de Physique Nucleaire de Lyon (IPN Lyon) has been upgraded by adding a Variable Energy Post-accelerator of RFQ type (VERFQ). This operation has been performed in the frame of a collaboration between KfK Karlsruhe, IAP Frankfurt and IPN Lyon. The facility has been designed to deliver beams of mass selected Hn + clusters, n chosen between 3 and 49, in the energy range 65-100 keV/u. For the first time, hydrogen clusters have been accelerated at energies as high as 2 MeV. This facility opens new fields for experiments which will greatly benefit from a velocity range never available until now for such exotic projectiles. (author) 13 refs.; 1 fig

  7. HFBR handbook, 1992: High flux beam reactor

    International Nuclear Information System (INIS)

    Axe, J.D.; Greenberg, R.

    1992-10-01

    Welcome to the High Flux Beam Reactor (HFBR), one of the world premier neutron research facilities. This manual is intended primarily to acquaint outside users (and new Brookhaven staff members) with (almost) everything they need to know to work at the HFBR and to help make the stay at Brookhaven pleasant as well as profitable. Safety Training Programs to comply with US Department of Energy (DOE) mandates are in progress at BNL. There are several safety training requirements which must be met before users can obtain unescorted access to the HFBR. The Reactor Division has prepared specific safety training manuals which are to be sent to experimenters well in advance of their expected arrival at BNL to conduct experiments. Please familiarize yourself with this material and carefully pay strict attention to all the safety and security procedures that are in force at the HFBR. Not only your safety, but the continued operation of the facility, depends upon compliance

  8. High power electron and ion beam research and technology

    Energy Technology Data Exchange (ETDEWEB)

    Nation, J.A.; Sudan, R.N. (eds.)

    1977-01-01

    Topics covered in volume II include: collective accelerators; microwaves and unneutralized E-beams; technology of high-current E-beam accelerators and laser applications of charged-particle beams. Abstracts of twenty-nine papers from the conference were prepared for the data base in addition to six which appeared previously. (GHT)

  9. Scattered image artifacts from cone beam computed tomography and its clinical potential in bone mineral density estimation.

    Science.gov (United States)

    Ko, Hoon; Jeong, Kwanmoon; Lee, Chang-Hoon; Jun, Hong Young; Jeong, Changwon; Lee, Myeung Su; Nam, Yunyoung; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    Image artifacts affect the quality of medical images and may obscure anatomic structure and pathology. Numerous methods for suppression and correction of scattered image artifacts have been suggested in the past three decades. In this paper, we assessed the feasibility of use of information on scattered artifacts for estimation of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or quantitative computed tomographic imaging (QCT). To investigate the relationship between scattered image artifacts and BMD, we first used a forearm phantom and cone-beam computed tomography. In the phantom, we considered two regions of interest-bone-equivalent solid material containing 50 mg HA per cm(-3) and water-to represent low- and high-density trabecular bone, respectively. We compared the scattered image artifacts in the high-density material with those in the low-density material. The technique was then applied to osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation. The high-density material produced a greater number of scattered image artifacts than the low-density material. Moreover, the radius and ulna of healthy subjects produced a greater number of scattered image artifacts than those from osteoporosis patients. Although other parameters, such as bone thickness and X-ray incidence, should be considered, our technique facilitated BMD estimation directly without DXA or QCT. We believe that BMD estimation based on assessment of scattered image artifacts may benefit the prevention, early treatment and management of osteoporosis.

  10. Characterisation Of The Beam Plasma In High Current, Low Energy Ion Beams For Implanters

    International Nuclear Information System (INIS)

    Fiala, J.; Armour, D. G.; Berg, J. A. van der; Holmes, A. J. T.; Goldberg, R. D.; Collart, E. H. J.

    2006-01-01

    The effective transport of high current, positive ion beams at low energies in ion implanters requires the a high level of space charge compensation. The self-induced or forced introduction of electrons is known to result in the creation of a so-called beam plasma through which the beam propagates. Despite the ability of beams at energies above about 3-5 keV to create their own neutralising plasmas and the development of highly effective, plasma based neutralising systems for low energy beams, very little is known about the nature of beam plasmas and how their characteristics and capabilities depend on beam current, beam energy and beamline pressure. These issues have been addressed in a detailed scanning Langmuir probe study of the plasmas created in beams passing through the post-analysis section of a commercial, high current ion implanter. Combined with Faraday cup measurements of the rate of loss of beam current in the same region due to charge exchange and scattering collisions, the probe data have provided a valuable insight into the nature of the slow ion and electron production and loss processes. Two distinct electron energy distribution functions are observed with electron temperatures ≥ 25 V and around 1 eV. The fast electrons observed must be produced in their energetic state. By studying the properties of the beam plasma as a function of the beam and beamline parameters, information on the ways in which the plasma and the beam interact to reduce beam blow-up and retain a stable plasma has been obtained

  11. High-density hybrid interconnect methodologies

    International Nuclear Information System (INIS)

    John, J.; Zimmermann, L.; Moor, P.De; Hoof, C.Van

    2003-01-01

    Full text: The presentation gives an overview of the state-of-the-art of hybrid integration and in particular the IMEC technological approaches that will be able to address future hybrid detector needs. The dense hybrid flip-chip integration of an array of detectors and its dedicated readout electronics can be achieved with a variety of solderbump techniques such as pure Indium or Indium alloys, Ph-In, Ni/PbSn, but also conducting polymers... Particularly for cooled applications or ultra-high density applications, Indium solderbump technology (electroplated or evaporated) is the method of choice. The state-of-the-art of solderbump technologies that are to a high degree independent of the underlying detector material will be presented and examples of interconnect densities between 5x1E4cm-2 and 1x1E6 cm-2 will be demonstrated. For several classes of detectors, flip-chip integration is not allowed since the detectors have to be illuminated from the top. This applies to image sensors for EUV applications such as GaN/AlGaN based detectors and to MEMS-based sensors. In such cases, the only viable interconnection method has to be through the (thinned) detector wafer followed by a solderbump-based integration. The approaches for dense and ultra-dense through-the-wafer interconnect 'vias' will be presented and wafer thinning approaches will be shown

  12. Plasma Diagnostics in High Density Reactors

    International Nuclear Information System (INIS)

    Daltrini, A. M.; Moshkalyov, S.; Monteiro, M. J. R.; Machida, M.; Kostryukov, A.; Besseler, E.; Biasotto, C.; Diniz, J. A.

    2006-01-01

    Langmuir electric probes and optical emission spectroscopy diagnostics were developed for applications in high density plasmas. These diagnostics were employed in two plasma sources: an electron cyclotron resonance (ECR) plasma and an RF driven inductively coupled plasma (ICP) plasma. Langmuir probes were tested using a number of probing dimensions, probe tip materials, circuits for probe bias and filters. Then, the results were compared with the optical spectroscopy measurements. With these diagnostics, analyses of various plasma processes were performed in both reactors. For example, it has been shown that species like NH radicals generated in gas phase can have critical impact on films deposited by ECR plasmas. In the ICP source, plasmas in atomic and molecular gases were shown to have different spatial distributions, likely due to nonlocal electron heating. The low-to-high density transitions in the ICP plasma were also studied. The role of metastables is shown to be significant in Ar plasmas, in contrast to plasmas with additions of molecular gases

  13. High Energy Density Sciences with High Power Lasers at SACLA

    Science.gov (United States)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  14. Investigation of the silicon ion density during molecular beam epitaxy growth

    Science.gov (United States)

    Eifler, G.; Kasper, E.; Ashurov, Kh.; Morozov, S.

    2002-05-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate between 0 to -1000 V. The dependencies of ion and electron densities were shown and discussed within the framework of a simple model. The charged carrier densities measured with the monitoring system enable to separate the ion part of the substrate current and show its correlation to the generation rate. Comparing the ion density on the whole substrate and in the center gives a hint to the ion beam focusing effect. The maximum ion and electron current densities obtained were 0.40 and 0.61 μA/cm2, respectively.

  15. Initial Results on Neutralized Drift Compression Experiments (NDCX-IA) for High Intensity Ion Beam

    CERN Document Server

    Roy, Prabir K; Baca, David; Bieniosek, Frank; Coleman, Joshua E; Davidson, Ronald C; Efthimion, Philip; Eylon, Shmuel; Gilson, Erik P; Grant Logan, B; Greenway, Wayne; Henestroza, Enrique; Kaganovich, Igor D; Leitner, Matthaeus; Rose, David; Sefkow, Adam; Sharp, William M; Shuman, Derek; Thoma, Carsten H; Vanecek, David; Waldron, William; Welch, Dale; Yu, Simon

    2005-01-01

    Ion beam neutralization and compression experiments are designed to determine the feasibility of using compressed high intensity ion beams for high energy density physics (HEDP) experiments and for inertial fusion power. To quantitatively ascertain the various mechanisms and methods for beam compression, the Neutralized Drift Compression Experiment (NDCX) facility is being constructed at Lawrence Berkeley National Laboratory (LBNL). In the first compression experiment, a 260 KeV, 25 mA, K+ ion beam of centimeters size is radially compressed to a mm size spot by neutralization in a meter-long plasma column and beam peak current is longitudinally compressed by an induction velocity tilt core. Instrumentation, preliminary results of the experiments, and practical limits of compression are presented. These include parameters such as emittance, degree of neutralization, velocity tilt time profile, and accuracy of measurements (fast and spatially high resolution diagnostic) are discussed.

  16. Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns

    Science.gov (United States)

    Ozur, G. E.; Proskurovsky, D. I.

    2018-01-01

    This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.

  17. High Pressure, High Gradient RF Cavities for Muon Beam Cooling

    CERN Document Server

    Johnson, R P

    2004-01-01

    High intensity, low emittance muon beams are needed for new applications such as muon colliders and neutrino factories based on muon storage rings. Ionization cooling, where muon energy is lost in a low-Z absorber and only the longitudinal component is regenerated using RF cavities, is presently the only known cooling technique that is fast enough to be effective in the short muon lifetime. RF cavities filled with high-pressure hydrogen gas bring two advantages to the ionization technique: the energy absorption and energy regeneration happen simultaneously rather than sequentially, and higher RF gradients and better cavity breakdown behavior are possible than in vacuum due to the Paschen effect. These advantages and some disadvantages and risks will be discussed along with a description of the present and desired RF R&D efforts needed to make accelerators and colliders based on muon beams less futuristic.

  18. Visualization and analysis of pulsed ion beam energy density profile with infrared imaging

    Science.gov (United States)

    Isakova, Y. I.; Pushkarev, A. I.

    2018-03-01

    Infrared imaging technique was used as a surface temperature-mapping tool to characterize the energy density distribution of intense pulsed ion beams on a thin metal target. The technique enables the measuring of the total ion beam energy and the energy density distribution along the cross section and allows one to optimize the operation of an ion diode and control target irradiation mode. The diagnostics was tested on the TEMP-4M accelerator at TPU, Tomsk, Russia and on the TEMP-6 accelerator at DUT, Dalian, China. The diagnostics was applied in studies of the dynamics of the target cooling in vacuum after irradiation and in the experiments with target ablation. Errors caused by the target ablation and target cooling during measurements have been analyzed. For Fluke Ti10 and Fluke Ti400 infrared cameras, the technique can achieve surface energy density sensitivity of 0.05 J/cm2 and spatial resolution of 1-2 mm. The thermal imaging diagnostics does not require expensive consumed materials. The measurement time does not exceed 0.1 s; therefore, this diagnostics can be used for the prompt evaluation of the energy density distribution of a pulsed ion beam and during automation of the irradiation process.

  19. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  20. Beam Commissioning of the PEP-II High Energy Ring

    International Nuclear Information System (INIS)

    Wienands, U.; Anderson, S.; Assmann, R.; Bharadwaj, V.; Cai, Y.; Clendenin, J.; Corredoura, P.; Decker, F.J.; Donald, M.; Ecklund, S.; Emma, P.; Erickson, R.; Fox, J.; Fieguth, T.; Fisher, A.; Heifets, S.; Hill, A.; Himel, T.; Iverson, R.; Johnson, R.; Judkins, J.; Krejcik, P.; Kulikov, A.; Lee, M.; Mattison, T.; Minty, M.; Nosochkov, Y.; Phinney, N.; Placidi, M.; Prabhakar, S.; Ross, M.; Smith, S.; Schwarz, H.; Stanek, M.; Teytelman, D.; Traller, R.; Turner, J.; Zimmermann, F.; Barry, W.; Chattopadhyay, S.; Corlett, J.; Decking, W.; Furman, M.; Nishimura, H.; Portmann, G.; Rimmer, R.; Zholents, A.; Zisman, M.; Kozanecki, W.; Hofmann, A.; Zotter, B.; Steier, C.; Bialowons, W.; Lomperski, M.; Lumpkin, A.; Reichel, I.; Safranek, J.; Smith, V.; Tighe, R.; Sullivan, M.; Byrd, J.; Li, D.

    1998-01-01

    The PEP-II High Energy Ring (HER), a 9 GeV electron storage ring, has been in commissioning since spring 1997. Initial beam commissioning activities focused on systems checkout and commissioning and on determining the behavior of the machine systems at high beam currents. This phase culminated with the accumulation of 0.75 A of stored beam-sufficient to achieve design luminosity--in January 1998 after 3.5 months of beam time. Collisions with the 3 GeV positron beam of the Low Energy Ring (LER) were achieved in Summer of 1998. At high beam currents, collective instabilities have been seen. Since then, commissioning activities for the HER have shifted in focus towards characterization of the machine and a rigorous program to understand the machine and the beam dynamics is presently underway

  1. Beams '96. Proceedings of the 11th international conference on high power particle beams. Vol. I

    International Nuclear Information System (INIS)

    Jungwirth, K.; Ullschmied, J.

    1996-01-01

    The Proceedings contain the full texts of 60 orals and 243 poster papers presented at the Conference. The scientific programme of the conference covered the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: electron beams, beam-plasma systems, high-power microwaves (62), imploding liners, z-pinches, plasma foci (53), pulsed power technology and its applications (53), ion beams and ICF (41), industrial applications of electron and ion beams (36), radiation sources (23), diagnostics (14), and others (21). (J.U.)

  2. Beams `96. Proceedings of the 11th international conference on high power particle beams. Vol. I

    Energy Technology Data Exchange (ETDEWEB)

    Jungwirth, K.; Ullschmied, J. [eds.

    1997-12-31

    The Proceedings contain the full texts of 60 orals and 243 poster papers presented at the Conference. The scientific programme of the conference covered the physics and technology of intense beams of charged particles, from basic experimental and theoretical problems of beam generation, transport and interaction with various media, up to beam and pulsed power applications in science and in industry. The breakdown of the papers by main topical groups is as follows: electron beams, beam-plasma systems, high-power microwaves (62), imploding liners, z-pinches, plasma foci (53), pulsed power technology and its applications (53), ion beams and ICF (41), industrial applications of electron and ion beams (36), radiation sources (23), diagnostics (14), and others (21). (J.U.).

  3. Highly coalesced quantum beam science (1)

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro

    2014-01-01

    The construction of the large-scale facilities of quantum beam is under way in our country, and these are the facilities to use specific quantum beam individually. For this reason, only limited information brought about from the specific intrinsic performance that the beam has can be obtained. To understand the function and structure of a target substance, it is required to integrate various types of complementary information obtainable from each quantum beam. In FY2009, a leading research and development committee on 'quantum beam integration research' was established in Japan Study for the Promotion of Science, and the establishment of a new technology to integrate quantum beams and the creation of a new research region developed from this integration were examined. This committee defined the new academic research region as 'quantum beam integration science' and examined various fields of the new research region. This paper takes out a material science field among them, and tries the systematization of the new academic research region related to the scientific research on quantum beam integration advanced materials by promoting the following: (1) search for the needs for material science research, (2) examination of integration facilities capable of corresponding to the research needs, and (3) basic integration research for the above. (A.O.)

  4. 650 mm long liquid hydrogen target for use in a high intensity electron beam

    International Nuclear Information System (INIS)

    Mark, J.W.

    1983-07-01

    This paper describes a 650 mm long liquid hydrogen target constructed for use in the high intensity electron beam at the Stanford Linear Accelerator Center. The main design problem was to construct a target that would permit the heat deposited by the electron beam to be removed rapidly without boiling the hydrogen so as to maintain constant target density for optimum data taking. Design requirements, construction details and operating experience are discussed

  5. High density high-TC ceramic superconductors by hot pressing

    International Nuclear Information System (INIS)

    Mak, S.; Chaklader, A.C.D.

    1989-01-01

    High density and high T C superconductor specimens, YBa 2 Cu 3 O x , have been produced by hot-pressing. The factors studied are the effect of hot pressing on the density, the oxygen stoichiometry, the crystal structure, and the critical temperature. Hot pressing followed by heat treatment increased the density of the specimen to 93%. The hot pressing itself did not significantly affect the oxygen content in the specimen, and although the crystal structure appeared to be orthorhombic, the specimens were not superconducting above liquid nitrogen temperature. The superconductivity was restored after head treatment in oxygen. The highest critical temperature (T C ) of the hot pressed pellets was 82K, which was slightly lower than the T C that could be obtained with the cold pressed/sintered pellets. (6 refs., 5 figs., tab.)

  6. Neutralized drift compression experiments with a high-intensity ion beam

    International Nuclear Information System (INIS)

    Roy, P.K.; Yu, S.S.; Waldron, W.L.; Anders, A.; Baca, D.; Barnard, J.J.; Bieniosek, F.M.; Coleman, J.; Davidson, R.C.; Efthimion, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Greenway, W.G.; Henestroza, E.; Kaganovich, I.; Leitner, M.; Logan, B.G.; Sefkow, A.B.; Seidl, P.A.; Sharp, W.M.; Thoma, C.; Welch, D.R.

    2007-01-01

    To create high-energy density matter and fusion conditions, high-power drivers, such as lasers, ion beams, and X-ray drivers, may be employed to heat targets with short pulses compared to hydro-motion. Both high-energy density physics and ion-driven inertial fusion require the simultaneous transverse and longitudinal compression of an ion beam to achieve high intensities. We have previously studied the effects of plasma neutralization for transverse beam compression. The scaled experiment, the Neutralized Transport Experiment (NTX), demonstrated that an initially un-neutralized beam can be compressed transversely to ∼1 mm radius when charge neutralization by background plasma electrons is provided. Here, we report longitudinal compression of a velocity-tailored, intense, neutralized 25 mA K + beam at 300 keV. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhances the beam peak current by a factor of 50 and produces a pulse duration of about 3 ns. The physics of longitudinal compression, experimental procedure, and the results of the compression experiments are presented

  7. Neutron shielding properties of a borated high-density glass

    Directory of Open Access Journals (Sweden)

    Saeed Aly Abdallah

    2017-01-01

    Full Text Available The neutron shielding properties of a borated high density glass system was characterized experimentally. The total removal macroscopic cross-section of fast neutrons, slow neutrons as well as the linear attenuation coefficient of total gamma rays, primary in addition to secondary, were measured experimentally under good geometric condition to characterize the attenuation properties of (75-x B2O3-1Li2O-5MgO-5ZnO-14Na2O-xBaO glassy system. Slabs of different thicknesses from the investigated glass system were exposed to a collimated beam of neutrons emitted from 252Cf and 241Am-Be neutron sources in order to measure the attenuation properties of fast and slow neutrons as well as total gamma rays. Results confirmed that barium borate glass was suitable for practical use in the field of radiation shielding.

  8. Edge electron density profiles and fluctuations measured by two-dimensional beam emission spectroscopy in the KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Y. U., E-mail: yunam@nfri.re.kr; Wi, H. M. [National Fusion Research Institute, Daejeon (Korea, Republic of); Zoletnik, S.; Lampert, M. [Wigner RCP Institute for Particle and Nuclear Physics, Budapest (Hungary); Kovácsik, Ákos [Institute of Nuclear Techniques, Budapest Technical University, Budapest (Hungary)

    2014-11-15

    Beam emission spectroscopy (BES) system in Korea Superconducting Tokamak Advanced Research (KSTAR) has recently been upgraded. The background intensity was reduced from 30% to 2% by suppressing the stray lights. This allows acquisition of the relative electron density profiles on the plasma edge without background subtraction from the beam power modulation signals. The KSTAR BES system has its spatial resolution of 1 cm, the temporal resolution of 2 MHz, and a total 32 channel (8 radial × 4 poloidal) avalanche photo diode array. Most measurements were done on the plasma edge, r/a ∼ 0.9, with 8 cm radial measurement width that covers the pedestal range. High speed density profile measurements reveal temporal behaviors of fast transient events, such as the precursors of edge localized modes and the transitions between confinement modes. Low background level also allows analysis of the edge density fluctuation patterns with reduced background fluctuations. Propagation of the density structures can be investigated by comparing the phase delays between the spatially distributed channels.

  9. Controlling the Laser Guide Star power density distribution at Sodium layer by combining Pre-correction and Beam-shaping

    Science.gov (United States)

    Huang, Jian; Wei, Kai; Jin, Kai; Li, Min; Zhang, YuDong

    2018-06-01

    The Sodium laser guide star (LGS) plays a key role in modern astronomical Adaptive Optics Systems (AOSs). The spot size and photon return of the Sodium LGS depend strongly on the laser power density distribution at the Sodium layer and thus affect the performance of the AOS. The power density distribution is degraded by turbulence in the uplink path, launch system aberrations, the beam quality of the laser, and so forth. Even without any aberrations, the TE00 Gaussian type is still not the optimal power density distribution to obtain the best balance between the measurement error and temporal error. To optimize and control the LGS power density distribution at the Sodium layer to an expected distribution type, a method that combines pre-correction and beam-shaping is proposed. A typical result shows that under strong turbulence (Fried parameter (r0) of 5 cm) and for a quasi-continuous wave Sodium laser (power (P) of 15 W), in the best case, our method can effectively optimize the distribution from the Gaussian type to the "top-hat" type and enhance the photon return flux of the Sodium LGS; at the same time, the total error of the AOS is decreased by 36% with our technique for a high power laser and poor seeing.

  10. Interaction of an intense relativistic electron beam with full density air

    International Nuclear Information System (INIS)

    Murphy, D.P.; Pechacek, R.E.; Raleigh, M.; Oliphant, W.F.; Meger, R.A.

    1987-01-01

    The authors report on a study of plasma generation by direct deposition of energy from an intense relativistic electron beam (REB) into full density air. It has been postulated that a sufficiently intense REB can fully ionize the air and produce a 2 eV plasma with Spitzer conductivity. The REB is produced from a field emission diode driven by either the Gamble I or Gamble II generator. Gamble I can produce a 0.60 MV, 300 kA, 50 ns REB and Gamble II can produce a 2.0 MV, 1.0 MA, 50 ns REB. The REB was injected into a short diagnostic cell containing full density air and up to a 14 kG solenoidal magnetic field. The diagnostics include beam and net current measurements, x-ray and visible photography and visible light spectroscopy

  11. Nanotechnology for Synthetic High Density Lipoproteins

    Science.gov (United States)

    Luthi, Andrea J.; Patel, Pinal C.; Ko, Caroline H.; Mutharasan, R. Kannan; Mirkin, Chad A.; Thaxton, C. Shad

    2014-01-01

    Atherosclerosis is the disease mechanism responsible for coronary heart disease (CHD), the leading cause of death worldwide. One strategy to combat atherosclerosis is to increase the amount of circulating high density lipoproteins (HDL), which transport cholesterol from peripheral tissues to the liver for excretion. The process, known as reverse cholesterol transport, is thought to be one of the main reasons for the significant inverse correlation observed between HDL blood levels and the development of CHD. This article highlights the most common strategies for treating atherosclerosis using HDL. We further detail potential treatment opportunities that utilize nanotechnology to increase the amount of HDL in circulation. The synthesis of biomimetic HDL nanostructures that replicate the chemical and physical properties of natural HDL provides novel materials for investigating the structure-function relationships of HDL and for potential new therapeutics to combat CHD. PMID:21087901

  12. Ground state of high-density matter

    Science.gov (United States)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  13. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  14. Designing and Building a Collimation System for the High-Intensity LHC Beam

    CERN Document Server

    Assmann, R W; Baishev, I S; Bruno, L; Brugger, M; Chiaveri, Enrico; Dehning, Bernd; Ferrari, A; Goddard, B; Jeanneret, J B; Jiménez, M; Kain, V; Kaltchev, D I; Lamont, M; Ruggiero, F; Schmidt, R; Sievers, P; Uythoven, J; Vlachoudis, V; Vos, L; Wenninger, J

    2003-01-01

    The Large Hadron Collider (LHC) will collide proton beams at 14 TeV c.m. with unprecedented stored intensities. The transverse energy density in the beam will be about three orders of magnitude larger than previously handled in the Tevatron or in HERA, if compared at the locations of the betatron collimators. In particular, the population in the beam halo is much above the quench level of the superconducting magnets. Two LHC insertions are dedicated to collimation with the design goals of preventing magnet quenches in regular operation and preventing damage to accelerator components in case of irregular beam loss. We discuss the challenges for designing and building a collimation system that withstands the high power LHC beam and provides the required high cleaning efficiency. Plans for future work are outlined.

  15. Density peaking in the JFT-2M tokamak plasma with counter neutral beam injection

    International Nuclear Information System (INIS)

    Ida, K.; Itoh, S.; Itoh, K.

    1991-05-01

    A significant particle pinch and reduction of the effective thermal diffusivity are observed after switching the neutral beam direction from co- to counter- injection in the JFT-2M tokamak. A time delay in the occurrence of density peaking to that of plasma rotation is found. This shows that the particle pinch is related to the profile of the electric field as determined by the plasma rotation profile. The measured particle flux shows qualitative agreement with the theoretically-predicted inward pinch. (author)

  16. Anomalous evolution of Ar metastable density with electron density in high density Ar discharge

    International Nuclear Information System (INIS)

    Park, Min; Chang, Hong-Young; You, Shin-Jae; Kim, Jung-Hyung; Shin, Yong-Hyeon

    2011-01-01

    Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. On the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.

  17. Thermal, mechanical and fluid flow aspects of the high power beam dump for FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Avilov, Mikhail [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Aaron, Adam [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Amroussia, Aida [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Bergez, Wladimir [Institut de Mecanique des Fluides de Toulouse, Toulouse University, CNRS, Allée Camille Soula, 31400 Toulouse (France); Boehlert, Carl [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Burgess, Thomas; Carroll, Adam [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Colin, Catherine [Institut de Mecanique des Fluides de Toulouse, Toulouse University, CNRS, Allée Camille Soula, 31400 Toulouse (France); Durantel, Florent [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Ferrante, Paride; Fourmeau, Tiffany [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Graves, Van [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Grygiel, Clara [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Kramer, Jacob [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Mittig, Wolfgang [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Monnet, Isabelle [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Patel, Harsh [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); and others

    2016-06-01

    The Facility for Rare Isotope Beams (FRIB) under construction at Michigan State University is based on a 400 kW heavy ion accelerator and uses in-flight production and separation to generate rare isotope beams. The first section of the fragment separator houses the rare isotope production target, and the primary beam dump to stop the unreacted primary beam. The experimental program will use 400 kW ion beams from {sup 16}O to {sup 238}U. After interaction with the production target, over 300 kW in remaining beam power must be absorbed by the beam dump. A rotating water-cooled thin-shell metal drum was chosen as the basic concept for the beam dump. Extensive thermal, mechanical and fluid flow analyses were performed to evaluate the effects of the high power density in the beam dump shell and in the water. Many properties were optimized simultaneously, such as shell temperature, mechanical strength, fatigue strength, and radiation resistance. Results of the analyses of the beam dump performance with different design options will be discussed. For example, it was found that a design modification to the initial water flow pattern resulted in a substantial increase in the wall heat transfer coefficient. A detailed evaluation of materials for the shell is in progress. The widely used titanium alloy, Ti–6Al–4V (wt%), is presently considered as the best candidate, and is the subject of specific tests, such as studies of performance under heavy ion irradiation.

  18. Study of a high power hydrogen beam diagnostic based on secondary electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Department of Management and Engineering, University di Padova strad. S. Nicola 3, 36100 Vicenza (Italy); Panasenkov, A. [NRC, Kurchatov Institute, 1, Kurchatov Sq, Moscow 123182 (Russian Federation); Veltri, P. [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); INFN-LNL, viale dell’Università n. 2, 35020 Legnaro (Italy); Serianni, G.; Pasqualotto, R. [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-11-15

    In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.

  19. Relationships between cone beam CT value and physical density in image guided radiation therapy

    International Nuclear Information System (INIS)

    Jiang Xiaoqin; Bai Sen; Zhong Renming; Tang Zhiquan; Jiang Qinfeng; Li Tao

    2007-01-01

    Objective: To evaluate the main factors affecting the relationship between physical density and CT value in cone-beam computed tomography(CBCT) for imaging guided radiation therapy(IGRT) by comparing the CT value in the image from cone-beam scanner and from fan-beam (FBCT) scanner of a reference phantom. Methods: A taking-park reference phantom with a set of tissue equivalent inserts was scanned at different energies different fields of view (FOV) for IGRT-CBCT and FBCT. The CT value of every insert was measured and compared. Results: The position of inserts in phantom, the size of phantom, the FOV of scanner and different energies had more effect on the relationships between physical density and the CT value from IGRT-CBCT than those from the normal FBCT. The higher the energy was, the less effect of the position of inserts in phantom, the size of phantom and the FOV of scanner on CT value, and the poorer density contrast was observed. Conclusion: At present, the CT value of IGRT-CBCT is not in the true HU value since the manufacturer has not corrected its number. Therefore, we are not able to use the CT value of CBCT for dose calculation in TPS. (authors)

  20. Plasma focusing and diagnosis of high energy particle beams

    International Nuclear Information System (INIS)

    Chen, Pisin.

    1990-09-01

    Various novel concepts of focusing and diagnosis of high energy charged particle beams, based on the interaction between the relativistic particle beam and the plasma, are reviewed. This includes overdense thin plasma lenses, and (underdense) adiabatic plasma lens, and two beam size monitor concepts. In addition, we introduce another mechanism for measuring flat beams based on the impulse received by heavy ions in an underdense plasma. Theoretical investigations show promise of focusing and diagnosing beams down to sizes where conventional methods are not possible to provide. 21 refs

  1. High resolving power spectrometer for beam analysis

    International Nuclear Information System (INIS)

    Moshammer, H.W.; Spencer, J.E.

    1992-03-01

    We describe a system designed to analyze the high energy, closely spaced bunches from individual RF pulses. Neither a large solid angle nor momentum range is required so this allows characteristics that appear useful for other applications such as ion beam lithography. The spectrometer is a compact, double-focusing QBQ design whose symmetry allows the Quads to range between F or D with a correspondingly large range of magnifications, dispersion and resolving power. This flexibility insures the possibility of spatially separating all of the bunches along the focal plane with minimal transverse kicks and bending angle for differing input conditions. The symmetry of the system allows a simple geometric interpretationof the resolving power in terms of thin lenses and ray optics. We discuss the optics and the hardware that is proposed to measure emittance, energy, energy spread and bunch length for each bunch in an RF pulse train for small bunch separations. We also discuss how to use such measurements for feedback and feedforward control of these bunch characteristics as well as maintain their stability. 2 refs

  2. Development of high intensity beam handling system, 4

    International Nuclear Information System (INIS)

    Yamanoi, Yutaka; Tanaka, Kazuhiro; Minakawa, Michifumi

    1992-01-01

    We have constructed the new counter experimental hall at the KEK 12 GeV Proton Synchrotron (KEK-PS) in order to handle high intensity primary proton beams of up to 1x10 3 pps (protons per second), which is one order of magnitude greater than the present beam intensity of the KEK-PS, 1x10 12 pps. New technologies for handling high-intensity beams have, then, been developed and employed in the construction of the new hall. A part of our R/D work on handling high intensity beams will be reported. (author)

  3. A high average power beam dump for an electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianghong, E-mail: xl66@cornell.edu [Cornell Laboratory of Accelerator-based Sciences and Education, Cornell University, Ithaca, NY 14853 (United States); Bazarov, Ivan; Dunham, Bruce M.; Kostroun, Vaclav O.; Li, Yulin; Smolenski, Karl W. [Cornell Laboratory of Accelerator-based Sciences and Education, Cornell University, Ithaca, NY 14853 (United States)

    2013-05-01

    The electron beam dump for Cornell University's Energy Recovery Linac (ERL) prototype injector was designed and manufactured to absorb 600 kW of electron beam power at beam energies between 5 and 15 MeV. It is constructed from an aluminum alloy using a cylindrical/conical geometry, with water cooling channels between an inner vacuum chamber and an outer jacket. The electron beam is defocused and its centroid is rastered around the axis of the dump to dilute the power density. A flexible joint connects the inner body and the outer jacket to minimize thermal stress. A quadrant detector at the entrance to the dump monitors the electron beam position and rastering. Electron scattering calculations, thermal and thermomechanical stress analysis, and radiation calculations are presented.

  4. Density Transition Based Self-Focusing of cosh-Gaussian Laser Beam in Plasma with Linear Absorption

    International Nuclear Information System (INIS)

    Kant, Niti; Wani, Manzoor Ahmad

    2015-01-01

    Density transition based self-focusing of cosh-Gaussian laser beam in plasma with linear absorption has been studied. The field distribution in the plasma is expressed in terms of beam width parameter, decentered parameter, and linear absorption coefficient. The differential equation for the beam width parameter is solved by following Wentzel–Kramers–Brillouin (WKB) and paraxial approximation through parabolic wave equation approach. The behaviour of beam width parameter with dimensionless distance of propagation is studied at optimum values of plasma density, decentered parameter and with different absorption levels in the medium. The results reveal that these parameters can affect the self-focusing significantly. (paper)

  5. A modified space charge routine for high intensity bunched beams

    International Nuclear Information System (INIS)

    Lapostolle, P.; Lombardi, A.M.; Tanke, E.; Valero, S.; Garnett, R.W.; Wangler, T.P.

    1996-01-01

    A new routine and a computer code (DYNAC) for the calculation of space charge densities in a new generation of linear accelerators for various industrial applications is presented. The new beam dynamics method used in this code, employs a set of quasi-Liouvillian equations, allowing beam dynamics computations in long and complex structures for electrons, as well as protons and ions. With this new beam dynamics method, the coordinates of particles are known at any position in the accelerating elements, allowing multistep space charge calculations. (K.A.)

  6. Orbital angular momentum of a high-order Bessel light beam

    International Nuclear Information System (INIS)

    Volke-Sepulveda, K; Garces-Chavez, V; Chavez-Cerda, S; Arlt, J; Dholakia, K

    2002-01-01

    The orbital angular momentum density of Bessel beams is calculated explicitly within a rigorous vectorial treatment. This allows us to investigate some aspects that have not been analysed previously, such as the angular momentum content of azimuthally and radially polarized beams. Furthermore, we demonstrate experimentally the mechanical transfer of orbital angular momentum to trapped particles in optical tweezers using a high-order Bessel beam. We set transparent particles of known dimensions into rotation, where the sense of rotation can be reversed by changing the sign of the singularity. Quantitative results are obtained for rotation rates. This paper's animations are available from the Multimedia Enhancements page

  7. Three-dimensional propagation and absorption of high frequency Gaussian beams in magnetoactive plasmas

    International Nuclear Information System (INIS)

    Nowak, S.; Orefice, A.

    1994-01-01

    In today's high frequency systems employed for plasma diagnostics, power heating, and current drive the behavior of the wave beams is appreciably affected by the self-diffraction phenomena due to their narrow collimation. In the present article the three-dimensional propagation of Gaussian beams in inhomogeneous and anisotropic media is analyzed, starting from a properly formulated dispersion relation. Particular attention is paid, in the case of electromagnetic electron cyclotron (EC) waves, to the toroidal geometry characterizing tokamak plasmas, to the power density evolution on the advancing wave fronts, and to the absorption features occurring when a beam crosses an EC resonant layer

  8. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  9. Corrosion measurements on apt prototypic materials in the Lansce high-power proton beam and applicability to other systems

    International Nuclear Information System (INIS)

    Lillard, R.S.; Gac, F.D.; James, M.R.; Maloy, S.A.; Paciotti, M.A.; Waters, L.S.; Willcutt, G.J.; Chandler, G.T.; Ferguson, P.D.

    2003-01-01

    The corrosion rates of several corrosion resistant materials behave in a similar manner even under the intense radiation of the LANSCE high-power beam. A second observation was made, showing that the corrosion rates saturated under high instantaneous radiation intensity in corrosion experiments conducted for the accelerator production of tritium (APT) programme. The LANSCE H + beam is not prototypic of the proposed APT production plant in several respects. The instantaneous proton flux in the APT production plant beam is about 10 times that of the LANSCE beam. The small transverse APT beam spot is rastered to spread the power density over the area of the target, and as the beam rasters, it creates a pulsed character to the beam at a specific location. In order to develop correlations that would enable extrapolation of the corrosion data to the proposed APT production plant, the experimental programme included measurements over a range of average beam currents, measurements at high and low instantaneous beam current, and measurements at various combinations of pulse width and repetition rate. The correlations that were developed are based on an approximately linear dependence of corrosion rate on average beam current (average radiation intensity) and the saturation effect observed at high instantaneous radiation intensity. For a given transverse beam profile and for the same average beam current, the correlations predict the highest corrosion rate in a do beam and the lowest corrosion rate in the lowest duty cycle beams. In the case of the APT extrapolation, the predicted corrosion rates were a factor of 5 lower than for a do beam depositing the same average power density. The measured corrosion rates and the formulated extrapolations are applicable to water-cooled targets and components in proton beams. (authors)

  10. Anticorrelated Emission of High Harmonics and Fast Electron Beams From Plasma Mirrors.

    Science.gov (United States)

    Bocoum, Maïmouna; Thévenet, Maxence; Böhle, Frederik; Beaurepaire, Benoît; Vernier, Aline; Jullien, Aurélie; Faure, Jérôme; Lopez-Martens, Rodrigo

    2016-05-06

    We report for the first time on the anticorrelated emission of high-order harmonics and energetic electron beams from a solid-density plasma with a sharp vacuum interface-plasma mirror-driven by an intense ultrashort laser pulse. We highlight the key role played by the nanoscale structure of the plasma surface during the interaction by measuring the spatial and spectral properties of harmonics and electron beams emitted by a plasma mirror. We show that the nanoscale behavior of the plasma mirror can be controlled by tuning the scale length of the electron density gradient, which is measured in situ using spatial-domain interferometry.

  11. Applications of high energy neutralized ion beams to a compact torus

    International Nuclear Information System (INIS)

    Rostoker, N.; Katzenstein, J.

    1986-01-01

    Pulsed ion beams can be produced with ion diodes and Marx generators. The technology exists to produce high energy beams efficiently. A neutralized ion beam has an equal number of co-moving electrons. The resultant beam is electrically neutral, has no net current and can be transported across a magnetic field if the current density is sufficiently large. Preliminary experimental results have been obtained on injecting a neutralized proton beam into a small tokamak. To illuminate the physical processes involved in injection and trapping an experiment has been designed for TEXT. Possible applications to a compact torus include plasma heating, current maintenance and non-equilibrium reactors that do not require ignition. Each application is discussed and comparisons are made with other methods. (author)

  12. A modified space charge routine for high intensity bunched beams

    International Nuclear Information System (INIS)

    Lapostolle, P.; Garnett, R.W.; Wangler, T.P.

    1996-01-01

    In 1991 a space charge calculation for bunched beam with a three-dimensional ellipsoid was proposed, replacing the usual SCHEFF routines. It removes the cylindrical symmetry required in SCHEFF and avoids the point to point interaction computation, whose number of simulation points is limited. This routine has now been improved with the introduction of two or three ellipsoids giving a good representation of the complex non-symmetrical form of the bunch (unlike the 3-d ellipsoidal assumption). The ellipsoidal density distributions are computed with a new method, avoiding the difficulty encountered near the centre (the axis in 2-d problems) by the previous method. It also provides a check of the ellipsoidal symmetry for each part of the distribution. Finally, the Fourier analysis reported in 1991 has been replaced by a very convenient Hermite expansion, which gives a simple but accurate representation of practical distributions. Comparisons with other space charge routines have been made, particularly with the ones applying other techniques such as SCHEFF. Introduced in the versatile beam dynamics code DYNAC, it should provide a good tool for the study of the various parameters responsible for the halo formation in high intensity linacs. (orig.)

  13. Radiation dosimetry at the BNL High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Holden, N.E.; Hu, J.P.; Reciniello, R.N.

    1998-02-01

    The HFBR is a heavy water, D 2 O, cooled and moderated reactor with twenty-eight fuel elements containing a maximum of 9.8 kilograms of 235 U. The core is 53 cm high and 48 cm in diameter and has an active volume of 97 liters. The HFBR, which was designed to operate at forty mega-watts, 40 NW, was upgraded to operate at 60 NW. Since 1991, it has operated at 30 MW. In a normal 30 MW operating cycle the HFBR operates 24 hours a day for thirty days, with a six to fourteen day shutdown period for refueling and maintenance work. While most reactors attempts to minimize the escape of neutrons from the core, the HFBR's D 2 O design allows the thermal neutron flux to peak in the reflector region and maximizes the number of thermal neutrons available to nine horizontal external beams, H-1 to H-9. The HFBR neutron dosimetry effort described here compares measured and calculated energy dependent neutron and gamma ray flux densities and/or dose rates at horizontal beam lines and vertical irradiation thimbles

  14. High-density InAs/GaAs{sub 1−x}Sb{sub x} quantum-dot structures grown by molecular beam epitaxy for use in intermediate band solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, M. C., E-mail: mdebnath@cnsi.ucla.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019 (United States); California NanoSystems Institute and Electrical Engineering Department, University of California-Los Angeles (UCLA), Los Angeles, California 90095 (United States); Mishima, T. D.; Santos, M. B.; Cheng, Y.; Whiteside, V. R.; Sellers, I. R. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019 (United States); Hossain, K. [Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); Laghumavarapu, R. B.; Liang, B. L.; Huffaker, D. L. [California NanoSystems Institute and Electrical Engineering Department, University of California-Los Angeles (UCLA), Los Angeles, California 90095 (United States)

    2016-03-21

    InAs quantum-dot structures were grown using a GaAs{sub 1−x}Sb{sub x} matrix on a GaAs(001) substrate. The use of GaAs{sub 1−x}Sb{sub x} for the buffer and cap layers effectively suppressed coalescence between dots and significantly increased the dot density. The highest density (∼3.5 × 10{sup 11}/cm{sup 2}) was obtained for a nominal 3.0 monolayer deposition of InAs with an Sb composition of x = 13–14% in the GaAs{sub 1−x}Sb{sub x} matrix. When the Sb composition was increased to 18%, the resulting large photoluminescent red shift (∼90 meV) indicated the release of compressive strain inside the quantum dots. For x > 13%, we observed a significant decrease in photoluminescence intensity and an increase in the carrier lifetime (≥4.0 ns). This is attributed to the type-II band alignment between the quantum dots and matrix material.

  15. Progress in Electron Beam Mastering of 100 Gbit/inch2 Density Disc

    Science.gov (United States)

    Takeda, Minoru; Furuki, Motohiro; Yamamoto, Masanobu; Shinoda, Masataka; Saito, Kimihiro; Aki, Yuichi; Kawase, Hiroshi; Koizumi, Mitsuru; Miyokawa, Toshiaki; Mutou, Masao; Handa, Nobuo

    2004-07-01

    We developed an electron beam recorder (EBR) capable of recording master discs under atmospheric conditions using a novel differential pumping head. Using the EBR and optimized fabrication process for Si-etched discs with reactive ion etching (RIE), a bottom signal jitter of 9.6% was obtained from a 36 Gbit/inch2 density disc, readout using a near-field optical pickup with an effective numerical aperture (NA) of 1.85 and a wavelength of 405 nm. We also obtained the eye patterns from a 70 Gbit/inch2 density disc readout using an optical pickup with a 2.05 NA and the same wavelength, and showed almost the same modulation ratio as the simulation value. Moreover, the capability of producing pit patterns corresponding to a 104 Gbit/inch2 density is demonstrated.

  16. Highly efficient red electrophosphorescent devices at high current densities

    International Nuclear Information System (INIS)

    Wu Youzhi; Zhu Wenqing; Zheng Xinyou; Sun, Runguang; Jiang Xueyin; Zhang Zhilin; Xu Shaohong

    2007-01-01

    Efficiency decrease at high current densities in red electrophosphorescent devices is drastically restrained compared with that from conventional electrophosphorescent devices by using bis(2-methyl-8-quinolinato)4-phenylphenolate aluminum (BAlq) as a hole and exciton blocker. Ir complex, bis(2-(2'-benzo[4,5-α]thienyl) pyridinato-N,C 3' ) iridium (acetyl-acetonate) is used as an emitter, maximum external quantum efficiency (QE) of 7.0% and luminance of 10000cd/m 2 are obtained. The QE is still as high as 4.1% at higher current density J=100mA/cm 2 . CIE-1931 co-ordinates are 0.672, 0.321. A carrier trapping mechanism is revealed to dominate in the process of electroluminescence

  17. High-density oxidized porous silicon

    International Nuclear Information System (INIS)

    Gharbi, Ahmed; Souifi, Abdelkader; Remaki, Boudjemaa; Halimaoui, Aomar; Bensahel, Daniel

    2012-01-01

    We have studied oxidized porous silicon (OPS) properties using Fourier transform infraRed (FTIR) spectroscopy and capacitance–voltage C–V measurements. We report the first experimental determination of the optimum porosity allowing the elaboration of high-density OPS insulators. This is an important contribution to the research of thick integrated electrical insulators on porous silicon based on an optimized process ensuring dielectric quality (complete oxidation) and mechanical and chemical reliability (no residual pores or silicon crystallites). Through the measurement of the refractive indexes of the porous silicon (PS) layer before and after oxidation, one can determine the structural composition of the OPS material in silicon, air and silica. We have experimentally demonstrated that a porosity approaching 56% of the as-prepared PS layer is required to ensure a complete oxidation of PS without residual silicon crystallites and with minimum porosity. The effective dielectric constant values of OPS materials determined from capacitance–voltage C–V measurements are discussed and compared to FTIR results predictions. (paper)

  18. High-energy beams of radioactive nuclei and their biomedical applications

    International Nuclear Information System (INIS)

    Alpen, E.L.; Chatterjee, A.; Llacer, J.

    1981-01-01

    Several exploratory measurements have been conducted with radioactive beams to test the feasibility of using these beams to measure effective stopping power of heterogeneous media for heavy charged particles. Such measurements will provide direct information on the average electron density and average stopping number of a target with an unknown heterogeneous beam path. This information, once obtained with a suitable radioactive beam, can be used in equations to calculate the energy of any heavy particle of therapeutic choice so that the Bragg peak of the therapeutic beam can be placed on the tumor volume. A beam of high-energy heavy ions was collimated to a diameter of 1.58 cm (PEBA has a good positional accuracy as long as the beam diameter is less than 2 cm), and made to enter target materials (mixed or homogeneous) positioned between the detector banks and centered along the beam axis. Measurements have been made with 11 C and 19 Ne beams, but the short half-life of 19 Ne (19 sec) allows prompt repeated measurements, making that nucleus very interesting for these purposes. Only the results obtained with it are reported

  19. Generation of highly collimated high-current ion beams by skin-layer laser-plasma interaction at relativistic laser intensities

    International Nuclear Information System (INIS)

    Badziak, J.; Jablonski, S.; Glowacz, S.

    2006-01-01

    Generation of fast ion beams by laser-induced skin-layer ponderomotive acceleration has been studied using a two-dimensional (2D) two-fluid relativistic computer code. It is shown that the key parameter determining the spatial structure and angular divergence of the ion beam is the ratio d L /L n , where d L is the laser beam diameter and L n is the plasma density gradient scale length. When d L >>L n , a dense highly collimated megaampere ion (proton) beam of the ion current density approaching TA/cm 2 can be generated by skin-layer ponderomotive acceleration, even with a tabletop subpicosecond laser

  20. Relativistic self-focusing of intense laser beam in thermal collisionless quantum plasma with ramped density profile

    Directory of Open Access Journals (Sweden)

    S. Zare

    2015-04-01

    Full Text Available Propagation of a Gaussian x-ray laser beam has been analyzed in collisionless thermal quantum plasma with considering a ramped density profile. In this density profile due to the increase in the plasma density, an earlier and stronger self-focusing effect is noticed where the beam width oscillates with higher frequency and less amplitude. Moreover, the effect of the density profile slope and the initial plasma density on the laser propagation has been studied. It is found that, by increasing the initial density and the ramp slope, the laser beam focuses faster with less oscillation amplitude, smaller laser spot size and more oscillations. Furthermore, a comparison is made among the laser self-focusing in thermal quantum plasma, cold quantum plasma and classical plasma. It is realized that the laser self-focusing in the quantum plasma becomes stronger in comparison with the classical regime.

  1. Density measurements of small amounts of high-density solids by a floatation method

    International Nuclear Information System (INIS)

    Akabori, Mitsuo; Shiba, Koreyuki

    1984-09-01

    A floatation method for determining the density of small amounts of high-density solids is described. The use of a float combined with an appropriate floatation liquid allows us to measure the density of high-density substances in small amounts. Using the sample of 0.1 g in weight, the floatation liquid of 3.0 g cm -3 in density and the float of 1.5 g cm -3 in apparent density, the sample densities of 5, 10 and 20 g cm -3 are determined to an accuracy better than +-0.002, +-0.01 and +-0.05 g cm -3 , respectively that correspond to about +-1 x 10 -5 cm 3 in volume. By means of appropriate degassing treatments, the densities of (Th,U)O 2 pellets of --0.1 g in weight and --9.55 g cm -3 in density were determined with an accuracy better than +-0.05 %. (author)

  2. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  3. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    International Nuclear Information System (INIS)

    Grillo, Vincenzo; Carlo Gazzadi, Gian; Karimi, Ebrahim; Mafakheri, Erfan; Boyd, Robert W.; Frabboni, Stefano

    2014-01-01

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science

  4. AMODS and High Energy Density Sciences

    International Nuclear Information System (INIS)

    Rhee, Y.-J.

    2011-01-01

    Following a brief introduction to the Lab for Quantum Optics (LFQO) in KAERI, which has been devoted to the research on atomic spectroscopy for more than 20 years with precision measurement of atomic parameters such as isotope shift, hyperfine structures, autoionization levels and so on as well as with theoretical analysis of atomic systems by developing relativistic calculation methodologies for laser propagation and population dynamics, electron impact ionization, radiative transitions of high Z materials, etc for the application to isotope separation, the AMODS (Atomic Molecular and Optical Database Systems) which was established in 1997 and has been a member of International Data Center Network of IAEA since then is explained by giving an information on the data sources and internal structure of the compilation of AMODS. Since AMODS was explained in detail during last DCN meeting, just a brief introduction is given this time. Then more specific research themes carried out in LFQO in conjunction with A+M data are discussed, including (1) electron impact ionization processes of W, Mo, Be, C, etc, (2) spectra of highly charged ions of W, Xe, and Si, (3) dielectronic recombination process of Fe ion. Also given are the talk about research activities about the simulations of high energy density experiments such as those performed at (1) GEKKO laser facility (Japan) for X-ray photoionization of low temperature Si plasma, which can explain the unsolved arguments on the X-ray spectra of black holes and/or neutron stars, (2) VULCAN laser facility (UK) for two dimensional compression of cylindrical target and investigation of hot electron transport in the compressed target plasma to understand the fast ignition process of laser fusion, (3) LULI laser facility (France) and TITAN laser facility (USA) for one dimensional compression of aluminum targets with different laser energies, and (4) PALS facility (Czech Republic) for 'Laser Induced Cavity Pressure Acceleration' to

  5. Electron beam cross-linking of natural rubber/linear-low density polyethylene blends

    International Nuclear Information System (INIS)

    Ahmad, A.; Mohd, D. H.; Abdullah, I.

    2005-01-01

    Effects of electron beam irradiation on the mechanical properties and morphological structure of natural rubber/linear-low density polyethylene blend was investigated The natural rubber/linear-low density polyethylene blend was prepared by melt blending in a Haake internal mixer at 140 d ig C , rotor speed of 50 rpm, and in 15 min Liquid natural rubber was incorporated into the blend as a compatibilizer Samples in the form of 1 mm sheets were exposed to 50-300 kGy of electron beam irradiation and analyzed for swelling index and gel content, tensile strength, and surface morphology. The result Indicated that gel content and mechanical properties of the samples increased with radiation dosage. The honey-comb structure of the surface morphology in low dosage irradiated samples slowly transformed into a continuous matrix on increasing radiation dose The variation of mechanical and physical properties was due to Increase in cross-linking density in the rubber and plastic phases and rubber-plastic Interaction on irradiation

  6. Investigation of the silicon ion density during molecular beam epitaxy growth

    CERN Document Server

    Eifler, G; Ashurov, K; Morozov, S

    2002-01-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate betw...

  7. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    Energy Technology Data Exchange (ETDEWEB)

    Lestinsky, M.

    2007-04-18

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc{sup 18+} yield a high-precision measurement of the 2s-2p{sub 3/2} transition energy in this system. Operation of the two-electron-beam setup at high collision energy ({approx}1000 eV) is established using resonances of hydrogenlike Mg{sup 11+}, while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F{sup 6+}. (orig.)

  8. Numerical simulation of inducing characteristics of high energy electron beam plasma for aerodynamics applications

    Science.gov (United States)

    Deng, Yongfeng; Jiang, Jian; Han, Xianwei; Tan, Chang; Wei, Jianguo

    2017-04-01

    The problem of flow active control by low temperature plasma is considered to be one of the most flourishing fields of aerodynamics due to its practical advantages. Compared with other means, the electron beam plasma is a potential flow control method for large scale flow. In this paper, a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma. The results demonstrate that the electron beam strongly influences the flow properties, not only in the boundary layers, but also in the main flow. A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam. It brings additional energy into air, and the inducing characteristics are closely related to the beam power and increase nonlinearly with it. The injection angles also influence the flow properties to some extent. Based on this research, we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications, i.e. the high energy density, wide action range and excellent action effect. Due to the rapid development of near space hypersonic vehicles and atmospheric fighters, by optimizing the parameters, the electron beam can be used as an alternative means in aerodynamic steering in these applications.

  9. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    International Nuclear Information System (INIS)

    Lestinsky, M.

    2007-01-01

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc 18+ yield a high-precision measurement of the 2s-2p 3/2 transition energy in this system. Operation of the two-electron-beam setup at high collision energy (∼1000 eV) is established using resonances of hydrogenlike Mg 11+ , while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F 6+ . (orig.)

  10. High Precision Beam Diagnostics for Ion Thrusters

    NARCIS (Netherlands)

    Van Reijen, B.; Koch, N.; Lazurenko, A.; Weis, S.; Schirra, M.; Genovese, A.; Haderspeck, J.; Gill, E.K.A.

    2011-01-01

    The Thales diagnostic equipment for ion beam characterization consists of a gridded and single orifice retarding potential analyzer (RPA) and an energy selective mass spectrometer (ESMS). During the development phase of these sensors considerable effort was put into the removal of ion optical

  11. Development of a high-current ion source with slit beam extraction for neutral beam injector of VEST

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Bong-ki; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr; An, Young-Hwa; Park, Jong-Yoon; Hwang, Y.S.

    2015-10-15

    Highlights: • A high-current ion source is developed for NBI system of VEST. • A cold-cathode electron gun is employed to produce primary electrons. • A hemi-cylindrical discharge chamber with cusp magnetic field is used. • Plasma density is measured to be 2 × 10{sup 18} m{sup −3} near the extraction aperture. • NBI power of 90 kW with beam energy of 20 keV is expected to be achieved. - Abstract: A high-current pulsed ion source has been developed for the neutral beam injector of the VEST (Versatile Experiment Spherical Torus) to accommodate high-beta fusion plasma experiments. The ion source consists of two parts: an electron gun for supplying sufficient primary electrons by cold-cathode arc discharge and a hemi-cylindrical discharge chamber where uniform, high-density plasma generated by the primary electrons is confined by multi-cusp magnetic field. A pulse forming network is also developed to drive high current of ∼1 kA to sustain the cold-cathode discharge in the electron gun up to 10 ms. Diagnostics with a triple probe in the discharge chamber shows that a hydrogen plasma whose density is as high as 1 × 10{sup 18} m{sup −3} can be obtained near extraction slits at the gas pressure lower than 0.5 Pa. This value is estimated to be sufficient to deposit a heating power of 90 kW to the VEST plasma when the appropriate extraction through slits with 20 cm{sup 2} in area and acceleration of ion beams up to 20 kV are fulfilled.

  12. Electron beam formation in high-current diode

    International Nuclear Information System (INIS)

    Korneev, S.A.

    1981-01-01

    The results of experimental investigation of the electron beam formation in diode with cathode on the base of incomplete discharge over the surface of dielectrics with dielectric penetration epsilon 2 . The measurement of current density distribution over transversal cross section reveals an efficient homogeneity [ru

  13. High-current discharge channel contraction in high density gas

    International Nuclear Information System (INIS)

    Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.; Budin, A. V.; Leks, A. G.; Pozubenkov, A. A.

    2011-01-01

    Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of ∼10 10 A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 μs. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where the channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.

  14. Pulsed power drivers for ICF and high energy density physics

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

    1995-01-01

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates ∼500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed ∼15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed

  15. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam.

    Science.gov (United States)

    Feng, Y; Schafer, D W; Song, S; Sun, Y; Zhu, D; Krzywinski, J; Robert, A; Wu, J; Decker, F J

    2018-01-01

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the second pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. This measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.

  16. High-energy monoenergetic proton beams from two stage acceleration with a slow laser pulse

    Directory of Open Access Journals (Sweden)

    H. Y. Wang

    2015-02-01

    Full Text Available We present a new regime to generate high-energy quasimonoenergetic proton beams in a “slow-pulse” regime, where the laser group velocity v_{g}density plasma. In this regime, for properly matched laser intensity and group velocity, ions initially accelerated by the light sail (LS mode can be further trapped and reflected by the snowplough potential generated by the laser in the near-critical density plasma. These two acceleration stages are connected by the onset of Rayleigh-Taylor-like (RT instability. The usual ion energy spectrum broadening by RT instability is controlled and high quality proton beams can be generated. It is shown by multidimensional particle-in-cell simulation that quasimonoenergetic proton beams with energy up to hundreds of MeV can be generated at laser intensities of 10^{21}  W/cm^{2}.

  17. Ideal laser-beam propagation through high-temperature ignition Hohlraum plasmas.

    Science.gov (United States)

    Froula, D H; Divol, L; Meezan, N B; Dixit, S; Moody, J D; Neumayer, P; Pollock, B B; Ross, J S; Glenzer, S H

    2007-02-23

    We demonstrate that a blue (3omega, 351 nm) laser beam with an intensity of 2 x 10(15) W cm(-2) propagates nearly within the original beam cone through a millimeter scale, T(e)=3.5 keV high density (n(e)=5 x 10(20) cm(-3)) plasma. The beam produced less than 1% total backscatter at these high temperatures and densities; the resulting transmission is greater than 90%. Scaling of the electron temperature in the plasma shows that the plasma becomes transparent for uniform electron temperatures above 3 keV. These results are consistent with linear theory thresholds for both filamentation and backscatter instabilities inferred from detailed hydrodynamic simulations. This provides a strong justification for current inertial confinement fusion designs to remain below these thresholds.

  18. P-West High Intensity Secondary Beam Area Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.; Currier, R.; Eartly, D.; Guthke, A.; Johnson, G.; Lee, D.; Dram, R.; Villegas, E.; Rest, J.; Tilles, E.; Vander Arend, P.

    1977-03-01

    This report gives the initial design parameters of a 1000 GeV High Intensity Superconducting Secondary Beam Laboratory to be situated in the Proton Area downstream of the existing Proton West experimental station. The area will provide Fermilab with a major capability for experimentation with pion and antiproton beams of intensities and of energies available at no other laboratory and with an electron beam with excellent spot size, intensity, and purity at energies far above that available at electron machines. Detailed beam design, area layouts, and cost estimates are presented, along with the design considerations.

  19. Proposed dedicated high pressure beam lines at CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Vohra, Y.K.; Bassett, W.A.; Batterman, B.W.; Bilderback, D.H.

    1988-01-01

    An instrumentation proposal for dedicated high pressure beam lines at CHESS is described. It is the purpose of this proposed program to provide researchers in high pressure science with beam lines for X-ray diffraction studies in the megabar regime. This will involve radiation from a bending magnet as well as from a wiggler. Examples of the high pressure results up to 2.16 Mbar are shown. Diffraction patterns from bending magnet and wiggler beams are shown and compared. The need for this facility by the high pressure community is discussed. (orig.)

  20. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  1. A transparent vacuum window for high-intensity pulsed beams

    CERN Document Server

    Monteil, M; Veness, R

    2011-01-01

    The HiRadMat (High-Radiation to Materials) facility Ill will allow testing of accelerator components, in particular those of the Large Hadron Collider (LHC) at CERN, under the impact of high-intensity pulsed beams. To reach this intensity range, the beam will be focused on a focal point where the target to be tested is located. A 60 mm aperture vacuum window will separate the vacuum of the beam line which is kept under high vacuum 10(-8) mbar, from the test area which is at atmospheric pressure. This window has to resist collapse due to beam passage. The high-intensity of the beam means that typical materials used for standard vacuum windows (such as stainless steel, aluminium and titanium alloy) cannot endure the energy deposition induced by the beam passage. Therefore, a vacuum window has been designed to maintain the differential pressure whilst resisting collapse due to the beam impact on the window. In this paper, we will present calculations of the energy transfer from beam to window, the design of the ...

  2. Tolerable Beam Loss at High-Intensity Machines

    International Nuclear Information System (INIS)

    Krivosheev, Oleg E.; Mokhov, Nikolai V.

    2000-01-01

    Tolerable beam losses are estimated for high-intensity ring accelerators with proton energy of 3 to 16 GeV. Dependence on beam energy, lattice and magnet geometry is studied via full Monte Carlo MARS14 simulations in lattice elements, shielding, tunnel and surrounding dirt with realistic geometry, materials and magnetic fields

  3. Low defect densities in molecular beam epitaxial GaAs achieved by isoelectronic In doping

    Science.gov (United States)

    Bhattacharya, P. K.; Dhar, S.; Berger, P.; Juang, F.-Y.

    1986-01-01

    A study has been made of the effects of adding small amounts of In (0.2-1.2 pct) to GaAs grown by molecular beam epitaxy. The density of four electron traps decreases in concentration by an order of magnitude, and the peak intensities of prominent emissions in the excitonic spectra are reduced with increase in In content. Based on the higher surface migration rate of In, compared to Ga, at the growth temperatures it is apparent that the traps and the excitonic transitions are related to point defects. This agrees with earlier observations by Briones and Collins (1982) and Skromme et al. (1985).

  4. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-05-01

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described

  5. 150 keV intense electron beam accelerator system with high repeated pulse

    International Nuclear Information System (INIS)

    Qi, Zhang; Tixing, Li; Hongfang, Tang; Nenggiao, Xia; Zhigin, Wang; Baohong, Zheng

    1993-01-01

    A 150 keV electron beam accelerator system has been developed for wide application of high power particle beams. The new wire-ion-plasma electron gun has been adopted. The parameters are as follows: Output energy - 130-150 keV; Electron beam density - 250 mA/cm 2 ; Pulse duration - 1 μs; Pulse rate 100 pps; Section of electron beam - 5 x 50 cm 2 . This equipment can be used to study repeated pulse CO 2 laser, to be a preionizer of high power discharge excimer laser and to perform radiation curing process, and so on. The first part contains principle and design consideration. Next is a description of experimental arrangement. The remainder is devoted to describing experimental results and its application

  6. Communication: Simple liquids' high-density viscosity

    Science.gov (United States)

    Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-02-01

    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  7. Communication: Simple liquids' high-density viscosity.

    Science.gov (United States)

    Costigliola, Lorenzo; Pedersen, Ulf R; Heyes, David M; Schrøder, Thomas B; Dyre, Jeppe C

    2018-02-28

    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  8. Growth limitation of Lemna minor due to high plant density

    NARCIS (Netherlands)

    Driever, S.M.; Nes, van E.H.; Roijackers, R.M.M.

    2005-01-01

    The effect of high population densities on the growth rate of Lemna minor (L.) was studied under laboratory conditions at 23°C in a medium with sufficient nutrients. At high population densities, we found a non-linear decreasing growth rate with increasing L. minor density. Above a L. minor biomass

  9. Imaginary time density-density correlations for two-dimensional electron gases at high density

    Energy Technology Data Exchange (ETDEWEB)

    Motta, M.; Galli, D. E. [Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Moroni, S. [IOM-CNR DEMOCRITOS National Simulation Center and SISSA, Via Bonomea 265, 34136 Trieste (Italy); Vitali, E. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795 (United States)

    2015-10-28

    We evaluate imaginary time density-density correlation functions for two-dimensional homogeneous electron gases of up to 42 particles in the continuum using the phaseless auxiliary field quantum Monte Carlo method. We use periodic boundary conditions and up to 300 plane waves as basis set elements. We show that such methodology, once equipped with suitable numerical stabilization techniques necessary to deal with exponentials, products, and inversions of large matrices, gives access to the calculation of imaginary time correlation functions for medium-sized systems. We discuss the numerical stabilization techniques and the computational complexity of the methodology and we present the limitations related to the size of the systems on a quantitative basis. We perform the inverse Laplace transform of the obtained density-density correlation functions, assessing the ability of the phaseless auxiliary field quantum Monte Carlo method to evaluate dynamical properties of medium-sized homogeneous fermion systems.

  10. Super High Energy Colliding Beam Accelerators

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    2009-01-01

    This lecture presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evolution of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab and the Large Hadron Collider (LHC) which is now planned as a 14-TeV machine in the 27 kilometer tunnel of the Large Electron Positron (LEP) collider at CERN. Then presentation is given of the Superconducting Supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 kilometers in circumference under the country surrounding Waxahachie in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particle.

  11. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  12. Thermal analysis of injection beam dump of high-intensity rapid-cycling synchrotron in J-PARC

    Science.gov (United States)

    Kamiya, J.; Saha, P. K.; Yamamoto, K.; Kinsho, M.; Nihei, T.

    2017-10-01

    The beam dump at the beam injection area in the J-PARC 3-GeV rapid cycling synchrotron (RCS) accepts beams that pass through the charge exchange foil without ideal electron stripping during the multi-turn beam injection. The injection beam dump consists of the beam pipe, beam stopper, radiation shield, and cooling mechanism. The ideal beam power into the injection beam dump is 400 W in the case of design RCS extraction beam power of 1 MW with a healthy foil, which has 99.7 % charge stripping efficiency. On the other hand, as a radiation generator, the RCS is permitted to be operated with maximum average beam power of 4 kW into the injection beam dump based on the radiation shielding calculation, in consideration of lower charge stripping efficiency due to the foil deterioration. In this research, to evaluate the health of the RCS injection beam dump system from the perspective of the heat generation, a thermal analysis was performed based on the actual configuration with sufficiently large region, including the surrounding concrete and soil. The calculated temperature and heat flux density distribution showed the validity of the mesh spacing and model range. The calculation result showed that the dumped 4 kW beam causes the temperature to increase up to 330, 400, and 140 °C at the beam pipe, beam stopper, and radiation shield, respectively. Although these high temperatures induce stress in the constituent materials, the calculated stress values were lower than the ultimate tensile strength of each material. Transient temperature analysis of the beam stopper, which simulated the sudden break of the charge stripper foil, demonstrated that one bunched beam pulse with the maximum beam power does not lead to a serious rise in the temperature of the beam stopper. Furthermore, from the measured outgassing rate of stainless steel at high temperature, the rise in beam line pressure due to additive outgassing from the heated beam pipe was estimated to have a negligible

  13. Variable kernel density estimation in high-dimensional feature spaces

    CSIR Research Space (South Africa)

    Van der Walt, Christiaan M

    2017-02-01

    Full Text Available Estimating the joint probability density function of a dataset is a central task in many machine learning applications. In this work we address the fundamental problem of kernel bandwidth estimation for variable kernel density estimation in high...

  14. The Influence of Decreased Levels of High Density Lipoprotein ...

    African Journals Online (AJOL)

    very low density lipoprotein cholesterol, and triglyceride were assayed. ... Abiodun and Gwarzo: Association of high density lipoprotein cholesterol with haemolysis in sickle cell disease ... analyses were carried out to determine the correlation.

  15. High-Latitude Neutral Mass Density Maxima

    Science.gov (United States)

    Huang, C. Y.; Huang, Y.; Su, Y.-J.; Huang, T.; Sutton, E. K.

    2017-10-01

    Recent studies have reported that thermospheric effects due to solar wind driving can be observed poleward of auroral latitudes. In these papers, the measured neutral mass density perturbations appear as narrow, localized maxima in the cusp and polar cap. They conclude that Joule heating below the spacecraft is the cause of the mass density increases, which are sometimes associated with local field-aligned current structures, but not always. In this paper we investigate neutral mass densities measured by accelerometers on the CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) spacecraft from launch until years 2010 (CHAMP) and 2012 (GRACE), approximately 10 years of observations from each satellite. We extract local maxima in neutral mass densities over the background using a smoothing window with size of one quarter of the orbit. The maxima have been analyzed for each year and also for the duration of each set of satellite observations. We show where they occur, under what solar wind conditions, and their relation to magnetic activity. The region with the highest frequency of occurrence coincides approximately with the cusp and mantle, with little direct evidence of an auroral zone source. Our conclusions agree with the "hot polar cap" observations that have been reported and studied in the past.

  16. Neutrino hierarchy from CP-blind observables with high density magnetized detectors

    International Nuclear Information System (INIS)

    Donini, A.; Fernandez-Martinez, E.; Rigolin, S.; Migliozzi, P.; Scotto Lavina, L.; Selvi, M.; Tabarelli de Fatis, T.; Terranova, F.

    2008-01-01

    High density magnetized detectors are well suited to exploit the outstanding purity and intensities of novel neutrino sources like neutrino factories and beta beams. They can also provide independent measurements of leptonic mixing parameters through the observation of atmospheric muon-neutrinos. In this paper, we discuss the combination of these observables from a multi-kT iron detector and a high energy beta beam; in particular, we demonstrate that even with moderate detector granularities the neutrino mass hierarchy can be determined for θ 13 values greater than 4 . (orig.)

  17. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    N. A. Tahir

    2012-05-01

    Full Text Available The Large Hadron Collider (LHC is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%–20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect. It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials at CERN using the proton beam from the Super Proton Synchrotron (SPS, to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle

  18. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Science.gov (United States)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  19. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  20. Large area negative ion source for high voltage neutral beams

    International Nuclear Information System (INIS)

    Poulsen, P.; Hooper, E.B. Jr.

    1979-11-01

    A source of negative deuterium ions in the multi-ampere range is described that is readily extrapolated to reactor size, 10 amp or more of neutral beam, that is of interest in future experiments and reactors. The negative ion source is based upon the double charge exchange process. A beam of positive ions is created and accelerated to an energy at which the attachment process D + M → D - + M + proceeds efficiently. The positive ions are atomically neutralized either in D 2 or in the charge exchange medium M. Atomic species make a second charge exchange collision in the charge target to form D - . For a sufficiently thick target, the beam reaches an equilibrium fraction of negative ions. For reasons of efficiency, the target is typically alkali metal vapor; this experiment uses sodium. The beam of negative ions can be accelerated to high (>200 keV) energy, the electrons stripped from the ions, and a high energy neutral beam formed

  1. High performance experiments on high pressure supersonic molecular beam injection in the HL-1M tokamak

    International Nuclear Information System (INIS)

    Yao Lianghua; Dong Jiafu; Zhou Yan; Feng Beibing; Cao Jianyong; Li Wei; Feng Zhen; Zhang Jiquan; Hong Wenyu; Cui Zhengying; Wang Enyao; Liu Yong

    2004-01-01

    Supersonic molecular beam injection (SMBI) was first proposed and demonstrated on the HL-1 tokamak and was successfully developed and used on HL-1M. Recently, new results of SMBI experiments were obtained by increasing the gas pressure from 0.5 to over 1.0 MPa. A stair-shaped density increment was obtained with high-pressure multi-pulse SMBI that was similar to the density evolution behaviour during multi-pellet injection. This demonstrated the effectiveness of SMBI as a promising fuelling tool for steady-state operation. The penetration depth and injection speed of the high-pressure SMBI were roughly measured from the contour plot of the Hα emission intensity. It was shown that injected particles could penetrate into the core region of the plasma. The penetration speed of high-pressure SMBI particles in the plasma was estimated to be about 1200 m s -1 . In addition, clusters within the beam may play an important role in the deeper injection. (author)

  2. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    ROSENTHAL, STEPHEN E.; DESJARLAIS, MICHAEL P.; SPIELMAN, RICK B.; STYGAR, WILLIAM A.; ASAY, JAMES R.; DOUGLAS, M.R.; HALL, C.A.; FRESE, M.H.; MORSE, R.L.; REISMAN, D.B.

    2000-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model

  3. Novel micropixel avalanche photodiodes (MAPD) with super high pixel density

    International Nuclear Information System (INIS)

    Anfimov, N.; Chirikov-Zorin, I.; Dovlatov, A.; Gavrishchuk, O.; Guskov, A.; Khovanskiy, N.; Krumshtein, Z.; Leitner, R.; Meshcheryakov, G.; Nagaytsev, A.; Olchevski, A.; Rezinko, T.; Sadovskiy, A.; Sadygov, Z.; Savin, I.; Tchalyshev, V.; Tyapkin, I.; Yarygin, G.; Zerrouk, F.

    2011-01-01

    In many detectors based on scintillators the photomultiplier tubes (PMTs) are used as photodetectors. At present photodiodes are finding wide application. Solid state photodetectors allow operation in strong magnetic fields that are often present in applications, e.g. some calorimeters operating near magnets, combined PET and MRT, etc. The photon detection efficiency (PDE) of photodiodes may reach values a few times higher than that of PMTs. Also, they are rigid, compact and have relatively low operating voltage. In the last few years Micropixel Avalanche PhotoDiodes (MAPD) have been developed and started to be used. The MAPD combines a lot of advantages of semiconductor photodetectors and has a high gain, which is close to that of the PMT. Yet, they have some disadvantages, and one of them is a limited dynamic range that corresponds to a total number of pixels. The novel deep microwell MAPD with high pixel density produced by the Zecotek Company partially avoids this disadvantage. In this paper characteristics of these photodetectors are presented in comparison with the PMT characteristics. The results refer to measurements of the gain, PDE, cross-talks, photon counting and applications: beam test results of two different 'Shashlyk' EM calorimeters for COMPASS (CERN) and NICA-MPD (JINR) with the MAPD readout and a possibility of using the MAPD in PET.

  4. High-density polyethylene dosimetry by transvinylene FTIR analysis

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Silverman, J.; Al-Sheikhly, M.

    1999-01-01

    and electrons. The useful dose range of 0.053 cm thick high-density polyethylene film (rho = 0.961 g cm(-3); melt index = 0.8 dg min(-1)), for irradiations by (60)Co gamma radiation and 2.0 and 0.4 MeV electron beams in deaerated atmosphere (Na gas), is about 50-10(3) kGy for FTIR transvinylene......The formation of transvinylene unsaturation, -CH=CH-, due to free-radical or cationic-initiated dehydrogenation by irradiation, is a basic reaction in polyethylene and is useful for dosimetry at high absorbed doses. The radiation-enhanced infrared absorption having a maximum at nu = 965 cm......(-l) (lambda = 10.36 mu m) is stable in air and can be measured by Fourier-transform infrared (FTIR) spectrophotometry. The quantitative analysis is a useful means of product end-point dosimetry for radiation processing with gamma rays and electrons, where polyethylene is a component of the processed product...

  5. High-current beam transport in electrostatic accelerator tubes

    International Nuclear Information System (INIS)

    Ramian, G.; Elais, L.

    1987-01-01

    The UCSB Free Electron Laser (FEL) has successfully demonstrated the use of a commercial 6 megavolt electrostatic accelerator as a high current beam source in a recirculating configuration. The accelerator, manufactured by National Electrostatics Corp. (NEC), Middleton WI, uses two standard high gradient accelerator tubes. Suppression of ion multiplication was accomplished by NEC with apertures and a shaped electrostatic field. This field shaping has fortuitously provided a periodically reversing radial field component with sufficient focusing strength to transport electron beams of up to 3 Amps current. Present two-stage FEL work requires a 20 Amp beam and proposed very high voltage FEL designs require currents as high as 100 Amps. A plan to permit transport of such high current beams by the addition of solenoidal focussing elements is described

  6. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  7. Potential and electron density calculated for freely expanding plasma by an electron beam

    International Nuclear Information System (INIS)

    Ho, C. Y.; Tsai, Y. H.; Ma, C.; Wen, M. Y.

    2011-01-01

    This paper investigates the radial distributions of potential and electron density in free expansion plasma induced by an electron beam irradiating on the plate. The region of plasma production is assumed to be cylindrical, and the plasma expansion is assumed to be from a cylindrical source. Therefore, the one-dimensional model in cylindrical coordinates is employed in order to analyze the radial distributions of the potential and electron density. The Runge-Kutta method and the perturbation method are utilized in order to obtain the numerical and approximate solutions, respectively. The results reveal that the decrease in the initial ion energy makes most of the ions gather near the plasma production region and reduces the distribution of the average positive potential, electron, and ion density along the radial direction. The oscillation of steady-state plasma along the radial direction is also presented in this paper. The ions induce a larger amplitude of oscillation along the radial direction than do electrons because the electrons oscillate around slowly moving ions due to a far smaller electron mass than ion mass. The radial distributions of the positive potential and electron density predicted from this study are compared with the available experimental data.

  8. Measuring the Density of Different Materials by Using the Collimated Fast Neutron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Sudac, D.; Nad, K.; Orlic, Z.; Obhodas, J. [Rudjer Boskovic Institute, Bijenicka c. 54, 10000 Zagreb (Croatia); Valkovic, V. [Rudjer Boskovic Institute, Zagreb (Croatia); Kvinticka 62, Zagreb (Croatia)

    2015-07-01

    It was demonstrated in the previous work that various threat materials could be detected inside the sea going cargo container by measuring the three variables, carbon and oxygen concentration and density of investigated material. Density was determined by measuring transmitted neutrons, which is not always practical in terms of setting up the instrument geometry. In order to enable more geometry flexibility, we have investigated the possibility of using the scattered neutrons in cargo material identification. For that purpose, the densities of different materials were measured depending on the position of neutron detectors and neutron generator with respect to the target position. One neutron detector was put above the target, one behind and one in front of the target, above the neutron generator. It was shown that all three positions of neutron detectors can be successfully used to measure the target density, but only if the detected neutrons are successfully discriminated from the gamma rays. Although the associated alpha particle technique/associate particle imaging (API) was used to discriminate the neutrons from the gamma rays, it is believed that the same results would be obtained by using the pulse shape discrimination method. In that way API technique can be avoided and the neutron generator which produces much higher beam intensity than 10{sup 8} n/s can be used. (authors)

  9. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    Science.gov (United States)

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  10. An investigation of pulsed high density plasmas

    International Nuclear Information System (INIS)

    Timmermans, C.J.

    1984-01-01

    In this thesis a wall-stabilized argon cascade arc is studied at values of pulsed pressure up to 14 bar and a pulsed current range up to 2200 A with a time duration of about 2 ms. The basic plasma is a CW cascade arc with a 5 mm diameter plasma column and a length of 90 mm, which operates at a 60 A DC current and at one atmosphere filling pressure. The author starts with an extensive summary of the CW arc investigations. After a brief introduction of the basic transport equations the mass equations of the constituent particles are treated using the extended collisional radiative model. The energy balance equations and the momentum balance are discussed. The electron density is determined from measurements of the continuum radiation. The final chapter contains the experimental results on the electron temperatures and electron densities in the pressure and current pulsed plasma. Attention is given to the deviations from local thermodynamic equilibrium values of the ground level densities of the different argon systems. (Auth.)

  11. Development of high temperature superconductors having high critical current density

    International Nuclear Information System (INIS)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H.

    2000-08-01

    Fabrication of high T c superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm 2 and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation

  12. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  13. Progress in long sustainment and high density experiments with potential confinement on GAMMA 10

    International Nuclear Information System (INIS)

    Yatsu, K.; Cho, T.; Hirata, M.

    2001-01-01

    The improvement of potential confinement reported in the last IAEA meeting was attained by axisymmetrization of heating pattern of electron cyclotron resonance heating (ECRH). It was experimentally shown that the axisymmetrization of ECRH really produced axisymmetric potential profile. GAMMA 10 experiments have advanced in longer sustainment and high density operation of potential confinement. Experiments for long sustainment of potential confinement were carried out in order to study problems of steady state operation of a tandem mirror reactor. A confining potential was sustained for 150 ms by sequentially injecting two (ECRH) powers in the plug region. It was difficult before to increase the central cell density higher than about 2.5x10 12 cm -3 with and/or without potential confinement due to some density limiting mechanism. In order to overcome this problem, a new higher frequency ion cyclotron range of frequency (ICRF) system (RF3: 36-76 MHz) has been installed. A higher density plasma has been produced with RF3. In addition to RF3, neutral beam injection (NBI) in the anchor cell became effective by reducing neutral gas from beam injectors. Potential confinement experiments have advanced to higher central cell densities up to 4x10 12 cm -3 with RF3 and NBI. A 20% density increase due to the potential confinement was obtained in the high density experiments. (author)

  14. Innovative electron-beam welding of high-melting metals

    International Nuclear Information System (INIS)

    Behr, W.; Reisgen, U.

    2007-01-01

    Since its establishment as nuclear research plant Juelich in the year 1956, the research centre Juelich (FZJ) is concerned with the material processing of special metals. Among those are, above all, the high-melting refractory metals niobium, molybdenum and tungsten. Electron beam welding has always been considered to be an innovative special welding method; in the FZJ, electron beam welding has, moreover, always been adapted to the increasing demands made by research partners and involved manufacturing and design sectors. From the manual equipment technology right up to highly modern multi-beam technique, the technically feasible for fundamental research has, this way, always been realised. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [de

  15. Time-resolved energy spectrum of a pseudospark-produced high-brightness electron beam

    International Nuclear Information System (INIS)

    Myers, T.J.; Ding, B.N.; Rhee, M.J.

    1992-01-01

    The pseudospark, a fast low-pressure gas discharge between a hollow cathode and a planar anode, is found to be an interesting high-brightness electron beam source. Typically, all electron beam produced in the pseudospark has the peak current of ∼1 kA, pulse duration of ∼50 ns, and effective emittance of ∼100 mm-mrad. The energy information of this electron beam, however, is least understood due to the difficulty of measuring a high-current-density beam that is partially space-charge neutralized by the background ions produced in the gas. In this paper, an experimental study of the time-resolved energy spectrum is presented. The pseudospark produced electron beam is injected into a vacuum through a small pinhole so that the electrons without background ions follow single particle motion; the beam is sent through a negative biased electrode and the only portion of beam whose energy is greater than the bias voltage can pass through the electrode and the current is measured by a Faraday cup. The Faraday cup signals with various bias voltage are recorded in a digital oscilloscope. The recorded waveforms are then numerically analyzed to construct a time-resolved energy spectrum. Preliminary results are presented

  16. Modematic: a fast laser beam analyzing system for high power CO2-laser beams

    Science.gov (United States)

    Olsen, Flemming O.; Ulrich, Dan

    2003-03-01

    The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 describing test methods for laser beam parameters have been approved. To implement these methods in industry is difficult and especially for the infrared laser sources, such as the CO2-laser, the availabl analyzing systems are slow, difficult to apply and having limited reliability due to the nature of the detection methods. In an EUREKA-project the goal was defined to develop a laser beam analyzing system dedicated to high power CO2-lasers, which could fulfill the demands for an entire analyzing system, automating the time consuming pre-alignment and beam conditioning work required before a beam mode analyses, automating the analyzing sequences and data analysis required to determine the laser beam caustics and last but not least to deliver reliable close to real time data to the operator. The results of this project work will be described in this paper. The research project has led to the development of the Modematic laser beam analyzer, which is ready for the market.

  17. Treatment of basal cell epithelioma with high energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y. (Hyogo-ken Cancer Center, Kobe (Japan)); Kumano, M.; Kumano, K.

    1981-11-01

    Thirty patients with basal cell epithelioma received high energy electron beam therapy. They were irradiated with a dose ranging from 4,800 rad (24 fractions, 35 days) to 12,000 rad (40 fractions, 57 days). Tumors disappeared in all cases. These were no disease-related deaths; in one patient there was recurrence after 2 years. We conclude that radiotherapy with high energy electron beam is very effective in the treatment of basal cell epithelioma.

  18. Development of high voltage lead wires using electron beam irradiation

    International Nuclear Information System (INIS)

    Bae Hunjai; Sohn Hosoung; Choi Dongjung

    1995-01-01

    It is known to those skilled to the art that the electric wires used in high voltage operating electric equipments such as TV sets, microwave ovens, duplicators and etc., have such a structure that a conductor is coated with an insulating layer which is encapsulated with a protecting jacket layer. The electric wire specification such as UL and CSA requires superior cut-through property and flame-retardant property of the wire for utilization safety. The cut-through property of insulation material, for example, high density polyethylene, can be increased by crosslinking of the polymer. Also the flame-retardant property of jacket material which protects the flammable inner insulation can be raised by flame-retardant formulating of the material. In the wire and cable industry, crosslinking by electron beam processing is more effective than that by chemical processing in the viewpoint of through-put rate of the products. The jacket layer of the wire plays the role of protecting the insulation material from burning. The protecting ability of the jacket is related to its inherent flammability and formability of swollen carbonated layer when burned. Crosslinking of the material gives a good formability of swollen carbonated layer, and it protects the insulation material from direct flame. In formulating the flame-retardant jacket material, a crosslinking system must be considered with base polymers and other flame-retardant additives. (Author)

  19. Development of high voltage lead wires using electron beam irradiation

    International Nuclear Information System (INIS)

    Bae Hunjai; Sohn Hosoung; Choi Dongjung

    1995-01-01

    It is known to those skilled to the art that the electric wires used in high voltage operating electric equipment such as TV sets, microwave ovens, duplicators etc., have such a structure that a conductor is coated with an insulating layer which is encapsulated with a protecting jacket layer. The electric wire specification such as UL and CSA requires superior cut-through and flame-retardant property of the wire for utilization safety. The cut-through property of insulation material, for example, high density polyethylene, can be increased by crosslinking of the polymer. Also the flame-retardant property of jacket material which protects the flammable inner insulation can be raised by flame-retardant formulating of the material. In the wire and cable industry, crosslinking by electron beam processing is more effective than that by chemical processing in the viewpoint of through-put rate of the products. The jacket layer of the wire plays the role of protecting the insulation material from burning. The protecting ability of the jacket is related to its inherent flammability and formability of swollen carbonated layer when burned. Crosslinking of the material gives a good formability of swollen carbonated layer, and it protects the insulation material from direct flame. In formulating the flame-retardant jacket material, a crosslinking system must be considered with base polymers and other flame-retardant additives. (Author)

  20. Sputtered thin films for high density tape recording

    NARCIS (Netherlands)

    Nguyen, L.T.

    This thesis describes the investigation of sputtered thin film media for high density tape recording. As discussed in Chapter 1, to meet the tremendous demand of data storage, the density of recording tape has to be increased continuously. For further increasing the bit density the key factors are:

  1. Potential ceramics processing applications with high-energy electron beams

    International Nuclear Information System (INIS)

    Struve, K.W.; Turman, B.N.

    1993-01-01

    High-energy, high-current electron beams may offer unique features for processing of ceramics that are not available with any other heat source. These include the capability to instantaneously heat to several centimeters in depth, to preferentially deposit energy in dense, high-z materials, to process at atmospheric pressures in air or other gases, to have large control over heating volume and heating rate, and to have efficient energy conversion. At a recent workshop organized by the authors to explore opportunities for electron beam processing of ceramics, several applications were identified for further development. These were ceramic joining, fabrication of ceramic powders, and surface processing of ceramics. It may be possible to join ceramics by either electron-beam brazing or welding. Brazing with refractory metals might also be feasible. The primary concern for brazing is whether the braze material can wet to the ceramic when rapidly heated by an electron beam. Raw ceramic powders, such as silicon nitride and aluminum nitride, which are difficult to produce by conventional techniques, could possibly be produced by vaporizing metals in a nitrogen atmosphere. Experiments need to be done to verify that the vaporized metal can fully react with the nitrogen. By adjusting beam parameters, high-energy beams can be used to remove surface flaws which are often sites of fracture initiation. They can also be used for surface cleaning. The advantage of electron beams rather than ion beams for this application is that the heat deposition can be graded into the material. The authors will discuss the capabilities of beams from existing machines for these applications and discuss planned experiments

  2. High Efficiency, High Density Terrestrial Panel. [for solar cell modules

    Science.gov (United States)

    Wohlgemuth, J.; Wihl, M.; Rosenfield, T.

    1979-01-01

    Terrestrial panels were fabricated using rectangular cells. Packing densities in excess of 90% with panel conversion efficiencies greater than 13% were obtained. Higher density panels can be produced on a cost competitive basis with the standard salami panels.

  3. The role of cone-beam breast-CT for breast cancer detection relative to breast density

    Energy Technology Data Exchange (ETDEWEB)

    Wienbeck, Susanne; Uhlig, Johannes; Fintel, Eva von; Stahnke, Vera; Lotz, Joachim [University Medical Center Goettingen, Institute for Diagnostic and Interventional Radiology, Goettingen (Germany); Luftner-Nagel, Susanne; Fischer, Uwe [Diagnostic Breast Center Goettingen, Goettingen (Germany); Zapf, Antonia [University Medical Center Goettingen, Department of Medical Statistics, Goettingen (Germany); Surov, Alexey [University of Leipzig, Department of Diagnostic and Interventional Radiology, Leipzig (Germany)

    2017-12-15

    To evaluate the impact of breast density on the diagnostic accuracy of non-contrast cone-beam breast computed tomography (CBBCT) in comparison to mammography for the detection of breast masses. A retrospective study was conducted from August 2015 to July 2016. Fifty-nine patients (65 breasts, 112 lesions) with BI-RADS, 5th edition 4 or 5 assessment in mammography and/or ultrasound of the breast received an additional non-contrast CBBCT. Independent double blind reading by two radiologists was performed for mammography and CBBCT imaging. Sensitivity, specificity and AUC were compared between the modalities. Breast lesions were histologically examined in 85 of 112 lesions (76%). The overall sensitivity for CBBCT (reader 1: 91%, reader 2: 88%) was higher than in mammography (both: 68%, p<0.001), and also for the high-density group (p<0.05). The specificity and AUC was higher for mammography in comparison to CBBCT (p<0.05 and p<0.001). The interobserver agreement (ICC) between the readers was 90% (95% CI: 86-93%) for mammography and 87% (95% CI: 82-91%) for CBBCT. Compared with two-view mammography, non-contrast CBBCT has higher sensitivity, lower specificity, and lower AUC for breast mass detection in both high and low density breasts. (orig.)

  4. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    CERN Document Server

    AUTHOR|(CDS)2070952; Valishev, Aleksander; Shatilov, Dmitry

    2015-01-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical β∗ values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  5. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Fartoukh, Stephane [CERN; Valishev, Alexander [Fermilab; Shatilov, Dmitry [BINP, Novosibirsk

    2015-06-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical $\\beta^{\\ast}$values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  6. High Energy Density Dielectrics for Pulsed Power Applications

    National Research Council Canada - National Science Library

    Wu, Richard L; Bray, Kevin R

    2008-01-01

    This report was developed under a SBIR contract. Aluminum oxynitride (AlON) capacitors exhibit several promising characteristics for high energy density capacitor applications in extreme environments...

  7. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  8. Ion beam deposition system for depositing low defect density extreme ultraviolet mask blanks

    Science.gov (United States)

    Jindal, V.; Kearney, P.; Sohn, J.; Harris-Jones, J.; John, A.; Godwin, M.; Antohe, A.; Teki, R.; Ma, A.; Goodwin, F.; Weaver, A.; Teora, P.

    2012-03-01

    Extreme ultraviolet lithography (EUVL) is the leading next-generation lithography (NGL) technology to succeed optical lithography at the 22 nm node and beyond. EUVL requires a low defect density reflective mask blank, which is considered to be one of the top two critical technology gaps for commercialization of the technology. At the SEMATECH Mask Blank Development Center (MBDC), research on defect reduction in EUV mask blanks is being pursued using the Veeco Nexus deposition tool. The defect performance of this tool is one of the factors limiting the availability of defect-free EUVL mask blanks. SEMATECH identified the key components in the ion beam deposition system that is currently impeding the reduction of defect density and the yield of EUV mask blanks. SEMATECH's current research is focused on in-house tool components to reduce their contributions to mask blank defects. SEMATECH is also working closely with the supplier to incorporate this learning into a next-generation deposition tool. This paper will describe requirements for the next-generation tool that are essential to realize low defect density EUV mask blanks. The goal of our work is to enable model-based predictions of defect performance and defect improvement for targeted process improvement and component learning to feed into the new deposition tool design. This paper will also highlight the defect reduction resulting from process improvements and the restrictions inherent in the current tool geometry and components that are an impediment to meeting HVM quality EUV mask blanks will be outlined.

  9. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  10. High density, high magnetic field concepts for compact fusion reactors

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    One rather discouraging feature of our conventional approaches to fusion energy is that they do not appear to lend themselves to a small reactor for developmental purposes. This is in contrast with the normal evolution of a new technology which typically proceeds to a full scale commercial plant via a set of graduated steps. Accordingly' several concepts concerned with dense plasma fusion systems are being studied theoretically and experimentally. A common aspect is that they employ: (a) high to very high plasma densities (∼10 16 cm -3 to ∼10 26 cm -3 ) and (b) magnetic fields. If they could be shown to be viable at high fusion Q, they could conceivably lead to compact and inexpensive commercial reactors. At least, their compactness suggests that both proof of principle experiments and development costs will be relatively inexpensive compared with the present conventional approaches. In this paper, the following concepts are considered: (1) The staged Z-pinch, (2) Liner implosion of closed-field-line configurations, (3) Magnetic ''fast'' ignition of inertial fusion targets, (4) The continuous flow Z-pinch

  11. High resolution laser spectroscopy as a diagnostic tool in beams

    International Nuclear Information System (INIS)

    Bergmann, K.; Hefter, U.; Hering, P.

    1977-01-01

    The combination of high resolution laser spectroscopy with the technique of molecular beams allows a very detailed beam research since molecules or atoms in specific quantum states can be sampled yielding previously unavailable sources of data. In these experiments a Na/Na 2 beam emerges from a 0.2 mm nozzle and is collimated by a 2 mm wide slit 50 cm downstream. To probe the molecules a single mode Ar + -laser was used which can be tuned within the gain profile of the laser line (8 GHz) to several transitions between specific levels in the ground state and second electronically excited state of the Na 2 molecule. (Auth.)

  12. High-energy pion beams: Problems and prospects

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1992-01-01

    The investigation of relatively unexplored research areas with high energy pion beams requires new facilities. Presently existing meson factories such as LAMPF, TRIUMF and PSI provide insufficient pion fluxes above the 3,3 resonance region for access to topics such as strangeness production with the (π, K) reaction, baryon resonances, rare meson decays, and nuclear studies with penetrating pion beams. The problems and prospects of useful beams for these studies will be reviewed, both for existing facilities such as the AGS and KEK, and for possible future facilities like KAON and PILAC

  13. High-Performance Beam Simulator for the LANSCE Linac

    International Nuclear Information System (INIS)

    Pang, Xiaoying; Rybarcyk, Lawrence J.; Baily, Scott A.

    2012-01-01

    A high performance multiparticle tracking simulator is currently under development at Los Alamos. The heart of the simulator is based upon the beam dynamics simulation algorithms of the PARMILA code, but implemented in C++ on Graphics Processing Unit (GPU) hardware using NVIDIA's CUDA platform. Linac operating set points are provided to the simulator via the EPICS control system so that changes of the real time linac parameters are tracked and the simulation results updated automatically. This simulator will provide valuable insight into the beam dynamics along a linac in pseudo real-time, especially where direct measurements of the beam properties do not exist. Details regarding the approach, benefits and performance are presented.

  14. Polarization holograms allow highly efficient generation of complex light beams.

    Science.gov (United States)

    Ruiz, U; Pagliusi, P; Provenzano, C; Volke-Sepúlveda, K; Cipparrone, Gabriella

    2013-03-25

    We report a viable method to generate complex beams, such as the non-diffracting Bessel and Weber beams, which relies on the encoding of amplitude information, in addition to phase and polarization, using polarization holography. The holograms are recorded in polarization sensitive films by the interference of a reference plane wave with a tailored complex beam, having orthogonal circular polarizations. The high efficiency, the intrinsic achromaticity and the simplicity of use of the polarization holograms make them competitive with respect to existing methods and attractive for several applications. Theoretical analysis, based on the Jones formalism, and experimental results are shown.

  15. Very-high-level neutral-beam control system

    International Nuclear Information System (INIS)

    Elischer, V.; Jacobson, V.; Theil, E.

    1981-10-01

    As increasing numbers of neutral beams are added to fusion machines, their operation can consume a significant fraction of a facility's total resources. LBL has developed a very high level control system that allows a neutral beam injector to be treated as a black box with just 2 controls: one to set the beam power and one to set the pulse duration. This 2 knob view allows simple operation and provides a natural base for implementing even higher level controls such as automatic source conditioning

  16. Transverse Laser Beam Shaping in High Brightness Electron Gun at ATF

    CERN Document Server

    Roychowdhury, S

    2005-01-01

    The brightness of electron beams from a photo injector is influenced by the transverse and longitudinal distribution of the laser beam illuminating the cathode. Previous studies at Brookhaven Accelerator Test Facility have shown that formation of an ideal e-beam with lowest transverse emittance requires uniform circular distribution of the emitted electrons. The use of the uniformly distributed power of the laser beam may not lead to that of the emitted electrons because of the non-uniform quantum efficiency. A proper shaping of the laser beam can compensate for this non-uniformity. In this paper we describe the use of digital light processing (DLP) technique based on digital mirror device (DMD) for spatial modulation of the laser beam, for measurements of the quantum efficiency map, and for creating the desirable e-beam density profiles. A DMD is aμelectronic mechanical system (MEMS) comprising of millions of highly reflectiveμmirrors controlled by underlying electronics. We present exper...

  17. High energy nuclear beams at Berkeley: present and future possibilities

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1984-01-01

    The primary goal of the Bevalac research program continues to be the study of nuclear matter at extreme conditions of temperature and baryon density while still addressing more conventional aspects of nuclear physics. Future plans are for a colliding beam machine in the energy range of 20 GeV/n. The conceptual design and basin requirements for such a relativistic nuclear collider (RNC) are outlined. In addition the central physics themes to be addressed by an RNC are briefly discussed

  18. Beam Dynamics Studies for High-Intensity Beams in the CERN Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Benedikt, Michael

    With the discovery of the Higgs boson, the existence of the last missing piece of the Standard Model of particle physics (SM) was confirmed. However, even though very elegant, this theory is unable to explain, for example, the generation of neutrino masses, nor does it account for dark energy or dark matter. To shed light on some of these open questions, research in fundamental particle physics pursues two complimentary approaches. On the one hand, particle colliders working at the high-energy frontier, such as the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), located in Geneva, Switzerland, are utilized to investigate the fundamental laws of nature. Alternatively, fixed target facilities require high-intensity beams to create a large flux of secondary particles to investigate, for example, rare particle decay processes, or to create neutrino beams. This thesis investigates limitations arising during the acceleration of high-intensity beams at the CERN Proton Synchrotro...

  19. A high resolution beam profile monitor using Bremsstrahlung

    International Nuclear Information System (INIS)

    Norem, J.

    1988-01-01

    The development of efficient high energy linear colliders in the 1 TeV range requires final focus systems capable of producing beam spot sizes on the order of 1--20 nm, about three orders of magnitude smaller than those produced at the SLC. Although beam line designs exist which can, in principle, produce the required optics, the construction of quadrupoles with the size and precision required will be challenging. Field errors in these quads must be small and should be verified experimentally, which is difficult with existing technology. This paper describes a proposal to use bremsstrahlung from heavy targets to measure high energy beam profiles and positions with a resolution approaching a few nm. The method is also applicable to tests of other final focus systems (flat beams, plasma lenses) at lower energies. 6 refs., 3 figs., 1 tab

  20. High density plasmas and new diagnostics: An overview (invited)

    International Nuclear Information System (INIS)

    Celona, L.; Gammino, S.; Mascali, D.

    2016-01-01

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including “volume-integrated” X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a “pin-hole camera” has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines

  1. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.; Gamboa, E. J.; Göde, S.; Propp, A.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Aurand, B.; Willi, O. [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Goyon, C.; Hazi, A.; Pak, A.; Ruby, J.; Williams, G. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Kerr, S. [University of Alberta, Edmonton, Alberta T6G 1R1 (Canada); Ramakrishna, B. [Indian Institute of Technology, Hyderabad (India); Rödel, C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Friedrich-Schiller-University Jena, Jena (Germany)

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  2. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    Science.gov (United States)

    Teruya, Alan T [Livermore, CA; Elmer,; John, W [Danville, CA; Palmer, Todd A [State College, PA

    2011-03-08

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  3. Ion beams from high-current PF facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, M [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    Pulsed beams of fast deuterons and impurity or admixture ions emitted from high-current PF-type facilities operated in different laboratories are dealt with. A short comparative analysis of time-integrated and time-resolved studies is presented. Particular attention is paid to the microstructure of such ion beams, and to the verification of some theoretical models. (author). 5 figs., 19 refs.

  4. Dispersion relations of density fluctuations observed by heavy ion beam probe in the TEXT tokamak

    International Nuclear Information System (INIS)

    Ross, D.W.

    1990-09-01

    Wave numbers as functions of frequency for density fluctuations in the core of the TEXT tokamak are measured in Heavy Ion Beam Probe experiments by analyzing the relative phases of signals originating from nearby points in the plasma. The adjacent points are typically 2 cm apart, with their relative orientation (δr, δθ) depending on position (r,θ). for angular frequencies ω ≤ 10 6 /s the signals are quite coherent, leading to reasonably well-defined ''dispersion relations.'' These do not correspond to known modes of the drift wave type, i.e., ballooning or slab-like electron drift waves or ion temperature gradient modes. The effect of finite sample volume size does not significantly alter this conclusion. 25 refs., 6 figs., 3 tabs

  5. ON THE ORIGIN OF THE HIGH COLUMN DENSITY TURNOVER IN THE H I COLUMN DENSITY DISTRIBUTION

    International Nuclear Information System (INIS)

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-01-01

    We study the high column density regime of the H I column density distribution function and argue that there are two distinct features: a turnover at N H I ≈ 10 21 cm –2 , which is present at both z = 0 and z ≈ 3, and a lack of systems above N H I ≈ 10 22 cm –2 at z = 0. Using observations of the column density distribution, we argue that the H I-H 2 transition does not cause the turnover at N H I ≈ 10 21 cm –2 but can plausibly explain the turnover at N H I ∼> 10 22 cm –2 . We compute the H I column density distribution of individual galaxies in the THINGS sample and show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the H I map or to averaging in radial shells. Our results indicate that the similarity of H I column density distributions at z = 3 and 0 is due to the similarity of the maximum H I surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within giant molecular clouds cannot affect the damped Lyα column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ∼ kpc scales with those estimated from quasar spectra that probe sub-pc scales due to the steep power spectrum of H I column density fluctuations observed in nearby galaxies.

  6. High Energy Density Capacitors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  7. A high resolution, single bunch, beam profile monitor

    International Nuclear Information System (INIS)

    Norem, J.

    1992-01-01

    Efficient linear colliders require very small beam spots to produce high luminosities with reasonable input power, which limits the number of electrons which can be accelerated to high energies. The small beams, in turn, require high precision and stability in all accelerator components. Producing, monitoring and maintaining beams of the required quality has been, and will continue to be, difficult. A beam monitoring system which could be used to measure beam profile, size and stability at the final focus of a beamline or collider has been developed and is described here. The system uses nonimaging bremsstrahlung optics. The immediate use for this system would be examining the final focus spot at the SLAC/FFTB. The primary alternatives to this technique are those proposed by P. Chen / J. Buon, which analyses the energy and angular distributions of ion recoils to determine the aspect ratio of the electron bunch, and a method proposed by Shintake, which measures intensity variation of compton backscattered photons as the beam is moved across a pattern of standing waves produced by a laser

  8. High quality electron beams from a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, S M; Issac, R C; Welsh, G H; Brunetti, E; Shanks, R P; Anania, M P; Cipiccia, S; Manahan, G G; Aniculaesei, C; Ersfeld, B; Islam, M R; Burgess, R T L; Vieux, G; Jaroszynski, D A [SUPA, Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Gillespie, W A [SUPA, Division of Electronic Engineering and Physics, University of Dundee, Dundee (United Kingdom); MacLeod, A M [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee (United Kingdom); Van der Geer, S B; De Loos, M J, E-mail: m.wiggins@phys.strath.ac.u [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2010-12-15

    High quality electron beams have been produced in a laser-plasma accelerator driven by femtosecond laser pulses with a peak power of 26 TW. Electrons are produced with an energy up to 150 MeV from the 2 mm gas jet accelerator and the measured rms relative energy spread is less than 1%. Shot-to-shot stability in the central energy is 3%. Pepper-pot measurements have shown that the normalized transverse emittance is {approx}1{pi} mm mrad while the beam charge is in the range 2-10 pC. The generation of high quality electron beams is understood from simulations accounting for beam loading of the wakefield accelerating structure. Experiments and self-consistent simulations indicate that the beam peak current is several kiloamperes. Efficient transportation of the beam through an undulator is simulated and progress is being made towards the realization of a compact, high peak brilliance free-electron laser operating in the vacuum ultraviolet and soft x-ray wavelength ranges.

  9. Development and application of high power and high intensity ion beam sources at NPI, Tomsk, Russia

    International Nuclear Information System (INIS)

    Ryabchikov, A.I.

    2007-01-01

    High - current ion beams have become a powerful tool for improving the surface properties of different materials. The prospects of wide commercial use of such beams for material treatment is not only due to the possibility of improving their properties, but, also for economic expediency. To achieve a high throughput and reduce the cost on ion beam material treatment, ion beams of high average and pulsed power are necessary. This paper gives an overview of work on generation of pulsed and repetitively pulsed beams of ion beams with currents ranging from fractions of an ampere to several tens of kA and with pulse duration from several tens of nanoseconds to several hundreds of microseconds. A number of different methods of materials surface properties modification using high power and intense ion beam and plasma are considered. (author)

  10. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    International Nuclear Information System (INIS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-01-01

    A recent low gas-fill density (0.6 mg/cc 4 He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4 He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth

  11. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Science.gov (United States)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  12. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  13. Spontaneous magnetization in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constanca

    2015-01-01

    It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous magnet...

  14. Fast IMRT with narrow high energy scanned photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, Bjoern; Straaring t, Sara Janek; Holmberg, Rickard; Naefstadius, Peder; Brahme, Anders [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm (Sweden); Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm, Sweden and Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden)

    2011-08-15

    Purpose: Since the first publications on intensity modulated radiation therapy (IMRT) in the early 1980s almost all efforts have been focused on fairly time consuming dynamic or segmental multileaf collimation. With narrow fast scanned photon beams, the flexibility and accuracy in beam shaping increases, not least in combination with fast penumbra trimming multileaf collimators. Previously, experiments have been performed with full range targets, generating a broad bremsstrahlung beam, in combination with multileaf collimators or material compensators. In the present publication, the first measurements with fast narrow high energy (50 MV) scanned photon beams are presented indicating an interesting performance increase even though some of the hardware used were suboptimal. Methods: Inverse therapy planning was used to calculate optimal scanning patterns to generate dose distributions with interesting properties for fast IMRT. To fully utilize the dose distributional advantages with scanned beams, it is necessary to use narrow high energy beams from a thin bremsstrahlung target and a powerful purging magnet capable of deflecting the transmitted electron beam away from the generated photons onto a dedicated electron collector. During the present measurements the scanning system, purging magnet, and electron collimator in the treatment head of the MM50 racetrack accelerator was used with 3-6 mm thick bremsstrahlung targets of beryllium. The dose distributions were measured with diodes in water and with EDR2 film in PMMA. Monte Carlo simulations with geant4 were used to study the influence of the electrons transmitted through the target on the photon pencil beam kernel. Results: The full width at half-maximum (FWHM) of the scanned photon beam was 34 mm measured at isocenter, below 9.5 cm of water, 1 m from the 3 mm Be bremsstrahlung target. To generate a homogeneous dose distribution in a 10 x 10 cm{sup 2} field, the authors used a spot matrix of 100 equal intensity

  15. Physics of neutralization of intense high-energy ion beam pulses by electrons

    International Nuclear Information System (INIS)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100 G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  16. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B.; Lee, E.P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  17. Simulation of the Beam Dump for a High Intensity Electron Gun

    CERN Document Server

    Doebert, S; Lefevre, T; Pepitone, K

    2014-01-01

    The CLIC Drive Beam is a high-intensity pulsed electron beam. A test facility for the Drive Beam electron gun will soon be commissioned at CERN. In this contribution we outline the design of a beam dump / Faraday cup capable of resisting the beam’s thermal load. The test facility will operate initially up to 140 keV. At such low energies, the electrons are absorbed very close to the surface of the dump, leading to a large energy deposition density in this thin layer. In order not to damage the dump, the beam must be spread over a large surface. For this reason, a small-angled cone has been chosen. Simulations using Geant4 have been performed to estimate the distribution of energy deposition in the dump. The heat transport both within the electron pulse and between pulses has been modelled using finite element methods to check the resistance of the dump at high repetition rates. In addition, the possibility of using a moveable dump to measure the beam profile and emittance is discussed.

  18. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  19. Preliminary research results for the generation and diagnostics of high power ion beams on FLASH II accelerator

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Sun Jianfeng; He Xiaoping; Tang Junping; Wang Haiyang; Li Jingya; Ren Shuqing; Ouyang Xiaoping; Zhang Guoguang; Li Hongyu

    2004-01-01

    The preliminary experimental results of the generation and diagnostics of high-power ion beams on FLASH II accelerator are reported. The high-power ion beams presently are being produced in a pinched diode. The method for enhancing the ratio of ion to electron current is to increase the electron residing time by pinching the electron flow. Furthermore, electron beam pinching can be combined with electron reflexing to achieve ion beams with even higher efficiency and intensity. The anode plasma is generated by anode foil bombarded with electron and anode foil surface flashover. In recent experiments on FLASH II accelerator, ion beams have been produced with a current of 160 kA and an energy of 500 keV corresponding to an ion beam peak power of about 80 GW. The ion number and current of high power ion beams were determined by monitoring delayed radioactivity from nuclear reactions induced in a 12 C target by the proton beams. The prompt γ-rays and diode Bremsstrahlung X-rays were measured with a PIN semi-conductor detector and a plastic scintillator detector. The current density distribution of ion beam was measured with a biased ion collector array. The ion beams were also recorded with a CR-39 detector. (authors)

  20. Energy confinement of high-density tokamaks

    NARCIS (Netherlands)

    Schüller, F.C.; Schram, D.C.; Coppi, B.; Sadowski, W.

    1977-01-01

    Neoclassical ion heat conduction is the major energy loss mechanism in the center of an ohmically heated high-d. tokamak discharge (n>3 * 1020 m-3). This fixes the mutual dependence of plasma quantities on the axis and leads to scaling laws for the poloidal b and energy confinement time, given the

  1. Progress with Long-Range Beam-Beam Compensation Studies for High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Adriana; et al.

    2017-05-01

    Long-range beam-beam (LRBB) interactions can be a source of emittance growth and beam losses in the LHC during physics and will become even more relevant with the smaller '* and higher bunch intensities foreseen for the High Luminosity LHC upgrade (HL-LHC), in particular if operated without crab cavities. Both beam losses and emittance growth could be mitigated by compensat-ing the non-linear LRBB kick with a correctly placed current carrying wire. Such a compensation scheme is currently being studied in the LHC through a demonstration test using current-bearing wires embedded into col-limator jaws, installed either side of the high luminosity interaction regions. For HL-LHC two options are considered, a current-bearing wire as for the demonstrator, or electron lenses, as the ideal distance between the particle beam and compensating current may be too small to allow the use of solid materials. This paper reports on the ongoing activities for both options, covering the progress of the wire-in-jaw collimators, the foreseen LRBB experiments at the LHC, and first considerations for the design of the electron lenses to ultimately replace material wires for HL-LHC.

  2. Preliminary investigation of anomalous relativistic electron beam deposition into a 1017 to 1020 cm-3 density plasma

    International Nuclear Information System (INIS)

    Thode, L.E.

    1978-04-01

    Based upon recent theoretical and experimental advances, the potential for using a 10 to 30 MeV electron beam to heat a 10 17 to 10 20 cm -3 density plasma has been investigated. Taking into account anode foil scattering, external magnetic field strength, electron-ion collision rate, beam self-magnetic field discontinuity, and plasma temperature, a coupling efficiency of 15 to 50% is achievable for such a plasma. Moreover, the beam generator requirements seem to be within present pulse power technology

  3. High resolution, position sensitive detector for energetic particle beams

    International Nuclear Information System (INIS)

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.; Morse, D.H.; Pontau, A.E.

    1993-01-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10 10 ), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 μm for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 μm) with an image resolution of better than 0.5 μm has since been developed and its design is presented. (orig.)

  4. High resolution, position sensitive detector for energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, E P [Charles Evans and Associates, Redwood City, CA (United States); Strathman, M D [Charles Evans and Associates, Redwood City, CA (United States); Reed, D A [Charles Evans and Associates, Redwood City, CA (United States); Odom, R W [Charles Evans and Associates, Redwood City, CA (United States); Morse, D H [Sandia National Labs., Livermore, CA (United States); Pontau, A E [Sandia National Labs., Livermore, CA (United States)

    1993-05-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10[sup 10]), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 [mu]m for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 [mu]m) with an image resolution of better than 0.5 [mu]m has since been developed and its design is presented. (orig.)

  5. Charged particle beam scanning using deformed high gradient insulator

    Science.gov (United States)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  6. Synchrotron accelerator technology for proton beam therapy with high accuracy

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo

    2009-01-01

    Proton beam therapy was applied at the beginning to head and neck cancers, but it is now extended to prostate, lung and liver cancers. Thus the need for a pencil beam scanning method is increasing. With this method radiation dose concentration property of the proton beam will be further intensified. Hitachi group has supplied a pencil beam scanning therapy system as the first one for M. D. Anderson Hospital in United States, and it has been operational since May 2008. Hitachi group has been developing proton therapy system to correspond high-accuracy proton therapy to concentrate the dose in the diseased part which is located with various depths, and which sometimes has complicated shape. The author described here on the synchrotron accelerator technology that is an important element for constituting the proton therapy system. (K.Y.)

  7. The high-energy dual-beam facility

    International Nuclear Information System (INIS)

    Kaletta, D.

    1984-07-01

    This proposal presents a new experimental facility at the Kernforschungszentrum Karlsruhe (KfK) to study the effects of irradiation on the first wall and blanket materials of a fusion reactor. A special effort is made to demonstrate the advantages of the Dual Beam Technique (DBT) as a future research tool for materials development within the European Fusion Technology Programme. The Dual-Beam-Technique allows the production both of helium and of damage in thick metal and ceramic specimens by simultaneous irradiation with high energy alpha particles and protons produced by the two KfK cyclotrons. The proposal describes the Dual Beam Technique the planned experimental activities and the design features of the Dual Beam Facility presently under construction. (orig.) [de

  8. Research results for the applications of high power ion beams

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Sun Jianfeng; He Xiaoping; Tang Junping; Wang Haiyang; Zhang Jiasheng; Xu Ri; Peng Jianchang; Ren Shuqing; Li Peng; Yang Li; Huang Jianjun; Zhang Guoguang; Ouyang Xiaoping; Li Hongyu

    2003-01-01

    The results obtained in the theoretical and experimental studies for the application of high power ion beams in certain areas of nuclear physics and material science are reported. The preliminary experimental results of generating 6-7 MeV quasi-monoenergetic pulsed γ-rays with high power pulsed proton beams striking 19 F target on the Flash II accelerator are presented. By placing the target far enough downstream, the quasi-monoenergetic pulsed γ-rays can be discriminated experimentally from the diode Bremsstrahlung. This article also describes the other applications of high power ion beams and the preliminary experimental and theoretical results in simulation of soft X-ray thermal-mechanical effects, generation of high intense pulsed neutrons, equation of state and shock-wave physics experiments, surface modification and so on

  9. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    International Nuclear Information System (INIS)

    Nanda, Vikas; Kant, Niti

    2014-01-01

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect

  10. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, G. T. Road, Phagwara, Punjab 144411 (India)

    2014-07-15

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect.

  11. High energy gain electron beam acceleration by 100TW laser

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki; Kando, Masaki; Kondo, Shuji; Hosokai, Tomonao; Kanazawa, Shuhei; Yokoyama, Takashi; Matoba, Toru; Nakajima, Kazuhisa

    2001-01-01

    A laser wakefield acceleration experiment using a 100TW laser is planed at JAERI-Kansai. High quality and short pulse electron beams are necessary to accelerate the electron beam by the laser. Electron beam - laser synchronization is also necessary. A microtron with a photocathode rf-gun was prepared as a high quality electron injector. The quantum efficiency (QE) of the photocathode of 2x10 -5 was obtained. A charge of 100pC from the microtron was measured. The emittance and pulse width of the electron beam was 6π mm-mrad and 10ps, respectively. In order to produce a short pulse electron beam, and to synchronize between the electron beam and the laser pulse, an inverse free electron laser (IFEL) is planned. One of problems of LWFA is the short acceleration length. In order to overcome the problem, a Z-pinch plasma waveguide will be prepared as a laser wakefield acceleration tube for 1 GeV acceleration. (author)

  12. High precision capacitive beam phase probe for KHIMA project

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ji-Gwang, E-mail: windy206@hanmail.net [Korea Institute of Radiological and Medical Sciences, 215–4, Gongneung-dong, Nowon-t, Seoul 139–706 (Korea, Republic of); Yang, Tae-Keun [Korea Institute of Radiological and Medical Sciences, 215–4, Gongneung-dong, Nowon-t, Seoul 139–706 (Korea, Republic of); Forck, Peter [GSI Helmholtz Centre for Ion Research, Darmstadt 64291, German (Germany)

    2016-11-21

    In the medium energy beam transport (MEBT) line of KHIMA project, a high precision beam phase probe monitor is required for a precise tuning of RF phase and amplitude of Radio Frequency Quadrupole (RFQ) accelerator and IH-DTL linac. It is also used for measuring a kinetic energy of ion beam by time-of-flight (TOF) method using two phase probes. The capacitive beam phase probe has been developed. The electromagnetic design of the high precision phase probe was performed to satisfy the phase resolution of 1° (@200 MHz). It was confirmed by the test result using a wire test bench. The measured phase accuracy of the fabricated phase probe is 1.19 ps. The pre-amplifier electronics with the 0.125 ∼ 1.61 GHz broad-band was designed and fabricated for amplifying the signal strength. The results of RF frequency and beam energy measurement using a proton beam from the cyclotron in KIRAMS is presented.

  13. Metallic plates lens focalizing a high power microwave beam

    International Nuclear Information System (INIS)

    Rebuffi, L.

    1987-08-01

    A metallic grating composed of thin parallel plates opportunely spaced, permits to correct the phase of an incident high power microwave beam. In this work we show how it is possible to obtain a beam focalisation (lens), a beam deflection (prisma), or a variation in the polarization (polarizer) using parallel metallic plates. The main design parameters are here presented, in order to obtain the wanted phase modification keeping low the diffraction, the reflected power, the ohmic losses and avoiding breakdowns. Following the given criteria, a metallic plate lens has been realized to focalize the 200 KW, 100 msec 60 GHz beam used in the ECRH experiment on the TFR tokamak. The experimental beam concentration followed satisfactory the design requirements. In fact, the maximum intensity increased about twice the value without lens. In correspondence of this distance a reduction of the beam size of about 50% have been measured for the -3 dB radius. The lens supported high power tests without breakdowns or increase of the reflected power

  14. Quantitative high dynamic range beam profiling for fluorescence microscopy

    International Nuclear Information System (INIS)

    Mitchell, T. J.; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D.

    2014-01-01

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences

  15. Filter device for high density aerozol

    International Nuclear Information System (INIS)

    Karasawa, Hidetoshi; Endo, Masao; Utamura, Motoaki; Tozuka, Fumio; Tate, Hitoshi.

    1991-01-01

    In a reactor, filters for capturing aerozol particles at high concentration have such a structure that a great number of fine pores are formed. Aerozols are introduced to a filter portion from the place remote from a first inlet. Cloggings are caused successively from the places remote from the inlet. Even if the clogging should occur, since there are many pores, the performance of filters is not deteriorated. Further, the filter has a multi-layered structure. With such a constitution, if the filter at a first stage is clogged to increase the pressure, a partitioning plate is opened and fluids are introduced into a second filter. This is conducted successively to suppress the deterioration of the performance of the filter. In view of the above, even if cloggings should occur, the filter performance is not deteriorated and, accordingly, reactor container ventilation can be conducted at high reliability upon occurrence of accidents. (T.M.)

  16. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chacon-Golcher, Edwin [Univ. of California, Berkeley, CA (United States)

    2002-06-01

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K+ and Cs+ contact ionization sources and potassium aluminum silicate sources. Maximum values for a K+ beam of ~90 mA/cm2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm+) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (εn ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.

  17. Large high current density superconducting solenoids for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.; Eberhard, P.H.; Taylor, J.D.

    1976-05-01

    Very often the study of high energy physics in colliding beam storage-rings requires a large magnetic field volume in order to detect and analyze charged particles which are created from the collision of two particle beams. Large superconducting solenoids which are greater than 1 meter in diameter are required for this kind of physics. In many cases, interesting physics can be done outside the magnet coil, and this often requires that the amount of material in the magnet coil be minimized. As a result, these solenoids should have high current density (up to 10 9 A m -2 ) superconducting windings. The methods commonly used to stabilize large superconducting magnets cannot be employed because of this need to minimize the amount of material in the coils. A description is given of the Lawrence Berkeley Laboratory program for building and testing prototype solenoid magnets which are designed to operate at coil current densities in excess of 10 9 A m -2 with magnetic stored energies which are as high as 1.5 Megajoules per meter of solenoid length. The coils use intrinsically stable multifilament Nb--Ti superconductors. Control of the magnetic field quench is achieved by using a low resistance aluminum bore tube which is inductively coupled to the coil. The inner cryostat is replaced by a tubular cooling system which carries two phase liquid helium. The magnet coil, the cooling tubes, and aluminum bore tube are cast in epoxy to form a single unified magnet and cryogenic system which is about 2 centimeters thick. The results of the magnet coil tests are discussed

  18. Interaction of the modulated electron beam with inhomogeneous plasma: plasma density profile deformation and langmuir waves excitation

    International Nuclear Information System (INIS)

    Anisimov, I.O.; Kelnyk, O.I.; Soroka, S.V.; Siversky, T.V.

    2005-01-01

    Nonlinear deformation of the initially linear plasma density profile due to the modulated electron beam is studied via computer simulation. In the initial time period the field slaves to the instantaneous profile of the plasma density. Langmuir waves excitation is suppressed by the density profile deformation. The character of the plasma density profile deformation for the late time period depends significantly on the plasma properties. Particularly, for plasma with hot electrons quasi-periodic generation of ion-acoustic pulses takes place in the vicinity of the initial point of plasma resonance

  19. Numerical analysis of energy density and particle density in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Fu Yuanyong; Lu Zhongdao

    2004-01-01

    Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared. The results show that Gauss-Laguerre formulas is a good method in calculations of high energy heavy-ion collisions. (author)

  20. Effect of tension lap splice on the behavior of high strength concrete (HSC beams

    Directory of Open Access Journals (Sweden)

    Ahmed El-Azab

    2014-12-01

    Full Text Available In the recent years, many research efforts have been carried out on the bond strength between normal strength concrete (NSC and reinforcing bars spliced in tension zones in beams. Many codes gave a minimum splice length for tension and compression reinforcement as a factor of the bar diameter depending on many parameters such as concrete strength, steel yield stress, shape of bar end, shape of bar surface and also bar location. Also, codes gave another restriction about the percentage of total reinforcement to be spliced at the same time. Comparatively limited attention has been directed toward the bond between high strength concrete (HSC and reinforcing bars spliced in tension zones in beams. HSC has high modulus of elasticity, high density and long-term durability. This research presents an experimental study on the bond between high strength concrete (HSC and reinforcing bars spliced in tension zones in beams. It reports the influence of several parameters on bond in splices. The parameters covered are casting position, splice length as a factor of bar diameter, bar diameter and reinforcement ratio. The research involved tests on sixteen simply-supported beams of 1800 mm span, 200 mm width and 400 mm thickness made of HSC. In each beam, the total tensile steel bars were spliced in the constant moment zone. Crack pattern, crack propagation, cracking load, failure load and mi span deflection were recorded and analyzed to study the mentioned parameters effect.

  1. Spectroscopic investigations of high-energy-density\

    Czech Academy of Sciences Publication Activity Database

    Civiš, Martin; Ferus, Martin; Knížek, Antonín; Kubelík, Petr; Kamas, Michal; Španěl, Patrik; Dryahina, Kseniya; Shestivska, Violetta; Juha, Libor; Skřehot, P.; Laitl, V.; Civiš, Svatopluk

    2016-01-01

    Roč. 18, č. 39 (2016), s. 27317-27325 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-12010S; GA MŠk LG15013; GA MŠk(CZ) LM2015083 Grant - others:Akademie věd - GA AV ČR(CZ) R200401521 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : HIGH-POWER LASER * INDUCED DIELECTRIC-BREAKDOWN * EARTHS EARLY ATMOSPHERE Subject RIV: CF - Physical ; Theoretical Chemistry; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 4.123, year: 2016

  2. A new high-speed X-ray beam chopper

    International Nuclear Information System (INIS)

    McPherson, A.; Wang, J.; Lee, P. L.; Mills, D. M.

    1999-01-01

    A new high-speed x-ray beam chopper using laser scanner technology has been developed and tested on the SRI-CAT sector 1 beamline at the Advanced Photon Source (APS) storage ring (1). As illustrated in figure 1, it is compact in size and has two sets of transmission windows: BK-7 glass for visible light transmission and 0.23-mm-thick Be for the transmission of x-rays. The rotor is made of aluminum and has a diameter of 50.8 mm. A 0.5-mm-wide and 2.29-mm-tall slit is cut through the center of the rotor. The circumference of the rotor has a coating of 1-mm-thick Ni, which gives an attenuation of 10 8 at 30 keV. Turning at nearly 80000 RPM, this beam chopper has an opening time window of 2450 ns, corresponding to 67% of the revolution time of the APS storage ring. The primary feature in selecting laser scanner technology to develop into an x-ray beam chopper was the high level of rotational speed control of the rotor that makes up the beam chopper element (2). By using an optical feedback circuit to sample the rotational speed four times each revolution, the jitter in the position of the transmission open time window is only 3 ns at the 3 standard deviation level. The APS storage ring orbital frequency, supplied by the control room, is divided down to provide the appropriate drive frequency for the beam chopper motor controller. By this means, both the storage ring and the beam chopper are operating off the same master clock. After a turn-on time of about 15 to 20 seconds, the rotational precision of the motor results in immediate phase locking to the temporal structure of the APS storage ring. By inserting a Stanford delay generator between the frequency divider and the beam chopper motor controller, the phase between the storage ring temporal structure and the beam chopper rotation can be adjusted to position the transmission time window of the beam chopper on any desired part of the storage ring fill pattern. If an asymmetric fill pattern is used in the APS storage

  3. High-energy electron beams for ceramic joining

    Science.gov (United States)

    Turman, Bob N.; Glass, S. J.; Halbleib, J. A.; Helmich, D. R.; Loehman, Ron E.; Clifford, Jerome R.

    1995-03-01

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride (Si3N4) to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si3N4 - Si3N4 with gold-nickel braze. The bonding mechanism appears to be formation of a thin silicide layer. Beam damage to the Si3N4 was also assessed.

  4. Feasibility of ceramic joining with high energy electron beams

    International Nuclear Information System (INIS)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E.; Clifford, J.R.

    1995-01-01

    Joining structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for producing joints with high temperature capability. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the adjacent ceramic. The authors have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 NTa have been measured for Si 3 N 4 -Mo-Si 3 N 4 . These modest strengths are due to beam non-uniformity and the limited area of bonding. The bonding mechanism appears to be a thin silicide reaction layer. Si 3 N 4 -Si 3 N 4 joints with no metal layer were also produced, apparently bonded an yttrium apatite grain boundary phase

  5. Pulsed system for obtaining microdosimetric data with high intensity beams

    International Nuclear Information System (INIS)

    Zaider, M.; Dicello, J.F.; Hiebert, R.D.

    1977-01-01

    The use of heavy particle accelerators for radiation therapy requires high intensity beams in order to produce useful dose rates. The 800-MeV proton beam at LAMPF passes through different production targets to generate secondary pion beams. Conventional microdosimetric techniques are not applicable under these conditions because exceedingly high count rates result in detector damage, gas breakdown, and saturation effects in the electronics. We describe a new microdosimetric system developed at the Pion Biomedical Channel of LAMPF. The accelerator provides a variable low intensity pulse once every ten high intensity macropulses. The voltage on the detector is pulsed in coincidence with the low intensity pulse so that we were able to operate the detector under optimum data-taking conditions. A low noise two-stage preamplifier was built in connection with the pulsed mode operation. A comparison is made between data obtained in pulsed (high intensity beam) and unpulsed (low intensity beam) modes. The spectra obtained by the two methods agree within the experimental uncertainties

  6. Triton-3He relative and differential flows and the high density behavior of nuclear symmetry

    International Nuclear Information System (INIS)

    Yong, Gaochan; Li, Baoan; Chen, Liewen

    2010-01-01

    Using a transport model coupled with a phase-space coalescence after-burner we study the triton- 3 He relative and differential transverse flows in semi-central 132 Sn + 124 Sn reactions at a beam energy of 400 MeV/nucleon. We find that the triton- 3 He pairs carry interesting information about the density dependence of the nuclear symmetry energy. The t- 3 He relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy. (author)

  7. Method of measuring the polarization of high momentum proton beams

    International Nuclear Information System (INIS)

    Underwood, D.G.

    1976-01-01

    A method of measuring the polarization of high momentum proton beams is proposed. This method utilizes the Primakoff effect and relates asymmetries at high energy to large asymmetries already measured at low energy. Such a new method is essential for the success of future experiments at energies where present methods are no longer feasible

  8. Beam-Beam Effects

    International Nuclear Information System (INIS)

    Herr, W; Pieloni, T

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities

  9. Beam-beam effects in the high-pile-up tests of the LHC

    International Nuclear Information System (INIS)

    Trad, G

    2014-01-01

    Investigating the beam-beam limit in the LHC is of great importance, since identifying its source is crucial for the luminosity optimization scenario. Several experiments were carried out to search for this limit and check whether it is dominated by the head-on (HO) or the long-range (LR) interactions. In this paper only the HO collision effects will be considered, tracking the evolution of the maximum tune shift achieved during the dedicated machine developments and the special high pile-up fills

  10. Beam-beam effects in the high-pile-up tests of the LHC

    CERN Document Server

    Trad, G.

    2014-07-17

    Investigating the beam-beam limit in the LHC is of great importance, since identifying its source is crucial for the luminosity optimization scenario. Several experiments were carried out to search for this limit and check whether it is dominated by the head-on (HO) or the long-range (LR) interactions. In this paper only the HO collision effects will be considered, tracking the evolution of the maximum tune shift achieved during the dedicated machine developments and the special high pile-up fills.

  11. Analysis of plasma channels in mm-scale plasmas formed by high intensity laser beams

    International Nuclear Information System (INIS)

    Murakami, R; Habara, H; Iwawaki, T; Uematsu, Y; Tanaka, K A; Ivancic, S; Anderson, K; Haberberger, D; Stoeckl, C; Theobald, W; Sakagami, H

    2016-01-01

    A plasma channel created by a high intensity infrared laser beam was observed in a long scale-length plasma (L ∼ 240 μm) with the angular filter refractometry technique, which indicated a stable channel formation up to the critical density. We analyzed the observed plasma channel using a rigorous ray-tracing technique, which provides a deep understanding of the evolution of the channel formation. (paper)

  12. The CERN Super Proton Synchrotron as a tool to study high energy density physics

    CERN Document Server

    Tahir, N A; Brugger, M; Assmann, R; Shutov, A V; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov3, V E

    2008-01-01

    An experimental facility named HiRadMat, will be constructed at CERN to study the impact of the 450 GeV c−1 proton beam generated by the Super Proton Synchrotron (SPS) on solid targets. This is designed to study damage caused to the equipment including absorbers, collimators and others in case of an accidental release of the beam energy. This paper presents two-dimensional numerical simulations of target behavior irradiated by the SPS beam. These numerical simulations have shown that the target will be completely destroyed in such an accident, thereby generating high energy density (HED) matter. This study therefore suggests that this facility may also be used for carrying out dedicated experiments to study HED states in matter.

  13. Lexical Density Of English Reading Texts For Senior High School

    OpenAIRE

    Nesia, Bersyebah Herljimsi; Ginting, Siti Aisah

    2014-01-01

    This study deals with the lexical density especially the lexical items of English reading texts in the textbook for senior high school. The objectives of the study are to find out the lexical density especially the lexical items which formed in the reading texts of Look Ahead textbook and the type of genre which has the highest lexical density of the reading texts. This study was conducted by descriptive method with qualitative approach. The data of this research were the English reading text...

  14. Volume generation of negative ions in high density hydrogen discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.

    1983-01-01

    A parametric survey is made of a high-density tandem two-chamber hydrogen negative ion system. The optimum extracted negative ion current densities are sensitive to the atom concentration in the discharge and to the system scale length. For scale lengths ranging from 10 cm to 0.1 cm optimum current densities range from of order 1 to 100 mA cm -2 , respectively

  15. The emittance of high current heavy ion beams

    International Nuclear Information System (INIS)

    White, N.R.; Devaney, A.S.

    1989-01-01

    Ion implantation is the main application for high current heavy ion beams. Transfer ratio is defined as the ratio of the total ion current leaving the ion source to the current delivered to the endstation. This ratio is monitored and logged and its importance is explained. It is also affected by other factors, such as the isotopic and molecular composition of the total ion beam. The transfer ratio reveals the fraction of ions which are intercepted by parts of the beamline system. The effects of these ions are discussed in two categories: processing purity and reliability. In discussing the emittance of ribbon beams, the two orthogonal planes are usually considered separately. Longitudinal emittance is determined by slot length and by plasma ion temperature. It has already been revealed that the longitudinal divergence of the beams from BF3 is perhaps double that of the beam from arsenic vapour or argon, at the same total perveance from the ion source. This poses the question: why is the ion temperature higher for BF3 than for As or Ar? The transverse emittance is in practical terms dominated by the divergence. It is the most fruitful area for improvement in most real-world systems. There is an intrinsic divergence arising from initial ion energies within the plasma, and there is emittance growth that can occur as a result of aberration in the beam extraction optics. (N.K.)

  16. Beam loading in high-energy storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1974-06-01

    The analysis of beam loading in the RF systems of high-energy storage rings (for example, the PEP e/sup /minus//e/sup +/ ring) is complicated by the fact that the time, T/sub b/, between the passage of successive bunches is comparable to the cavity filling time, T/sub b/. In this paper, beam loading expressions are first summarized for the usual case in which T/sub b/ /much lt/ T/sub f/. The theory of phase oscillations in the heavily-beam-loaded case is considered, and the dependence of the synchrotron frequency and damping constant for the oscillations on beam current and cavity tuning is calculated. Expressions for beam loading are then derived which are valid for any value of the ratio T/sub b//T/sub f/. It is shown that, for the proposed PEP e/sup /minus//e/sup +/ ring parameters, the klystron power required is increased by about 3% over that calculated using the standard beam loading expressions. Finally, the analysis is extended to take into account the additional losses associated with the excitation of higher-order cavity modes. A rough numerical estimate is made of the loss enhancement to be expected for PEP RF system. It is concluded that this loss enhancement might be substantial unless appropriate measures are taken in the design and tuning of the accelerating structure

  17. Production of highly charged ion beams with SECRAL

    International Nuclear Information System (INIS)

    Sun, L. T.; Zhao, H. W.; Zhang, X. Z.; Feng, Y. C.; Li, J. Y.; Guo, X. H.; Ma, H. Y.; Zhao, H. Y.; Ma, B. H.; Wang, H.; Li, X. X.; Jin, T.; Xie, D. Z.; Lu, W.; Cao, Y.; Shang, Y.

    2010-01-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e μA of Xe 37+ , 1 e μA of Xe 43+ , and 0.16 e μA of Ne-like Xe 44+ . To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi 31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e μA of Bi 31+ , 22 e μA of Bi 41+ , and 1.5 e μA of Bi 50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  18. Beam halo in high-intensity hadron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Gerigk, F

    2006-12-21

    This document aims to cover the most relevant mechanisms for the development of beam halo in high-intensity hadron linacs. The introduction outlines the various applications of high-intensity linacs and it will explain why, in the case of the CERN Superconducting Proton Linac (SPL) study a linac was chosen to provide a high-power beam, rather than a different kind of accelerator. The basic equations, needed for the understanding of halo development are derived and employed to study the effects of initial and distributed mismatch on high-current beams. The basic concepts of the particle-core model, envelope modes, parametric resonances, the free-energy approach, and the idea of core-core resonances are introduced and extended to study beams in realistic linac lattices. The approach taken is to study the behavior of beams not only in simplified theoretical focusing structures but to highlight the beam dynamics in realistic accelerators. All effects which are described and derived with simplified analytic models, are tested in realistic lattices and are thus related to observable effects in linear accelerators. This approach involves the use of high-performance particle tracking codes, which are needed to simulate the behavior of the outermost particles in distributions of up to 100 million macro particles. In the end a set of design rules are established and their impact on the design of a typical high-intensity machine, the CERN SPL, is shown. The examples given in this document refer to two different design evolutions of the SPL study: the first conceptual design report (SPL I) and the second conceptual design report (SPL II). (orig.)

  19. Multi-focus beam shaping of high power multimode lasers

    Science.gov (United States)

    Laskin, Alexander; Volpp, Joerg; Laskin, Vadim; Ostrun, Aleksei

    2017-08-01

    Beam shaping of powerful multimode fiber lasers, fiber-coupled solid-state and diode lasers is of great importance for improvements of industrial laser applications. Welding, cladding with millimetre scale working spots benefit from "inverseGauss" intensity profiles; performance of thick metal sheet cutting, deep penetration welding can be enhanced when distributing the laser energy along the optical axis as more efficient usage of laser energy, higher edge quality and reduction of the heat affected zone can be achieved. Building of beam shaping optics for multimode lasers encounters physical limitations due to the low beam spatial coherence of multimode fiber-coupled lasers resulting in big Beam Parameter Products (BPP) or M² values. The laser radiation emerging from a multimode fiber presents a mixture of wavefronts. The fiber end can be considered as a light source which optical properties are intermediate between a Lambertian source and a single mode laser beam. Imaging of the fiber end, using a collimator and a focusing objective, is a robust and widely used beam delivery approach. Beam shaping solutions are suggested in form of optics combining fiber end imaging and geometrical separation of focused spots either perpendicular to or along the optical axis. Thus, energy of high power lasers is distributed among multiple foci. In order to provide reliable operation with multi-kW lasers and avoid damages the optics are designed as refractive elements with smooth optical surfaces. The paper presents descriptions of multi-focus optics as well as examples of intensity profile measurements of beam caustics and application results.

  20. Beam transport optics for high-power laser systems

    International Nuclear Information System (INIS)

    Taylor, J.R.

    1995-01-01

    Beam transport optics receive output energy from the laser cavity and deliver it to the work site. Depending on the application, this may require a few simple elements or large complex systems. Collection of the laser energy depends on the spatial and temporal energy distribution as well as the wavelength and polarization of the laser cavity and output coupler. Transport optics can perform a variety of functions, including beam formatting, frequency doubling, and distribution to one or more work sites while maintaining or even improving the beam quality. The beam may be delivered to work sites as focused spots or images, projected to distant targets, or propagated through various media for sensing or photochemical processing. Design may involve optical modeling of the system, including diffraction effects and thermal management. A Gaussian beam profile is often used for convenience in modeling. When deviations from this ideal profile need to be considered, it is necessary to characterize the laser beam in detail. Design of the transport system requires understanding of the interaction of the laser energy with optical materials and components. Practical considerations include mounting the optics without stress and with the stability suitable for the intended application. Requirements for beam direction, stability, size, shape, and quality dictate the design approach for each specific situation. Attention also must be given to reliability, environmental, and commercial requirements. Damage to optics in high-power laser systems is a common concern. Environmental problems such as atmospheric turbulence, contamination by dust or vapor from the work site or other sources, or absorption of water vapor can directly degrade beam quality. Other potentially significant optical performance effects may result from instability and aging of the optics, temperature, humidity, pressure, transmitted vibration, and contamination from the work site or other sources